345 research outputs found

    Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems

    Full text link
    [EN] Many real-world problems are known as planning and scheduling problems, where resources must be allocated so as to optimize overall performance objectives. The traditional scheduling models consider performance indicators such as processing time, cost, and quality as optimization objectives. However, most of them do not take into account energy consumption and robustness. We focus our attention in a job-shop scheduling problem where machines can work at different speeds. It represents an extension of the classical job-shop scheduling problem, where each operation has to be executed by one machine and this machine can work at different speeds. The main goal of the paper is focused on the analysis of three important objectives (energy efficiency, robustness, and makespan) and the relationship among them. We present some analytical formulas to estimate the ratio/relationship between these parameters. It can be observed that there exists a clear relationship between robustness and energy efficiency and a clear trade-off between robustness/energy efficiency and makespan. It represents an advance in the state of the art of production scheduling, so obtaining energy-efficient solutions also supposes obtaining robust solutions, and vice versa.This research has been supported by the Spanish Government under research project MICINN TIN2013-46511-C2-1-P, the European CASES project (No. 294931) supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the FP7, and the European TETRACOM project (No. 609491) supported by FP7-ICT-2013-10. This research was also supported by the National Science Foundation of China (No. 51175262) and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK2012032.Salido Gregorio, MA.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS.; Tang, D.; Dai, M. (2015). Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems. AI EDAM. 30(3):300-312. https://doi.org/10.1017/S0890060415000335S300312303Billaut, J.-C., Moukrim, A., & Sanlaville, E. (Eds.). (2008). Flexibility and Robustness in Scheduling. doi:10.1002/9780470611432Nowicki, E., & Smutnicki, C. (2005). An Advanced Tabu Search Algorithm for the Job Shop Problem. Journal of Scheduling, 8(2), 145-159. doi:10.1007/s10951-005-6364-5Agnetis, A., Flamini, M., Nicosia, G., & Pacifici, A. (2010). A job-shop problem with one additional resource type. Journal of Scheduling, 14(3), 225-237. doi:10.1007/s10951-010-0162-4Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60(1), 41-44. doi:10.1016/j.cirp.2011.03.015Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., … Kellens, K. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2), 587-609. doi:10.1016/j.cirp.2012.05.002Laborie P. (2009). IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. Proc. 6th Int. Conf. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR09.Dahmus J. , & Gutowski T. (2004). An environmental analysis of machining. Proc. ASME Int. Mechanical Engineering Congr. RD&D Exposition, Anaheim, CA.Huang, K.-L., & Liao, C.-J. (2008). Ant colony optimization combined with taboo search for the job shop scheduling problem. Computers & Operations Research, 35(4), 1030-1046. doi:10.1016/j.cor.2006.07.003IBM. (2010). Modeling With IBM ILOG CP Optimizer—Practical Scheduling Examples (white paper). Armonk, NY: IBM Software Group.Kramer L. , Barbulescu L. , & Smith S. (2007). Understanding performance tradeoffs in algorithms for solving oversubscribed scheduling. Proc. 22nd Conf. Artificial Intelligence, AAAI-07, Vancouver.Seow, Y., & Rahimifard, S. (2011). A framework for modelling energy consumption within manufacturing systems. CIRP Journal of Manufacturing Science and Technology, 4(3), 258-264. doi:10.1016/j.cirpj.2011.03.007Li, W., Zein, A., Kara, S., & Herrmann, C. (2011). An Investigation into Fixed Energy Consumption of Machine Tools. Glocalized Solutions for Sustainability in Manufacturing, 268-273. doi:10.1007/978-3-642-19692-8_47Szathmáry, E. (2006). A robust approach. Nature, 439(7072), 19-20. doi:10.1038/439019aFang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:10.1016/j.jmsy.2011.08.004Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., … Wolff, E. (2005). Environmentally benign manufacturing: Observations from Japan, Europe and the United States. Journal of Cleaner Production, 13(1), 1-17. doi:10.1016/j.jclepro.2003.10.004Garrido A. , Salido M.A. , Barber F. , & López M.A. (2000). Heuristic methods for solving job-shop scheduling problems. Proc. ECAI-2000 Workshop on New Results in Planning, Scheduling and Design, Berlín.Verfaillie G. , & Schiex T. (1994). Solution reuse in dynamic constraint satisfaction problems. Proc. 12th National Conf. Artificial Intelligence, AAAI-94.Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001Neugebauer, R., Wabner, M., Rentzsch, H., & Ihlenfeldt, S. (2011). Structure principles of energy efficient machine tools. CIRP Journal of Manufacturing Science and Technology, 4(2), 136-147. doi:10.1016/j.cirpj.2011.06.017Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. doi:10.1080/19397030802257236Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462. doi:10.1016/j.cirp.2012.03.08

    A Dual Scheduling Model for Optimizing Robustness and Energy Consumption in Manufacturing Systems

    Full text link
    [EN] Manufacturing systems involve a huge number of combinatorial problems that must be optimized in an efficient way. One of these problems is related to task scheduling problems. These problems are NP-hard, so most of the complete techniques are not able to obtain an optimal solution in an efficient way. Furthermore, most of real manufacturing problems are dynamic, so the main objective is not only to obtain an optimized solution in terms of makespan, tardiness, and so on but also to obtain a solution able to absorb minor incidences/disruptions presented in any daily process. Most of these industries are also focused on improving the energy efficiency of their industrial processes. In this article, we propose a knowledge-based model to analyse previous incidences occurred in the machines with the aim of modelling the problem to obtain robust and energy-aware solutions. The resultant model (called dual model) will protect the more dynamic and disrupted tasks by assigning buffer times. These buffers will be used to absorb incidences during execution and to reduce the machine rate to minimize energy consumption. This model is solved by a memetic algorithm which combines a genetic algorithm with a local search to obtain robust and energy-aware solutions able to absorb further disruptions. The proposed dual model has been proven to be efficient in terms of energy consumption, robustness and stability in different and well-known benchmarks.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research has been supported by the Spanish Government under research project TIN2013-46511-C2-1 for the Spanish government and the TETRACOM EU project FP7-ICT-2013-10-No 609491.Escamilla Fuster, J.; Salido Gregorio, MA. (2016). A Dual Scheduling Model for Optimizing Robustness and Energy Consumption in Manufacturing Systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 1(1):1-12. https://doi.org/10.1177/0954405415625915S1121

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Robust schedules for tardiness optimization in job shop with interval uncertainty

    Get PDF
    This paper addresses a variant of the job shop scheduling problem with total tardiness minimization where task durations and due dates are uncertain. This uncertainty is modelled with intervals. Different ranking methods for intervals are considered and embedded into a genetic algorithm. A new robustness measure is proposed to compare the different ranking methods and assess their capacity to predict ‘expected delays’ of jobs. Experimental results show that dealing with uncertainty during the optimization process yields more robust solutions. A sensitivity analysis also shows that the robustness of the solutions given by the solving method increases when the uncertainty grows.This research has been supported by the Spanish Government under research grants PID2019-106263RB-I00 and TIN2017-87600-P

    Quantum algorithms for process parallel flexible job shop scheduling

    Get PDF
    Flexible Job Shop Scheduling is one of the most difficult optimization problems known. In addition, modern production planning and control strategies require continuous and process-parallel optimization of machine allocation and processing sequences. Therefore, this paper presents a new method for process parallel Flexible Job Shop Scheduling using the concept of quantum computing based optimization. A scientific benchmark and the application to a realistic use-case demonstrates the good performance and practicability of this new approach. A managerial insight shows how the approach for process parallel flexible job shop scheduling can be integrated in existing production planning and control IT-infrastructure

    Multi-Objective Flexible Job Shop Scheduling Using Genetic Algorithms

    Get PDF
    Flexible Job Shop Scheduling is an important problem in the fields of combinatorial optimization and production management. This research addresses multi-objective flexible job shop scheduling problem with the objective of simultaneous minimization of: (1) makespan, (2) workload of the most loaded machine, and (3) total workload. A general-purpose, domain independent genetic algorithm implemented in a spreadsheet environment is proposed for the flexible job shop. Spreadsheet functions are used to develop the shop model. Performance of the proposed algorithm is compared with heuristic algorithms already reported in the literature. Simulation experiments demonstrated that the proposed methodology can achieve solutions that are comparable to previous approaches in terms of solution quality and computational time. Flexible job shop models presented herein are easily customizable to cater for different objective functions without changing the basic genetic algorithm routine or the spreadsheet model. Experimental analysis demonstrates the robustness, simplicity, and general-purpose nature of the proposed approach

    An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

    Get PDF
    This research paper addresses a novel parallel machine scheduling problem with re-entrant and group processing features, specifically motivated by the hot milling process in the modern steel manufacturing industry. The objective is to minimize the makespan. As no existing literature exists on this problem, the paper begins by analyzing the key characteristics of the problem. Subsequently, a mixed integer linear programming model is formulated. To tackle the problem, an improved iterated greedy algorithm (IGA) is proposed. The IGA incorporates a problem-specific heuristic to construct the initial solution. Additionally, it incorporates an effective destruction and reconstruction procedure. Furthermore, an acceptance rule is developed to prevent the IGA from getting stuck in local optima. The proposed approach is evaluated through computational experiments. The results demonstrate that the proposed IGA outperforms three state-of-the-art meta-heuristics, highlighting its high effectiveness. Overall, this research contributes to the understanding and solution of the parallel machine scheduling problem with re-entrant and group processing features in the context of the hot milling process. The proposed algorithm provides insights for practical applications in the steel manufacturing industry
    corecore