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Abstract 

The purpose of this work is to assess the feasibility and effectiveness of integrating a 

standby mode strategy into manufacturing processes as a means of reducing energy con-

sumption during idle times while maintaining the total completion time of operations 

(makespan). The research aims to determine the potential energy savings and contribute to 

the development of energy-efficient manufacturing practices. 

With the aim of establishing an efficient operation schedule, the study focuses on the 

Job Shop Scheduling Problem with a single objective model that minimizes the makespan, 

solved with IBM ILOG CPLEX Optimization Studio. Subsequently, following the compu-

tation of pertinent data related to the implementation of standby mode and the determination 

of the breakeven idle time thresholds for each machine, the idle intervals initially identified 

will be reevaluated and substituted by standby intervals, when considered energy efficient. 

The calculations reveal a promising outlook. The incorporation of standby mode has 

the potential to deliver significant energy savings, estimated at approximately 46% of the idle 

energy and 4.2% of the total energy, encompassing both processing and idle energy. A sen-

sitivity analysis reinforces the reliability of these results, showing minor variations. Further-

more, these findings surpass the performance of a bi-objective model that minimizes both 

makespan and idle time. 

This research stands out for its specialized focus on integrating standby mode for 

energy conservation within job shop scheduling, effectively merging optimization techniques 

with sustainability considerations. This area is increasingly attracting more interest due to the 

growing awareness of resource shortage. 

Despite the positive findings, some limitations should be considered. Firstly, assump-

tions and simplifications within the optimization models could diverge from real-world com-

plexities. Moreover, variability in machine characteristics due to the manufacturing environ-

ment and the influence of external factors are not fully accounted for. Finally, time and re-

source constraints also played a role in the study's methodology. 
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Resumo 

O objetivo deste trabalho consiste em avaliar a eficácia da integração de uma estraté-

gia de standby nos processos de fabrico como forma de reduzir o consumo energético durante 

os tempos de inatividade, mantendo constante o tempo total de conclusão das operações 

(makespan). 

Com o intuito de estabelecer um “horário” de operações eficiente, é desenvolvido 

um Problema de Job Shop Scheduling (JSP) com um modelo de objetivo único que minimiza o 

makespan, resolvido com recurso ao software IBM ILOG CPLEX Optimization Studio. Após 

a integração dos dados relacionados com a implementação do modo standby e a determinação 

dos pontos de equilíbrio (breakeven), a partir do qual é considerado vantajoso ativar o modo 

standby, os intervalos de inatividade são reavaliados e substituídos por tempos standby, quando 

considerado energeticamente eficiente. 

Os cálculos revelam uma perspetiva promissora. A incorporação do modo de standby 

tem o potencial de proporcionar poupanças de energia estimadas em aproximadamente 46% 

da energia de períodos de inatividade e 4.2% da energia total, que abrange energia de proces-

samento e de inatividade. A análise de sensibilidade reforça a confiabilidade dos resultados, 

revelando variações mínimas. Para além disso, os resultados superam os de um modelo que 

visa minimizar simultaneamente o makespan e os tempos de inatividade. 

Esta pesquisa destaca-se pelo seu foco na integração do modo standby para conserva-

ção de energia, unindo técnicas de otimização com considerações de sustentabilidade, área 

cujo interesse tem vindo a aumentar em resultado da crescente conscientização relacionada 

com a escassez de recursos energéticos. 

Apesar das descobertas positivas, algumas limitações devem ser tomadas em consi-

deração. As simplificações nos modelos de otimização não refletem inteiramente as comple-

xidades do mundo real e a variabilidade nas características das máquinas e a influência de 

fatores externos não são totalmente consideradas. Finalmente, limitações a nível de tempo e 

recursos também desempenharam um papel restritivo. 
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1. Introduction 

In today's rapidly evolving manufacturing landscape, the need to reduce energy con-

sumption is not only an environmental concern but also a strategic requirement, as industries 

worldwide deal with the two-fold challenge of sustainability and competitiveness. 

In the area of manufacturing operations, the Job Shop Scheduling Problem (JSP), which 

consists of assigning a set of jobs with specific processing requirements to machines, has 

long been a focal point of optimization efforts. However, in the face of these escalating 

environmental concerns and energy constraints, the Green Job Shop Scheduling Problem 

(GSSP) has emerged as a critical extension of research and industrial focus, mainly due to 

increasing environmental awareness, rising energy costs, regulatory pressures, and corporate 

sustainability initiatives. The Energy Efficient Job Shop Scheduling Problem (EEJSP), a topic 

deeply interconnected to the GSSP, extends beyond traditional scheduling objectives, incor-

porating the imperative to minimizing energy consumption and reducing associated costs 

within manufacturing operations. 

The focus of this dissertation will consist of analyzing if energy savings can be obtained 

with the incorporation of a machine power saving strategy, namely switching machines to 

standby mode while idle, without affecting the total completion time of the operations. These 

seemingly irrelevant gaps in production have far-reaching implications, affecting energy effi-

ciency, cost management, and overall operational competitiveness. According to Mouzon 

(2008) a lot of energy is wasted when machines are left idle due to underutilization in manu-

facturing processes, as they are consuming energy but not producing. 

The study involves utilizing IBM ILOG CPLEX Optimization Studio, a software spe-

cialized in mathematical optimization to solve complex optimization models, obtaining an 

efficient schedule of operations. Subsequently, after the computation of relevant data con-

cerning the introduction of a standby mode and determining the breakeven idle time thresh-

old for each machine, at which switching to standby becomes energy-efficient, the idle peri-

ods within the initially calculated schedule will be further analyzed. If viable, these idle times 

will be reassessed and replaced with standby intervals, that is, the machines will transition 

into a state where they remain operational but consume significantly less energy by powering 

down specific components. After applying this method to every machine involved in the JSP, 
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the energy savings, both in terms of idle energy and total energy, i.e., processing, and idle 

energy, will be calculated and illustrated. 

Structurally, this dissertation is divided in 4 chapters, as outlined below. Chapter 1 serves 

as an introductory outline to the proposed topic of study. Chapter 2 offers a detailed litera-

ture review, focusing on analyzing the JSP, the GSSP, the EEJSP, the power savings mech-

anism during idle times and the solution approaches to the scheduling problem. Chapter 3 

introduces the model and variables that will be employed and presents the data under exam-

ination. Furthermore, it presents and discusses the results obtained and reports on sensitivity 

analysis related to the data used for incorporating the standby mode. Finally, it also encom-

passes an alternative bi-objective model in which idle times are also minimized. The last and 

final chapter, Chapter 4, contains the conclusion. 
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2. Literature Review 

2.1. The Classic Job Shop Scheduling Problem 

The classic Job Shop Problem (JSP) is a well-known combinatorial optimization prob-

lem in the field of  operations research and scheduling (Taillard, 1993). The scheduling prob-

lem involves the creation of  a strategy for organizing the timing of  specific tasks to meet the 

specified sequencing constraints (Manne, 1960), which dictate the order in which jobs or 

tasks are scheduled on machines or workstations, and equipment interference problems, such 

as scheduling constraints that arise when two tasks or jobs cannot be executed simultaneously 

due to a limitation imposed by the availability of  a shared resource. 

The JSP is defined by several fundamental characteristics, including Jobs, Machines, 

Operations, and Constraints. In this problem, there exists a set of  jobs denoted as J = {J1, 

J2, …, Jn}, where 'n' represents the total number of  jobs. Additionally, there is a set of  

machines, denoted as M = {M1, M2, …, Mw}, where 'w' represents the total number of  

available machines. 

Each individual job, Jj (where j ∈ [1, n]), consists of  a predetermined sequence of  

operations, Oij (where i ∈ [1, k]), with 'k' representing the total number of  operations for 

each job. It is essential to note that each operation within a job must be executed on a specific 

machine, Mk. 

Furthermore, the JSP incorporates two crucial types of  constraints. First, there are 

precedence constraints that dictate the sequential order in which operations within a job must 

be executed. Second, there are machine constraints, which stipulate that each machine can 

handle only one operation at a time, and no interruptions are permitted during the execution 

of  operations. These constraints play a pivotal role in shaping the complexity and nature of  

the Job Shop Problem. An additional constraint specifies that each job can only be processed 

by a single machine at any given time, i.e., the constraint dictates that a job cannot undergo 

processing simultaneously by multiple machines at any point in the schedule. 

The primary objective of  solving the basic Job Shop Scheduling Problem is to find an 

optimized schedule that assigns operations to machines in a manner that minimizes the over-

all makespan, representing the completion time of  the last job (Pinedo, 2012). 
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The Job Shop Scheduling Problem is classified as an NP-hard problem, implying that 

finding an optimal solution for large instances becomes computationally demanding (Tail-

lard, 1993).  

The Job Shop Scheduling Problem is found in practical applications in diverse do-

mains, including manufacturing process scheduling, production line planning, project man-

agement, and resource allocation in various industries. Efficiently solving the JSP can lead to 

enhanced productivity, reduced production costs, and optimal resource utilization. 

According to Fernandes et al. (2022), in a job shop manufacturing environment, prod-

ucts are produced in small quantities, and each product or order requires a unique set of  

operations. This means that different machines, tools, and materials are used for each job, 

making the production process highly flexible and adaptable to varying production require-

ments.  Moreover, the job shop production process is known for its exceptional flexibility 

and customization. The workflow revolves around individual jobs, each scheduled and pro-

cessed separately, often following distinct routes through the production system. This type 

of  manufacturing environment is frequently encountered in industries such as aerospace, 

automotive, and machine tool manufacturing, given that they are characterized for having a 

high demand for customized or low-volume products, but you can also see job shop manu-

facturing in smaller production settings like custom fabrication shops, machine shops, and 

repair facilities. It is also worth mentioning that the job shop manufacturing environment 

faces various challenges related to scheduling, planning, and control. The product mix and 

routing's variability demand a flexible and responsive scheduling system capable of  handling 

unexpected changes and disruptions. 

To solve the JSP, it is necessary to obtain the sequence of  operations on each machine, 

as well as the processing starting time of  each operation. 

2.2. The Green Job Shop Scheduling Problem 

The development of  industry, in addition to an enormous economic and social devel-

opment, caused a huge consumption of  energy and resources. Nowadays, mankind faces 

unprecedented challenges related to global energy, resources, and climate change. To accom-

plish sustainable development, it is required that manufacturing adopts more efficient meth-

ods and technologies that enables energy saving and emission reduction. 
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In 2022, the industrial sector (factories) in the United States accounted for a significant 

portion of  the country's total energy consumption, amounting to approximately 35% of  the 

energy used, according to data from the United States Energy Information Administration 

(EIA, 2023). 

Furthermore, 2022 witnessed a notable increase in average energy prices, which can be 

attributed to several factors, including rising demand, supply constraints, and geopolitical 

tensions such as the conflict in Ukraine. The EIA reported an average energy price increase 

of  approximately 17.7% during the same period. Specifically, energy costs surged from 7.18 

cents per kilowatt-hour (cent/kWh) in 2021 to 8.45 cent/kWh in 2022, as can be seen in 

Figure 1. The global impact of  this surge in energy prices underscores the economic signifi-

cance of  adopting energy-efficient production processes. 

 
 

Figure 1. Average Electricity Price in the Industrial Sector in the 

United States from 2008 to 2024. 

Source: U.S. Energy Information Administration (2023) 

 

Adding an economic perspective to this scenario, data from the World Bank reveals 

that the inflation rate in 2022, representing the annual percentage change in consumer prices, 

stood at 8%. In fact, the increase in energy prices outpaced the rise in consumer prices by a 

significant margin, specifically by 9.7 percentage points. This highlights the disproportionate 

impact of  rising energy costs compared to general consumer price inflation and it empha-

sizes the significance of  developing strategies aimed at ensuring stable and sustainable energy 

expenses. 

The sphere of  green scheduling, which aims to assign jobs to machines in a way that 
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minimizes total costs, with a specific emphasis on promoting sustainable energy use, has 

been thoroughly evaluated as an effective approach for reducing energy consumption. 

The green shop scheduling problem is an extension of  the job shop scheduling prob-

lem that considers environmental factors like minimizing energy consumption, reducing 

greenhouse gas emissions, and optimizing the use of  renewable resources (Hassini et al., 

2013). Its objective is to create a production schedule that minimizes environmental impact 

while still meeting the operational constraints and goals of  the manufacturing process. Ad-

dressing the green shop scheduling problem involves dealing with various conflicting objec-

tives, such as reducing makespan, energy consumption, and carbon footprint.  

The significance of  the green shop scheduling problem has become increasingly ap-

parent in today's world, with manufacturing industries facing growing pressure to enhance 

sustainability and minimize their environmental impact. Developing effective solutions for 

green shop scheduling not only helps achieve these environmental objectives but also im-

proves operational efficiency and reduces costs. 

In their 2022 study, Li and Wang discuss two primary strategies for enhancing energy 

efficiency and reducing emissions in the manufacturing sector. The initial approach involves 

directing efforts towards the design of  products or machinery that demand reduced energy 

consumption and emit fewer pollutants. However, it is important to note that this approach 

implies substantial human resources, significant capital investments, and prolonged develop-

ment timelines. The second option, as outlined by Li and Wang (2022), revolves around the 

implementation of  green shop scheduling technology. This approach holds the promise of  

significantly enhancing energy efficiency, potentially at a more economical cost. In compari-

son to the first strategy, green shop scheduling technology represents a more resource-effi-

cient and expedited means to achieve these environmental and efficiency goals (Li & Wang, 

2022). 

When contrasting the traditional Job Shop Scheduling Problem (JSPs) with the Green 

Shop Scheduling Problems (GSSPs), it becomes evident that GSSPs place a stronger empha-

sis on resource and environmental considerations. JSPs typically prioritize the optimization 

of  economic factors like production time and cost, often without considering energy con-

sumption and its resulting environmental implications. 



7 

 

In contrast, GSSPs have a dual objective of  pursuing both economic and eco-friendly 

goals. They aim to enhance productivity while concurrently reducing energy usage and emis-

sions of  pollutants. This multifaceted approach is achieved through strategic resource allo-

cation, the optimization of  operational methods, and the meticulous organization of  job 

sequences. 

The objectives to be optimized by the GSSP can be divided into economic objectives, 

which aim to increase economic efficiency, and green objectives, which aim to attain energy 

conservation and environmental protection. As expected, economic and green objectives are 

mostly conflicting (Li & Wang, 2022). 

For example, Gong et al. (2018) conducted research on a Flexible Job-shop problem 

with objectives centered around minimizing total worker cost, makespan, and maximizing a 

green production indicator. This green indicator considers various factors, including energy 

consumption, noise emissions, recycling of  tool chips, and the safety of  operations, reflecting 

a comprehensive approach to sustainability in production. The factors related to the green 

indicator are considered green objectives and likely conflict with the economic efficiency. 

An associated concept with GSSP is Industry 4.0, which entails the incorporation of  

advanced digital technologies into manufacturing processes. Industry 4.0 empowers data-

driven decision-making, boosts energy efficiency, optimizes resource allocation, and stream-

lines environmental reporting within manufacturing operations. According to Lu (2017), the 

objective is to establish a profoundly interconnected and smart production ecosystem. 

It aims to revolutionize traditional manufacturing processes by leveraging technolo-

gies such as the Internet of  Things (IoT) and Artificial Intelligence (AI), to enable a new 

level of  automation, efficiency, and flexibility. 

Li and Wang (2022) described the general process for solving GSSPs, which consists 

of  two main steps. Firstly, it is necessary to establish a mathematical model that describes the 

objectives and its constraints. Subsequently, an appropriate solution algorithm is used to solve 

the problem.  

As explained in Hidri et al. (2021), in the context of  GSSP there are two viable ap-

proaches for addressing the minimization of  energy consumption. One approach involves 
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explicitly incorporating energy consumption within the objective function, while the alterna-

tive approach entails setting energy consumption as a constraint. 

Ichoua & Pechmann (2013) stated that there has been a growing interest in develop-

ing and expanding renewable energy equipment and facilities to offer alternative power 

sources for industries. However, there is still a lack of  production planning methods that 

effectively use and manage renewable energy for day-to-day operations. 

In their work, Golari et al. (2016) introduced a "green energy coefficient ρ" as a pa-

rameter to guarantee that a minimum proportion of  renewable energy is integrated into the 

overall energy consumption associated with production processes. Their objective was to 

ensure that at least ρ percent of  the total energy consumed is from renewable sources, all 

while optimizing a range of  costs including those related to energy, production, inventory, 

backorder, and transportation. 

The carbon footprint evaluates the carbon emissions throughout a product's entire 

life cycle, considering greenhouse gas emissions from both individual and enterprise activities 

(Matthews et al., 2008).  

Most product carbon footprint calculation methods, such as gate to gate (evaluating 

environmental impact from raw material extraction to product completion) and life cycle 

analysis (assessing the entire product life cycle from extraction to disposal), are commonly 

used for single product/high volume manufacturing systems, where only one type of  product 

is produced in large batches, making calculations relatively easy. However, accurately labelling 

product carbon emissions and calculating carbon footprints across their entire lifecycle can 

be challenging when carbon emissions are not explicitly assigned to individual products dur-

ing the manufacturing phases. In cases of  single product and high-volume manufacturing, 

researchers frequently employ an averaging method to allocate carbon emissions across prod-

ucts, yielding product carbon footprints as an average of  the total emissions. Nevertheless, 

as pointed out by Liu et al. (2017), it is imperative not to disregard the distinctions among 

products, machining processes, and job shop sequencing, as these factors play a crucial role 

in carbon emissions and environmental impact. 

Scheduling inherently influences setup times, idle periods, and handling distances in 

a job shop environment. These scheduling variations can consequently have a direct impact 
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on carbon emissions. Liu et al. (2017) stated that several research studies have explored the 

potential for optimizing scheduling to reduce carbon emissions. 

In carbon footprint analysis, there are two types of  mapping, direct and indirect. 

Direct mapping assigns carbon emissions solely to the related product, while indirect map-

ping attributes emissions caused by resource consumption to multiple products. Directly re-

lating emissions from certain manufacturing activities, like a machine powering on or off, to 

specific products can be challenging. For example, as a machine serves multiple products 

with varying processing times, it is hard to allocate emissions accurately. To simplify, emis-

sions from resources with indirect mapping are evenly divided among products using them. 

The complexity of  GSSPs is notably influenced by the manufacturing environments 

in which they are involved. According to Li & Wang (2022), these environments can be cat-

egorized into five fundamental types, according to the shop floor type: single machine, par-

allel machine, open shop, flow shop, and job shop. 

The most basic scheduling problem entails a single machine handling all jobs, while 

a parallel machine environment involves multiple machines with similar capabilities pro-

cessing tasks simultaneously. In an open shop problem (OSP), jobs consist of  multiple steps 

with no specific order between them. Furthermore, manufacturing facilities can be catego-

rized into two main types of  scheduling problems: flow shop scheduling problems (FSPs) 

and job shop scheduling problems (JSPs), depending on whether the production process 

follows a fixed sequence for all jobs or not. In cases where multi-stage jobs are involved, and 

at least one stage requires more than one machine, the scheduling problem might be referred 

to as a hybrid flow shop problem (HFSP) or a flexible job shop problem (FJSP). In a hybrid 

flow shop problem (HFSP), jobs have multiple stages, and each stage may have multiple 

machines, creating a structured but complex process. In contrast, a flexible job shop problem 

(FJSP) allows for more diverse and adaptable machine sequences for different jobs, making 

it more flexible and less structured. These distinctions reflect the complexity and diversity 

of  scheduling challenges in various manufacturing settings. Every manufacturing environ-

ment is characterized by facing different challenges, which forces the use of  different and 

suitable scheduling methods and algorithms to efficiently tackle the complexities of  GSSPs. 
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2.3. Energy Efficient Job Shop Scheduling Problem 

The pursue of  enhancing efficiency of  the energy used in factories and consequently 

lowering the amount of  total energy consumed presents plenty of  advantages, including cost 

reductions, a positive environmental impact, resource conservation and an increase in com-

petitiveness and productivity. 

As explained in Fernandes et al. (2022), there are three main strategies that have been 

used to improve energy efficiency in the context of  the Energy Efficient Job Shop Schedul-

ing Problem (EEJSP): 

• Controlling Machines Working Speed; 

• Time-Dependent Energy Prices; 

• Switching Machines to a Power-Saving Mode while Idle. 

 

Despite the obvious importance of  production efficiency, it should not be the only con-

sidered factor in manufacturing operations. 

The research conducted by Luo et al. (2013) focuses on finding ways to lower energy 

costs within manufacturing at a system-level perspective. Using decision models and optimi-

zation techniques in production planning and scheduling, it becomes feasible to achieve a 

notable reduction in energy consumption without the necessity of  altering processes or 

equipment. 

Enhancing energy efficiency is a top priority for businesses looking to improve their 

energy performance, as noted by Gutowski et al. (2005). To boost the energy efficiency of  

production systems, Rager et al. (2015) propose two distinct categories of  measures. Firstly, 

technological measures which involve the implementation of  new machinery or manufactur-

ing processes, and organizational measures, which concentrate on optimizing the current 

system, ultimately resulting in reduced energy consumption. 

Additionally, it can prove beneficial for companies to express their interest in energy 

savings and, if  feasible, modify contracts with energy providers to align with these objectives, 

all while ensuring that productivity remains uncompromised. 
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Salido et al. (2015) noted that energy-efficient systems tend to be more robust and less 

vulnerable to machine failures. This is because machines in these systems may have variable 

processing speeds, which directly impacts energy consumption. Fast machining, for instance, 

demands more energy but leads to shorter treatment times, while slow machining requires 

less energy. In a production system of  this nature, downtime due to a breakdown can poten-

tially be compensated for by adjusting the machine's processing speed, which also affects 

energy consumption. 

Several researchers have tackled the Job Shop Scheduling Problem with energy consid-

erations. Liu et al. (2014) proposed an NSGA-II approach to minimize total tardiness and 

energy consumption by reducing machine idle times. 

In their study, He et al. (2015) investigated the Flexible Job-shop problem with the ob-

jective of  minimizing the overall system energy consumption. This was achieved by effi-

ciently assigning suitable machines to each operation while also reducing idle time. They 

presented two approaches: a linear model and a metaheuristic technique called the Nested 

Partition Algorithm (NPA). These methods were applied in two different scenarios: one 

aimed at minimizing total energy consumption, and the other focused on optimizing both 

energy consumption and makespan. 

Wu and Sun (2018) addressed a Flexible Job Shop Scheduling Problem with the goal of  

minimizing makespan, total energy consumption, and the number of  switch on/off  events. 

They employed NSGA-II (Non-dominated Sorting Genetic Algorithm II) and incorporated 

a green heuristic into their approach. 

Research on energy efficiency for industrial production has identified two main ap-

proaches. One option involves investing in energy-efficient production machines and design-

ing new production processes. The other approach focuses on energy-oriented production 

planning (EOPP). 

Terbrack et al. (2021) provide an overview of  EOPP and categorize it into three key 

topics. The first topic is energy consumption, where the focus is on considering the amount 

of  energy used during production planning. The second topic is load management, which 

addresses energy demand at specific points in time to stabilize the power grid and reduce 

costs associated with balancing energy supply and demand. The third topic involves different 
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energy sources and storage systems in the context of  production planning, expanding the 

scope to energy supply and generation. 

Manufacturing companies are highly motivated to reduce energy consumption costs, as 

utility expenses can significantly impact production costs. This cost-saving potential is not 

limited to energy-intensive industries but extends to non-energy-intensive enterprises as well. 

Another economically beneficial aspect is the avoidance of  penalty costs resulting from 

violating specific energy consumption thresholds. Certain approaches, like the generalized 

critical peak price concept, impose additional costs when consumption exceeds critical levels, 

encouraging manufacturers to shift energy usage and avoid consumption peaks. 

Several articles have explored the potential of  energy storage systems (ESSs) with the 

goal of  obtaining surplus energy that can be use later. During periods with an excess of  

energy supply, the ESS acts as an energy consumer and stores the unused energy. Once 

charged, the ESS operates as an energy source, offering flexibility in energy utilization. Fur-

thermore, by storing energy during low-cost periods, significant cost savings can be achieved 

during periods of  higher energy prices, leading to overall reduced energy expenses. 

Kawaguchi and Fukuyama (2017) stated that nowadays, there has been a shift in produc-

tion schedules, moving away from single and mass production towards various forms of  

small quantity production. To address this evolving trend, the authors proposed a strategy 

aiming to minimize both total production time and electric power energy consumption dur-

ing peak periods. 

When electric power consumption is concentrated at peak times, electric power compa-

nies often face the necessity of  significant capital investments. Consequently, such situations 

may result in increased electricity charges for the entire community, which could have nega-

tive effects on the well-being of  the community. 

2.4. Switching Machines to a Power-Saving Mode while Idle 

This section will focus on the third strategy described in Fernandes et al. (2022), which 

involves switching machines to a power-saving mode while idle. This strategy can be divided 

into turning machines off  entirely or switching them into a standby mode. This third strategy 

will be thoroughly examined since it forms the primary focus of  this dissertation.  
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While the first and second strategies aim to attain a balance between energy consump-

tion and production time (makespan, tardiness, and earliness), the third strategy focuses on 

optimizing energy savings from using power-saving modes while considering the energy re-

quirements to restart and warm up the resources. The goal is to find an efficient trade-off  

that minimizes energy usage, optimizes production efficiency, and manages the costs associ-

ated with resource reactivation and warm-up periods. This strategy requires careful consid-

eration of  real-time production demands and energy pricing to make intelligent decisions on 

when to utilize power-saving modes and when to activate the resources to achieve the best 

overall energy efficiency. 

In industries, a lot of  energy is wasted when machines are left idle due to underutiliza-

tion. To reduce this energy waste and lower the environmental impact of  industrial plants, 

we can focus on minimizing energy consumption while making scheduling decisions. This 

means that the decision maker needs to determine when and for how long a machine should 

be turned off  or switched into a standby mode, as well as to determine a sequence of  jobs 

that minimizes the scheduling objectives, assuming that all jobs are not available simultane-

ously. This breakeven decision will be analysed in further detail in this section. 

Hidri et al. (2021) explored the idea of  a no-idle machine constraint. Idle machine 

times occur when a machine is ready to process jobs but there are no jobs to be processed. 

These idle periods lead to energy consumption without any productive output. Studies show 

that machines often remain idle for a significant portion of  the time, with 80% of  the total 

energy consumed during these idle phases (Hidri et al., 2021). This energy, known as idle 

energy, consists of  the energy consumed by machines when they are running idle or when 

they are switched to a standby mode, and is the second most considered energy consumption 

type (Fernandes et al., 2022). Addressing idle energy with a better control of  the idle machine 

periods can lead to potential significant energy savings. 

According to Fernandes et al. (2022), most authors consider switch on time and switch 

on power consumption to calculate switch on energy consumption. Some studies even ac-

count for whether the machine was previously on standby mode or switched off  when de-

termining switch on time and power. Other authors pre-calculate a breakeven time for each 

machine, determining when it is economically justifiable to turn the machine off  and on or 

switch it into standby. As expected, if  the time between two consecutive operations on the 
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same machine exceeds the breakeven time, then the machine is switched off. Finally, some 

more realistic papers also include machine transition states like warming up and ramping 

down, often by considering sequence-dependent setup times (SDST).  

The focus on minimizing energy consumption has been on the rise, especially within 

the realm of  computer and embedded electronic systems. For instance, Swaminathan and 

Chakrabarty (2003) introduced a control system designed to reduce energy consumption and 

prolong battery life. Their research demonstrated that a substantial reduction in energy usage 

could be achieved by simply altering the state (on/off) of  the devices. 

Mouzon et al. (2007) stated that in manufacturing facilities, it is common to find non-

bottleneck machines running idle, which may present an opportunity for energy-saving im-

provements. A case study of  an aircraft parts supplier in Kansas, USA, showed that four 

Computer Numerical Control (CNC) machines, automated manufacturing tools controlled 

by computers, were left idle for about 16% of  the time. If  these machines were turned off  

during idle periods, energy savings of  around 13% could be achieved, considering the energy 

consumed during actual cutting. 

Leaving non-bottleneck machines idle is a common operating practice, but it has im-

plications for energy consumption and overall efficiency. To address this, there are two pos-

sible types of  decisions, either leave the machine idle or switch into a power saving state for 

a specific duration, aiming to minimize energy usage while meeting scheduling criteria. 

Nevertheless, it is important not to forget that when a machine is turned on, it requires 

a warm-up time and start-up energy before being ready to process a part and that turning 

off  the machine requires a stop time, and this process consumes stop energy.  

As expected, during the initial startup phase, a motor accelerates and requires more 

electrical power than when it runs continuously at full load. According to the Advanced 

Manufacturing Office of  the U.S. Department of  Energy (2012), this increase in power de-

mand during startup is generally observed in various motors, where the current drawn can 

be significantly higher than during regular operation, typically ranging from four to eight 

times the normal current level. 

A critical aspect to consider when making decisions about switching machines into 
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power saving mode is predicting the inter-arrival time between jobs, or in other terms, when 

the next job will arrive for processing. Accurate predictions are vital for minimizing energy 

usage without causing delays in job processing. By incorporating these findings and optimiz-

ing the operation of  non-bottleneck machines, significant energy savings can be achieved, 

contributing to a more sustainable and efficient manufacturing process. 

Mouzon et al. (2007) put forward the concept of  a break-even duration (S), which 

indicates the point at which it becomes economically viable to switch a machine off  and then 

back on again, instead of  letting it run idle: 

S = 
Turn OFF Energy + Turn ON Energy

Idle power consumption per unit time
 . (1) 

The numerator of  equation (1) refers to the energy required to turn off  (Turn OFF 

Energy) and then turn back on (Turn ON Energy) a machine. The denominator of  equation 

(1), on the other hand, denotes the energy consumed during idle intervals per unit of  time 

(idle power consumption per unit time). Moreover, if  we denote “y” as the inter-arrival time 

between jobs and “𝑡𝑜𝑓𝑓” as the time needed to both turn off  and turn on the machine, it 

becomes evident that when 'y' is greater than or equal to the maximum value between the 

suggested break-even duration (S) and the time required for machine cycling (𝑡𝑜𝑓𝑓), it be-

comes feasible to power down the machine for a specific duration and subsequently turn it 

back on to process other jobs. In simpler terms, if  the time between job arrivals (y) is equal 

to or exceeds the larger of  the break-even duration (S) and the machine cycling time (𝑡𝑜𝑓𝑓), 

this approach can be employed. 

It has been observed that if  the time between the arrival of  the current job and the 

next job is longer than the breakeven duration, then turning off  the machine until the next 

job arrives can result in significant energy savings (Mouzon & Yildirim, 2008). By considering 

these factors, we can make more eco-friendly scheduling decisions and help reduce the car-

bon footprint of  industrial plants. 

Che et al. (2017) conducted a case study that centered on addressing a single-machine 

scheduling problem featuring a power-down mechanism. Their objective was to simultane-

ously minimize both total energy use and the maximum tardiness. Their objective was to 

identify the best processing sequence for jobs and decide whether the machine should power 
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down between two consecutive jobs. The authors demonstrated the effectiveness of  both 

their exact and approximation approaches in solving this problem. 

This strategy exclusively pertains to the non-processing energy consumption aspect. 

Consequently, in theory, this strategy should not have any impact on completion times. 

In the overall processing course, the total energy consumption consists of  four com-

ponents. It encompasses the energy needed for initial machine startup and ultimate shut-

down, the energy consumed during job processing, the energy used when the machine is idle, 

and the energy required for all turn-off-on operations. Since the sum of  the first two com-

ponents remains constant and is independent of  the job processing sequence, the focus 

should be on minimizing the energy consumption related to the idle machine and all turn-

off-on operations. By optimizing these aspects, we can effectively reduce overall energy con-

sumption during production. 

While He et al. (2015) emphasizes significant idle energy waste in production, pre-

senting an opportunity for improvement by considering energy associated with idle time, Du 

et al. (2011) argue that idle energy can be disregarded as it has insignificant overall impact. 

Terbrack et al. (2021) states that many articles (164 out of  the 375 analysed) incorporate 

energy usage related to idle time in production planning, aiming to reduce idle energy either 

through enhanced machine utilization or powering down machines during idle periods, which 

suggests a significant attention to idle time and energy. 

The power-down strategy is approached in diverse manners. For instance, Mashaei 

and Lennartson (2013) propose hot and cold idle modes for production machines, optimiz-

ing the trade-off  between idle energy and transition time for state changes. According to 

Terbrack et al. (2021), some studies also account for the energy required for turning machines 

off  and on, while others argue for its negligible impact.  

In manufacturing, a buffer refers to a temporary storage area or space used to hold 

materials, work-in-progress items, or finished goods at various stages of  the production pro-

cess. A machine is powered down when either starved, in the case of  a downstream machine 

due to an empty buffer, or blocked, in the case of  an upstream machine by a full buffer 

(Terbrack et al, 2021).  
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Dong (2012) integrates both machine shutdown and a power-saving idle mode into 

a scheduling approach designed for a parallel-machine environment, with the primary objec-

tive of  minimizing overall costs, specifically focusing on energy-related expenses. 

The findings from the study conducted by Shrouf  et al. (2014) suggest that substan-

tial reductions in energy expenses can be achieved by avoiding periods of  high energy prices. 

Furthermore, there is also a positive environmental impact by lowering energy consumption 

during peak periods, thus contributing to the potential reduction of  CO2 emissions. 

As explained by Hidri et al. (2021), there are two possible approaches to deal with 

idle energy. The first one consists of  shutting down idle machines. Alternatively, the second 

approach consists of  adopting idle machine time constraints which force each machine to 

process all the assigned jobs continuously, to avoid idle times.  

It is important to mention that the first method is only relevant and potentially suit-

able for electric machines where it is simple to move from an idle state to an active state. For 

other shop environments where this mechanism is substantially energy consuming, such as 

the case of  furnaces, the first strategy is not applicable. Furthermore, there are additional 

constraints regarding this strategy. Idle machines between operations are usually not turned 

off  given that turning machines on and off  frequently may cause faster deterioration. Also, 

some machines need time and cost to start up again, so shutting them down during short 

idle times may not be practical. Hence, factories need to find a balance between saving energy 

and keeping the machines in good condition. They must consider each machine's character-

istics and their overall energy efficiency goals to make the best decision.  

Some articles caution that the power-down strategy may not be universally suitable, 

considering factors such as warm-up time, additional energy consumption for state transi-

tions, and potential machine deterioration from frequent switching. Certain research ap-

proaches incorporate a maximum allowable number of  machine state switches to address 

this concern. For example, Wu and Sun (2018) present a flexible job shop scheduling ap-

proach that minimizes, besides makespan and energy consumption, the total number of  ma-

chine turn-offs/turn-ons. 

Liang et al. (2019) pointed out that in real-life manufacturing management, it is com-

mon for idle machines not to be shut down until all products have been processed. This 
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approach is often referred to as "batch processing". The rationale behind this practice is to 

ensure continuous production flow and avoid disruptions in the manufacturing process. 

Shutting down machines between product batches could lead to delays, increased setup time, 

and potential loss of  productivity.  

Terbrack et al. (2021), concluded that energy-supply-oriented production planning 

models, in which “idle/standby and transition states: power-down” are included in their fre-

quently found characteristics, should and likely will attract more interest in future studies due 

to the growing shift toward renewable energies and increased awareness of  resource short-

age. 

2.5. Solving Job Shop Scheduling Problems 

As stated by Fernandes et al. (2022), the job shop scheduling problem is known to be 

a nondeterministic polynomial time (NP hard problem), which implies that there is no known 

algorithm that can solve the job shop scheduling problem optimally in polynomial time, given 

that it is at least as difficult as the hardest problems in NP. 

Exact, heuristic, and metaheuristic algorithms are different approaches used to solve 

optimization problems, each with its own characteristics and trade-offs. Exact algorithms, 

such as branch and bound or integer programming, can find optimal solutions but, never-

theless, they may be computationally expensive and time-consuming, especially for large-

scale problem instances. In the case of  heuristic algorithms, such as the Nearest Neighbor 

Algorithm, they can find good solutions in reasonable time but might not assure optimality 

and are particularly useful for NP-hard problems, where finding an optimal solution is im-

practical within a reasonable time frame. Lastly, metaheuristic algorithms are generally prob-

lem-solving strategies that can be adapted and applied to various problem domains. They are 

typically based on concepts from nature-inspired processes, such as evolution, swarm intel-

ligence, and local search. Like heuristic algorithms, metaheuristics algorithms do not guaran-

tee optimality but are capable of  efficiently exploring large solution spaces and finding good 

solutions. They can handle a diverse set of  optimization problems and are more flexible and 

robust when compared to exact and heuristic algorithms. 

IBM ILOG CPLEX Optimization Studio is a good software solution to solve complex 

mathematical programming models, due to its versatility, scalability, and robust capabilities. 
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This comprehensive optimization suite integrates both CPLEX and CP Optimizer, offering 

a well-rounded toolkit for addressing the complexities of  a JSP mathematical model. 

Whether the JSP is formulated as a linear or a constraint programming model, CPLEX Op-

timization Studio provides the versatility required to tackle various JSP instances effectively. 

According to Muller et al. (2022), solvers based on constraint programming have a 

strong reputation for delivering remarkable performances in the context of  scheduling prob-

lems. The researchers explored the process of  selecting an appropriate solver and consider-

ing a range of  software options, including both commercial and non-commercial solutions 

that are acknowledged as the current state-of-the-art in the field, two solvers emerged as 

exceptional performers: IBM ILOG CPLEX CP Optimizer and Google's OR-Tools. These 

solvers displayed impressive capabilities, each with its unique strengths. Notably, IBM ILOG 

CPLEX CP Optimizer excelled in efficiently determining solutions that are probably optimal 

within realistic time constraints. Conversely, Google's OR-Tools showcased a remarkable 

agility in swiftly identifying high-quality feasible solutions across a diverse set of  test in-

stances. 

Furthermore, Da Col & Teppan (2022) compared IBM’s CP Optimizer, an optimiza-

tion software package, with Google’s OR-Tools (Operations Research Tools), an open-source 

software library. The results indicate that CP Optimizer outperformed OR-Tools in both 

classic and large-scale benchmark tests. These results highlight the effectiveness of  CP solv-

ers, like CP Optimizer, in tackling real-world industrial challenges, especially when it comes 

to large-scale optimization problems. 

Constraint Programming (CP) has gained substantial recognition for its suitability in 

addressing the Job Shop Problem. CP's inherent flexibility allows for the precise modelling 

of  complex constraint, such as task precedence, machine availability and resource limitations, 

commonly found in JSPs. 

When it comes to choosing the data to be employed in solving the JSP, using benchmark 

problem instances, such as the Taillard problem instances, is highly advantageous when work-

ing on the Job Shop Problem (JSP) given that it provides a standardized basis for evaluating 

and comparing the performance of  different algorithms and approaches, i.e., researchers and 

practitioners can use these benchmark instances as a common reference point to assess the 

effectiveness of  their JSP-solving methods. Furthermore, benchmark problem instances sets 
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are often derived from real-world scenarios or inspired by practical production environments. 

This means that they capture the complexity and characteristics of  actual JSP instances, mak-

ing them representative and relevant for testing and development. 
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3. Methodology 

3.1. Computational Settings 

All the experiments were conducted in a desktop computer (DESKTOP-0I5GSPO) 

with a processor AMD Ryzen 7 3700U with Radeon Vega Mobile, 2.30 GHz CPU, 12.00G 

RAM, Windows 10 Education N, using IBM ILOG CPLEX Optimization Studio version 

22.1.1, commonly referred to as CPLEX, a powerful software suite for solving complex op-

timization problems. Following the optimization conducted in CPLEX in which the objec-

tive consisted of makespan minimization, the output solutions were then transferred to and 

used in Microsoft Excel, known for having a more user-friendly interface, with the goal of 

analyzing if energy savings were obtainable. 

3.2. Problem Instances and Data Sources 

The benchmark instances designed by Taillard (1993) are employed as the test. The 

concept of Taillard instances revolves around a group of standardized scenarios that serve 

as benchmarks for assessing and contrasting the effectiveness of various algorithms and tech-

niques in addressing the complexities of job shop scheduling problems. These instances were 

developed by E. Taillard and have gained substantial prominence within the operations re-

search and optimization domain. Each individual Taillard instance encapsulates a distinct job 

shop scheduling problem, characterized by specific counts of jobs, machines, and tasks in-

volved. For this dissertation, 14 Taillard problem instances where considered, seven of which 

include 15 jobs and 15 machines (15x15) and the remaining seven include 20 jobs and 15 

machines (20x15). 

Each one of the 14 problem instances were firstly collected in the format of 2 tables, 

with data related to the length of operations and the associated machine responsible for 

processing that certain operation (see Annex 1). To use this benchmark instances in CPLEX 

it was necessary to format them into a single matrix, with each entry of the matrix following 

the format of < machine that will process operation (x), length of operation (x), > (see Annex 

2). Furthermore, given that this dissertation will compute the model in CPLEX using zero-

based indexing, meaning that the first element or item in an array, list, or set is accessed with 

an index of 0, it was also necessary to reduce every value of every machine present in the 
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Taillard’s instances by 1 unit. This practice is common in computer science and can simplify 

various algorithms and data structures. It can be more memory-efficient, especially in low-

level programming languages. Additionally, when working with arrays or data structures, it is 

often more consistent to use zero-based indexing for all elements. This consistency can sim-

plify code and reduce the potential for off-by-one errors. Many libraries and programming 

paradigms, such as linear programming or constraint programming, use zero-based indexing. 

Given that the Taillard (1993) problem instances do not consider machine power sav-

ing modes, it is necessary to incorporate some other data in addition to the number of  jobs, 

number of  machines, the duration of  the processing time of  each task and the order of  tasks 

and respective machine assignment that each job requires to be processed. The data required 

includes processing power per machine, idle power per machine, warmup power per ma-

chine, and standby power consumption per machine. To address the additional data, a table 

developed and employed by Wu & Sun (2018), designated “Table 4 – The power distribution 

for each machine”, was considered. In the work of  Wu & Sun (2018), in which different 

machine speed levels are considered, the authors were required to use three different levels 

of  energy consumption based on the respective machine speed (i.e., an increase in the ma-

chine speed results in a rise of  energy consumption per unit of  time, ceteris paribus). For 

this dissertation’s analysis, only one level of  energy consumption is mandatory. Nevertheless, 

the other two will be further considered with the goal of  testing the sensitivity of  the ob-

tained results. 

There was, however, one major change to the initial table proposed in the work of Wu 

& Sun (2018) related to the energy consumption during the switching to standby mode. 

While the authors considered values of around two times the processing energy per unit of 

time, in this dissertation the values given to the energy consumed during the operation of 

switching to standby and then back on the machine will be eight times the processing power 

consumption, following the ratio illustrated by the Advanced Manufacturing Office of the 

U.S. Department of Energy (2012). The processing, idle and standby rates are illustrated in 

Annex 3. 
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3.3. Formulation of the JSP 

Notation 

Sets 

𝐽𝑗 : Set of  jobs, where j = 0, 1, …, n; 

𝑀𝑚 : Set of  machines, where m = 0, 1, …, w; 

𝑂 𝑖,𝑗: Set of  predefined Operations i of  Job j, where i = 0, 1, …, k; 

Parameters  

𝑝𝑡 𝑖,𝑗
𝑚 : Processing time of  Operation i of  Job j, to be processed in Machine m; 

𝑝𝑝 𝑚 : Processing power consumption of  Machine m; 

𝑖𝑝 𝑚 : Idle power consumption of  machine m; 

𝑠𝑑 𝑚 :  Duration of  switching to standby state of  Machine m; 

𝑤𝑑 𝑚 :  Duration of  warmup of  Machine m; 

𝑤𝑝 𝑚 :  Warmup power consumption of  Machine m; 

𝑠𝑏𝑝 𝑚 :  Standby power consumption of  Machine m; 

Decision and Auxiliary Variables 

𝑠𝑡 𝑖,𝑗
𝑚 : Starting time of  Operation i of  Job j, to be processed in Machine m; 

𝑇𝑃𝑇 𝑚 : Total processing time of Machine m; 

𝑇𝑃𝐸 𝑚 :  Total processing energy consumption of  Machine m; 

𝑖𝑡 𝑖,𝑗
𝑚 : Associated idle time of  Operation i of  Job j, to be processed in Machine m; 

𝑠𝑏𝑡 𝑖,𝑗
𝑚  : Associated standby time of  of  Operation i of  Job j, to be processed in Machine m; 

𝑇𝐼𝑇 𝑚 : Total idle time of Machine m; 

𝑇𝐼𝐸 𝑚 :  Total idle energy consumption of  Machine m, before incorporating a standby state; 

𝐵𝑚 : Breakeven idle duration threshold of  Machine m; 

𝑁𝑠𝑑 𝑚 : Number of  switches to standby of  Machine m; 

n𝑇𝐼𝐸 𝑚 : Total idle energy consumption of  Machine m, after incorporating a standby state; 

𝑇𝐸𝐶 𝑚 : Total energy consumption of  Machine m; 

𝐶𝑚𝑎𝑥 : Makespan of  all Operations. 
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This study addresses an optimization challenge related to task scheduling within a 

collection of  jobs assigned to a group of  machines. Each job comprises a series of  distinct 

operations, each with varying sequences and processing times. Additionally, the machines 

possess unique characteristics, including specific processing rates, idle rates, warmup rates, 

and standby rates. 

The primary objective of  this research is to minimize the total makespan (𝐶𝑚𝑎𝑥), 

which represents the completion time of  all scheduled tasks. Achieving this goal requires the 

use of  optimization techniques, namely trough CPLEX. 

Following the optimization process, the interval times of  the output will undergo 

further examination in Microsoft Excel. Additionally, each machine's operational status will 

be considered. Specifically, if  the idle time between consecutive operations on a machine 

exceeds a predefined breakeven threshold (𝐵𝑚) for that machine, it will be transitioned into 

a standby mode. 

This transition aims to explore the potential for energy savings by putting machines 

into standby mode without adversely affecting the total makespan. The research will evaluate 

whether this energy-saving approach is viable and assess its impact on overall energy con-

sumption. 

The Constraint Programming model (see Annex 4) can be formulated as follows. 

The first step consists of  defining two crucial parameters, n+1 and w+1, which re-

spectively represent the total number of  jobs and machines involved in our manufacturing 

process. We also define two ranges, J and M, which are used to index the jobs and machines. 

These ranges facilitate the organization and manipulation of  the problem data. The ranges 

are defined using zero-base indexing. To represent the scheduling of  operations on machines, 

the Operations matrix is used. This matrix captures the assignment of  each operation of  

each job to a machine and its associated processing time. 

In addition to these fundamental definitions, we establish power consumption rates for 

each machine, following the power consumption rates illustrated on the work of  Wu & Sun 

(2018), as previous stated. 

Finally, to facilitate the modelling and optimization process, the FailLimit parameter 

was set to 10000 with the goal of  controlling the maximum number of  failures allowed dur-

ing the solution process. 

Regarding the model used in CPLEX, two decision variables were considered. Firstly, 

there is an Interval variable that represent the temporal aspects of  the scheduling problem. 
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Specifically, they define the start times (𝑠𝑡 𝑖,𝑗
𝑚 ) for each manufacturing operation (𝑂 𝑖,𝑗) on 

each machine. These variables are essential for capturing the timing of  operations within the 

production process. Furthermore, there is a sequence variable that governs the order in 

which manufacturing operations are scheduled on individual machines. They are a funda-

mental element of  the optimization model, as they dictate the sequence of  work on each 

machine while adhering to constraints. 

The objective function can be illustrated as: 

 

𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 . (2) 

 

Subject to: 

 

• ∀ (j ∈ [0, n], i ∈ [1, k], m ∈ [0, w]): 

𝑠𝑡 𝑖+1,𝑗
𝑚 ≥  𝑠𝑡 𝑖,𝑗

𝑚 +  𝑝𝑡 𝑖,𝑗
𝑚  . (3) 

 

• ∀ (x ∈ [0, n], y ∈ [0, n], x ≠ y, i ∈ [1, k], r ∈ [0, w]): 

𝑠𝑡 𝑖,𝑥
𝑟  ≠  𝑠𝑡 𝑖,𝑦

𝑟  ; 

 

(4) 

𝑠𝑡 𝑖,𝑥
𝑟 <  𝑠𝑡 𝑖,𝑦

𝑟  ⇒  𝑠𝑡 𝑖,𝑦
𝑟 ≥ (𝑠𝑡 𝑖,𝑥

𝑟 + 𝑝𝑡 𝑖,𝑥
𝑟 ). (5) 

 

This first constraint, named Precedence Constraint (3), enforces that the starting time 

of  the next operation (i+1) of  any job j must be greater or equal to the sum of  the starting 

time of  the previous operation of  that same job j and the duration of  that previous opera-

tion, i.e., the processing time of  the previous operation. This constraint is widely used in 

scheduling to sequence tasks logically and avoid starting something before its prerequisites 

are met. 

The next constraint, called NoOverLap Constraint, imposes that given any two jobs 

with a different number (x and y) that need to be processed on the same machine (r), these 

two jobs must have different starting times on that particular machine (4) and, furthermore, 

if  the starting time of  operation i of  job x is inferior to the starting time of  operation i of  

job y on that particular machine (r), then the starting time of  operation i of  job y must be 
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greater or at least equal (it is equal if  there is no idle time between the job x and y on machine 

r) to the sum of  the starting time of  operation i of  job x and the respective duration of  that 

operation i of  job x on that same machine r (5). 

This ensures that tasks, resources, or activities do not overlap or conflict with each 

other. They prevent situations where two events occur simultaneously, or two resources try 

to occupy the same space or time slot on the same machine. They are essential for optimizing 

resource allocation and maintaining feasible schedules. 

Additional Assumptions 

Deterministic Processing Times, i.e., it is assumed that the processing times for each 

operation on each machine are known with certainty and do not vary.  

No Machine Breakdowns, i.e., it is assumed that machines do not break down, require 

maintenance, or experience downtime during the scheduling horizon. 

No Resource Constraints, i.e., there are no resource constraints, such as machine ca-

pacity limitations or worker availability. 

No Setup Times, i.e., there is no time required to switch a machine from processing 

one job to another. 

Infinite Buffer Capacity, i.e., completed operations can wait indefinitely before mov-

ing to the next machine.  

No Interruptions, i.e., once a job starts processing on a machine, it continues without 

interruptions until completion. 

 

Following this, before running the optimization, for calculating the processing energy 

consumption per machine (6) it is just necessary to multiply the processing times of  each 

machine by its respective processing power. To obtain the total processing energy consump-

tion (7) it is simply needed to sum all the processing energy per machine. 

 

𝑇𝑃𝐸 𝑚 =  ∑ 𝑝𝑡 𝑖,𝑗
𝑚 ∗  𝑝𝑝 𝑚 ;  

(6) 

𝑇𝑃𝐸 =  ∑ 𝑇𝑃𝐸 𝑚 . 
(7) 

The script used for computing the idle time iterates through each machine, analysing 

the start and end time of  each job scheduled to be processed on that machine, calculates the 
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total machine usage time, and then computes and prints the idle time for each machine. 

 

𝑇𝐼𝑇 𝑚 = (𝑠𝑡 𝑖,𝑙
𝑚 +  𝑝𝑡 𝑖,𝑙

𝑚) −  𝑠𝑡 𝑖,𝑓
𝑚  − ∑ 𝑝𝑡 𝑖,𝑗

𝑚  .   
(8) 

 

Assuming that f  identifies the first job that is processed on a certain machine m and 

that l refers to the last job that is processed on that same machine m, with f ∈ J and l ∈ J, the 

total idle time per machine (8) is calculated by subtracting the starting time of the first job f  

processed on machine m and the sum of all the processing times of the tasks processed by 

that machine to the ending time of the last job (l ), obtained by summing the starting time of 

that same job (l ) and the associated processing time, processed by that same machine. 

𝑇𝐼𝐸 𝑚 =  𝑇𝐼𝑇 𝑚 ∗  𝑖𝑝 𝑚 . (9) 

 

The total idle energy consumption per machine (9) is calculated by multiplying the 

total idle time per machine with the associated idle rate consumption. As expected, the total 

idle energy is simply the sum of  all the idle energy consumption per machine. 

𝑇𝐸𝐶 𝑚 =  𝑇𝑃𝐸 𝑚 +  𝑇𝐼𝐸 𝑚 . (10) 

 

We are now able to calculate the total energy consumption per machine (10), which 

is obtained by adding the total processing energy consumption of  a machine m with the total 

idle energy consumption of  that same machine. 

 

Figure 2 serves as a visual representation of  the output generated by the Constraint 

Programming model computed in the CPLEX Studio. The analysis pertains to the Taillard's 

problem instance 15x15 (1). Each row in the first column corresponds to a unique machine, 

numbered from 0 to 14, each job is identified by one color (see the color legend). The hori-

zontal axis quantifies the temporal span of  the schedule. 

For this specific instance, the makespan value, which denotes the total time required 

to complete all tasks, has been determined as 1393. When analyzing this chart its’ easy to see 

that the amount of  idle time is extremely significant. If  we compute the ratio of  total pro-

cessing time divided by the total idle time it amounts to around 59%. 
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Figure 2. Gantt Chart of  Schedule Solution, for Problem Instance 

15x15 (1). 

Source: Own Elaboration 

This graphical representation of the job shop problem solution offers a valuable tool 

for enhancing our understanding of the presence of considerable idle time intervals during 

which machines await the start of subsequent tasks. 

Following the optimization process conducted in CPLEX Studio, the subsequent 

analysis will be carried out in Microsoft Excel, mainly due to easier data visualization and its 

graphical user interface (GUI), well-suited for users who prefer a visual, interactive approach 

to data analysis. 

After migrating all the solution output regarding the starting and ending time of  each 

task on each machine and its associated idle time of  the 14 benchmark problem instances 

used in this dissertation, it is now time to explore the possible energy savings in idle energy 

with the introduction of  a standby mode. 

It is only possible to turn a machine into a standby state if  the 2 following conditions 

are respected: 

∀ (j ∈ J, m ∈ M), 

 

𝑖𝑡 𝑖,𝑗
𝑚 ≥  𝑠𝑑 𝑚 +  𝑤𝑑 𝑚 ; (11) 
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𝑖𝑡 𝑖,𝑗
𝑚  ∗  (𝑖𝑝 𝑚 − 𝑠𝑏𝑝 𝑚)  >   𝑤𝑝 𝑚  ∗  𝑤𝑑 𝑚 . (12) 

 

Inequality (11) states that the idle time associated with a certain operation i of  a job 

j to be processed by a particular machine m must be greater or equal to the length related to 

switching that machine into standby state (𝑠𝑑 𝑚) and then turning back that same machine 

into active state (𝑤𝑑 𝑚).  

The condition imposes that the product of  the idle time associated with a certain 

operation of  a particular machine m and the difference between the idle power rate and 

standby power rate of  that machine must be greater than the product of  the warmup power 

rate, i.e., turning the machine back into active state and the amount of  time necessary to turn 

the machine back into active state. For simplification purposes, in this dissertation both the 

shutting down and the warmup duration will be disregarded. Given that the idle time of  an 

operation cannot assume negative values, the inequality (11) will not be important for this 

dissertation. Furthermore, expression (12) will be used to calculate the breakeven threshold 

(𝐵𝑚), without the incorporation of  the value of  the time necessary to warmup the machine. 

As previously stated, the data regarding the rates of  processing power, idle power, 

standby power, and the warmup power will be based on Annex 3. 

After checking that the processing times, the processing energy, the idle times, and 

the idle energy of  each machine are the same as the values calculated in CPLEX Studio, the 

first step will consist of  calculating the breakeven threshold of  idle time (𝐵𝑚) for each ma-

chine. 

 

As formerly seen, Mouzon et al. (2007) proposed a break-even duration, illustrated 

in equation (1). This formula needs to be adjusted to include the possibility of  having more 

than one machine and to incorporate the standby time power consumption, according to the 

respective standby rates of  each machine. Given that without a standby rate the calculation 

of  the minimum amount of  idle time required to be economically reasonable to switch the 

machine into a standby mode simply consists of  the proportion between the energy required 

to warm up again the machine and the idle energy that would be spent if  the machine was 

not in standby, then incorporating a standby rate must increase the breakeven duration since 

it will become “more expensive” switch a machine into standby mode, ceteris paribus.  
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𝐵𝑚 =  
𝑤𝑝 𝑚  ∗  𝑤𝑑 𝑚

𝑖𝑝 𝑚 − 𝑠𝑏𝑝 𝑚
 . 

(13) 

As can be seen in equation (13), the standby rate will be incorporated in the denom-

inator of the quotient, subtracting itself to the idle rate per machine. It is easy to understand 

that an increase in the standby rate will cause an increase in the breakeven duration, ceteris 

paribus. The computed results for the 𝐵𝑚 per machine are shown in Table 1. 

Machine 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝐵𝑚 47 59 56 56 43 50 48 54 48 50 48 49 52 50 43 

Table 1. Breakeven Threshold per Machine (Level 1).  

Source: Own Elaboration. 

All the results illustrated in Table 1 were rounded up to the nearest integer. The 

breakeven results indicate the time length that an idle interval must at least have to be ad-

vantageous from an energy consumption perspective to switch a machine into standby 

mode. For example, the breakeven threshold for Machine 0 is 47, indicating that when idle 

periods on Machine 0 have a duration of 47 or more, the machine should be switched into 

standby mode during those periods. 

The Standby Time per machine can be calculated as follows: 

∀ 𝑖𝑡 𝑖,𝑗
𝑚 , such that 𝑖𝑡 𝑖,𝑗

𝑚 ≥  𝐵𝑚 , 

𝑠𝑏𝑡 𝑖,𝑗
𝑚 = ∑ 𝑖𝑡 𝑖,𝑗

𝑚  . 
(14) 

Equation (14) state that the standby time per machine consists of the sum of all idle 

times that are equal or larger than the threshold value 𝐵𝑚 of each machine. In Excel this can 

be done by simply using the function: SUM.IF (Cells with the Idle Times of  Machine m; 

“≥” & 𝐵𝑚). 

The number of shutdowns per machine follows the same idea, but instead of being 

a sum, it is just necessary to count the number of times in which the inequality 𝑖𝑡 𝑖,𝑗
𝑚 ≥  𝐵𝑚 

is true. In Excel this can be done by simply using the function: COUNT.IF (Cells with the 

Idle Times of  Machine m; “≥” & 𝐵𝑚). 
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Following the context of the 15x15 (1) Taillard problem instance showed in Figure 

2, this Gantt chart provides a visual representation of how the schedule would appear with 

the integration of a standby mode. Consequently, the idle periods are mitigated by transition-

ing machines into standby mode, when the idle period is greater than the threshold of the 

machine associated, resulting in a more efficient utilization of resources and a modified 

schedule. 

 

Figure 3. Gantt Chart of  Schedule Solution with the Incorpora-

tion of  the Standby Mode, for Problem Instance 15x15 (1). 

Source: Own Elaboration 

For a more enhanced representation of the remaining idle times, the chart illustrated 

in Figure 4 showcases the instances where only short idle durations, namely those falling 

below the breakeven threshold, remain unaffected and are not converted into standby mode. 

Figure 4 clearly shows the distinction between short idle periods and those that ex-

ceed the threshold, thus providing clearer evidence of the scheduling optimization achieved 

through the incorporation of the standby mode. 
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Figure 4. Gantt Chart of  the Idle Intervals of  the Schedule Solu-

tion with the Incorporation of  the Standby Mode, for Problem Instance 

15x15 (1). 

Source: Own Elaboration 

We can finally compute the “new” total idle energy consumption per machine after 

introducing the possibility of  turning machines into a standby state: 

 

𝑛𝑇𝐼𝐸 𝑚  =  ∑((𝑇𝐼𝑇 𝑚 −  𝑠𝑏𝑡 𝑚) ∗  𝑖𝑝 𝑚)  

+ ∑(𝑠𝑏𝑡 𝑚 ∗  𝑠𝑏𝑝 𝑚) +  ∑(𝑁𝑠𝑑𝑚 ∗ 𝑤𝑝 𝑚)  . 

(15) 

 

 

The “updated” idle energy consumption per machine (15) is now computed by add-

ing three components, namely: (i) the product of  the idle time that is not turned into standby 

time (sum of  all idle time inferior to the breakeven threshold) and the respective idle power 

consumption of  each machine, (ii) the product of  the standby time and the associated 

standby power consumption of  each machine and (iii) the product of  the number of  shut-

downs and the warmup power consumption per machine. 

The last steps consist of  calculating the difference between the total “updated” idle 

energy consumption per machine (15) and the total idle energy consumption per machine 

(9) and then add them over the 15 machines. 
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3.4. Discussion of  Results 

Now, to have a better understanding of  the impact of  incorporating the standby 

mode, the percentage energy savings in terms of  both the idle energy and the total energy 

(processing and idle energy) are shown in Table 2. The reported values are calculated by 

dividing the sum of  the 15 differences by the previous total of  idle energy (before incorpo-

rating the standby state) and by the previous total of  total energy, respectively. 

Problem Instance % of  Idle Energy Saved % of  Total Energy Saved 

15x15 (1) 45 % 4.4 % 

15x15 (2) 44 % 4.8 % 

15x15 (3) 48 % 5.2 % 

15x15 (4) 52 % 5.8 % 

15x15 (5) 50 % 5.3 % 

15x15 (6) 46 % 4.4 % 

15x15 (7) 52 % 5.4 % 

20x15 (1) 44 % 3.2 % 

20x15 (2) 42 % 2.7 % 

20x15 (3) 42 % 3.3 % 

20x15 (4) 46 % 3.9 % 

20x15 (5) 50 % 4.0 % 

20x15 (6) 41 % 3.0 % 

20x15 (7) 43 % 3.8 % 

Average 46 % 4.2 % 

Table 2. Computed Results of  Energy Savings (Level 1). 

Source: Own Elaboration 

On average, there is a 46% saving in terms of  idle energy consumption and a 4.2% 

saving in terms of  total energy consumption. 

Based on data sourced from the EIA (2022), the average monthly energy consump-

tion bill for the United States in 2021 stood at 81,573 kWh. To project the expected monthly 

energy cost for the year 2022, I've incorporated the findings from the Literature Review 

section pertaining to energy prices in the US. Accordingly, the estimated monthly energy bill 

would be calculated as follows: 81,573 kWh * 8.45 cents/kWh, which totals $6,893. In an 

annual perspective, this monthly electricity expenditure for US factories would accumulate 

to $82,716, considering all 12 months of  the year. Accounting for the average total energy 

savings rate of  4.2%, this translates to annual savings of  $3,474. 

While these computations rely on estimations and statistical averages of  the US, they 

do provide insights into the economic viability of  implementing a standby mode. To be 
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considered cost-effective on average, the associated expenses should remain below the an-

nual threshold of  $3,474, assuming the accuracy of  the total energy savings rate. 

Moreover, it is crucial to underscore the sustainability benefits that accompany such 

energy consumption reductions. Beyond economic considerations, the reduction in energy 

usage contributes to a more environmentally responsible approach. This entails a reduction 

in greenhouse gas emissions, a decrease in the carbon footprint, and a positive impact on the 

overall ecological landscape. In essence, the incorporation of  standby modes besides making 

possible economic sense also aligns with the broader goal of  achieving a more sustainable 

and environmentally friendly energy landscape. 

 

3.5. Sensitivity Analysis 

In this section of the study, we will examine whether adjustments to the rates of pro-

cessing and idle power have a substantial impact on the obtained results. As previously men-

tioned, in the work conducted by Wu & Sun (2018), the authors explored three distinct ma-

chine speed levels. They used a coefficient vector to scale the single speed level into three, 

contingent upon the respective machine speed. Essentially, an increase in machine speed 

results in higher energy consumption per unit of time, all other factors remaining constant. 

Specifically, the speed levels employed are as follows: (i) Level 1 corresponds to a machine 

speed of 1x, (ii) Level 2 corresponds to a machine speed of 1.2x, and (iii) Level 3 corresponds 

to a machine speed of 1.5x. 

Subsequently, we meticulously examine whether there are significant discrepancies 

arising from the utilization of these different processing and idle power consumption rates 

(described in Annex 5). It is imperative to note that alterations in processing energy rates 

also influence the energy values associated with transitioning machines into standby mode. 

Consequently, modifications in one parameter will cause adjustments in others, including the 

breakeven threshold of each machine. Our aim is to assess the impact of variations in pro-

cessing energy rates and idle rates on the overall results. 

The same exact process used for the first analyzed level of processing and idle energy 

will be now conducted for the other two levels. Starting by computing the CP model in 

CPLEX Studio 14 different times, one for each Taillard problem instance used in this dis-

sertation, we obtain the schedules that will be analyzed in Microsoft Excel. After calculating 
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the breakeven threshold for the idle duration and incorporating the possibility of turning 

machines into standby mode, we obtain the energy savings as shown in Table 3.  

 Level 2 Level 3 

% of  Idle  
Energy 

% of  Total  
Energy 

% of  Idle  
Energy 

% of  Total  
Energy 

15x15 (1) 49 % 4.9 % 47 % 4.3 % 

15x15 (2) 48 % 5.4 % 46 % 4.7 % 

15x15 (3) 53 % 5.9 % 51 % 5.1 % 

15x15 (4) 55 % 6.3 % 53 % 5.6 % 

15x15 (5) 54 % 5.9 % 51 % 5.2 % 

15x15 (6) 50 % 5.0 % 49 % 4.4 % 

15x15 (7) 55 % 5.9 % 53 % 5.2 % 

20x15 (1) 48 % 3.6 % 45 % 3.1 % 

20x15 (2) 45 % 4.0 % 42 % 2.6 % 

20x15 (3) 45 % 3.7 % 43 % 3.2 % 

20x15 (4) 50 % 4.4 % 48 % 3.8 % 

20x15 (5) 53 % 4.3 % 51 % 3.8 % 

20x15 (6) 44 %  3.3 % 43 % 2.9 % 

20x15 (7) 46 % 4.1 % 44 % 3.6 % 

Average 50 % 4.7 % 48 % 4.1 % 

Table 3. Computed Results of  Energy Savings (Level 2 & Level 3). 

Source: Own Elaboration 

Graph 1 and Graph 2 were created with the intention of providing a clearer and 

more comprehensive visualization of the results we have obtained. These visualizations fo-

cus on two key aspects: (i) the percentage of idle energy saved for each problem instance 

(Graph 1), (ii) the percentage of total energy saved per problem instance (Graph 2). 

 

Graph 1 - Percentage of  Idle Energy Saved per Problem Instance 

Source: Own Elaboration 
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Graph 2 - Percentage of  Total Energy Saved per Problem Instance 

Source: Own Elaboration 

Upon a close examination of the two graphs, it becomes apparent that no significant 

outliers emerge when comparing them to the trajectory of each curve. Furthermore, when 

we assess the averages of each level, we observe a high degree of similarity. This holds true 

for both the percentage savings in idle energy (46%, 50%, 48%) and the percentage savings 

in total energy (4.2%, 4.8%, 4.1%). Such consistency in the results is a positive signal related 

to the robustness of the research conducted within this dissertation. 

3.6. Bi-Objective Model: Minimizing both Makespan & Idle Time 

As previously outlined, this dissertation's primary objective is to assess the feasibil-

ity of achieving energy savings through the incorporation of a standby mode, all while 

maintaining the original makespan of the schedules intact. During this research, questions 

have surfaced regarding the practical implications on makespan when optimizing for mini-

mized idle times in conjunction with the primary objective of minimizing the total comple-

tion time of all operations. This line of analysis arises from the consideration that if the im-

pact on makespan is minimal, and the reduction in idle times yields substantial energy sav-

ings, it could potentially diminish the necessity of incurring in substantial costs associated 

with incorporating machines with the standby mode. 

As a result, a similar model was formulated using CPLEX, with the primary distinc-

tion being the inclusion of the minimization of total idle time as part of the objective func-

tion, which originally prioritized the reduction of the makespan (see Annex 6). Further-

more, since it is possible to encounter situations where the complexity of the objective 
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function increases the probability of facing infeasible subproblems. In addressing such 

complexities within the optimization process, the FailLimit was adjusted upwards, recog-

nizing that this adjustment results in longer computation times. The computed results are 

shown in Table 4. 

 % of  Idle Energy % of  Total Energy % of  Increase in Cmax 

15x15 (1) 14.5% 1.4% 4.5% 

15x15 (2) 21.2% 2.3% 4.7% 

15x15 (3) 21.0% 2.3% 2.2% 

15x15 (4) 17.8% 2.0% 5.7% 

15x15 (5) 19.4% 2.1% 2.0% 

15x15 (6) 18.7% 1.8% 3.4% 

15x15 (7) 7.5% 0.8% 7.2% 

20x15 (1) 13.3% 1.0% 8.5% 

20x15 (2) 22.2% 1.4% 3.2% 

20x15 (3) 4.6% 0.4% 10.9% 

20x15 (4) 27.0% 2.3% 6.1% 

20x15 (5) 12.6% 1.0% 5.8% 

20x15 (6) 19.6% 1.4% 3.7% 

20x15 (7) 12.5% 1.1% 8.0% 

Average 16.6% 1.5% 5.4% 

Table 4. Results of  Bi-Objective Model.  

Source: Own Elaboration 

Based on the findings, by minimizing the total idle time of the schedule, it is possi-

ble to achieve an average reduction of 16.6% in idle energy consumption and a 1.5% de-

crease in overall energy usage, which includes both processing and idle energy. However, 

this energy-saving effort comes at the cost of a 5.4% increase in the makespan, meaning it 

takes 5,4% more time to complete all the tasks. 

When we compare these results to the previously computed findings in this disser-

tation, it becomes apparent that the achieved savings are more favorable when incorporat-

ing the standby mode as opposed to solely minimizing idle times. This is evident in terms 

of the percentage reduction in idle energy and the percentage reduction in total energy con-

sumption. However, it is important to note that implementing this standby mode is not a 

straightforward task, as it necessitates the installation and integration of such a mode into 

the system. 
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4. Conclusion 

 

As previously stated, the central focus of this dissertation revolves around assessing the 

potential for energy savings by implementing a machine power-saving strategy, specifically 

switching machines to standby mode during idle periods, while ensuring that the total com-

pletion time of all operations (makespan) remains unaffected. The problem is defined as an 

optimization problem that seeks to minimize the makespan, and is solved using IBM ILOG 

CPLEX Optimization Studio, while introducing a standby mode that replaces idle times 

when those idle periods exceed the calculated breakeven threshold for each machine. 

In the context of energy-saving strategies, it is crucial to consider the suitability of the 

approach for specific machines. The incorporation of a standby mode is more likely applica-

ble to electric machines due to their ease of activation. However, it may not be suitable for 

energy-intensive equipment like furnaces. There are also practical constraints, such as the 

need to balance energy savings with machine deterioration and operational continuity. In real 

manufacturing settings, it is common for machines to remain active until all products are 

processed to maintain production flow and avoid disruptions. 

Nonetheless, the results obtained from the calculations demonstrate a positive outlook. 

Based on the estimates used in this study, the incorporation of a standby mode has the po-

tential to yield substantial energy savings. Specifically, it could save approximately 46% of 

the energy consumed during idle periods and 4.2% of the total energy, which includes both 

processing and idle energy. Furthermore, when subjecting the computed data to sensitivity 

analysis involving different rates of processing power, idle power, and the activation of 

standby mode, the results consistently demonstrate minor variations. These variations are 

within a range of 4 percentage points for idle energy and 0.6 percentage points for total 

energy, suggesting the robustness of the findings. Finally, the impact on projected potential 

energy savings outperforms the results obtained from a bi-objective model that focuses on 

minimizing both makespan and idle time was computed, using the same problem instances.  

In the future it could be interesting to conduct in-depth case studies in real manufac-

turing environments to validate the effectiveness of energy-saving strategies and assess their 

practical applicability. Furthermore, investigate the viability of integration of energy storage 
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solutions, such as batteries or supercapacitors, to capture and store excess energy during idle 

periods for later use. This can enhance energy efficiency and reduce reliance on the grid. 
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Annexes 
Annex 1 - Taillard’s Problem Instance 15x15 (1) 

Times 

94 66 10 53 26 15 65 82 10 27 93 92 96 70 83 
74 31 88 51 57 78  8  7 91 79 18 51 18 99 33 
4 82 40 86 50 54 21  6 54 68 82 20 39 35 68 
73 23 30 30 53 94 58 93 32 91 30 56 27 92  9 
78 23 21 60 36 29 95 99 79 76 93 42 52 42 96 
29 61 88 70 16 31 65 83 78 26 50 87 62 14 30 
18 75 20  4 91 68 19 54 85 73 43 24 37 87 66 
32 52  9 49 61 35 99 62  6 62  7 80  3 57  7 

85 30 96 91 13 87 82 83 78 56 85  8 66 88 15 
5 59 30 60 41 17 66 89 78 88 69 45 82  6 13 
90 27  1  8 91 80 89 49 32 28 90 93  6 35 73 
47 43 75  8 51  3 84 34 28 60 69 45 67 58 87 
65 62 97 20 31 33 33 77 50 80 48 90 75 96 44 
28 21 51 75 17 89 59 56 63 18 17 30 16  7 35 
57 16 42 34 37 26 68 73  5  8 12 87 83 20 97 

 

Machines 

7 13  5  8  4  3 11 12  9 15 10 14  6  1  2 
5  6  8 15 14  9 12 10  7 11  1  4 13  2  3 
2  9 10 13  7 12 14  6  1  3  8 11  5  4 15 
6  3 10  7 11  1 14  5  8 15 12  9 13  2  4 
8  9  7 11  5 10  3 15 13  6  2 14 12  1  4 
6  4 13 14 12  5 15  8  3  2 11  1 10  7  9 
13  4  8  9 15  7  2 12  5  6  3 11  1 14 10 
12  6  1  8 13 14 15  2  3  9  5  4 10  7 11 
11 12  7 15  1  2  3  6 13  5  9  8 10 14  4 
7 12 10  3  9  1 14  4 11  8  2 13 15  5  6 
5  8 14  1  6 13  7  9 15 11  4  2 12 10  3 
3 15  1 13  7 11  8  6  9 10 14  2  4 12  5 
6  9 11  3  4  7 10  1 14  5  2 12 13  8 15 
9 15  5 14  6  7 10  2 13  8 12 11  4  3  1 
11  9 13  7  5  2 14 15 12  1  8  4  3 10  6 

 

Source: Taillard, É. D. (1993). Benchmarks for basic scheduling problems. European Journal of  Operational 

Research, 64(2), 278–285 
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Annex 2 - Formatted Taillard’s Problem Instance 15x15 (1) 

[<6, 94>, <12, 66>, <4, 10>, <7, 53>, <3, 26>, <2, 15>, <10, 65>, <11, 82>, <8, 10>, 

<14, 27>, <9, 93>, <13, 92>, <5, 96>, <0, 70>, <1, 83>], 

    [<4, 74>, <5, 31>, <7, 88>, <14, 51>, <13, 57>, <8, 78>, <11, 8>, <9, 7>, <6, 91>, 

<10, 79>, <0, 18>, <3, 51>, <12, 18>, <1, 99>, <2, 33>], 

    [<1, 4>, <8, 82>, <9, 40>, <12, 86>, <6, 50>, <11, 54>, <13, 21>, <5, 6>, <0, 54>, 

<2, 68>, <7, 82>, <10, 20>, <4, 39>, <3, 35>, <14, 68>], 

    [<5, 73>, <2, 23>, <9, 30>, <6, 30>, <10, 53>, <0, 94>, <13, 58>, <4, 93>, <7, 32>, 

<14, 91>, <11, 30>, <8, 56>, <12, 27>, <1, 92>, <3, 9>], 

    [<7, 78>, <8, 23>, <6, 21>, <10, 60>, <4, 36>, <9, 29>, <2, 95>, <14, 99>, <12, 79>, 

<5, 76>, <1, 93>, <13, 42>, <11, 52>, <0, 42>, <3, 96>], 

    [<5, 29>, <3, 61>, <12, 88>, <13, 70>, <11, 16>, <4, 31>, <14, 65>, <7, 83>, <2, 78>, 

<1, 26>, <10, 50>, <0, 87>, <9, 62>, <6, 14>, <8, 30>], 

    [<12, 18>, <3, 75>, <7, 20>, <8, 4>, <14, 91>, <6, 68>, <1, 19>, <11, 54>, <4, 85>, 

<5, 73>, <2, 43>, <10, 24>, <0, 37>, <13, 87>, <9, 66>], 

    [<11, 32>, <5, 52>, <0, 9>, <7, 49>, <12, 61>, <13, 35>, <14, 99>, <1, 62>, <2, 6>, 

<8, 62>, <4, 7>, <3, 80>, <9, 3>, <6, 57>, <10, 7>], 

    [<10, 85>, <11, 30>, <6, 96>, <14, 91>, <0, 13>, <1, 87>, <2, 82>, <5, 83>, <12, 78>, 

<4, 56>, <8, 85>, <7, 8>, <9, 66>, <13, 88>, <3, 15>], 

    [<6, 5>, <11, 59>, <9, 30>, <2, 60>, <8, 41>, <0, 17>, <13, 66>, <3, 89>, <10, 78>, 

<7, 88>, <1, 69>, <12, 45>, <14, 82>, <4, 6>, <5, 13>], 

    [<4, 90>, <7, 27>, <13, 1>, <0, 8>, <5, 91>, <12, 80>, <6, 89>, <8, 49>, <14, 32>, 

<10, 28>, <3, 90>, <1, 93>, <11, 6>, <9, 35>, <2, 73>], 

    [<2, 47>, <14, 43>, <0, 75>, <12, 8>, <6, 51>, <10, 3>, <7, 84>, <5, 34>, <8, 28>, 

<9, 60>, <13, 69>, <1, 45>, <3, 67>, <11, 58>, <4, 87>], 

    [<5, 65>, <8, 62>, <10, 97>, <2, 20>, <3, 31>, <6, 33>, <9, 33>, <0, 77>, <13, 50>, 

<4, 80>, <1, 48>, <11, 90>, <12, 75>, <7, 96>, <14, 44>], 

    [<8, 28>, <14, 21>, <4, 51>, <13, 75>, <5, 17>, <6, 89>, <9, 59>, <1, 56>, <12, 63>, 

<7, 18>, <11, 17>, <10, 30>, <3, 16>, <2, 7>, <0, 35>],    

    [<10, 57>, <8, 16>, <12, 42>, <6, 34>, <4, 37>, <1, 26>, <13, 68>, <14, 73>, <11, 5>, 

<0, 8>, <7, 12>, <3, 87>, <2, 83>, <9, 20>, <5, 97>] 

Source: Own Elaboration. Adapted from Taillard, É. D. (1993). Benchmarks for basic scheduling problems. 

European Journal of  Operational Research, 64(2), 278–285 
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Annex 3 – Processing, Idle and Standby Rate (Level 1) 

 

Level 1 

Standby Rate 
Processing Rate Idle Rate 

Switching to 
Standby Mode 

Machine 0 1230 230 9840 20 

Machine 1 1160 180 9280 22 

Machine 2 1150 190 9200 25 

Machine 3 1380 230 11040 30 

Machine 4 1040 220 8320 25 

Machine 5 1270 230 10160 27 

Machine 6 1170 220 9360 22 

Machine 7 1000 170 8000 20 

Machine 8 1300 250 10400 30 

Machine 9 1360 250 10880 28 

Machine 10 1350 250 10800 22 

Machine 11 1030 190 8240 21 

Machine 12 1310 230 10480 28 

Machine 13 1060 200 8480 29 

Machine 14 1450 300 11600 30 

Source: Own Elaboration. Adapted from Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible 

job shop with energy-saving measures. Journal of  Cleaner Production, p. 3259 
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Annex 4 – Constraint Programming Model 1 (15 Machines) 

using CP; 

 

int nbJobs = ...; 

int nbMchs = ...; 

range Jobs = 0..nbJobs-1; 

range Mchs = 0..nbMchs-1; 

tuple Operation { 

    int mch; // Machine 

    int pt;  // Processing time 

} 

 

// Define energy consumption rates for each machine 

int processingRate[Mchs] = [1230, 1160, 1150, 1380, 1040, 1270, 1170, 1000, 1300, 1360, 
1350, 1030, 1310, 1060, 1450]; 

int idleRate[Mchs] = [230, 180, 190, 230, 220, 230, 220, 170, 250, 250, 250, 190, 230, 200, 
300]; 

 

Operation Ops[j in Jobs][m in Mchs] = ...; 

 

dvar interval itvs[j in Jobs][o in Mchs] size Ops[j][o].pt; 

dvar sequence mchs[m in Mchs] in all(j in Jobs, o in Mchs : Ops[j][o].mch == m) itvs[j][o]; 

 

// Add energy consumption variables 

float processConsumption[Mchs]; 

float idleConsumption[Mchs]; 

float energyConsumption[Mchs]; 
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execute { 

    cp.param.FailLimit = 10000; 

} 

 

minimize max(j in Jobs) endOf(itvs[j][nbMchs-1]); 

subject to { 

    forall (m in Mchs) 

        noOverlap(mchs[m]); 

    forall (j in Jobs, o in 0..nbMchs-2) 

        endBeforeStart(itvs[j][o], itvs[j][o+1]); 

} 

 

int astart[j in Jobs][o in Mchs]; 

int aend[j in Jobs][o in Mchs]; 

 

execute { 

    for (var j in Jobs) 

    for(var o in Mchs){ 

      astart[j][o] = itvs[j][o].start; 

      aend[j][o] = itvs[j][o].end; 

  } 

} 

 

sorted {int} startItvM[m in Mchs] = {  astart[j][o] | j in Jobs, o in Mchs : Ops[j][o].mch 
== m}; 

sorted {int} endItvM[m in Mchs] = {  aend[j][o] | j in Jobs, o in Mchs : Ops[j][o].mch == 
m}; 
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assert forall(m in Mchs) card(startItvM[m]) == nbJobs; 

assert forall(m in Mchs) card(endItvM[m]) == nbJobs; 

 

int idleDuration[m in Mchs] = sum(j in 1..nbJobs-1) ( item(startItvM[m], j) - 
item(endItvM[m], j-1) ); 

 

execute{ 

  idleDuration; 

} 

 

// Calculate processing energy consumption 

execute { 

    for (var m in Mchs) { 

        processConsumption[m] = 0; 

        for (var j in Jobs) { 

            for (var o in Mchs) { 

                if  (Ops[j][o].mch == m) { 

                    processConsumption[m] += ( 

                        itvs[j][o].size * processingRate[m]                   

                    ); 

                } 

            } 

        } 

    } 

} 

// Calculate Idle Energy Consumption 

execute { 
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    for (var m in Mchs) { 

        idleConsumption[m] = 0; 

        for (var j in Jobs) { 

            for (var o in Mchs) { 

                if  (Ops[j][o].mch == m) { 

                    idleConsumption[m] += ( 

                       idleDuration[m]/15  * idleRate[m]                   

                    ); 

                } 

            } 

        } 

    } 

} 

//Calculate Total Energy Consumption 

execute { 

    for (var m in Mchs) { 

        energyConsumption[m] = 0; 

        for (var j in Jobs) { 

            for (var o in Mchs) { 

                if  (Ops[j][o].mch == m) { 

                    energyConsumption[m] += ( 

                       idleConsumption[m]/15 + processConsumption[m]/15                   

                    ); 

                } 

            } 

        } 



52 

 

    } 

} 

execute { 

    for (var j = 0; j <= nbJobs-1; j++) { 

        for (var o = 0; o <= nbMchs-1; o++) { 

            write(itvs[j][o].start + " ", "- ", itvs[j][o].end + " "); 

        } 

        writeln(""); 

    } 

} 

execute { 

    writeln("Total Energy Consumption for Machines:"); 

    for (var m = 0; m < nbMchs; m++) { 

        writeln("Machine ", m, ": ", idleDuration[m], " - ", idleConsumption[m], " / ", pro-
cessConsumption[m], “ / “, energyConsumption[m]); 

    } 

} 

Source: Own Elaboration. Adapted from IBM (2021). Scheduling Examples. IBM Documentation. 
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Annex 5 - Processing, Idle and Standby Rate (Level 2 & 3) 

 

Level 2 Level 3 
Standby 

Rate Processing 
Rate 

Idle 
Rate 

Switching 
to 

Standby 

Processing 
Rate 

Idle 
Rate 

Switching 
to 

Standby 

Machine 0 1510 320 12080 2270 370 18160 20 

Machine 1 1500 280 12000 1820 350 14560 22 

Machine 2 1390 300 11120 1880 350 15040 25 

Machine 3 1920 330 15360 2340 390 18720 30 

Machine 4 1500 310 12000 2220 380 17760 25 

Machine 5 1560 270 12480 2260 370 18080 27 

Machine 6 1510 300 12080 2160 400 17280 22 

Machine 7 1210 290 9680 1690 350 13520 20 

Machine 8 1770 320 14160 2510 400 20080 30 

Machine 9 1960 310 15680 2510 380 20080 28 

Machine 10 1850 340 14800 2440 390 19520 22 

Machine 11 1480 280 11840 1920 320 15360 21 

Machine 12 1860 310 14880 2290 390 18320 28 

Machine 13 1450 300 11600 1960 400 15680 29 

Machine 14 2090 350 16720 2970 400 23760 30 

Source: Own Elaboration. Adapted from Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible 

job shop with energy-saving measures. Journal of  Cleaner Production, p. 3259 

 

Annex 6 – Objective Function of  Bi-Objective Model 

minimize max(j in Jobs) endOf(itvs[j][nbMchs-1]) +  

        sum(m in Mchs) (max(j in Jobs, o in Mchs : Ops[j][o].mch == m) endOf(itvs[j][o], 0) -  

                                    min(j in Jobs, o in Mchs : Ops[j][o].mch == m) startOf(itvs[j][o], 

99999) -  

                                    sum(j in Jobs, o in Mchs : Ops[j][o].mch == m) Ops[j][o].pt);; 

Source: Own Elaboration. Adapted from IBM (2021). Scheduling Examples. IBM Documentation 

 


