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Design Techniques for Low-power SAR ADCs in Nano-scale

CMOS Technologies

Long Chen, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Nan Sun

This thesis presents low power design techniques for successive approxi-

mation register (SAR) analog-to-digital converters (ADCs) in nano-scale CMOS

technologies. Low power SAR ADCs face two major challenges especially at high

resolutions: (1) increased comparator power to suppress the noise, and (2) increased

DAC switching energy due to the large DAC size. To improve the comparator’s

power efficiency, a statistical estimation based comparator noise reduction tech-

nique is presented. It allows a low power and noisy comparator to achieve high

signal-to-noise ratio (SNR) by estimating the conversion residue. A first prototype

ADC in 65nm CMOS has been developed to validate the proposed noise reduc-

tion technique. It achieves 4.5 fJ/conv-step Walden figure of merit and 64.5 dB

signal-to-noise and distortion ratio (SNDR). In addition, a bidirectional single-side

switching technique is developed to reduce the DAC switching power. It can reduce

the DAC switching power and the total number of unit capacitors by 86% and 75%,

respectively. A second prototype ADC with the proposed switching technique is

vi



designed and fabricated in 180nm CMOS technology. It achieves an SNDR of 63.4

dB and consumes only 24 µW at 1MS/s, leading to a Walden figure of merit of 19.9

fJ/conv-step.

This thesis also presents an improved loop-unrolled SAR ADC, which works

at high frequency with reduced SAR logic power and delay. It employs the bidi-

rectional single-side switching technique to reduce the comparator common-mode

voltage variation. In addition, it uses a Vcm-adaptive offset calibration technique

which can accurately calibrate comparator’s offset at its operating Vcm. A proto-

type ADC designed in 40nm CMOS achieves 35 dB at 700 MS/s sampling rate and

consumes only 0.95 mW, leading to a Walden figure of merit of 30 fJ/conv-step.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is attracting lots of attention from semicon-

ductor industry. It is changing the way how people control their surroundings and

environments. In order to provide multiple functions at low cost, a typical IoT

system-on-a-chip (SoC) commonly integrates sensor interfaces, analog-to-digital

converters (ADCs), local digital processor, embedded memory and multi-protocol

wireless transceivers. The integration of ADCs with adequate performance is criti-

cal in any IoT SoCs. Since many sensor interfaces and ADCs are battery-powered,

low power operation becomes paramount.

Successive approximation register (SAR) ADC is a popular choice due to its

simple architecture and short development cycle. It is more digital friendly and does

not require any opamps compared to pipeline ADCs or sigma-delta ADCs. SAR

ADC can achieve excellent power efficiency of less than one femtojoule (fJ)/conv-

step at low resolution with a target effective number of bits (ENOB) below 10 bits.

This can be visualized from Fig. 1.1, which shows the Walden figure of merit

(FOM) versus the corresponding signal to noise and distortion ration (SNDR) for

recently published SAR ADCs in ISSCC and VLSI conferences. The data for the
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figure is taken from the survey made available by Dr. Boris Murmann (http://

web.stanford.edu/∼murmann/adcsurvey.html). However, some wire-

less sensor nodes and biomedical devices [Verma and Chandrakasan [2007]; Van Helleputte

et al. [2012]] require low power ADCs with resolution greater than 10 bits. It is

nontrivial to maintain such good power efficiency when extending the ENOB be-

yond 10 bits due to two design challenges. First, designing a low power comparator

with low noise is a main challenge since traditional analog scaling requires four

times the comparator power for every 1-bit reduction in noise. This places a steep

power-noise trade-off. The second challenge for a high-resolution SAR ADC is its

exponentially growing capacitive DAC size, which results in greatly increased DAC

switching power. Thus, it is highly desirable to develop power efficient techniques

to reduce comparator noise and DAC switching power.
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Figure 1.1: FOM versus SNDR plot for recently published SAR ADCs in ISSCC
and VLSI conferences.
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In this thesis, a statistical estimation based technique is presented which

can efficiently reduce comparator noise for SAR ADCs. Instead of designing an

accurate comparator with large power consumption, the proposed technique utilizes

the low power and noisy comparator and estimates the conversion residue by firing

the comparator multiple times for LSB bit comparison. The conversion residue can

be estimated by exploring the repeated comparison results. The estimated residue

is then subtracted from the ADC output to accurately represent the input. The key

challenge here is to build an accurate estimator. It has been proved in statistics

that the Bayes estimator achieves lowest estimation error. Thus, Bayes estimator

is chosen for the prototype SAR ADC design. The prototype ADC 1 has been

implemented in 65nm CMOS and measured in the lab. The measured FOM of the

first prototype ADC is 4.5 fJ/conv-step with 64.5dB SNDR, shown in Fig. 1.1. It

suits well for the low power applications with low conversion speed.

Another challenge for low power and high resolution SAR ADC design is

to reduce the DAC switching energy. The DAC is commonly implemented with

binary capacitors in SAR ADCs. To suppress the sampling kT/C noise and provide

good matching accuracy in high resolution designs, the capacitive DAC needs to

be large, leading to a significant power consumption out of total ADC power. This

work proposes a bidirectional single-side switching (BSS) technique, which can

save 86% DAC switching power compared to conventional switching technique.

Moreover, the comparator input common mode variation is reduced in the technique

compared to widely used monotonic switching technique [Liu et al. [2010a]]. The

prototype ADC 2 with BSS switching technique is designed in 180nm CMOS. The

3



measured FOM is 19.9 fJ/conv-step with 63.4dB SNDR. It achieves the state-of-art

power efficiency shown in Fig. 1.1, given its relatively old 180nm process.

Modern high speed serial link transceivers and communication systems em-

ploy high speed and low resolution ADCs. Although SAR ADC is simple and

power efficient, it can not run at a high speed compared to flash ADCs and pipeline

ADCs, mainly due to its serial conversion algorithm. This work investigates a

loop-unrolled architecture with multiple comparators to increase the speed of SAR

ADCs. The loop-unrolled architecture is based on the work of [Jiang et al. [2012]].

However, the linearity in [Jiang et al. [2012]] is not good due to large compara-

tor offset mismatches. This work employs the BSS switching technique and a

Vcm-adaptive calibration technique to effectively reduce the comparator offset mis-

matches and improve the linearity. A third prototype 6-bit loop-unrolled SAR ADC

is implemented in 45nm CMOS and the measured SNDR is 34.8 dB at a sampling

rate of 700 MS/s.

1.2 Organization

Chapter 2 of the thesis presents the low power SAR ADC with statistical

estimation based noise reduction. It also includes the measurement results of the

first prototype designed in 65nm CMOS technology. Chapter 3 presents the bidi-

rectional single-side switching technique to reduce the DAC switching power. The

measurement results for the second prototype designed in 180nm CMOS technol-

ogy are also discussed. Chapter 4 presents the third 40nm high speed SAR ADC

prototype with improved loop-unrolled architecture. The measured results are also

4



shown in Chapter 4. The conclusion is drawn in Chapter 5.
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Chapter 2

Statistical Estimation Based Noise Reduction

This chapter1presents a power-efficient noise reduction technique for SAR

ADCs based on the statistical estimation theory. It suppresses both comparator

noise and quantization error by accurately estimating the ADC conversion residue.

It allows a high SNR to be achieved with a noisy low-power comparator and a rel-

atively low resolution DAC. The proposed technique has low hardware complexity,

requiring no change to the standard ADC operation except for repeating the LSB

comparisons. Three estimation schemes are studied and the optimal Bayes estima-

tor is chosen for a prototype 11-bit ADC in 65nm CMOS. The measured SNR is

improved by 7dB with the proposed noise reduction technique.

This chapter is organized as follows: an introduction of existing techniques

is first presented. The basic idea of proposed noise reduction technique is studied

next. Then the formulation is analyzed. Finally, a prototype ADC implementation

is presented, followed by its measurement.

1This chapter is a partial reprint of the publication: Long Chen, Xiyuan Tang, Arindam Sanyal,
Yeonam Yoon, Jie Cong, and Nan Sun, “A 10.5-b ENOB 645nW 100kS/s SAR ADC with statistical
estimation based noise reduction,” IEEE Custom Integrated Circuit Conference (CICC), 2015, pp.
1–4. I thank all the co-authors for their valuable advice in designing and testing of the prototype.
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2.1 Introduction

Rapid advances in wireless sensor nodes and biomedical devices place de-

manding requirements on low power and high resolution analog-to-digital convert-

ers (ADCs) [Verma and Chandrakasan [2007]; Van Helleputte et al. [2012]]. Suc-

cessive approximation register (SAR) ADC is a popular choice due to its simple

architecture and short development cycle. It consists of only a capacitive DAC, a

comparator, and a digital SAR logic. Since it is highly digital, it scales well with

technology, and consumes both low power and low area in advanced CMOS pro-

cesses. By using a low power but relatively noisy dynamic comparator, a SAR ADC

does not consume any static current. As a result, it can achieve an excellent power

efficiency of only a few femtojoule (fJ) per conversion step, especially at low resolu-

tion with a target effective number of bits (ENOB) below 10-bit [Tai et al. [2014a];

Harpe et al. [2014]]. Despite many advantages of SAR ADCs, it is nontrivial to

design a high resolution SAR ADC and maintain a high power efficiency when ex-

tending the resolution beyond 10 bits. To reach higher signal-to-noise ratio (SNR),

the comparator noise needs to be reduced. This can be accomplished by brute-force

analog scaling, which is to increase the transistor sizes and power. However, this re-

quires four times the comparator power for every 1-bit reduction in noise, which is

a steep power-noise trade-off. The other challenge for a high-resolution SAR ADC

is its exponentially growing capacitive DAC size, which results in greatly increased

DAC power. In addition, it makes a SAR ADC hard to drive. Facing these chal-

lenges, it is highly desirable to develop a more efficient way to increase SAR ADC

resolution without significantly increasing the comparator power and the DAC size.

7



There are several prior SAR ADC works that aim to reduce the comparator

power and noise. The technique of [Giannini et al. [2008]] arranges two compara-

tors with different noise and power levels. For a b-bit SAR ADC, it uses a low-

power but high-noise comparator during the first (b − 1) MSB comparison cycles.

To tolerate the resulting comparison errors due to the high noise, a redundant LSB

bit is added. A high-power but low-noise comparator is used only for the LSB and

the redundant bit. As a result, the overall ADC noise is almost the same as the case

where the high-power low-noise comparator is used for every comparison cycle,

but the total comparator power is greatly reduced. The limitation of this approach

is that the offsets of the two comparators need to be tightly matched, which is non-

trivial at high resolution. To address the offset mismatch issue, the majority voting

technique is developed [Harpe et al. [2013]]. It uses only one low-power high-noise

comparator. When low comparator noise is needed at critical decision point with

a small comparator input voltage, the comparator is fired multiple times and the

decision is made via majority voting. This technique does not have the comparator

offset mismatch problem of [Giannini et al. [2008]], but it requires a carefully tuned

metastability detector to sense the comparator input voltage, resulting in increased

design complexity. Also, its conversion speed is reduced due to multiple compar-

isons needed. A similar technique using an optimized vote allocation is reported in

[Ahmadi and Namgoong [2013]]. It obviates the need for a metastability detector,

however, at the cost of further increased number of comparison cycles.

The majority voting technique of [Harpe et al. [2013]; Ahmadi and Nam-

goong [2013]] can effectively reduce the comparator noise and power, but they do

8



not make full use of the information embedded in the voting results. It only cares

about whether there are more ‘1’s or more ‘0’s, and uses it only to make a 1-bit ma-

jority decision. It does not take advantage of the detailed distributions of ‘1’s and

‘0’s, but there is valuable information there that can be exploited. Let us consider an

example that the comparator is fired in total 15 times at a given comparison cycle.

Let us assume that there are two cases: one is that there are eight ‘1’s and seven

‘0’s, and the other is that there are fifteen ‘1’s and no ‘0’s. Since there are more

‘1’s, there is no difference for majority voting, but there is extra information. The

first case indicates that the comparator input is very close to 0, while the second

case of fifteen straight ‘1’s means that its comparator input is greater than zero by

at least several comparator noise standard deviations. As will be shown later, this

extra information can be used to reduce not only the comparator noise but also the

quantization error set by the DAC resolution.

This chapter presents a statistical estimation based technique that can reduce

both the comparator noise and the quantization error for SAR ADCs. Its circuit im-

plementation is simple. It does not require any change to the standard SAR ADC

operation except for repeating the last LSB comparison for multiple times [Chen

et al. [2015]]. It exploits all the information embedded in the comparator output

distribution, not just making a binary majority decision for the LSB bit as in [Harpe

et al. [2013]; Ahmadi and Namgoong [2013]], but to estimate the magnitude of the

comparator input voltage. A useful property of a SAR ADC is that the comparator

input voltage is the ADC conversion residue. If we are able to estimate the residue,

we can subtract it from the ADC output to increase the ADC resolution. Note that

9



this reduces not only the comparator noise, but also the quantization error, which

is impossible with prior works [Giannini et al. [2008]; Harpe et al. [2013]; Ahmadi

and Namgoong [2013]]. Although a ‘1’-bit high-noise comparator cannot provide

an accurate estimation for its input if used only once, we can improve the estima-

tion accuracy by repeating the comparison for multiple times and examining the

number of comparator outputs being ‘1’ or ‘0’. It turns out that the estimation of

an unknown value via multiple noisy binary tests is a classic statistical estimation

problem [Casella and Berger [1990]]. Thus, we can directly borrow the concepts

and theories from statistics to solve our estimation problem. Specifically, this chap-

ter discusses three widely used statistical estimators: the averaging based estimator,

the maximum likelihood estimator (MLE), and the Bayes estimator. Out of them,

the Bayes estimator achieves the lowest estimation error, and thus, is chosen for

our proposed SAR ADC. Note that the estimator is essentially a mapping from the

comparator output distribution to a digital estimate for the comparator input, which

can be easily implemented using a pre-computed look-up table.

This chapter introduces the statistical estimation theory to the field of ADC

design and offers a new perspective. In a broad sense, any form of analog-to-digital

conversion, regardless of its architecture, can be considered as a statistical estima-

tion problem, as its entire operation is to estimate (or convert) an unknown analog

signal by performing a series of comparison tests. The theories from statistics are

helpful when we deal with multiple noisy comparator outputs, as in our case. The

concept of statistical estimation has been exploited in prior studies. For example,

the stochastic flash ADC of [Weaver et al. [2010]] takes advantages of random off-
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sets in an array of comparators to obtain a 6-bit estimation of its input. This idea

has also been adapted to build a stochastic time-to-digital converter (TDC) [Kratyuk

et al. [2009]]. Recently, the stochastic flash ADC has been used as a back-end of a

SAR ADC [Verbruggen et al. [2015]]. Though independently developed and pub-

lished on close dates, the work of [Verbruggen et al. [2015]] shares a similar big

picture as our work of [Chen et al. [2015]] as it uses multiple comparison results to

estimate the SAR conversion residue. However, there are two key advantages of our

work both in the choice of the estimator and the circuit architecture. First, the work

of [Verbruggen et al. [2015]] uses MLE, which is a sub-optimal choice compared to

the Bayes estimator used in our work. Second, it arranges 16 different comparators

for the LSB estimation. Their offsets need to be very carefully calibrated, which

is a big design and operation burden especially for high resolution applications and

considering process, voltage, and temperature (PVT) variations. By contrast, we

just re-use the original comparator in the SAR ADC, and thus, do not have the off-

set mismatch problem. Our limitation compared to [Verbruggen et al. [2015]] is

reduced conversion speed as it requires a larger number of comparison cycles. Yet,

for the intended low-speed sensor applications, the speed penalty is a minor issue.

To validate the proposed statistical estimation based noise reduction tech-

nique, a prototype 11-bit SAR ADC is implemented in 65nm CMOS. Using the

proposed technique, the measured SNR is improved by 7 dB, which matches well

with the theoretical prediction. Overall, the prototype ADC achieves an ENOB of

10.5-bit at 100kS/s while consuming 0.6µW of power from a 0.7V supply.

11



2.2 Proposed Statistical Estimation Based Noise Reduction Tech-
nique: Basic Idea

Fig. 2.1 shows the simplified block diagram of a single-ended b-bit bottom-

plate sampled SAR ADC. A SAR ADC has a property that its conversion residue

Vres is readily available at the comparator input. We can derive the following rela-

tionship among the ADC input Vin, output Dout, and Vres:

Dout = Vin + ns + Vres (2.1)

where ns represents the kT/C noise directly added to Vin during the sampling

phase. Here, for simplicity of presentation, we have made the following assump-

tions that do not undermine the practicality of the proposed technique: a) we assume

the parasitic capacitor CP = 0. Since its effect is simply attenuating Vres, it can be

easily added in (2.1) by applying a scaling factor to Vres; b) the comparator offset

is assumed to be zero, as it does not affect the ADC SNR; and c) we ignore the ef-

fect of capacitor mismatch. In practice, if capacitor mismatch is a problem, classic

mismatch calibration technique, such as [Lee et al. [1984]], can be applied jointly

with the proposed technique.

As shown in (2.1), the ADC conversion error, defined as (Dout − Vin), con-

sists of ns and Vres. To reduce ns, the only option is to increase the DAC capacitance

CDAC , which is not the focus of this work. In a SAR ADC, its conversion error is

typically dominated by Vres, not ns. For example, for a 12-bit SAR ADC with 2V

peak-to-peak differential input swing, 420 fF of single-side DAC capacitance is al-

ready sufficient to suppress the sampling noise ns to be less than the quantization
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Figure 2.1: Diagram for a b-bit SAR ADC.

error. Note that 420 fF of total capacitance means that the unit capacitor size is only

0.1 fF, which is smaller than what most SAR ADCs use and what matching requires

[Tripathi and Murmann [2013]]. In practice, ns is usually smaller than Vres, which

is set by the comparator noise and the DAC LSB size. This is especially true for

recent SAR ADCs that use low power dynamic comparators without having a pre-

amplifier [Harpe et al. [2013]; Lee et al. [2014]; Yip and Chandrakasan [2013]]. As

a result, our work focuses on improving ADC SNR by reducing Vres.

Vres consists of three parts: the ADC quantization error (i.e., DAC LSB

step), the comparator noise, and the DAC noise. If the ADC does not have any

comparator noise or DAC noise, Vres is simply the ADC quantization error and

is uniformly distributed between ±1/2 LSB. By contrast, in the presence of large

comparator noise (in a SAR ADC the comparator noise is typically much large

than the DAC noise), Vres is Gaussian distributed with a standard deviation close to

13



the comparator noise. To reduce Vres, a straightforward way is to use a low-noise

comparator and a high-resolution DAC; however, both lead to greatly increased

circuit power.

This chapter proposes a simple and power efficient way to reduce Vres by

using statistical estimation. The core idea is that if we can estimate the value of

Vres, denoted as V̂res, we can increase the ADC SNR by subtracting V̂res from Dout

as:

D∗
out = Dout − V̂res = Vin + ns + (Vres − V̂res) (2.2)

which shows that the accuracy of the new ADC output D∗
out is limited not by Vres

but by the estimation error (Vres− V̂res). An interesting note is that if the estimation

error can be made small, the resolution of D∗
out can even surpass the limit set by the

ADC quantization error, because the subtraction of V̂res reduces both comparator

noise and quantization error. This implies that the proposed technique can actually

permit, for example, a SAR ADC with a b-bit DAC array to reach more than b-bit

resolution.

Now with core idea captured in (2.2), the key question to answer is how

we can estimate Vres. We prefer performing estimation without incurring large

hardware and power cost. Since Vres is readily available at the comparator input,

we propose to use the original noisy SAR comparator to estimate Vres. This may

appear counterintuitive because the comparator can only provide a binary decision

and its output is error-prone due to its high noise. Certainly 1-time comparison is

insufficient. What we propose is to simply repeat the LSB comparison for a total of

N times and estimate Vres by examining the number of ‘1’s, denoted as k. This is

14



doable because the comparator output carries information on its input. Qualitatively

speaking, if k = N , we know that Vres is most likely a large positive value; if k = 0,

Vres is most likely negative with a large magnitude; and if k = N/2, Vres is highly

probable to be close to zero.

An intriguing side note is that the estimation of Vres is actually enabled

by the comparator noise. If the comparator does not have any noise, its output

would be straight ‘1’s or ‘0’s, and thus, we cannot extract any information about

the magnitude of Vres, except for its sign. Having noise in the comparator actually

enables us to improve our estimation accuracy on Vres. This phenomenon is actually

an example of stochastic resonance, which is observed in a nonlinear system where

the presence of a small amount of noise can actually improve the overall system

SNR [Harmer et al. [2002]]. Such behavior is impossible in a linear system. In the

SAR ADC, the 1-bit comparator is both nonlinear and noisy, which exactly matches

the requirement for stochastic resonance.

2.3 Proposed Statistical Estimation Based Noise Reduction Tech-
nique: Mathematical Formulation

After presenting the basic idea of our proposed noise reduction technique,

we now quantitatively answer what is the optimum choice of the estimator V̂res

given the number of LSB comparisons N and the number of ‘1’s k. Let us focus

our attention on the repeated LSB comparison, whose model is shown in Fig. 2.2.

d0,i presents the i-th LSB comparison result, where i is from 1 to N . nc represents

the total noise referred to the comparator input. It includes both the comparator
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noise and the DAC noise. It is typically dominated by the comparator noise. nc is

zero mean, and we denote its standard deviation as σ in the following discussion.

+
-

V
res

n
c +

-

{ ={0,1,0,...,1}d0,i}

Fire times,
observe

N

k '1'

Figure 2.2: Simplified SAR ADC model during the LSB comparison.

Our goal is to form an estimator V̂res that minimizes the mean square error

(MSE), defined as:

MSE = V ar(Vres − V̂res) = E
[
(Vres − V̂res)

2
]

(2.3)

where V ar and E stands for statistical variance and expectation, respectively [Casella

and Berger [1990]].

It turns out that the estimation of an unknown value out of a series of noisy

binary tests is a classic statistical estimation problem [Casella and Berger [1990]].

Therefore, we directly borrow the concepts and theories from statistics to solve

our estimation problem. Specifically, we discuss three widely used statistical esti-

mators: the simple averaging based estimator, the maximum likelihood estimator

(MLE), and the Bayes estimator. They all can be implemented as digital look-up

tables with similar hardware costs.
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2.3.1 Estimator based on averaging

One straightforward way to define V̂res is +1 LSB for all straight ‘1’s, −1

LSB for all straight ‘0’s, and performing linear interpolation for other values of k.

Mathematically speaking, this definition is as follows:

V̂res,avg =
2k −N

N
· LSB (2.4)

where V̂res,avg linearly increases with k, and is ±1 LSB for k = 0 and N ,

respectively. Although V̂res,avg is easy to construct, it has several drawbacks. First,

because V̂res,avg is bounded by ±1 LSB, it cannot accurately approximate Vres that

is outside of that range due to comparator noise. This can be clearly observed from

Fig. 2.3 that plots the MSE of V̂res,avg as a function of Vres, N , and the comparator

noise σ. If the comparator noise σ is large, there is a high probability for |Vres| > 1

LSB, and V̂res,avg does not work well.
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Figure 2.3: MSE of V̂res,avg for various N and (a) σ = 0.5 LSB, (b) σ = 2 LSB,
and (c) σ = 1 LSB.

Second, the shape of its MSE curve varies substantially with the comparator

noise σ. The reason is that the comparator noise affects the value of k, but such
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influence is not captured in (2.4). For example, for a given nonzero Vres, if the

comparator noise is small, the majority of the comparator outputs would be either

all ‘1’s (k = N ) or all ‘0’s (k = 0), leading to V̂res,avg close to ±1 LSB. This results

in a low MSE for Vres = ±1 LSB [see Fig. 2.3(a)], but a large MSE for Vres close

to 0. On the other hand, if the comparator noise is large, it is highly likely that half

of the comparator outputs are ‘1’ (k = N/2), leading to V̂res,avg close to 0. This

yields a small MSE for Vres = 0, but a large MSE elsewhere [see Fig. 2.3(b)]. The

overall best performance for V̂res,avg in terms of a small and relatively flat MSE is

obtained only when the comparator noise σ is close to 1 LSB [see Fig. 2.3(c)]. This

limits its applicability.

Furthermore, although its MSE decreases as N increases, the region with

a small MSE becomes narrower [see Fig. 2.3]. For a nonzero Vres, the MSE of

V̂res,avg does not decrease to 0 even if N goes to infinity. The reason is that V̂res,avg

is a biased estimator of Vres, and the bias does not converge to zero [Casella and

Berger [1990]]. As will be shown later, the aforementioned drawbacks for V̂res,avg

do not exist for the other two estimators.

2.3.2 Maximum likelihood estimator (MLE)

A key reason that V̂res,avg does not achieve a low estimation error is that

it does not assume any prior information on the comparator noise σ. In practice,

σ is chosen by the designer. It can be extracted via SPICE simulations with good

accuracy. Although σ may change due to process, voltage, and temperature (PVT)

variations, we can obtain an accurate value of σ by performing a simple foreground
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calibration. We can simply set Vin = 0 by shorting the ADC input, and monitor the

standard deviation of Dout. Since we have assumed that comparator noise σ is the

dominant random source over the sampling noise ns, the standard deviation of Dout

simply reflects the value of σ. Since temperature changes slowly, the foreground

calibration does not need to be repeated frequently. In addition, since the statistical

estimation is performed at the LSB level, a 10% change in the value of σ only

causes minor degradation (e.g., a 0.1 LSB error) in the post-estimation ADC SNR.

This greatly relaxes the requirement on the calibration accuracy. Given this, we can

treat the value of σ as a known quantity during the estimation process. We can take

advantage of it to form a much better estimator, which is the maximum likelihood

estimator (MLE).

The definition of MLE is easy to understand. Given the number of compar-

isons N and the number of ‘1’s k, we define the estimator V̂res to be the value that

maximizes the probability of observing k ‘1’s out of N comparisons. MLE has been

thoroughly studied in statistics and has several merits. First, it is consistent. As N

increases, V̂res,MLE converges to Vres and can achieve arbitrary precision [Casella

and Berger [1990]]. Second, it is highly efficient from the information usage point

of view. It achieves the Cramer-Rao lower bound as N goes to infinity, which means

that MLE achieves the lowest asymptotic MSE [Casella and Berger [1990]].

We can derive V̂res,MLE for our problem in the following way. The probabil-

ity of a comparator output being ‘1’ follows Bernoulli distribution with probability:

P (d0 = 1) = P (Vres + nc > 0) = F (
Vres

σ
) (2.5)
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where F (x) is the cumulative distribution function of normal distribution with mean

of 0 and variance of 1, given by:

F (x) =

∫ x

−∞
f(x)dt =

∫ x

−∞

1√
2π

e−
s2

2 ds (2.6)

where f(x) is its corresponding probability density function. Assuming the com-

parator hysteresis is negligible, the repeated LSB comparator outputs, {d0} (i ∈

[1, N ]), can be considered as independently and identically distributed random vari-

ables. Thus, from the probability theory [Casella and Berger [1990]], we know that

k =
∑N

i=1 d0,i follows the binomial distribution B(N,F (Vres/σ)) with the proba-

bility given by:

P (k|Vres) =

(
N

k

)
F (

Vres

σ
)k
(
1− F (

Vres

σ
)
)N−k (2.7)

where P (k|Vres) means the probability of having k ‘1’s conditioning on Vres. Since

V̂res,MLE maximizes P (k|Vres) by definition, we have:

dP (k|Vres)

dVres

∣∣
V̂res,MLE

= 0 (2.8)

From (2.8), we can derive that:

F (V̂res,MLE/σ) =
k

N
(2.9)

This result is intuitive. V̂res,MLE ensures that the probability of the comparator

output being 1 is k/N , and thus, it achieves the highest probability for having in

total k ‘1’s out of N trials. From (2.9), we can solve V̂res,MLE:

V̂res,MLE = σ · F−1(
k

N
) (2.10)
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It shows that V̂res,MLE is linearly proportional to the comparator noise σ. This is

different from V̂res,avg that has no dependence on σ [see (2.4)].

V̂res,MLE defined in (2.10) has one limitation that it does not work for k = 0

and k = N . If we plug k = 0 or k = N into (2.10), V̂res,MLE is ±∞. This is

expected because V̂res,MLE = −∞ achieves the highest probability for k = 0, and

V̂res,MLE = ∞ ensures that k = N . This issue may be minor for a large N , because

the probability of k = 0 and k = N would approach zero. However, for a small

N , k = 0 and k = N do appear, which causes an estimation failure. To solve this

problem, we can re-define:

V̂res,MLE(k = 0) = σ · F−1(
0.2

N
) (2.11)

V̂res,MLE(k = N) = σ · F−1(
N − 0.2

N
) (2.12)

For other k lies in [1, N − 1], we still follow the definition of (2.10).

Fig. 2.4 shows V̂res,MLE as a function of k and N . Different from V̂res,MLE ,

the relationship between V̂res,MLE and k is nonlinear. The range of V̂res,MLE ex-

pands with N , from ±1.6σ at N = 3 to ±2.3σ at N = 15. This means that

V̂res,MLE can approximate a wider range Vres as N increases.

To evaluate how accurate V̂res,MLE is, we plot its estimation error as a func-

tion of Vres and N in Fig. 2.5. In general, its MSE decreases as N increases. For

the same N , its MSE is small for a small Vres, but increases as the amplitude of

Vres increases. The reason is that the value of V̂res,MLE is bounded for a given N

(see Fig. 2.4), and thus, does not work well for a very large Vres. However, unlike

V̂res,avg, the range of V̂res,MLE increases with N , and thus, its region with a small

21



0 5 10 15

k

-3

-2

-1

0

1

2

3

V̂
r
e
s
,M
L
E
[�

]

N=3

N=5

N=7

N=9

N=11

N=13

N=15

Figure 2.4: Value of V̂res,MLE as a function of N and k.

MSE is broadened. This is a key advantage of V̂res,MLE compared to V̂res,avg. It

enables V̂res,MLE to accurately estimate a wide range of Vres especially for a large

N . In fact, we can prove that the MSE of V̂res,MLE goes to zero as N approaches

infinity for any Vres [Casella and Berger [1990]].

2.3.3 Bayes estimator

MLE is a significant improvement over the simple averaging based estima-

tor, but it still does not achieve the lowest estimation error. There is one extra piece

of information that MLE does not make use of, which is the distribution of Vres.

This extra information can be exploited to construct a better estimator with a lower

estimation error than MLE.

Before moving ahead, let us first examine the distribution of Vres. Fig. 2.6
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Figure 2.5: MSE of V̂res,MLE for different Vres.

shows the simulated histograms of Vres for an 11-bit SAR ADC assuming the com-

parator noise σ = 1 LSB. Three different input signals are used. Sinusoidal inputs

with −6-dBFS and −20-dBFS are used in Fig. 2.6(a) and (b), respectively. A Gaus-

sian random input with a standard deviation of 10% ADC full swing is used in Fig.

2.6(c). As can be seen, there is negligible difference in the Vres distribution among

the three cases. They are all close to Gaussian distribution with zero mean and a

standard deviation of 1 LSB. This shows that the distribution of Vres has very weak

dependence on the ADC input Vin. This is not hard to understand. By the end of the

11-bit SAR conversion, the conversion residue Vres is almost completely uncorre-

lated with Vin, and is basically set by the comparator noise. Given this observation,

we can confidently approximate Vres as a Gaussian random variable and its proba-
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bility density function (pdf) g(Vres) ≡ f(Vres/σ), where f(·) is the pdf of Gaussian

distribution with zero mean and standard deviation of 1.
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Figure 2.6: Histogram of Vres for (a) a −6-dBFS sinusoidal input, (b) a −20-dBFS
sinusoidal input, and (c) a Gaussian random input with standard deviation of 10%
ADC full range.

Now let us derive the optimum estimator for Vres given the prior informa-

tion on its distribution. This problem has been thoroughly studied in the statistical

estimation theory [Casella and Berger [1990]]. It can be rigorously proved that the

best estimator that achieves the minimum MSE given the prior distribution is the

Bayes estimator (BE), which is defined as the mean of the posterior distribution of

Vres after observing k ‘1’s out of N trials. To understand it, let us consider a simple

example of N = 3. We can have 4 different values for k, which is 0, 1, 2, and 3.

For each case, we can calculate the posterior distribution g(Vres|k) using the Bayes

theorem[Casella and Berger [1990]]:

g(Vres|k) =
P (k|Vres)g(Vres)∫ +∞

−∞ P (k|Vres)g(Vres)dVres

(2.13)
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where P (k|Vres) is the probability of observing k ‘1’s conditioning on Vres. Fig.

2.7 plots the Vres prior distribution g(Vres) together with its posterior distributions

g(Vres|0), g(Vres|1), g(Vres|2), and g(Vres|3). Bayes rule basically allows us to up-

date the distribution of Vres given the observation result k. We can see that the

prior and posterior distributions are different, which is enabled by the knowledge of

k. For example, compared to g(Vres), the posterior distribution g(Vres|0) is shifted

towards the negative side. This is because after observing all ‘0’s from the compara-

tor outputs, we can update the distribution of Vres, which should be more negatively

biased.
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Figure 2.7: Prior distribution g(Vres) and posterior distribution g(Vres|k) for N = 3.

The Bayes estimator is defined as the mean of the posterior distribution.
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Mathematically, it is given by:

V̂res,BE(k) ≡ E(Vres|k) =
∫ +∞

−∞
Vres · g(Vres|k)dVres (2.14)

For the case of N = 3, we can calculate that V̂res,BE(0) = −1σ, V̂res,BE(1) =

−0.3σ, V̂res,BE(2) = +0.3σ, and V̂res,BE(3) = +1σ, respectively.

Note that (2.13) and (2.14) are computationally intensive. Fortunately, we

do not need to solve V̂res,BE for every ADC output. We only need to compute once,

and store the results for all possible k values in a look-up table. This way, once

we know k from the comparator outputs, V̂res,BE can be directly obtained from the

table.

Fig. 2.8 shows V̂res,BE as a function of k and N . Comparing it carefully

with V̂res,MLE shown in Fig. 2.4, we can see that the range of V̂res,BE is smaller

than V̂res,MLE . The reason is that V̂res,BE makes use of the prior distribution of

Vres. Since Vres is concentrated around zero, V̂res,BE is biased more towards zero.

Fig. 2.9 shows MSE for V̂res,BE as a function of Vres and N . Comparing

it with Fig. 2.5 of V̂res,MLE , we see that the MSE of V̂res,BE is smaller than that

of V̂res,MLE for a small Vres in [−2σ,+2σ], but is slightly larger for |Vres| > 2σ.

However, because Vres is known to concentrate around 0, it is expected that the

overall MSE of V̂res,BE is smaller than that of V̂res,MLE .

2.3.4 Estimator performance comparison

To compare the estimation error for the three estimators, we compute the

MSE of V̂res,avg, V̂res,MLE , and V̂res,BE for σ = 1 LSB, and plot them as a function
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Figure 2.9: MSE versus x for V̂res,BE .

27



of N in Fig. 2.10.
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Figure 2.10: MSE versus N for a normal distributed x with σ = 1LSB.

As expected, the MSE of V̂res,BE is consistently smaller than that of V̂res,avg

and V̂res,MLE , indicating the highest estimation accuracy. Note that the MSE values

for all three estimators are similar for a small N . However, for a large N , there are

significant differences. For V̂res,avg, its MSE saturates to around 0.2σ2. By contrast,

the MSE of V̂res,MLE and V̂res,BE keep decreasing with N at the slope of 10 dB per

decade. This slope is essentially the limit set by Cramer-Rao lower bound [Casella

and Berger [1990]], confirming the high efficiency of both V̂res,MLE and V̂res,BE .

Since V̂res,BE has the lowest MSE, it is chosen for the prototype ADC.

As mentioned earlier, both MLE and Bayes estimators require the knowl-

edge of the comparator noise σ. It is interesting that the extracted comparator
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noise does not need to be 100% accurate when estimating V̂res,BE . This makes

the proposed technique more robust as the comparator noise can drift with Process-

Voltage-Temperature (PVT) variation. Let us assume a ±10% noise drifting hap-

pens in the prototype ADC. After 1σ=1.0 LSB is extracted, the comparator noise

drifts to 0.9 LSB or 1.1 LSB due to PVT variation. However, the comparator noise

is supposed to be the same and the 1σ comparator noise of 1.0 LSB is used when

performing the Bayes estimation. Fig. 2.11 plots the behavioral simulated SNR

improvement for different σs. As can be seen from Fig. 2.11, the SNR is improved

effectively even though an inaccurate comparator noise 1σ=1.0 LSB is used to es-

timate V̂res,BE for 1σ=0.9 LSB and 1σ=1.1 LSB. Note that the SNR differences

among three cases result from different comparator noise used in the ADC model.

Fig. 2.11 also shows that the proposed technique can be easily extended to achieve

re-configurable resolution by adjusting N . In the prototype design, a 7-dB SNR

improvement is expected which requires N = 17.

2.3.5 Comparison to oversampling and analog scaling

The standard ADC oversampling can also be used to reduce ADC noise

by averaging, and the improvement in SNR is also 10 dB per decade. Thus, it is

meaningful to compare it to the proposed statistical estimation technique. The merit

of oversampling is that it reduces both the sampling noise ns and the comparison

noise nc, while the proposed technique based on statistical estimation only reduces

nc. However, as mentioned earlier, in a SAR ADC, the noise is typically dominated

by nc, and thus, their effect in total noise reduction is similar. The disadvantage of
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Figure 2.11: Simulated SNR versus N with ±10% variations in the comparator
noise σ.

oversampling is that it cannot improve the ADC power efficiency. Every doubling

of the oversampling ratio (OSR) leads to twice the ADC power, as it requires repeat-

ing all the sampling, comparison and DAC switching operations. By contrast, the

proposed technique only increases the number of LSB comparisons, so its required

total number of comparator operations is much smaller. Additionally, the DAC is

not switched, and thus, does not dissipate any extra DAC power. As a result, the

power efficiency of the proposed technique is much higher than oversampling.

As in any noise reduction technique, there is always a cost of power. For

the proposed technique, the total power of the comparator increases due to extra

number of LSB comparisons. Take our 11-bit prototype ADC as an example, to

reduce noise by 7 dB, the LSB comparison needs to be fired 17 times, which results
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in an increase of total comparator power by (11+17)/11 ≈ 2.5 times. By contrast,

to obtain the same amount of noise reduction for the same 11-bit ADC, if we choose

the brute-force way to reduce comparator noise by increasing its size and power,

we need to increase the comparator power by 21 times (see Prototype ADC Design

section). Thus, the proposed technique is much more power efficient. The tradeoff

for the proposed technique is reduced conversion rate due to increased number of

LSB comparisons. However, as mentioned earlier, this is only a minor issue for the

intended low-to-medium speed sensor applications.

2.4 Prototype ADC Design
2.4.1 Detailed circuit schematics

To verify the proposed statistical estimation based noise reduction tech-

nique, a 11-bit prototype SAR ADC is designed, whose architecture is shown in

Fig. 2.12. There are only two simple changes made to the standard SAR ADC ar-

chitecture: 1) the SAR logic is modified to repeat the LSB comparison for N = 17

times; and 2) a counter is used to count the number of ‘1’s during LSB compar-

isons to obtain k. A low power supply voltage of 0.7V is chosen to demonstrate the

effectiveness of the proposed technique for low voltage and low power applications.

The DAC is implemented with binary-weighted metal finger (or MoM) ca-

pacitors. Since the DAC power is proportional to the total capacitor value, it is

desired to reduce the unit capacitor Cu for power saving. Considering the noise and

matching requirement, this design chooses Cu = 2 fF. A bidirectional single-side

(BSS) switching technique is adopted to further reduce the DAC reference power by
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Figure 2.12: Proposed SAR ADC architecture.

86% compared to the conventional switching scheme [Chen et al. [2014a]; Sanyal

and Sun [2014]]. BSS reduces the number of unit capacitors by 4 times, leading

to a small capacitor array of {256, 128, 64, 32, 16, 16, 8, 4, 2, 1, 1}Cu for an 11-

bit ADC. Compared to widely used monotonic switching technique of [Liu et al.

[2010a]], BSS achieves higher SNDR as the comparator input common-mode volt-

age Vcm variation is reduced and Vcm can converge to half Vdd instead of ground. A

redundant capacitor of 16Cu is provided to recover possible errors during the first

several MSB comparisons with large Vcm variation [Chen et al. [2014a]]. The to-

tal capacitance is 528Cu = 1056fF, leading to 88-µV differential sampling kT/C

noise. Since the unit capacitor is only 2 fF, the routing parasitic capacitors have a

considerable influence on the capacitor matching accuracy. A segmented common-

centroid layout technique is used for better matching. The floor plan for a single

side capacitor array is shown in Fig. 2.13. The capacitors are separated into two

groups {C8, C7, ..., C4} and {C3, C2, C1, C0}. The common-centroid rule is applied

horizontally for the first group and vertically for the second. Dummy cells, repre-
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sented as D, are added for better matching.
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Figure 2.13: DAC capacitor array floor plan.

To ensure good sampling linearity, bottom-plate sampling is used. In addi-

tion, a clock booster shown in Fig. 2.14(a) is employed to boost the sampling clock

voltage from 0.7V to 1.4V. As a result, simple small NMOS transistors can be used

to sample Vin instead of an array of bootstrapped switches or large CMOS switches

to reduce the design complexity and the switch driving power.

Fig. 2.14(b) shows the dynamic strong-arm latch comparator. It uses a

PMOS input pair to minimize the flicker noise and the substrate coupling. Thanks to

the proposed noise reduction technique, the comparator thermal noise requirement

is relaxed, leading to substantially reduced comparator power. In this design, the

SPICE simulated total input referred noise at the comparator input is 480µV or 0.7

LSB. Note that this is much larger than the sampling kT/C noise, and thus, the
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Figure 2.14: Schematic of (a) the clock booster; (b) the comparator; and (c) the
timing diagram.
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overall ADC noise is dominated by the comparator noise.

The ADC timing diagram is shown in Fig. 2.14(c). It uses a synchronous

clocking scheme. The frequency of the master clock is 32 times faster than the

sampling rate. The first 4 clock cycles are used for input sampling to ensure high

sampling accuracy; the subsequent 11 cycles are used for normal SAR operation;

and the final 17 cycles are used for repeated LSB comparisons. This clock allo-

cation scheme can be easily implemented using a ripple counter based clock di-

vider and several AND gates. The SAR logic is built by standard shift registers.

When the normal SAR operation finishes, the last shift register makes transition

and ready = 1 is generated. A 5-bit counter shown in Fig. 2.15 is enabled, which

records the number of ‘1’s during the LSB comparisons and obtains k for statistical

estimation. The counter consumes no power during normal SAR operation. The

counted k is given by:

k = 16×D4 + 8×D3 + 4×D2 + 2×D1 +D0 (2.15)

D

Q

Q D

Q

Q D

Q

Q D

Q

Q D

Q

Q

clks

R R R R R

ready
Voutp D0 D1 D2 D3

D4

Figure 2.15: 5-bit counter to count k.
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Figure 2.16: Die micrograph.

2.4.2 Measurement Results

The prototype ADC is implemented in 65nm CMOS process. Fig. 2.16

shows the die photo. The ADC occupies an active area of 0.03 mm2, which is

dominated by the DAC. The power supply is 0.7V and the sampling rate is 100kS/s.

Fig. 2.17 shows the measured DNL and INL, which are +1.04/ − 1 LSB and

+1.57/ − 1.23 LSB. According to the INL plot, there exists a 1-LSB systematic

mismatch between the 6 MSB capacitors and the 6 LSB capacitors, which arises

from the unmatched surrounding environment due to the segmented layout strategy

in Fig. 2.13 and inaccurate parasitic capacitor extraction. A simple foreground

calibration similar to [Chen and Brodersen [2006]] is performed and the appreciable

36



periodic INL transition pattern reduces.
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Figure 2.17: Measured DNL and INL.

To verify the proposed noise reduction technique, we first measure the ADC

noise (e.g., the variation of Dout) at Vin = 0. The measured probability densities

for Dout before and after noise reduction are shown in Fig. 2.18 together with fitted

normal distributions. Before noise reduction, the standard deviation of Dout is 0.73

LSB. It indicates the comparator input referred noise is about 500µV, which is in

agreement with SPICE simulation. After noise reduction, the standard deviation

of D∗
out is reduced by 7 dB to 0.33 LSB, which matches well with the estimation

theory. Note that if the conventional SAR ADC design approach is used, the com-

parator noise needs to be reduced to 0.16 LSB in order for the total ADC noise to

37



be 0.33 LSB, which also includes the 0.29 LSB quantization error. This means that

the total comparator power needs to be increased by 21 times. By contrast, in our

proposed noise reduction technique, the total comparator power is only increased

by 2.5 times, which firmly proves its higher power efficiency compared to brute-

forth analog scaling. Once the comparator noise is extracted, V̂res,BE(k) can be

computed using (2.13) and (2.14).
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Figure 2.18: Dout distribution with and w/o estimation at Vin = 0.

Fig. 2.19 shows the measured spectrum for a 96-kHz full-scale input sam-

pled at 100kS/s. The reason choosing the 96-kHz frequency input is our high-

quality low-distortion band-pass filter has a cut-off frequency at 90 kHz. The mea-

sured SNDR and SNR are 59.4 and 59.7 dB for 96-kHz input, respectively. After

applying the proposed noise reduction technique, the noise floor is clearly lowered.

SNDR and SNR are improved to 64.5 dB and 65 dB, respectively. The correspond-
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ing ENOB is 10.5-bit.
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Figure 2.19: Measured 214-point ADC output spectrum with 96-kHz input.

Fig. 2.20 shows the SNR with varying input amplitudes. The SNR im-

provement using simple averaging based estimator V̂res,avg is limited to only 2.2dB.

Maximum likelihood estimator (MLE) achieves 5.8dB SNR improvement, which

is better than averaging based estimator. Using the Bayes estimator V̂res,BE , the

SNR can be improved by 7dB, which is 4.8dB better than that of averaging based

estimator and 1.2dB better than that of MLE. This matches well with the analysis.

When the input is very large, the SNR improvement decreases slightly to 5.3 dB,

which is caused by the unwanted capacitive coupling from the ADC input to the

reference lines, discovered during measurements. Such SNR loss can be recovered

by layout optimization to reduce the coupling. To evaluate the robustness of SNR

improvement using Bayes estimator, various extracted comparator noise σs, which
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can be caused by PVT variation, are used to estimate V̂res,BE . Fig. 2.21 shows the

measured SNR improvement versus σs. The peak SNR improvement is large in the

middle and small at two sides, just like a parabolic distribution. The peak SNR im-

provement is 6.9 dB at σ = 0.73 LSB. As long as the extracted σ ∈ [0.6, 0.86] LSB,

the SNR improvement is greater than 6 dB and one more effective bit is achieved

with Bayes estimation.
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Figure 2.20: Measured SNR versus input amplitudes.

The ADC consumes 0.6 µW from a 0.7 V power supply. The compara-

tor, DAC, clock generator, and SAR logic consume 70 nW, 102 nW, 193 nW and

280 nW, respectively. With the noise reduction technique, the comparator power

accounts for only 10% of the total power at the ENOB of 10.5-bit. The digital

power, including both clock generator and SAR logic, dominates the overall ADC

power. It can be substantially reduced via optimization and/or going to a more
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Figure 2.21: Measured SNR improvement versus various comparator noise σ.

advanced technology node, without affecting SNR. The measured figure-of-merit

(FOM) for the prototype ADC is 4.5 fJ/conversion-step. The performance of the

proposed ADC is summarized in Table 2.1. Fig. 2.22 shows Walden FoM versus

SNDR for this work and recently published ADCs in ISSCC and VLSI conferences.

The data for the figure is taken from the survey made available by Dr. Boris Mur-

mann (http://web.stanford.edu/∼murmann/adcsurvey.html). As

can be seen, this work achieves the state-of-the-art power efficiency, especially

among ADCs with SNDR greater than 64 dB. Note that there is still large space

for further performance improvements especially on the design of the clock gener-

ator and the SAR logic.
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Table 2.1: Measured performance summary

Process [nm] 65
Sampling rate [kS/s] 100

Resolution [bit] 11
Active area [mm2] 0.03
Power supply [V] 0.7
Total power [µW] 0.6

DNL [LSB] +1.04 / −1.00
INL [LSB] +1.57 / −1.23

Noise Reduction? No Yes
Dynamic range [dB] 60 67

Peak SNR [dB] 59.7 65
Peak SNDR [dB] 59.4 64.5

ENOB [bit] 9.6 10.5
Walden FoM [fJ/conv-step] 9 4.5
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Figure 2.22: FOM versus SNDR plot for this work and recently published ADCs in
ISSCC and VLSI conferences.
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Chapter 3

Bidirectional Single-side Switching Technique

This chapter1presents a low-power SAR ADC with a bidirectional single-

side (BSS) switching technique. Compared to the conventional SAR switching

scheme, it reduces the DAC reference power and the total number of unit capacitors

by 86% and 75%, respectively. It also minimizes the power dissipated in driving

DAC switches as it has only one single-side switching event every comparison cy-

cle. Compared to the monotonic switching technique [Liu et al. [2010a]] that also

has only one switching event, it reduces the comparator input common-mode volt-

age variation by 2 times. Moreover, its comparator input common-mode voltage

does not converge to ground but to Vcm. This greatly reduces the comparator off-

set and noise. It obviates the need for a specially designed comparator and allows

the use of a low-power strong-arm latch. A prototype with proposed technique has

been developed in 180nm CMOS.

This chapter is organized as follows: an introduction of existing switching

techniques is first presented. The effect of comparator common-mode variation is

1This chapter is a partial reprint of the publication: Long Chen, Arindam Sanyal, Ji Ma and
Nan Sun, “A 24-uW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique”,
IEEE ESSCIRC, pp. 219–222, 2014. I thank all the co-authors for their valuable advice in designing
and testing of the prototype.
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analyzed next. Finally, the proposed BSS switching technique is presented, fol-

lowed by the prototype implementation and measurement.

3.1 Introduction

Successive approximation register (SAR) analog-to-digital converter (ADC)

is scaling friendly and power efficient. It is suitable for low power and low volt-

age applications, such as wireless sensor networks, implantable bio-sensors, and

portable medical electronics [Harpe et al. [2013]; Van Elzakker et al. [2010]; Verma

and Chandrakasan [2006]; Zhang et al. [2012]]. It consists of a capacitive DAC, a

comparator, and a SAR logic block. The DAC can take up a large portion of the

total ADC power especially at high resolution with large capacitors. The conven-

tional DAC switching technique based on trial and error is not power efficient. To

address this issue, several low-power DAC switching techniques have been devel-

oped, including the split capacitor technique [Ginsburg and Chandrakasan [2005]],

the Vcm-based switching technique [Zhu et al. [2010]], and the monotonic switching

technique [Liu et al. [2010a]]. The split capacitor technique reduces DAC reference

power by 37% compared to the conventional switching scheme. The Vcm-based

switching technique reduces DAC reference power by 88%, but it requires addi-

tional switches to pass Vcm. Due to the reduced overdrive voltage, these switches

need to be large, leading to increased power in driving these switches. This lim-

itation is more pronounced at low power supply voltage and high conversion rate

[Sanyal and Sun [2014]].

The monotonic switching technique of [Liu et al. [2010a]] has attracted in-
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creasing attention as it reduces both the DAC reference power and power dissipated

in driving switches. It achieves 81% reduction in DAC reference power. It does

not need capacitor splitting or additional large switches. Moreover, it requires only

one switching event every comparison cycle. Thus, its switching activity is only

33% of the conventional switching technique and 50% of the Vcm-based switching

technique. In addition, it reduces the total number of unit capacitors by a factor

of 2. Despite the merits mentioned above, monotonic switching has one key lim-

itation. Its comparator input common-mode voltage decreases every comparison

cycle and eventually converges to ground. Although a comparator with a PMOS

input pair can be used to maintain functionality, the large change in the common-

mode voltage causes varying comparator offset, resulting in ADC nonlinearity. In

addition, the large overdrive voltage for the input pair leads to increased compara-

tor noise and degrades the SNR. To address these issues, the authors of [Liu et al.

[2010a]] designed a special comparator by stacking an extra tail transistor acting

like a dynamic current source, so that the input pairs overdrive voltage can be kept

relatively constant. However, this solution increases design effort and requires ad-

ditional bias circuit. In addition, the proposed comparator consumes static power

during the evaluation phase. Another approach to address the common-mode varia-

tion problem is to split MSB capacitors and switch two half capacitors on both sides

of the DAC capacitor array every comparison [Liu et al. [2010b]]. This technique

requires additional inverter for each split capacitor, which increases digital power

and slows down speed. In addition, the number of switches also needs to be doubled

for split bits, resulting in more layout efforts and more power dissipated on driving
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the parasitic capacitors.

This chapter presents a bidirectional single-side (BSS) switching technique

that maintains all the aforementioned merits of the monotonic switching technique

and solves the large common-mode variation issue [Chen et al. [2014a]]. Instead

of switching DAC capacitors from Vref to ground monotonically as in [Liu et al.

[2010b]], the proposed technique first switches the MSB capacitor from ground to

Vref , and then, switches other capacitors from Vref to ground. Consequently, the

range of comparator input common-mode variation is reduced by 2 times. More

importantly, the common-mode voltage converges to Vcm instead of ground, which

greatly reduces the comparator noise and offset variation. As a result, the proposed

technique obviates the need for the specially designed comparator and permits the

use of a low-power strong-arm latch as a comparator. Furthermore, the proposed

switching method achieves an additional bit over monotonic switching by using

Vcm as reference for the LSB capacitor. For the same resolution, the proposed tech-

nique reduces the total number of unit capacitors by 2 times compared to monotonic

switching and 4 times compared to conventional switching. It reduces the DAC ref-

erence power by 86%, which is also more than that for monotonic switching.

An 11-bit prototype ADC using the proposed BSS switching technique is

fabricated in 180nm CMOS process. To minimize power and area, the smallest

available MIM capacitor of 2 fF is used as the unit capacitor. To ensure good

matching, a segmented common-centroid layout with surrounding dummy capaci-

tors is developed, which allows the ADC to achieve 77 dB of SFDR without any

calibration. Operating at 1 MS/s, it consumes 24 µW of power under 1 V power
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supply. It achieves 10.3-b ENOB and an FOM of 19.9 fJ per conversion step.

3.2 Effect of Comparator Common-Mode Variation

The strong-arm latch comparator in Fig. 3.1 is widely used in ADCs and

memory read-out circuits [Kobayashi et al. [1993]; Van der Plas et al. [2006]].

Its input common-mode voltage strongly affects the comparator offset, noise, and

speed [Wicht et al. [2004]; Nuzzo et al. [2008]]. Since the common-mode voltage

variation is a key issue in both monotonic switching and the proposed BSS switch-

ing techniques, let us first analyze its effects on the comparator performance.

Fig. 3.2 shows a typical transient behavior of the comparator with a 1mV in-

put differential voltage. When clkc is low, the comparator is in reset with both VX1,2

and Voutp,n pulled to VDD. When clkc is high, the comparator is in evaluation mode.

Here its operation can be divided into two phases, the pre-amplification phase and

the latch regeneration phase as shown in Fig. 3.3, with the turn-on of the PMOS

cross-coupled pair separating two phases. During the pre-amplification phase, the

PMOS cross-coupled pair is in cut-off and the comparator works as a dynamic inte-

grator. From differential-mode point of view, the comparator input voltage induces

a differential drain current, which is integrated on the output capacitive load CO

and produces a differential output voltage Vout that grows linearly with time. From

the common-mode point of view, VX1,2 decrease after clkc goes high. Once they

reach VDD − VTn3,4, M3 and M4 are turned on and Voutp,n start to decrease. When

Voutp,n decrease to VDD − VTp5,6, the PMOS crossed coupled pair is turned on and

the comparator enters the latch phase. Since the PMOS crossed coupled pair is in
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Figure 3.1: Schematic of a strong-arm latch comparator.

positive feedback and provides exponentially growing gain, the PMOS pair domi-

nates the behavior of the comparator in the latch phase, while other transistors can

be considered to the first order as a current source before Vout grows very large that

cuts off a transistor in the PMOS pair or the current source.

A critical parameter that links the two phases is the pre-amplifier gain G,

defined as the differential voltage gain of the comparator at the end of the pre-

amplification phase. It affects the comparator offset and noise. We can model
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Figure 3.2: Transient behavior of a strong-arm latch comparator.

the input referred offset of the pre-amplification phase as Vos,preamp, whose main

contributor is VTn1,2 mismatch in the input pair. For the latch phase, we can model

its offset referred to the output nodes at the beginning of the latch generation phase

as Vos,latch, whose main contributor is VTp5,6 mismatch in the PMOS cross coupled

pair. As a result, the input referred offset of the entire comparator, Vos, is given by:

Vos = Vos,preamp +
Vos,latch

G
(3.1)

In terms of root-mean-square (rms) offset, we have:

σos =

√
σ2
os,preamp +

σ2
os,latch

G2
(3.2)
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Figure 3.3: Comparator schematic for (a) the pre-amplification phase and (b) the
latch regeneration phase.

Similarly, we can also write down the expression for the comparator noise:

σn =

√
σ2
n,preamp +

σ2
n,latch

G2
(3.3)

From (3.1)-(3.3), we can see that the offset and noise depend strongly on G, and

a large G is preferred as it attenuates the contribution from the latch phase. The

value of G can be estimated to the first order in the following way. We first cal-

culate the time duration τpreamp of the pre-amplification phase by examining the

common-mode voltage change. At the beginning of the pre-amplification phase,

the common-mode voltages at Voutp,n and VX1,2 are both VDD. By the end of the

pre-amplification phase, the common-mode voltage at Voutp,n and VX1,2 are approx-

imately VDD − VTp5,6 and VDD − VTp5,6 − VTn3,4, respectively. For simplicity,

assuming that the common-mode drain current of the comparator input pair ID is
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unchanged during the integration, we have:

τpreamp ≈
COVTp5,6 + CX(VTp5,6 + VTn3,4)

ID
(3.4)

where CX and CO are the total capacitive load at VX1,2 and Voutp,n (see Fig. 3.3).

Similarly, assuming gm of the input pair is unchanged during the integration, the

total amount of differential charge ∆Q produced by the input pair with small input

voltage ∆Vin is:

∆Q = ∆I · τpreamp ≈ gm∆V · τpreamp (3.5)

By the end of the integration phase, the majority of the differential charge ∆Q is at

the output nodes Voutp,n (the amount of differential charge at VX1,2 is very small as

shown in Fig. 3.2), and thus, we can derive G:

G ≈ ∆Vout

∆Vin

≈ ∆Q/CO

∆V

≈ gm
ID

{
VTp5,6 +

CX

CO

(VTp5,6 + VTp3,4)

}
(3.6)

Since the comparator input common-mode Vcmi determines gm/ID of the

input transistor, it has a strong influence on G. To increase G and reduce offset

and noise, we prefer a small Vcmi. To verify the analysis above, SPICE simulation

is performed in 0.18-µm CMOS process with VDD = 1.8V . G is extracted by

examining the voltage difference at Voutp,n when the output common-mode drops to

VDD−VTp5,6. Fig. 3.4(a) shows that G depends strongly on Vcmi. It decreases from

12.6 at Vcmi = 0.6V to 0.6 at Vcmi = 1.8V . Also, gm/ID proportionally decreases

as Vcmi increases. These results match (3.6). σos and σn are extracted from Monte

Carlo and transient noise simulations, respectively. Fig. 3.4(b) shows that they both
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increase with Vcmi due to the reduction in G. Fig. 3.4(c) plots their square as a

function of 1/G2. The close linear fitting with a fitting coefficient r > 0.99 clearly

validates the models of (3.1)-(3.3).

Vcmi also strongly affects the comparator resolve time τcomp defined here

as the time it takes for the comparator output differential voltage to reach 0.7VDD.

Fig. 3.4(d) shows τcomp as a function of Vcmi for a fixed 1mV input. τcomp decreases

as Vcmi increases, which can be explained by (3.4) as a larger ID shortens the pre-

amplification phase τcomp. An interesting observation is that the minimum τcomp

is not obtained at Vcmi = VDD. The reason is that if Vcmi is too large, the time

duration of the latch regeneration phase is longer due to the reduction in G [Wicht

et al. [2004]]. In addition, the comparator power Pcomp depends mildly on Vcmi, as

shown in Fig. 3.4(e). The reason is that a large Vcmi leads to increased short circuit

current.

Overall, a small Vcmi is preferred for small offset, low noise, and low power,

but it leads to slow speed. This represents a trade-off in the choice of Vcmi. To

provide a holistic evaluation of the comparator performance, we can define a com-

parator figure-of-merit FOMcomp shown below:

FOMcomp =
1

σα
n × τβcomp × P γ

comp

(3.7)

where α, β and γ are weighting factors to be determined by the designer. For

example, for noise optimized design, we can give more weight to σn by having a

larger α. Or if speed is the top priority, we can emphasize τcomp in FOMcomp by

enlarging β. For a balanced design with α = β = γ = 1, FOMcomp is plotted
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Figure 3.4: Simulated comparator performance: (a) G and gm/ID; (b) noise and
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shown in Fig. 3.4(f). Its optimum is at around Vcmi = 0.8V , which is more than 6

times larger than that at Vcmi = 1.8V .

3.3 Proposed BSS switching technique

Fig. 3.5 shows an example of the proposed bidirectional single-side (BSS)

switching technique applied to a 4-bit top-plate sampled SAR ADC. During the

sampling phase, the input is sampled onto the DAC array with the 2C MSB capac-

itor connected to ground and other capacitors connected to Vref . Since the input is

available at the comparator input, the MSB decision can be made immediately after

the sampling phase. Depending on the comparison result, one side of the 2C MSB

capacitors is switched from ground to Vref . Following the second comparator de-

cision, one side of the second MSB capacitor (the middle capacitor C) is switched

from Vref to ground. After the third comparison, one side of the LSB capacitor (the

rightmost capacitor C) is switched from Vref to Vcm. Finally, the fourth comparison

is launched. This operation scheme can be easily generalized for more number of

bits and also bottom-plate sampling.

3.3.1 Comparator input common-mode variation reduction

The key limitation for monotonic switching is that its comparator input

common-mode voltage Vcmi monotonically decreases from Vcm to ground, which

requires the use of a specially designed comparator with a PMOS input pair. Note

that there exists a complementary version for the original monotonic switching by

connecting all DAC capacitors initially to ground. This way, Vcmi monotonically
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Figure 3.5: Proposed bidirectional single-side switching technique.

increases from Vcm to VDD, which permits the use of the strong-arm latch compara-

tor with an NMOS input pair. However, as shown in Fig. 3.4, having Vcmi = VDD

results in large comparator offset and noise.
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Fig. 3.6 shows the variation of Vcmi for an 11-bit SAR ADC with different

switching schemes. Note that Vcmi depends on the comparison cycle but is inde-

pendent from Vin. For the proposed bidirectional up-down switching of Fig. 3.5,

Vcmi first increases, then decreases, and finally converges to Vcm. As a result, com-

pared to monotonic switching, the amount of Vcmi variation is reduced by a factor

of 2. Furthermore, because Vcmi converges to Vcm, the comparator noise and offset

are significantly reduced. To compare the ADC performance with monotonic up

switching and the proposed switching technique, a behavioral model for an 11-bit

SAR ADC is built in MATLAB using the strong-arm latch comparator parameters

extracted via SPICE simulation (see Fig. 3.4). For simplicity, other components in

the SAR ADC are assumed to be ideal.

In a conventional SAR ADC, Vcmi is fixed, and thus, the comparator offset

is a constant and does not affect the ADC linearity. By contrast, in both monotonic

switching and the proposed switching schemes, Vcmi changes every comparison cy-

cle, which leads to varying comparator offset (see Fig. 3.4) and degrades the ADC

linearity. To examine the influence of offset variation, we first perform 1000-time

Monte Carlo simulations for the 11-bit ADC with Vcmi dependent offset variation

but no noise. The SNDR histograms are shown in Fig. 3.7. Since Vcmi in mono-

tonic switching changes from Vcm to VDD, it leads to large varying offset, which

significantly degrades the ADC SNDR. For the proposed switching scheme, since

its Vcmi variation is only VDD/4 and it starts from Vcm and ends at Vcm, its SNDR

is much higher. However, because Vcmi still undergoes large changes in the first

several MSB comparisons, there are still appreciable SNDR degradations in cases
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where the comparator offsets are large and have considerable variations. To solve

this problem, a small redundant capacitor can be added after the 6th MSB capac-

itor, which corrects the errors due to offset variations in the first 6 comparisons.

For the comparisons afterwards, the change in Vcmi is within Vref/128, and thus,

the comparator offset variation is negligible and does not degrade SNDR. Fig. 3.8

shows the simulation results with redundancy added. The performance for the ADC

with the proposed switching scheme is fully restored. The ADC performance for

the monotonic switching is also improved, but there is still about 20% probability

for having less than 67 dB SNDR. Although adding redundancy can effectively ad-
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dress the offset variation problem, it cannot solve the SNDR loss due to increased

comparator noise. For monotonic up switching, because Vcmi converges to VDD, its

comparator noise is much larger than that for the proposed technique especially for

the last several noise sensitive LSB comparisons. This leads to SNDR degradation.

Fig. 3.9 shows the simulated SNDR histograms with offset, noise, and redundancy.

The average SNDR for monotonic switching is 60 dB, while that for the proposed

switching is 67 dB. Note that this 7 dB SNDR improvement comes without any

penalty in the comparator power. Moreover, assuming a target SNDR of 63 dB

as in our prototype, the proposed switching technique can achieve close to 100%

yield, while that for the monotonic switching is less than 10%.
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Figure 3.7: Simulated SNDR with comparator offset variation.

3.3.2 Comparator input common-mode voltage optimization

The proposed switching technique can be generalized to allow the compara-

tor common-mode voltage to converge to any desired voltage. It provides designers

the freedom to optimize the comparator for different design specifications. For ex-

ample, for low-speed high-resolution applications, it is desirable to reduce Vcmi to
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Figure 3.8: Simulated SNDR with both comparator offset variation and a redundant
capacitor after the 6th MSB capacitor.
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Figure 3.9: Simulated SNDR with comparator offset variation, noise and a redun-
dant capacitor after the 6th MSB capacitor.

minimize the comparator noise (see Fig. 3.4). To this end, we can initialize the

DAC array in such a way that the second MSB capacitor is connected to ground

while all other capacitors are connected to Vref . As a result, during DAC switching,

Vcmi first goes down, then goes up, and finally goes down to 0.25 × 1.8 = 0.45V

(see Fig. 3.6). In this configuration, the simulated comparator input referred noise

is only 100 µV, which is 70% less than that for Vcmi = 0.9V . For high-speed

medium-resolution applications, it is preferred to place Vcmi at higher voltages (see
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Fig. 3.4). This can be achieved by letting Vcmi go up during the first two MSB

comparisons and then go down, as shown in Fig. 3.6. This way, Vcmi converges to

0.75VDD, leading to a 10 ps shorter comparator resolve time. Note that the speed

improvement by adjusting Vcmi can be more significant in advanced technology

nodes with low power supply voltage.

3.3.3 Capacitance reduction

For the 4-bit SAR ADC shown in Fig. 3.5, the proposed BSS switching

technique requires a total capacitance of only 8C. By contrast, the conventional

switching technique requires in total 32C and the monotonic switching requires

16C. Thus, for a fixed unit capacitor size which is often determined by matching

accuracy and/or the fabrication technology, the proposed technique reduces the to-

tal DAC capacitance by 4 times, leading to reduced chip area and power. When de-

signed for the same kT/C noise with a fixed total DAC capacitance, the proposed

technique allows a 4 times bigger unit capacitor, which provides better matching

and simplifies layout design.

3.3.4 Reduced DAC reference energy

The energy required from Vref during each DAC switching is shown in blue

boxes along the arrows in Fig. 3.5. The proposed technique consumes zero energy

during the switching of the MSB capacitor, as it involves only charge redistribu-

tion [Sanyal and Sun [2014]]. For the 4-bit case using the proposed technique, the

average reference energy during the comparison phase is (0.5CV 2
ref . Once all con-
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versions finish, the DAC array needs to be reset to initial condition for sampling,

which dissipates an additional energy of 1.75CV 2
ref . Thus, the total reference en-

ergy is 2.25CV 2
ref . For an n-bit SAR ADC, the total reference energy including

both comparison and reset phases is:

Eref = (2n−3 +
n−1∑
i=2

2n−3−i − 1

2
)CV 2

ref (3.8)

For an 11-bit prototype ADC, the reference energy for different output codes

is plotted in Fig. 3.10. On average, the conventional switching technique con-

sumes 2729CV 2
ref . The monotonic switching technique consumes 512CV 2

ref . The

proposed technique consumes 383CV 2
ref , which is 86% and 25% smaller than the

conventional and monotonic switching schemes, respectively.
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Figure 3.10: DAC reference energy for an 11-bit SAR ADC with different output
codes.

Compared to monotonic switching, the proposed BSS switching technique

requires an additional reference voltage Vcm, but the Vcm generator does not need
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to deliver a large current as it is only connected to the small LSB capacitor (see

Fig. 3.5). It is interesting to note that the averaged energy drawn from Vcm is 0.

The reason is that Vcm sends energy (charge) to the DAC for 50% of the time while

it receives energy (charge) from the DAC for the rest of the time. Thus, a large

capacitor can be placed at Vcm to average out the charges, and output resistance for

the Vcm generator can be large. This reduces the power and the design effort for the

Vcm generator. Moreover, since Vcm is used only for the LSB comparison, it does

not need to be accurate. Simulation shows that 5% deviation in Vcm only results in

a DNL error of 0.05 LSB. This further simplifies Vcm generation.

3.4 Prototype ADC Design

A prototype implementing the proposed bidirectional single-side switching

technique was designed in 180nm CMOS process. The following subsections pro-

vide detailed description of the prototype.

3.4.1 Detailed circuit schematics

Fig. 3.11 shows an 11-bit SAR ADC using the proposed BSS switching

technique.

The capacitive DAC is implemented using binary-weighted capacitors. A

redundant capacitor C3 = 8C is added to recover conversion errors during the first

several MSB comparisons with large comparator common-mode variations. The

total capacitance including both sides of the DAC array is 1040C for the proposed

technique, which is 4 times smaller than that for the conventional switching tech-
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Figure 3.11: Architecture of the 11-bit prototype SAR ADC.

nique that requires 4096C. In our design, the size of the unit capacitor is limited by

matching requirement. For our proposed BSS switching technique, the equivalent

LSB capacitor size is 0.5C due to the use of Vcm. To ensure that the worst case

DNL is within 1 LSB, we have [Lin and Bult [1998]; Harpe et al. [2011]]:

3σDNL = 3

√
1040

0.5
σu < 1 (3.9)

where σu is the unit capacitor mismatch in percentage. From (9), has to be smaller

than 0.5%. This translates to the minimum MIM capacitor size of 2 fF based on

foundry provided mismatch data. Out of serendipity, the smallest available MIM

capacitor is also 2 fF. Thus, it is chosen as the unit capacitor size. The total DAC ca-

pacitance is 2 pF. The kT/C noise of about 100 µV does not limit the performance

of the ADC with an LSB size of 1.8 mV under VDD = 1.8V .

Since the unit capacitor size is only 2 fF, the routing parasitic capacitors
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have a considerable influence on the capacitor matching accuracy. Although digital

calibration techniques can be used to compensate capacitor mismatches [Chen et al.

[2014b]; Ragab et al. [2015]; Chang et al. [2013]], they increase design complexity

and digital power. In this design, a segmented common-centroid layout technique is

used to simplify the routing, thus minimizing the parasitic capacitors of the routing

wires. Fig. 3.12 shows the floor plan for a single side capacitor array. The ca-

pacitors are separated into two groups {C8, C7, ..., C3} and {C3, C2, C1, C0}. The

common-centroid rule is applied horizontally for the first group and vertically for

the second. The second group is placed at the right side of capacitor array instead

of at the center [Liu et al. [2010a]] to simplify routing. Dummy cells, represented

as D, are added for better matching. The capacitors’ top plates are connected using

the highest metal M6 while the bottom plates are connected using a lower metal

M2. This minimizes the parasitic capacitors between routing wires. Post-layout

simulation shows that with the proposed layout, the ADC is able to achieve an INL

within ±0.5 LSB and an SFDR of 79 dB.

Bottom plate sampling is used to ensure high linearity. The sampling switch

is implemented as a transmission gate, and an NMOS switch is used to pass Vcm.

Both the transmission gate and NMOS switch are sized large enough to reduce

resistance and ensure linearity.

The comparator is a strong-arm latch (see Fig. 3.1). No pre-amplifier is

used. Based on simulation, the comparator rms input referred noise is 300 µV at

Vcmi = 0.9V under 1.8 V power supply. The comparator outputs are connected to

two nearby inverters that isolate the comparator output nodes from other loading
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Figure 3.12: DAC capacitor array floor plan.

components, which reduces offset due to load mismatch. An XOR gate follows the

inverters to generate a valid signal to trigger the SAR logic.

Since the target ADC sampling rate is low, a synchronous SAR logic is used

for simplicity and robustness. Similar to [Zhang et al. [2012]], a 4-bit counter and

a decoder are used to generate the sampling clock clks and comparator clock clkc.

To perform the proposed switching technique, a modified SAR logic is developed

as shown in Fig. 3.13(a). It is built with a ring counter and a data register. It pro-

duces the initial control sequence of {0, 1, 1, ..., 1} for the DAC at the end of the

sampling phase. Once the comparator resolves after the first comparison, a valid

signal is generated and triggers the ring counter. It then triggers the correspond-

ing DFF in the data register to store the comparator output, which also serves as

the DAC control signal to perform the proposed switching technique until the last
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comparison.

As shown in Fig. 3.13(b), a gated inverter is used as the DAC control switch.

During the sampling phase with clks being high, the DAC switch is disabled, and

thus, it does not disturb the bottom plate sampling. During the comparison phase

with clks being low, the capacitor is switched between Vref and ground depending

on the control signal. The sizes of the top three MSB switches are scaled according

to their connected capacitor sizes. The LSB switch is sized 4 times the minimum

size due to its reduced overdrive voltage when passing Vcm. Other switches have

the same minimum size since the settling requirements are relaxed with small ca-

pacitors. All digital gates are optimized based on the method of logical efforts.
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Figure 3.13: Schematic for (a) the SAR logic and (b) the DAC switch.

3.4.2 Measurement Results

The prototype SAR ADC is fabricated in 0.18-µm CMOS process. Fig.

3.14 shows the die photo. The active area is 0.1 mm2. The rest of the chip area

is filled with de-coupling capacitors and metal fills. The power supply is 1.8V

and the sampling rate is 1.05 MS/s. Fig. 3.15 shows the measured DNL and INL,
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which are +0.56/−0.83 LSB and +0.64/−0.69 LSB. The major INL jumps occur

at first and second MSB transitions, which are due to capacitor mismatches. The

measured SNDR and SFDR are 64.3 dB and 78.7 dB, respectively. No calibration

is performed. To evaluate the influence of process variation, 4 chips are randomly

picked and tested. Their measured SNDR and SFDR are consistently beyond 64 dB

and 78 dB. The measured total power consumption is 60.4 µW at VDD = 1.8V.
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Figure 3.14: Die micrograph and zoomed view.

To reduce the power consumption, the measurements are repeated with a

reduced power supply of 1V while maintaining the same sampling rate of 1.05

MS/s. Fig. 3.16 shows the measured spectrum with 500 kHz full-scale input at

VDD = 1V . SNDR and SFDR are 63.4 dB and 76.6 dB, respectively.

Fig. 3.17 shows the measured SNDR and SFDR versus the input amplitude.

The SNDR is limited by noise rather than distortion. Fig. 3.18 shows the SNDR

and SFDR versus the input frequency. The SNDR stays almost constant at 63 dB.

Comparator noise plays a key role in the resolving accuracy. To verify the
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Figure 3.15: Measured DNL and INL.
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Figure 3.16: Measured 65536-point FFT spectrum with VDD = 1V.

analysis, we vary the comparator input common-mode voltage Vcmi and measure

ADC output Dout at Vin = 0V. The measured probability densities for Dout at
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Figure 3.18: Measured SNDR and SFDR versus input frequencies.

VDD = 1V with Vcmi = 0.4V and Vcmi = 0.9V are shown in Fig. 3.19 together with

the fitted normal distributions. When Vcmi = 0.4V, Dout is centered at code 1051

and spread over only 3 bins with a standard deviation of 0.36 LSB. By contrast,

when Vcmi is increased to 0.9V, Dout is centered at code 1049 and spread over 8

bins with a standard deviation of 0.70 LSB. The shift of Dout center indicates the
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comparator offset variation, which is due to Vcmi induced preamplifier gain change

as explained in (3.1). The increase in the ADC noise, which is dominated by the

comparator, is also the result of preamplifier gain reduction as explained in (3.3).

Fig. 3.20 shows the measured ADC rms noise with different Vcmi. It clearly shows

that a larger Vcmi leads to increased comparator noise, which matches well with the

analysis.
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Figure 3.19: Measured Dout distribution with Vcmi = 0.4V and Vcmi = 0.9V .

The measured total ADC power is 24 µW at VDD = 1V. The DAC, the

comparator, and the SAR logic consume 5.8 µW, 8 µW, and 10.2 µW, respectively.

The DAC reference power accounts for 24% of the total power. This compares

favorably to other works with conventional switching technique, such as [Zhang

et al. [2012]] whose DAC power is 62% of the total power. The figure-of-merit

(FOM) is 19.9 fJ/conversion-step.

Table 3.1 summarizes the ADC performance under both 1.8V and 1V power

supplies. Table 3.2 compares it with recent works with similar power supply volt-
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Figure 3.20: Measured Dout standard deviation with different Vcmi at Vin = 0V.

ages and sampling rates. This prototype ADC achieves the state-of-the-art perfor-

mance, especially considering its relatively old 180 nm process.

Table 3.1: Measured performance summary

Process [nm] 180
Sampling rate [MS/s] 1

Resolution [bit] 11
Input capacitance [pF] 2.1

Active area [mm2] 0.1
Power supply [V] 1.8 1.0

DNL [LSB] +0.56/-0.83 +0.53/-0.85
INL [LSB] +0.64/-0.69 +0.68/-0.91
SNDR [dB] 64.3 63.4
SFDR [dB] 78.7 76.6
ENOB [bit] 10.4 10.3

Power breakdown
DAC power [µW] 11.5 5.8

Comparator power [µW] 20.1 8.0
SAR logic power [µW] 28.8 10.2

Total power [µW] 60.4 24.0
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Table 3.2: Performance comparison

Liu
et al.

[2010a]

Liu
et al.

[2010b]

Huang
et al.

[2013]

Harpe
et al.

[2011]

Chang
et al.

[2013]

Kuo
and

Hsieh
[2011]

This work

Process [nm] 130 180 90 90 65 180 180
Supply voltage [V] 1.2 1.0 1.0 1.0 1.2 0.9 1.0

Sampling rate [MS/s] 50 10 30 10 50 1 1
Resolution [bit] 10 10 10 8 12 10 11

ENOB [bit] 9.2 9.8 9.2 7.8 10.9 8.4 10.3
Power [µW] 826 98 980 26.3 2090 7.2 24

FOM [fJ/conv-step] 29 11 57 12 21.9 21.6 19.9
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Chapter 4

Low-power and High-speed Single-channel SAR ADC

This chapter presents a low-power and high-speed single-channel SAR ADC.

It uses a loop-unrolled architecture with multiple comparators. Each comparator is

used not only to make a comparison but also to store its output and generate an

asynchronous clock to trigger the next comparator. The SAR logic is significantly

simplified to increase speed and reduce power. The comparator offset and decision

time are optimized with a bidirectional single-side switching technique by control-

ling the input common-mode voltage Vcm. To remove the nonlinearity due to com-

parators’ offset mismatch, a simple and effective Vcm-adaptive offset calibration

technique is proposed. A 40nm prototype ADC achieves 35dB SNDR and 48dB

SFDR at 700MS/s sampling rate. It consumes 0.95mW, leading to a Walden FOM

of 30fJ/conv-step.

This chapter is organized as follows: an introduction of existing high speed

SAR ADC design techniques is first presented. The proposed SAR ADC archi-

tecture is shown next. Finally, the detailed prototype ADC implementation and

0This chapter is a partial reprint of the publication: Long Chen, Kareem Ragab, Xiyuan Tang,
Jeonggoo Song, Arindam Sanyal, and Nan Sun, “A 0.95-mW 6-b 700-MS/s single-channel loop-
unrolled SAR ADC in 40-nm CMOS,” to appear in IEEE Transactions on Circuits and Systems
II (TCAS–II). I thank all the co-authors for their valuable advice in designing and testing of the
prototype.
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measurement are presented.

4.1 Introduction

High-speed low-resolution analog-to-digital converters (ADCs) are required

by many demanding applications, such as high speed serial link transceivers and

communication systems. Compared with pipelined and ∆Σ ADCs, SAR ADCs are

more power efficient and scaling friendly due to their mostly digital architecture.

Several techniques have been developed to increase the speed of SAR ADCs [Jiang

et al. [2012]; Chen and Brodersen [2006]; Yang et al. [2010]; Wei et al. [2012];

Hong et al. [2015]; Kull et al. [2013]; Tai et al. [2014b]; Lin et al. [2010]; Chen et al.

[2013]; Rahman et al. [2014]; Verbruggen et al. [2012]]. The first asynchronous

SAR ADC was proposed in [Chen and Brodersen [2006]] to shorten the time du-

ration of each comparison cycle. The SAR ADC speed can also be improved by

using multi-bit-per-cycle architectures to reduce the number of comparisons, how-

ever at the cost of increased hardware complexity [Wei et al. [2012]; Hong et al.

[2015]]. Other effective high-speed techniques include using alternate comparators

to save the comparator reset time [Kull et al. [2013]] or pipelining two-stage SAR

ADCs [Tai et al. [2014b]]. Recently, several works arrange multiple comparators to

further increase the speed [Jiang et al. [2012]; Lin et al. [2010]; Chen et al. [2013];

Rahman et al. [2014]; Verbruggen et al. [2012]]. A binary-search ADC was pro-

posed in [Lin et al. [2010]], which describes a transitional structure between flash

and SAR ADCs. However, the hardware cost is high in [Lin et al. [2010]] as this

technique requires additional switching networks and 2N−1 comparators for an N -
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bit design. The loop-unrolled architecture of [Jiang et al. [2012]; Verbruggen et al.

[2012]] employs a dedicated comparator for each comparison cycle. The compari-

son result is stored directly at the comparator output. As a result, the SAR logic is

greatly simplified, leading to reduced power and delay. Although more compara-

tors are used compared to the conventional SAR architecture, the total comparator

power does not increase since each of them is fired only once during the whole

conversion. Nevertheless, the comparator common-mode voltage Vcm varies signif-

icantly and eventually goes to VDD in [Jiang et al. [2012]; Verbruggen et al. [2012]],

resulting in large comparator offsets and reduced linearity. Both work [Verbruggen

et al. [2012]] and [Jiang et al. [2012]] require complicated calibrations for compara-

tors’ offset mismatches, which increase both the power consumption and the design

complexity.

This work proposes a novel loop-unrolled SAR ADC with two new key

techniques to improve the linearity and the power efficiency. First, in order to ad-

dress the large Vcm variation issue, a bidirectional single-side switching technique

is employed. It reduces the comparator offset by appropriately controlling Vcm.

The comparator decision time is also optimized. In addition, it allows a reduced

number of DAC unit capacitors, which reduces the DAC area and the routing par-

asitics. Second, to further improve the linearity, a novel Vcm-adaptive offset cali-

bration technique is proposed to calibrate the comparators’ offset mismatch. The

proposed calibration technique has very low hardware complexity. It can calibrate

the comparator offset at its operating Vcm following the proposed switching proce-

dure. A prototype ADC is implemented in 40nm CMOS. It achieves 34.8dB SNDR
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and 47.8dB SFDR at a sampling rate of 700MS/s, while consuming only 0.95mW

power from a 1.2V supply.

4.2 Proposed SAR ADC Architecture

Figure 4.1: (a) Architecture and (b) timing diagram of the proposed SAR ADC.

The proposed 6-bit SAR ADC architecture is shown in Fig. 4.1(a). It con-

sists of a clock generator, a sampling network, 2 capacitive DACs, 6 comparators,
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and a calibration unit. The clock generator generates the required timing phases.

The sampling switches S1 and S2 are bootstrapped to ensure high sampling lin-

earity at high input frequencies. The DACs are implemented using binary weighted

capacitors. Small dynamic comparators with offset calibration are used to minimize

power consumption. Dynamic OR gates with reset and controlled delay are used to

generate the asynchronous clocks. The comparator offset mismatch is foreground

calibrated by the calibration unit. The LSB comparator outputs are combined by a

NOR gate to generate a ready signal, which indicates the end of the whole ADC

conversion.

The timing diagram is shown in Fig. 4.1(b). When clks is low, the input

voltages are top-plate sampled on the DACs through S1 and S2. All comparators’

outputs are reset to low through dynamic OR gates controlled by clkse. The ready

signal is reset to high. When the sampling phase ends, both clkse and clks go to

high. The MSB comparator is triggered by clk[5] which is two gates delay of clkse.

Depending on the sampled input voltages, the MSB comparator makes its decision

dp[5] and dn[5], which directly control the capacitive DACs to perform the proposed

switching technique without the need for any shift register based SAR logic. The

dynamic OR gate delay is controlled to provide adequate time for DAC settling. It

generates clk[4] to trigger the second MSB comparator. This procedure propagates

in a ‘domino’ fashion until the LSB comparison finishes. The ready signal goes to

low. The next sampling phases starts after the comparator outputs are latched by

the falling edge of clkse.

Compared to the conventional SAR ADC, the SAR logic is greatly sim-
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plified in this loop-unrolled architecture. There is no need for any shift register

based sequencer or DFF based data storage because all comparator results are di-

rectly stored at the comparator outputs. The comparators are not reset during the

ADC conversion process. The asynchronous clock is generated easily by ORing

the comparators’ outputs. The reduced logic complexity reduces the circuit power,

minimizes the chip area, and increases the speed. In the proposed architecture,

the conversion time is reduced in three ways compared to the conventional asyn-

chronous SAR ADC [Chen and Brodersen [2006]]. First, no DFF or latch delay

is needed to store the comparator output in our critical path. Second, comparators

are reset simultaneously, and thus, no comparator reset time is needed for every

comparison cycle. The comparator reset time can be a speed bottleneck especially

in most advanced technology node where both logic delay and DAC settling time

are small [Kull et al. [2013]]. Third, the proposed design allows independent op-

timization for each comparison cycle. In other words, each OR gate delay can be

adjusted based on the corresponding DAC settling time. The comparator power can

also be optimized using the technique in [Ahmadi and Namgoong [2015]]. Overall,

the optimized critical path for each comparison cycle in the proposed design can be

represented as:

T = tcomp,decision +max{tDAC , tOR} (4.1)

This design optimizes tcomp,decision by optimizing comparator input common-

mode voltage with a bidirectional single-side switching technique. tDAC and tOR

are optimized by using small unit capacitor and specially designed dynamic OR

gate, respectively. Based on SPICE simulation, tDAC is greater than tOR for the
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first 2 MSB bits where the DAC capacitors are large. tOR dominates over tDAC for

the last 4 LSB bits.

4.3 Prototype ADC Design
4.3.1 Detailed circuit schematics

Fig. 4.2 shows the dynamic comparator with offset calibration. Two vari-

able MOS capacitors are added at the drain of input transistors M1 and M2 for

calibration purpose. Comparator offset and decision time are two key parameters

in this design. Unlike the conventional SAR ADC with one single comparator, the

loop-unrolled architecture employs 6 comparators. All comparators have offsets

and their offset mismatches degrade the ADC linearity. Comparator decision time

is in the critical timing path as shown in (4.1). Thus, it is desirable to design com-

parator with small offset and fast decision time. One important factor that influences

both offset and decision time is the comparator input common-mode voltage Vcm

[Wicht et al. [2004]]. A small Vcm is preferred to reduce the offset. The reason is

that the pre-amplification gain is larger at small Vcm, which suppresses the offset

contribution from the latch. A large Vcm helps reduce the pre-amplification time

but the time duration of the latch regeneration phase is longer due to the reduction

in the pre-amplification gain [Wicht et al. [2004]]. There exists an optimized Vcm

for decision time. The simulated 1σ offset and decision time are shown in Fig.

4.3. Here the decision time is defined as the time it takes for the comparator output

differential voltage to reach 0.7VDD given 1mV differential input. It suggests the

optimal value of Vcm is around 0.8V, where the decision time is minimized and the
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offset is also small.
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Figure 4.2: Dynamic comparator with varactor loading.
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Figure 4.3: Simulated comparator offset and decision time at different Vcm.
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A modified bidirectional single-side (BSS) switching technique based on

[Chen et al. [2014a]; Sanyal and Sun [2014]] is employed in the design. The BSS

technique can reduce the number of unit capacitors by 4 times compared to conven-

tional switching technique and 2 times compared to monotonic switching technique

[Jiang et al. [2012]; Verbruggen et al. [2012]]. The binary capacitors used in the

DAC are [8CU , 4CU , 2CU , CU , CU ] for 6-bit implementation, with a unit capacitor

CU of 1.9fF. Thanks to the small unit capacitor, the DAC settling time tDAC is short

and it is easy to guarantee the settling error to be within 1/2 LSB. No redundancy

is provided to avoid additional comparison cycles. The reduced number of unit

capacitors reduces the layout complexity since fewer interconnections are needed.

The measured result shows the capacitors are matched well for 6-bit accuracy with

a similar layout strategy in [Chen et al. [2014a]]. Unlike prior loop-unrolled works

[Jiang et al. [2012]; Verbruggen et al. [2012]], no capacitor calibration is needed

here.

The proposed BSS switching scheme is shown in Fig. 4.4. DAC is con-

nected to [0, 0, 0, 1, 1/2] when sampling the inputs, where 0, 1 and 1/2 indicate

ground, VDD and VDD/2, respectively. Instead of switching DAC capacitors from

ground to VDD monotonically, the proposed technique switches the first 3 MSB ca-

pacitors [8CU , 4CU , 2CU ] from ground to VDD, and then, switches the left side CU

capacitors from VDD to ground.

The simulated Vcm variation is shown in Fig. 4.5. In the proposed switching

scheme, Vcm stays close to 0.8V after the first comparison cycle, where the opti-

mized decision time is achieved and comparator offset is kept small [Chen et al.
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Figure 4.4: BSS switching scheme.

[2016]]. Compared with monotonic switching scheme in [Jiang et al. [2012]; Ver-

bruggen et al. [2012]], where Vcm can converge to VDD, the 1σ offset can be reduced

from 32mV to 10mV and decision time can be reduced by 10% in the proposed

switching technique. Note that Vcm decreases slightly when the comparators are

fired due to the comparator kick-back noise. The kick-back noise is a common-

mode noise to the first order, which does not disturb the settling of the comparator

differential mode voltage Vdm (see Fig. 4.5). Thus, the kick-back noise does not

degrade the linearity for this 6-bit ADC.

In the prototype ADC, the full-scale differential input swing is 1.4V and 1

LSB size is about 20mV. The optimized comparator 1σ offset is 10mV, which is

comparable to the LSB size. To avoid linearity degradation due to offset mismatch,

a Vcm-adaptive offset calibration technique is proposed. The calibration technique

works as follows. When the ADC is in the calibration mode, the calibration control

switch S0 is on and a zero differential input voltage is sampled through S1 and S2

(see Fig. 4.1). A low-frequency external clock clkext is provided. Each OR gate’s

delay is set large enough such that before each comparator is triggered, its differen-

tial inputs settle well and stay close to zero. If there is no offset, each comparator’s
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Figure 4.5: Simulated time-domain waveforms for comparator inputs Vin+/Vin-, its
common mode voltage Vcm and its differential mode voltage Vdm.

output jumps between “1” and “0” due to thermal noise. Comparator thermal noise

in the design is about 400µV, which is much smaller than the offset. With a large

offset in presence, the comparator’s output keeps staying at either “1” or “0”. The

offset can be calibrated by tuning the MOSFET based varactors shown in Fig. 4.2,

whose values are controlled by its gate voltage calp/calm. The calibration range

is designed to be 30mV which is 3 times the simulated 1σ offset. By observing the

comparator’s output, we can tell whether the comparator offset has been calibrated

or not. The calibration is finished when the comparator output is evenly distributed

between “1” and “0”. 1024 ADC outputs are captured by a logic analyzer dur-

ing the calibration. The comparator offset is removed when the probability that its
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output code equals to “1” is around 50%. Note that the probability does not need

to be exactly 50% since the calibration accuracy is relaxed for a 6-b design. The

measured probability of comparator outputs being “1” versus its calibration voltage

calm for the MSB comparator is plotted in Fig. 4.6. The proposed calibration is

simple as it only requires one additional switch S0. It does not require special DAC

patterns to generate the operating Vcm in [Verbruggen et al. [2012]] or special input

voltages that cause metastability at different comparators in [Jiang et al. [2012]].

Furthermore, since the same DAC switching procedure happens during calibration,

each comparator offset is calibrated at the same Vcm as that of the normal ADC

operation. This is necessary in BSS or monotonic switching technique since Vcm

varies in each comparison cycle and the comparator offset depends strongly on Vcm

[Chen et al. [2014a]; Wicht et al. [2004]].

0 0.1 0.2 0.3 0.4 0.5
calm voltage [V]

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 o

ut
pu

t =
 1

Figure 4.6: Probability of MSB comparator output being ‘1’ versus its calm with
calp fixed at 1.2V.

A clock generator similar to [Chen and Brodersen [2006]] is used. The input

sampling switches S1 and S2 are bootstrapped with the circuit shown in Fig. 4.7(a)

[Siragusa and Galton [2004]]. It is simple and does not require two complementary
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clock phases [Jiang et al. [2012]]. A thick-oxide device provided in the process

is used to tolerate a potential voltage higher than 1.2V. OR gate needs to have a

reset function together with controlled delay with the aim to provide enough time

for DAC settling. Since the unit capacitor employed in this design is quite small

(1.9fF), the DAC settling time is comparable with the CMOS logic gate delay. To

minimize the number of logic gates and their delay, a dynamic OR gate shown in

Fig.4.7(b) is used instead of traditional CMOS gates. V B is used to control the

current flowing through OR gate, thus tuning the gate delay.

Figure 4.7: Schematic of (a) bootstrapped sampling switch and (b) dynamic OR
gate.

4.3.2 Measurement results

The prototype ADC is fabricated in 40-nm CMOS and occupies an active

area of only 0.004mm2, as shown in Fig. 4.8. Unlike the floor plan in [Jiang

et al. [2012]], where the DAC and SAR logic are placed side by side, SAR logic
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is placed between two CDACs in our design. By doing this, long routing wires are

avoided, which saves both area and power. The outputs are decimated by 32 using

5 divide-by-2 toggle flip-flops to facilitate ADC measurements. All measurements

are performed under 1.2V power supply.

Figure 4.8: Chip micrograph.

Fig. 4.9 shows the measured DNL and INL before and after perform-

ing the proposed comparator offset calibration. Before calibration, large DNL

and INL jumps happen due to comparator offset mismatches. After performing

the Vcm-adaptive offset calibration, DNL and INL are reduced significantly to -

0.4LSB/0.9LSB and -0.3/0.6LSB, respectively. The effectiveness of the calibration

can also be observed from the measured spectrum shown in Fig. 4.10, where 4.3dB

SNDR and 8.5dB SFDR improvements are achieved after calibration.
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Figure 4.9: Measured DNL/INL before calibration (dotted line) and after calibration
(solid line).

Fig. 4.11 shows the measured FFT spectrum with 700MS/s sampling rate

and 300MHz input. The measured SNDR and SFDR are 34.8dB and 47.8dB,

respectively, leading to 5.5-bit ENOB. When the input frequency is reduced to

10MHz, the measured SNDR and SFDR are 35.1dB and 49.5dB, respectively. Fig.

4.12 shows SNDR and SFDR at different sampling frequencies with a 50MHz in-
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Figure 4.10: Measured 1024p FFT spectrum before calibration and after calibration
with 600MS/s sampling rate and 100MHz input.

put, at different input frequencies with 700MS/s sampling rate, and at different input

amplitudes with 300MHz input and 700MS/s sampling rate. The measured SNDR

is above 34.7dB across the whole Nyquist band. The maximum sampling rate of

700MS/s is limited by insufficient sampling time discovered during chip measure-

ments. When clkse goes low, it takes longer time to reset comparators in mea-

surements than that in simulation, which reduces the effective sampling time. The

total power consumption at 700MS/s is 0.95mW, whose breakdown is: 0.84mW

used by SAR logic and comparator, 0.09mW used by DAC, and 0.02mW used by

clock generator. The measured Walden figure-of-merit (FOM) [Walden [1999]]

at Nyquist rate is 30fJ/conversion-step and Schreier FOM [Schreier and Temes

[2005]] is 153.4dB. Table 4.1 compares the performance of the prototype ADC
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with other recently published high-speed 6-bit SAR ADCs. As shown in Table 4.1,

this work achieves the highest SNDR and the best Walden FOM with the smallest

chip area among them.
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Figure 4.11: Measured 1024p FFT spectrum with 700MS/s sampling rate and
300MHz input.
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Table 4.1: Performance comparison

Chen
and

Broder-
sen

[2006]

Yang
et al.

[2010]

Tai
et al.

[2014b]

Jiang
et al.

[2012]

This work

Resolution [bit] 6 6 6 6 6
Process [nm] 130 65 40 40 40

Supply voltage [V] 1.2 1.2 1.2 1.0 1.2
Active area [mm2] 0.060 0.110 0.009 0.014 0.004

Number of channels 2 2 1 1 1
Sampling rate [GS/s] 0.6 1 1 1.25 0.7

SNDR(Nyq) [dB] 32 29 31.2 26.8 34.8
ENOB [bit] 5.0 4.5 4.9 4.1 5.5
Power [mW] 5.3 6.7 5.3 6.08 0.95

FOM [fJ/conv-step] 276 290 180 272 30
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

This thesis focuses on improving the power efficiency of SAR ADCs. Three

prototype ADCs have been developed to validate the proposed techniques. Chap-

ter 2 presents a novel noise reduction technique for SAR ADC based on statistical

estimation. To the authors’ best knowledge, this is the first work that comprehen-

sively introduces the statistical estimation theory to the field of ADC design. The

proposed technique requires minimum change to the original SAR ADC design. It

can significantly reduce both the comparator noise and the quantization error. It is

suitable for applications that require low-power high-resolution SAR ADCs.

Chapter 3 presents a low-power ADC with a bidirectional single-side switch-

ing technique. It solves the linearity degradation problem due to comparator input

common-mode voltage variation. The proposed switching technique provides de-

signers the freedom to choose where the comparator common-mode voltage con-

verges to. It is suitable for applications that require both low power and high reso-

lution.

Chapter 4 presents a high-speed and low-power single-channel loop-unrolled

SAR ADC. It proposed a simple method to calibrate the comparator offsets. The
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proposed switching technique allows the designers to control comparator input

common-mode voltage for comparator offset and speed optimization. It can be

easily time-interleaved (TI) for even higher speed applications.

5.2 Future Directions

The proposed statistical estimation based noise reduction technique requires

the knowledge of the comparator noise. Since comparator noise is sensitive to PVT

variation, an interesting direction is to build a comparator noise extraction circuit

on chip. Thus, the look up table of the estimator can be updated when the noise

changes. It is also desirable to implement a fully reconfigurable SAR ADC by

providing the ability to change the estimation times N .

In the second prototype ADC, a unit capacitor of 2fF is used, which is the

minimum MIM capacitor provided in the PDK. Since the DAC switching power

is proportional to the unit capacitor size, a smaller unit capacitor is desired. This

can be achieved by custom designing the unit capacitor with metal wires. It is also

interesting to investigate low power calibration techniques to calibrate the capacitor

mismatch with aim to use ultra small unit capacitor. Another interesting path to

reduce the DAC size is to use hybrid architecture, such as [Sanyal et al. [2014]].

By doing this, the first stage SAR ADC only needs to resolve less number of bits,

leading to reduced DAC size and power. During the measurement, we learned that

the SAR logic consumes a significant power out of total ADC power. Although the

power of logic circuits reduces in more advanced technologies, it is still desirable

to explore circuits design techniques to optimize the logic power.
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Although the power and linearity of the loop-unrolled SAR ADC have been

improved by using optimized switching technique and Vcm-adaptive calibration

technique, there is still some work which can be done in the future. One pos-

sible direction is to design the background calibration technique to calibrate the

comparator offset mismatches. The other direction could be time-interleaving the

single channel ADC to achieve higher speed.
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1. Long Chen, Kareem Ragab, Xiyuan Tang, Jeonggoo Song, Arindam Sanyal,
and Nan Sun, “A 0.95-mW 6-b 700-MS/s single-channel loop-unrolled SAR
ADC in 40-nm CMOS,” accepted in IEEE Transactions on Circuits and Sys-
tems II (TCAS–II).

2. Long Chen, Arindam Sanyal, Ji Ma, Xiyuan Tang, and Nan Sun, “Com-
parator common-mode variation effects analysis and its application in SAR
ADCs,” accepted in 2016 IEEE International Symposium on Circuits and
Systems (ISCAS).

3. Long Chen, Xiyuan Tang, Arindam Sanyal, Yeonam Yoon, Jie Cong, and Nan
Sun, “A 10.5-b ENOB 645nW 100kS/s SAR ADC with statistical estimation
based noise reduction,” IEEE Custom Integrated Circuit Conference (CICC),
2015, pp. 1–4.

4. Yeonam Yoon, Koungtae Lee, Sungjin Hong, Xiyuan Tang, Long Chen, and
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pp. 1325–1334, 2015.

6. Kareem Ragab, Long Chen, Arindam Sanyal, and Nan Sun, “Digital back-
ground calibration for pipelined ADCs based on comparator decision time
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62, no. 5, pp. 456–460, 2015.
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9. Long Chen, Ji Ma, and Nan Sun, “Capacitor mismatch calibration for SAR
ADCs based on comparator metastability detection,” IEEE International Sym-
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10. Manzur Rahman, Long Chen, and Nan Sun, “Algorithm and implementation
of digital calibration of fast converging radix-3 SAR ADC,” IEEE Interna-
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