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Abstract

Design Techniques for High-Performance SAR A/D Converter
Mojtaba Bagheri

The design of electronics needs to account for the non-ideal characteristics of the device
technologies used to realize practical circuits. This is particularly important in mixed analog-
digital design since the best device technologies are very different for digital compared to
analog circuits. One solution for this problem is to use a calibration-correction approach to
remove the errors introduced by devices, but this adds complexity and power dissipation, as
well as reducing operation speed, and so must be optimised. This thesis addresses such an
approach to improve the performance of certain types of analog-to-digital converter (ADC)
used in advanced telecommunications, where speed, accuracy and power dissipation currently
limit applications. The thesis specifically focuses on the design of compensation circuits for
use in successive approximation register (SAR) ADCs.

ADCs are crucial building blocks in communication systems, in general, and for mobile
networks, in particular. The recently launched fifth generation of mobile networks (5G) has
required new ADC circuit techniques to meet the higher speed and lower power dissipation
requirements for 5G technology. The SAR has become one of the most favoured architectures
for designing high-performance ADCs, but the successive nature of the circuit operation
makes it difficult to reach ∼GS/s sampling rates at reasonable power consumption.

Here, two calibration techniques for high-performance SAR ADCs are presented. The
first uses an on-chip stochastic-based mismatch calibration technique that is able to accurately
compute and compensate for the mismatch of a capacitive DAC in a SAR ADC. The stochastic
nature of the proposed calibration method enables determination of the mismatch of the CAP-
DAC with a resolution much better than that of the DAC. This allows the unit capacitor to
scale down to as low as 280aF for a 9-bit DAC. Since the CAP-DAC causes a large part of the
overall dynamic power consumption and directly determines both the sizes of the driving and
sampling switches and the size of the input capacitive load of the ADC and the kT/C noise
power, a small CAP-DAC helps the power efficiency. To validate the proposed calibration
idea, a 10-bit asynchronous SAR ADC was fabricated in 28-nm CMOS. Measurement results
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show that the proposed stochastic calibration improves the ADC’s SFDR and SNDR by 14.9
dB, 11.5 dB, respectively. After calibration, the fabricated SAR ADC achieves an ENOB of
9.14 bit at a sampling rate of 85 MS/s, resulting in a Walden FoM of 10.9 fJ/c-s.

The second calibration technique is a timing-skew calibration for a time-interleaved (TI)
SAR ADC that calibrates/computes the inter-channel timing and offset mismatch simultane-
ously. Simulation results show the effectiveness of this calibration method.

When used together, the proposed mismatch calibration technique and the timing-skew
calibration technique enables a TI SAR ADC to be designed that can achieve a sampling rate
of ∼GS/s with 10-bit resolution and a power consumption as low as ∼10mW; specifications
that satisfy the requirements of 5G technology.
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Chapter 1

Introduction

High-speed (∼GSample/s) medium-resolution (∼10 bits) analog-to-digital converters (ADCs)
are widely used in high-speed communication systems, such as serial links, Ultra-Wide-Band
(UWB), and OFDM-based receivers. In designs for digital TV and satellite receivers, the
trend is towards software-defined radio, where the embedded A/D converter is moved closer
to the antenna. Such ADCs require 8–10 bits of resolution, a large bandwidth to enable
subsampling/down-conversion and a power consumption limited to a few hundred milliwatts,
in order to be combined with the digital baseband processing in a single IC.

5G (5th generation mobile networks or 5th generation wireless systems) are the next
major phase of mobile telecommunications standards beyond the current 4G/IMT-Advanced
standards, and another domain where high-performance ADCs are required. 5G networks
must be built to meet a number of individual end-user and enterprise needs [1]:

• 1 to 10 Gb/s data rates to support ultra-high definition video and virtual reality applica-
tion;

• Less than one millisecond latency to support real time mobile control and vehicle-to-
vehicle applications and communications;

• Rapid switching time between different radio access technologies to ensure a consis-
tently seamless delivery of services;

• Being able to support tens of millions of applications and hundreds of billions of
machines;

• Increased battery life of terminal devices (handsets);

• Increased capacity in dense urban environments;
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Fig. 1.1 Plot of Walden FoM vs Nyquist sampling frequency for all ADC papers presented at
ISSCC and VLSI from 1997-2018.

• Coverage in airplanes and remote areas.

To support the required thousand-fold capacity increase, it will be necessary to simultane-
ously make efficient use of all of the available continuous and non-continuous electromagnetic
spectrum. Furthermore, freeing up additional spectrum will be required. How this new spec-
trum will be used to achieve 10Gb/s for end users is a major challenge in designing future
5G systems. Specifically for A/D conversion, these 5G requirements call for an ADC with
a conversion rate of at least 1GS/s and a resolution of at least 10 bits, together with a low
power consumption.

The Successive-Approximation Register (SAR) ADC is a very promising candidate for
applications where high-speed medium-resolution is desired. This ADC architecture relies
on the high switching speed of certain device technologies, and so is known for its superior
energy efficiency, small chip area, and good digital compatibility that can be easily scaled
to a new CMOS technology. The attractiveness of the SAR ADC to achieve state-of-the-art
performance can be seen in papers presented at important conferences. For instance, Fig.
1.1 illustrates the plot of Walden figure-of-merit (FOMW) [2] versus the maximum sampling
frequency for all ADCs presented at the International Solid State Circuits Conference (ISSCC)
and at the Symposia on VLSI Technology and Circuits (VLSI) from 1997 until 2018 [3]. The
filled red square indicates SAR ADCs. As is clear from the graph, the majority of the ADCs
that occupy the outer envelope use the SAR architecture.

When properly implemented, a SAR ADC also benefits from a rail-to-rail input swing and
100% capacitance utilization during input sampling (thus low kT/C noise). In principle, SAR
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ADCs can be designed with no static power consumption. While the low-power characteristic
of SAR ADCs is very attractive, the large number of decision cycles for a single conversion
is a fundamental drawback for high-speed operations. Recent advances in process technology
and smart circuit techniques have accelerated conversion speeds, but a single-channel SAR
ADC is still unable to satisfy the requirements of 5G applications with low power dissipation.
Interleaving multiple SAR ADCs in the time domain is a popular technique to increase the
sampling rate. The overall performance of time-interleaved ADCs is very much bound to
its constituent sub-ADCs. As such, design of a power-optimized sub-ADC is crucial in
designing an efficient time-interleaved (TI) A/D converter.

Among all building blocks of a single-channel SAR ADC, the capacitive digital-to-
analog converter (CAP-DAC) deserves the most attention. There are two reasons: first,
the linearity of the SAR ADC is mainly determined by the linearity of the CAP-DAC;
second, the capacitive DAC not only causes a great part of the overall ADC’s dynamic power
consumption, but also directly determines the size of the driving and sampling switches, the
input capacitive load of the ADC and the kT/C noise power.

Although a small DAC unit capacitance is beneficial, it comes at the cost of a larger
random mismatch between capacitors. If an accurate mismatch calibration circuit can
guarantee to take care of the mismatch, the size of the capacitive DAC can be kept as small as
dictated by the kT/C noise limit1. This underlines the importance of an effective mismatch
calibration circuit for the SAR ADC.

In this thesis, a stochastic-based mismatch calibration technique is presented, which can
compute the mismatch of the capacitors of the DAC with high precision. The calibration
process occurs in the foreground. The detection of the mismatch error happens in the analog
domain, and the correction occurs in the digital domain. The precision of the proposed
calibration technique is not limited by the analog circuit and can be easily determined by a
parameter, when designing the digital calibration circuit. A prototype SAR ADC using the
proposed calibration technique was implemented in 28nm CMOS technology and measured
in the lab. The improvement in the linearity of the ADC after the calibration was applied
shows the effectiveness of this approach.

Another factor that needs to be carefully addressed in designing a TI ADC is the mismatch
between different channels, e.g. gain mismatch, offset mismatch, bandwidth mismatch and
sampling-time mismatch. Amongst these, timing mismatch, also known as timing-skew, is
the most challenging to detect and correct. Moreover, the requirement on the accuracy of
the timing-skew calibration circuit is tough to meet: for a Giga-sample-per-second TI ADC,

1Another limit on the capacitive DAC is the dynamic range reduction due to the top-plate parasitic capacitors.
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even a few hundreds of fs timing mismatch can easily degrade the output signal-to-noise-
and-distortion-ratio (SNDR) of the ADC by a few dBs.

In this thesis, we propose a timing-skew calibration technique that is not only able to
calibrate the timing-skew errors of sub-channels of a time-interleaved ADC, but also to
simultaneously correct for the offset mismatches. This calibration works in the foreground by
detecting the mismatch errors in the digital domain and correcting them in the analog domain.
The effectiveness of the proposed calibration method is validated through simulation.

The remainder of this thesis is organized as follows. Chapter 2 reviews the fundamentals
of analog-to-digital conversion and the most common architectures of implementing an A/D
converter are briefly covered. Chapter 3 discusses the detailed design and implementation
considerations for the building blocks of a conventional SAR ADC, along with some of the
state-of-the-art design techniques that are used to boost performance. Chapter 4 reviews
some of the most important mismatch calibration techniques for SAR ADCs proposed in
the literature. Chapter 5 presents details of the proposed mismatch calibration technique and
chapter 6 explains the design details of the prototype ADC in which this calibration method
is employed along with the measurement results. Chapter 7 also presents the proposed
timing-skew calibration technique for TI ADCs with the simulated results. And finally,
chapter 8 draws the conclusions and discusses future work.



Chapter 2

Fundamentals of A/D Conversion

In this chapter, we cover the fundamentals of analog-to-digital conversion. We begin with
an ideal converter before discussing the practical limitations and terminology associated
with non-idealities. Next, we briefly cover the most commonly employed A/D architectures,
comparing their relative advantages and disadvantages.

2.1 Ideal A/D Converter

An analog-to-digital converter (ADC) is a block that inputs an analog current or voltage
signal and outputs (converts) the magnitude of this signal into an N-bit digital format (code),
where N denotes the resolution of the ADC. The block digram of an ideal A/D converter
is shown in Fig. 2.1.(a) and the input/output transfer curve is shown in Fig. 2.1.(b). Here,
Vin, VREF and Bout are the analog input signal, the reference voltage and the digital output,
respectively. The time that is needed by the ADC to complete one conversion is called the
conversion time. Sampling rate is defined as the frequency at which the ADC performers
the conversion, which is the inverse of the conversion time. The quantization step is usually
referred to as VLSB or simply LSB, which is the change in the input voltage that corresponds
to a single bit change at the output code. The fundamental equation that describes the ideal
A/D converter of Fig. 2.1 is

VREF

2N

(
b0 +b121 +b222 + ...+bN2N−1

)
=Vin +VX , (2.1)

where b0 ∼ bN−1 are the binary bits of the output digital code and VX is the residue error
due to the finite resolution of the A/D conversion, also known as the quantization error. The
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A/DVin Bout

VREF

1/8 3/8 5/8 7/8 1

Bout

Vin/VREF

LSB

(a) (b)

Fig. 2.1 Ideal A/D converter: (a) Block digram, (b) input/output transfer curve for a 3-bit
ADC.

quantization error of an ideal A/D is within one LSB voltage:

− VLSB

2
<VX <+

VLSB

2
(2.2)

Denoting the quantization error by VQ, the ADC can be modelled as in Fig. 2.2. Assuming
that VQ has a uniform distribution function between −VLSB/2 and +VLSB/2, it can be proven
[4] that its RMS voltage is equal to

VQ,RMS =
VLSB√

12
. (2.3)

Vin Bout+

VQ

Fig. 2.2 The ADC model with the quantization error.

For a random input voltage, the quantization error can be viewed as being "random", and
is often referred to as "noise". In this case, we can define the signal-to-quantization-noise
ratio (SQNR) of an ideal ADC as

SQNR = 20log

(
Vin,RMS

VQ,RMS

)
. (2.4)
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For a sinusoidal input between 0 and VREF, Vin,RMS = VREF/2
√

2. VQ,RMS is also given by
(2.3). Therefore,

SQNR = 20log
VREF/2

√
2

VLSB/
√

12
(2.5)

= 20log

(√
3
2

2N

)
(2.6)

= 6.02N +1.76dB (2.7)

(2.7) is a very useful equation that relates the SQNR of an ADC and the resolution N.

2.2 Non-Ideal A/D Converter

In practice, there are non-idealities that cause the characteristics of an ADC to deviate from
the ideal form. In the following, we review some of the most important limitations of an A/D
converter.

2.2.1 Offset Error

The offset error for an A/D converter is defined as the deviation of the first transition (bit
change) that we denote by V00...01 from the ideal position (which is 1

2LSB), that is

Voffset =
V00...01

VLSB
− 1

2
LSB. (2.8)

This is illustrated in Fig. 2.3.(a).

2.2.2 Gain Error

The gain error is defined as the difference at the full-scale value between the ideal and actual
response curves, when the offset error has been removed. For an A/D converter, this is given
by

Vgain =

(
V11...11

VLSB
− V00...01

VLSB

)
− (2N −2), (2.9)

which is shown in Fig. 2.3.(b). Offset and gain errors can be easily compensated by digital
pre/post-processing. What is more crucial for the DC performance of an A/D converter is the
linearity measures, and most importantly the INl and DNL.
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3/8 5/8 7/8 1

Bout

Vin/VREF

Offset error
3/8 5/8 7/8 1

Bout

Vin/VREF

Gain error

(a) (b)

Fig. 2.3 Illustration of (a) offset error, (b) gain error. Offset error is the deviation of transfer
curve from the first transition and gain error is the difference between the ideal (best-fit) and
actual response curves.

2.2.3 Differential Nonlinearity Error (DNL)

For an ideal converter, each analog step size is equal to 1 LSB. Differential nonlinearity
(DNL) is defined as the deviation of every code width from 1 LSB (typically, after gain and
offset errors have been removed), or mathematically,

DNL[k] =W [k]−LSB, (2.10)

where W [k] is the width of the k-th code. This makes DNL a vector of size 2N that charac-
terises the corresponding error associated with all possible output codes. If only one DNL
was reported, that would be the maximum DNL value. It can be readily seen that the sum of
all the DNLs is equal to zero:

2N−1

∑
k=0

DNL[k] = 0. (2.11)

An example of an ADC characteristic with non-zero DNL is shown in Fig. 2.4.(a). It is easy
to understand that for an ADC, DNL must be larger than −1. In the case where DNL =−1,
the code associated with that DNL will be missing from the A/D transfer curve and hence
will not appear at the output of the ADC.
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2.2.4 Integral Nonlinearity Error (INL)

Integral nonlinearity (INL) is defined as the deviation of the code transition from its ideal
location, when both the offset and gain errors have been removed, that is

INL[k] =
T [k]−T [k,ideal]

LSB
, (2.12)

where T [k] and T [k,ideal] denote the actual and ideal transition points, respectively. A
straight line through the endpoints of the A/D transfer curve is usually considered as the
reference for determining INL. An alternative reference would be the best-fit line that would
represent the characteristic curve. It can be readily shown that

INL[k] =
k−1

∑
i=0

DNL[i] (2.13)

or equivalently
DNL[k] = INL[k]− INL[k−1]. (2.14)

As for DNL, if only one INL was reported, that would be the maximum individual INL value.
An example of an ADC characteristic with non-zero INL is shown in Fig. 2.4.(b).

3/8 5/8 7/8 1

Bout

Vin/VREF

+0.5LSB DNL

3/8 5/8 7/8 1

Bout

Vin/VREF

+1LSB INL

(a) (b)

Fig. 2.4 Illustration of (a) DNL error and (b) INL error. DNL is the deviation of every code
width from 1 LSB and INL is the deviation of the code transition from its ideal location.

An A/D converter is called monotonic if the output always increases as the input increases.
A converter is guaranteed to be monotonic if INLmax < 0.5LSB (or equivalently when
DNLmax < 1LSB). The DNL is not defined for the non-monotonic steps.
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There are different techniques for measuring the DNL/INL of an ADC. One way, known
as code boundary servo, is to use an adjustable voltage source to find the exact code trip points.
Another very common technique is to apply a signal with known amplitude distribution to
the input of the ADC and analyse the digital distribution at the output and is known as the
histogram testing. Typically a sine wave is used as the input signal for the histogram-based
method [5]. Although histogram testing is the most commonly used technique, there are
some limitations [6] that should be taken into consideration when following this approach.

2.2.5 Dynamic Range

The dynamic range of a converter is defined as the ratio between the maximum and minimum
signal magnitudes that can be meaningfully processed. The minimum magnitude is usually
determined by the noise level; however, it is still necessary to specify a merit to define
the meaningful output. A popular merit is to use the signal-to-noise-and-distortion ratio
(SNDR) and to define the maximum magnitude at which the SNDR drops by 3dB for a
specific frequency. Similarly, the effective resolution bandwidth of an ADC is specified as
the bandwidth over which the peak SNDR is within 3dB of its best value for a specific input
magnitude . In this context, the effective number of bits (ENOB) is computed as

ENOB =
SNDR−1.76dB

6.02
bits, (2.15)

which is derived from (2.7) by substituting SNDR for SQNR; ENOB is merely a performance
metric relating an actual ADC’s performance to that of an ideal ADC.

2.3 ADC Architectures

There exists a number of different architectures for realising an A/D converter. Every architec-
ture comes with its own advantages and disadvantages in terms of the maximum achievable
speed, resolution and linearity, power consumption, area, complexity and compatibility with
technology scaling.

2.3.1 Serial ADC

This type of ADC consists of a counter that serially counts the number of clock cycles until
the input voltage becomes equal to a linearly increasing reference (usually a ramp). There
are two ways of realizing a serial ADC, namely single slope and double slope.
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Single-Slope

The single-slope topology is shown in Fig. 2.5. Once the ramp generator starts producing
the ramp signal Vramp, the counter starts counting, and the counter stops once Vin = Vramp.
Assuming a linear ramp signal, the output of the counter (which is the output of the ADC) is
proportional to the input voltage. As can be seen in Fig. 2.5, this type of ADC has a very
low complexity and is easy to implement. The linearity of the ADC is mainly determined
by the linearity of the ramp signal, and not by component matching. The serial ADC is also
inherently monotonic. The downside is the very low conversion speed for they require a
digital counter at a highly oversampled clock rate. The generation of a linear ramp can also
become challenging for when a high resolution is required. These issues can be alleviated by
the dual-slope ADC.

Vin

Counter

stop

start

Clk

Bout

Vramp

Ramp 

generator

Fig. 2.5 Block diagram of a single-slope serial ADC. The counter stops counting once Vramp
becomes equal to Vin. This way, the binary output of the counter would be proportional to
the input voltage.

Dual-Slope

The dual-slope block diagram is shown in Fig. 2.6.(a). The conversion occurs in two phases.
During phase (I), Vin is integrated over a fixed period of time, which is 2NTclk where N is
the resolution of the ADC and Tclk is the clock period. This would generate a ramp at the
output of the integrator, VX , whose slope, and hence final value, is proportional to Vin. In
phase (II), the input of the integrator is connected to a constant reference voltage VREF and
VX is de-integrated until it reaches zero during which the counter is counting. Due to the
constant slope during the second phase, the output of the counter would be proportional to
Vin/VREF. The operation of the dual-slope ADC is illustrated in Fig. 2.6.(b).

It can be shown that the accuracy of the dual-slope A/D converter does not depend on
the time constant of the integrator. However, the offset of the op-amp used in the integrator
results in the ADC offset, a problem that can be solved either by calibration or by utilizing a
quad-slope ADC. As for the signal-slope ADC, the conversion speed is still very low. The
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application of this type of ADC is mostly for laboratory digital voltmeters (DVM) where
high speed is not required.

Vin

∫

Integrator

-VREF

Control 

logic
Counter

Clk

Bout

Vx

(a)
VX

Time
Vin1

Vin2

Vin3
Phase 

(I)

Phase 

(II)

(b)

Fig. 2.6 Dual-slope ADC (a) block diagram, (b) timing diagram for three different input
voltages. The accuracy of this A/D converter does not depend on the time constant of the
integrator.

Asynchronous Digital-Slope

The speed limitation of the synchronous slope-based converter was solved in [7], where an
asynchronous digital-slope architecture was introduced. The block diagram of this type of
ADC is shown in Fig. 2.7.(a), and its time-domain behaviour is illustrated in Fig. 2.7.(b). As
can be seen, the integrator in the dual-slope ADC is replaced by an asynchronous switched
capacitor (SC) circuit. The quantization occurs in the time-domain using delay cells, memory
cells and an encoder instead of a digital counter. The operation of the ADC is as follows.
First, the input voltage is sampled on node S. Next, a pulse is applied to the input of the delay
cell array and, in a domino manner, it propagates through delay cells one by one. In this
way, the delay line acts like an asynchronous thermometer-encoded1 counter which replaces
the original synchronous binary-encoded counter. The array of capacitors, connected to the
outputs of the delay line, implements a thermometer-encoded charge-redistribution DAC,

1Thermometer encoding is a method of encoding a natural number, n, with n ones followed by a zero.
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through which VX is switched up 1 LSB step by step at a constant interval until it reaches VS,
at which point the comparator toggles and deactivates the delay line. The output thermometer
code is then converted to a binary code via the encoder. Since the hardware complexity of
the digital-slope ADC grows exponentially with the ADC resolution, this type of ADC does
not lend itself to resolutions higher than 8 bits.

C

D

C

D

C

D

C

D

Vin

DFF DFF DFF DFF

S

X

Encoder

Bout

COMP

S&H

(a)

Vin VS

VX

VCOMP

(b)

Fig. 2.7 Asynchronous digital-slope ADC: (a) block diagram, (b) timing diagram. Contrary
to a synchronous serial ADC, here no high speed clock is required. The counter is also
replaced by delay elements.

2.3.2 Flash ADC

Flash ADC is probably the most straightforward way of realizing an A/D converter. In a flash
converter, the input voltage is simply compared with 2N −1 voltages that are equally spaced
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between zero and the reference voltage. The reference levels are generated by a reference
generator and the comparisons are made by 2N comparators, as depicted in Fig. 2.8 for the
specific case of N = 3. Here, generating the reference voltages is realized by a resistor string,
but it can be also implemented by capacitors [8]. The output of the comparators form a
thermometer code, which is then converted to a binary code via a 2N-to-1 decoder.

Flash ADCs are inherently very fast [9–11] for they require only one clock cycle for every
conversion. However, the complexity of the circuit increases exponentially with the number
of bits, that is 2N − 1 comparators are needed for an N-bit conversion. This exponential
growth also holds for the input capacitive load of the converter, which must be driven by the
input driver. In the following, we discuss the most important sources of error in a flash ADC:

Vin

2
N
-1 to N

Encoder
Bout

VREF

Clk

Fig. 2.8 Block diagram of a Flash ADC. Owning to their simple structure, flash ADCs are
inherently fast.

Comparator Offset

The comparator offset is probably the most important source of error that can degrade the
performance of a flash ADC. There exist several different design and calibration techniques
to alleviate the problem of comparator offset. One of the simplest (yet powerful) offset
calibration techniques is resistor averaging [12–14], which acts as a kind of spatial filtering
[15], by simply connecting the output of the pre-amplifiers using resistors. The effectiveness
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of this technique depends on the ratio R2/R1, which imposes a trade-off with the gain of the
amplifiers. Another commonly used technique for offset cancellation is offset storage. In this
approach, the offset voltage is measured and stored on a capacitor, and can be done in two
different ways: input offset storage (IOS), shown in Fig. 2.9.(a) and output offset storage
(OOS), shown in 2.9.(b). It can be shown that this method reduces the offset by a factor given
by the pre-amplifier gain, A.

A LatchVin Vout

C

C

A LatchVin Vout

C

C

(a) (b)

Fig. 2.9 Offset cancellation through offset storage: (a) input offset storage, (b) output offset
storage. Offset is reduced by a factor A.

Bubble Error

For the encoder to function properly, the outputs of the comparators should form a thermome-
ter code with only one single transition. However, sometimes a lone 1 (the bubble) will occur
within the string of 0s for various reasons. These bubbles usually occur near the transition
point of the thermometer code. A very simple solution is to put a three-input NAND gate at
the output of the comparators [16].

Comparator Metastability

Metastability is a problem that occurs in all latching comparators, when the input is near the
comparator decision point [17]. This problem occurs when the comparator takes more time
to switch to a valid output state than is available in the sampling interval. Different gates
interpret the metastable output differently, resulting in an invalid encoder output. Using more
stages of latch in the comparator and Grey coding are two of a range of methods that can be
used to decrease the adverse effect of metastability in flash ADCs.
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2.3.3 Interpolating ADC

Interpolation can be used to reduce the number of latches by interpolating between the
outputs of the pre-amplifiers [18]. An interpolation of factor M decreases the number of pre-
amplifiers by a factor of M. Interpolation by factor 2 in a flash ADC is fairly straightforward;
shown in Fig. 2.10.(a), this only requires rearrangement of the connections between the
latches and the differential pre-amplifiers. To accomplish higher interpolation factors, extra
circuitry is required. This can be achieved using resistors [19], capacitors [20] and current
mirrors/current division [21, 22]. Fig. 2.10.(b) illustrates schematically the resistor-based
method for a factor 4 interpolation. It is worth mentioning that capacitive interpolation has a
side benefit of automatically performing comparator offset cancellation through the offset
storage discussed in section 2.3.2.

Latch

Latch

Latch

Latch

A

A

Latch

Latch

Latch

Latch

Latch

A

A

(a) (b)

Fig. 2.10 Realization of (a) factor 2, (b) factor 4 interpolation. Interpolation of factor M
reduces the number of pre-amplifiers by the same factor.

For an interpolation topology to work without error it is necessary that the transfer curves
of consecutive pre-amplifiers overlap; however, this limits the pre-amplifier gain. Moreover,
the impedance of the interpolation network at the output of the pre-amplifiers typically
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reduces the bandwidth and affects the maximum achievable speed. One of the important
side-effect of interpolation is the reduction of DNL by the same factor as for the interpolation.

Interpolation reduces the number of pre-amplifiers, thereby reduces the input capacitive
load of the ADC. Nevertheless, the number of latches stays the same. To decrease the number
of latches, a technique called folding is usually adopted in combination with interpolating.

2.3.4 Folding ADC

In a folding architecture, two ADCs operate in parallel, namely a coarse ADC that determines
the N1 MSB bits and a fine ADC that resolves the N2 LSB bits. Defining the folding factor
(or folding rate) to be the number of output transitions for a single folding block as Vin is
swept over its input range, this is equal to 2N1 . The block diagram of a folding ADC is shown
in Fig. 2.11.(a), and the input-output folding transfer curve for a folding factor of 4 is shown
in Fig. 2.11.(b). As can be seen, the folding maps the input voltage into a smaller range. The
coarse ADC determines which fold the input voltage is in and the fine ADC determines the
position of the input within that fold.

The folding blocks can be realized using cross-coupled differential pairs, as seen in Fig.
2.12 for the case of folding factor of 4. It should be noted that, the rounded edge of the
folding characteristic shown in Fig. 2.12.(b) does not cause a non-linearity as long as the
zero-crossings are accurately positioned. This is only true though if there is no gm and/or tail
current mismatch between the differential pairs forming the folding block [23].

It is worth mentioning that the output signal from a folding block is at a higher frequency
than the input signal, with the same factor as the folding factor. This puts a limit on the
practical folding rate used in high-speed A/D converters. As mentioned before, the folding
topology reduces the number of latches but the input capacitance remains almost unchanged
2. Therefore, the folding and interpolating architecture are usually used together [24–26].
Folding-interpolating ADCs have the advantageous of both folding and interpolating ADCs
together. Fig. 2.13 shows a 4-bit ADC with a folding rate of four and interpolating rate of
two.

2Assuming that the differential pair used in the folding block has the same size of input transistors that
would be otherwise used in the pre-amplifier.
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Fig. 2.11 (a) Block diagram of a folding ADC with a folding factor of 2N1 , (b) input-output
folding transfer curve for a folding factor of 4.
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Fig. 2.12 Factor 4 folding: (a) Implementation, (b) voltage of the folding nodes.
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Fig. 2.13 A factor 4 folding-interpolating ADC.
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2.3.5 Pipeline ADC

A pipeline ADC is a cascade of several low-resolution ADCs to obtain an overall high
resolution quantization, as shown in Fig. 2.14.(a). The specific case when there are only two
stages is usually known as a two-step ADC, whose architecture is shown in Fig. 2.14.(b). The
purpose of the interstage gains is twofold: firstly to avoid the LSB of the proceeding stages
to become very small and secondly to avoid using multi-references for different stages. In a
pipeline ADC, different stages process different samples concurrently. Thus, the throughput
rate depends only on the speed of each stage. This concurrency of operation enables pipeline
ADCs to reach high speeds, and unlike flash ADC, the number of components (stages) grows
only linearly with the resolution. Although N input samples are being processed in parallel,
N clock cycles are required for each input sample to proceed through the entire pipeline.
Hence, there is a latency of N clock cycles for every input sample that may be an issue in e.g.
control systems. The term pipeline ADC is usually referred to the case of one-bit-per-stage
pipeline ADC, whose architecture is shown in Fig. 2.15.
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Vin
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Fig. 2.14 Architecture of a pipeline ADC: (a) generic topology, (b) the specific case of
a pipeline ADC with only two stages, also known as two-step ADC. In a pipeline ADC,
different stages work in parallel, enabling this ADC to reach high speeds.
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Fig. 2.15 A one-bit-per-stage pipeline ADC.

Any source of error in the constituent blocks of the pipeline ADC may impair the overall
performance. These errors include the sub-ADC errors (and most importantly the comparator
offset), the gain stage gain and offset errors and the sub-DAC error. The sub-ADC error
becomes problematic only if it causes the residue from one stage to grow outside of the
allowable input range for the following stage, as shown in Fig. 2.16. As such, the sub-ADC
error can be tolerated as long as the residue stays within the next stage’s input range or
another stage returns the residue to the allowable range before it reaches the last quantizer.
This is the core strategy for dealing with the sub-ADC errors in a pipeline ADC for almost
all the different techniques that have been discussed in the literature. Example techniques
include: using a slightly reduced interstage gain compared to the nominal value [27] or using
a higher resolution for sub-ADCs [28, 29].

Stage j

1-bit

Vres(j+1)Vresj Stage j+1

1-bit

Vresj

Vres(j+1)
Outside the range

VREF/2

-VREF/2

VREF/2

-VREF/2

Fig. 2.16 Sub-ADC error for a 1-bit per stage pipeline ADC. Here, the residue voltage has
fallen outside the allowable range ±VREF/2. This causes performance degradation.
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A very popular technique to deal with the sub-ADC error is to introduce redundancy by
using the so-called 1.5-bit-per-stage topology [30]. This is shown in Fig. 2.17.(a), where
a 1.5-bit stage effectively performs a 3-level quantization of its input, which results in an
input-output transfer curve shown in Fig. 2.17.(b). The 1.5-bit stage can tolerate comparator
offset as large as ±VREF/4. The interstage gain error and the sub-DAC error are usually
calibrated in the digital domain [31–34].
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Fig. 2.17 The topology of a 1.5-bit per stage converter: (a) circuit implementation, (b) the
input-output transfer curve. A 1.5b/stage converter can tolerate comparator offset as large as
±VREF/4 without any degradation of the performance.
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2.3.6 Oversampling ADC

Nyquist rate A/D converters have a sampling rate of around twice the maximum input signal
frequency, whereas oversampling ADCs sample at a much higher frequency than that. As
we will see later, oversampling brings about a few very important advantages, e.g. this
approach relaxes the requirements on matching tolerances, amplifier gains, and the analog
anti-aliasing filters and most importantly reduces baseband quantization noise. Basically, and
oversampling ADC trades speed with resolution.

Oversampling Without Noise Shaping

As mentioned in section (2.1), the quantization error can be assumed to have a white noise
characteristics distributed uniformly across the Nyquist bandwidth, i.e. ± fs/2, with a power
equal to ∆2/12, where ∆ is the quantization step. This results in a spectral density of
magnitude

Se( f ) =
∆√
12

√
1
fs
, (2.16)

as depicted in Fig. 2.18.

Se(f)

f
fs/2-fs/2

Δ

12

1
fs

Fig. 2.18 Spectral density of the quantization noise. ∆ is the quantization step.

Now, assuming that the sampling frequency fs is higher than the input signal bandwidth
2 f0 by a factor of oversampling ratio, OSR, defined as

OSR =
fs

2 f0
, (2.17)

filtering the quantized signal to get rid of the noise outside of the band ± f0 would eliminate
a portion of the quantization noise. This is illustrated in Fig. 2.19. It can be easily proven
that the improved SQNR is given by

SQNR = 6.02N +1.76+10log(OSR). (2.18)

(2.18) shows 3dB (or 0.5b) improvement of SQNR for every decade increase in the oversam-
pling ratio. The reason for this is that when quantized samples are averaged together, the
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signal portion adds linearly, whereas the noise portion adds as the square root of the sum of
the squares. Note that this enhancement also takes place with respect to other types of noise,
such as thermal noise. Hence, oversampling generally improves the overall signal to noise
ratio (SNR) by 10log(OSR).

H(f)Quantizer

f

H(f)

fs/2-fs/2 f0-f0

1

Fig. 2.19 Filtering out the quantization noise using a low-pass filter. This enhances the SQNR
by a factor of fs/2 f0.

It should be also noted that while oversampling improves the signal-to-noise ratio, it
does not improve the linearity. This means for instance, if a 10-bit quantizer is used in
an oversampling ADC to achieve 16-bit resolution, the quantizer has to have an accuracy
(linearity) of 16-bit. This is why oversampling ADCs typically use a 1-bit quantizer, which
is inherently linear.

Oversampling With Noise Shaping

Fig. 2.20 shows the block diagram of an oversampling ADC that includes a delta-sigma
(∆Σ) modulator, where noise shaping takes place. The ∆Σ modulator converts the analog
signal into a noise-shaped low-resolution digital signal, which is then proceeded with the
decimator that converts the oversampled low-resolution digital signal into a high-resolution
digital signal at a lower sampling rate. This is the trade-off between accuracy and speed that
was mentioned previously.

Anti-aliasing 

filter

S&H ΔΣ

Digital LPFOSR

fs fs2f0 fs 2f0

1 bit N bit

Decimator

Vin Bout

OSR
ΔΣ 

modulator

Fig. 2.20 Block diagram of an oversampling ADC with noise shaping. Noise shaping takes
place in the ∆Σ modulator.
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The block digram and the model of a noise-shaping ∆Σ modulator is shown in Fig. 2.21.
The signal transfer function ST F(z) and the noise transfer function NT F(z) can be found to be

ST F(z) =
Y (z)
U(z)

=
H(z)

1+H(z)
(2.19)

NT F(z) =
Y (z)
E(z)

=
1

1+H(z)
. (2.20)

The idea is to choose H(z) in a way that its magnitude is large over the input frequency range,
i.e. 0 to f0, so that the noise transfer function NT F(z) becomes very small in that region,
while the signal transfer function ST F(z) remains almost unaffected. In this way, such a
loop filter would push the unwanted noise to higher frequencies, where a post filter can then
remove this out-of-band noise.

QuantizerFilter

H(z)+
-

+

u[n] y[n]

(a)

Filter

H(z)+
-

+

u[n] y[n]+

e[n]

(b)

Fig. 2.21 Principle of noise shaping: (a) Block diagram implementation, (b) linear model
by replacing the quantizer with an injected noise. Noise shaping is a technique to push the
unwanted noise out of the band of interest in order to achieve higher resolutions.

The simplest loop filter H(z) is an integrator that has a transfer function of

H(z) =
1

z−1
. (2.21)

This would result in first-order noise shaping that can be simply made by a 1-bit quantizer
and a 1-bit DAC to form a ∆Σ modulator, as shown in Fig. 2.22. It can be proven that the



26 Fundamentals of A/D Conversion

SNQR of an oversampling ADC with first-order noise shaping is given by

SQNR = 6.02N +1.76+30log(OSR), (2.22)

bringing an improvement of 9dB/octave or 1.5-bit/octave. Similarly, higher orders of loop
filter would result in an even bigger improvement of SQNR [35]. In general, an L-th order
∆Σ modulator improves the SQNR by (2L + 1)-bit per octave of OSR. However, high
order modulators can give rise to stability problems [36]. There are also other practical
considerations that one should take into account when implementing ∆Σ modulator. These
include the effect of finite op-amp gain and its linearity, kT/C noise, the op-amp noise, the
effect of comparator non-idealities, etc. [37] reviews these issues in detail.

1-bit DAC

+
+

-
∫

Bout

Vin

Integrator

Fig. 2.22 Block digram of a first order modulator. This performs a first-order nosie shaping
and improves the SQNR by 9dB/octave.

Another approach to increase the maximum dynamic range of ∆Σ modulators is to use
a cascade of lower order modulators to build a high order modulator; such an arrangement
has been called MASH (Multi-stAge noise SHaping) [38, 39]. For instance, two 1st order
∆Σ modulators can be cascaded to form a 2nd order modulator. This is shown in Fig. 2.23.
Here, the 1st stage quantization error is quantized by the 2nd quantizer and the quantized
error is then subtracted from the results in the digital domain. The advantage of a MASH
topology is the reduced instability compared to a modulator of the same order, but having
only one feedback loop. However, MASH modulators are more sensitive to finite op-amp
gain, bandwidth and mismatches, which lead to gain errors.
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Fig. 2.23 MASH architecture: cascade of 1st order ∆Σ modulators to build a 2nd order one.
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2.3.7 SAR ADC

Successive approximation register (SAR) A/D converters are one of the most popular types
especially for more advanced technologies. This is mainly due to its low circuit complexity
when compared to other topologies. The block diagram of a SAR ADC is shown in Fig. 2.24.
As can be seen, it comprises of an input S/H circuit, a comparator, the SAR logic and a D/A
converter. The basic operation of a SAR conversion is shown in the signal flow diagram
of Fig. 2.25: the reference voltage, which is compared with the input voltage, is halved
successively in every cycle and depending on the result of the comparison it is added to or
subtracted from the initial D/A voltage. This process occurs for N cycles.

The D/A converter in Fig. 2.24 can be realized in different ways the most versatile of
which is to use a capacitive one. A SAR ADC implemented by a capacitive DAC is known
as a charge redistribution SAR ADC, since the D/A conversion occurs in the charge domain
and the comparison (reference) voltages are generated through charge redistribution. One
of the advantages of using a capacitive DAC is that the DAC does the sample and hold task,
obviating the need for a stand-alone and power-hungry S/H circuit.

S&H

N-bit 

DAC

Vin

SAR logic
VREF

Bout

Vcmp

VX

Fig. 2.24 Block diagram of a SAR ADC. SAR ADC is mainly made up of digital blocks.
This is an advantage when migrating to a new technology.

The operation of a 5-bit charge redistribution SAR ADC is shown in Fig. 2.26. During
the sampling phase, Vin is sampled on the top plate of the capacitive DAC, X , while all the
bottom-plate switches are connected to VREF (Fig. 2.26.(a)). Next, the sampling switch
opens, and the bit cycling starts by first determining the MSB bit (Fig. 2.26.(b)). This is
done by the MSB switch to connect to ground, making VX equal to Vin −VREF/2. At this
point, a comparison operation occurs: if the output of the comparator is a ZERO, it means
Vin <VREF/2. In this case, the MSB switch goes back to its initial position, leaving the top
plate voltage as before. If the output of the comparator is a ONE, it means Vin >VREF/2 and
the MSB switch remains in this state for the rest of the conversion. The MSB bit is the output
of the comparator. The same procedure continues until all the bits are determined.
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Fig. 2.25 Signal flow diagram of the successive-approximation approach.
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Fig. 2.26 Operation of a 5-bit SAR ADC: (a) sampling phase, when Vin is sampled on the top
plate of the capacitor array, (b) bit cycling phase to determine the MSB bit. The position of
the corresponding bottom plate switch is determined based on the output of the comparator.
The bit cycling process continues in the same manner until all the bits are resolved.
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It is worth noting that the parasitic capacitor connected to node VX does not cause any
error since the conversion starts by the top plate being connect to Vin and ends by it converging
to Vin again, making the total charge transfer effectively zero. A detailed analysis of the
building blocks of a SAR ADC is presented in chapter 3.

In order to increase the performance of a SAR ADC, both in terms of the speed and
the accuracy, several architectural methods have been widely discussed in the literature, as
follows:

Multi-Bit per Cycle SAR ADC

In a conventional 1-bit per cycle SAR ADC, after every comparison of the comparator,
the input range of the ADC is halved, one comparison takes place and one bit is resolved.
This process continues until all the N bits of the conversion are determined. In an M-bit
per cycle SAR ADC after every cycle, the input range is divided into M equal sectors and
(M−1) comparisons occur using (M−1) comparators [40]. Therefore, only N/M cycles
are needed for the full conversion, increasing the ADC speed by a factor of M. An example
of a 6-bit 2-bit/cycle SAR ADC is shown in Fig. 2.27. In the fist cycle, the SAR logic
sets the switching of the DACs in a way to generate the first set of reference voltages, i.e.{

1
4VREF,

2
4VREF,

3
4VREF

}
. The comparators make the first comparison which results in an

output of {0,1} as the first two bits of the A/D conversion. Next, a new set of reference
voltages is generated by the DACs controlled by the SAR logic:

{
5
16VREF,

6
16VREF,

7
16VREF

}
.

These new VREFs obviously depend on the result of the previous comparison. This comparison
yields the next two bits, that is {0,0}. The conversion proceeds in the same way with the
new reference voltages being

{
17
64VREF,

18
64VREF,

19
64VREF

}
and the resultant output bits being

{1,1}. The entire A/D conversion hence gives rise to 6-bit output of {0,1,0,0,1,0}.
The multi-bit per cycle technique can be viewed as a merger between flash and SAR

ADC where the different reference voltages are generated in the same way as in a flash ADC
and the conversion happens in a SAR manner. One obvious disadvantage associated with
this technique is the larger number of comparators and DACs. Moreover, the input load of
the ADC is also increased by a factor of M. The sampling-time skew between the individual
DACs and the offset mismatch between the comparators too introduce distortion and degrade
the output SNDR of the ADC. To tackle these issues, several methods have been proposed in
the literature. In [41–43] only two DACs were used to perform a 2b/cycle SAR conversion,
out of which only one DAC was used for decision reference generation (REF DAC), while
the other one did the input sampling and residue generation (SIG DAC). [44] intentionally
used skewed comparators for generating the reference voltages, hence removing the need for
multiple DACs. However, this approach is very process dependant and probably requires
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Fig. 2.27 (a) Block diagram of an N-bit 2-bit/cycle SAR ADC, (b) conversion cycle for
the case of N = 6. Theoretically, a 2-bit/cycle SAR ADC can operate twice as fast as its
conventional 1-bit/cycle counterpart.

some sort of calibration to be effective. [45] made use of both the DAC’s common-mode and
differential-mode voltages to convert 2 bit in every cycle. 3b/cycle and 4b/cycle SAR ADCs
have also been reported [46, 47]. Interpolation can also be employed [48–50] to further
reduce the area and power overhead of multi-bit/cycle SAR ADCs, as shown in Fig. 2.28.
This is a combination of flash, SAR and interpolating ADCs.
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N-bit 

DAC1
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DAC2

SAR logic Bout

Vin+

Vin-

Fig. 2.28 A 2b/cycle SAR ADC with interpolation. Here, interpolation helps to reduce the
number of the DACs by one.

Pipelined SAR ADC

The pipeline ADC architecture can achieve both high resolution and high speed [51–53].
Nevertheless, as mentioned in section (2.3.5), pipeline ADCs rely on good component
matching and require high-performance op-amps (high-gain and high-bandwidth) which
can be hard to achieve in modern CMOS technology, due mainly to the use of low supply
voltages. SAR converters have surpassed pipeline converters in terms of energy efficiency
and minimal analog complexity, the latter making it well suited to nanometer scale CMOS
technology. The disadvantage of SAR ADCs nonetheless is their limited speed due to their
serial decision making process. Furthermore, the effective resolution of SAR ADCs is limited
by the comparator noise and limited capacitor matching. In order to have good capacitor
matching, a large unit capacitor is required, which leads to a large input capacitive load
for the ADC, increases the DAC dynamic power consumption and makes the design of a
linear input tracking switch challenging. The high energy efficiency of the SAR ADC can be
combined with the high conversion rate of the pipelined ADC to bring about the so called
pipelined SAR ADC [54, 55], whose core architecture is shown in Fig. 2.29. The first N1 bits
are resolved by the coarse SAR ADC, after which the residue voltage, that is freely available
on the capacitive DAC3, is amplified by the residue amplifier to arrive at the second stage of
the ADC, the fine SAR ADC, where the rest of the bits are resolved. Usually, the coarse SAR
quantizes a larger number of bits with a low interstage gain, resulting in a comparatively
small residue for the amplification, thus, relaxing opamp’s linearity requirement and power
consumption.

3Therefore, no separate DAC is required when compared to Fig. 2.14.(b).
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Fig. 2.29 Block digram of a pipeline SAR ADC. It is basically a two-stage pipeline ADC
with each stage being a SAR ADC.

The combination of the pipelined SAR ADC with other types of A/D converter to achieve
even higher speeds has also been reported. For instance, in [56] a 2b/cycle SAR ADC was
used for the first stage. In [57, 58], time-interleaving was also used with a pipelined SAR
and in [59, 60], these various types of ADCs were used together.

A major drawback of the pipelined SAR ADC architecture is the presence of an active
block, the residue amplifier. Creating an accurate gain, which is usually achieved through
a closed-loop topology, demands high power consumption especially in low-voltage tech-
nologies. To alleviate this problem, [56, 61] used a dynamic amplifier, where the gain is
determined by the open-loop integration time. Offset and output CM calibration of the
residue amplifier is also needed. Another issue associated with pipelined SAR ADC is the
reference voltage mismatch between the two stages, which calls for circuit adjustment and
calibration. The offset mismatch between the two stages’ comparators as well as the sampling
mismatch also result in comparison errors, that can be partly corrected by redundancy [61].

Noise-Shaped SAR ADC

The same noise shaping technique used in ∆Σ modulators has been employed to reduce the
(thermal and quantization) noise in a SAR ADC [62]. The basic idea is to subtract the residue
of the previous conversion VRES[k−1], which contains the comparator noise, from the input
of the current voltage Vin[k], as shown in Fig. 2.30.(a). The transfer function of this system is
given by

Dout(z) =Vin(z)+
1

1+ z−1 [Q(z)+Vn,comp(z)] (2.23)
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where Dout(z), Q(z) and Vn,comp(z) are the output of the ADC, the quantization noise and
the comparator input-referred noise, respectively. (2.23) indicates an all-pass signal transfer
function (STF) and a high-pass noise transfer function (NTF). These shape both the quanti-
zation noise and the comparator noise, thereby attenuating both at lower frequencies. The
noise shaping can be further improved by placing an integrator in the signal path, as shown
in Fig. 2.30.(b). This system behaves exactly like a first order ∆Σ modulator. It can be shown
that the transfer function of the improved noise-shaping system is

Dout(z) =Vin(z)+(1− z−1)Q(z). (2.24)

SAR logic

Cap DAC

Vin

Bout

Vres[k]

Vres[k-1]
+
-

SAR logic

CAP 

DAC

Bout

Vres[k]

Vres[k-1]

∫
Integrator

Vin

(a) (b)

Fig. 2.30 Noise-shaped SAR ADC: (a) block diagram implementation, (b) improvement of
the noise shaping by adding an integrator. The noise shaping occurs in the same manner as
in a ∆Σ modulator.

In practice, the noise shaping of (2.24) can be implemented by an auxiliary capacitor
that shares the charge with the CAP-DAC. [63] uses a 2nd order noise shaping filter with
an error-feedback structure. These filters introduce extra noise and increase the ADC area.
In addition, opamp-based integrator is hard to scale and its design becomes difficult as the
technology and supply voltages scale. To solve these issues, passive noise shaping has been
employed in [64–66]. [67] managed to achieve a 105dB SFDR using ∆Σ noise shaping and a
DAC randomization technique, but had a limitation of maximum input frequency of 1kHz.





Chapter 3

SAR ADC: Circuit Design
Considerations and Implementation

In this chapter, we discuss the background theory and the circuit design details of the main
building blocks of a SAR ADC. We also provide an overview of the different existing
architectures for every block along with the implementation considerations.

3.1 Capacitive DAC

There exist a number of different ways of implementing the DAC for a SAR ADC; the most
popular implementation is the capacitive DAC (CAP-DAC) for it also performs the task of
the sample-and-hold circuit which obviates the need of having a separate stand-alone S&H.
The capacitive DAC also benefits from the fact that it does not consume significant static
power.

In subsequent sections, we discuss some of the different architectures for implementing
a capacitive DAC for use in a SAR ADC, along with the details of the design. Then, we
review various methods for performing the successive approximation approach that is usually
referred to as a switching scheme in a SAR ADC. Finally, we introduce the important concept
of redundancy in a SAR ADC and the different methods of employing this technique.

3.1.1 Architecture

Active Charge-Redistribution-Based DACs

1. Thermometer-Code



36 SAR ADC: Circuit Design Considerations and Implementation

Fig. 3.1 shows the most straightforward approach for implementing a capacitive DAC,
which is to use 2N capacitors of the same size to realize an N-bit capacitive DAC.
Known as thermometer-code capacitive DAC, this architecture is famous for its good
DNL performance, that is

σDNL =
σC

C
, (3.1)

where σC is the standard deviation of the unit capacitor C. The monotonicity is also
guaranteed for this type of DAC. However, it requires a N-to-2N decoder. Also, due
to the exponential growth of the complexity of the circuit with respect to N, this
architecture does not easily lend itself to resolutions greater than 8.

C

VREF

C C C

B<0:N-1>

2
N
 capacitors

N-to-2N 
Decoder

Fig. 3.1 Thermometer-code capacitive DAC. This type of DAC is known for its small DNL
error. However, the need for a decoder as well as the large number of capacitors for high
resolutions limit its application.

Another drawback of this simple approach is the large value of the total capacitance,
that is 2NC. Two factors that determine the minimum value of the unit capacitor C
are the kT/C noise and the intrinsic capacitor random mismatch, whichever is the
most stringent. The requirement imposed by the random mismatch can be worked out
from the maximum DNL/INL error. It can be proved that the maximum INL for a
thermometer-code DAC is given by

σINL,max ≈ 2(N/2−1)σC

C
. (3.2)

For σINL,max to be less than 1 LSB and for a 3σ (99.73%) yield, we should have

σC

C
<

2(N/2)

6
LSB. (3.3)

The above equation puts a limit on the maximum allowable capacitor mismatch for a
thermometer-code capacitive DAC.
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2. Binary-Weighted

Fig. 3.2 shows the implementation of a binary-weighted CAP-DAC. Compared to
the thermometer-code DAC, the complexity of a binary-weighted DAC grows only
linearly with N. It also does not require an input decoder. However, and similar to the
thermometer-code DAC, it calls for a total cap of 2NC.

C

VREF

2C 2
N-2

C 2
N-1

C

B<0:N-1>

Fig. 3.2 Binary-weighted capacitive DAC. This type of DAC is probably the most popular
one own to its simple structure.

It can be proven that the maximum DNL error for the binary-weighted DAC is given
by

σDNL,max ≈ 2(N/2)σC

C
. (3.4)

Again, for σDNL,max to be less than half a LSB and for a 3σ yield, we should have

σC

C
<

2(N/2)

3
LSB. (3.5)

The above equation puts a limit on the maximum allowable capacitor mismatch for a
binary-weighted capacitive DAC.

3. Bridge-Capacitor

In order to reduce the total capacitance of the binary-weighted capacitive DAC, one can
split the capacitive array into two sections (a LSB and a MSB section) and connect them
with a series attenuation bridge capacitor, as shown in Fig. 3.3. It can be shown that
with the right value of bridge capacitor, which is given by CB =

(
2N−M/(2N−M −1)

)
C,

this configuration can function exactly as an ordinary binary-weighted DAC.
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Fig. 3.3 Bridge-capacitor DAC. The parasitic capacitance on the left plate of CB degrades the
linearity.

For the special case where M = N/2, the total capacitance of the bridge capacitor
DAC is 2(N/2−1) times smaller than that of the binary-weighted DAC. This means
for the same value of total capacitance, the unit capacitor of the bridge-capacitor
DAC can be 2(N/2−1) larger than that of the binary-weighted DAC. This relaxes the
mismatch requirement of the unit capacitor by a factor of

√
2N/2−1. However, this is

not necessarily an advantage since the mismatch requirement for the bridge capacitor
is larger by about the same factor.

The main issue associated with this topology is the non-linearity caused by the parasitic
capacitor on the LSB plate of CB, as shown in Fig. 3.3. This non-linearity manifests
itself as a discontinuity in the characteristic curve of the DAC, when the transition
between the LSB and MSB parts occurs. Different methods of calibration have been
proposed in the literature to overcome this issue [68], but these solutions significantly
increase the complexity of the circuit.

4. C-2C

The "splitting" of the capacitive array into pairs of sub-arrays can be executed repeti-
tively for N times to eventually end up with a configuration shown in Fig. 3.4.

The N-bit C-2C DAC has two advantages over its binary-weighted counterpart: first
it only requires 3N unit capacitors (C) compared to 2N capacitors of the binary-
weighted DAC, and second its input capacitive load is only 3C, and independent of
the resolution of the DAC, compared to that of 2NC for the binary-weighted capacitive
DAC. Nevertheless, this approach is prone to non-linearity errors imposed by parasitics
at all of the N intermediate nodes, as shown in Fig. 3.4. In [69] a 7-bit SAR ADC was
implemented based on this C-2C topology with a trimming-based calibration of the
unwanted parasitic capacitors.
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Cpar1 Cpar2 Cpar(N-1)

Fig. 3.4 C-2C DAC. This type of DAC requires only 3N unit capacitors and introduces an
input load of only 3C. However,the parasitic capacitors limit the linearity.

Passive Charge-Sharing-Based DACs

SAR converters based on charge-redistribution CAP-DAC rely on a precise reference voltage
during bit trials, often from a large off-chip/on-chip reference decoupling capacitor or from a
power-hungry buffer. During one SAR ADC conversion, the reference voltage is expected
to settle at least N times which typically consumes a large portion of the SAR conversion
time. As the sampling rate is increased, the reference settling is stressed and often limits the
achievable linearity. To address this speed bottleneck, a passive charge-sharing CAP-DAC
[70] pre-samples the reference voltage on chip and uses the pre-sampled reference charge to
carry out the bit trials. A schematic diagram of a charge-sharing based capacitive DAC is
shown in Fig. 3.5.

VREF

2
N-1

C2
N-2

CC CH

Vin

BP[0:N-1] BN[0:N-1]

Fig. 3.5 Passive Charge-sharing-based DAC. The reference voltage is sampled on the capaci-
tive array before the conversion starts, and no current is drawn from it during the conversion.

The operation is as follows: initially, the input voltage is sampled onto capacitor CH ,
while all other binary-weighted capacitors are charged to VREF. Next, in a process involving
N steps, a charge proportional to the value of the binary-weighted capacitors is added or
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subtracted from the initial charge stored on CH until reaches zero. The reference voltage
(VREF) is disconnected during the charge-sharing cycle, making this technique immune
to reference voltage variations [71]. Also, this type of DAC allows the use of non-linear
capacitors. A major drawback, though, is the reduced tolerance to comparator offsets and
noise compared to the charge-redistribution method [72]. Moreover, the signal dependent
charge injection during the conversion degrades the linearity of the DAC [73].

3.1.2 Switching Schemes

The energy dissipation of the capacitive DAC constitutes a big portion of the energy consump-
tion of the ADC, especially at high frequency. A number of switching techniques have been
proposed in the literature to reduce this energy dissipation. Table 3.1 draws a comparison
between some of the most famous switching schemes in terms of the energy consumption.

Table 3.1 Various switching schemes and their energy consumption

Switching Scheme Energy Consumption

Conventional 100%
Split Capacitor [74] 63%
Energy Saving [75] 46%

Charge Averaging [76] 28%
Monotonic [77] 19%

Set-and-Down [78] 19%
Detect-and-Skip [79] 17%

Vcm-Based [80] 12%
Merged-Capacitor [81] 7%

Vcm-Based Monotonic [82] 3%

Even though some of the switching schemes achieve a significant reduction in energy
dissipation, the complexity of the control logic for the switching algorithm make them
unsuitable for high-speed applications. Moreover, for a differential ADC, the common-mode
(CM) voltage at the output of the DAC changes during the conversion for some of the
switching schemes, making it difficult to design a simple and robust comparator. Some of
the switching methods also need a third reference voltage.

The split-capacitor scheme is a good candidate for high speed applications for it requires
a fairly simple and straightforward logic controller. Fig. 3.6 demonstrates the principal
behind the split capacitor technique. As can be seen, every specific capacitor in the binary-
weighted capacitor array is divided into two halves, where the bottom plate of one capacitor
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is initially connected to the positive reference voltage, VREFP, while the other capacitor is
connected to the negative reference voltage, VREFN.

C

VREFN

VREFP

VX

VX+0.5(VREFP-VREFN)

VX

0.5C

VREFN

VREFP

0.5C
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Fig. 3.6 Principle of the split capacitor switching scheme

By applying the principle of the split capacitor of Fig. 3.6 to an N-bit binary-weighted
capacitive, the structure of Fig. 3.7 is resulted. In a differential SAR ADC, the polarity
bit is determined by only comparing the differential inputs using the comparator before
any DAC switching occurs, because of which an (N −1)-bit DAC is sufficient for an N-bit
A/D conversion. The bottom-plate switch for the positive and negative reference voltages
in Fig. 3.7 is just an inverter, as shown in Fig 3.8. The inverters too should be sized in a
binary-weighted manner to guarantee a constant RC time constant for all capacitors during
bit cycling.

C 4C2C 2N-2C 2N-1C

C 4C2C 2
N-2

C 2N-1CCU

CL

BU<0:N-1>

BL<0:N-1>

VREFP

VREFN

Vin

Fig. 3.7 An N-bit binary-weighted split-capacitor array. The split-capacitor architecture
guarantees constant CM voltage and requires only two reference voltages. However, it need
two independent control signals which would call for a more complex SAR logic circuit.
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Fig. 3.8 Circuit implementation of the bottom-plate switch

The average energy saving of the split-capacitor array is 37% compared to the con-
ventional approach. Also, because of the full symmetry of the switching, the DAC output
CM is constant over the entire conversion, which is particularly important for the design
of the comparator. Another advantage of the split-capacitor switching scheme over the
conventional scheme is a factor of

√
2 reduction in maximum DNL. As already discussed in

3.1.1 and according to (3.4), for the conventional binary-weighted capacitive array, we have
σDNL,max ≈ 2N/2σ0. For the split-capacitor structure, this maximum DNL is [81]

σDNL,max ≈
2N/2
√

2
σ0. (3.6)

The maximum INL nevertheless is the same for both schemes and is equal to

σINL,max ≈ 2N/2−1
σ0. (3.7)

The split-capacitor architecture only requires two reference voltages, namely VREFP and
VREFN. However, it has three separate states, which requires two independent control signals.
This means a more complex SAR logic, higher power consumption and larger logic latency.

3.1.3 Redundancy

Redundancy is a simple yet powerful technique that is widely used in all types of ADC
including the SAR ADC. Redundancy can be introduced in different ways for the purpose of
giving the ADC a tolerance to a certain amount of a specific error. For instance, and as was
discussed in section 2.3.5, in a 1.5-bit-per-stage pipeline ADC, a redundant decision level is
used at every stage, which makes the ADC tolerant to comparator offset of up to ±VREF/4. In
the SAR ADC redundancy is introduced through one (or more) redundant comparison cycles.
The principle is illustrated in Fig. 3.9, where the output voltage, VX , of a 5-bit single-ended
binary-weighted DAC is plotted for a specific input voltage. In Fig. 3.9.(a) no decision error
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occurs and VX converges to within one LSB after 5 cycles. The output code of the ADC is
12 for this case. In Fig. 3.9.(b), VREF experiences a glitch just before the third comparison,
making the third decision incorrect. The important point here (that makes the concept of
redundancy easier to understand) is that VX keeps converging towards the LSB region, but
due to the wrong decision does not have sufficient time to reside in this interval. If, somehow,
the DAC is given more time (say through the introduction of a redundant comparison) then it
will eventually converge within 1LSB, as can be seen in Fig. 3.9.(c), and this is the basic
concept of redundancy in a SAR ADC. This extra time can be provided in various ways as
will be discussed later.
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Fig. 3.9 Binary search (a) with no error, (b) with a wrong decision, (c) with correction
through redundancy.

The concept of redundancy can also be described in the following way: the introduction
of redundancy provides more than one single path (digital output code) for a specific input,
making the ADC resilient to a certain range of dynamic errors during the conversion. The
redundant search algorithm can compensate for dynamic errors such as settling, reference
voltage, or comparator decision errors, but does not correct for, e.g., the DAC nonlinearity or
the thermal noise of the comparator 1.

The extent to which the redundancy can correct the occurrence of an error depends on
the magnitude of the redundancy introduced. The magnitude of the tolerable decision error
in each step is almost equal to the difference between the current bit weight and the sum of
all remaining weights. More accurately speaking, if we define the redundancy in the k−th

1In [83], an extra redundant comparison step was added to mitigate the impact of random noise. This type
of redundancy though is not what is usually referred to as redundancy in SAR ADCs.
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step, q(k) as

q(k) =−p(k+1)+1+
N

∑
i=k+2

p(i), (3.8)

where p(i) is the weight of the i-th step, it can be proved [84] that if a wrong decision
is made in the k-th step, the redundancy can still recover the error if |Vin −VREF(k)|< q(k).
Here VREF(k) is the reference voltage for the k-th step, which is given by

VREF(k) =
k

∑
i=1

d(i−1)p(i), (3.9)

where d(i) is the decision of the comparator ("0" or "1") at the i-th step.

Different Types of Redundancy

1. Radix=2 with Redundant Decision Level

The redundancy can be introduced by adding an extra decision level to create multiple
trajectories for the same input [85]. This idea is mostly used in pipeline ADCs, as
mentioned previously.

2. Radix=2 with Redundant Comparison

As we discussed before, adding an extra comparison could give the ADC enough time
to recover from a previous error. This type of redundancy is basically what is shown in
Fig. 3.9 and was first introduced in [86]. The implementation comes at little cost by
just repeating a capacitor in the binary-weighted capacitor array. The position of the
extra capacitor and the comparison associated with it is where the redundancy occurs.

3. Radix<2 (Sub-Radix)

Another way of introducing a redundant decision is by using a ratio of capacitance that
is less than 2. This would make the number of all possible binary outputs greater than
2N , meaning that there would be more than one possible output code for a single input
voltage (redundancy). The idea was first introduced in [87] and afterwards became a
common practice in designing SAR ADCs [87–101].

Sub-radix redundancy can be realized in two ways. One way is to use a fixed ratio
of r < 2 between the capacitors. This, however, calls for non-integer values of the
capacitances, which is difficult to implement. Moreover, the radix must be known
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precisely in order to construct the proper conversion result. In practice, the radix is
typically measured using some form of calibration [92, 102]. In [90, 103] a smart
solution for implementing a radix of < 2 was proposed. This is shown in Fig. 3.10,
where the radix is equal to 1+β/α and can be adjusted by choosing α and β .

αC

βC C

αC

C

αC

βCC

VREF

Fig. 3.10 An implementation of non-binary capacitive array.

Another way to realize a sub-radix DAC is to use a variant ratio of less than 2 be-
tween capacitors in a way that the resultant values for the capacitors are still an
integer multiple of the unit capacitor [97, 98, 100]. For instance, the non-binary
weights of {128,46,26,20,14,8,6,4,2,1} can be used instead of the binary weights
{128,64,32,16,8,4,2,1} for an 8-bit DAC. In this case, 10 cycles (instead of 8) is
needed for every conversion, which means two redundant cycles. Although, this ap-
proach has the advantage of a straightforward layout of individual capacitors compared
to the non-integer sub-radix approach, the use of the common-centroid capacitor array
arrangement (which improves matching) is impeded. For this reason, redundancy in
the digital control is also used [104, 105]. With this approach, the decision weights are
stored in a ROM and during every conversion step, an arithmetical unit computes the
decision level (an integer number) depending on the comparator result for every spe-
cific comparison. A reference voltage is then generated by the DAC through switches
that are driven by the digital circuit and a decision level is made [104]. This approach,
however, increase the complexity of the digital section.

It is worth mentioning that, regardless of what approach is used for introducing
redundancy, the binary output code which includes the redundancy bits should be
eventually decoded into an N-bit code. This digital decoder (which is constructed by
adders and registers) has to work with the same speed as the ADC itself [86, 106, 107],
complicating the ADC design especially for high sampling rates and increasing the
ADC power dissipation.
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3.2 SAR Control Logic

The successive approximation register, known as the SAR logic, is responsible for the proper
switching of the DAC, based on the decision made by the comparator. Even though it is
a completely digital block, its power consumption constitutes a big part of the total power
budget, when the clock frequency is high. It also plays an important role in the maximum
achievable speed of the SAR ADC. Many different techniques have been proposed in the
literature to optimize the power and speed of this critical block. The SAR topology is
generally realized in two different ways: synchronous and asynchronous, as will be discussed
in detail as follows.

3.2.1 Synchronous

The conventional implementation of a successive approximation algorithm in a SAR ADC
relies on a synchronous clock to divide time into a signal sampling (tracking) phase and a
conversion phase, which progresses from the MSB to the LSB as shown in Fig. 3.11. For an
N-bit converter with a conversion rate of fs, a synchronous approach would require a clock
running faster than (N +1) fs.

Clkext

TSample Tconv

Clkcomp

Fig. 3.11 Timing diagram of synchronous SAR scheme. The clock frequency should be at
least N times higher than the sampling rate of the ADC. Generation of this clock could be a
real challenge especially for high speed SAR ADCs.

A synchronous SAR control logic, in its simplest form, consists of a shift register and
an array of Flip-Flops (FF), as shown in Fig. 3.12. The shift register, which itself is also
composed of FFs, shifts a pulse which is then used to activate the DFFs one by one to
generate a ZERO or a ONE based on the comparator output. In other words, the circuit
provides an indication of the working cycle which controls the SA logic to propagate the
comparator decisions to the DAC. For an N-bit ADC, an N bit shift register and an array of
N DFFs are needed.
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Fig. 3.12 Basic block digram of a synchronous SAR logic controller. The building block is a
DFF.

Since DFF is the building block of the SAR control logic, the optimization of the SAR
logic comes down to optimizing a single DFF. There are three main architectures for realizing
a DFF; it can be realised by using standard logic gates, as shown in Fig. 3.13. Even though
this is the most straightforward way of implementing a DFF, it is inferior in terms of both the
power consumption and the speed.

Clk

D

Q

Q

Fig. 3.13 Conventional logic-gate-based DFF. This type of DFF is not suited for high-speed
applications.

A switched-based DFF is another way of implementing this block, which works by
storing the digital data the same way as done in the analog domain, i.e. using a switch and a
capacitor. A schematic diagram of this type of DFF is shown in Fig. 3.14.(a). This is similar
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to a conventional Master-Slave DFF and is composed of a Master stage and a Slave stage.
When CLK is low (Fig. 3.14.(b)), switch S1 is ON and the data at D reaches node A. At the
same time, switch S4 is closed, which forces a positive feedback formed by two back-to-back
inverters and holds the previous data passed to the Slave stage. Once CLK goes high (Fig.
3.14.(c)), switch S2 closes and forces positive feedback in the Master stage, which then holds
the data on the input of the Master stage waiting for the next clock cycle.
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Fig. 3.14 Switch-base DFF: (a) topology, (b) clock is low and the previous data is stored by
the back-to-back inverters of the Slave stage, (c) clock is high and the current data is sampled
on node A and Q.
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Fig. 3.15 Modification of Fig. 3.14 with the clear signal.
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Fig. 3.16 Dynamic DFF. This type of DFF, if designed properly, can achieve high speeds
with low power consumption.

The switched-based DFF is superior to its conventional counterpart both in terms of
power and speed. Since a reset (clear) signal is also needed for the SAR Logic operation, the
circuit of Fig. 3.14 can be easily modified to incorporate a clear signal as well, as illustrated
in Fig. 3.15.

The third type of DFF is based on dynamic (C2MOS) logic. Dynamic logic gates are a
whole family of logic circuits that are used to decrease circuit complexity, increase operating
speed and reduce power consumption [108, 42]; since the precharging, selection, switching
and latch function can be combined together with one dynamic logic gate in this design. A
dynamic DFF is shown in Fig. 3.16. The state transition of this FF occurs at the rising edge of
the clock signal. While dynamic logic can be faster and less power hungry compared to other
types of logic, there are known disadvantages such as glitches, charge sharing, metastability
and leakage.

3.2.2 Asynchronous

In synchronous SAR logic, the time allocated for the comparison(s) is equal for all the bit
decisions, as shown in Fig. 3.11. Consequently, during an easy decision (where the input
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of the comparator is large) the comparator latches quickly and is followed by a period of
inactivity, hence wasting some of the conversion time. Moreover, for a SAR ADC with
a sampling frequency of fs, a high speed clock of frequency (N + 1) fs is needed. For a
high speed SAR ADC, synthesizing this higher-frequency clock, along with implementing
the associated clock distribution network, would probably consume more power than the
ADC itself. This brings us to the common practice of asynchronous SAR Logic for SAR
ADCs. In an asynchronous control scheme, the SAR logic starts to function immediately
after a comparison is made by the comparator. This is done by a valid signal generated by
the comparator, which indicates when a comparison is complete. For a differential-output
comparator, a simple XOR gate would do the job. The timing diagram of an asynchronous
SAR algorithm is shown in Fig. 3.17.

Clkext

Clkcomp

TSample Tconv

VCM

Comparator input

Comparator output

Fig. 3.17 Timing digram of the asynchronous SAR scheme along with the comparator
input/output signals. The comparator is reset right after a decision is made (plus a delay for
the DAC settling) and the next comparison starts immediately.

The speed improvement of an asynchronous compared to a synchronous scheme depends
on many factors (e.g. comparator architecture) and is a multiple-folded problem. In [109], a
simple model for the comparator was considered and minimum and maximum limits were
found for the ratio Tasync/Tsync for an N-bit SAR ADC, where Tsync and Tasync are the total
resolving times for the synchronous and the asynchronous SA schemes, respectively. These
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limits are given by

Tasync

Tsync
|min =

1
2

(3.10)

Tasync

Tsync
|max =

(N −1) ln3+ ln2+ N
2 (N +1) ln2

N(N +1) ln2
. (3.11)

The ratio Tasync/Tsync in (3.11) approaches 1/2 as N increases. In other words, an asyn-
chronous SA scheme improves the conversion speed of a SAR ADC by almost a factor of 2,
which is a significant improvement.

3.2.3 Special Techniques

Several innovative techniques have been proposed in the literature to improve the speed
and/or power consumption of SAR logic even further.

Even with an asynchronous SAR control scheme, the propagation delay of the comparator
can still be excessive, when the input is small. By introducing redundancy, this comparison,
if detected, can be skipped. In [110, 111] a comparator time-out scheme was proposed to
detect long comparison times and to skip the step if longer than a certain time. The idea is
very simple. An extra path is placed in parallel with the comparator to generate a second
Valid (Valid2) signal along with the Valid signal generated by the comparator (Valid1), as
shown in Fig. 3.18. The two Valid signals are ORed to make the final Valid signal that
activates the SAR Logic. Both the comparator and the auxiliary delay path are triggered
by the same signal (generally the clock). The signal Valid2 goes high after a fixed certain
time Td once triggered. This means that if the comparator is not able to make a decision fast
enough (say within Td seconds), then the delay path takes over and forces Valid to go high.

A different method to reduce the delay of the SAR logic was introduced in [112]. Called
flip-flop bypass SAR logic, this technique is based on storing the comparator outputs one
half clock cycle after applying them to the feedback capacitor DAC. A parallel bypass SAR
logic was introduced in [113], where the SAR logic and the comparator work in parallel in
order to reduce the delay of the SAR feedback loop, as shown in Fig. 3.19. A logic window
is produced to match the result of the comparator, during which the result of the comparator
is caught. The delay due to the SAR logic should be slightly shorter than that due to the
comparator, so that the logic window is ready before the presence of the valid signal. This
technique completely eliminates the delay of the SAR logic from the total loop delay.
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Fig. 3.18 Asynchronous SAR ADC with an auxiliary delay path. In case if the comparator
decision process takes longer that the delay of the auxiliary path, the valid signal will
generated regardless.
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Fig. 3.19 Parallel bypass SAR logic: (a) circuit implementation (b) timing diagram. This
technique completely eliminates the delay of the SAR logic from the total loop delay.

The asynchronous approach can be implemented in a completely different way, as
proposed in [114]. Using this approach, N comparators instead of one are used for an
N-bit conversion, as shown in Fig. 3.20. Each comparator is responsible for the switching
of one capacitor in the DAC, such that the DAC can respond to the results immediately
and generate the successively approximated analog signal without being delayed by the
digital logic. Once the comparison is finished, a valid signal is generated in the same way
as for a conventional asynchronous SAR logic, which triggers the proceeding comparator
for the next bit comparison. This procedure propagates in a “domino” fashion until the
LSB comparison finishes. Using this method, the conversion time is reduced in three ways
compared to the conventional asynchronous SAR ADC. First, no DFF or latch delay is
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needed to store the comparator output. Second, comparators are reset simultaneously, and
thus, no comparator reset time is required for every comparison cycle. Third, this method
allows independent optimization for each comparison cycle. Overall, the optimized critical
path for each comparison cycle can be represented as

Td = tcomp,reg +max{tDAC, tready}, (3.12)

where tcomp,reg, tDAC and tready are the comparator regeneration time, the DAC settling time
and the delay of the ready signal generator circuit, respectively. It should be noted that
the power consumed by the comparators for this architecture with N comparators is not
necessarily larger than that of a conventional SAR ADC where only one comparator is used.
This is because here, every comparator makes one single comparison during every conversion,
making the total number of comparisons equal to N per conversion. This number is the same
as for the conventional SAR ADC where N comparisons are made by one comparator during
every conversion. A disadvantage associated with this technique is the offset mismatch
between the N comparators, which causes distortion and degrades linearity [115]. Therefore,
a part of the power budget for the ADC has to be used for either low-offset comparators or
for an offset calibration circuit. Employing redundancy can also compensate for the offset
errors before the redundant cycle.
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start ready ready ready
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bN b2 b1 b0bN-2

Sample

Fig. 3.20 Asynchronous SAR ADC using N comparators. This technique completely elimi-
nates the delay of the DFFs in the SAR logic as well as the reset delay of the comparators.
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3.3 Comparator

For low power, a dynamic comparator is better than its static counterpart in that there
is no static power consumption. Different architectures for dynamic comparators have
been discussed in the literature [95, 116, 117]. For high speed applications, the so called
"StrongARM" latch [118, 119] is a famous architecture whose structure is shown in Fig.
3.21.(a). As can be seen in the figure, the StrongARM latch consists of a clocked differential
pair, M1,2, two cross-coupled pairs, M3,4, and four switches S1 −S4. The operation of the
latch is as follows: when Clock is low, M1 and M2 are off and nodes P, Q, X , and Y are
precharged to VDD. When Clock goes high, the switches S1−S4 turn off, and M1 and M2 turn
on, drawing a differential current in proportion to Vin+ −Vin- from CP and CQ. This makes
the voltages at nodes P and Q drop at different rates, causing a differential voltage of

Vout

M1 M2

M3 M4

P Q

M5 M6

S1 S3 S4 S2

Vin+ Vin-

Clk

Clk Clk

(a)

Vout-

Vout+

VP

VQ

VDD

VDD-VTH

(CP,Q/ICM)VTH

t

(b)

Fig. 3.21 StrongARM latch: (a) circuit implementation, (b) voltage of important nodes during
one cycle.
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|VP −VQ| ≈ (gm1,2)|Vin+ −Vin-|/CP,Qt, (3.13)

where gm1,2 is the transconductance of the transistors M1 and M2. This voltage drop continues
until the NMOS cross-coupled transistors turn on, i.e. when VP and VQ fall to VDD −VTH.
Therefore, this phase lasts for approximately (CP,Q/ICM)VTH seconds, where ICM is the
common-mode current drawn from each side. At this point, a positive feedback is created
by M3 and M4, making Vout+ and Vout- split towards the two rail voltages in an exponential
manner due to the differential currents caused by the input differential voltage (regeneration).
It can be shown that [120] the regeneration time constant is

τreg =
Cout

gm3,4(1−Cout/CP,Q)
, (3.14)

where gm3,4 is the transconductance of the transistors M3 and M4 and Cout is the total
capacitance at the output of the comparator. Fig. 3.21.(b) shows the behaviour of the different
voltages of the StorngARM latch during one clock cycle.

The power consumed by the StrongARM latch is mainly dynamic, arising from the charge
and discharge of the capacitances, and is roughly equal to fClk(2CP,Q +Cout)V 2

DD. In [121] a
multi-step design methodology was presented for designing a stongARM latch for a given
set of specifications.

3.3.1 Double-Tail Comparator

A disadvantage associated with the conventional StrongARM latch of Fig. 3.16 is the
stack of four transistors, which requires a large voltage headroom, making this topology
unsuitable for low-voltage designs. Moreover, the speed and offset of this circuit depend
on the common-mode voltage at the input [122, 123]. An alternative design, known as the
double-Tail comparator, was proposed in [124] where two separate tails were used for the
input stage and the latch stage. The architecture of this type of latch is shown in Fig. 3.22.

Operation

The operation of the double-tail comparator of Fig. 3.22 is as follows: during the reset phase
and when Clock is low, transistors M3 and M4 precharge nodes Di+ and Di+ to VDD, which
causes M7 and M8 to discharge the output nodes to ground. When Clock goes high, M1 and
M2 turn on, drawing a differential current in proportion to Vin+ −Vin- from CDi+ and CDi−.
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The operation then proceeds similar to the StrongARM latch with the cross-coupled transistor
kicking in and providing a positive feedback, which then takes the outputs to the supply and
ground rails. Based on simulation, it was shown in [124] that the double-tail comparator
is superior to its StrongARM counterpart both in terms of delay (speed) and input-referred
offset.

The double-tail comparator requires high accuracy timing of Clk because the latch stage
has to detect ∆VDi in a very short time. An alternative topology was proposed in [125] that
used the falling edge at nodes Dis for the latch timing. This is shown in Fig. 3.23. Here, the
added transistors M11 and M12 pre-charge both the latch and the inputs of the first stage as
well. This helps increasing the comparator sensitivity by increasing the gain of the second
stage. Furthermore, this architecture relaxes the clock driving requirements as there is only
one clock phase. The task of transistors M13 and M14 is to reset the nodes Xi+ and Xi− to
avoid mismatch voltages between them that would cause comparator offset. It was also
shown in [125] that this comparator had better noise performance compared to the one shown
in Fig. 3.22.
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Fig. 3.22 Double-Tail comparator. Two separate tails are used for the input stage and the
latch stage.
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Fig. 3.23 Improved double-tail comparator.

Kick-Back Noise

The voltage variations on the output nodes of a comparator can be coupled, through the para-
sitic capacitance of the transistors, to its inputs. Since the circuit preceding the comparator
does not have zero output impedance, the input voltage is disturbed, which may degrade the
accuracy of the comparator. This disturbance is usually called kickback noise. Kick-back
noise is a common problem for a dynamic comparator. A number of techniques have been
proposed to reduce the harmful effect of kick-back noise. The most common solution is
to add a pre-amplifier before the comparator [126]. This nevertheless compromises the
speed of the comparator and increases its power consumption. Another solution, shown in
Fig. 3.24.(a), is to insert switches between the drain of the input pairs and the load (S1 and
S2), which open when the regeneration starts [127, 128]. This technique also jeopardizes
the speed of the latch since the input pair enters the triode region upon the opening of the
switches. It also introduces a resistor in the signal path, which slows down the latching
operation even further.

Isolating (disconnecting) the inputs of the comparator from the nodes that are sensitive to
kick-back noise is another method that was used in [129]. This is done through a series switch,
which is kept OFF during the regeneration phase when the kick-back noise is maximum and
most disturbing. However, the kick-back noise still corrupts the input signal when the switch
is closed. Moreover, the series switch acts as a resistor in the signal path, thereby increasing
the time-constant of the sampling network.
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Fig. 3.24 Reducing the effect of kickback noise by (a) putting switches between the input
and the output of the latch, (b) capacitive neutralization.

Neutralization is another technique to alleviate the problem of kick-back noise [130, 131],
and is done by adding two cross-coupled capacitors with value equal to CGD of the input
devices to neutralize these capacitors, as shown in Fig. 3.24.(b).

Apart from the aforementioned differential kick-back noise, there also exists common-
mode kick-back noise, which is specific only to dynamic comparators. In a dynamic compara-
tor, once the comparator is clocked, the source and drain of the input transistors will be pulled
to ground. This transition draws charge from the gates of the input devices through CGS

and CGD and causes common-mode kickback noise on the input. If there is any mismatch
between the input transistors, the common-mode kickback noise will be converted into
differential one, causing distortion. A dummy comparator was used in [42] to neutralize the
common-mode kick-back noise caused by both the CGD and CGS of the input transistors. The
idea is shown in Fig. 3.25, where the rising transition of the source and drain of the dummy
pairs is in different direction, supplying all the charge drawn by the falling transition of
input transistors and largely cancelling the kickback noise if transistors in the replica circuits
matches those in the main one. Nevertheless, this only occurs if there is no timing mismatch
between the two transitions.
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Fig. 3.25 Kickback noise cancellation through a replica (dummy) comparator. This technique
is to cancel out both the static and the dynamic kick-back noise.

Thermal Noise

The input-referred noise of the double-tail comparator σn can be estimated by [132]

σn ≈
√

8kT
γ

gm,in
.NBW, (3.15)

where k is the Boltzmann constant, T is the absolute temperature, γ is a technology-dependent
factor (around 2.5), gm,in is the transconductance of the input devices and NBW is the noise
bandwidth. NBW is expressed as

NBW =
1

2Tint
, (3.16)

where Tint is the integration time. According to (3.15), to decrease the input noise, we
must increase the gm of the input pairs and/or increase Tint. The latter can be achieved by
increasing the capacitive load at nodes Di+ and Di+, which then lowers the speed. Large input
transconductance provides good noise performance, since the preamplifier has a large output
voltage difference against noise at the moment of decision. A large input transconductance
is achieved by increasing the size of the input pair. Nevertheless, a large differential pair
induces more kick-back noise. As such, there is a design trade-off between speed and noise
of the double-tail comparator.
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3.4 Sampling Network

Sampling of the input voltage on the capacitive DAC can be performed in two different ways:
bottom-plate sampling and top-plate sampling. Using the bottom-plate sampling method,
the voltage is sampled on the bottom-plate of the capacitors, the side which is not connected
to the comparator. The advantage of the bottom-plate sampling is the charge-injection
independent sampling process.

CS

Φ

VCM

M2

Vin
M1

Φd

M3Φd

VB

Fig. 3.26 Bottom plate sampling. The advantage of the bottom-plate sampling is the charge-
injection independent sampling process.

The configuration is shown Fig. 3.26 and the operation is as follows: In the acquisition
mode, M1 and M2 are on and M3 is off. VCM is therefore appears on the top plate of Cs, while
the bottom-plate tracks the input voltage Vin. In the transition to the hold mode, first Φ goes
low, turning M2 off, and after a small delay Φd falls, turning M1 off and M3 on. Thus, VB

drops from Vin to 0 and hence the charge in VX is equal to −Vin at the sampling instant. Since
M2 always turns off first , the channel charge of M1, which is input-dependent, does not
introduce any error. Moreover, as the gate-source voltage of M2 is independent of Vin, the
channel charge injected by this switch only appears as a constant offset on VX .

Although bottom-plate sampling yields higher accuracy than top-plate sampling, the
complexity of the routing in the layout makes it inappropriate for high-speed applications.
However, and regardless of what method of sampling is utilized, using a transistor as the
sampling switch exhibits an input-dependent on-resistance, thereby introducing distortion.
This issue can be resolved by “bootstrapping,” a circuit technique that minimizes the switch
on-resistance variation in the presence of large input and output voltage swings [133]. The
core idea is shown in Fig. 3.27.(a) where a battery of voltage VDD is inserted between the
source and the gate to keep VGS constant (and maximum) during the sampling time. In reality,
this can be achieved using a capacitor and a number of switches, as shown in Fig. 3.27.(b).
During the tracking phase, S2 and S4 go on, putting the precharged CB on the gate-source
of the sampling switch Ms. In the hold mode, S5 turns on, turning off the sampling switch,
while S1 and S2 recharge the capacitor to VDD again.
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Fig. 3.27 Bootstrapped switch: (a) principal of operation, (b) circuit realization. Bootstrap-
ping minimizes the on-resistance of the sampling switch and makes it input-independent.

The bootstrapped switch guarantees the minimum on-resistance of the sampling switch
by forcing its gate-source voltage to be around VDD for all values of the input voltage. The
complete bootstrapped switch is shown in Fig. 3.28. As can be seen, there is higher number
of transistors than the number of switches in Fig. 3.27.(b). In the following, we explain the
function of every transistor:

1. Transistor M1: this NMOS transistor is simply the replacement of switch S1.

2. Transistor M2: this replaces the switch S2. The gate of this NMOS is bootstrapped to
VG for otherwise it will turn off or at least exhibit a large on-resistance for voltages of
Vin close to VDD.

3. Transistor M3: this performs the function of S3. The gate of this PMOS transistor is
also bootstrapped to VG to avoid it to turning on when VY rises above VDD.

4. Transistor M4 and M6-M8: this group of transistors perform the function of switch S4

all together. M6 bootstraps the gate of M4 to node X to avoid a voltage of greater than
VDD to appear on its gate-source. However, M6 would turn off when VX becomes larger
than VDD −VTH. Therefore, M7 is added to kick in when this happens and keeps M4

still ON. The function of transistor M8 is to turn M4 off during the tracking mode.

5. Transistors M5 and M5t : these two transistor together replace the switch S5. The reason
for adding M5t here is to prevent M5 from experiencing drain-source and drain-gate
voltages greater than VDD

2 when VG rises above VDD.
2Any node-to-node voltage of a MOS device greater than the maximum allowable voltage of a specific

technology (which is usually VDD ±10%) results in a “stress” on that device, shortening its lifetime.



62 SAR ADC: Circuit Design Considerations and Implementation

CS

Vout
MS

M1

Clk

CB

M7

M6
VDD

M2

M8

VDD

Clk

VDD
Clk

M5t M5

M4

M3
S4

S5

G

X

Y

Vin

Fig. 3.28 Circuit implementation of the bootstrapped switch.

It should be noted that the since the voltage of node Y can go above VDD, the bulk terminal of
transistors M3 and M5 should be tied to their sources to avoid the reversed-biased bulk-source
diodes to turn on.

The sampling operation via the bootstrapped switch occurs in two phases: the precharge
(holding) phase and the tracking phase.

Precharge Phase

During this phase, and when Clk is high, the capacitor CB is precharge to VDD through
transistors M1 and M3, while transistors M5 and M5t force the gate of the sampling transistor
MS to ground and push it into OFF state. M8 also keeps M4 in OFF region. All other
transistors are OFF, as can be seen in Fig. 3.29. The precharge phase starts by the gate of MS,
G, begin discharged to ground with a time constant given by

τ1,1 =
(
RON,5 +RON,5t

)
CG, (3.17)

where RON,5, RON,5t and CG are the ON resistance of transistors M5 and the ON resistance of
M5t and the total capacitance at node G, respectively. Once G reaches ground, M3 turns ON,
charging CB to VDD with a time constant of

τ1,2 =
(
RON,1 +RON,3

)
CB, (3.18)
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Fig. 3.29 Bootstrapped switch during the precharge phase.

where RON,1 and RON,3 are the ON resistance of transistors M1 and M3, respectively. The
precharging time constant thus can be viewed as the sum of τ1,1 and τ1,2. Typically, τ1,1 is
much smaller than τ1,2, making the precharge time constant τprecharge effectively equal to τ1,2.

Tracking Phase

When Clk goes low, M6 is quickly switched on and forces the gate of M4 to ground (Fig.
3.30.(a)). This happens with a time constant of

τ2,1 = RON,6CZ, (3.19)

where where RON,6 is the ON resistance of transistors M6 and CZ is the total capacitance at
node Z. Next, and when M4 is already ON, the top plate of CB, which was precharged to
VDD, appears on the gate of MS through the ON resistance of M4. VG starts to rise and once it
reaches the threshold voltage of M2, this transistor turns ON and connects the bottom plate
of CB to the input voltage Vin (Fig. 3.30.(b)). Following this, VX and VY increase by Vin with
a time constant of

τ2,2 ≈
(
RON,2 +RON,4

)
CG, (3.20)

where RON,2 and RON,4 are the ON resistance of transistors M2 and M4, respectively.



64 SAR ADC: Circuit Design Considerations and Implementation

CS

Vout
MS

M1

CB

M7

M6
VDD

M2

M8

VDD

VDD

M5t M5

M4

M3

G

X

Y

Vin

CG

VDD

Z

CS

Vout
MS

M1

CB

M7

M6
VDD

M2

M8

VDD

VDD

M5t M5

M4

M3

G

X

Y

Vin

CG

VDD

Z

(a) (b)

Fig. 3.30 Bootstrapped switch during the tracking phase: (a) node Z discharges to ground,
(b) CB appears on the gate-source of MS.

A different version of 3.28 is sometimes used where gate of M3 is driven by a dedicated
charge-pump circuit taht produces 2VDD [94, 132]. The overhead though is the extra capac-
itors necessary to build the charge-pump circuit which requires two large capacitors. As
for a transmission gate switch, a complementary bootstrapped switch was also proposed,
especially for low voltage applications when VDD is close to the threshold voltage of the
transistors [134, 135].

Another advantage of bootstrapping is minimizing the harmful effect of input-dependant
charge injection, especially for top-plate sampling. This is explained in the following. The
charge injection is caused by the charge in the inversion layer of the switch and can be
roughly expressed as

Q =WLCox(VGS −VTH), (3.21)

where VTH is the threshold voltage of the transistor. When the transistor goes off, this charge
is depleted towards both the source and the drain terminals. The distribution mostly depends
on the impedance of either side of the transistor. Hence, the voltage jump on the sampling
capacitor CS due to the charge injection once the switch turns off is given by

∆V = α
WLCox(VGS −VTH)

CS
, (3.22)
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where α is the portion of the charge that is depleted onto the CS side. As already mentioned,
the bootstrapped switch makes VGS constant and independent of the input. To a lesser extent,
VTH is also input dependent due to the body effect, especially for high voltage applications.
Bulk-biasing is a technique to minimize this non-linear effect [136]. The idea is to connect
the bulk of the sampling switch to its source during the sampling mode and to the ground
during the hold mode. This can be done through some extra switches. A variation of this
technique was presented in [137].

3.4.1 Sampling Jitter

Variation in the time at which the sampling switch is opened is known as aperture uncertainty,
or jitter, and will result in an error voltage that is directly proportional to the magnitude of the
jitter and the input signal slew rate. The sampling jitter is a combination of the external jitter,
i.e. the oscillator that generates the sampling clock along with all the proceeding buffers,
and the internal ADC aperture jitter itself. The ADC SNR degradation due to jitter can be
calculated as

SNR j[dBFS] =−20 · log(2πfinσn), (3.23)

where fin and σn are the input frequency and the RMS value of the jitter, respectively. The
ADC noise floor (SNR) is then set by the following contributors

1. ADC quantization noise, SNRq

2. ADC thermal noise (which includes the kT/C sampling noise and the thermal noise of
the ADC’s constituent blocks), SNRn

3. Sampling jitter, SNR j

and can be calculated as

SNRADC =−20 ·
√(

10−SNRq/20
)2

+
(

10−SNRn/20
)2

+
(

10−SNR j/20
)2

, (3.24)

where SNRq and SNR j are given by (2.5) and (3.23), respectively.





Chapter 4

Mismatch Calibration Techniques

In this chapter, we review some of the most important mismatch calibration techniques
proposed in the literature. In particular, we focus in on the mismatch resulting from the
inherent random variation in capacitors that builds up in the capacitive DAC in a SAR ADC.
All the mismatch calibration methods discussed here can be used to compensate for this
effect, although some methods can be used for other types of mismatch in the A/D converter
too.

A mismatch calibration process typically consists of two phases: a detection phase, where
the error (i.e. capacitive mismatch) is determined in the form of an electrical quantity (e.g.
voltage) in the analog domain or as a binary number in the digital domain, and a correction
phase, where this detected error is used to correct the erroneous output.

4.1 Detection

The mismatch detection process can occur in the background without interrupting the normal
conversion of the ADC, or in the foreground upon the start-up of the chip and before the
ADC conversion kicks off. Before we proceed and for the sake of clarification for the rest of
this article, we define the term bit weight as the numerical weight of a particular bit of the
binary output of the ADC, which is basically the (normalized) value of the capacitor(s) in the
DAC that would contribute to that specific bit during the conversion process. Therefore, the
output of an N-bit ADC can be represented by

y =
N−1

∑
i=0

biwi, (4.1)
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where B = {bN−1,bN−2, ...,b1,b0} is the binary output and W = {wN−1,wN−2, ...,w1,w0} is
the bit weight vector.

Background

Perturbation-based calibration (also known as dithering) is a common method for error
detection in an ADC. This technique is widely used to calibrate non-idealities of pipeline
ADCs and can also be used with the SAR architecture to calibrate the mismatch of the CAP-
DAC. This approach is based on injecting discrete-time single-bit zero-mean pseudorandom
noise (PN) samples, ∆PN, into the ADC along with the analog input signal Vin, and using this
as a way to estimate the actual bit weights of the capacitive DAC. In the ideal case where the
ADC is perfectly linear, i.e. the bit weights that are used to reconstruct the output precisely
match the actual bit weights in the DAC, superposition can be used to express the ADC
output as

Dout = Q(Vin +∆PN) = Q(Vin)+Q(∆PN) = Din +D∆PN , (4.2)

where Dx = Q(Vx) denotes the quantized representation of voltage Vx. The second equal
sign in Eq. (4.2) holds if Din is completely independent from (uncorrelated with) D∆PN . On
the other hand, when the bit weights of the DAC are mismatched with respect to their ideal
values, the system is not linear and (4.2) no longer holds. In this case, the correlation between
Dout and D∆PN can be exploited to extract the mismatched bit weights, as shown in Fig. 4.1.
The PN signal ∆PN is usually injected via an extra capacitor added to the capacitive DAC
[95] or by using the capacitors in the DAC itself [138, 139].

S
A

R
 

A
D

C

Vin

Dout

Correlation

eΔ

ΔPN DΔPN

Fig. 4.1 Core idea of correlation-based calibration. The correlation of Dout and D∆PN is zero
only if the ADC is linear.

Reference [95] proposed a dual-conversion approach where each sample is converted
twice, once with a positive sign of the PN signal and once with the negative sign, as shown
in Fig. 4.2. In this figure, Dout+ and Dout− are the ADC outputs corresponding to PN signals
∆PN+ and ∆PN−, respectively. The difference between the outputs of the two conversions is
then used for the bit weight extraction. This approach has an advantage in that the unknown
input signal is subtracted from the calibration path, thus making it unnecessary to accumulate
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a large number of data. However, each conversion needs to be performed twice, hence
halving the maximum achievable conversion rate of the ADC.
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+ΔPN,-ΔPN Dout-
eΔ=2DΔPN

D’out

Fig. 4.2 Block diagram of the perturbation-based calibration with dual conversion.

The bit weight extraction can be performed in various ways. One way is to use an adaptive
loop. As shown in Fig. 4.3, a least-mean-square (LMS) weight updater can be used to adjust
the reconstruction bit weights W , until the error term e∆ = E [Dout ·D∆PN ], where E{·} is the
averaging operator, becomes zero, indicating that W matches the actual bit weights of the
DAC. In order to work out all the N bit weights W = {wN−1,wN−2, ...,w0}, where N is the
resolution of the ADC, the LMS can update all of the bit weights at the same time [97] as

wi(k+1) = wi(k)−µe∆(k), (i = 0,1, ..N −1). (4.3)

In order to reduce the conversion time of the LMS procedure, [140] used N different PN
signals to determine the bit weights separately yet simultaneously, as shown in Fig. 4.4.
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Fig. 4.3 Bit-weight extraction of the perturbation-based calibration through an LMS algo-
rithm.

Bit weight extraction can also be done directly without using an LMS approach [138, 139].
To elaborate, let us denote C0 ∼CN−1 as the capacitors of the DAC in the SAR ADC and
w0∼wN−1 as their (normalized) corresponding weights. Let us also assume that capacitor
C j is used to add the PN signal through a {1,−1} pseudorandom sequence K along with the
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Fig. 4.4 Another implementation of Fig. 4.3. Here N different dithering signals are used.

input signal Vin. The operation of the SAR ADC is then described by

Vin +Kw j =
N−1

∑
i=0,i̸= j

biwi +Vq, (4.4)

where Vq is the quantization error. The digital representation of (4.4) is

Din +KwD j =

 N−1

∑
i=0,i̸= j

biwDi

+Dq. (4.5)

By correlating (4.5) with K, we have

N−1

∑
i=0,i̸= j

KbiwDi = wD j +KDin −KDq = wD j + e j (4.6)

where e j =KDin−KDq is an error term. By running this procedure for the m MSB capacitors,
we can get m equations similar to (4.6), which can then be written in a matrix form as

A×


wD(N−1)

wD(N−2)
...

wD(N−m+1)

=C−


eN−1

eN−2
...

eN−m+1

 , (4.7)

where A and C are matrices which depend on the correlation between K’s, bis and the bit
weights of the LSB capacitors. With a sufficiently long PN sequence, the error terms e j’s
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converge to zero. Therefore, (4.7) can be solved to determine the mismatched bit weights{
wD(N−1),wD(N−2), ...,wD(N−m+1)

}
.

Ref. [141] proposed a split ADC approach where the capacitor array of the SAR ADC was
split into two identical banks and performed two SAR conversions at the same time, as shown
in Fig. 4.5. The average of the outputs of the two conversions is taken as the final output,
while the difference could be used to calibrate the bit weights, e.g. via an adaptive loop, as
shown in the figure. It is worth noting that the difference between the outputs of the two
conversions in Fig. 4.5 could be zero even when the two paths still exhibit a mismatch. To
circumvent this, [141] also employed a "shuffling" technique for the capacitive array where
different unit capacitors were used for different bits in every conversion in a randomized
manner. This guarantees the independence of the two conversions and can force e∆ to zero
only if the mismatch is zero. Nonetheless, this approach leads to a very complex connection
web between the capacitors in the layout, thereby jeopardizing the conversion speed of the
ADC.

SAR “A”

Vin

SAR “B” eΔ=D’outA-D’outB

LMS

WA

WB

DoutA

DoutB

D’outA

D’outB

D’out=
D’outA+D’outB

2D’out=
D’outA+D’outB

2

Fig. 4.5 Block diagram of the split ADC calibration. e∆ is used to determine the ADC bit
weights.

In [142], DNL error detection was used to trim the capacitors of the capacitor array with
the aid of redundancy. To understand the approach that was used in [142], let us assume that
the input-output transfer curve of a SAR ADC with redundancy is as shown in Fig. 4.6. It can
be seen that the ADC has a DNL error ∆ at the MSB bit which occurs at the transition from
1000...00 to 0111...11 and vice versa. Owing to the redundancy, there is more than one way
of representing a single input voltage with binary codes, only if the DAC is mismatch-free.
For the specific case of Fig. 4.6, if the MSB capacitor has mismatch, codes A and B would
result in different DAC voltages VA and VB. This discrepancy in the output voltage can be
used to tune ∆ back to zero and calibrate the mismatch of the MSB capacitor as follows
(Fig. 4.7): if code A (B) is observed during the normal conversion time of the ADC, an extra
cycle is added, the switching of the DAC is updated to one associated with code B (A) and



72 Mismatch Calibration Techniques

Vin
C

o
d

e

Δ

Vin

C
o

d
e

Code A

Code B

Code A=100...00

Code B=011...11

Fig. 4.6 Transfer characteristic of a SAR ADC with mismatch at MSB capacitor.

an additional comparison is performed. If the result of the comparison before and after the
switching between code A and B is not the same, it means there is mismatch in the MSB
bit that is then eliminated by trimming. The same procedure can be followed to calibrate
the mismatch of the other capacitors. We make this clear by considering an 8-bit SAR
ADC as an example, whose (normalized) bit weights are W = {128,64,32,32,16,8,4,2,1}.
Note that the 4th bit is redundant, and its weight is the same as the 3rd bit. Therefore, the
two 9-bit codes B1 = {1,0,0,0,x,x,x,x,x} and B2 = {0,1,1,1,x,x,x,x,x} both represent the
same digital output if the ADC is linear, i.e. there is no mismatch in the MSB capacitor. This
allows the mismatch of the MSB capacitors before the redundant capacitor to be detected as
follows. Whenever code B1 appears at the output of the ADC during a normal conversion,
the ADC undergoes an extra 10-th cycle, where the switching of the CAP-DAC is updated to
one corresponding to code B2, followed by an extra comparison. Similarly, when the code B2

is observed, the CAP-DAC switching is updated to one corresponding to B1 during the extra
comparison cycle. The result of the extra comparison can thus be used to detect the sign of
the MSB capacitor mismatch for an appropriate correction method. Similar procedure can
be followed to detect the mismatch of the MSB−1 and MSB−2 capacitors. For instance, to
detect the mismatch of the MSB−2 capacitor, the extra calibration cycle is activated when
the codes B3 = {0,1,0,1,x,x,x,x,x} or B4 = {0,1,1,0,x,x,x,x,x} are observed at the ADC
output.

Foreground

Foreground mismatch calibration can be performed by estimating the DNL error of all
possible output codes using a known input, e.g. a sinusoidal signal. The DNL estimation can
be done in the same way as it is done for the DNL measurement of an ADC, e.g. using a
histogram-based method in the time domain or using frequency-based methods [143–146].
Ref. [147] used an averaging method to estimate the DNL as follows. Let us denote x[k] as
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Fig. 4.7 Mismatch calibration based on Fig. 4.6.

the ideal analog sampled signal at the quantizer (ADC) input, with k being the sample index.
We denote the quantized number associated with x[k] by B[k] = QN{x[k]}, where the operator
QN{·} is the N-bit quantization performed by the ADC. The output of the ADC, y[k], can
then be worked out by using (4.1). Thus, the error associated with B[k] is

e[k] = y[k]− x[k]. (4.8)

This error includes both the ADC quantization error and nonlinearity errors. The goal is to
minimize e[k] through updated bit weights W̃ that would result in a corrected output ỹ[k], as
shown in Fig. 4.8. It was proved in [148] that this error is minimized when for a specific
output code B, ỹ[k] is set to the average of all sampled inputs x[k] that are mapped to code
B̃. The reconstruction filter in Fig. 4.8 estimates the sampled input voltage and a sinusoidal
waveform is employed as input signal during calibration.

A.sin(ωT+φ) WW
B[k] y[k]

FIR

Reconstruction 

filter

E{y[k]-x[k]}~E{y[k]-x[k]}~

SAR ADC

~W~W~W

x[k]x[k]~~x[k]~

y[k]y[k]~~y[k]~

x[k]

Fig. 4.8 A foreground mismatch calibration based on estimation of the DNL error.

One problem associated with this approach is that the computed DNL includes all types
of static and potentially frequency-dependent non-linearities of the ADC, with the CAP-DAC
mismatch being only one of them. As a consequence, this error detection mechanism only
proves to be accurate for a particular frequency. Dynamic detection has been proposed
to overcome this limitation [147] where the estimated DNL is not only a function of the
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Fig. 4.9 Block diagram of self-calibration using an auxiliary CAP-DAC.

current output code, but also depends on the previous output code(s) or some other additional
information, such as the slope of the input signal, as proposed in [149]. In [150], apart from
the current output of the ADC, k previous outputs were also used to estimate the DNL.

Self-calibration is another method of foreground mismatch calibration of SAR ADCs,
and is based on the DNL error estimation of the individual capacitors using a DAC and can
only be applied to binary-weighted capacitive DACs. This technique can be realized in two
ways: either by utilizing an auxiliary CAP-DAC, as shown in Fig. 4.9, or by using the same
DAC of the ADC itself (main CAP-DAC). The former can be exploited following a bottom-up
or a top-down approach. In a bottom-up approach [151], the direction of the calibration is
from the LSB towards the MSB. Specifically, in the case of the N-bit capacitor array shown
in Fig. 4.10, binary-scaling implies

VREF

D
C00 C0 C1 Cj-1 Cj CN-2 CN-1

X

Fig. 4.10 Circuit schematic of an N-bit CAP-DAC.

C j = 2 ·C j−1 ( j = 1,2, ..N −1). (4.9)

Capacitor C00 =C0 is added to make the total capacitance a power of two multiples of the
LSB capacitor (unit capacitor) C0, i.e.

C00 +
N−1

∑
i=0

Ci = 2NC0. (4.10)
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The self-calibration method makes use of the fact that for an ideal binary-weighted capacitor
array with no mismatch, the value of any individual capacitor in the array is equal to the sum
of all of the lower significant bit capacitors, i.e.

C j =C00 +
j−1

∑
i=0

Ci ( j = 1,2, ..N −1) (4.11)

Equivalently, if capacitor C j in the array of Fig. 4.10 is mismatched with its ideal value and
assuming that the LSB capacitors are ideal, then (4.11) is not exact. In other words, if ∆C j is
the deviation of capacitor C j from its ideal value, then the term

C j −

(
C00 +

j−1

∑
i=0

Ci

)
= ∆C j (4.12)

is its corresponding mismatch. Now assume it is desired to estimate the mismatch of
capacitors C j to C(N−1), assuming that capacitors C0 to C( j−1) are all mismatch-free1. The
self-calibration procedure occurs in a multi-phase process as follows:

Phase I: The reset switch S in Fig. 4.9 closes to bring node X to ground (Fig. 4.11(a)).
At the same time, the calibration logic sets D to

D =
{

d00,d0,d1, ...,d( j−1),d j, ...,d(N−2),d(N−1)

}
= {1,1,1, ...,1,0, ...,0,0}

(4.13)

It also sets the binary input signal driving the auxiliary CAP-DAC, Daux, to the mid-code
{0,0, ...,0,1}.

Phase II: The reset switch opens and the calibration logic changes D to (Fig. 4.11(b))

D =
{

d00,d0,d1, ...,d( j−1),d j, ...,d(N−2),d(N−1)

}
= {0,0,0, ...,0,1, ...,0,0} .

(4.14)

QX , the charge on node X , thus becomes

QX = αVREF ·

C j −

(
C00 +

j−1

∑
i=0

Ci

)= αVREF ·∆C j, (4.15)

where α is a constant factor that represents the charge sharing between the total capacitance of
the main CAP-DAC and that of the auxiliary CAP-DAC, that is α =CDAC,main/(CDAC,main +

1This assumption does not pose any restrictions as the calibration can start from the LSB capacitor.
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Fig. 4.11 Bottom-up self-calibration: (a) reset phase, (b) mismatch formation phase.

CDAC,aux), where CDAC,main and CDAC,aux are the total capacitance of the main DAC and the
auxiliary DAC, respectively. This gives rise to a voltage on node X equal to

VX =
αVREF ·∆C j

CX
, (4.16)

where CX is the total capacitance at node X .

Phase III: The calibration logic processes the output of the comparator. A negative
output implies that ∆C j < 0. The SAR logic of the calibration circuit then progressively
increments Daux in a successive-approximation manner, making the auxiliary CAP-DAC to
inject a charge into node X that is proportional to Daux. This sequence continues until the
output of the comparator becomes positive. The binary number Daux is then registered as
the mismatch of C j (normalized to the unit capacitor C0) and is stored in the memory. If the
comparator output is positive at the start of this sequence, then ∆C j > 0. The calibration
logic then decrements Daux until the comparator output becomes negative, and again Daux

is stored as the mismatch of C j. It is worth noting that, in order to mitigate the detrimental
impact of the thermal noise (e.g. kT/C noise), averaging should be performed by repeating
the procedure from phase I to III a sufficient number of times, and averaging the obtained
results. The next capacitor to be calibrated is C( j+1). Phases I to III are repeated in the same
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way. At the end of phase II, VX will be equal to

VX = αVREF ·
C( j+1)−

(
C00 +∑

j
i=0Ci

)
CX

= αVREF ·
∆C( j+1)+∆C j

CX
. (4.17)

As can be seen, this time VX contains the mismatch error for both C( j+1) and C j. Therefore,
at the end of phase III, Daux represents the sum of the mismatches of C j and C( j+1). By
denoting by e j the estimated mismatch error of capacitor C j, the mismatch error of C( j+1),
which is stored in the memory, can be expressed as

e( j+1) = Daux − e j. (4.18)

Similarly, for all of the subsequent capacitors, the mismatch error would be equal to the value
of Daux at the end of phase III minus the sum of the mismatch errors of all of the previously
calibrated capacitors. In other words, the binary number representing the mismatch of
capacitor CL is

eL = Daux −
L−1

∑
i= j

ei. (4.19)

One problem associated with the bottom-up self-calibration approach is the residual
voltage at node X at the end of phase III, due to the limited resolution of the calibration DAC
(i.e. a quantization error). This quantization error occurs during the mismatch estimation
of a particular capacitor and gets doubled for every subsequent capacitor under calibration,
resulting in an exponential growth of the error. The accumulated error contributed by all of
the capacitors that undergo calibration could then be large, unless a high resolution auxiliary
DAC is used. This constraints the number of capacitors whose mismatch is estimated by this
approach, using a finite resolution auxiliary DAC.

The top-down approach [152–156] is similar to the bottom-up approach. The main
difference is the direction of calibration, that is from the MSB capacitor to the LSB one.
Moreover, it assumes that the sum of the mismatch errors of all of the capacitors is zero, i.e.

∆C00 +
N−1

∑
i=0

∆Ci = 0. (4.20)
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In general, though, the assumption of (4.20) is not necessarily correct. In other words

∆C00 +
N−1

∑
i=0

∆Ci = ∆S, (4.21)

where ∆S is non-zero. This is however not problematic. To explain why, note that the
estimated mismatches of the capacitors based on the self-calibration method are all in units
of the LSB capacitor C00 (i.e. they are normalized to the value of C00). Now, if we define a
new value for the LSB capacitor as

C′
00 =C00 +

∆S
2N , (4.22)

then we can write

C j = 2 j ·C′
00 −

∆S
2N− j +∆C j. (4.23)

eL = Daux −
L−1

∑
i= j

ei. (4.24)

As can be seen in (4.23), this new definition of the LSB capacitance adds an extra term of
−∆S/2N− j to the capacitor mismatch. We now define a new value for the mismatch of the
capacitor based on this redefinition of the unit capacitance as

∆C′
j =− ∆S

2N− j +∆C j, (4.25)

which satisfies the assumption of (4.20), i.e.

∆C′
00 +

N−1

∑
i=0

∆C′
i (4.26)

=

(
∆C00 +

N−1

∑
i=0

∆Ci

)
+

(
N−1

∑
i=0

− ∆S
2N−i

)
(4.27)

= ∆S−∆S = 0. (4.28)

In practice, this essentially means that the estimated capacitor mismatches will eventually be
expressed in units of the new LSB capacitance C′

00.

Similarly to the bottom-up approach, the detection process occurs in a three-phase
procedure which starts from the MSB capacitor (CN−1) and proceeds as follows:
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Fig. 4.12 Bottom-up approach to calibrate the mismatch of capacitor 32C: (a) reset phase,
where X is precharged to VCM and D = {00111111}, (b) error generation phase, where the
reset switch is open and D changes to {01000000} (c) error correction phase, where the
auxiliary DAC is progressively increased until VX becomes zero and comparator output
changes .
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Phase I: With reference to Fig. 4.9, the reset switch S sets node VX to ground and the
calibration logic sets D to

D =
{

d00,d0,d1, ...,d(N−2),d(N−1)

}
= {1,1,1, ...,1,0} ,

(4.29)

and Daux to {0,0, ...,0,1}.

Phase II: S opens and the calibration logic sets D to

D =
{

d00,d0,d1, ...,d(N−2),d(N−1)

}
= {0,0,0, ...,0,1} .

(4.30)

Charge redistribution occurs, and charge QX becomes

QX = αVREF ·

C(N−1)−

(
C00 +

N−2

∑
i=0

Ci

) . (4.31)

From (4.20), it follows that
QX = αVREF ·2∆C(N−1), (4.32)

which gives rise to

VX =
αVREF ·2∆C(N−1)

CX
. (4.33)

Phase III: Depending on the output of the comparator, the calibration logic increments or
decrements Daux until the comparator output changes. According to (4.33), Daux is therefore
equivalent to twice the mismatch error of C(N−1), and it is stored in memory as e(N−1).
The mismatch of the next capacitor (the MSB−1 capacitor) is detected in the same way.
Following phase I and II and the charge distribution at the end of phase II, QX becomes

QX = αVREF ·

C(N−2)−

(
C00 +

N−3

∑
i=0

Ci

) (4.34)

= αVREF ·
(

2∆C(N−1)+∆C(N−2)

)
. (4.35)
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This follows

VX = αVREF ·
2∆C(N−2)+∆C(N−1)

CX
, (4.36)

resulting in

e(N−2) =
1
2

(
Daux − e(N−1)

)
. (4.37)

Following the same methodology, it can be shown that the mismatch error eL of the L-th
capacitor is equal to

eL =
1
2

(
Daux −

N−1

∑
i=L+1

ei

)
, (4.38)

where Daux is the output of the SAR logic of the calibration circuit at the end of phase III.
As evident from (4.38), the accumulated error of all previous capacitors halves every time
when it appears in the estimated mismatch error equation of the capacitor under calibration.
Therefore, the top-down approach does not present the issue of the exponentially growing
quantization error as severe as in the bottom-up approach.

As previously mentioned, self-calibration method can also be realized by using the
main CAP-DAC of the SAR ADC as the calibration DAC [101, 157]. This is a more
hardware-efficient solution. However, the accuracy of the mismatch detection is limited by
the resolution of the SAR ADC itself, i.e. one LSB. Therefore, the problem of accumulation
of the quantization error is even more severe here. For this reason, this approach is only
used to detect the mismatch of a few MSB capacitors, and it is only effective when this
mismatch is larger than 1 LSB. This type of deterministic self-calibration, which uses the
main CAP-DAC, is indeed what is employed in this work, and it operates jointly with the
proposed stochastic quantization.

4.2 Correction

4.2.1 Analog

One of the most straightforward approaches of correcting a capacitor value is trimming [69].
This is performed by progressively adding or removing smaller capacitors to the capacitor
which is being calibrated, until the total capacitance matches the desired value. Determining
when the desired value has been reached, and thus when trimming should be ended can be
accomplished in different ways. In [158], a reference capacitor (CREF) is used and the first
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calibrated capacitor C0 is trimmed until its value becomes equal to CREF. Next, CREF plus the
calibrated C0 are used as the new reference capacitor for the second capacitor to be calibrated.
This approach continues until all of the capacitors within the binary-weighted capacitor array
are calibrated.

When a self-calibration method is used, the calibration DAC itself is normally used to
correct the detected mismatches, and this is performed during the normal conversion of the
ADC as follows. Let us denote the estimated mismatch error associated to capacitor Ci with
ei (L ≤ i ≤ N − 1, with L being the number of LSB capacitors assumed to be ideal, and
whose errors are not estimated during the detection process), where ei is a binary number
stored in the memory. If, at some point during the normal operation of the ADC, the binary
code driving the main CAP-DAC is the code D =

{
d0,d1, ...,d(N−2),d(N−1)

}
, the calibration

logic outputs the code

Daux =
N−1

∑
i=L

diei (4.39)

to the auxiliary CAP-DAC. This causes a charge redistribution to occur, correcting the
mismatch of the capacitors which have contributed charge to the output of the CAP-DAC
up to this point of the conversion. The arithmetic operation of (4.39) can be implemented
in various ways [151], one of which is to store the individual capacitor errors (eL to e(N−1))
along with the permutation of the summations of these errors (e.g. eL + eL+2 + e(N−1)). This
would require a memory of length 2N−L. However, no adder is needed to perform the sum
operation in (4.39). Another way is to only store the individual capacitor errors eL to e(N−1)

in the memory, and perform the summation of (4.39) during the conversion. This, however,
requires an adder which needs to operate at least N times faster than the sampling rate of
the SAR ADC, which appears rather unpractical for high-speed ADCs. The third method
is to employ N−L different auxiliary CAP-DACs, one for the error correction (detection)
of each capacitor. In such way, neither a memory nor an adder is required. However, the
power consumption of the calibration CAP-DAC increases by a factor N−L. Moreover, the
realization of the detection process should also be modified accordingly.

4.2.2 Digital

When no extra DAC is used to inject a residue charge during the conversion (and in the analog
domain), the correction must be performed in the digital domain. This is basically done by
using the updated bit weights W̃ = {w̃0, w̃1, ..., w̃N−1} containing the mismatch errors of the
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capacitors and perform the arithmetic sum of

D̃out =
N−1

∑
i=0

Dout,iw̃i, (4.40)

where Dout and D̃out are the output of the ADC before and after correction, respectively. Since
the precision of the correction bit weights w̃0 ∼ w̃N−1 can be higher than that of the ADC,
the output of (4.40) needs to be truncated to the resolution of the ADC. This truncation limits
the accuracy of the DNL improvement of the digital correction to 1 LSB. In other words,
after the digital correction, the DNL values smaller than 1 LSB will remain unchanged.





Chapter 5

Stochastic Mismatch Calibration

In this chapter, we propose a new mismatch calibration method that we call stochastic
self-calibration. The detection of the mismatch error occurs in the analog domain, while
the correction is carried out in the digital domain. This calibration method is a foreground
approach, which should be activated at the start-up of the ADC (chip) and can be switched
off thereafter.

This mismatch calibration method is a combination of the self-calibration approach and a
stochastic approach that makes use of a noisy comparator to estimate a residue voltage [159].
The idea of stochastic quantization to estimate the mismatch of the CAP-DAC and/or to
reduce the quatization noise has been already used in the literature [160, 161]. Our proposed
method, however, differs from those in the following ways:

1. The stochastic approach is only employed when the residue voltage is lower than
1 LSB. Otherwise, the calibration starts with a deterministic self-calibration until the residue
voltage narrows to below 1 LSB, at which point the stochastic quantization is commenced.
The combination of these two calibration approaches substantially decreases the calibration
time when the mismatch is (much) larger than the LSB, compared to when only the stochastic
approach is adopted.

2. As explained later, in order to estimate the residue voltage using a noisy comparator,
the knowledge of the input-referred comparator noise power is required. In the previous
publications, this value was either measured off-chip post-fabrication, or assumed equal to
the simulated value. Here, we propose a new technique to compute this entirely on-chip.

Thanks to the stochastic nature of the proposed technique, a mismatch estimation with
a precision of better than 1 LSB can be achieved. Moreover, it should be mentioned that
this method can only be applied to binary-weighted capacitive arrays and will not work with
sub-radix DACs.
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To explain the stochastic self-calibration approach, we first need to have a short introduc-
tion on stochastic processes with a Gaussian distribution, which is related to the proposed
method.

5.1 Gaussian Error Function

A random variable X with a (Gaussian) normal distribution has a probability density function
(PDF) of the form

fX(x) =
1√

2πσ
exp

[
−(x−µ)2

2σ2

]
, (5.1)

where µ is the mean and σ is the standard deviation of the variable X . Given a real number
xa ∈ R, the probability that the random variable X ∼ N (µ,σ2) is less than or equal to xa is
given by

Pr {X ≤ xa}= Φ(xa) =
∫ xa

−∞

f (x)dx =
∫ xa

−∞

1√
2πσ

exp

[
−(x−µ)2

2σ2

]
dx, (5.2)

Φ(x) is called the cumulative distribution function (CDF).
By defining the error function, erf(x), as

erf(x) =
1√
2π

∫ x

0
exp
(
−y2/2

)
dy, (5.3)

(5.2) can be rewritten as

Φ(xa) =
1
2

[
1+ erf

(
xa +µ

σ

)]
. (5.4)

Now, if Φ(xa) is given, xa can be found by using the inverse error function, erf−1(x) as

xa = σerf−1(2Φ(xa)−1)+µ, (5.5)

provided that µ and σ are also known.

5.2 Theoretical Background of Stochastic Quantization

What follows is the concept underlying the proposed stochastic calibration, whereas its
interaction with the deterministic self-calibration, which operates jointly on it, is discussed
later in this chapter.
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Fig. 5.1 (a) Model of a comparator with its input-referred noise and offset. (b) Illustration of
the input distribution function on the Gaussian curve.

Fig. 5.1(a) illustrates a dynamic comparator with an input-referred rms noise and offset
σ and µ (expressed in volts), respectively, and an input voltage vin. At the rising edge
of the clock (Clk), a logic one is asserted at the comparator output if vin + σ + µ > 0,
while a logic zero is asserted otherwise. Assuming the noise of the comparator follows a
normal distribution, then the input-referred noise and offset can be described by a random
variable Xcomp with (Gaussian) normal distribution of mean µ and standard deviation σ ,
Xcomp ∼ N (µ,σ2). As such, for the sample space of output ones and zeros, the ratio
between the count of ones and the size of the sample space (i.e. the total number of runs, Φ)
corresponds to the probability that the comparator input signal is greater than Xcomp, i.e.

Φ(vin) = Pr
(
vin −Xcomp ≥ 0

)
(5.6)

Knowing that the cumulative distribution function (CDF) of a random variable X is defined
as FX(x) = P(X ≤ x), (5.6) corresponds to the CDF of a normal random variable Xcomp for
an input of vin. Therefore, Φ(vin) is given by (5.4) as

Φ(vin) =
1
2

[
1+ erf

(
vin +µ

σ

)]
. (5.7)

Therefore, if Φ(vin) is known, vin can be expressed as

ṽin = σ · erf−1[2Φ(vin)−1]−µ, (5.8)

Of course, the accuracy of this estimation depends on the size of the sample space, i.e. the
total number of comparisons. It also depends on the magnitude of the input voltage compared
to the input-referred noise of the comparator, i.e. vin/σ . Following (5.7), and for a sample
space of limited size, the smaller the value of input vin, the higher the accuracy of (5.8). For
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instance, for a sample space size of 1000, if vin = 3σ and µ = 0 then Φ(vin) = 0.9999. This
means that, on average, out of 10000 samples, only one of them indicates that the input of the
comparator is greater than vin. Therefore, for such an unlikely event, 1000 samples would
not be enough to obtain a meaningful statistical output. Since erf(1) ≃ 0.85, as a rule of
thumb and for a reasonably large sample space, the outcome of (5.8) can be assumed to be
accurate when

−1 <
vin +µ

σ
< 1, (5.9)

which is equivalent to 1

0.25 < Φ(vin)< 0.85. (5.10)

MATLAB simulations have been performed to assess the estimation error of vin by (5.8),
referred to as eest , versus various parameters through three different simulations, as follows.

Simulation 1: The first simulation entails the error of estimation of vin by (5.8) versus
the number of comparisons with σ being 1. The error term is defined as

e = max
{

Ṽin −Vin

}
−min

{
Ṽin −Vin

}
(5.11)

where Vin ∈ [−σ ,+σ ] and Ṽin is the corresponding value of Vin estimated by (5.8). Fig.
5.2 shows the result of this simulation. As expected, the error decreases as the number of
comparisons increases and as can be seen in the figure, the profile of the curve is a straight
line in a logarithmic scale with a slope of ∼−3.6σ dB/dec.
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Fig. 5.2 Error of estimation by (5.8) versus the number of comparisons.

1This inequality is only used to get a rough initial guess of how close the input voltage is to the input-referred
noise of the comparator. It is right that the variation of σ could change the bounds of this inequality, but this
would not affect the integrity of the calibration process and would only result in one more/less deterministic
step, as will be explained in the next section.
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Simulation 2: The next simulation aims to find out for what value of σ , the error of
estimation by (5.8) is minimum. For this, we set vin to 1.5 and µ to 0.5 and sweep σ . The
number of comparisons is 214 (the value we have chosen for our design). Fig. 5.3 shows the
result. As can be seen, the minimum error occurs at around σ = 1.
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Fig. 5.3 Error of estimation by (5.8) versus σ .

Simulation 3: The next simulation involves running the entire calibration algorithm
(modelled in MATLAB) for an ADC with the specification of our design, i.e. 10-bit resolution,
and finding out the SNDR degradation versus the number of comparisons (2c). For each
value of c, the calibration algorithm is run 100 times each with a different set of mismatches
for the CAP-DAC, and in the end we look at the minimum SNDR of the whole set. Fig. 5.4
shows the result of this simulation. As can be seen, the SNDR starts to degrade for c < 14,
and this is indeed the value we have chosen for our design.
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Fig. 5.4 Output SNDR of the ADC versus the number of comparisons.
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To sum up, for −σ < vin <+σ , the relationship between eest and the number of compar-
isons (Ncomp) is a straight line in a log-log scale with a slope of ≈−3.6σ dB/dec. Also, for
(normalized values of) vin = 1.5, µ = 0.5 and Ncomp = 214, eest is minimum at σ ≈ 1.

What is also evident from (5.8) is that, in order to estimate vin, the values µ and σ must
be known beforehand. Prior works have aimed at accomplishing this through post-fabrication
measurements [159]. This is, however, quite inefficient because, firstly, they cannot be fully
automated and, secondly, since µ and σ differ among devices, they demand that each IC be
separately calibrated, which is both time-consuming and costly from a large-scale production
perspective. Here, we propose a novel method to perform this completely on-chip as follows.
Eq. (5.8) can be seen as a formula with two unknowns: µ and σ . Therefore, µ and σ can
be found by using two different values of vin (vin1 and vin2) and solving a system of two
equations: µ +σ ·

[
erf−1(2Φ(vin1)−1)

]
= vin1

µ +σ ·
[
erf−1(2Φ(vin2)−1)

]
= vin2.

(5.12)

Solving for µ and σ results in
σ = vin1−vin2

erf−1(2Φ(vin1)−1)−erf−1(2Φ(vin2)−1)

µ = vin2erf−1(2Φ1(vin2)−1)−vin1erf−1(2Φ2(vin1)−1)
erf−1(2Φ(vin1)−1)−erf−1(2Φ(vin2)−1)

.

(5.13)

5.3 Calibration Process

According to (5.9), if an input voltage smaller than 1 LSB is to be estimated using a noisy
comparator, then σ should be larger than 1 LSB, provided that µ is negligible. Since
comparators in SAR ADCs are usually designed so as to exhibit an input-referred noise and
offset lower than 1 LSB, they do not satisfy such requirement. However, a possibility is to use
a second noisier comparator (hereinafter referred to as auxiliary comparator), specifically
designed for the mismatch calibration process with the proper characteristics. This auxiliary
comparator’s bandwidth can be more relaxed compared to that of the main comparator as the
calibration process can run at a lower speed.

The calibration process is split into two phases: the computation of µ and σ (which is
the necessary information for stochastic quantization) and the actual mismatch calibration
(inclusive of both the deterministic and stochastic methods).
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5.3.1 Computation of µ and σ

In order to satisfy the requirement of (5.9), the auxiliary comparator is designed to have an
input-referred noise of ∼1.5 LSB and offset of <0.5 LSB. The offset is lowered down by
means of a dedicated offset calibration circuit which operates before the mismatch calibration
process begins. The aim of this initial phase of the complete calibration process is to form
the two equations in (5.13), where vin1 and vin2 are two comparator inputs, and are set to
+LSB and 0, respectively2. These equations are then solved in the digital domain in order
to estimate the values of σ and µ and the results are subsequently stored in a memory. The
inverse error function erf−1(x) of (5.13) is also stored as a look-up table. Fig. 5.5 and Fig.
5.6 demonstrate the ASM chart and the data-path circuit of the µ/σ computation process,
respectively.

5.3.2 Mismatch Calibration

Let us consider the binary-scaled differential capacitor array shown in Fig. 5.7 as an example
so as to explain the flow of the proposed calibration process. Here, for both P and N sides,
the value of C00 is equal to that of C0, and C j = 2C j−1, where 1 ≤ j ≤ N − 1. Let us
assume that the mismatch of capacitor CP j is to be computed, and that the mismatch of
all smaller capacitors (also referred to as LSB capacitors), which consist of CP0 ∼CP( j−1)

and CN0 ∼ CN( j−1), is known (i.e. previously computed). The process evolves in a three-
phase procedure that combines a bottom-up deterministic self-calibration by using the main
CAP-DAC and a stochastic-based quantization as follows:

Phase I: The reset switches SrP and SrN close, thus precharging nodes XP and XN to a
common-mode voltage VCM. At the same time, the calibration logic sets DP to

DP =
{

dP00,dP0,dP1, ...,dP( j−1),dP j, ...,dP(N−1)

}
= {1,1,1, ...,1,0, ...,0}

(5.14)

and DN to all zeros (Fig. 5.8(a)).
Phase II: The reset switches open and the calibration logic changes DP to

DP =
{

dP00,dP0,dP1, ...,dP( j−1),dP j, ...,dP(N−1)

}
= {0,0,0, ...,0,1, ...,0} .

(5.15)

whereas DN remains unchanged (Fig. 5.8(b)). This causes voltage VXP to become

2These voltages can simply be generated by an appropriate control of the CAP-DAC through the SAR logic.
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Fig. 5.5 ASM chart for µ/σ estimation.

VXP =VCM +VREF ·
CP j −

(
CP00 +∑

j−1
i=0 CPi

)
Ctot

(5.16)

=VCM +VREF ·∆CP j/Ctot, (5.17)

where Ctot is the total capacitance of the capacitive array and VREF is equal to VREFP −VREFN.
The voltage at node VXN remains at VCM. Therefore, the differential voltage at the input of
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the comparator becomes

VX =VXP −VXN =VREF ·∆CP j/Ctot. (5.18)
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Fig. 5.8 CAP-DAC during the calibration process: (a) phase I, (b) phase II.

Phase III: With (5.18) being the input, the auxiliary comparator is activated to make
a large number of comparisons, and the output 1’s and 0’s are recorded by the calibration
unit in order to form the cumulative distribution function Φ(VX). According to (5.9) and
(5.10), if 0.25 < Φ(VX)< 0.85, then VX is smaller than 1 LSB, meaning that a deterministic
self-calibration method would not be able to estimate it. The calibration unit then, by skipping
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the deterministic approach and employing the stochastic one, uses the value of Φ(VX) and
arithmetically solves (5.8) using the values of σ and µ that were previously computed and
stored in memory to find VX .

On the other hand, if Φ(VX) > 0.85, the input of the comparator is positive, and thus
∆CP j > 0. The calibration then progressively increments DN (by skipping the first LSB bit
associated to CN00, i.e. DN00) using a successive approximation search along with a counter
E (an integer number referred to as the error counter) until Φ(VX) becomes less than 0.85
(deterministic self-calibration). At this point, the calibration uses the stochastic method
previously discussed to estimate VX . Let us denote the quantified binary number associated
with this residual voltage with xa. The binary number

EP j = E + xa −
j−1

∑
i=0

ePi (5.19)

would be thus the mismatch of CP j (normalized to the unit capacitance C0) and stored in the
memory. Here, ∑

j−1
i=0 ePi is the sum of the mismatch errors of all of the LSB capacitors.

Similarly, if Φ(VX) < 0.25, then VX would be negative, implying ∆CP j < 0. The cal-
ibration logic then increments DP, along with E, until Φ(VX) > 0.25 (deterministic self-
calibration). Once again, the calibration solves (5.8) to compute VX . This time, the value

EP j =−E + xa −
j−1

∑
i=0

ePi (5.20)

is stored in the memory as the mismatch of CP j. It is worth mentioning that the presence of
any parasitic capacitance on the top-plate of CAP-DAC only changes the value of Ctot in the
above equations and does not affect the validity of the calibration algorithm.

The mismatch correction is done as follows. Let us assume that BOUT = {b0,b1, ...,bN−1}
is a raw digital output of the ADC. Two error terms ∆EP and ∆EN are calculated as

∆EP =
N−1

∑
i=1

biEPi, ∆EN =
N−1

∑
i=1

biENi, (5.21)

where bi is the binary inversion of bit bi, and EPi and ENi are the estimated mismatches
corresponding to CPi and CNi, respectively [see (5.19) and (5.20)]. The final error is then
calculated as a sum of ∆EP and ∆EN that is added to the raw output of the ADC to produce
the calibrated output as

B̃OUT = BOUT +∆EP +∆EN . (5.22)
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Fig. 5.9 Circuit implementation of the auxiliary comparator used for the calibration.

which is then rounded off to the nearest integer3.

5.3.3 Auxiliary Comparator

As mentioned before, a dedicated comparator is needed for the proposed calibration. This
auxiliary comparator needs to have a large input-referred noise in the order of 1LSB but
does not need to be high speed, since the calibration can run at lower speeds as well.

Basic Operation

The comparator schematic diagram is shown in Fig. (5.9). As can be seen, it is composed of
a static pre-amplifier and a strongARM latch. Two sets of digitally-controlled binary-scaled
capacitors are also connected to the output nodes of the latch for offset calibration purposes
that will be explained later. The strongARM latch alone could act as the comparator, but
with the addition of a pre-amplifier the effects of kick-back noise and input-referred noise
are improved.

3Note that retaining the fractional bits of (5.22) would result in a marginally better ENOB, but at the expense
of more output bits than the nominal resolution of the ADC, which may add unnecessary hardware overhead.
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High Noise Implementation

As mentioned previously, the auxiliary comparator needs to have an input referred noise of
about 1.5LSB. The total input-referred noise of the comparator of Fig. 5.9 is given by

σ
2
n,in = σ

2
n,1 +σ

2
n,2/A2

v , (5.23)

where σn,1 and σn,2 are the input-referred noise of the pre-amplifier and the latch, respectively
and Av is the DC gain of the pre-amplifier. According to (5.23), to increase the input-referred
noise, we can decrease Av so as to amplify the effect of the latch noise at the input. The
pre-amplifer itself also contributes to the input noise. Having a small transconductance for
the input transistors M1 and M2 also increases the total input-referred noise. In the final
design, the input transistors are sized 4µm/30nm with a static current of 100µA.

Offset Cancellation

The high noise design of the auxiliary comparator automatically results in a high input offset
as well. The input-referred offset of the auxiliary comparator needs to be less than 0.5LSB ,
as discussed previously. The simulation results show that the standard deviation of the input
offset of the designed comparator about 30 times higher than this value. This means an offset
calibration circuit is required. There exist various offset cancellation methods [162–166].
Here, we do this by imbalancing the capacitance at nodes P and Q in Fig. 5.9 (Cvar+ and
Cvar−) through two variable capacitors and establishing various discharge rates at these nodes.
It can be shown that [120] during the amplification phase of the latching operation

VP −VQ =−
gm8,9

2
·
CP +CQ

CPCQ
(Vin1 −Vin2)t (5.24)

+
CP −CQ

CPCQ
ICMt, (5.25)

where CP and CQ are the total capacitance at nodes P and Q, respectively and ICM is common-
mode component of the current passing through M8 and M9. As can be seen, the term
(CP −CQ)/(CPCQ)ICMt introduces an offset, which can cancel the comparator’s random
offset.

To perform offset cancellation, the inputs of the comparator are shorted to ground
(common-mode voltage) and the values of Cvar+ and Cvar− are progressively changed until
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the comparator output changes sign 4. The variable capacitor is implemented using an
8-bit binary-scaled capacitor array, as shown in Fig. 5.10, that is controlled by a digital
binary input that comes from the calibration unit. The capacitors are implemented by MOS
transistors with the bulk, drain and source tied together (MOSCAP). The resolution of the
offset calibration is around 0.3LSB, which means that after the calibration the offset of the
comparator would be in the range of ±0.3LSB.

B7 B6 B2 B1 B0

x1x2x4x64x128

Fig. 5.10 Digitally controlled variable capacitor using MOSFET as a capacitor. This is for
the purpose of offset calibration of the auxiliary comparator.

5.4 Deterministic vs. Stochastic Calibration

In this section, we try to more clearly convey the advantage of using a hybrid deterministic-
stochastic calibration approach over the previously reported deterministic methods by com-
paring the performance of the behavioural models of 2 ADCs simulated in MATLAB: a
10-bit ADC and a 12-bit ADC, for the cases of deterministic calibration only and determin-
istic calibration with stochastic calibration. The model includes a conventional SAR ADC
with a differential binary-weighted CAP-DAC with one single redundant capacitor. The
bit-weights of the CAP-DAC are W1 = {1,2,4,8,16,32,64,64,128,256} for the 10-bit ADC
and W2 = {1,2,4,8,16,32,64,64,128,256,512,1024} for the 12-bit ADC.

A low frequency sinusoidal is considered as the input of the modelled ADCs, and random
mismatch (with Gaussian distribution) is introduced to the bit-weights of the CAD-DAC. In
order to show the effectiveness of different calibration methods (i.e. the deterministic versus
the proposed hybrid deterministic/stochastic), a large mismatch of 20% is considered for
the unit capacitor. Figures 5.11 and 5.12 here below show the histogram of the ENOB of a
1000-run simulation for three different scenarios:

Scenario 1: with no mismatch calibration;
Scenario 2: with deterministic mismatch calibration only;

4Each time the comparator makes multiple comparisons and the output with the larger number of occurrence
would be regarded as the actual output for the offset-calibration algorithm. This averaging cancels-out the
effect of random noise.
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Scenario 3: with the combination of deterministic and stochastic mismatch calibration
(which is the proposed work).

As can be observed from the figures, the deterministic mismatch calibration (scenario 2),
on average, is rather effective in improving the performance of the ADC compared to the
uncalibrated converter (scenario 1). However, the deterministic mismatch calibration still
results in an average ENOB of about 1.5-bit lower than the nominal resolution of the ADC.
This is due to the following impediments associated with the deterministic approach:

1. The accuracy of the mismatch calibration of each single capacitor of the CAP-DAC is
1 LSB, This means that, for instance, if for a specific scenario where only the MSB
capacitor is mismatched with an amount of 0.9 LSB, the calibration would not be able
to detect/correct it and the post-calibrated ADC would still have +0.9 LSB INL error.

2. The limited accuracy of the deterministic calibration would also result in the accumula-
tion of quantization error. This accumulation of errors may result in even larger overall
error than 1 LSB after the calibration.

Based on the developed numerical models, the average ENOB of the hybrid deterministic-
stochastic mismatch calibration is, on the other hand, only a fraction of a bit less than the
ideal resolution, as can be seen in the figures.
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Fig. 5.11 A comparison between deterministic and stochastic approaches for a 10b ADC.
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Fig. 5.12 A comparison between deterministic and stochastic approaches for a 12b ADC.

The residual error of the stochastic approach seen in the figure is due to the error
imposed by Eq. (5.8) as a result of the limited number of comparisons. As a matter of
fact, if the result of (5.8) could be computed precisely, the stochastic based method would
compute the exact bit-weights and there would be perfect reconstruction of the ADC output.
However, the inaccuracy in the computation of (5.8) would cause an error that would result
in imperfect reconstruction. This residual error of (5.8) is similar to the quantization error of
the deterministic approach but with a smaller magnitude (less than 1 LSB). The extend of
how small that error is depends on how accurate (5.8) can be computed, which also depends
on how many comparisons can be made.

It is also worth noting that the histogram spread of the deterministic calibration follows
a Gaussian curve, as can be seen in the figure. This, of course, makes sense as the output
SNDR of the ADC is directly affected by the linearity of the CAP-DAC which would also
follow a Gaussian curve for large number of runs. The histogram spread of the stochastic
calibration, on the other hand, is a bit different, as can be seen in the figures. This is because
for this case, the output SNDR is not limited by the linearity of the CAP-DAC but by the
accuracy of Eq. (5.8) which is a highly non-linear equation.

Fig. 5.11 shows that the stochastic quantization is able to theoretically improve the
average ENOB of the 10-b ADC by almost 1.2b.



Chapter 6

A 10-bit 85MS/s SAR ADC with
Stochastic Mismatch Calibration

The ADC architecture is shown in Fig. 6.1. It consists of a 10-bit SAR ADC core, the
calibration circuitry, the clock duty-cycle control and the SPI interface. The calibration
circuitry comprises the mismatch calibration digital unit and the auxiliary comparator along
with its offset calibration circuit. The block diagram of the SAR ADC core is shown in
Fig. 6.2. The differential input signal VINP/INN is sampled by two bootstrapped switches on
the top plate of the binary-weighted capacitive DAC, which is controlled by an asynchronous
SAR logic. The reset switches are only used during the calibration phase. Fig. 6.3 also
illustrates the timing diagram of the ADC during the three different operational phases.
During the offset calibration phase, where the auxiliary comparator’s offset is corrected,
the Reset signal is asserted, connecting the inputs of the comparator to the common-mode
voltage (VCMP = VCMN, as seen in the figure). The comparator’s offset is then cancelled
using two arrays of binary-weighted MOS capacitors connected to its output nodes and
controlled by signals BOS_N and BOS_N. Afterwards, the mismatch calibration phase starts
in a stochastic process which was explained earlier. The ADC then enters the normal
binary search conversion phase, where the Sample signal is asserted and the input voltage is
quantized.
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Fig. 6.2 Block digram of the SAR ADC core.

6.1 Capacitive DAC

Thanks to the proposed mismatch calibration, the total size of the capacitive DAC has
managed to go as low as 148 fF1, resulting in a unit capacitance C of only 280 aF. According
to Monte-Carlo simulations, the mismatch parameter for the PDK MOM capacitor of the
used technology (TSMC 28nm LP CMOS) is AC = 0.8 ∼ 0.9% ·

√
fF. This did not lead to a

considerable mismatch for the value of the unit cap chosen (the Monte-Carlo simulations
showed a maximum INL of ∼±1.1 LSB). Therefore, eight LSBs of intentional systematic
mismatch were also introduced on purpose to the DAC (+4 LSBs to the MSB capacitor and
-2 LSBs to the MSB-1 and MSB-2 capacitors) in order to demonstrate the effectiveness of the
proposed calibration approach. Split-capacitor topology is used to implement the CAP-DAC,
as shown in Fig. 6.42.

1The kT/C limit is lower than 148 fF for the resolution of the ADC. This value is chosen based on how much
dynamic range loss could have been tolerated. This loss is mainly due to the unwanted parasitic capacitance at
the top-plate of the CAP-DAC (e.g. metal routing parasitics, input capacitance of the compactor and top-plate
parasitic of the DAC itself).

2For the sake of simplicity, capacitor C00 is not shown in this figure.
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Fig. 6.4 A 9-bit binary-weighted split-capacitor array with redundancy at 8C.
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BL<8>

Top metal (M8)

Fig. 6.5 Inter-digitized layout structure of the split-capacitor array.

Redundancy is introduced by adding an additional capacitor of size 8C, which can
compensate for variation in VREF and/or settling errors with magnitude up to 32 LSB (≈ 60
mV). The CAP-DAC is laid-out using custom fringe capacitors in an inter-digitized manner,
as shown in Fig. 6.5. These capacitors are formed between the vertical metal structures. In
order to reduce parasitics due to coupling with the substrate, only metal layers 6 and 7 are
used. As can be seen in the figure, the unit capacitors are distributed along the structure. This
reduces the effect of process gradients in the horizontal direction. To reduce the length of the
top-plate connection (metal 8), thereby reducing its parasitic resistance and capacitance, both
circuit and layout techniques are adopted. At the circuit level, two LSB capacitors (C and
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2C) are connected to ground on one side of the split-capacitor array [167], as indicated in
Fig. 6.4, resulting in an MSB capacitance of 128C rather than 256C. In the layout, as shown
in Fig. 6.5, the LSB capacitor is made by the same number of fingers as the LSB+1 capacitor
(1 finger) by using only one layer of metal (M6) rather than two (M6 + M7). This effectively
halves the total number of fingers, hence reducing the length of the top metal connection.

6.2 SAR Control Logic
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Fig. 6.6 Structure of the SAR logic used for this work.

The topology of the SAR logic that is used for this work is shown in Fig. 6.6. The SAR
logic is implemented using transmission-gate-based D-flip-flops (DFFs). A programmable
delay block (chain of inverters controlled by SPI) is used in the monostable pulse generator
of Fig. 6.7, which introduces a delay, tdelay, that needs to be large enough to accommodate
the digital logic propagation delays, tlogic, and the CAP-DAC capacitors settling time, tDAC,
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i.e tdelay > tlogic + tDAC. The delay block is implemented as shown in Fig. 6.8 and the delay
can be controlled through a one-hot 6-bit signal via the SPI.
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Fig. 6.8 (a) Implementation of the delay block used in the monostable (b) implementation of
the multiplexer.

Timing operation of the asynchronous clock generator is depicted in Fig. 6.9. When
Sample (sampling signal of the ADC) goes high, the differential input analog signal is sampled
on the capacitive DAC, and when it goes low, the comparator makes the first comparison.
After a regeneration time, Treg, the outputs of the comparator CMP+ and CMP− diverge.
This would generate a Valid signal that triggers the top row of DFFs of the SAR logic. The
MSB bits BU < 10> and BL< 10> are determined (depending on the sign of comparator
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output) causing Start to go high. From then onward and throughout 10 more cycles, the
next bits (from MSB−1 to the LSB) are determined as follows (Fig. 6.9(b)). When the
comparator makes a successful comparison after its regeneration time, Valid goes high. This
would clock the first row of DFFs, thus resulting in a bit decision followed by the settling of
CAP-DAC top-plate voltage to a new value. Valid also triggers the monostable. This leads to
generation of a pulse with on-time equal to tdelay which resets the comparator for the next
bit-decision.

Sample
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Clkcomp

Valid
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Treg

Start
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BL<i>
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Fig. 6.9 Waveforms of the SAR logic (a) for the MSB bit, (b) for the bits MSB-1 to LSB.
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Fig. 6.10 Topology of the comparator used in this work.
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6.3 Comparator

Fig. 6.10 shows the schematic of the comparator used here. It is a double-tail comparator
based on the topology we discussed in section (3.3.1). Neutralization is used to decrease
the effect of differential kick-back noise. Large sizes for the input pairs are used to lower
the input-referred noise. The comparator achieves input-referred noise of ∼300 µVrms while
consuming ∼120 µW at the full clock rate of 85 MS/s. The input capacitance of the main
comparator is 23 fF. The auxiliary comparator, on the other hand, has an input capacitance of
only 3 fF, hence exerting minimal impact on the total top-plate parasitic capacitance of the
DAC. The average current consumption of the auxiliary comparator is ∼200 µA, which can
be neglected for it is turned off during the normal operation. The measurement results also
reveal input-referred noise of ∼1.75 mVrms, which is consistent with the simulation results.

6.4 Sampling Network

Fig. 6.11 depicts the input sampling network. The sampling switch is bootstrapped, similar
to the topology shown in Fig. 3.28. The purpose of the cross-coupled transistors MXP and
MXN is to neutralize the signal feed-through through the drain-source capacitance of MSP and
MSN , with a size half the size of those. A damping network of series resistor and capacitor is
added to damp-out the ringing of the input signal due to the inductive input path (especially
the input wirebonds).

6.5 Input Sampling Signal

Fig. 6.12 shows the implementation of the circuit for generating the sample signal for the
ADC. A differential clock should be provided to the clock slicer, where it is AC coupled by
the decoupling capacitors Cds. The common mode voltage of the clock is added by the self
bias circuit, as can be seen in the figure. The output clocks of the clock slicer are then fed
to a duty cycle control block composed of a chain of DFFs where a 7-bit select signal CLK
SEL<0:6> adjusts the duty cycle of the sample signal. The select signal comes from the SPI.



110 A 10-bit 85MS/s SAR ADC with Stochastic Mismatch Calibration

CDAC_P
MSP

VINP

D
a

m
p

in
g

 n
e

tw
o

rk

H

S

G
T

CDAC_NMSN

VINP

H

S

G
T

Sample

M1

H

CB

M7

M6
VDD

M2

M8

VDD

T

VDD
H

M5t M5

M4

M3

S

X

Y

G

W1=4μM

W2=5μM

W3=6μM

W4=3μM

W5=20μM

W5t=20μM

W6=3μM

W7=3μM

W8=1μM

WS=20μm

MXN

MXP
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6.6 Mismatch Calibration

The proposed stochastic mismatch calibration algorithm as well as the offset calibration of
the auxiliary comparator have been implemented using a standard digital synthesis flow in
the targeted 28-nm CMOS. The inverse error function erf−1(x) is digitally approximated by
a 1024×16 LUT, in a way that the approximated values are linearly spread over the curve.
That is, more points where the slope of erf−1() is higher and less points where the slope is
lower. The size and precision were determined using MATLAB simulation. For instance,
Fig. 6.13 shows the output SNDR versus the precision of the LUT. As can be seen, precision
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over 9 bits results in little improvement. We simply chose the next power of two greater than
9 (16) to ease the algorithm calculations. The same simulation was carried out with respect
to the number of rows.
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Fig. 6.13 Output SNDR of the ADC versus the precision of the LUT

The entire mismatch calibration circuit is fully implemented on-chip. The mismatch
calibration process starts by computing the mismatch from the LSB+1 capacitor all the way up
to the MSB capacitor for both the positive and the negative CAP-DACs, resulting in two sets
of fractional binary numbers EP =

{
eP,1,eP,2, ...,eP,N−1

}
and EN =

{
eN,1,eN,2, ...,eN,N−1

}
.

To estimate the input voltage of the comparator using the discussed CDF method, a total of
214 comparisons are carried out by the comparator.

It is worth mentioning that, since nodes XP and XN (i.e. the top-plates of positive and
negative CAP-DACs) are left floating during phase III of the calibration process (Section
5.3.2), any leakage current at these nodes may result in an unwanted charge loss. Given the
long duration of phase III (214 comparisons), even a small leakage current may result in a
considerable discharge of XP and XN , thus corrupting the voltage stored on these nodes. A
viable solution is to break phase III into multiple shorter sub-phases, each followed by a
reset, as explained in the following. Let us assume that the number of times the comparator
is clocked during phase III is k (k = 214 here). Hence, the cumulative distribution function
Φ(VX) would be equal to the total number of logic 1’s produced by the comparator divided
by k. Similarly, the comparator can be clocked l times, where l = k/c and c is an integer,
followed by a reset of nodes XP and XN , and this can be repeated c times. This would result
in c cumulative distribution functions Φ1(VX), Φ2(VX), ..., Φc(VX). Due to the stationary
nature of the comparator random noise, Φ(VX) can therefore be expressed as

Φ(VX) =
Φ1(VX)+ ...+Φc(VX)

c
. (6.1)
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This way, the time during which nodes XP and XN are left floating is shortened by a factor
c. This averaging operation is also beneficial in eliminating detrimental effects of other
noise sources, such as the kT/C sampled thermal noise of switches SrP and SrN (see Fig.
5.7). Here, l = 128 is chosen. This produces 128 CDF functions, which are averaged out
according to (6.1) to obtain the final CDF.

The whole calibration process takes about 5 ms using a 50 MHz clock. Once the
calibration is completed, the calibration data (EP and EN) are sent by SPI for storage. The
mismatch is corrected off-chip numerically (as it would be using a downstream DSP) the
way it was discussed in Section 5.3.2.

It is worth mentioning that, and as pointed out before, in order to correct the CAP-DAC
mismatch of a SAR ADC with split-capacitor architecture, two sets of correction (error)
numbers are required; one for the upper row (CU in Fig. 6.4) and one for the lower row (CL

in Fig. 6.4). This is because these two sets of capacitors are controlled independently by two
separate and independent binary numbers BU < 1 : 10 > and BL < 1 : 10 > in Fig. 6.4. For
this reason, it is not possible to correct the mismatch of a split-capacitor-based SAR ADC
post-measurement by forming a look-up table based on the DNL/INL curve of the ADC (i.e.
the foreground methods we discussed in Chapter 4.)

6.7 Design for Testability

To add testability features to the IC, a number of important node voltages were brought out
by the means of an LVDS circuit. These nodes include the sampling signal SAMPLE, the
clock of the main comparator CLKcomp, the valid signal Valid, the end of conversion signal
EoC, the output of the main comparator CMP+ and the output of the auxiliary comparator
CMPaux. The block diagram of the test-point circuit is shown in Fig. 6.14. The LVDS circuit
works with a supply voltage of 1.8V with an output swing of ±200mV . Test points can be
enabled/disabled locally through SPI in order to observe the point of interest.

6.8 Measurement Protocol

The measurement of the chip was performed in 4 different consecutive modes. The mode
selection is done through a two-bit binary number [S1,S0] that are set off-chip on the PCB
board.
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Fig. 6.14 Block digram of the test-point circuit.

• Mode 0: Characterization of the Auxiliary Comparator

The selection binary [S1,S0] is set to [0,0] and the test point corresponding to CMPaux

is enabled via SPI. At this mode, the positive and negative inputs of the auxiliary
comparator are connected to the positive and negative common-mode voltages VCMP

and VCMN, respectively. This makes the comparator’s input equal to Vin,aux =VCMP −
VCMN. The input-referred offset and noise of the auxiliary comparator are found
through the CDF method. This requires sweeping Vin,aux around the common-mode
voltage for a number of voltages and for each input voltage, the comparator makes a
large number of comparisons to collect the output ZERO’s and ONE’s. The CDF curve
can then be plotted, through which the offset and noise can be computed. The purpose
of this mode is especially to find the input-referred noise of the auxiliary comparator
to check if it is consistent with the requirement of (5.13).

• Mode 1: Offset Calibration of the Auxiliary Comparator

The selection binary [S1,S0] is set to [0,1] and the test point corresponding to CMPaux

is enabled via SPI. The positive and negative inputs of the auxiliary comparators are
both connected to the common-mode voltage VDD/2. The offset calibration can be
done either manually or automatically. The manual option is deliberately provided
in case the automatic calibration fails. A dedicated bit S_OS that is set by the SPI
determines which option is activated. If S_OS is zero, the calibration is performed
automatically and starts by setting the digital reset and providing the calibration clock
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CLKcalib. The results are stored in BOSP < 0 : 7 > and BOSN < 0 : 7 > and can be
checked by SPI. If S_OS is one, the calibration is carried out manually by setting
BOSP < 0 : 7 > and BOSN < 0 : 7 > through SPI.

• Mode 2: Mismatch Calibration

The selection binary [S1,S0] is set to [1,0]. This enables the mismatch calibration
unit. VCMP and VCMN should be both connected to the common-mode voltage as in
mode 1. By applying the calibration clock CLKcalib, the calibration process starts and
the mismatch of the capacitors, which are presented as binary numbers, are stored in
internal registers and can be observed via SPI. A five-bit binary Y < 0 : 4 >, which is
the state number of the state machine for the calibration algorithm, is also brought out
for testability purposes.

• Mode 3: Normal Conversion

The selection binary [S1,S0] is set to [1,1]. This disables all the offset and calibration
circuits. The calibration clock CLKcalib should be disconnected and a differential clock
should be provided through the PCB’s SMA connectors CLKP and CLKN.

6.9 Test Setup

6.9.1 Prototype Chip

The proposed SAR ADC with the stochastic mismatch calibration is fabricated in TSMC
28-nm LP CMOS and occupies a core area of 0.011 mm2, as shown in Fig. 6.15.

6.9.2 Printed Circuit Board (PCB)

The prototype chip was mounted on a PCB whereby the chip is directly wirebonded to landing
pads on the PCB. The PCB is shown in Fig. 6.16. The differential analog inputs and clocks,
as well as the single-ended calibration clock, are provided off-chip using SMA connectors. A
Teensy microcontroller is responsible for programming the SPI. Analog and digital resets are
made by push-bottoms, whereas the selection binary bits S0 and S1 are provided by jumpers
between the ground and VDD. The bias currents of the auxiliary comparator and the LVDS
circuit can be adjusted through a variable resistor.
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6.9.3 Measurement Setup

The block diagram of the test setup used to measure the performance of the prototype ADC is
shown in Fig. 6.17. The clock generator is a low-jitter sinewave signal generator. A low-noise
signal generator is also used to provide the input signal. Since the harmonic performance
of the signal generator is not sufficient for our 10-bit ADC, low-pass filters were used. The
11-bit (10 bits plus one bit of redundancy) output of the ADC is captured by a logic analyzer.
The output data of the logic analyzer is then merged and processed with the mismatch data
from the SPI in MATLAB on an external computer.
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Fig. 6.17 Test setup used to characterized the prototype SAR ADC.

6.10 Measurement Results

To characterise the prototype ADC and measure its static/dynamic performance, the steps
mentioned in section 6.8 were followed. Initially, the auxiliary comparator was characterised
using the CDF-base method discussed and the setup for mode 0. Fig. 6.18 shows the
measured CDF of the auxiliary comparator along with the best-fit theoretical CDF3. This
shows the auxiliary comparator has an input-referred noise power of 1.75 µVRMS, which is
very close to the value captured by simulation.

3The discrepancy between the ideal theoretical curve and the measured one is because of the limited size of
the sample space (1000 samples for each input voltage).
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Fig. 6.18 CDF plot of the auxiliary comparator.

Next, following the step for mode 1, the offset of the auxiliary comparator is calibrated.
Afterwards, the mismatch calibration is activated and the mismatch data is stored for the
correction of the ADC output. The correction is done in MATLAB.

Figure 6.19 shows the DNL and INL plots of the ADC before and after the calibration
is applied. Before the calibration, the maximum DNL and INL are equal to +1.1/-1.0 LSB
and +4.2/-3.6 LSB, respectively, whereas, after the calibration, their values are improved to
+0.7/-0.8 LSB and +0.7/-0.7 LSB, respectively.
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Fig. 6.19 Static performance of the ADC (a) before and (b) after calibration.

Fig. 6.20 shows the measured FFT spectrum of the ADC with a sampling frequency
of 85MS/s and 1.5MHz input, before and after the calibration. As can be seen, without
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calibration, the ADC achieves 62.2 SFDR and 57.6 SNDR. After calibration, the ADC’s
SFDR and SNDR are improved to 16.9dB and 11.7dB, respectively.
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Fig. 6.20 ADC output spectrum at a sampling frequency of 85MS/s and a 1.5MHz input (a)
before calibration, (b) after calibration.
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Fig. 6.21 ADC output spectrum at a sampling frequency of 85MS/s and Nyquist-rate input
(a) before calibration, (b) after calibration.

Fig. 6.21 shows the ADC’s output spectrum with the same sampling frequency for
85MS/s and an input frequency of 39.9MHz. The ADC achieves 60.5dB SFDR and 56.8dB
SNDR after calibration, which is an improvement of 14.9dB and 11.5dB for the SFDR and
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SNDR, respectively, compared to before calibration. The residual SFDR is mainly limited
by the nonlinearity of the input sampling switch while the residual SNDR is limited by the
thermal noise of the circuit, including the kT/C noise and the comparator noise.

Fig. 6.22 shows the dynamic performance of the ADC versus the input frequency for
with a sampling frequency of 85MS/s. Fig. 6.23 also shows the dynamic performance of the
ADC versus the sampling frequency for with a 1.5 MHz sine-wave input.
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At 85MS/s, the ADC consumes 582 µW from a 0.9 V supply whose breakdown is 267 µW
consumed by the SAR logic, 219 µW by the CAP-DACs and 121 µW by the comparator,
as illustrated in Fig. 6.24. The measurement of the average power was easily done by
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reading the current reported on the power supply. For the CAP-DAC current consumption,
the current reported on the power supply for the positive reference voltage (i.e. VREFP) was
used. However, the breakdown of power between the comparator and the SAR logic was
not possible during measurement since they shared the same supply. To accomplish the
breakdown showed on Fig. 6.24 the post-layout simulation results were used.

45.8%

SAR logic

Comparator

CAP-DAC

Fig. 6.24 ADC’s power consumption breakdown. As can be seen, the SAR logic dissipates
almost half the total power.

Table 6.1 Performance comparison with ADCs with mismatch calibration

[171] [172] [168] [173] This work

Technology (nm) 90 65 28 55 28
Supply voltage (V ) 1.2 1.2 1.1 3.3/1.2 0.9
Input swing (Vpp,d) 2 2.4 1.7 - 1.75

Resolution (bits) 12 12 12 16 10
Sampling rate (MS/s) 120 50 104 16 85

ENOB (bits) 10.39 10.9 10.2 12.7 9.14
Power (mW) 3.2 2.1 0.88 16.3 0.52

FoM (fJ/conv-step) 28 21.9 7.3 157 10.9
Calibration Off-chip Off-chip On-chip On-chip On-chip

The measured Walden figure-of-merit (FOM) [2] at Nyquist rate is 10.9 fJ/conv-step.
Table 6.1 compares the performance of our ADC with state-of-the-art mismatch-calibrated
SAR ADCs. Only [168] appears to have a bit better FoM, but our ADC offers a more effective
and accurate calibration technique. Table 6.2 draws comparison between a few reported 10b
single-channel ADCs with high sampling rate (> 50 MS/s) and this work. Fig. 6.25 also
shows the comparison with the state-of-the-art as published in ISSCC and VLSI between
1997 and 2018.
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Table 6.2 Performance comparison with 10b single-channel high-speed ADCs

[71] [86] [169] [170] This work

Technology (nm) 40 65 40 40 28
Supply voltage (V ) 1.2 1.2 1.2 0.9 0.9

Sampling rate (MS/s) 80 100 120 200 85
ENOB (bits) 8.71 9.51 8.83 9.2 9.14
Power (mW) - 1.13 1.12 0.818 0.52

FoM (fJ/conv-step) 63 15.5 20.5 6.95 10.9
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Fig. 6.25 Comparison of this work with the ADCs published in ISSCC and VLSI from 1997
until 2018.

6.11 Further Discussion on the Calibration Method

6.11.1 Area Overhead

As can be seen in Fig. 6.15, the area overhead of the calibration circuit is quite large in this
design. One may argue that this extra area could be instead spent on a larger CAP-DAC to
lower down the mismatch, so much so that a calibration might have not been even needed
in the first place. In this section, we analytically show for what resolution of the ADC the
choice of the proposed calibration scheme becomes economically feasible.
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This analysis depends on the total value of the CAP-DAC, which directly determines the
amount of mismatch as well as the kT/C sampling noise. Therefore, we only consider the
random mismatch and the kT/C noise as the factors that affect the ADC’s accuracy.

Two versions of the circuit are to be compared:

• The circuit without calibration with a CAP-DAC large enough to only cause a 0.5b
ENOB loss due to ransom mismatch and kT/C noise together. Table 6.3 reports on
the minimum required unit capacitor (Cu1) and the total CAP-DAC area (ADAC1) for
different ADC resolutions (N) for this version of the circuit.

• The circuit with calibration with a CAP-DAC large enough to result in a 0.4b ENOB
loss due to only kT/C noise along with the calibration circuit that would correct for the
random mismatch upto another 0.1 ENOB loss (making a total of 0.5b loss). Table
6.4 reports on the minimum required unit capacitor (Cu2) and the total CAP-DAC area
(ADAC2) for different ADC resolutions for this version.

The area estimation is based on the CAP-DAC area of the chip in Fig. 6.15, which is 100
µm×10 µm=1000 µm2, and rests on the fact that with the chosen inter-digitized lay-out
(Fig. 6.5), the area is proportional to the unit capacitor (the length of the fingers) and the
ADC resolution (the total number of the fingers) in a linear and exponential way, respectively,
and hence is given by

ADAC ≈ 10−3 mm2 · Cu

0.28 fF
· 2N

210 . (6.2)

In (6.2), 0.28 fF represents the value of the unit capacitor used to implement the CAP-DAC
for this work.

Table 6.3 Minimum unit capacitor for 0.5b ENOB loss due to random mismatch and kT/C
sampling noise.

N 9 10 11 12 13 14
Cu1 (fF) 0.14 0.32 0.6 1.7 3.1 16

ADAC1 (mm2) 2.5×10−4 1.1×10−3 4.3×10−3 2.4×10−2 8.9×10−2 3.4×10−1

Table 6.4 Minimum unit capacitor for 0.4b ENOB loss due to kT/C sampling noise only.

N 9 10 11 12 13 14
Cu2 (fF) 0.026 0.06 0.12 0.26 0.54 1.08

ADAC2 (mm2) 4.6×10−5 2.1×10−4 8.6×10−4 3.8×10−3 1.5×10−2 6.2×10−2
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The area estimation of the calibration circuit is a bit more complex. There are three
parameters that determine the precision of the calibration algorithm and its total area:

• ncomp: number of comparisons

• sLUT : size of the LUT for the inverse error function, i.e the number of rows

• prec: precision of the calculations, i.e. the number of binary fractional bits that are
considered for the numerical calculations of the calibration algorithm

Since prec determines the resolution of the constituent digital blocks of the synthesized cir-
cuit, and since the size of main digital circuits (adder, multiplier, divider, register, comparator,
etc) are proportional to their number of bits, we can surmise that the area of the calibration
circuit is linearly proportional to the parameter prec. The same goes for sLUT and the size of
the LUT. However, ncomp only determines the size of a counter that counts the number of
comparison, and therefore changing it would not affect the total size of the calibration circuit
much. For this reason, for our analysis to estimate the area we keep ncomp=214 as is. Our
area estimation of the calibration circuit will be based on the one implemented in the chip of
Fig. 6.15, which is also shown separately in Fig. 6.26. As can be seen, the total area is 0.01
mm2 where the LUT, the µ /σ estimation and the mismatch calibration occupies, respectively,
1/4, 1/8 and 5/8 of the area. The precision parameters used for this circuit are prec=12 and
sLUT =1024. Following this breakdown and the earlier discussion, the area of the calibration
circuit (Acalib) can be estimated as

Acalib ≈ 0.01 mm2 ·
[

1
4
· prec× sLUT

16×1024
+

prec
12

· 1
8
+

5
8
· prec

12

]
. (6.3)
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Fig. 6.26 Area breakdown of the calibration circuit.

The minimum area for a maximum of 0.5b ENOB loss (table 6.4) is worked out using a
MATLAB Monte-Carlo simulation, and is reported in table 6.5.

Table 6.5 Estimation of minimum area of the calibration circuit for 0.5b ENOB loss due to
mismatch and kT/C noise.

N 9 10 11 12 13 14
prec 4 4 5 6 7 8
sLUT 16 16 32 128 256 512

Acalib (mm2) 6.7×10−3 6.7×10−3 6.8×10−3 7.0×10−3 7.3×10−3 7.7×10−3

By adding the area of the calibration circuit from Table 6.5 with the area of the CAP-DAC
from Table 6.4 and comparing it with the CAP-DAC area from Table 6.3, we can see if using
the proposed calibration is area-wise justifiable. The result is shown in Table 6.6. As can be
seen, calibration is economically acceptable beyond 11 bits of resolution. For a 12b ADC, in
particular, employing the proposed calibration would reduce the area of the ADC core by
almost 50%4.

4This is based on the fact that the area of the CAP-DAC would be much larger that the rest of the ADC.
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Table 6.6 Area of the ADC with and without calibration.

N ADAC1 (mm2) ADAC2 +Acalib (mm2) Is calibration justifiable?
9 2.5×10−4 6.7×10−3 No

10 1.1×10−3 6.9×10−3 No
11 4.3×10−3 7.7×10−3 No
12 2.4×10−2 1.1×10−2 Yes
13 8.9×10−2 2.2×10−2 Yes
14 3.4×10−1 6.9×10−2 Yes

6.11.2 Effect of Voltage/Temperature Variations

The calibration estimates the random mismatches of the capacitors of the CAP-DAC and
presents this as a fractional number. The capacitors are made out of fringe capacitance
between different metals (Fig. 6.5). Unless the distance between these metals changes, the
initial value of the capacitance would stay unchanged. As such, any changes in the supply
voltage is not expected to affect the capacitor values, and thereby their mismatches. This
results was also confirmed during the measurements.

Simulation results show that the temperature variation changes the absolute value of the
MOM capacitors by an amount of about 1% in a temperature range of -40◦C to 125◦C. The
Monte-Carlo simulation also shows that the mismatch characteristic of a capacitor does not
change with temperature. This has been approved by measuring the standard deviation of the
mismatch, i.e. σ(∆C/C), and observe that it stays unchanged over temperature. This result
was expected as the random mismatch of an MOM capacitor is due to microscopic variations
of the edges of the metal plates making it. We thus conclude that temperature variations
change the absolute value of all the capacitors of the CAP-DAC by a certain percentage.

On the other hand, the estimated mismatches as fractional numbers represent the amount
of surplus charge a certain capacitor within the CAP-DAC contributes to the output compared
to its ideal value. As such, those estimated mismatches would still represent the mismatches of
the new CAP-DAC of the new temperature. Let us clarify this by a simple example of a 4-bit
ADC where the bit-weights of the CAP-DAC are W1 = {1,1,1.96,4.1,7.94}. The calibration
algorithm would then compute the mismatches as E1 = {0,0,−0.0025,+0.00625,−0.0025,},
where the mismatch of the third capacitor is, for instance, given by e = (1.96− 2)/(1+
1+ 1.96+ 4.1+ 7.96) = −0.0025 (Eq. (5.16)). Now, at a new temperature, the value
of the capacitors would all shift by a certain amount, say 10%. This would result in
a new set of capacitor values as W2 = {1.1,1.1,2.156,4.51,8.734}. However the mis-
match of the capacitors (normalized to the total capacitor) would still stay the same as
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e = (2.156−2.2)/(1.1+1.1+2.156+4.51+8.734) =−0.0025. In other words, both the
numerator and the denominator in (5.16) are multiplied by 1.1, leaving the normalized
mismatch unchanged.





Chapter 7

Interchannel Mismatch Calibration in
Time-Interleaved SAR ADCs

Time interleaving is a technique that allows multiple identical ADCs to operate in parallel
and process the data at a faster rate than the operating speed of each individual converter.
Fig. 7.1 depicts the block digram of a time-interleaved (TI) ADC . It is composed of M
channels 1 that operate in parallel, thereby increasing the overall speed of the ADC by a
factor M compared to the speed of one single sub-ADC. As such, the maximum speed of the
sub-ADCs is a limiting factor to the maximum achievable speed of the TI ADC. Another
limiting factor is the speed of the input sampler. It was proven in [174] that if the sampler is
the speed bottleneck, interleaving beyond 0.44(N +1) offers little improvement.

      ADC1

Vin CLK1

      ADCM

N

N

M
U

X

N
Bout

CLKM

Multi-phase 

clock 
CLK

fs

CLK1

CLKM

Fig. 7.1 Block digram of a TI ADC. It is composed of M channels in parallel, a multi-phase
clock generator and an output multiplexer.

1Throughout this chapter, M is referred to the number of channels (sub-ADCs) of the TI ADC. Also, N, fs,
Ts and fin are referred to the resolution of the TI ADC, the sampling rate, the sampling period and the maximum
input frequency, respectively.



130 Interchannel Mismatch Calibration in Time-Interleaved SAR ADCs

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

F
o

M
W

 (
fJ

/c
o

n
v
-s

te
p

)

Sampling frequency (Hz)

Linear region

Fig. 7.2 Single-channel ADCs presented at the ISSCC and VLSI from 1997 until 2018.

Time-interleaving can also improve the power efficiency. Walden figure of merit (FoMW)
[2], which is defined as

FoM =
P

2ENOB · fs
, (7.1)

where P is the power consumption, ENOB is the effective number of bits and fs is the Nyquist-
rate sampling frequency, is typically used to report on the energy efficiency of an ADC. As
long as the power consumption of a sub-ADC scales linearly with the sampling speed, the
equivalent time-interleaved ADC will always be less energy-efficient than its constituent
sub-ADCs because of the overhead associated with interleaving, e.g. the multi-phase clock
generation and distribution and the correction of interchannel mismatches. However, as the
conversion speed of a sub-ADC approaches the limits of the technology, the power-speed
trade-off becomes nonlinear. This can be seen in Fig. 7.2 which illustrates the plot of
FoM versus the maximum sampling frequency for all single-channel ADCs presented at
the International Solid State Circuits Conference (ISSCC) and at the Symposia on VLSI
Technology and Circuits (VLSI) from 1997 until 2018 [3]. Time-interleaving can improve the
power-efficiency when the power-speed curve of a single-channel ADC enters the nonlinear
region.
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Despite the aforementioned advantages of time-interleaving, it comes with some dis-
advantages as well, most importantly the mismatches between the sub-channels. These
mismatches include the gain and offset mismatch, the timing mismatch and the bandwidth
mismatch.

A. Offset Mismatch: Offset between the sub-channels introduces a fixed pattern noise
to the ADC. This pattern is independent of the input in the time domain while in the
frequency domain it causes peaks at frequencies of [175]

fo = k× fs

M
, (7.2)

where k is an integer. The SNR degradation due to the offset mismatch does not depend
on the input frequency or amplitude.

B. Gain Mismatch: Gain mismatch between channels stems from mismatches in refer-
ence voltages, transistors and passive components. For a TI SAR ADC in particular,
this gain mismatch mainly originates from the mismatch between the total capacitance
value of the CAP-DACs of different sub-ADCs. This gain mismatch causes spurs
(images) in the ADC output spectrum at frequencies of

fg =± fin + k× fs

M
. (7.3)

The SNR degradation due to the gain mismatch does not depend on the input frequency
but, unlike the offset mismatch, it does depend on the input amplitude (similar to an
amplitude modulation).

C. Timing Mismatch: In a TI ADC, the k-th channel ideally samples the input at times
iMTs + kTs. Due to systematic mismatches such as asymmetry of the sampling clock
distribution to different channels as well as non-systematic mismatches such as random
mismatch of the threshold voltage of the sampling switch, the actual sampling times
are skewed from the ideal ones by an amount of, say, ∆tk for the k-th channel. This
skew causes noise in the time domain, which is a function of the signal amplitude, just
like gain mismatch, but with a phase shift of 90◦ (similar to a phase modulation). In
the frequency domain, the timing skew of the sampling clock causes spurs in the ADC
output spectrum at frequencies of

ft =± fin + k× fs

M
, (7.4)

similar to gain mismatch. Yet, unlike gain mismatch, the SNR degrades as fin increases.
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D. Bandwidth Mismatch: The input S&H circuit of every channel can be modelled
by a linear filter with a certain frequency response [176]. Mismatch between the
bandwidth of this filter for different channels causes an ac gain mismatch and an ac
phase mismatch [175]. These gain and phase mismatches are different from the gain
and mismatch discussed previously in that they are a nonlinear function of the input
frequency fin.

7.1 Offset Mismatch Calibration

The approach used to estimate the offset mismatch error assumes that the mean value of
the output of each sub-ADC corresponds to its offset error [177]. Therefore, the simple
implementation of Fig. 7.3 can be used to cancel out the offset mismatch of all sub-ADCs.
Since offsets of the channels change slowly, a down-sampling can be performed, as can be
seen in the figure, merely to reduce the power consumption of this implementation [178]. In
extreme cases, e.g. when the input is a sine wave, the offset may not be distinguished from
the input signal, in which case, randomization can be employed[177].

      ADCiVin

Di
NN oi

Decimator

Accumulator

Fig. 7.3 Block diagram of the offset calibration for TI ADCs. This approach simply uses the
average of sub-ADCs’ output to estimate their offset.

7.2 Gain Mismatch Calibration

The idea for estimation of the gain mismatch error is that the variance of the output of each
sub-ADC corresponds to its gain error [179, 180]. Fig. 7.4 shows the implementation of the
gain error estimation. Again, to reduce the power dissipation, a down-sampling can also be
performed.

      ADCiVin

Di
NN gi

Decimator

Accumulator

( )2( )2

Fig. 7.4 Block diagram of the gain calibration for TI ADCs. This approach uses the variance
of sub-ADCs’ output to estimate their gain.
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Fig. 7.5 Gain mismatch detection using a frequency-domain method.

Ref. [181] proposed a frequency-domain approach to cancel the gain mismatch in a
(M=2)-channel TI ADC. This approach is based on the fact that gain mismatch between the
channels in a TI ADC causes spurs (images) in the ADC output spectrum at frequencies of

fg =± fin + k · fs

M
. (7.5)

Specifically, for a single input tone at f0, the gain mismatch causes an image at a certain
frequency, say fi. By applying a chopping at the ADC output, one could swap the frequencies
at which the main input signal and the gain-mismatch induced image signal occur. This
would cause the image to move to f0 and the input to move to fi. In the end, multiplying
the original ADC output and the chopped output would result in a dc component that is
proportional to the amount of the gain mismatch. A block diagram implementation of such a
technique is shown in Fig. 7.5. In this figure, y1 and y2 are the ADC outputs of channel one
and two, respectively.

7.3 Effect of Timing Mismatch

The SNR degradation due timing mismatch in a TI ADC can be analyzed both in the time
and the frequency domains. A frequency-domain analysis was discussed in [174] for two
channels. Here, we follow the same methodology to work out the effect of timing mismatch
for the more general case of a multi-channel interleaved ADC with M channels.

For an input signal x(t) with a bandwidth of fin, the output of an M-channel time-
interleaved ADC can be expressed as

y(t) =
M

∑
i=1

∞

∑
k=−∞

x
(

kT +
T
M

i
)
·δ
(

t − kT − T
M

i
)
, (7.6)
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where T = M/ fs is the sampling period of each channel. This means for a Nyquist-rate ADC,
T ≤ M/(2 fin). In the frequency domain, (7.6) becomes

Y ( f ) =
1
T

M

∑
i=1

X( f )∗

[
∞

∑
k=−∞

δ

(
f − k

T

)]
e− j2π

k
M i. (7.7)

Specifically the output of channel i is

Yi( f ) =
1
T

X( f )∗
∞

∑
k=−∞

δ

(
f − k

T

)
e− j2π

k
M i, (7.8)

the magnitude of which comprises copies of X( f ) with a frequency shift of 1/T = 2 fin/M, as
shown in Fig. 7.6. The aliasing seen in the figure will be cancelled out by the re-interleaving
multiplexer at the output, provided there is no timing mismatch between the channels.

+fin-fin

X(f)

0

+fin-fin

Yi(f)

0

f

f

1/T=2fin/M

Fig. 7.6 Magnitude of the output spectrum of one channel of an M-channel TI ADC.

An error delay, ∆Ti, in the sampling moment of a specific channel i is equivalent to
assuming that the input signal of the channel is delayed by that amount [i.e. xi(t)= x(t+∆Ti)].
Assuming that ∆Ti is small, then x(t +∆Ti) ≈ x(t)+∆Tidx/dt. This means a (persistent)
timing mismatch creates a magnitude error equal to ∆Tidx/dt in the time domain, and
j2π f ∆TiX( f ) in the frequency domain. Eq. (7.8) can thus be adjusted as

Yi( f ) =
1
T

[
X( f )+ j2π f ∆TiX( f )

]
∗

∞

∑
k=−∞

δ

(
f − k

T

)
e− j2π

k
M i, (7.9)

The error term in (7.9) can be rewritten as

Ei( f ) =
1
T
· j2π f ∆Ti

∞

∑
k=−∞

X
(

f − k
T

)
e− j2π

k
M i. (7.10)
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Fig. 7.7 Illustration of the timing mismatch error of one single channel as presented in (7.13)
for a random input signal with flat power spectral density.

By integrating (7.10) from − fin to + fin, the ‘noise’ power due to the timing mismatch
for the i-th channel can be found as

Pn,i =
∞

∑
k=−∞

∫ + fin

− fin

[
2π( f − k

T
)∆Ti

]2

SX

(
f − k

T

)
d f , (7.11)

where SX( f ) is the power spectral density of the input signal. Given that the input signal
is band-limited within ± fin, and that 1/T ≥ 2 fin/M to satisfy Nyquist condition, the term
SX( f − k/T ) in (7.11) can be excluded from the integration for k ≥ M and k ≤ M. Thus,
(7.11) becomes

Pn,i =
M−1

∑
k=−(M−1)

∫ + fin

− fin
[2π( f − k

T
)∆Ti]

2SX( f − k
T
)d f (7.12)

=
∫ + fin

− fin
(2π f ∆Ti)

2SX( f )d f

+2
M−1

∑
k=1

∫ + fin

− fin
[2π( f − k

T
)∆Ti]

2SX( f − k
T
)d f . (7.13)
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Now assuming SX( f ) is flat and equal to η/2, the terms in (7.13) for k = 0, ...,M − 1
would look like what is shown in Fig. 7.7, where the shaded area is the area for integration.
In order to compute the k-th integral in (7.13), we can write it as

Pk
n,i =

∫ + fin

− fin
[2π( f − k

T
)∆Ti]

2SX( f − k
T
)d f (7.14)

=
η

2

∫ + fin

− fin+k/T
[2π( f − k

T
)∆Ti]

2d f . (7.15)

By substituting 1/T by 2 fin/M in (7.15) and working out the integral, we obtain

Pk
n,i =

4
3

π
2
η∆T 2

i f 3
in

[
1− 6k

M
+

24k2

M2 − 32k3

M3

]
. (7.16)

Therefore,

Pn,i = Pn,i(0)+2
M−1

∑
k=1

Pn,i(k) (7.17)

=
4
3

π
2
η∆T 2

i f 3
in

1+2
M−1

∑
k=1

(
1− 6k

M
+

24k2

M2 − 32k3

M3

) (7.18)

=
4
3

Mπ
2
η∆T 2

i f 3
in. (7.19)

And, finally, the total timing mismatch ‘noise’ power for all the channels is

Pn =
M−1

∑
i=1

Pni (7.20)

=
4
3

Mπ
2
η

(
M−1

∑
i=1

∆T 2
i

)
f 3
in. (7.21)

The signal power is also equal to

Psig = M2
∫ + fin

− fin

η

2
(7.22)

= M2
η fin. (7.23)

From (7.21) and (7.23), the signal-to-noise ratio due to the timing mismatch (SNR∆T ) can be
computed as
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SNR∆t =
3M

4π2
(

∑
M−1
i=1 ∆T 2

i

)
f 2
in

. (7.24)

The term ∑
M−1
i=1 ∆T 2

i in (7.24) is worth noting. It is known that the sum of the squares of k
independent standard normal random variables has a so-called "chi-squared" distribution,
χ2(k), with k degrees of freedom. Fig. 7.8 depicts the cumulative distribution function (CDF)
of the chi-squared distribution for some different values of k. Now, assuming that the timing
errors ∆Tis are identical independent random variables with a Gaussian distribution of zero
mean and standard deviation σ2

∆T (i.e. ∆Ti = N (0,σ2
∆T )), then the term ∑

M−1
i=1 ∆T 2

i is a
random variable with a distribution of

M−1

∑
i=1

∆T 2
i ∼ σ

2
∆T χ

2(M−1). (7.25)
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Fig. 7.8 CDF of chi-squared distribution with k degrees of freedom.

Now, we can replace the term ∑
M−1
i=1 ∆T 2

i in (7.24) with its expected value, knowing that
the expected value of a chi-squared random variable with k degrees of freedom is equal to k,
that is

E

[
M−1

∑
i=1

∆T 2
i

]
= (M−1)σ2

∆T . (7.26)
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By substituting (7.26) into (7.24), we have

SNR∆t =

(
M

M−1

)(
3

4π2σ2
∆T f 2

in

)
. (7.27)

In the end, to compute the SNR degradation due to the timing mismatch in an N-bit ADC,
it should be considered along with the quantization noise. The signal-to-noise ratio due to an
N-bit quantization (SNRQ) is equal to

SNRQ = 3×22N−1. (7.28)

By merging (7.27) and (7.28), we can find the total SNR as

SNRtot = 1/

[
1

SNRQ
+

1
SNR∆t

]
(7.29)

= 1/
[

1
3×22N−1 +

4(M−1)
3M

π
2 f 2

inσ
2
∆T

]
. (7.30)

Fig. 7.9 depicts the maximum tolerable timing mismatch for a certain SNR degradation
for a 16-channel TI ADC for input frequency of fin = 720 MHz. For a 10-bit Nyquist-rate
( fs = 2 fin) TI ADC with a sampling frequency of fs = 1.4 GS/s with 16 channels, (7.30)
results in

σ∆T < 160 fs (7.31)

for a 1-dB SNR penalty. The 16-channel TI ADC with the aforementioned specifications is
outlined as the ”case-study” throughout this chapter2.

One method to deal with the timing skew error in interleaved ADCs is to employ a master
sampler that is followed by the sampling switches of the sub-ADCs [57, 182–184], as shown
in Fig. 7.10. The master sampling switch SM samples the input voltage on the capacitor CM,
as shown in the figure, at a sampling rate of fs and is driven by the master clock CLKM. If the
sub-ADCs’ sampling switches sample while the voltage on CM is stationary (i.e. when SM is
off), the skew in the sub-ADCs’ clocks would not cause any harm. However, there are a few
disadvantages associated with this method. First, the available acquisition time for the master
switch SM is half of that of the sub-ADC sampling switches, which makes the design of this
master switch challenging, especially for high resolution. Second, and more importantly,
upon the closing of the sub-ADC sampling switch, a charge sharing occurs between CM

2As mentioned in the introduction section, these are typical specifications for 5G applications.
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Fig. 7.9 Maximum tolerable timing error for different SNR penalties for a 16-channel TI
ADC at fin = 720 MHz.

and CSi, where CSi is the sampling capacitance of the i-th sub-ADC (which in the case of a
capacitive ADC CS ≈CDAC ). This charge sharing causes input signal attenuation and loss
of ADC dynamic range by almost a factor of α = CDAC/(CDAC +CM). To make α much
smaller than one, we should have CDAC ≪CM. This either makes CDAC very small or CM

very big. Due to the kT/C noise and random mismatch limitations, a small CDAC does not
easily lend itself to a high resolution ADC. A large CM also makes the design of the master
switch very challenging for high speed and/or high resolution.

Another way of dealing with timing error in TI ADCs is through calibration, which we
will discussed in detail in the subsequent sections.

7.4 Timing Mismatch Calibration Techniques

The timing mismatch calibration in interleaved ADCs is performed in two phases: detection
and correction. In the following, we discuss the various methods for timing error correction
and detection that have been proposed in the literature.

7.4.1 Detection

Foreground

Foreground calibration of the timing mismatch is performed upon the start-up of the chip
and before the actual ADC conversion kicks off.
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Fig. 7.10 Sampling using a master switch: (a) block diagram, (b) waveforms of the clocks
for the first three channels.

One way of performing a timing mismatch calibration in the foreground is to apply a
specific known input to the ADC through which the timing errors can be computed. In [185]
a linear ramp signal was proposed for this purpose. Ideally, if there is no timing error, the
sampling instances of the sub-ADCs would sample the input linear ramp in equal intervals,
which would result in linearly-spaced ADC outputs. A timing skew in any of the sampling
instances would cause these skewed outputs to deviate from the ideal ones. The timing error
for channel i would be equal to

∆Ti =
∆Di

m
, (7.32)

where ∆Di is the difference between the ideal output of the i-th sub-ADC and ‘skewed’ one,
while m is the slope of the input ramp, as shown in Fig. 7.11. In order to have accuracy of at
least 1 LSB, the minimum slope of the ramp signal has to be [185]

mmin =
LSB
∆T

, (7.33)

meaning that, in face of a maximum clock timing skew ∆T , the ramp should be steep enough
such that the ADC output deviates of at least 1 LSB from its nominal value. However, it can
be shown that such a minimum slope results in an input frequency that exceeds the ADC
Nyquist frequency, i.e. fs/2. In [47, 186], instead of a ramp, a sinusoidal input of frequency
fs was used. Although generating a sine signal is easier than a ramp, the problem of limited
input bandwidth of the ADC still persists. In [187], an input signal of the form

Vin(t) =
K−1

∑
i=0

Ai sin(2π fit +θi), (7.34)
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Fig. 7.11 Illustration of timing skew calibration with an input ramp.
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Fig. 7.12 Block diagram of a timing skew calibration technique using a pilot tone as the
input.

which consists of K frequency components, was used for the calibration. It was shown
in [187] that if fi ̸= k/2MTs for k = 0,1, ...,M/2, the mean value of the multiplication of
two adjacent sub-ADC outputs with the inputs of (7.34) is related with the timing skew. In
particular, this mean value indicates the polarity of the timing error ∆T between the two
channels, which is sufficient information to force ∆T to go to zero.

In [178], a pilot tone, Acos(2π fpt +θ), was used as the calibration signal, as shown in
Fig. 7.12. The digital output of the sub-ADC is then multiplied by a digital I/Q sinusoidal
signal with the same frequency as the input frequency fp.It was shown in [178] that the
relative timing mismatch (relative to some specific sub-ADC) of the i-th sub-ADC, ∆Ti, can
be computed as

∆Ti =
tan−1(Q/I)

2π fp
. (7.35)

The accuracy of (7.59) depends on the accuracy of the digital I/Q sinusoidal waveforms.
For high-speed ADCs, the I/Q signals are required to have a very low quantization noise,
something that might be difficult to achieve.
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Fig. 7.13 Sampling voltages of a 4-channel TI ADC.

One major problem associated with most of the foreground timing skew calibration,
where a specific input is applied to compute the timing error, and is usually overlooked, is the
fact that using this technique the offset error of a sub-ADC cannot be distinguished from its
timing error. This requires the sub-ADCs to have a very low offset and calls for an accurate
offset mismatch calibration circuit.

Another method for foreground detection of timing mismatch is using zero crossing
[188, 189]. For an input signal x(t) that is continuous in both time and amplitude, a zero
crossing occurs when x(t) changes its polarity (at the net of its dc value) from positive to
negative, and vice versa. For instance, in Fig. 7.13, which demonstrates the first sampling
instances of a 4-channel TI ADC, there is a zero crossing between x2[0] and x3[0], and another
between x2[1] and x3[1]. We also define a zero crossing of two consecutive sub-ADCs with
outputs xi[n] and xi+1[n] to be odd if xi[n] appears before the zero crossing and to be even
if xi+1[n] appears before the zero-crossing. It was shown in [188] that if x(t) is a sinusoidal
signal of frequency fi and if the ratio fi/ fs is irrational, the average difference between the
counts of odd zero crossings and even zero crossings is proportional to the timing mismatch.
A simple circuit implementation to detect even and odd zero crossings is shown in Fig.
7.14(a). As already mentioned, by using this technique, the offset of the comparators cannot
be distinguished from the timing error. To tackle this issue, [188] proposed the circuit shown
in Fig. 7.14.(b), where two high-pass filters are added after the comparators to reduce the
effect of the offset.

Background

A number of techniques for background calibration of timing error in interleaved ADCs have
been proposed in the literature. Ref. [181] used a frequency-domain method. This is similar
to the gain mismatch calibration method discussed in Section 7.2, since it is also based on
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Fig. 7.14 Zero-crossing detector: (a) simple implementation, (b) with high-pass filters to
reduce the effect of the comparator offset.
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Fig. 7.15 Timing mismatch calibration in the frequency domain.

the fact that the timing mismatch between channels causes spurs at the same frequencies as
the gain mismatch does, but with a 90◦ phase shift. As such, the circuit implementation is
very similar to Fig. 7.5 with an addition of a 90◦ phase-shift all-pass filter, as shown in Fig.
7.15. The realization of the 90◦ phase-shift is non-trivial. Ref. [181] simply used H(z) = z−1,
which only has a 90◦ phase shift at f = fs/4.

One category of the background timing-skew detection techniques is based on finding a
timing function of the sub-ADCs outputs that is proportional to their corresponding timing
error. One such timing function is simply the mean square difference between the outputs of
two adjacent sub-ADCs, that is

D∆T = E
[
(yi+1[k]− yi[k])2

]
, (7.36)

where yi[k] is the k-th output of the i-th channel. It was claimed in [179] that this timing
function is proportional to the timing error between the two channels. Intuitively speaking, if
the timing interval between the two adjacent sub-ADCs is shorter than Ts = 1/ fs, the signal
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will change less on average between the samples compared to when this interval is greater
than Ts. This claim is only true if the input signal is band limited to the Nyquist frequency,
that is fs/2. In [190] a similar timing function was proposed, that is

D∆T = E
[
(yi+1[k]− yi[k])2

]
−E

[
(yi+2[k]− yi+1[k])2

]
, (7.37)

and it was shown that
D∆T ≈−4∆T

dRin

dτ
, (7.38)

where dRin/dτ is the derivative of the autocorrelation of the input at the sampling moment.
The average of the product of the outputs of two interleaved channels can also be used as
a measure of the timing mismatch. This approach, however, fails for some specific cases,
e.g. when the input is a single tone sinusoidal signal. In order to get around this problem,
[174] proposed to use two products: the product of an odd sample of channel 1 and the next
even sample of channel 2, and the product of an even sample of channel 1 and the next odd
sample of channel 2. It was shown in [174] that the difference between the two products’
average is proportional to the timing error ∆T , that is

D∆T = E
[
y1[k]y2[k−1]− y1[k−1]y2[k−1]

]
(7.39)

≈−2∆T
dRin

dτ
. (7.40)

The block diagram implementation of this technique is illustrated in Fig. 7.16.

      

Vin CLK

      Sub-ADC2

Sub-ADC1

CLK

DΔT

y1

z
-1

z-1

y2

++
+

-

Fig. 7.16 Timing mismatch detection topology based on the output difference of two consec-
utive channels.

These type of timing functions all rely on one channel to be ideal and detect the timing
mismatch of other channels with respect to that ideal channel. This would make the realization
of timing function excessively complex as the number of channels increases, since the
channels need to be calibrated one by one with making the previous calibrated channels as
the reference channel. Also this technique is only possible when the number of channels is a
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power of two. One solution to this difficulty in timing function realization is to employ an
extra reference sub-ADC with respect to which all other sub-ADCs would be calibrated. For
instance, [191] used a reference ADC which is identical to the sub-ADCs and its sampling
time aligns with that of the sub-ADCs. With no timing error, the outputs of the reference
ADC and the corresponding aligned sub-ADC are equal. Otherwise, the remaining code
difference can be used as a measure of the timing mismatch for calibrating. In general, if the
sampling frequency of the reference ADC is set to fs/L and

gcd(L,M) = 1, (7.41)

where gcd(n,m) denotes the greatest common divisor of integers n and m, the sampling
instance of the reference ADC coincides with that of a specific sub-ADC once for every L ·M
samples. One issue associated with this simple timing mismatch calibration method is the
limited accuracy of the timing error detection. The minimum detectable timing error is equal
to

∆Tmin = LSB/m, (7.42)

where m is the slope of the input voltage. For instance, for our case-study ADC with a
full-scale range of 1V , LSB is roughly 1 mV and m can be as high as 0.5×2π fin ≈ 2.3 V/ns
( fin = 720 MHz). This results in ∆Tmin ≈ 430 fs which is larger than the requirement of
(7.31). Using the same technique, [192] achieved a finer resolution of timing error detection
by dithering the sampling time of the reference ADC in a pseudorandom manner.

In [193], the cross-correlation between the outputs of the sub-ADCs and the output
of the reference ADC at the coincidence of the sampling times (which is basically the
autocorrelation of the output signal of each channel) was proposed as a measure of the timing
mismatch. It was proved in [193] that for an interleaved ADC, the maximum output SNR is
achieved when the autocorrelation of the output of the individual sub-ADCs is maximized, as
graphically illustrated in Fig. 7.17. Therefore, to minimize the timing error of one sub-ADC,
the cross-correlation of the output of that sub-ADC with the output of the reference ADC
should be maximized. The block digram implementation of this technique is shown in Fig.
7.18. One advantage of this technique is that, since the cross-correlation between the outputs
of sub-ADC and reference ADC does not require the transfer functions of both ADCs to be
identical, it is possible to reduce the resolution of the reference ADC to only one bit (i.e. a
single comparator). Moreover, the reference ADC can operate at a lower conversion rate,
thus at a lower power consumption, compared to the sub-ADCs. It was mentioned in [194]
that this timing mismatch calibration technique does not easily lend itself to high-resolution
converters if the input source impedance is finite. Another drawback of this cross-correlation-



146 Interchannel Mismatch Calibration in Time-Interleaved SAR ADCs

based timing mismatch calibration is that it is heavily reliant on the statistics of the input,
and requires the input signal to be wide-band stationary (WBS). This is not necessarily the
case for all communication channels.

ΔT1

ΔT2

ΔT

R(ΔT)

ΔT1ΔT20

Input signal Sampling 

instant

Ideal Sampling

Sampling with 

Timing Error ΔT1 

Sampling with 

Timing Error ΔT2 

Fig. 7.17 Illustration of the autocorrelation as a function of timing mismatch.
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      Sub-ADCi

CLK VDL
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Fig. 7.18 Timing mismatch detection by using the cross-correlation between the sub-ADC
and the reference ADC.

A category of the timing mismatch calibration techniques that does not depend on the
statistics of the input signal uses a derivative of the input voltage to correct the timing error.
The core idea of all derivative-based calibration algorithms is that, given an input signal x(t),
if the sampled values are skewed by ∆T from the ideal sampling timestamps kT (k = 0,1, ...),
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Fig. 7.19 A derivation-based timing mismatch detection scheme along with the LMS imple-
mentation.

the sampled signal values can be modeled by the first-order Taylor expansion approximation
as

x(kT +∆T )≈ x(kT )+∆T
dx
dt

∣∣∣∣
t=kT

. (7.43)

The error term thus would be equal to

e = D ·∆T, (7.44)

where D is the derivative of the input signal at the sampling moment. If D is known, the term
e ·D can be used to force ∆T to zero, e.g. via an LMS algorithm. For this technique to work,
the sole knowledge of the sign of D would be sufficient (i.e. a sign-sign LMS algorithm).
In order to obtain (the sign of) D, [195] proposed to use an auxiliary ADC with a different
input RC time constant, as shown in Fig. 7.19. As can be seen, the bandwidth of the auxiliary
ADC is intentionally lowered by putting a series resistance of value ∆R in the signal path in
order to delay the input signal. By working out the transfer function from the input to the
difference of the output voltages of the auxiliary and reference ADCs, it can be shown that
the output is proportional to the derivative of the input [195].

Ref. [196] proposed a way of determining the derivative of the input without using an
auxiliary ADC, by claiming that the slope

mavg =
y[k+1]− y[k−1]

2Ts
(7.45)

has the same sign as the ideal slope at the sampling instant, as shown in Fig. 7.20. Again,
this is only valid as long as the input is within the Nyquist limit. The block diagram
implementation of such a method is shown in Fig. 7.21. Here, the subtraction of the outputs
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Fig. 7.20 Sign determination of the input derivative at the sampling moment.
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Fig. 7.21 Modification of Fig. 7.19 with the delayed auxiliary ADC replaced by two sub-
ADCs and the LSM circuit by a counter.

of sub-ADCi+1 and sub-ADCi−1 produces an output whose sign is the same as that of the
input signal derivative at the sampling instant of sub-ADCi.

In [180], a product of the sub-ADCs output with its derivative is used for the timing error
detection as follows. Each sub-ADC output D̃out can be seen as a sum of an ideal signal
Dout and an error term ∆Dout: D̃out = Dout +∆Dout. Therefore, the average product of the
sub-ADC output with the derivative of the input signal at the sampling time is given by

D̃out ×
dDout

dt
≈ (Dout +∆Dout)×

dDout

dt
(7.46)

= Dout ×
dDout

dt
+∆Dout ×

dDout

dt
. (7.47)

Assuming the input signal is random, it would be orthogonal to its derivative, making the first
term in (7.68) zero. Also, according to (7.44), ∆Dout ≈ ∆T ×dDout/dt. Hence, the timing
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error can be estimated by

∆T = D̃out ×
dDout

dt
/

(
dDout

dt

)2

. (7.48)

7.4.2 Correction

Analog

Analog correction of the timing error is usually performed using a variable-delay line (VDL).
A VDL is basically a digital-to-time converter (DTC) that delays the input with a certain
amount that is controlled by a digital code. To adjust the skewed clock in a TI ADC, the
clock signal inputs the VDL, is delayed, and outputs as the actual sampling signal that
drives the sampling switch. For a TI ADC, a VDL is usually implemented as an inverter
with a digitally-controlled variable capacitor (varactor) in a binary-weighted structure at its
output [195, 193, 189]. To achieve fine delay resolution for the VDL, the capacitors are
implemented using MOSFETs, as shown in Fig. 7.22.(a). In [174], a degenerated inverter
is used where the degeneration resistor can be adjusted by a variable resistor, as shown in
Fig. 7.22.(b). The drawbacks of the analog correction include the feedback-induced stability
hazard, jitter introduced by the VDL itself and the long convergence time.

dk-1 dk-2 d1 d0

W2W2
k-2

W2
k-1

W

CLK CLKd

(a)
VDD

CLK

VDD

VREFP

VREFN

CLKd

(b)

Fig. 7.22 Circuit implementation of a variable-delay line, using (a) binary-weighted
MOSCAPs, (b) a resistive DAC.



150 Interchannel Mismatch Calibration in Time-Interleaved SAR ADCs

Digital

Correction in the digital domain can be performed by means of a finite impulse-response
(FIR) filter as follows. Let us assume that a sub-ADC is sampled with a sampling timing
error of τ seconds, as shown in Fig. 7.23. The output y[n] can be represented, in the z-domain
as

Z
{

x[n− τ/T ]
}
= z−τ/T X(z), (7.49)

and in the Fourier domain as

F
{

x[n− τ/T ]
}
= e− jωτ/T X(e jω). (7.50)

where T is the sampling interval.

z-τ/T
x(n) y(n)=x(n-τ/T)

Fig. 7.23 An ideal discrete-time delay system.

In (7.50), the term e− jωτ/T (denoted by Hd) is a ‘filter’ which represents the delay of the
input signal. The impulse response of this filter is readily given by

hd[n] =
sin
[
π · (n− τ/T )

]
π · (n− τ/T )

= sinc(n− τ/T ). (7.51)

When τ/T is an integer, the impulse response of (7.51) reduces to a single impulse at n = τ .
For noninteger values of τ , however, the impulse response is an infinitely long, shifted
and sampled version of the sinc function, as shown in Fig. 7.24, and usually referred to
as fractional delay filter. For a practical implementation, this impulse response needs
to be approximated by a causal response of finite order. The order of the approximate
filter determines the accuracy towards which the timing correction can be performed. The
approximation can be done through the least-square-mean (LMS) method or by using
Lagrange interpolation [197]. For an M-channel TI ADC, where there are M different delay
filters, the correction of the input signal becomes a reconstruction problem of M-order filter
bank [198–200]. It is well known that if the average sampling period is shorter than the signal
Nyquist rate, a ‘perfect’ reconstruction to within the limits of the quantizers is possible.

The digital-domain correction takes advantage of the technology scaling but the complex
digital reconstruction filter for error acquisition limits the signal bandwidth.



7.5 Proposed Calibration Technique 151

Sample index

Amplitude

0-1-2-3-4-5 1 2 3 4 5

Integer delay

Non-integer 

delay

Fig. 7.24 Impulse response of an ideal delay filter with integer and non-integer delay.

7.5 Proposed Calibration Technique

We propose a calibration technique that is not only able to effectively calibrate the timing
mismatches between different channels of an interleaved ADC but also, and at the same time,
to correct for their offset mismatches. The proposed calibration method is foreground and
detects the mismatches in the digital domain.

Fig. 7.25 shows a block diagram of the proposed calibration method for an N-bit M-
channel TI ADC. It is composed of the calibration unit, M k-bit digital-to-time converters
(DTC) and a dedicated signal generator which is used only during the calibration. The
function of the DTCs is to delay the input mismatched clock of each channel by an amount
proportional to its k-bit digital input coming from the calibration circuit. Assuming that the
DTC is linear and with a resolution of ∆Td , the maximum covered time range (i.e. the DTC
full-scale) is

∆TDTC,FS = 2k
∆Td. (7.52)

The idea is to have a periodic input signal Vin(t) whose frequency fin is chosen such that,
in the absence of timing mismatch (i.e. the sampling clocks CLK1 to CLKM are progressively
phase-shifted by precisely 2π/M rad), the voltage sampled by all of the channels would
be the same (denoted with V0 from now onward). In the presence of timing mismatch, on
the contrary, the voltage samples would differ from V0. By denoting with B0 the binary
representation of V0 (i.e. the ADCs output code for Vin =V0), the calibration unit then checks
the N-bit outputs of the ADCs sequentially, and if a given output is not equal to B0, it adjusts
the next sampling instance through the k-bit DTC until the output becomes B0. The accuracy
of such a calibration protocol obviously depends on the resolution of the DTCs (∆Td).
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Fig. 7.25 Block diagram of an M-channel TI ADC along with the extra circuitry for the
proposed timing-skew calibration.
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Fig. 7.26 Triangle signal for the purpose of calibration with period of Ts.
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Fig. 7.27 Timing diagram for a 4-channel TI ADC with a triangle signal of period 3Ts as the
input.

An example of a signal which can be employed for such a purpose is a triangle waveform
with a period Tin = 1/ fs, as shown in Fig. 7.26. The sampling moments coincide with the
zero-crossings of the triangle signal (V0 = 0) in an orderly manner. For the ADC to be able
to process such a high-frequency input signal, its bandwidth needs to be at least equal to
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fs, which may not represent a practical solution. Therefore, a signal with a lower frequency
would be preferred. It can be proven that if Tin = lTs, where l is an arbitrary integer and

gcd(l,M) = 1, (7.53)

then the triangle signal would still have the desired property. The most straightforward choice
is l = M−1, for which the sampling instant of each channel coincides with the zero-crossing
once in every M samples in a periodic pattern. Fig. 7.27 illustrates this for the specific case of
M = 4. The calibration unit then needs to only look at every M-th ADC output of a specific
channel to check whether it is equal to B0; if not, it will adjust the sampling clock through
the corresponding DTC until the ADC output converges to B0. In practice, however, this
turns out to be a bit more complicated since the ADC may not change its output away from
the nominal value B0 even in the presence of timing mismatch errors which are (much) larger
than the requirement imposed by (7.31). To understand this, let us assume the triangle input
calibration signal has a peak-to-peak voltage amplitude of Vin,pp and period Tin = (M−1)/ fs,
thus a slope of

m =
Vin,pp

Tin/2
=

2Vin,pp fs

M−1
(7.54)

The output of an N-bit ADC with a full-scale of VFS (hence, the LSB amplitude VLSB =

VFS/2N) and whose input is such a triangle signal would not change for a time duration of

∆TLSB =VLSB/m =
VFS

Vin,pp
· (M−1)

2N+1 fs
(7.55)

For our case-study ADC (N = 10, M = 15, fs = 1.4 GHz, VFS = 1 V) and for Vin,pp = 0.5 V,
∆TLSB would be equal to 10.4 ps, which is far larger than the requirement set by (7.31).
In other words, this means that, in the worst case, any timing mismatch below this value
would not be detected (thus corrected) by the calibration algorithm. This issue can be readily
solved as follows. Let us assume that ±∆Tmax is the maximum timing-skew that can happen
due to both systematic and non-systematic timing mismatches. According to (7.54), this is
equivalent to

∆Vmax = m ·∆Tmax =
∆Tmax

Tin/2
Vin,pp. (7.56)

This maximum timing mismatch should be known beforehand as it determines the full-scale
range of the DTC’s (∆TDTC,FS) which are employed during the calibration to properly skew
the clock. Let us also denote with ∆Dmax the quantized ADC output which corresponds to
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∆Vmax, i.e:

∆Dmax = Q(∆Vmax/VLSB). (7.57)

Clearly, if ∆Tmax < ∆TLSB, ∆Dmax = 0. Now, what the calibration unit must do to calibrate
the timing mismatch of the i-th channel of the TI ADC is to progressively increase the delay
of CLKi by means of DTCi so that the output of ADCi changes by ∆Dmax +1 compared to
its initial value. If this is done for all of the sub-ADCs, the sampling clocks will be equally
distanced within an error of ∆Td (the resolution of the DTC).
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Fig. 7.28 Timing-skew calibration: (a) without offset, (b) with offset, where ∆T and ∆Vos are
the timing and offset error, respectively.

Fig. 7.28(a) illustrates this for the case of ∆Dmax = 2. As can be seen, the sampling signal
is ∆T seconds skewed from its ideal point which results in an ADC output of −1 before
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calibration. The calibration algorithm progressively delays the sampling clock until the ADC
output becomes ∆Dmax +1 =+3. The amount of the time shift incurred by the clock in this
example is 22∆Td .

Thus far, it has been assumed that the offset of all of the channels was zero. The offset of
a channel is also translated into timing mismatch through the voltage-to-time conversion via
the ramp slope, that is

∆Tos = ∆Vos/m, (7.58)

where ∆Vos and ∆Tos are the offset voltage and the offset-induced timing mismatch3. However,
this equivalent timing error caused by the offset cannot be ultimately distinguished from
the actual timing mismatch by the proposed calibration method. This is illustrated in Fig.
7.28(b), which shows the case where an offset mismatch of ∆Vos is present. As can be seen,
this is exactly equivalent to the case of Fig. 7.28(a) even though no timing mismatch exists.

In order to solve this issue, a triangle signal with frequency of fin = fs/(M + 1) is
employed. Such frequency still satisfies the above-mentioned requirements, thus ensuring the
proper operation of the proposed calibration method. However, the TI-ADC channels now
sample the zero-crossing points on both the rising and falling edges of the triangle signal,
as shown in Fig. 7.29 for the specific case of M = 3. The key point here is that a timing
mismatch would cause an error δVe,r in the sampled voltage on the rising edge which has
opposite sign compared to the error δVe, f in the sampled voltage on the falling edge, i.e.
δVe,r > 0 and δVe, f < 0 in the case the real clock timestamp is lagging the ideal one. On the
contrary, the offset error would cause a sampling voltage error with the same sign on both
edges (i.e. both δVe,r and δVe, f > 0 in the presence of ∆VOS > 0), thus making it possible for
the calibration algorithm to distinguish between them. In other terms, the difference xcalib

between the ADC output associated with a sample on the rising edge of the ramp (henceforth
called Dr) and a sample on the falling edge of the ramp (D f ) is free from the ADC offset and
retains only the timing error information. This variable is used as an input of the calibration
unit

Fig. 7.30 illustrates this new sampling scenario in the absence of offset mismatch, and
for a timing mismatch ∆T = nd∆Td , with nd being an integer (in the example, the real
clock timestamp occurs nd times the DTC resolution step earlier than the nominal one).
Under the assumption that the rising slope is exactly the opposite of the falling slope,
Dr =−D f (with respect to the mid-code). The calibration would then delay the clock with
steps of ∆Td by progressively incrementing the DTC input code by 1, while reading out

3Note that ∆Tos is not the timing mismatch of the actual clock, but the equivalent timing mismatch which
would cause the output of an offset-free ADC to be ∆Vos.
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Fig. 7.29 Timing diagram for a 3-channel TI ADC with a triangle signal of period 4Ts as the
input.

xcalib = Dr −D f = 2Dr. Whenever the clock experiences enough delay such that the sampled
ADC input crosses a quantization level (Dr + 1 in the case of rising slope of the triangle
waveform and D f −1 for the falling slope), xcalib increments by 2 (or decrements by 2 in the
case the real clock lags the ideal one). As before, the calibration stops when Dr = ∆Dmax +1
or, equivalently, when

xcalib = 2∆Dmax +2. (7.59)

Assuming that ∆TLSB = nLSB∆Td is the minimum time shift of the clock such that the ADC
output changes by 1 (nLSB is an integer), the initial value of Dr would be

Dr0 = ⌊ −nd

nLSB
⌋, (7.60)

where ⌊y⌋ is the floor function of the real number y. As the calibration proceeds in the manner
described above, a sequence of linearly progressive numbers would then appear at the ADC
output, as shown in Fig. 7.30(b). Here, n0 is given by

n0 ≡ nd mod nLSB, (7.61)

meaning nd is the modulo of n0 divided by nLSB.

On the other hand, in face of an input-referred offset of ∆V , as shown in Fig. 7.31(a), a
different pattern of numbers appears at Dr and D f . This is illustrated in Fig. 7.31(b), where

nos = ⌊m∆V
∆Td

⌋. (7.62)
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Fig. 7.30 (a) Position of the clock signal on the triangle waveform for a timing error of ∆T
and zero offset error. (b) the sequence of numbers appearing at the ADC output during the
calibration
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and an offset error of ∆V . (b) the sequence of numbers appearing at the ADC output during
the calibration
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As can be observed, an asymmetry is formed in the sequences of Dr and D f (i.e. Dr is
not -D f any more) by an amount of nos, which then results in a sequence of 2∆Dmax with
length 2nos at xcalib. Therefore, the calibration unit should keep track of the last sequence of
numbers before it terminates the calibration and register its length as 2nos, and the total length
of the last two sequences of numbers as nLSB, as depicted in Fig. 7.31(b). The calibration
process ends when xcalib becomes equal to 2∆Dmax +1. The calibration unit also keeps track
of the number of DTC steps from the beginning until the end, which represents the total
length of the entire sequence xcalib, hereinafter referred to as ndt . The timing and offset
mismatch can then be computed as:

∆T = ∆Dmax ·nLSB − (ndt −nos) (7.63)

∆V =±nos/nLSB. (7.64)

The sign of ∆V depends on which variable, whether Dr or D f , becomes ∆Dmax first, which is
also recorded.

In practice, the ideal clock may not be exactly aligned with the zero-crossings of the input
triangle waveform upon the start of calibration. This, however, only represents a constant
offset common to all of the TI-ADC channels and would therefore not affect the validity of
equations (7.63) and (7.64).

7.6 Nonidealities

7.6.1 Triangle Signal Non-Linearity

The triangle signal can be generated by an integrator with a square wave input signal of
frequency fin = fs/(M + 1). Thus far, it has been assumed that the positive slope of the
triangle signal is equal to the negative slope. It has been also assumed that the positive and
negative edges are straight lines. Yet, this requirement should only be fulfilled for a voltage
range of ∆Vmax = m ·∆Tmax. Since ∆Tmax, which is the maximum timing skew of the ADC, is
usually in the order of tens of ps, ∆Vmax is only few millivolts. It is then reasonable to assume
that the triangle waveform is linear within this small voltage range. Moreover, given that
the triangle waveform generated by the integrator is more linear around its mid-range (i.e.
zero-crossings), it is convenient, before the calibration is asserted, to internally time-shift
the waveform using coarse time steps, thus allowing the sampling clock timestamps to occur
within such linear voltage region.
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In high-speed ADCs, the design of a linear integrator, which demands a high-gain op-amp,
is not trivial, especially in the case of low supply voltage (e.g. below 1 V). A full-scale
sinusoidal signal can represent a more practical alternative to the triangle waveform, since
it approximates well a ramp within the very small voltage range of calibration (compared
to the full-scale range of the ADC). Of course, such an approximation introduces an error,
which is however much smaller compared to the requirement set by (7.31) for the proposed
case-study.

7.6.2 Capacitive DAC and DTC Non-Linearity

So far, we have assumed that the capacitive DAC (CAP-DAC) of each SAR-ADC channel is
perfectly linear (i.e. zero DNL and INL). Unfortunately, and unlike with the offset mismatch,
the non-linearity of the CAP-DAC, which directly impacts on the whole ADC non-linearity,
cannot be distinguished from the timing mismatch errors. Quantitatively, a DAC INL error
of ∆VINL is equivalent to a timing mismatch of

∆T = ∆VINL/m, (7.65)

or equivalently

σ∆T = σINL/m, (7.66)

which however cannot be calibrated by the proposed timing skew calibration algorithm, as
explained in the following. Per our earlier discussion, the sampling clock timestamps occur
around the zero-crossings of the input signal (either a triangle wave or a sinewave) during
the calibration. This corresponds to the ADC’s mid-scale, which is also the level at which
the CAP-DAC exhibits greater nonlinearity (i.e. maximum INL). The standard deviation of
this maximum INL is given by

σINL =
1
2

σ0

√
2N −1 VLSB, (7.67)

where σ0 is the relative standard deviation of an LSB capacitor of the CAP-DAC [i.e.
σ(∆Cu/Cu)].

By substituting (7.67) into (7.66), we have
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σ∆T =
1
2

σ0

√
2N −1 VLSB/m =

1
2

σ0

√
2N −1 ∆TLSB. (7.68)

In advanced technologies, σ0 is well below 1% for a 1 fF MOM capacitor. Let us now
assume that, for the case-study ADC, the binary DAC has a unity capacitor of 1 fF; this
would result in an equivalent timing mismatch [due to the INL error derived in (7.68)] of
about 1.2 ps, which largely violates (7.31).

The proposed solution to overcome such an issue relies on the fact that only a small
portion of the whole ADC full-scale range (and hence of the full-scale of the DAC) is
exercised during the calibration. Indeed, assuming that

∆Tmax = α∆TLSB, (7.69)

an ADC with a resolution of log2(α +1)-bit would be enough to cover the maximum timing
error for the calibration. ∆Tmax is in order of a few tens of picoseconds, which makes α

less than 4 for our case-study ADC, where ∆TLSB = 7.6 ps. Therefore, a 3-bit ADC would
be sufficient for the timing-skew calibration to be functional. The advantage here is that
the equivalent timing error induced by the ADC INL error [as per (7.68)] would now be
significantly lower. For the case of N = 3, the equivalent timing mismatch would only be
equal to 100 fs, which satisfies the minimum timing requirement of (7.31). From a practical
perspective, it is straightforward to convert a 10-bit SAR ADC to a 3-bit one, which is
achieved by involving in the conversion only the 3 LSB bits of the DAC, while freezing the
rest of the bits 4.

The DTC nonlinearity manifests itself in the form of an accumulated output error when
its input is swept by the calibration unit. If the DTC has a maximum peak-to-peak INL of
INLDTC,max, the maximum output error of the DTC cannot be larger than INLDTC,max. This
essentially means that the timing mismatch is going to be calibrated by a timing resolution of
∆Td + INLDTC,max rather than ∆Td

The noise of the ADC plus the noise of the waveform generator can be easily cancelled
out by averaging. This means the input waveform can be read out by the ADC multiple times
and then averaged out.

4The same can be done for a pipelined SAR ADC by freezing the first stages and the first few bits of the last
stage.
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7.7 Simulation Results

The proposed calibration technique has been verified through simulations by using algo-
rithmic models for both the calibration unit and the constituent blocks of the core ADC.
The outlined modeling case scenario is a 1.4 GS/s 10-bit 15-channel5 time-interleaved ADC.
The sub-ADCs are modeled as conventional SAR ADC converters with binary-weighted
capacitive DAC. A random mismatch normal distribution is added to the DAC capacitors,
assuming a standard deviation of the unit capacitance (i.e. the LSB capacitor) equal to 1% of
its nominal value Cu. The standard deviation of the other capacitors (i.e. from the LSB+1 up
to the MSB) increases proportionally to the square root of their value, i.e. σC = 1% ·

√
C ·Cu.

Timing and offset mismatches are modeled as normally-distributed random variables
with standard deviation of 5 ps and 2 LSB, respectively. A noise of 1 mVRMS is also added to
the input so as to account for the input-referred noise of the ADC, the kT/C noise and the
noise of the input signal. The input signal used for calibration is a sinewave with a frequency
of fin = fs/16. The resolution of the calibration, which is basically the resolution of the DTC,
is set to 100 fs. Random mismatch is also added to the DTC, in such a way that the maximum
peak-to-peak INL is about 1LSB (i.e. 100 fs). A ηavg=256× averaging is performed to
diminish the effect of random noise. Finally, a 100-run Monte-Carlo simulation is executed
based on the aforementioned characteristics and we report worse-case results in terms of the
output SNDR. The results are depicted in Fig. 7.32 for an input frequency of fin=689 MHz.
As can be seen, the SFDR improves by 24 dB, thus proving the effectiveness of the proposed
calibration technique. It is straightforward to demonstrate that the total calibration takes
about nLSB · (∆Dmax +1) ·M ·navg ·Ts seconds, where nLSB = ∆TLSB/∆Td and ∆TLSB, ∆Dmax

and ∆Td are given by (7.55), (7.57) and (7.52), respectively. For the analyzed test-case, this
time duration is below 1 ms.

5As mentioned in Sec.7.5, the calibration signal period Tin should be M+1 times the sampling clock period
[i.e. fin = fs/(M+1)]. Since a frequency division by a factor of 2 is practically straightforward, the interleaving
factor M was set to 15.
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Chapter 8

Conclusion

8.1 Thesis Contribution

This dissertation has investigated design, as well as precision techniques for designing high
performance SAR ADCs, specifically for 5G applications. This requires an ADC with a
resolution of 10 bits and an operation speed of 1 ∼ 2GS/s. This thesis makes three main
contributions to this field.

Firstly, an extensive investigation of the literature on design techniques for high-performance
SAR A/D converters. This includes the most important calibration techniques to correct the
mismatch of the capacitors of the capacitive DAC in a SAR ADC, as well as to detect-correct
the timing mismatch in a TI ADC.

Secondly, proposed a fully-automated mismatch calibration method that is able to pre-
cisely compute the mismatch of the capacitors used in the CAP-DAC of a SAR ADC. The
mismatch calibration allowed us to scale down the unit capacitor to as low as 280aF for a
9-bit DAC, thereby saving energy and boosting speed. To validate the proposed idea, a 10-bit
asynchronous SAR ADC was fabricated in 28-nm CMOS. Measurement results showed an
ENOB of 9.14 bit at a sampling rate of 85 MS/s, resulting in a Walden FoM of 10.9fJ/c-s.
The mismatch calibration proved effective by improving the INL, the SFDR and the SNDR
by 6.4 LSB, 14.9dB and 11.5dB, respectively.

Thirdly, proposed a foreground timing-skew calibration technique for interleaved SAR
ADCs. The proposed method is also able to compute the offset mismatch between the
sub-ADCs as well. A MATLAB model for a 10-bit 85MS/s SAR ADC was used to build a
15-channel TI ADC in order to validate the proposed timing mismatch calibration technique.
The simulation results showed that this calibration technique effectively suppressed the spurs
due to both the timing mismatch and offset mismatch and improved the SFDR by 11.6dB.
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8.2 Future Work

Although the prototype single-channel SAR ADC achieved good power efficiency, it was
intended only to concept-prove the proposed mismatch calibration method. Further improve-
ments can be made by employing the architectural techniques presented in section 2.3.7 , as
well as the design techniques discussed in chapter 3. This would help to improve the power
efficiency of our design even further and enable us to achieve higher speeds. This potentially
includes one or more of the following approaches:

• Employing a two-step ADC architecture in order to increase the maximum achievable
speed;

• Using a more power-saving switching scheme to further reduce the power dissipation
of the CAP-DAC;

• Reducing the delay of a conversion by using the techniques presented in section 3.2.3.
This ultimately means using the technique shown in Fig. 3.20 that would guarantee
reaching the maximum achievable speed for a single-channel SAR ADC. However, a
dedicated control logic and probably a complex switching network for the CAP-DAC
are required in order to adopt this mismatch calibration method.

Moreover, the proposed timing-skew calibration technique has only been tested by
simulation. For future work, the 15-channel Ti ADC can be fully designed and implemented
for fabrication in order to verify the effectiveness of the proposed timing mismatch calibration
method by measurements. This requires the following

• Designing a multi-phase clock generator for 15 channels;

• Designing a saw-tooth signal generator;

• Design, implement, layout and verification of the TI ADC;

• RTL synthesize and verify the proposed timing mismatch calibration method along
with the actual Ti ADC.

This prototype ADC would then be a good candidate for the specifications of 5G.
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Verilog Code for the Mismatch
Calibration

1 module mismatch_calib_RTL(Resetn , CLK , Enable , CMP , BUU , BDD , SW_res , ...

2 E3UU_1 , E3UU_2 ,E4UU_1 , E4UU_2 , E5UU_1 , E5UU_2 , E6UU_1 , E6UU_2 , E7UU_1 , E7UU_2 , ...

3 E8UU_1 , E8UU_2 , E9UU_1 , E9UU_2 , E10UU_1 , E10UU_2 , ...

4 E3DD_1 , E3DD_2 , E4DD_1 , E4DD_2 , E5DD_1 , E5DD_2 , E6DD_1 , E6DD_2 , E7DD_1 , E7DD_2 ,...

5 E8DD_1 , E8DD_2 , E9DD_1 , E9DD_2 , E10DD_1 , E10DD_2 , SIGMA_1 ,SIGMA_2 , MU_1 , MU_2 , YYY , KK);

6
7 parameter n = 11, logn = 4;

8 parameter r = 4; // number of bits for maximum mismatch of the cap array (in unit of LSB)

9 parameter prec = 12; // prec of the mismatch correction numbers (Mem values) = (prec+r - 4) * 4mV

10
11 parameter s_LUT = 1024, logs_LUT = 10; // number of rows for LUT

12 parameter q = 16, logq = 4;// number of columns for LUT

13
14 parameter nr = 8, log_nr = 3; // SW_reset

15
16 // ******** mu/sigma ********//

17 parameter p1 = 128, logp1 = 7; // #runs1

18 parameter m1 = 128, logm1 = 7; // #averaging1

19
20 // ******** calibration ********//

21 parameter p2 = 128, logp2 = 7; // #runs2

22 parameter m2 = 128, logm2 = 7; // #averaging2

23
24 parameter ones2_85 =108, ones2_15 = 20; // ones2_85 = 0.85*p2 rounded DOWN , ones2_15 = 0.15*p2 rounded UP

25
26 parameter n_SPI = 16;

27
28 input Resetn , CLK , Enable;

29 input CMP;

30 wire [n-1:0] BU , BD;

31 output [n-1:0] BUU , BDD;

32 output SW_res;

33 wire [prec+r-1:0] E3U , E4U , E5U , E6U , E7U , E8U , E9U , E10U , E3D , E4D , E5D , E6D , E7D , E8D , E9D , E10D;

34 output [7:0] E3UU_1 , E3UU_2 ,E4UU_1 , E4UU_2 , E5UU_1 , E5UU_2 , E6UU_1 , E6UU_2 ,...

35 E7UU_1 , E7UU_2 , E8UU_1 , E8UU_2 , E9UU_1 , E9UU_2 , E10UU_1 , E10UU_2;

36 output [7:0] E3DD_1 , E3DD_2 , E4DD_1 , E4DD_2 , E5DD_1 , E5DD_2 , E6DD_1 , E6DD_2 ,...

37 E7DD_1 , E7DD_2 , E8DD_1 , E8DD_2 , E9DD_1 , E9DD_2 , E10DD_1 , E10DD_2;

38 wire signed [q-1:0] sigma , mu;

39 output signed [7:0] SIGMA_1 ,SIGMA_2 , MU_1 , MU_2;

40 output [6:0] YYY;

41 output [logn -1:0] KK;

42
43 reg SW_res;

44 wire signed [q-1:0] erfinv;

45 reg adrs_ready;

46 wire [logs_LUT -1:0] erfinv_adrs;

47 wire data_ready;

48 wire Clock;

49 reg [6:0] y, Y;

50 wire [6:0] YYY;

51 wire [1:0] Sign;

52 wire [n-3:0] bu_i1 , bu_i2 , bu_o , bd_i1 , bd_i2 , bd_o;

53 reg calib_up;

54 wire [r-1:0] Eu , Ed, EE;
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55 reg E_k , L_k;

56 wire [logn -1:0] k;

57 reg E_ee , L_ee;

58 reg E_eu , L_eu , E_ed , L_ed , L_shift_bu , L0_shift_u , E_shift_bu , L_shift_bd , L0_shift_d , E_shift_bd , bu0 , bd0 , bu00 , bd00;

59 wire bu5 , bd5;

60 reg s_b5;

61 reg Clk_cmp , E_ones1 , L_ones1 , E_ones2 , L_ones2;

62 wire Comp;

63 reg E_runs1 , L_runs1 , E_runs2 , L_runs2;

64 wire [logp1:0] runs1;

65 wire [logp1+logm1 -1:0] ones1;

66 wire [logp2:0] runs2;

67 wire [logp2:0] ones2;

68 wire [logs_LUT -1:0] erfinv_adrs1 , erfinv_adrs2;

69 wire s_85 , s_15;

70 reg E_sign;

71 wire [prec+r-1:0] AU1 , AU2 , AD1 , AD2 , E_sumU1 , E_sumD1 , E_sumU2 , E_sumD2;

72 wire [prec+r-1:0] EE2 , EE3 , EE4 , xa_ext , EE7;

73 wire [prec+r+logm2 -1:0] EE5 , EE5_reg , EE6;

74 reg L_EE5 , E_EE5 , E_avg1 , L_avg1 , E_avg2 , L_avg2;

75 wire [logm1 -1:0] N_avg1;

76 wire [logm2 -1:0] N_avg2;

77 wire [prec+r-1:0] ErrorU1 , ErrorU2 , ErrorD1 , ErrorD2;

78 reg Valid_mu_sigma;

79 reg E_erfinv1 , E_erfinv0 , E_erfinv_1;

80 wire [q-1:0] erfinv1 , erfinv0 , erfinv_1 , a0, a0_abs , a1;

81 wire [q-1:0] a1_a0 , a1_a0_abs;

82 wire [2*q-1:0] DataA1 , DataA2 , DataB , R1, R2;

83 wire signed [2*q-1:0] sigma_int , mu_int , mu_int2 , xa_sigma_int;

84 wire signed [q-1:0] xa_mu , xa_int , xa_sigma;

85 wire signed [prec -1:0] xa;

86 reg start_div , LA_div , EB_div;

87 wire Done_div1 , Done_div2;

88 reg mu_sigma;

89 reg E_reset , L_reset;

90 wire [log_nr:0] N_reset;

91 wire [prec+r-1:0] E3U_2 , E4U_2 , E5U_2 , E6U_2 , E7U_2 , E8U_2 , E9U_2 , E10U_2 , E3D_2 , E4D_2 , E5D_2 , E6D_2 , E7D_2 , E8D_2 , E9D_2 , E10D_2;

92 reg E_AU , E_AD , EEU , EED;

93
94 // control circuit

95 // ***************** states for mu/sigma ******************//

96 parameter S0 = 7'b0000000 , S1 = 7'b0000001 , S2 = 7'b0000010 , S3 = 7'b0000011 , S4 = 7'b0000100;

97 parameter S5 = 7'b0000101 , S6 = 7'b0000110 , S7 = 7'b0000111 , S8 = 7'b0001000 , S9 = 7'b0001001;

98 parameter S10 = 7'b0001010 , S11 = 7'b0001011 , S12 = 7'b0001100 , S13 = 7'b0001101 , S14 = 7'b0001110;

99 parameter S15 = 7'b0001111 , S16 = 7'b0010000 , S17 = 7'b0010001 , S18 = 7'b0010010 , S19 = 7'b0010011;

100 parameter S20 = 7'b0010100 , S21 = 7'b0010101 , S22 = 7'b0010110 , S23 = 7'b0010111 , S24 = 7'b0011000;

101 parameter S25 = 7'b0011001 , S26 = 7'b0011010 , S27 = 7'b0011011 , S28 = 7'b0011100 , S29 = 7'b0011101;

102 parameter S30 = 7'b0011110 , S31 = 7'b0011111;

103 parameter S6_1 = 7'b1011110 , S12_1 = 7'b1011111 , S18_1 = 7'b1100000; // 94, 95, 96

104
105
106 // *************** states for calibration (Up) ****************//

107 parameter S32 = 7'b0100000 , S33 = 7'b0100001 , S34 = 7'b0100010 , S35 = 7'b0100011 , S36 = 7'b0100100;

108 parameter S37 = 7'b0100101 , S38 = 7'b0100110 , S39 = 7'b0100111 , S40 = 7'b0101000 , S41 = 7'b0101001;

109 parameter S42 = 7'b0101010 , S43 = 7'b0101011 , S44 = 7'b0101100 , S45 = 7'b0101101 , S46 = 7'b0101110;

110 parameter S47 = 7'b0101111 , S48 = 7'b0110000 , S49 = 7'b0110001 , S50 = 7'b0110010 , S51 = 7'b0110011;

111 parameter S43_1 = 7'b1001000 , S43_2 = 7'b1001001; // 72,73

112
113 // *************** states for calibration (Down) ****************//

114 parameter S52 = 7'b0110100 , S53 = 7'b0110101 , S54 = 7'b0110110 , S55 = 7'b0110111 , S56 = 7'b0111000;

115 parameter S57 = 7'b0111001 , S58 = 7'b0111010 , S59 = 7'b0111011 , S60 = 7'b0111100 , S61 = 7'b0111101;

116 parameter S62 = 7'b0111110 , S63 = 7'b0111111 , S64 = 7'b1000000 , S65 = 7'b1000001 , S66 = 7'b1000010;

117 parameter S67 = 7'b1000011 , S68 = 7'b1000100 , S69 = 7'b1000101 , S70 = 7'b1000110 , S71 = 7'b1000111;

118 parameter S63_1 = 7'b1011100 , S63_2 = 7'b1011101; // 92,93

119
120
121 always @*

122 begin: State_table

123 case(y)

124
125 // ******** mu/sigma calculation ********//

126 S0: Y = S1; // reset everything

127 //*** VX = +LSB *** //

128 S1: if (N_reset != nr) Y = S1;

129 else Y = S2;
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130 S2: Y = S3;

131 S3: Y = S4;

132 S4: if (runs1 != {1'b1 ,{( logp1){1'b0}}}) Y = S4;

133 else Y = S5;

134 S5: if (N_avg1 != {( logm1 ){1'b1}}) Y = S1;

135 else Y = S6;

136 S6:if (! data_ready) Y = S6;

137 else Y = S6_1;

138 S6_1: Y = S7;

139 //*** VX = 0 *** //

140 S7: if (N_reset != nr) Y = S7;

141 else Y = S8;

142 S8: Y = S9;

143 S9: Y = S10;

144 S10: if (runs1 != {1'b1 ,{( logp1 ){1'b0}}}) Y = S10;

145 else Y = S11;

146 S11: if (N_avg1 != {(logm1){1'b1}}) Y = S7;

147 else Y = S12;

148 S12: if (! data_ready) Y = S12;

149 else Y = S12_1;

150 S12_1: Y = S13;

151 //*** VX = -LSB *** //

152 S13: if (N_reset != nr) Y = S13;

153 else Y = S14;

154 S14: Y = S15;

155 S15: Y = S16;

156 S16: if (runs1 != {1'b1 ,{( logp1 ){1'b0}}}) Y = S16;

157 else Y = S17;

158 S17: if (N_avg1 != {(logm1){1'b1}}) Y = S13;

159 else Y = S18;

160 S18: if (! data_ready) Y = S18;

161 else Y = S18_1;

162 S18_1: Y = S19;

163 S19: Y = S20;

164 S20: if (Done_div1 & Done_div2) Y = S21;

165 else Y = S20;

166 S21: Y = S32;

167
168 // ******** Calibration of Cap -ArrayU ********//

169 S32: Y = S33;

170 S33: Y = S34;

171 S34: if (N_reset != nr) Y = S34;

172 else Y = S35;

173 S35: Y = S36;

174 S36: Y = S37;

175 S37: if (runs2 != {1'b1 ,{( logp2 ){1'b0}}}) Y = S37;

176 else Y = S38;

177 S38: Y = S39;

178 S39: Y = S40;

179 S40: if (runs2 != {1'b1 ,{( logp2 ){1'b0}}}) Y = S40;

180 else Y = S41;

181 S41: if ((( s_85 & Sign == 2'b01) | (s_15 & Sign == 2'b10)) & (Sign != 2'b00)) Y = S42;

182 else Y = S43;

183 S42: Y = S40;

184 S43: if (! data_ready) Y = S43;

185 else Y = S43_1;

186 S43_1: if (N_avg2 != {(logm2 ){1'b1}}) Y = S43_2;

187 else Y = S44;

188 S43_2: Y = S34;

189 S44: Y = S45;

190 S45: Y = S46;

191 S46: Y = S47;

192 S47: Y = S48;

193 S48: Y = S49;

194 S49: Y = S50;

195 S50: Y = S51;

196 S51: Y = S52;

197
198 // ******** Calibration of Cap -ArrayD ********//

199 S52: Y = S53;

200 S53: Y = S54;

201 S54: if (N_reset != nr) Y = S54;

202 else Y = S55;

203 S55: Y = S56;

204 S56: Y = S57;
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205 S57: if (runs2 != {1'b1 ,{( logp2 ){1'b0}}}) Y = S57;

206 else Y = S58;

207 S58: Y = S59;

208 S59: Y = S60;

209 S60: if (runs2 != {1'b1 ,{( logp2 ){1'b0}}}) Y = S60;

210 else Y = S61;

211 S61: if ((( s_85 & Sign == 2'b01) | (s_15 & Sign == 2'b10)) & (Sign != 2'b00)) Y = S62;

212 else Y = S63;

213 S62: Y = S60;

214 S63: if (! data_ready) Y = S63;

215 else Y = S63_1;

216 S63_1: if (N_avg2 != {(logm2 ){1'b1}}) Y = S63_2;

217 else Y = S64;

218 S63_2: Y = S54;

219 S64: Y = S65;

220 S65: Y = S66;

221 S66: Y = S67;

222 S67: Y = S68;

223 S68: Y = S69;

224 S69: if (k != 10) Y = S33;

225 else Y = S70;

226 S70: Y = S71;

227 S71: Y = S71;

228
229 default: Y = 7'bxxxxxxx;

230 endcase

231 end

232
233 always @(posedge Clock or negedge Resetn)

234 begin: State_flipflops

235 if (! Resetn)

236 y <= S0;

237 else

238 y <= Y;

239 end

240
241 always @*

242 begin: FSM_outputs

243 // defaults

244 SW_res = 0; E_k = 0; L_k = 0; E_ee = 0; L_ee = 0;

245 E_eu = 0; L_eu = 0; E_ed = 0; L_ed = 0; L_shift_bu = 0; L0_shift_u = 0;

246 E_shift_bu = 0; L_shift_bd = 0; L0_shift_d = 0; E_shift_bd = 0; bu0 = 0; bd0 = 0; s_b5 = 1;

247 bu00 = 0; bd00 = 0;

248 Clk_cmp = 0; E_ones1 = 0; L_ones1 = 0; E_ones2 = 0; L_ones2 = 0;

249 E_sign = 0;

250 E_runs1 = 0; L_runs1 = 0; E_runs2 = 0; L_runs2 = 0;

251 adrs_ready = 0;

252 E_erfinv1 = 0; E_erfinv0 = 0; E_erfinv_1 = 0;

253 start_div = 0; LA_div = 0; EB_div = 0;

254 L_EE5 = 0; E_EE5 = 0;

255 L_avg1 = 0; E_avg1 = 0; L_avg2 = 0; E_avg2 = 0;

256 L_reset = 0; E_reset = 0;

257 E_AU = 0; E_AD = 0; EEU = 0; EED = 0;

258 case(y)

259
260 // ******** mu/sigma calculation ********//

261 S0: begin // reset everything

262 Valid_mu_sigma = 0;

263 mu_sigma = 1;

264 SW_res = 1;

265 L_reset = 1;

266 L_runs1 = 1;

267 L_ones1 = 1;

268 L_avg1 = 1;

269 L_runs2 = 1;

270 L_ones2 = 1;

271 L_avg2 = 1;

272 L_k = 1;

273 L_ee = 1;

274 L_eu = 1;

275 L0_shift_u = 1;

276 L_ed = 1;

277 L0_shift_d = 1;

278 Clk_cmp = 0;

279 L_EE5 = 1;



187

280 end

281 //** VX = +LSB **//

282 S1: begin

283 E_reset = 1;

284 SW_res = 1;

285 L_runs1 = 1;

286 end

287 S2: begin // releasing the reset

288 L_reset = 1;

289 SW_res = 0;

290 end

291 S3: begin

292 bu00 = 1;

293 bd00 = 0;

294 end

295 S4: begin

296 bu00 = 1;

297 bd00 = 0;

298 E_runs1 = 1;

299 if (Comp) E_ones1 = 1;

300 else E_ones1 = 0;

301 end

302 S5: begin

303 E_avg1 = 1;

304 end

305 S6: begin

306 adrs_ready = 1;

307 E_erfinv1 = 1;

308 end

309 S6_1: begin

310 L_ones1 = 1;

311 end

312 //** VX = 0 **//

313 S7: begin

314 E_reset = 1;

315 SW_res = 1;

316 L_runs1 = 1;

317 end

318 S8: begin // releasing the reset

319 L_reset = 1;

320 SW_res = 0;

321 end

322 S9: begin

323 bu00 = 0;

324 bd00 = 0;

325 end

326 S10: begin

327 bu00 = 0;

328 bd00 = 0;

329 E_runs1 = 1;

330 if (Comp) E_ones1 = 1;

331 else E_ones1 = 0;

332 end

333 S11: begin

334 E_avg1 = 1;

335 end

336 S12: begin

337 adrs_ready = 1;

338 E_erfinv0 = 1;

339 end

340 S12_1: begin

341 L_ones1 = 1;

342 end

343 //** VX = -LSB **//

344 S13: begin

345 E_reset = 1;

346 SW_res = 1;

347 L_runs1 = 1;

348 end

349 S14: begin // releasing the reset

350 L_reset = 1;

351 SW_res = 0;

352 end

353 S15: begin

354 bu00 = 0;
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355 bd00 = 1;

356 end

357 S16: begin

358 bu00 = 0;

359 bd00 = 1;

360 E_runs1 = 1;

361 if (Comp) E_ones1 = 1;

362 else E_ones1 = 0;

363 end

364 S17: begin

365 E_avg1 = 1;

366 end

367 S18: begin

368 adrs_ready = 1;

369 E_erfinv_1 = 1;

370 end

371 S18_1: begin

372 L_ones1 = 1; // ones1 = 0

373 end

374 S19: begin

375 start_div = 1;

376 LA_div = 1;

377 EB_div = 1;

378 end

379 S20:; // mu/sigma calculation (division)

380 S21: Valid_mu_sigma = 1;

381
382 // ******** Calibration of Cap -ArrayU ********//

383 S32: begin // reset

384 mu_sigma = 0;

385 SW_res = 1;

386 L0_shift_u = 1;

387 L0_shift_d = 1;

388 L_ee = 1;

389 L_ones2 = 1;

390 Clk_cmp = 0;

391 L_runs2 = 1;

392 L_k = 1;

393 calib_up = 1;

394 end

395 S33: begin

396 L_ones2 = 1;

397 L_ee = 1; // EE = 0

398 SW_res = 1;

399 E_shift_bu = 1;

400 bu0 = 1;

401 calib_up = 1;

402 end

403 S34: begin // BU = 00000000110

404 E_reset = 1;

405 SW_res = 1;

406 bu0 = 1;

407 s_b5 = 0;

408 end

409 S35: begin // releasing the reset

410 L_reset = 1;

411 SW_res = 0;

412 bu0 = 1;

413 s_b5 = 0;

414 end

415 S36: begin

416 E_eu = 1;

417 bu0 = 1;

418 s_b5 = 0;

419 end

420 S37: begin // BU = 00000001000 // running the comparator to find Sign

421 Clk_cmp = 1;

422 E_runs2 = 1;

423 if (Comp) E_ones2 = 1;

424 else E_ones2 = 0;

425 end

426 S38:begin

427 E_sign = 1;

428 end

429 S39: begin



189

430 L_runs2 = 1;

431 L_ones2 = 1;

432 end

433 S40: begin // running the comparator to find ones2

434 Clk_cmp = 1;

435 E_runs2 = 1;

436 if (Comp) E_ones2 = 1;

437 else E_ones2 = 0;

438 end

439 S41:L_runs2 = 1;

440 S42: begin

441 E_ee = 1;

442 if (Sign == 2'b01) E_ed = 1;

443 else E_eu = 1;

444 L_ones2 = 1; // added recently

445 end

446 S43: begin // xa evaluation from the erfinv -LUT

447 adrs_ready = 1;

448 end

449 S43_1: begin

450 E_EE5 = 1; // averaging

451 E_avg2 = 1; // N_avg2 ++

452 end

453 S43_2: begin

454 L_eu = 1;

455 L_ed = 1;

456 L_runs2 = 1;

457 L_ones2 = 1;

458 L_ee = 1;

459 end

460 S44: begin

461 L_avg2 = 1; // N_avg2 = 0;

462 end

463 S45:; // waiting for the sum_array to finish

464 S46: ; // waiting for the additions to finish (EE7)

465 S47: begin // AU1 -> AU2

466 E_AU = 1;

467 end

468 S48: begin // writting in the memory (AU2 -> EiU)

469 EEU = 1;

470 end

471 S49: begin

472 L_eu = 1;

473 L_ed = 1;

474 L_ones2 = 1;

475 L_runs2 = 1;

476 L_EE5 = 1;

477 L_ee = 1;

478 SW_res = 1;

479 end

480 S50: SW_res = 1;

481 S51: SW_res = 1;

482
483 // ******** Calibration of Cap -ArrayD ********//

484 S52: begin // reset

485 L_ones2 = 1;

486 Clk_cmp = 0;

487 L_runs2 = 1;

488 calib_up = 0;

489 SW_res = 1;

490 end

491 S53: begin

492 L_ones2 = 1;

493 L_ee = 1;

494 SW_res = 1;

495 E_shift_bd = 1;

496 bd0 = 1;

497 calib_up = 0;

498 end

499 S54: begin // BD = 00000000110

500 E_reset = 1;

501 SW_res = 1;

502 bd0 = 1;

503 s_b5 = 0;

504 end
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505 S55: begin // releasing the reset

506 L_reset = 1;

507 SW_res = 0;

508 bd0 = 1;

509 s_b5 = 0;

510 end

511 S56: begin

512 E_ed = 1;

513 bd0 = 1;

514 s_b5 = 0;

515 end

516 S57: begin // BD = 00000001000 // running the comparator to find Sign

517 Clk_cmp = 1;

518 E_runs2 = 1;

519 if (Comp) E_ones2 = 1;

520 else E_ones2 = 0;

521 end

522 S58:begin

523 E_sign = 1;

524 end

525 S59: begin

526 L_runs2 = 1;

527 L_ones2 = 1;

528 end

529 S60: begin // running the comparator to find ones2

530 Clk_cmp = 1;

531 E_runs2 = 1;

532 if (Comp) E_ones2 = 1;

533 else E_ones2 = 0;

534 end

535 S61: begin

536 L_runs2 = 1;

537 end

538 S62: begin

539 E_ee = 1;

540 if (Sign == 2'b01) E_ed = 1;

541 else E_eu = 1;

542 L_ones2 = 1; // added recently

543 end

544 S63: begin // xa evaluation from the erfinv -LUT

545 adrs_ready = 1;

546 end

547 S63_1: begin

548 E_EE5 = 1; // averaging

549 E_avg2 = 1; // N_avg2 ++

550 end

551 S63_2: begin

552 L_eu = 1;

553 L_ed = 1;

554 L_runs2 = 1;

555 L_ones2 = 1;

556 L_ee = 1;

557 end

558 S64: begin

559 L_avg2 = 1; // added revcently;

560 end

561 S65:; // waiting for the sum_array to finish

562 S66:; // waiting for the additions to finish (EE7)

563 S67: begin // AD1 -> AD2

564 E_AD = 1;

565 end

566 S68: begin // writting in the memory (AD1 -> EiD)

567 EED = 1;

568 end

569 S69: begin

570 E_k = 1;

571 L_eu = 1;

572 L_ed = 1;

573 L_EE5 = 1;

574 end

575 S70:;

576 S71:;

577
578 default:;

579 endcase
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580 end

581
582 assign Clock = Enable & CLK;

583
584 // Comparator register

585 regne #(.n(1)) Regcmp (.R(CMP), .Clock(Clock), .Resetn(Resetn), .E(1'b1), .Q(Comp ));

586 // Counter for SW_reset

587 upcount #(.n(log_nr +1)) Counter_reset (. Resetn(Resetn), .R({( log_nr +1){1 'b0}}) ,...

588 .Clock(Clock), .E(E_reset), .L(L_reset), .Q(N_reset ));

589
590
591 // *************** mu/sigma **************//

592 // Counter to find number of runs1

593 upcount #(.n(logp1 +1)) Counter_runs1 (. Resetn(Resetn), .R({( logp1 +1){1 'b0}}), .Clock(Clock), .E(E_runs1), .L(L_runs1), .Q(runs1 ));

594 // Counter to find ones1

595 upcount #(.n(logp1+logm1 )) Counter_ones1 (. Resetn(Resetn), .R({( logp1+logm1 ){1'b0}}), .Clock(Clock ),...

596 .E(E_ones1), .L(L_ones1), .Q(ones1 )); // assumption: ones never becomes 2^( logp1+logm1)

597 // Averaging

598 upcount #(.n(logm1)) Counter_avg1 (. Resetn(Resetn), .R({( logm1 ){1'b0}}), .Clock(Clock), .E(E_avg1), .L(L_avg1), .Q(N_avg1 ));

599 // Adjusting ones to LUT

600 assign erfinv_adrs1 = ones1[logp1+logm1 -1:logp1+logm1 -logs_LUT]; // logs_LUT bits

601
602 regne #(.n(q)) Reg_erfinv1 (.R(erfinv), .Clock(Clock), .Resetn(Resetn), .E(E_erfinv1), .Q(erfinv1 ));

603 regne #(.n(q)) Reg_erfinv0 (.R(erfinv), .Clock(Clock), .Resetn(Resetn), .E(E_erfinv0), .Q(erfinv0 ));

604 regne #(.n(q)) Reg_erfinv_1 (.R(erfinv), .Clock(Clock), .Resetn(Resetn), .E(E_erfinv_1), .Q(erfinv_1 ));

605
606 assign a0 = erfinv0;

607 assign a0_abs = a0[q-1] ? -a0 : a0;

608 assign a1 = erfinv0[q-1] ? erfinv1 : erfinv_1;

609 assign a1_a0 = a1 - a0; // a1-a0 < a1 -> always within q bits

610 assign a1_a0_abs = a1_a0[q-1] ? -a1_a0 : a1_a0;

611 assign DataA1 = {4'b0001 ,{(2*q-4){1'b0}}}; // DataA = 2^(2*q-4)

612 assign DataA2 = {a0_abs ,{(q-2){1'b0}}};

613 assign DataB = {{(q){1'b0}},a1_a0_abs };

614
615 divider #(.n(2*q),.logn(logq +1)) divider_sigma (.Clock(Clock), .Resetn(Resetn ),...

616 .start(start_div), .LA(LA_div), .EB(EB_div), .DataA(DataA1), .DataB(DataB), .R(R1), .Q(sigma_int), .Done(Done_div1 ));

617 divider #(.n(2*q),.logn(logq +1)) divider_mu (.Clock(Clock), .Resetn(Resetn ),...

618 .start(start_div), .LA(LA_div), .EB(EB_div), .DataA(DataA2), .DataB(DataB), .R(R2), .Q(mu_int), .Done(Done_div2 ));

619
620 assign mu_int2 = a0[q-1] ? - mu_int : mu_int;

621
622 assign sigma = sigma_int[q:1]; // real = ./2^(q-3)

623 assign mu = mu_int2[q:1]; // real = ./2^(q-3)

624 // *************************************//

625
626 // *************** Calibration **************//

627 // Counter to find number of runs2

628 upcount #(.n(logp2 +1)) Counter_runs2 (. Resetn(Resetn), .R({( logp2 +1){1'b0}}), .Clock(Clock), .E(E_runs2), .L(L_runs2), .Q(runs2 ));

629 // Counter to find ones2

630 upcount #(.n(logp2 +1)) Counter_ones2 (. Resetn(Resetn), .R({( logp2 +1){1'b0}}), .Clock(Clock), .E(E_ones2), .L(L_ones2), .Q(ones2 )); // it must be logp2+1 bits because of the Sign

631 // Averaging

632 upcount #(.n(logm2)) Counter_avg2 (. Resetn(Resetn), .R({( logm2 ){1'b0}}), .Clock(Clock), .E(E_avg2), .L(L_avg2), .Q(N_avg2 ));

633 // Adjusting ones to LUT

634 assign erfinv_adrs2 = {ones2 ,{( logs_LUT -logp2){1'b0}}};

635 // As erfinv is only chekced when ones2 != 10000, we can assume ones2 != 10000 , this is for when logp2 <= logs_LUT

636
637 // Counter for k

638 upcount #(.n(4)) Counter_k (. Resetn(Resetn), .R(4'b0011), .Clock(Clock), .E(E_k), .L(L_k), .Q(k));

639 // Counter for E

640 upcount #(.n(r)) Counter_E (. Resetn(Resetn), .R({(r){1'b0}}), .Clock(Clock), .E(E_ee), .L(L_ee), .Q(EE));

641
642 // ******** BLOCK1 ********//

643 // Counter for Eu

644 upcount #(.n(r)) Counter_eu (. Resetn(Resetn), .R({(r){1'b0}}), .Clock(Clock), .E(E_eu), .L(L_eu), .Q(Eu));

645 // Register and right -shift for bu

646 shiftlne #(.n(n-2)) shift_bu (.R({(n-2){1 'b0}}), .L(L_shift_bu), .L0(L0_shift_u ),...

647 .E(E_shift_bu), .w(1'b1), .Clock(Clock), .Resetn(Resetn), .Q(bu_i1 ));

648 assign bu_i2 = calib_up ? bu_i1 : {(n-3){1'b0}};

649 assign bu_o = bu_i2 + Eu;

650 assign bu5 = s_b5 ? bu_o[3] : 1'b0;

651 assign BU = {bu_o[n-3:4],bu5 ,bu_o[2:0],bu0 ,bu00};

652 // Counter for Ed

653 upcount #(r) Counter_ed (. Resetn(Resetn), .R({(r){1'b0}}), .Clock(Clock), .E(E_ed), .L(L_ed), .Q(Ed));

654 // Register and right -shift for bd
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655 shiftlne #(.n(n-2)) shift_bd (.R({(n-2){1 'b0}}), .L(L_shift_bd), .L0(L0_shift_d ),...

656 .E(E_shift_bd), .w(1'b1), .Clock(Clock), .Resetn(Resetn), .Q(bd_i1 ));

657 assign bd_i2 = !calib_up ? bd_i1 : {(n-3){1 'b0}};

658 assign bd_o = bd_i2 + Ed;

659 assign bd5 = s_b5 ? bd_o[3] : 1'b0;

660 assign BD = {bd_o[n-3:4],bd5 ,bd_o[2:0],bd0 ,bd00};

661
662 // ******** BLOCK2 ********//

663 assign s_85 = ($signed(ones2 - ones2_85) > 0 ) ;

664 assign s_15 = ($signed(ones2 - ones2_15) < 0 ) ;

665 regne #(.n(2)) Regsign (.R({s_15 ,s_85}), .Clock(Clock), .Resetn(Resetn), .E(E_sign), .Q(Sign ));

666
667 assign xa_sigma_int = erfinv*sigma; //2*q bits

668 assign xa_sigma = xa_sigma_int[2*q-1:q]; // q bits , real = ./2^(q-5)

669 assign xa_mu = {mu[q-1],mu[q-1],mu[q-1:2]}; // q bits , real = ./2^(q-5)

670 assign xa_int = xa_sigma -xa_mu; // q bits , real = ./2^(q-5)

671 assign xa = xa_int[q-1:q-prec]; // prec bits , real = ./2^(prec -5) of 1.98mV

672
673 // ******** BLOCK3 ********//

674 assign EE2 = {4'b0000 , EE , {(prec -4){1'b0}}}; // ./2^(prec -4) of 1.98mV

675
676 assign EE3 = (Sign == 2'b01) ? +EE2 : -EE2;

677 assign xa_ext = {{(r){xa[prec -1]}}, xa};

678 assign EE4 = EE3 + xa_ext;

679 assign EE5 = {{( logm2){EE4[prec+r-1]}},EE4};

680 regne2 #(.n(prec+r+logm2 )) Reg_EE5 (.R(EE6), .Clock(Clock), .Resetn(Resetn), .L(L_EE5), .E(E_EE5), .Q(EE5_reg ));

681 assign EE6 = EE5 + EE5_reg;

682 assign EE7 = EE5_reg[prec+r+logm2 -1:logm2];

683
684 assign ErrorU1 = E_sumU1 + E_sumD2 + EE7;

685 assign ErrorU2 = E_sumU1 - E_sumU2 + EE7;

686 assign AU1 = (Sign == 2'b01) ? ErrorU1 : ErrorU2; // real = ./2^( prec -4)

687 regne #(.n(prec+r)) Reg_AU (.R(AU1), .Clock(Clock), .Resetn(Resetn), .E(E_AU), .Q(AU2));

688
689 assign ErrorD1 = E_sumD1 - E_sumD2 - EE7;

690 assign ErrorD2 = E_sumD1 + E_sumU2 - EE7;

691 assign AD1 = (Sign == 2'b01) ? ErrorD1 : ErrorD2; // real = ./2^( prec -4)

692 regne #(.n(prec+r)) Reg_AD (.R(AD1), .Clock(Clock), .Resetn(Resetn), .E(E_AD), .Q(AD2));

693 // ******************************************

694
695
696 regne #(.n(prec+r)) Reg_E3U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 3) & EEU), .Q(E3U ));

697 regne #(.n(prec+r)) Reg_E4U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 4) & EEU), .Q(E4U ));

698 regne #(.n(prec+r)) Reg_E5U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 5) & EEU), .Q(E5U ));

699 regne #(.n(prec+r)) Reg_E6U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 6) & EEU), .Q(E6U ));

700 regne #(.n(prec+r)) Reg_E7U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 7) & EEU), .Q(E7U ));

701 regne #(.n(prec+r)) Reg_E8U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 8) & EEU), .Q(E8U ));

702 regne #(.n(prec+r)) Reg_E9U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 9) & EEU), .Q(E9U ));

703 regne #(.n(prec+r)) Reg_E10U (.R(AU2), .Clock(Clock), .Resetn(Resetn), .E((k == 10) & EEU), .Q(E10U ));

704
705 regne #(.n(prec+r)) Reg_E3D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 3) & EED), .Q(E3D ));

706 regne #(.n(prec+r)) Reg_E4D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 4) & EED), .Q(E4D ));

707 regne #(.n(prec+r)) Reg_E5D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 5) & EED), .Q(E5D ));

708 regne #(.n(prec+r)) Reg_E6D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 6) & EED), .Q(E6D ));

709 regne #(.n(prec+r)) Reg_E7D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 7) & EED), .Q(E7D ));

710 regne #(.n(prec+r)) Reg_E8D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 8) & EED), .Q(E8D ));

711 regne #(.n(prec+r)) Reg_E9D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 9) & EED), .Q(E9D ));

712 regne #(.n(prec+r)) Reg_E10D (.R(AD2), .Clock(Clock), .Resetn(Resetn), .E((k == 10) & EED), .Q(E10D ));

713
714 assign E_sumU1 = E3U + E4U + E6U + E7U + E8U + E9U + E10U; // E5U excluded

715 assign E_sumD1 = E3D + E4D + E6D + E7D + E8D + E9D + E10D;

716
717 assign E3U_2 = BU[3] ? E3U : 0;

718 assign E4U_2 = BU[4] ? E4U : 0;

719 assign E5U_2 = BU[5] ? E5U : 0;

720 assign E6U_2 = BU[6] ? E6U : 0;

721 assign E7U_2 = BU[7] ? E7U : 0;

722 assign E8U_2 = BU[8] ? E8U : 0;

723 assign E9U_2 = BU[9] ? E9U : 0;

724 assign E10U_2 = BU[10] ? E10U : 0;

725
726 assign E3D_2 = BD[3] ? E3D : 0;

727 assign E4D_2 = BD[4] ? E4D : 0;

728 assign E5D_2 = BD[5] ? E5D : 0;

729 assign E6D_2 = BD[6] ? E6D : 0;
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730 assign E7D_2 = BD[7] ? E7D : 0;

731 assign E8D_2 = BD[8] ? E8D : 0;

732 assign E9D_2 = BD[9] ? E9D : 0;

733 assign E10D_2 = BD[10] ? E10D : 0;

734
735 assign E_sumU2 = E3U_2 + E4U_2 + E5U_2 + E6U_2 + E7U_2 + E8U_2 + E9U_2 + E10U_2;

736 assign E_sumD2 = E3D_2 + E4D_2 + E5D_2 + E6D_2 + E7D_2 + E8D_2 + E9D_2 + E10D_2;

737
738 assign erfinv_adrs = mu_sigma ? erfinv_adrs1 : erfinv_adrs2;

739 LUT_erfinv #(.n(q), .m(s_LUT), .logm(logs_LUT )) LUT(.Adrs(erfinv_adrs ),...

740 .data_out(erfinv), .read_en(adrs_ready), .data_ready(data_ready), .Clock(Clock), .Resetn(Resetn ));

741
742 assign YYY = y;

743
744 assign E3UU_1 = E3U[7:0];

745 assign E3UU_2 = E3U[15:8];

746 assign E4UU_1 = E4U[7:0];

747 assign E4UU_2 = E4U[15:8];

748 assign E5UU_1 = E5U[7:0];

749 assign E5UU_2 = E5U[15:8];

750 assign E6UU_1 = E6U[7:0];

751 assign E6UU_2 = E6U[15:8];

752 assign E7UU_1 = E7U[7:0];

753 assign E7UU_2 = E7U[15:8];

754 assign E8UU_1 = E8U[7:0];

755 assign E8UU_2 = E8U[15:8];

756 assign E9UU_1 = E9U[7:0];

757 assign E9UU_2 = E9U[15:8];

758 assign E10UU_1 = E10U[7:0];

759 assign E10UU_2 = E10U[15:8];

760
761 assign E3DD_1 = E3D[7:0];

762 assign E3DD_2 = E3D[15:8];

763 assign E4DD_1 = E4D[7:0];

764 assign E4DD_2 = E4D[15:8];

765 assign E5DD_1 = E5D[7:0];

766 assign E5DD_2 = E5D[15:8];

767 assign E6DD_1 = E6D[7:0];

768 assign E6DD_2 = E6D[15:8];

769 assign E7DD_1 = E7D[7:0];

770 assign E7DD_2 = E7D[15:8];

771 assign E8DD_1 = E8D[7:0];

772 assign E8DD_2 = E8D[15:8];

773 assign E9DD_1 = E9D[7:0];

774 assign E9DD_2 = E9D[15:8];

775 assign E10DD_1 = E10D[7:0];

776 assign E10DD_2 = E10D[15:8];

777
778
779
780 assign SIGMA_1 = sigma[7:0];

781 assign SIGMA_2 = sigma[15:8];

782 assign MU_1 = mu[7:0];

783 assign MU_2 = mu[15:8];

784
785 assign KK = k;

786
787 assign BUU = BD;

788 assign BDD = BU;

789
790
791 endmodule
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