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In recent decades, the advent of mobile computing has changed human

lives by providing information that was not available in the past. The mobile

computing platform opens a new door to the connected world in which vari-

ous forms of hand-held and wearable systems are ubiquitous. A single mobile

device plays multiple roles and shapes human lives towards a better future.

In these systems, sensor-based data acquisition plays an essential role in gen-

erating and providing useful information. The increased number of sensors

is embedded in a single device in order to process various signal modalities.

In practice, more than 30 data converters are required in designing a mobile

system in which the data-converting blocks become among the most power-

hungry components in battery-operated systems. Due to the increased variety

of sensors, mobile systems are meant to face several obstacles. For example,

the increased number of sensors increase system power consumption during

the system operation. The increased power consumption directly affects op-

eration time because mobile systems are powered by a limited energy source.
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Moreover, an increased amount of information also gives rise to bandwidth

problems in communication due to the increased volume of data transmission.

Also, this system design requires a larger area in a silicon die so that multiple

signal paths can be placed without cross-channel interference. Therefore, the

system design has presented a challenge in terms of trying to resolve the design

constraints such as power consumption, bandwidth usage, storage space, and

design complexity issues.

To overcome these obstacles, in this dissertation, efficient data acquisi-

tion and processing methods are investigated. Specifically, this thesis considers

the problems of energy-efficient sampling and binary event detection.

This dissertation begins by presenting a new signal sampling scheme

that enables higher precision signal conversion in compressed-sensing-based

signal acquisition. The proposed scheme is based on the popular successive

approximation register and employs a modified compressive sensing technique

to increase the resolution of successive-approximation-register (SAR) analog-

to-digital converter (ADC) architecture. Circuit-level architecture is discussed

to implement the proposed scheme using the SAR ADC architecture. A non-

uniform quantization scheme is proposed and it improves data quality after

data acquisition. The proposed scheme is expected to be used for medium- or

high- frequency data conversion.

Secondly, the possibility of using fewer ADCs than channels is studied

by leveraging sparse-signal representation and blind-source-separation (BSS)

techniques. In particular, this dissertation examines the problem of using a
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single ADC or quantizer system for digitizing multi-channel inputs. Mixing

and de-mixing strategies are extensively studied for sampling frequency-sparse

signals and the proposed multi-channel architecture can be easily implemented

using today’s analog/mixed-signal circuits.

The third part of this dissertation investigates a binary hypothesis test-

ing problem. In mobile devices such as smartphones and tablet PCs, a major

portion of energy is consumed in user interfaces (LCD display and touch input

processing). For accurate detection and better user interface, energy-efficient

sensing and detection schemes are necessary to manage multiple sensor inputs.

A highly efficient detection scheme is presented that can detect binary events

reliably with a fraction of the energy consumption required in the conventional

energy detection.
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Chapter 1

Introduction

In signal sampling, Shannon and Nyquist have shown that the sampling

rate must be more than double the signal bandwidth to avoid information loss.

The Shannon-Nyquist sampling theorem [3] has been regarded as a golden rule

in data sampling and conversion since it was developed in the late 1940. The

Shannon-Nyquist theorem formed the theoretical foundation for modern signal

acquisition system such as analog-to-digital converters (ADCs), which become

among the essential elements of modern mixed-signal systems.

Today’s advanced wireless technologies increasingly rely on a high fre-

quency band to overcome all voice and data traffic bottlenecks. For this reason,

millimeter wave (30-300Ghz) is considered to reduce data traffic congestion for

recent 5G wireless networks. In high frequency signal acquisition, there exists

a trade-off between the sampling speed and data resolution, in which both

cannot be enhanced simultaneously when designing data-converting systems.

To overcome the quantization depth constraint for high speed signals, a new

sampling frame work is required.

On the other hand, with the increase in system complexity, recent

signal-processing applications require information from multiple sensors such
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as sensor arrays, physiological signal monitoring, and brain-machine interfaces.

In these systems, it is common to sample up to 128 channels of simultaneous

data. The increased number of sampling channels requires complex system

design to improve the operating power in the system. Thus, it is worthwhile

to explore efficient ways of reducing the system complexity with a new form of

converter architecture. In other words, the question that arises here is whether

it is possible to use fewer data converters than channels by leveraging recent

achievements in signal processing.

Recently, compressed/compressive sampling theory has been exten-

sively studied in the field of applied mathematics. The major theoretic founda-

tion was accomplished by Emmanuel Cándes, Torrence Tao, and David Donoho

in the early 2000s [4]. The random sampling theory is regarded as the most

outstanding achievement in sampling theory such that it potentially renders

the sub-Nyquist rate sampling applicable to the expensive sampling in mea-

surements. Motivated by the advent of compressed sensing, in this disserta-

tion, efficient data conversion schemes for single and multi-channel signals are

explored, with a focus on mobile and wearable system applications.

The first part of this dissertation begins by introducing the possibility

of increasing the resolution of a successive-approximation-register (SAR) ADC

in medium- or high-bandwidth signal sampling. The sampling rate-resolution

limitation is a challenging problem in SAR ADC design, even with recent

advanced technology. The conventional compressive sensing scheme has only a

fixed resolution conversion. Thus, a means of non-uniform, quantization-based
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random sampling is introduced; it is deliberately designed to promote the

precision of sampled data through a tailored recovery algorithm. The proposed

non-uniform quantization scheme is expected to be useful for medium and high

frequency data conversion. In particular, the proposed quantization scheme is

applied to the popular successive approximation register architecture.

Next, the possibility of using fewer ADCs than channels is studied by

leveraging sparse representation of signals as an extension of mixing and de-

mixing multi-channel sparse signals. Specifically, this work considers the prob-

lem of using a single ADC or quantizer system to digitize multi-channel inputs

that consist of an unknown number of sinusoids in unknown frequencies. The

mixing and de-mixing strategies are deliberately designed for frequency-sparse

signals. The proposed multi-channel architecture is readily implementable us-

ing current analog/mixed-signal circuit designs. In the proposed solution, the

multi-channel signals are sampled at the Nyquist rate which is identical to

the single-channel sampling case. However, they can be recovered without

sacrificing the input signal bandwidths.

Lastly, an efficient binary hypothesis testing problem is investigated.

A sequential energy detection scheme is proposed that requires a lower num-

ber of samples to determine the existence of the signal of interest over the

measurements. As the volume of sampled data has increased, high power

consumption and/or increased sensing latency are expected during the data

processing. To facilitate system performance with reduced operating power,

a fast detection protocol is required. Fast sensing circuits can be designed
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using highly complex designs. However, the circuits mentioned above increase

operating power which is not desirable for systems operated by stored energy.

Thus, the trade-off between sensing latency and power consumption needs to

be reviewed to meet the system requirements. The proposed sequential detec-

tion scheme requires far fewer samples to determine the existence of a signal

of interest, which can be translated as energy savings.

1.1 Contributions of the study

Throughout this thesis, innovative solutions for single and multiple-

channel signal sampling and detection are studied, which can overcome the

energy, bandwidth, and area obstacles in mobile systems. The major contri-

butions are outlined in the following subsections.

1.1.1 Non-uniform quantization random signal sampler

A new form of SAR ADC architecture is introduced that is capable of

improving the resolution of the sampled data in medium- or high-bandwidth

signal sampling. A non-uniform quantization scheme, which is combined with

random sampling procedures, is presented and the scheme makes use of the

system properties of SAR ADC architecture. Signal acquisition and recovery

models are presented, and simulation is performed to gauge the advantages of

the proposed architecture. By performing simulations, the recovery of sampled

signals demonstrates improved resolution compared to that of conventional

compressive sensing cases. To realize the proposed scheme incorporated with
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the SAR ADC architecture, block level circuit realization is also discussed.

1.1.2 Multi-channel sparse data conversion

The next contribution of this thesis is in the architecture of the multi-

channel sparse data converter. The converter architecture aims to sample mul-

tiple channels using a single quantizer. Specifically, various pseudo-random se-

quences are compared. An optimal mixing scheme is extensively studied to de-

sign the analog front-end side to combine multi-channel inputs. Multiple chan-

nels are sampled at the Nyquist rate, which is identical to the single-channel

sampling case. Realistic signal-mixing strategies and recovery algorithms are

proposed that enable the sampling of multiple-channel sparse signals with a

single quantization unit. Based on the system model, a new form of ADC

architecture with switched-capacitor-based sample-and-hold (S/H) circuits is

proposed, which can be easily implemented. The prototype implementation of

the proposed architecture is designed and fabricated in 130nm complementary

metaloxidesemiconductor (CMOS) process. The prototype ADC demonstrates

that the proposed architecture can successfully sample up to four channel

frequency-sparse signals.

1.1.3 Energy-efficient sequential detector

An efficient binary hypothesis testing problem is investigated. A new

sequential energy-detection scheme is proposed that requires far fewer sam-

ples to determine the existence of a signal of interest over the measurements.
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The proposed detection strategy divides the conventional hypothesis testing

steps into two phases: 1) a summing phase and 2) a sequential detection

phase. By separating the detection steps, the total computation and number

of test samples is reduced. This reduction can be translated into energy sav-

ings which could help extend operating time in energy-limited mobile systems.

The proposed sequential detection scheme shows robust detection performance

under low signal-to-noise conditions compared with the conventional detection

scheme, which is based on a fixed sample size. The proposed scheme can be

combined with the compressed sensing (CS) and sparse-signal sampling meth-

ods as a form of post-processing to detect a binary event. It can also work

independently with general detector systems.

1.2 Organization

This dissertation is organized into the following chapters: Chapter 2

introduces a new form of ADC architecture that is capable of sensing multi-

channel frequency-sparse signals using a single quantizer, and circuit-level de-

tails on how to realize the proposed architecture in a mixed-signal circuit.

Chapter 3 introduces a new form of ADC architecture which is capable of

sensing multi-channel frequency-sparse signals using a single quantizer, and

circuit level details on how to realize the proposed architecture in a mixed-

signal circuit. Chapter 4 proposes a highly efficient detection scheme to de-

termine binary event status based on a sequential energy detector. Numerical

analysis of the proposed sequential detection scheme is presented. This disser-
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tation concludes with a summary of the contributions of the proposed signal

acquisition and processing schemes. Future directions for extending this thesis

are discussed in Chapter 5.
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Chapter 2

A Randomly Sampled Non-uniform

Resolution Data Converter

Analog-to-digital converters are among the essential elements of mod-

ern mixed-signal systems. In the market, there are many different types of

ADC architecture, including sigma-delta, successive approximation register,

pipeline, time-interleaving, and flash [5, 6]. With the improvements in scaling

technology, SAR ADC is becoming increasingly popular due to its high power-

efficiency and easy scaling with the technology because most of its design is

performed in the digital domain. Fig. 2.1 illustrates the sampling rate and

resolution in different types of ADC architecture.

However, for a SAR ADC, each conversion cycle only produces one

more bit at a time and the SAR ADC is limited to medium resolution and

medium speed. When the sampling speed reaches around 1GHz, the resolu-

tion of SAR ADC is limited to about 6-bit using the most advanced circuit

technologies (Fig. 2.2). To overcome this limitation, sampling and signal con-

version schemes are proposed that are based on the SAR ADC architecture.

The proposed SAR architecture takes advantage of a random sampling scheme

to increase the resolution of SAR ADC in the high-speed region.
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Figure 2.1: Architecture of analog-to-digital converters, resolution, and sam-
pling rate [1].

Several studies [7, 8] have proposed SAR ADC based systems that are

capable of sampling and reconstructing multi-channel information; the cir-

cuit level implementation and measurement results are reported [9]. Yet, the

architecture does not necessarily leads to better resolution.

Recently, compressed sensing (CS) based ADC design has been actively

studied to acquire wide-band signal with a non-uniform sampling strategy [10].

1-bit compressive sensing acquires coarsely quantized measurements to detect

the active frequency components [11]. Another approach [12] also investigates

the trade-off between bit-depth and measurement-rate in CS in the context
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Figure 2.2: Sample rate and ENOB survey in SAR ADC [2].

of limited store memory or data transmission rate. However, all these works

have continued to make use of uniform quantization, which is different from

the non-uniform resolution case that this dissertation is investigating. There

is a similar approach that uses a non-uniform quantization scheme with few

measurements [13], and the approach is relatively effective for signals with high

signal-to-noise ratio (SNR). However, the conversion scheme includes several

limitations. The work is focused on the low speed sampling cases (≤ 1kHz)

with lower numbers of measurements rather than high-speed sampling appli-

cations. The highly compressed CS strategy limits the allowable signal sparse-

ness of interest in the sparse domain. Furthermore, the work does not fully

10



utilize the SAR ADC architecture by varying quantization depth from 1-bit

to 16-bit, which possibly generates a wide range of variance in the sampled

resolution and leads to sub-optimal efficiency in terms of utilizing system re-

sources. Lastly, the study only gives reconstruction error performance with

the non-uniform quantization strategy while the proposed scheme leads to

a concrete analysis on ADC architecture, which is more practical in circuit

design. A new reconstruction algorithm is presented and is formulated by an

element-wise constraint that is shown to be more efficient than the reconstruc-

tion method using weighted constraint [13]. The simulation results present a

better reconstruction performance than through coarse quantization.

This chapter is organized as follows: Section 2.1 introduces fundamen-

tal backgrounds in SAR ADC architecture and CS-based sampling. Section

2.2 presents our signal acquisition and recovery strategy that enables high-

resolution sampling in high-frequency signals. Section 2.3 discusses details

about implementation of the proposed non-uniform quantization scheme. Sim-

ulation results are demonstrated in Section 2.4. Finally, the advantages and

highlight areas for future research are summarized in Section 2.5.

2.1 Background

2.1.1 Data conversion in SAR ADC

A data converter or signal acquisition system requires a quantization

unit to convert input voltage to a finite number of bits. The SAR ADC

architecture is becoming increasingly popular in practice for its high power-
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efficiency, and easy scaling with current technology since most of circuitry is

designed in the digital domain. SAR ADCs produce one more bit at a time in

each conversion cycle, and a block diagram of the architecture is displayed in

Fig. 2.3.

The analog-to-digital conversion starts with enabling sample and hold

(S/H) circuit to latch the input voltage Vin during the conversion cycle. The

SAR logic directs the DAC to generate outputs through binary outputs which

range the most significant bit (MSB) to the least significant bit (LSB). With

the latched the input and DAC output, a comparator decides whether DAC

output DACout is greater the latched Vin or not. The DAC starts producing

DACout which is initialized by 1/2 Vref . If DACout is larger than Vin, then

the most significant bit (MSB) is set to zero which reduces DACout by half

(1/4 Vref ) in the next iteration. If DACout is smaller than Vin, then the

MSB is set to one and the MSB remains to the rest of process. This binary

search process is continuing iteratively from MSB to LSB. The CTRL logic

controls time instances when the conversion starts and completes, and the

iteration interval. Because of the iterative binary search process, to obtain

more bits, SAR ADCs require longer conversion time and it causes sample

rate vs. quantization depth constraint in high speed sampling.

Therefore, the applications of SAR ADC is limited to medium resolu-

tion and medium speed. We hope to overcome this hardware constraint by

making use of sub-Nyquist sampling strategy which randomly samples a sparse

signal of interest in the frequency or DFT domain.

12
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Figure 2.3: Typical SAR ADC architecture.

2.1.2 Compressive sensing

Recent study in the field of CS shows the other way to take fewer

samples than those from Nyquist criteria. For the class of sparse signal, CS

pursuits acquiring M < N samples rather than N samples of a signal at

Nyquist rate with linear measurement. Let N × 1 input signal vector ~x ∈ <N

is K-sparse in a transform basis Ψ. One can rewrite it as ~x = Ψ~α, where

||~α| |0 = K. In CS, a M × 1 measurement ~y which is sufficient to represent the

input signal ~x with measurement operator Φ:

~y = Φ~x = ΦΨ~α. (2.1)

Let us define a matrix A = ΦΨ, and one can recover the input vector ~x

without loss of information by solving a minimization problem:

minimize ||~α||1

subject to ~y = A~α
(2.2)

where ~α = [α1, α2, · · ·, αN ]T and ||~α||1 =
∑N

r=1 |αr|.
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After sampling, the rest problem is to solve ~α and reconstruct ~x via

nonlinear optimization. One popular way to get ~y is randomly sampling ~x. In

this case, the M × N sampling matrix Φ is a diagonal matrix which consists

of the random canonical basis (delta functions). For frequency-sparse signal,

if Ψ is a IDFT matrix with N × N dimension, A is a matrix consisting of

randomly sub-sampled rows of the IDFT matrix. Such a matrix has a high

probability of satisfying the Restricted Isometry Property (RIP) [14], and thus

is suitable for compressive sensing operations. Applying to frequency-sparse

signal, the matrix A is sampling randomly in time domain, and the best

theoretic result of Fourier sampling shows that M = O(K log4N) is sufficient

to satisfy the RIP condition [15]. To find the sparsest solution, the problem

becomes a `1 minimization problem. Considering ADC’s quantization noise,

the minimization problem can be modified as,

minimize ||~α||1

subject to ||~y −A~α||2 ≤ ε,
(2.3)

where the constant ε which bounds the measurement distortion. Without

considering other noise effects, ε can be treated as the quantization noise sigma

value.

2.2 Signal acquisition and recovery

In this section, we introduce our sampling and recovery schemes which

enable high resolution signal acquisition in high speed sampling. First, we

employ random sampling operator which is the same as CS and it is applied
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to the SAR ADC architecture, but the quantization depth is varied by the

consecutive non-sampling period. If the sampling operator is one (1 ) at cor-

responding sampling time instance, the input signal is sampled and latched

until the SAR unit finds the finite bit description: quantization stage. The

quantization depth is decided by the number of following zeros (0 s) which cor-

responds to non-sampling period in the sampling stage, so that the SAR unit

makes use of the time budget to convert the input signal into high resolution

bit description. Thus, the more consecutive zeros allow more precise signal

description with higher quantization depth. With the sampling and quantiza-

tion strategies, every sampled signal can be translated into different precision

which is illustrated in Fig. 2.4.

Figure 2.4: Comparison of sampling schemes.

The sampling and quantization schemes require a more efficient recov-

ery algorithm to fully facilitate the sampled signals with non-uniform quanti-

15



zation levels. Since each sample has different approximation error bound, one

can set tighter constraints for the recovery. Leveraging the error bounds, we

propose an element-wise constraint which is modelled as,

minimize ||~α||1

subject to |yr − (A~α)r| ≤ εr,
(2.4)

where r = 1, 2, · · · ,M , and the subscript r means the r-th entry of the vector.

The error vector is defined as ~ε = [ε1, ε2, · · · , εM ]T which allows to bound the

quantization error. For example, in uniform quantization, the error constraint

vector becomes ε1 = ε2 = · · · = εM . The constraint will give the same re-

sult as the `2 norm case. For non-uniform quantization, εr depends on the

instantaneous resolution, which produces more accurate results than the `2

norm constraint by solving the minimization problem with the element-wise

constraint vector.

2.3 Implementation consideration

In this section, more details about the proposed scheme will be dis-

cussed to consider a real circuit implementation. The proposed scheme can be

implemented in two ways: 1) using two or multiple ADCs (low and high resolu-

tion ADCs), and 2) single ADC with a high-bit DAC architecture. We choose

the later approach due to its simpler architecture and lower power design ca-

pability The simulation results are demonstrated in the following section.
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2.3.1 Sampling sequences

We employ pseudo-random binary sequences (PRBS) with the same

probability for one and zero which imply M = N/2. Assume that the SAR

ADC resolution is limited to 6-bit in high-speed sampling. With conventional

uniform sampling and traditional CS quantization schemes, there are 50%

samples quantized to be 6-bit. With non-uniform quantization scheme, the

quantization depth will be varying depending on the following 1 s and 0 s.

PRBS are useful selection for the proposed SAR ADC architecture because

the sequences can be pre-defined so that they can be stored in non-volatile

memory space. The stored sequences are not only used in the sampling phase

to determine the corresponding quantization depth, but also used to represent

the compressively sampled signals in the recovery afterwords. We note here

that the proposed scheme can be realized in a fully-passive CS framework. The

proposed CS SAR ADC operates in discrete time rather than continuous time

using switch capacitor circuit. In real implementation, the switch capacitor

circuit in the SAR ADC operates with the pre-defined PRBS which allows

to achieve high efficient sampling. Readers may refer to the architecture of

switch-capacitor-based sample-and-hold architecture in [8, 9] which differs from

previous random-modulator-based CS ADC architecture.

2.3.2 Quantization depth

The sampling period is equivalent to the symbol status of the measure-

ment matrix Φ which can be easily implemented by turning on and off the
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switch capacitor circuit. The quantization happens whenever sampling takes

place (1 in the matrix Φ), but just the quantization bit depends on the number

of following 0 s. Before sampling the next sample, the input signal is quantized

in successive manner the same as the conventional SAR ADC does.

To be more specific, the proposed quantization scheme starts quantizing

with b0-bit and keeps increasing the quantization depth depending on the

number of following zero. Defining quantization operator Q, the input signal

xr is to be converted with quantization operator as y(r) = Q(Φxr, br), where

br = b0 + step × zc,r bit (e.g., b0 = 6 bit in our simulation), step is the

step increase in quantization bits, and zc,r is the zero count after the sampling

instance of 1 at r. Since the sampling power is usually negligible in a SAR ADC

design, the quantization phase takes far less time compared to a conventional

SAR ADC which quantizes every sample with the maximum quantization bits

meaning that the proposed architecture can save the total power consumption

in sampling and quantizing phases, and allows savings in memory space after

conversion.

In Table 2.1, for the sake of better understanding, we list the expected

resolution of the uniform randomly generated measurement matrix Φ in the

case of step = 1, b0 = 6-bit, and the maximum quantization bit bmax = 12-bit.

We choose b0 = 6-bit from the trend graph in Fig. 2.2 which shows that 6-bit

precision is the maximum resolution at gigahertz sampling with SAR ADC

architecture using the latest technology.

Ideally, the possible range of step can be set step = b0 in theory, but it
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Table 2.1: Expected resolution

Sequence Probability Resolution
0 1/2 0
11 1/4 6
101 1/8 7
1001 1/16 8

...
...

...
1000001 1/128 11
10000001 1/256 bmax = 12

Other 1/256 bmax = 12

would be better to keep it more conservative manner such as step < b0 con-

sidering delay factors in circuit realization. Most of samples will be translated

into low-bit depth (e.g., 6-8 bits), but quantization with high-bit depth will

be taken by selecting lengthy random sequences.

For simple presentation, without taking into account other additive

noise, the error constraint is equivalent to the quantization noise which is

not uniform. The recovery model of input signal is formulated in (2.4), and

it makes use of the error constraint which bounds the representation error

solving the minimization problem. The quantization noise is a function of bit

depth, thus the error constraint can be replaced by εr = Vref/2
br .

2.3.3 Architecture for the proposed ADC

Since the frequencies of most natural signals are in the order of kHz,

the major constraints with WSN for natural signals lie in area and power con-

sumption rather than speed requirement, meaning that RMPI and MWC are
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Figure 2.5: Non-uniform adc architecture.

unnecessary. Plus that NUS may result in information loss of many natural

signals, RD becomes the best choice for these applications. Different from

conventional RD architectures that require analog mixers and active integra-

tors before a low-rate ADC [16–19], we propose a fully-passive CS framework

that directly embeds random demodulation into a conventional SAR ADC.

The proposed CS SAR ADC operates in discrete time rather than continu-

ous time. In real implementation, the switch capacitor circuit [20] in the SAR

ADC operates with the pre-defined PRBS which allows to achieve high efficient

sampling process.

Fig. 2.5 shows the architecture for a 12-bit CS SAR ADC. Although

a single-ended version is shown here, the real implementation could be dif-

ferential. There are two major differences between a CS SAR ADC and a

conventional SAR ADC. One is that the input signal ~s is multiplied with a
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PRBS ~p to become a randomized sampling before being sampled. For a dif-

ferential input signal, this sampling period is equivalent to the symbol status

of the PRBS vector ~p which can be easily implemented by turning on and off

the switch capacitor circuit. The other difference is that quantization does not

happen after every-time sampling but only happens depending the number of

following 0s after sampling taking place (1 in the PRBS vector). Before facing

the next sampling period, the input signal is quantized in successive manner

such as a conventional SAR ADCs and the quantization cycle is denoted as φ5

in Fig. 2.5. φe is a bit earlier cycles of φ1-φ4 for bottom-plate sampling. Since

the sampling power is usually negligible in a SAR ADC design, the quantiza-

tion phase takes far less time compared to a conventional SAR ADC which

quantizses every samples with the maximum quantization bits (in this case

12-bit) meaning that the proposed architecture can save the total power con-

sumption in sampling and quantizing phases, and allows savings in memory

space after conversion.

In Fig. 2.6, we plot important clock timing which explains the relation

among random sequence clock (diag(Φ)), master clock(φclk), sampling clock

(φsample), and conversion clock (φconv) cycles which operate the SAR ADC

architecture appearing in Fig. 2.3. Other system clocks are operated as the

same as the conventional SAR ADC, but the conversion clock φconv is triggered

with different operation scheme to produce extra quantization bits.

If sampling time instance has 1 in the diagonal element of the measure-

ment matrix Φ, φsample triggers φconv to start conversion. Next, the conversion
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Figure 2.6: Sampling and conversion clock timings (a) and clock generator (b).

clock φc is triggered simultaneously to operate the comparator for the SAR

process, and the DAC starts producing digital bits of the sampled signal. If

sampling time instance has 0 in the measurement matrix, the sampling clock

φsample stays low and prepares the ADC for the next conversion after produc-

ing conversion outputs to the DAC. The delay between the end of conversion

bit and the next conversion clock φconv is to reset and prepare for the next

conversion. There is the main difference between the conventional SAR ADC

and the proposed architecture in clocking φconv. Although the the sampling

clock φsample stays low, φconv is being triggered to produce extra bit(s) if there

is following zero(s).

The new architecture requires minimum modification of the conven-

tional SAR ADC and mostly compatible to the architecture. Thus, the pro-
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posed architecture is flexible to operate in a Nyquist-rate SAR mode for non-

sparse signals.

2.4 Experiments

We compare the performance of the proposed sensing scheme to the

uniform sampling (us) and traditional CS (cs) through MATLAB simulations.

In the simulation, we explore the quantization scenarios with from 6 to 12-

bit depth for the proposed quantization scheme. At each simulation case,

100 trials of simulation are performed and the results are averaged. Effective

Number of Bits (ENOB) is investigated for comparison purpose and ENOB

is defined as ENOB = (SQNR - 1.76) / 6.02 bit, where SQNR stands for

signal-to-quantization noise ratio, the divisor 6.02 is for dB conversion, and the

subtraction term of 1.76 is to compensate quantization error in an ideal ADC.

Fig. 2.8 shows the comparison of ENOB (y-axis) vs. quantization level of SAR
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ADC (x-axis) for input signals with K ∈ {3, 5, 10, 20} sparseness in discrete

Fourier transform domain. We compare ENOBs among uniform sampling

(us), compressive sampling (cs), and the proposed quantization scheme with

step = {1, 2, 4}. The x-axis indicates the quantization bit levels. For the

result of us, it means ADC is uniformly quantized to this resolution. For

cs, it performs random sampling with the fixed quantization levels. Lastly,

the proposed scheme randomly samples the input with initial quantization bit

from b0 to br-bit which is described in Section 2.3.2.

As plotted in Fig. 2.8 (a) the proposed scheme outperforms us and cs

schemes converting sparse input signals; (b) for inputs with low sparseness,

the proposed scheme at least equivalent to us scheme; (c) for the least sparse

signals in our simulation, us shows the best ENOB, but the proposed scheme

works better than conventional cs-based sampling results. The performance of

the proposed architecture is ruled by input signal sparseness with respect to the

total number of measurements. The proposed system becomes more effective

if the target input is sparser in the frequency domain. This is a expected result

since the overall system is ruled by RIP condition in compressive sensing.
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(a) |x|0 = 3

(b) |x|0 = 5

Figure 2.8: Simulation results (high sparsity inputs).
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(a) |x|0 = 10

(b) |x|0 = 20

Figure 2.9: Simulation results (low sparsity inputs).
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2.5 Conclusion and discussion

In this chapter, a new sampling scheme has been presented that consists

of a non-uniform quantization scheme with random sampling strategy. The

proposed scheme is designed to increase the resolution of a SAR ADC mak-

ing use of pre-defined PRBS which enables the acquisition of high-frequency

signals with above 6-bit resolution, something that has proven challenging

with conventional SAR ADC architecture. With the non-uniform quantization

scheme, the average quantization noise is decreased. In addition, it provides

higher quality signal recovery than the traditional CS-based sampling schemes.

This chapter has also discussed details regarding circuit level imple-

mentation in order to realize the scheme with SAR ADC architecture. The

performance of CS-based sampling is mainly affected by the sparseness of sig-

nals, and this issue applies to the proposed scheme as well. In addition, the

noise-folding effect that the CS strategy entails weakens the performance of CS-

based sampling schemes. Thus, the proposed architecture may not be efficient

for every type of signal, but it is ideal for band-limited sparse-signal acquisi-

tions under moderate noise levels. For applications, gigahertz communication

signals could be a potential candidate since they meet those requirements. In

practice, there are multiple noise sources that can contribute to the total sum

of noise levels, e.g. quantization and thermal noise. The proposed scheme

reduces the total quantization noise in comparison with the conventional CS

sample strategy, but the effect of other noise sources needs to be investigated

in a subsequent study. Also, the future research should investigate the power
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consumption of the proposed architecture, which is an issue that is not covered

in this work. Nevertheless, the proposed non-uniform quantization strategy

can be a possible method to overcome the sampling rate-and-precision limit

that is a challenging problem in SAR ADC design, even with recent techno-

logical advancement.
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Chapter 3

Multi-Channel Sparse-Signal Conversion

3.1 Introduction

Signal-processing applications such as sensor arrays, physiological sig-

nal monitoring, and brain machine interfaces (BMI), require digitization of

multiple channels of analog signals. In BMI [21] and physiological signal ac-

quisition [22], it is common to acquire up to 128 channels of simultaneous

data [23, 24]. Also, in consumer electronics, multi-microphone technology is

now the gold standard for speech enhancement [25]. In reference to the above

mentioned examples, the question addressed in this chapter is whether or not it

is necessary to linearly scale the analog hardware for each additional channel.

We find that it is possible to use fewer analog-to-digital converters (ADCs)

than channels by leveraging sparse representation of signals and blind source

separation (BSS) techniques [26–28]. Compressive (compressed) sensing (CS)

approaches have been and are being employed to try to reconstruct a signal at

sub-Nyquist rates [29] with different levels of reconstruction accuracy. These

approaches focus on recovering single channel [29, 30] or multi-band informa-

tion [31] rather than multiple channel inputs as in the scenario we investigate.

Two straightforward approaches to performing multiple channel analog-
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to-digital (A/D) conversion with a single ADC include time multiplexing and

frequency multiplexing. In time multiplexing, all input channels are converted

sequentially according to a multiplexing plan. However, when converting one

channel, the information of other channels is not available. Therefore, the

effective sampling rate per channel is given by the ADC sampling rate divided

by the number of channels. This rate decreases as the number of channels

increases, which is undesirable in energy-efficient sampling. In frequency mul-

tiplexing, the solution involves modulating the analog signals so that they

occupy non-overlapping frequency bands and digitizing the sum of the mod-

ulated signal. The main drawback is that the required ADC sampling rate

increases linearly with the number of channels leading to substantial power

consumption.

The proposed solution is, in what follows, an alternative approach ex-

ploiting sparse-signal modeling of BSS with a known mixing matrix, which

turns out an informed source separation (ISS) model [26], and sparse recon-

struction methods, widely used in CS systems. In particular, this chapter

considers the problem of using a single ADC or quantizer system to digi-

tize multi-channel inputs that consist of an unknown number of sinusoids of

unknown frequencies. For realizing the proposed system, we design switched-

capacitor(SC)-based sampling and hold (S/H) circuits implementing the mixed

signal block. Such systems perform the A/D conversion using discrete-time

operations implemented in the analog domain.

In the proposed solution, the M -channel signals are sampled at the
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Nyquist rate that is the same rate as a single-channel sampling case. However,

the rate can be increased at a slightly higher rate if the input signals have

lower sparseness levels than expected. The increased rate is determined by

the maximum number of sinusoids in the input signals. The samples of the

input signals are summed after multiplication by carefully selected pseudo-

random binary sequences (PRBS) [32] of plus and minus ones (±1) that can be

implemented via polarity reversal of SC circuits. The single ADC or quantizer

converts the mixture into digital sequences, and then the resulting output

is separated into digitized sequences corresponding to the channel inputs at a

DSP block. The overall architecture of the proposed ADC system for digitizing

two input signals using a single quantizer is shown in Fig. 3.2. We can linearly

extend the number of input channel by simply adding the same input circuit

block if the input signals are guaranteed sufficient sparseness after the channel

extension. Each signal is assumed to have a sparse representation in a known

dictionary; that is, over any interval of time, each signal can be reconstructed

using a number of dictionary entries that is lower than the number of degrees

of freedom associated with that time interval.

3.2 Problem Formulation

3.2.1 Sparse-Signal Mixture Model

For simplicity of exposition, we assume here that we are dealing with a

signal that consists of a random superposition of a random number of columns

of the N -point discrete Fourier transform (DFT) matrix. We can represent
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the mth channel N × 1 signal vector ~sm in terms of N -point DFT matrix F

that consists of N × 1 column vectors ~fn = 1√
N
exp {−j2πk(n− 1)/N}, where

n = 1, 2, · · · , N that indicates nth column, k = 0, ±1, · · · , ±dN/2− 1e, and

a N × 1 coefficient vector ~α as,

~sm = F~α =
N∑
n=1

αm,n ~fn, (3.1)

where m = 1, · · · , M that indicates channels, and αm,n is the nth entry of a

sparse coefficient vector ~αm corresponding to the dictionary atom ~fn. If the

signal vector ~sm is Km-sparse, then its coefficient vector ~αm has Km nonzero

entries. Each channel input is now modulated with spreading sequence vector

~pm associated with mth input channel as,

~xm = ~pm ~sm. (3.2)

Subsequently, we obtain the mixture of the modulated signal vectors which

has the same bandwidth of the input signal,

~y =
M∑
m=1

~xm, (3.3)

where ~y is a N×1 vector. The observation vector ~y can be written with respect

to the equation (3.1) as,

~y =
M∑
m=1

N∑
n=1

αm,n ~pm ~fn. (3.4)

Now, we define a N × L union of dictionary A, where L = MN and A =

[A1 A2 · · · AM ]. The measurement matrix A consists of submatrices Am ob-

tained from modulating each column vector of the N -point DFT matrix F
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with spreading sequence vectors ~pm. In other words, the augmented measure-

ment matrix A consists of the modulated DFT dictionaries Am =
[
~pm ~fn

]
,

where n = 1, 2, · · · , N . With the augmented dictionary A, we obtain the

measurement vector as,

~y = A~α, (3.5)

where ~α> =
[
~α>1 , ~α

>
2 , · · · , ~α>M

]
. This forms an under-determined system,

and we pictorially illustrate the system equation in Fig. 3.1. By accurately

estimating the coefficient vector ~α, each input ŝm can be recovered as,
ŝ1

ŝ2
...
ŝM

 =


F 0 · · · 0
0 F · · · 0

0 0
. . .

...
0 0 · · · F



α̂1

α̂2
...

α̂M

 , (3.6)

where α̂m is an N × 1 vector. We pictorially illustrates the equation (3.5) in

Fig. 3.1.

Now, we arrive at the question that is how to estimate a sparse solution

of (3.5). In practice, a variety of convex [33, 34] or greedy algorithms [35, 36]

have been suggested that yield a sparse coefficient vector ~α. We introduce

three major classes of algorithms in the following subsection.

3.2.2 Signal Reconstruction

Let us discuss the problem of constructing the digitized sequences cor-

responding to all channel inputs using their sparse-signal structures and re-

construction algorithms that are widely used in the CS community. This can

be done by identifying the sparse representation of the mixture in terms of
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Figure 3.1: The mixture signal model (~y) with the augmented measurement
matrix (A) and the concatenated coefficient vector (~α).

the union of the dictionaries corresponding to the signals in the mixture. In

our discussion, we seek a sparse representation of the mixture in terms of the

union of a modulated DFT matrix. The coefficients corresponding to entries

drawn from the modulated DFT matrix will be used to reconstruct the digi-

tized sequence corresponding to each channel. The theory extends naturally

to the general case when we are dealing with an arbitrary number of sinusoids

of arbitrary frequencies.

The ability to reconstruct the desired digitized sequences hinges on our

ability to find the sparsest signal representation of the mixture. There are two

major algorithms to find a sparse solution of under-determined system set-up

[37], `1 linear/convex optimization approaches [38, 39], and greedy approaches

[40–42].
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Approach 1: The first family of methods that provides a sparse solution

of an under-determined systems is the traditional `1 convex/linear optimiza-

tion methods defined as,

minimize
~α

‖~α‖1

subject to ~y = A~α.
(3.7)

There have been reported different recovery methods that produce

the solution of the optimization problems. LASSO-styled `1 sparse recov-

ery method [38, 39] is a widely used method in this category regularizing `1

optimization problems such as,

minimize
~α

1

2
‖A~α− ~y‖2

2 + λ ‖~α‖1 , (3.8)

where λ is a positive regularizing parameter. The methods are belong to this

family can be implemented by linear programming techniques, and they have

O(N3) complexity to recover signal vector with length N [4].

Approach 2: The second class of sparse representation methods is greedy

methods. The orthogonal least square (OLS) [40], orthogonal matching pur-

suit (OMP) [43], and compressive sampling matching pursuit (CoSaMP) [42]

belong to this category, and they have O(NK2) complexity in general where K

is the number of signal components [36]. The OLS approach is similar to the

OMP but uses a different directional update scheme. A simple modification of

the OLS outperforms other methods. The modification consists of drawing at
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each step simultaneously elements from each of the dictionaries in the union of

spread dictionaries that provide a sparse representation of the mixture. That

is, in our illustration, in each step we would select one column from the spread

DFT matrix Am. In contrast, the traditional OLS method selects only one

entry from the signal dictionary F at each step. The OLS steps are describe

as following:

Algorithm 1 Multi-channel OLS procedure

1) Initialization
q = 0, r0 = y, ŷ0 = 0,
Ω0
m = {1, 2, · · · , Km} , for all m = 1, 2, · · · ,M

Γ0 = �, W = {dim}im∈Ω0
m

2) While stopping criteria are not met
a) q = q + 1
b) Pick atom with maximum correlation to residual
iqm = arg maxjm |< wjm , r

q−1 >| , jm ∈ Ωq−1
m

c) Remove atom index from set and add to set Γ
Γq = Γq−1 ⊗ ql
Γq = Γq−1 ∪ iqm

d) Update residual and approximation

rq = rq−1 −∑M
i=1 < wiqm , r

q−1 > wiqm
ŷq = ŷq−1 +

∑M
i=1< wiqm , r

q−1 > wiqm
e) Decorrelate remaining dictionary atoms from wiqm

such that for all jm ∈ Ωq,
wjm = wjm− < wjm , wiqm > wiqm
wjm = wjm/ ‖wjm‖2

f) Check stopping criteria

Approach 3: It is also possible to use a reconstruction technique that com-

bines advantages from `1 and `2 minimization methods. We promote better
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reconstruction performance than each independent method. The combined

`1,2 method consists of two steps. First, a collection of frequency index to

represent the mth channel input ~sm, is estimated from a `1 solution such

that Im = {1 ≤ i ≤ N | |αm,i| > ε}, where ε is a positive thresholding value

slightly greater than zero, and αm,i is the ith entry of the coefficient vector

~αm. Secondly, we compute a least square solution α̃ using a new dictionary

formed by column vectors that belongs to Im from the modulated matrix Am,

minimize
α̃m

∥∥∥~y −∑i∈Im
~fm,iα̃m,i

∥∥∥
2
, where ~fm,i is the ith column vector of Am.

The recovery is performed as, ~sm =
∑

i∈Im α̃m,i
~fi.

General Case: In the general case, the signal can be represented with

an overcomplete dictionary with columns of the form ~fn =
[
e−jωnk

]
, where

ωn = n∆ω and ∆ω is chosen to provide the decreased frequency resolution.

These frequencies {ωn}, where n = 1, 2, · · · , N , are used to generate

the columns of the dictionary ~fn =
[
e−jωnk

]
. The augmented measurement

matrix will then consist of the modulated dictionary elements, Am =
[
~pm ~fn

]
.

3.2.3 Incoherent Sampling and Signal Sparseness

Let us think about the sensing model of N measurements of MN -length

signal of interest ~x such that

~y = Φ~x (3.9)
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where the sensing matrix Φ has a dimension of N× (MN), and M > 1. In the

noiseless case, the coherence-based recovery guarantee [44] can be obtained by

the following theorem.

Theorem 3.2.1. [45] Suppose the signal ~x is taken from the generic K-sparse

model. If √
µ2K · c0 · logMN +

K

MN
||Φ||22 ≤ C, (3.10)

where a positive constant c0 ≥ 1, and C > 0, then ~x is the unique solution to

`1 minimization programming with probability 1− (MN)−c0.

Abusing the MATLAB notation, with the measurement matrix Φ which

has unit norm columns such that ||Φ(:, i)||22 = 1, the coherence of matrix Φ is

defined as

µ(Φ) = max
1≥i 6=j≥(MN)

| < Φ(:, i),Φ(:, j) > |, (3.11)

where Φ(:, i) denotes i-th column of the measurement matrix Φ. The coherence

value is bounded by [µmin, 1] and the lower bound µmin is known as the Welch’s

bound [46] which is computed as µmin =
√

M−1
MN−1

. By Hölder’s inequality, the

norm of sensing matrix Φ has lower bound

||Φ||22 = ||ΦHΦ||22 ≥
trace(ΦHΦ)

N
= M. (3.12)

In the noisy case, K-sparse signal ~x can be identified using the uncon-

strained LASSO with high probability provided that the nonzero coefficients

have higher amplitudes than that of the noise signal [47]. In both theorems,

it can be observed that smaller coherence µ(Φ) of the sensing matrix supports
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better recovery guarantees, and this is the crucial point designing the sensing

matrix.

3.3 System Design

The proposed system consists of two blocks, a mixed signal block and

a digital signal processing (DSP) block. The mixed signal block includes

sample-and-hold (S/H) circuits, modulators, adders, and a single ADC or

quantizer. The DSP block is to separate channel inputs ŝ1[n], ŝ2[n], · · · , ŝm[n]

from the mixture y[n] running a reconstruction algorithm, and generates dif-

ferent spreading sequences for channel modulation. In an actual system, S/H

circuits, modulators, and adders are implemented using SC circuits. In the pro-

posed architecture, we implement these operations in the mixed signal block,

and we describe the details in Section 3.4.

3.3.1 Sampling Rate

We discuss the sampling rate here in the context of reconstructing sig-

nals that are quasi-stationary1 over time intervals of length T . We also assume

that each signal consists of a superposition of an unknown number of unknown

sinusoids over short fixed intervals of T . The sampling rate fs is selected such

that the number of samples in any time interval T is larger than the sum of the

1A discrete-time signal {x[n]}Nn=1 is quasi-stationary if E {x[n]} is bounded for every N

such that, Rx(τ) = limN→∞
1
N

∑N
n=1E {x[n]x[n+ τ ]}, and the signal has spectral density,

Φx(ω) =
∑∞
τ=−∞Rx(τ)e−jωτ .
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total numbers of frequency components in the M channel inputs. For example,

let us assume that at the Nyquist sampling rate, the time interval over which

the signals are quasi-stationary consists of N samples. Furthermore, assume

that each signal consists of a random superposition of a random number of

columns of the N -point discrete Fourier transform (DFT) matrix. Then recon-

struction from signals sampled at the Nyquist is possible only if the sum of the

numbers of frequency components in the M channel inputs is less than N/2.

In other words, for signals that are quasi-stationary over intervals of length

T , the sampling rate fs needs to provide in any time interval T a number of

samples N = Tfs such that N is larger than the sum of the total numbers of

dictionary atoms required to express each of the M channel inputs.

3.3.2 Modulation and Mixing

The main challenge in the proposed system is the separation of the sam-

ples of the signals after they have been modulated and summed. If the input

signals are band-limited and sparse in a known domain, the channel inputs can

be represented by a sparse representation method with a linear combination

of dictionary atoms, column vectors of the dictionary, and coefficient vectors

corresponding to each atom.

To address these challenges, we modulate every channel inputs by a

properly designed sequences. We select to use sequences of ±1 to perform

the modulation. Such a modulation scheme can be simply implemented using

polarity reversal. Furthermore, it avoids amplifying or attenuating the signal
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samples. Finally, demodulation is very simple as it consists of multiplying the

signal samples by the same sequence used in the modulation stage. Amongst

all possible sequences of ±1, we seek a sequence that will simplify the signal

reconstruction problem. After modulation by such a sequence, each modulated

dictionary atom must have a non-sparse representation in terms of the original

dictionary.

3.3.3 Selection of Mixing Sequences

In practice, we need to select a pseudo-random sequence of ±1. Sev-

eral classes of PRBS with efficient correlation properties are reported in the

communication studies such as maximum length, Gold [48], Kasami [49], and

Hadamard [50] sequences. Auto- and cross-correlation properties of the se-

quences are important. Hadamard sequences are reported to offer a poor

spectral estimation probability because they show multiple peaks in their

cross-correlation function [31]. Kasami sequences are regarded as the opti-

mal choice in communication, but the sequences also yield many peaks at the

Welch’s bound level. Contrary to Hadamard and Kasami sequences, maxi-

mum length and Gold sequences yield peaks with lower aggregate energy than

other sequences, and both sequences show similar probability of successful re-

construction performance [31]. Gold sequences are proposed in 1967 [48], and

constructed by EOR-ing two maximum length sequences. Due to this inherent

property from generation, Gold sequences have better cross-correlation prop-

erty than maximum length sequences. Thus, the Gold sequences is the optimal
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Table 3.1: Types of pseudo-random sequences.

Types Set of pairs r µ

Maximal 2r + 1 even and odd ≥ 1

Gold 2r + 1 odd ≤ 1 + 2
r+1
2

Gold 2r + 1 even ≤ 1 + 2
r+2
2

Kasami (small) 2(r/2) even ≤ 1 + 2
r+2
2

Kasami (large) 2(r/2)(2r + 1)− 1 even and mod(r,4) = 2 ≤ 1 + 2
r+2
2

*r is a positive integer and each method has N = 2r − 1 sequence length.

choices to modulate each channel input with ±1 sequence guaranteeing min-

imum coherence in Theorem 3.10. We compare the cross-correlation (µ) and

other characteristics of these peudo-random sequences in Table 3.1.

3.3.4 Comparison with Conventional CS

In this subsection several differences between our sparse data converter

and conventional CS approaches are addressed. The proposed system uses the

same PRBS as conventional compressed sensing, but the proposed architecture

uses the sequences with a different way. In CS approaches, the sequences are

to compute random projections of the input signal. Thus, the input signal is

multiplied in the analog domain by the ±1 sequences, leading to bandwidth

expansion. The multiplication is followed by integration to compute a projec-

tion. Following that, an integrator [29] is required before or after modulating

input signals (see Fig. 3.3 (a)). Readers may refer recent studies exploiting CS

techniques in [30]. In contrast, we do not compute projections and do not need

integrators after modulation (see Fig. 3.3 (b)). The modulation in our system

43



is a discrete-time operation, albeit implemented in the analog domain using

SC circuits. Its purpose is to maximally decorrelate the dictionaries used to

represent different input signals.

3.4 Circuit Level Realization

In this section, we will discuss the circuit level realization concentrating

on the mixed signal block and the single-channel ADC for the proposed ADC

system. For simplicity, we explain the proposed system with two channel

inputs instead of M channels and a single ADC. The number of input channels

in our proposed system is linearly scalable, and we can increase the number of

channels by minimal modifications of the mixed signal block and reconstruction

algorithms in the DSP block with the identical mixed signal block as in Fig. 3.2.

However, the increased channel inputs are spread over the same bandwidth as

the two-channel case. Thus, the input bandwidth needs to be tightened by

LPFs depending on the sparseness of the input signals.

3.4.1 Selection of ADC

We do not require special design for the single-channel ADC (see Fig. 3.2).

It can be implemented using various types of ADC structures, including flash,

folding and interpolating, pipelined [5, 6], and successive approximation reg-

ister (SAR). If the pipelined structure is adopted, which is suitable for high-

speed (10MHz to 1GHz) and medium resolution (8 to 14 bits) applications, we

can reduce the overall circuit power by merging the first-stage of the pipelined
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ADC with the mixed signal block of Fig. 3.4, following the design principles

of [6, 51].

3.4.2 Switched-Capacitor-Based Modulation

The reason for using the SC circuit to implement the mixed signal block

is its high linearity [52]. Assuming the OTA is ideal, the precision of the analog

operation in equation (3.13) is set by capacitor ratios, which are insensitive

to process, voltage, and temperature (PVT) variations. Switch nonidealities,

including nonlinear resistance, clock feed-through, and charge injection, can

be effectively addressed by existing circuit techniques, such as bottom-plate

sampling [53, 54] and clock bootstrapping [55, 56]. In real implementation, the

linearity of the SC circuit is likely to be limited by OTA nonidealities, such

as nonlinear output resistance. To ensure adequate OTA linearity, we can use

gain boosting techniques and calibration techniques [20, 57].

3.4.3 Mixed Signal Block

The mixed signal block of the proposed two-channel ADC shown in

Fig. 3.4 can be efficiently implemented using SC circuits with high linearity.

Fig. 3.4 shows one SC circuit example that implements altogether the functions

of random modulation, S/H, and summation. The waveforms of the clocks that

control the switches are shown at the bottom of Fig. 3.4.

~y = (~p1 ⊗ ~s1 + ~p2 ⊗ ~s2) /2, (3.13)

where ⊗ represents elementwise vector multiplication.
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The mixed signal block has two operation phases, controlled by two

non-overlapping clocks φ1 and φ2. When φ1 is high, the SC circuit operates in

the sampling phase, whose simplified single-ended block diagram is shown in

Fig. 3.5(a). In this phase, the operational transconductance amplifier (OTA)

is configured in unity feedback to ensure that node X is a virtual ground. The

two input signals ~s1 and ~s2 are multiplied with ~p1 and ~p2 by the switch arrays

(see Fig. 3.4), and the products are sampled on two capacitors. When φ2 is

high, the SC circuit operates in the summation phase, in which the capacitors

are reconfigured to be placed across the OTA, as shown in Fig. 3.5(b). Assum-

ing the SC circuit completely settles at the end of this phase, we can prove,

based on charge conservation at node X, that: Although there is a divide-by-2

operation in the equation (3.13), which is different from the mixed signal block

shown in Fig. 3.2, this gain error can be compensated by scaling the output

of the single-channel ADC in the digital domain.

3.4.4 Digital Back-End

The major role of the DSP block is to separate and reconstruct each

channel input accurately from the digitized mixture using convex optimization

or greedy methods. The block also needs to produce PRBS to spread channel

inputs over the available mixture bandwidth. The spreading sequences such

as maximum length and Gold sequences can be iteratively generated using a

set of shift registers [58], but we uses pre-computed sequence patterns. The

selection of spreading sequences determines the pattern of ±1, and then the
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pattern can be pre-stored in memory devices inside the DSP block. The S/H

circuits use the pattern to spread each input before summing them. Also, the

stored sequence patterns are referred in the separation process as well because

the separation is performed with the modulated dictionaries. In addition, the

DSP block performs framing and windowing the digitized mixture signals for

block-wise recovery of the input signals.

3.5 Simulation Results

In this section, we demonstrate simulation results of the proposed sys-

tem corresponding to digitized sparse input signals. To find `1 and LASSO

solutions, we write MATLAB codes based on disciplined convex programming

with CVX [59]. Also, the reconstruction algorithms that recover the input

signals in the DSP block are simulated via MATLAB programming as shown

in Fig. 3.6. To evaluate input signal occupancy versus reconstruction fidelity,

we first synthesize multi-tone signals that consist of Km number of random

integer frequency components. The frequency components and amplitudes of

sinusoids are randomly selected within the available bandwidth. The mixture

of each channel signal is sampled at 512Hz, and then we compute SRERs.

Figs. 3.7 to 3.9 illustrates the results of MATLAB simulations. To show the

multi-channel capability of the proposed architecture, we increase the number

of channels from two to four channels. We found empirically greedy methods

outperform `1 methods for input signals with moderate occupancy (≤ 50%)

in Figs. 3.7 to 3.9.
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Figure 3.6: Simulation procedure with the proposed architecture.
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3.5.1 Occupancy and SRER

The sparse reconstruction algorithms introduced in Section 3.2.2 are

tested for comparison. To evaluate the fidelity between the input and corre-

sponding reconstructed signals, we define the reconstruction signal-to-reconstruction-

error-ratio (SRER) as,

SRER(~s, ŝ) = 20 log10

( ‖~s‖2

‖~s− ŝ‖2

)
, (3.14)

where ~s is the input signal, and ŝ is its recovery signal. To see the relationship

between input signal sparsity versus the reconstruction performance, we need

to define a metric for sparseness measure clearly. Because readers may be

confused to see the sparseness of the input or mixture signals, we compute a

percentage of the frequency components that embedded in all input signals.

With this idea, we define the occupancy of frequency components within the

mixture signal as,

Occupancy (%) =

∑M
m=1 Km

B T
× 100, (3.15)

where Km is the number of frequency components of the mth channel input, B

is the mixture bandwidth, and T is the sampling time interval. The simulation

performed 100 times with synthesized inputs, and the input signal is of ran-

domly selecting Km frequency components. In Figs. 3.7 to 3.9, the horizontal

axis indicates the occupancy of the synthesized input signals, and the vertical

axis shows resulting SRERs.
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Figure 3.7: Simulation results of multiple-channel inputs with ideal and 16-bit
ADCs: Two-channel inputs (M = 2).
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Figure 3.8: Simulation results of multiple-channel inputs with ideal and 16-bit
ADCs: Three-channel inputs (M = 3).
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Figure 3.9: Simulation results of multiple-channel inputs with ideal and 16-bit
ADCs: Four-channel inputs (M = 4)
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Table 3.2: Windowing and recovery improvements

Category Type Improvements

Window Functions
Hanning, Hamming,

Sine, Ogg-Vorbis
≤ 5dB

Spreading Sequences
Maximum, Gold,

Kasami, Hadamard
≤ 5dB

Dictionary Selection DFT, DCT, MDCT ≥ 10dB

Recovery Methods
`1, LASSO, OLS,

CoSaMP, Combined
≥ 10dB

3.5.2 Continuous Conversion of Multi-Channel

In continuous conversion, we cannot ensure the quasi-stationary prop-

erty of the input signal, thus framing and windowing are essential in recovering

each input signal out of the digitized mixture. Because of the block-wise pro-

cessing, we may lose some signal information, thus the recovery process is

performed with 50% overlap in every frames. There are many choices to make

in the continuous conversion, and we summarize the expected improvements

by applying different selection for reconstruction process in Table 3.2. From

the table, the reconstruction is more affected by the selection of dictionary to

represent the mixture signals and recovery methods.
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Figure 3.10: Signal recovery of synthesized inputs (s1 6= s2): (a) and (b) plot
the first and second channel inputs. Input (upper), recovered (middle), and
error (s-ŝ) (bottom) signals are shown respectively.
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Figure 3.11: Signal recovery of synthesized inputs (s1 6= s2): Spectral power
density: (a) and (b) show the frequency power spectrum of input (dotted line)
and recovered (solid line) signals.

58



3.5.3 Simulation With Speech Signals

So far, we have shown that the proposed multi-channel scheme works

well under the assumption that the inputs are sparse in certain domain. A

natural question that arises is whether the proposed scheme should work for

signals that are not or moderately sparse. One of such examples is speech

signals. We test two sets of speech samples to see the reconstruction perfor-

mance through our ADC architecture. Two three-second long speech samples

are prepared for the simulations, and they are sampled at 8kHz through the

proposed ADC architecture. Speech signals are known to be sparser in mod-

ified discrete cosine transform (MDCT) basis than the other basis. Thus, an

MDCT dictionary is selected rather than a DFT dictionary for the sparse rep-

resentation of the mixture signal. To find sparse coefficient vectors, we use

SL0 solver [60, 61] as the same as the previous simulations. The simulations

with speech signals show 23.3dB and 24.3dB SRERs for the first and second

input channels respectively, and the results are shown in Figs. 3.12 and 3.13.

The proposed architecture works even for the scenario with an identical

input on both channels, and we obtained 22.4dB SRERs on both channels

when we use the same speech samples as inputs to the two channels. In the

case of identical or correlated channel inputs, the total spectral occupancy of

input signals is increased in every signal frames than uncorrelated cases. The

increased occupancy results in slightly decreased SRERs after reconstructing

each input signals as shown in Figs. 3.7 to 3.9.
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−Ŝ

1

time

(a) (a)

0 0.5 1 1.5 2 2.5
−1

0

1

S 2

time

0 0.5 1 1.5 2 2.5
−1

0

1
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Figure 3.12: Signal recovery of different speech inputs (s1 6= s2): (a) and (b)
plot the first and second channel inputs. Input (upper), recovered (middle),
and error (s-ŝ) (bottom) signals are shown respectively. Recovery error of the
first channel: SRER(s1, ŝ1) = 23.3dB. Recovery error of the second channel:
SRER(s2, ŝ2) = 24.3dB.
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Figure 3.13: Spectral power density: (a) and (b) show the frequency power
spectrum of input (dotted line) and recovered (solid line) signals. Power spec-
trum of the first channel: SRER(s1, ŝ1) = 23.3dB. Power spectrum of the
second channel: SRER(s2, ŝ2) = 24.3dB.
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3.6 Circuit Implementation

The proposed multi-channel architecture is designed and fabricated in

130nm CMOS process. Similar to conventional SAR ADC, the design blocks

consist of clock generator, mixer, DAC array, comparator, and asynchronous

SAR logic blocks. By effectively integrating all the blocks into a single SAR

ADC, we not only save power, signal bandwidth and area, but also the design

tries to avoid timing skew, offset mismatch, and gain mismatch across chan-

nels. The trick to avoid timing skew is on the fact that all the channels are

being sampled are controlled by one bottom-plate sampling switch. Thus, the

design with one comparator is guaranteed to avoid offset mismatch. The gain

mismatch comes from the capacitor mismatch, but this can be compensated

with the capacitor calibration.

After prototyping the architecture, removing or calibrating offsets is a

necessary to improve the ADC’s accuracy as otherwise it is turned into large

noise by the PRBS. It is worthwhile to note here how to calibrate the overall

ADC offset. An easy calibration of the fabricated ADC is found by taking

advantage of the inherit multiplication between the input ~s and the PRBS ~p.

To remove the offset value, the mean of the ADC result Vos is measured after

applying a monotonous input ~s such as Vos = mean(~p⊗ ~s+ voff ), where voff

is the comparator offset voltage.

Different from the single-channel CS SAR ADC in Chapter 2 which

requires non-uniform quantization cycles depending on the neighboring sam-

pling cycles, the multi-channel CS SAR ADC requires exactly the same the
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Figure 3.14: Proposed 12-bit four-channel CS SAR ADC timing diagram.

operation timing as a conventional SAR ADC. In the sampling phase, all the

channels are sampled simultaneously . All the channels are averaged on-the-fly

and conversion phases start after the sampling phase. Thus, the SAR logic

can be easily implemented in a synchronous fashion.

Fig. 3.14 shows the timing diagram for the 12-bit four-channel CS SAR

ADC operation. As can be seen, a 4-bit ripple counter is used to divide the

master clock into 16 cycles. The 1st cycle is used for the sampling phase φ1.

lat is a clock signal for the comparator. When it is high, the comparator starts

to make a decision. When it is low, the comparator is reset. After sampling,

the DAC array is redirected to an initial sequence {1,-1,-1,-1,-1,-1,-1} to be
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ready for the first-bit comparison. The 2nd cycle is used for the DAC settling

to the initial sequence. The lat signal starts from the 3rd cycle and ends at

the 15th cycle, producing 13 digital outputs, one of which is a redundant bit.

The final cycle Output is used to store the digital outputs.

Fig. 3.15 shows the synchronous SAR logic architecture. Compared to

the asynchronous SAR logic architecture, the major difference is that the com-

parator is clocked by a synchronous lat signal rather than self-clocked. More

details about the ADC design is described in [62], which has been completed

while Dr. Wenjuan Guo was a Ph.D student at The University of Texas at

Austin.

3.7 Measurement Results

The proposed multi-channel ADC is designed in a 12-bit four-channel

SAR architecture and the design is fabricated in a 0.13 µm CMOS process,
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Figure 3.16: Chip die photo and layout.

occupying an area of 0.39 mm2. The die photo and layout of final design is

shown in Fig. 3.16. The chip is designed at a power supply of 0.8 V and a

sampling frequency of 1 MS/s. The total DAC capacitance is 2.1 pF × 2 with

a unit capacitor of 2 fF.

After fabrication, the prototype ADC is tested in two modes: 1) Single-

Channel Model and 2) Multi-Channel Mode. In the Single-channel Mode, the

PRBS is set to be always 1 and the chip performance is measured which gives

a overview of the design completeness. In the Multi-Channel Mode, the PRBS

is generated from an external FPGA and streamed into the chip via a four-

channel level shifter. To demonstrate the four-channel sampling performance,

discrete-tone signals and real-word speech signals are prepared and tested.

In this section, the measured performance is presented, and the performance

comparison between the four-channel prototype ADC and prior single-channel
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CS works will be exhibited in the next section.

3.7.1 Single-Channel Mode Measurements

To verify the performance of the prototype SAR ADC, the chip is oper-

ating with all ~pm to be 1 instead of modulating with PRBS. With this set-up,

all the channels sense the same input signals, and thus the four-channel CS

SAR ADC works exactly the same as a conventional SAR ADC. Fig. 3.17(a)

shows that the measured spurious-free dynamic range(SFDR) and signal-to-

noise-and-distortion ratio(SNDR) up to the Nyquist rate which are measured

to be 76 dB and 66 dB respectively. Fig. 3.17(b) shows the SFDR and SNDR

trend with various input amplitudes. To demonstrate the capability of the

ADC to sample four-channel input signals simultaneously, Fig. 3.18 shows the

measured output spectra when a 100.016 kHz, 200.016 kHz, 300.016 kHz, and

400.016 kHz -3 dBFS sinusoidal inputs are fed to each channel respectively.

Since the ADC output is the averaged value of the four channels, the output

spectra should contain four tones at these input signal frequencies, each of

which is around -15 dBFS. The total power consumption is measured to be 34

µW with 0.8 V and 1 MS/s operation.

Fig. 3.19 illustrates the measured power breakdowns of the chip. It

is worthwhile to note that the digital portion accounts for 74% which can be

greatly reduced by process scaling. Combining all the metrics, the prototype

ADC achieves a FoM of 20.4 fJ/conversion-step in the Nyquist-mode.
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(a) SFDR & SNDR vs. input frequency.

(b) SFDR & SNDR vs. input amplitude.

Figure 3.17: Measured ADC performance without PRBS.
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Figure 3.18: Measured output spectrum when inputting a 100.016 kHz,
200.016 kHz, 300.016 kHz, and 400.016 kHz -3 dBFS sinusoidal wave to each
channel, respectively.

Figure 3.19: Power breakdown.
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Figure 3.20: Test bench diagram.

3.7.2 Multi-Channel Mode Measurements

To verify the multi-channel sampling capability of the prototype ADC,

four sets of PRBS are fed to the chip from the FPGA. Fig. 3.20 shows the

block diagram of the test bench. four arbitrary waveform generators (AWG)

are prepared for the four-channel inputs. The chip outputs are connected to

a logic analyzer which transmits the channel outputs to a PC, and the four-

channel signal recovery is performed in the PC. The all test procedures are

captured in video recording which explains how experiment is performed, can

be found in the Youtube link: http://youtu.be/AWraL5m-X9A.
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Figure 3.21: Measured post-reconstruction SNDR with different total chan-
nel occupancies and reconstruction algorithms when all channel signals are
independent.
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3.7.2.1 Discrete Tone Measurements

To test the maximum sparsity and occupancy of the prototype SAR

ADC, multi-tone discrete signals are prepared and the discrete-tone signals

consist of multiple sinusoidal waveforms at different frequencies. Since the

CS SAR ADC has four channels, the total channel occupancy is defined as∑4
m=1Km/(N/2), where Km indicates the number of frequencies the mth-

channel signal has, and N is the length of PRBS. Four sets of 512-length

PRBSs are generated in the FPGA and input the mixed signal block. To

simplify the testing, we let each channel possess the same number of frequen-

cies. In scenario 1) when all-channel signals are independent, the frequency

values of each channel signal are randomly generated. With different chan-

nel occupancies and reconstruction algorithms, we measure the four-channel

average post-reconstruction SNDR. Two convex optimization methods (CVX

and SL0) and two greedy algorithms (OMP and CoSaMP) are tested [8]. For

greedy methods, Kmax for each channel is set to be 100. As shown in Fig.

3.21, CVX and SL0 achieve the peak SNDR of 66 dB and the max occupancy

of 41% (26 tones per channel), respectively. Fig. Figs. 3.22 and 3.23 shows

the measured time-domain and frequency-domain results of the input signals

sm and reconstructed signals ∗sm via the SL0 method in the single-tone case

and 26-tone case, respectively.
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(a)

(b)

Figure 3.22: Measured time-domain (a) and frequency-domain (b) results of
the input signals sm (gray) and reconstructed signals s∗m (red) via the SL0
method in the single-tone case.
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(a)

(b)

Figure 3.23: Measured time-domain (a) and frequency-domain (b) results of
the input signals sm (gray) and reconstructed signals s∗m (red) via the SL0
method in 26-tone case.
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3.7.2.2 Measurement of Real Speech Signals

In addition to the discrete-tone tests, we also test the chip capability to

convert real-world sparse signals. To investigate the scenario when all channel

signals are independent, we also test four-channel 1 second-long speech sig-

nals from different sources. At a sampling rate of 16 kHz, the total length

of 1-channel speech signal is 16000. To reduce the computation complexity,

the ADC output is divided into multiple 512-length frames, each of which in-

dividually conducts the CS process. All the frames are 50% overlapped with

each other and windowed to smooth the edges. Fig. 3.24 demonstrates their

reconstruction results via the SL0 method. Except weak signals beyond 4 kHz

buried in the noise floor, ŝm match well with sm. According to the equation

(3.14), the SRERs for each channel are to be obtained as 14.5 dB, 12.1 dB,

14.3 dB and 14.1 dB, respectively.

3.8 Performance Comparison

There are several literatures that have reported actual measurements

of their CS-based ADC designs. The comparison among works is presented in

Table 3.3. Since the proposed ADC can simultaneously convert 4 channels, its

power per channel is only 1/4 of the total power, leading to an effective FoM

per channel of 5.1 fJ/conversion-step. This 4-time power saving is enabled by

CS. Table 3.3 summarizes the chip performance. Since our work is the first

to demonstrate chip measurement results for CS-based multi-channel ADCs,

Table 3.3 makes a comparison with prior single-channel CS works. As can
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Figure 3.24: Measured time-domain (left) and frequency-domain (right) results
of the four-channel 1s-long speech signals via the SL0 method. sm (blue) are
the input signals, and ŝm (red) are the reconstructed signals.
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Table 3.3: Comparison with state-of-the-art CS works

Design Gangopadhyay Trakimas This work

et al. [63] et al. [64]

CMOS technology [nm] 130 90 130

ADC performance

Supply [V] 0.9 0.9 0.8

Sampling rate [MS/s] 0.002 5.5 1

Resolution [bit] 10 10 12

SNDR [dB] 40.6 57.6 66

ENOB [bit] 6.5 9.3 10.7

Post-reconstruction performance (Compression ratio (CR) = 4)

Peak SNDRPR [dB] 40.6 43 66

Peak ENOBPR [bit] 6.5 6.9 10.7

Max occupancy 5% 4% 41%

Power [µW] 1.8 175 34

Area [mm2] 6 0.15 0.39

FoMCS[fJ/step] 9900 73.3 5.1

FoMCS = Power/2ENOBPR/fs/CR

be seen, our work achieves at least 20 dB higher post-reconstruction SNDR

(SNDRPR) and 14-times better FoM. With the capability of converting multi-

channel signals simultaneously, our work can also deal with a much higher

bandwidth occupancy than other works [63] [64].
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3.9 Conclusion

This chapter have presented a new form of ADC architecture to digitize

multi-channel signals with a single ADC exploiting sparse-signal properties of

the channel inputs. With the proposed scheme, each channel is sampled at the

Nyquist rate of the ADC, and the architecture enables the recovery all channel

inputs. This chapter has discussed the design of the system including the

sampling rate selection, mixing sequences, and dictionary selection to recover

each channel input from the mixture signal.

Future work should address several issues such as the possible max-

imum number of input channels, and the ratio of bandwidth expansion to

enhance the sparsity of input signal mixture. Exploring an effective appli-

cation is another research direction that can help make the proposed system

applicable to commercial devices requiring multi-channel ADCs. Currently,

we are investigating bio-signal (EEG, ECG, and EMG), and array-signal (in-

fra red imaging, and capacitive touch screens) applications since they require

multi-channel signal acquisition.
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Chapter 4

Sequential Energy Detector

4.1 Introduction

In this chapter, we present a highly efficient detection scheme that can

reliably detect binary events with a fraction of the energy consumption re-

quired for conventional energy detection. In detection tests, as the number

of sensing points is increased, high power consumption or increased sensing

latency are expected in processing. To overcome these limitations, a fast sens-

ing and detection scheme is required. A fast sensing circuit can be designed

with increased power consumption. In addition, the circuit increases hardware

complexity. Thus, engineers need to consider a trade-off between sensing la-

tency and power consumption to meet system requirements. In mobile devices

such as smart phones and tablet PCs, a major portion of energy is consumed

in user interfaces (LCD display and touch input processing) [65, 66]. For accu-

rate detection and better user interface, energy-efficient sensing and detection

schemes are necessary to manage multiple sensor inputs.

Compressed sensing (CS) based systems use fewer measurements than

the standard sampling strategy [4, 67, 68]. However, the CS-based method

requires a specially designed modulation circuit for measurement. Previous
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studies show that multi-channel sparse signals can be effectively sampled by

a single ADC [8, 67]. The main objectives of the studies are to recover exact

signals by modulating the sparse input signals in the frequency domain using

pseudo sequences. In both cases, the energy savings are achieved on the sens-

ing side, but the savings are degraded because of the recovery methods that

generally require complex or iterative computations.

Robust and reliable detection systems have been studied, focusing mostly

on the probability ratio test [69]. The sequential energy detector [70] was pro-

posed for an efficient detection of spectrum sensing in cognitive radio systems

[71–74]. We consider the binary event detection problem as an extension of the

work, and we derive the average sample numbers (ASNs) of the proposed se-

quential scheme. For comparison, the relative efficiency (RE) of the proposed

method has been computed and it shows high efficiency in event detection

problem under realistic signal-to-noise ratio (SNR) conditions.

4.2 Problem Formulation

For signals with low SNR, multiple measurements must be averaged

for accurate detection. For example, in the case of capacitive touch screens,

20 ∼ 100 measurements are required to obtain 20 ∼ 30 dB SNRs to detect

finger touches using today’s analog circuit technology [75, 76]. Supposing that

we monitor N measurements on each sensor nodes to decide the existence of

signal of interest (binary event), the detection problem can be modeled as a

binary hypothesis testing problem: Under the null hypothesis H0, the noisy
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measurement of a sensor signal without event input, and under the alternative

hypothesis H1, the noisy measurement of a sensor signal with event input.

This hypothesis problem can be written as

H0 : x(t) = v(t),

H1 : x(t) = s(t) + v(t),
(4.1)

where s(t) denotes a unknown event signal, v(t) is a noise process that is

modeled as a discrete time zero-mean white Gaussian noise with covariance

E[v(t)v(s)] = Evδk,l with noise power density Ev and Kronecker delta function

δk,l. The event signal s(t) could be either a deterministic or a random variable.

For generalization, we assume that the event signal is a real random variable,

and the sign of the signal is unknown. Under this formulation, it is well known

that the energy detector is the optimal detection method [77–79]. The energy

of s(t) can be computed by Es = 1
T

∫ T
t=0

s2(t)dt [3]. During a sampling interval

(0,T), the energy is approximated by∫ T

t=0

x2(t)dt =
1

2B

2TB∑
i=1

xi, (4.2)

where xi = x(i/2B). Over sampling time (0, T ), we obtain a measurement vec-

tor ~x = [x[1], x[2], · · · , x[N ]], ~v = [v[1], v[2], · · · , v[N ]], and ~s = [s[1], s[2], · · · , s[N ]].

Thus, measurement interval T and bandwidth B have to be suitably chosen to

produce an integer u. The energy of each signal can be detected both in time-

or frequency-domain, and the choice depends on detection resources available.

The test statistic can rewritten using the N sampled signal vector ~x as

T (~x;N) =
N∑
n=1

x2[n]. (4.3)
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4.3 Proposed Sequential Event Detection

In this section, we introduce a sequential energy detector (SED) which

is based on sequential probability of ratio test (SPRT) [70]. We extend the

SED to find optimal number of samples to make SED more efficient for the de-

tection problem. Assuming that the event signal can be modeled as a Gaussian

process, impressive energy savings are possible using the concept of SED. We

considered the case when sensor signal is unbiased or has to be unbiased after

sampling to remove the bias wander which is troublesome in most detection

problem. The unbiased sensor measurement can be modeled as

H0 : x[n] ∼ (0, Ev),

H1 : x[n] ∼ (0, Es + Ev),
(4.4)

and thus, the likelihood test L(~x;N) becomes

1
(2π(Es+Ev))N/2 exp

(
− 1

2(Es+Ev)

∑N
n=1 x

2[n]
)

1
(2πEs)N/2 exp

(
− 1

2Ev

∑N
n=1 x

2[n]
) . (4.5)

Since the test statistic L(~x;N) is continuous and monotonic, the log-likelihood

ratio test can be defined ln (L(~x;N)) ≡ ΛN :

ΛN =
N

2
ln

(
Ev

Es + Ev

)
+

Es
2Ev(Es + Ev)

N∑
n=1

x2[n]. (4.6)

Thus, we decide H1 if

T (~x;N) =
N∑
n=1

x2[n] > η, (4.7)

where η is the threshold for a fixed probability of false alarm. The sufficient

statistic of likelihood ratio test is T (~x;N) =
∑N

n=1 x[n]2, which is the sum
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of squares of a Gaussian distributed random variable and called fixed sample

size (FSS) energy detector. The sum of squared random variables can be

approximated as a normal distribution if the number of samples is N > 20 in

general. By the law of large number, the test statistic becomes

H0 : T (~x;N) ∼ N(NEv, 2NE
2
v),

H1 : T (~x;N) ∼ N(N(Ev + Ev), 2N(Es + Ev)
2).

(4.8)

If N < 20, when the test can be terminated with a few samples, the test

T (~x;N) obeys the chi-square distribution. Thus, the test obeys a chi-square

distribution as follows:

H0 :
T (~x;N)

Ev
∼ χ2

N , and

H1 :
T (~x;N)

Ev + Es
∼ χ2

N .

(4.9)

The false alarm and detection rates of chi-square random variables are defined

as

PF = Qχ2
N

(
η

Ev

)
, and

PD = Qχ2
N

(
η

Ev + Es

)
.

(4.10)

The probability distribution of T (~x; i) =
∑i

n=1 x[n]2 = y has chi-squared dis-

tribution with y ∼ N(0, Ev). For i samples of y[n], the log-likelihood ratio test

Λi is

pY (~y; i) =
1

2EvΓ(i/2)

(
y

2Ev

)i/2−1

exp

(
− y

2Ev

)
, (4.11)

where Γ(i) is the gamma function defined as Γ(i) =
∫∞

0
xi−1 exp(−x)dx. The

SPRT is performed as following. In sequential detection, instead of comparing
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the test statistic to a single threshold, there are 3 regions defined via 2 thresh-

olds (A and B). If the statistic is above the higher threshold (B) or below the

lower threshold (A), we have sufficient confidence to decide the hypothesis,

and if it is between the two thresholds, we need to collect more samples in a

sequential manner:
- Decide H0 if L(~y; i) ≤ A

- Decide H1 if L(~y; i) ≥ B

- Else take next sample.

(4.12)

The thresholds are from the Wald approximations which are based on the

Wald-Wolfowitz theorem [80]. The theorem forms the fundamental foundation

of sequential detection which has the minimum expected sample size amongst

all other likelihood-ratio-based tests for given PD and PF

A =
1− PD
1− PF

, and

B =
PD
PF

.

(4.13)

The test terminates if the test statistic reaches either the lower or upper thresh-

old values which are defined in (4.13). Fig. 4.1 illustrates an example of the

sequential detection, and the test is terminated after processing 19 samples.

In chi-square distribution, the likelihood ratio test L(~y; i) is expressed

as
1

2(Es+Ev)Γ(i/2)

(
y

2(Es+Ev)

)i/2−1

exp
(
− y

2(Es+Ev)

)
1

2EvΓ(i/2)

(
y

2Ev

)i/2−1

exp
(
− y

2Ev

)
=

(
1

λ+ 1

)i/2
exp

(
λ

2Ev(λ+ 1)

i∑
n=1

y[n]2

)
,

(4.14)
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Figure 4.1: Sequential detection strategy. The test is terminated by sequential
energy detection with 19 samples under the conditions of -5 dB SNR, PD =
0.95, and PF = 0.05.

where λ = Es/Ev. The log-likelihood test Λi = ln (L(~y; i)) can be shown as

Λi =
i

2
ln

(
1

λ+ 1

)
+

λ

2Ev(λ+ 1)

i∑
n=1

y[n]2

= Λi−1 + α + βy[i]2,

(4.15)

where α = 1
2

ln
(

1
λ+1

)
, and β = λ

2Ev(λ+1)
. We normalize the expression by

dividing both sides with β, then

Λ
′

i = Λ
′

i−1 + α
′
+ y[i]2, (4.16)

where Λ
′
i = Λi/β, α

′
= α/β. The constant α

′
can be pre-computed using prior
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information. (4.16) shows the iterative relation as the number of samples i is

increased. The main advantage of the iterative form is that the computation

requires the same number of multiplications as that of the FSS-based detec-

tion. As the number of test samples i is increased, the iterative operation is

performed by squaring a new sample followed by summing with a constant

and the previous test. Thus, the operation requires slightly increased num-

ber of additions which are much cheaper than squaring a floating point value.

Compare operations in each iteration are the main cost using the iterative

operation. Whenever updating the test statistic based on the iterative form,

the statistic is compared with the upper and lower threshold as following

- Decide H0 if Λ
′

i(~y; i) ≤ A
′

- Decide H1 if Λ
′

i(~y; i) ≥ B
′

- Else take next sample.

(4.17)

where A
′

= lnA/β, and B
′

= lnB/β. However, the cost is negligible if we

can start comparing a test statistic which is computed with the ASNs, average

number of samples to reach at a target detection accuracy, to terminate the

iterative operation. Also, the efficiency of the SED-based method can be

estimated from ASNs. To investigate the efficiency of the sequential energy

detector, we derive the average sample number NSED of the SED. The stopping

time of sequential test is a random variable, thus the average number of tests

which guarantees the target PD and PF is also random. Using Wald’s equation
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[80], the ASN is approximated as

E[NSED|H0] ≈ PF lnA+ (1− PF ) lnB

E[ΛNSED
|H0]

,

E[NSED|H1] ≈ PD lnA+ (1− PD) lnB

E[ΛNSED
|H1]

.

(4.18)

The denominators of the right sides of (4.18) are computed by taking expec-

tation of (4.14):

E[ΛNSED
|Hθ] = NSED · α + β · E

[
NSED∑
n=1

y[n]2|Hθ

]
, (4.19)

where hypothesis index θ = 0, 1. Since E
[∑NSED

n=1 y[n]2|Hθ

]
can be computed

as

E

[
NSED∑
n=1

y[n]2|H0

]
= Ev · E

[
χ2
NSED

]
= Ev ·NSED

E

[
NSED∑
n=1

y[n]2|H1

]
= (Es + Ev) · E

[
χ2
NSED

]
= (Es + Ev) ·NSED,

(4.20)

the equation (4.18) can be written:

E[ΛNSED
|H0] =

NSED

2

[
λ

Ev(λ+ 1)
− ln (λ+ 1)

]
,

E[ΛNSED
|H1] =

NSED

2
[λ− ln (λ+ 1)] .

(4.21)

With this result, the ASN is approximated as, The ASN is approximated as,

E[NSED|H0] ≈
(

2(PF lnA+ (1− PF ) lnB)
λ

Ev(λ+1)
− ln (λ+ 1)

)1/2

,

E[NSED|H1] ≈
(

2(PD lnA+ (1− PD) lnB)

λ− ln (λ+ 1)

)1/2

.

(4.22)
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Thus, the NSED is selected from two hypotheses:

NSED = max {E[NSED|H0], E[NSED|H1])}. (4.23)

On the other hand, the number of samples of FSS which ensures to obtain

target PD and PF is derived from (4.24) From the equations, the expected

number of samples which is required to obtain the target detection accuracy

is computed as

N
′

FSS = 2

[
Q−1(PF )

λ
−
(

1 +
1

λ

)
Q−1(PD)

]2

, and

NFSS = dN ′

FSSe.
(4.24)

We compare NFSS and NSED in Fig. 4.2 (a), and they are function of SNR,

PD, PF . Clearly, the SED requires much fewer samples to terminate a test.

The efficiency of the SED is computed by comparing the expected numbers of

NFSS and NSE. The relative efficiency (RE) of test is defined as

RE =
NFSS

NSED

. (4.25)

Computing (4.25) in a closed form analytically is not trivial. Thus, we inves-

tigate the relative efficiencies through simulation in the following section.

4.4 Sequential Test with ASN

We perform MATLAB simulation of the SED with pre-computed ASNs.

In the simulation, two cases with different conditions are investigated; The tar-

get probabilities of detection and false alarm are set to {PD = 0.95, PF = 0.05}

and {PD = 0.99, PF = 0.01} varying SNRs from -5dB to 15dB. The number
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of samples to terminate each test is measured, and the results show that the

proposed method require much fewer samples (NSED) than those of the con-

ventional fixed sample size test (NFSS). In Fig. 4.2, we demonstrate the

simulation results, and the FSS requires more samples to meet the stricter

condition (a) than the relaxed condition (b). The simulation results show

very small gaps between the measured NSED and the computation by (4.23).
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Figure 4.2: Comparison of the number of multiplications between FSS and
SED. (a) PD = 0.95, PF = 0.05, (b) PD = 0.99, PF = 0.01.
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As stated in the previous section, the relative efficiency defined in

(4.25), cannot be computed in a straightforward way. Instead, the empirical

RE is demonstrated in Fig. 4.3 based on the simulation results. The proposed

detection scheme shows better performance under low SNR conditions than

samples with high SNRS. Still, fewer samples are required to make a binary

decision than the case using conventional energy detection approach.

Figure 4.3: Relative efficiencies of PD = 0.95 with PF = 0.05 (RE1: blue-solid
line) and PD = 0.99 with PF = 0.01 (RE2: circle-dotted line).

4.5 Conclusion

In this chapter, we have proposed a novel detection scheme that de-

livers impressive savings in the sensing time of binary event detection using
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SED. These savings can translate into a significant boost to the operational

battery life of today’s mobile devices. The savings comes from the elaborated

sequential-detection scheme and the expense of slightly decreased detection

performance. As an application, this thesis has considered capacitive touch-

screen displays [75], which is one of the biggest drains on the battery in mobile

devices. The touch detection system of a capacitive touch-screen consumes

2.1mW at 120Hz sampling in normal operation [81] and iPhone 5 has a 5.4Wh

battery [82]. Touch screens account for more than 10% of total power consump-

tion excluding backlight in operation[66]. Considering weak SNR conditions,

roughly 70% savings in touch detection will increase the operation time of

mobile devices. The proposed method is relatively versatile for applications

that require binary decision from multiple measurements other than touch in-

put detection. In addition, the proposed scheme can be combined with the

CS and sparse-signal sampling methods as a form of post-processing to detect

binary events; it can also independently with general detector systems. In Fig.

4.4 the example is demonstrated. The proposed detection scheme is applied

to voice activity detection after signal recovery, which is discussed in Chapter

3.

91



Figure 4.4: Voice activity detection of four-channel signal after recovery using
the the proposed scheme (PD = 0.99, PF = 0.01). The blue plots show speech
signal in each four channels and the black dotted-line indicate the regions
where speech signal is detected.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Through this dissertation, novel sampling and detection methods have

been explored in an effort to overcome current system limitations defined by

the Shannon-Nyquist sampling theorem and the binary hypothesis testing pro-

cedure. Although much progress has been made in scaling transistors for

digital circuits, sampling high-bandwidth and multiple-channel signals is chal-

lenging problems in terms of energy consumption, bandwidth requirement, and

design area in mobile systems. This thesis could be a pathway to overcome

the limitations from the conventional approaches.

The first contribution of this dissertation is in the area of non-uniform

quantization analog-to-digital converter (ADC) architecture which improves

the resolution of the sampled data in medium- or high-bandwidth signal sam-

pling. The non-uniform quantization random sampler makes use of the signal

acquisition process in successive-approximation-register (SAR) ADC architec-

ture. A modified random sampling procedure and signal recovery model have

been presented in which better signal precision is achieved in comparison with

the conventional compressive sensing approach. Circuit level realization is dis-
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cussed to realize the new scheme incorporated with SAR ADC architecture.

The feasibility of using a single ADC system to digitize multi-channel

inputs has been studied and the prototype ADC has been designed and fabri-

cated. The analog front-end of the multi-channel ADC has been proposed; it

effectively combines multiple channels using pseudo-random sequences and the

successful channel recovery is performed in the back-end signal processing us-

ing the proposed recovery algorithms. For both mixing and recovery, various

pseudo-random sequences have been compared. Ultimately, the maximum-

length or Gold sequences have been shown to be the most suitable for the

purpose due to their cross-correlation properties. In the proposed framework,

the multi-channel sparse signals are sampled at the Nyquist rate, which is the

same as a single channel. However, the recovered channels do not suffer band-

width reduction in the input signals and this is the major advantage of the

ADC architecture. The prototype implementation of the proposed architec-

ture is realized in a 130nm CMOS process. The prototype ADC successfully

demonstrates sampling up to four channels with high signal-to-reconstruction-

error rates. To the best of our knowledge, this is the first work presenting

a multi-channel data conversion using switch capacitor circuits to mix the

input channels in the analog front-end; and in which the framework is imple-

mented in real silicon for lab measurements. Since the proposed ADC can

simultaneously convert four channels, its power per channel is only 1/4 of the

total power, leading to an effective figure-of-merit (FoM) per channel of 5.1

fJ/conversion-step. Since our work is the first to demonstrate chip measure-
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ment results for compressed sensing (CS)-based multi-channel ADCs, Table 3.3

makes a comparison with prior single-channel CS works. As can be seen, this

work achieves at least 20 dB higher post-reconstruction SNDR (SNDRPR)

and 14-times better FoM. With the capability of converting multi-channel sig-

nals simultaneously, our work can also deal with a much higher bandwidth

occupancy than other works [63] [64].

A highly efficient detection scheme has been derived that improves the

current binary hypothesis testing scheme with reduced processing complex-

ity. The proposed procedure requires fewer measurements to determine the

existence of a signal of interest over the noise measurements. The proposed

detection strategy consists of two steps; summing and sequential detection

phases. By separating the detection steps, total sample numbers and in turn

computations are highly reduced. The reduction can be translated into energy

savings. The savings can help with extending operating time in energy-limited

mobile systems. The proposed detection scheme also shows robust detection

performance under low signal-to-noise conditions compared to the conventional

detection scheme, which is based on fixed sample size.

The contributions mentioned above can shape future mobile and wear-

able systems to be more efficient by reducing power requirement, storage space,

and data transmission during operation.
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5.2 Future Work

1. Non-uniform quantization random sampler: The proposed scheme

reduces the total quantization noise compared to the conventional CS

sample strategy. The estimation of power consumption of the proposed

architecture is not trivial and it is not covered in this thesis. The estima-

tion will be subject to the design factors such as the number of quantizer

and CMOS processes. Thus, the proposed work is focused on analog

front-end architecture in the mixed-signal block which leads to high pre-

cision signal acquisition after signal recovery. The post-processing holds

the key operating the non-uniform quantization scheme, which depends

on the complexity of the recovery algorithm. A fast algorithm will en-

able the converter to produce real-time or high throughput signal acqui-

sitions. Yet, the proposed reconstruction method is not cheap and is a

little more complex compared to the conventional recovery algorithms in

compressed sensing. Recovery complexity is a common issue in CS-based

systems so could be a worthwhile topic to advance our research agenda.

2. Multi-channel sparse-signal conversion: Exploring an effective ap-

plication is another area of research necessary for making the proposed

system applicable to commercial devices that require multi-channel ADCs.

Possible applications have been actively investigated; by far, bio-signal

(EEG, ECG, and EMG) and array signal (infra-red imaging, and capac-

itive touch screens) applications have been promising candidates since

they require multi-channel signal acquisition and show good sparseness
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in a certain domain. The reconstruction algorithms proposed in this the-

sis can be improved by using the block sparseness property between the

input and mixture signals which is not investigated in this thesis.

3. Sequential energy detection: The proposed detection procedure has

been shown that substantial savings on test samples are achievable. Fur-

ther savings can be expected if the proposed detection procedure could be

combined with the proposed multi-channel sparse data converter detect-

ing binary event occurrence. In this scenario, signals from other channels

contribute as interference and are regarded as noise. These extra inter-

channel noise contributions will be hostile to making a correct decision.

However, the proposed scheme shows effective robustness against noisy

measurements so as to compensate for the effects of unwanted signal

interferences.
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