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Abstract

This paper addresses a variant of the job shop scheduling problem with total tar-

diness minimisation where task durations and due dates are uncertain. This un-

certainty is modeled with intervals. Different ranking methods for intervals are

considered and embedded into a genetic algorithm. A new robustness measure is
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proposed to compare the different ranking methods and assess their capacity to

predict ”expected delays” of jobs. Experimental results show that dealing with

uncertainty during the optimisation process yields more robust solutions. A sensi-

tivity analysis also shows that the robustness of the solutions given by the solving

method increases when the uncertainty grows.

Keywords: Job shop scheduling; Total tardiness; Interval uncertainty; Robustness

1 Introduction

Scheduling problems consist in allocating a set of resources to perform a set of tasks under

a set of given constraints while optimising a certain performance metric. Solving these

problems has lead to reducing energy and/or material-handling costs, as well as time,

and overall improving the efficiency of chain production [27, 34]. The job shop, or JSP

in short, has been considered one of the most relevant scheduling problems, being a good

model for many practical applications as well as a challenge to the research community

due to its complexity. The latter is the reason why metaheuristic search techniques are

especially suited for solving the JSP [40].

The existing literature on job shop scheduling problems focuses mainly on minimising

the execution timespan of the project (known as makespan). However, on-time fulfilment

has become especially relevant in modern pull-oriented supply chain systems concerned

with meeting customers’ demand in terms of due dates; a tardy job may result in delay-

compensation cost, customer dissatisfaction or loss of reputation among others. In the

case of complex manufacturing systems, tardy jobs in one of the stages can cause serious

disruptions and delays in subsequent stages, with the associated costs. For these reasons,

due-date related criteria have been gaining importance in recent years [28, 30].

Traditionally in scheduling, it has been assumed that design variables such as task pro-

cessing times or due dates are deterministic. However, in real-world production scheduling

problems such variables are quite often characterised vaguely due to the available infor-

mation being incomplete or imprecise. In fact, the necessity of dealing with imprecision

in real world problems has been a long-term research challenge. The most common ap-

proach to handling uncertainty in scheduling is that of stochastic scheduling, modelling

the duration of tasks by probability distributions [34]. However, even if the uncertain

parameters are independent random variables, finding the distribution of the objective

function is in general intractable. Also, as pointed out in [12], probability distributions

permit to model variability of repetitive tasks, but not uncertainty due to lack of infor-

mation, and they may not be adequate when different job shop projects take place under

slightly different conditions. Fuzzy scheduling takes an alternative approach, modelling

uncertain variables as fuzzy numbers or fuzzy intervals, that is, possibility distributions

representing more or less plausible values [13]. This approach is computationally more
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appealing and it presupposes less knowledge and it has been extensively used to model

uncertainty in scheduling problems, both for durations [5] and due dates [10]. However,

the simplest way of representing uncertainty are intervals: assigning a time interval I

to an activity duration (respectively, a due date) means that the actual duration of this

activity (respectively due date) will take some value in that interval, but it is not possible

at present to predict exactly which one it will be [15]. Interval uncertainty is present as

soon as information is incomplete and it does not assume any further knowledge. Intervals

naturally arise if an expert is reluctant or unable to provide a particular value for task

durations and feels that estimating a minimal and a maximal duration is more realistic.

Also, the completion of a job may depend on several uncertain events such as changing

customer orders or dependencies on other components of a larger manufacturing system,

so giving a range of possible due date values seems better suited than risking a crisp and

unrealistic due date. Under such circumstances, interval scheduling gives the possibility

of focussing on significant scheduling decisions and producing robust solutions. Also, it

represents a first step towards solving problems in the other uncertain frameworks. In-

deed, an interval can be seen as a uniform probability distribution or the support of an

unknown probability distribution, as noted in [2]. An interval is also a particular case of

a fuzzy interval where all values in its support are equally possible and, in general, the

α-cuts of fuzzy intervals are intervals [13].

Interval uncertainty is not new in scheduling, although contributions in the literature

are still scarce. In [24], a genetic algorithm is proposed for a JSP with both processing

times and due dates represented by intervals that minimises the total tardiness with

respect to job due dates. A population-based neighborhood search for a interval job

shop, but with the objective of the makespan is presented in [23]. A multiobjective

interval JSP with non-resumable jobs and flexible maintenance is solved in [25] by means

of a multiobjective ABC algorithm that minimises both makespan and total tardiness.

In [26], a hybrid between PSO and a genetic algorithm is used to solve a flexible JSP with

interval processing times as part of a larger integrated planning and scheduling problem.

Metaheuristic search methods are especially suited for scheduling problems due to

their complexity. In particular, genetic algorithms, on their own or combined with other

metaheuristic methods, have proved to be successful in tackling the job shop, which is

a NP-hard problem [16]. For instance, among the state-of-the-art methods for the de-

terministic job shop with total weighted tardiness, we find a genetic algorithm with an

iterated local search [14] and a hybrid genetic algorithm with tabu search [17]. In [39],

a combination of a genetic algorithm with simulated annealing is used to minimise the

makespan. For flexible job shop problems, genetic algorithms have gained great popu-

larity [3], and they are used as well in [35] for open shop scheduling problems. When

uncertainty is present, a genetic algorithm with heuristic seeding for the fuzzy flexible

job shop problem is used in [31], and a genetic algorithm hybridised with tabu search is
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used in [37] for the fuzzy job shop maximising due-date satisfaction.

In optimisation problems, and in scheduling in particular, being able to compare

solutions in terms of the objective function values is crucial. Under interval uncertainty,

objective function values may also be intervals that need to be compared. However, there

is no natural ordering in the set of intervals. Instead, different ranking methods can be

found in the literature (cf. [8, 21]). In consequence, one of these ranking methods need

to be adopted during the optimisation process in order to compare solutions. In the

above-mentioned works, the authors consider a single interval ranking to compare and

select solutions, without analysing whether or how does the choice of a ranking affects

the quality of the obtained schedule. However, as shown in [33] for the fuzzy job shop

problem, the choice of the ranking method can have a big impact on the obtained solution

and its robustness in real scenarios, and therefore, it should be analysed.

The high-level idea of solution robustness can be translated into many different ro-

bustness measures, depending on the source of uncertainties, the nature of the objective

function and the context of the problem [4, 36]. The most traditional approach based

on min-max or min-max regret criteria consists in finding solutions with the best possi-

ble performance in the worst case and is motivated by practical applications where an

anticipation of the worst case is crucial [1]. There are however other cases where the

worst case is not critical and, instead, solutions with an overall acceptable performance

are preferred [20]. This is the stance taken in the definition of a robustness measure for

tardiness minimisation in job shop with interval uncertainty given in [11]. To our knowl-

edge, this is the only existing proposal in the literature for this variant of the problem

but, as we shall argue in the sequel, it presents some flaws when tardiness minimisation

is considered.

In the following, we consider the job shop scheduling problem with intervals modelling

both uncertain durations and uncertain due dates. The objective is to minimise the total

tardiness, an interval in this case. We propose several variants of a genetic algorithm with

different interval ranking methods to study their influence on the optimisation process.

We also consider modelling the processing times and due dates with a scalar value to assess

the actual benefits of incorporating the uncertainty into the search. We also propose a

new robustness measure to compare the schedules’ performance in terms of unexpected

delays. This measure is also used in a sensitivity analysis to test the behaviour of the

proposed algorithms when faced with increasing uncertainty.

This paper is an extended version of the work presented at the 15th International

Conference on Hybrid Artificial Intelligence Systems (HAIS’20) and published in [11].

The contributions of this new extended version are the following:

� A new robustness measure, better suited for the total tardiness objective function,

is introduced in Section 3.
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� As a consequence of the change in the robustness measure, all the experiments

related to this metric have been rerun and are presented in Section 5.

� It was mentioned in the conclusions of [11] that there was a need to thoroughly

analyse the influence of different ranking methods in order to make a proper choice.

We address this issue here by performing a separate parameter tuning for each

variant of the GA depending on the ranking method used. The experimental results

in 5 are then given for the individually optimised variants of the GA. Based on these

updated results, we incorporate a more detailed comparison of all ranking methods

and using scoring ranking rules to choose the most adequate in terms of robustness.

� We include in Section 5 a sensitivity analysis to study the behaviour of the GA

variants when the uncertainty in the problem increases.

2 Problem Definition

The classical job shop scheduling problem, consists of a set of jobs J = {J1, . . . , Jn} to

be scheduled on a set of physical resources or machines M = {M1, . . . ,Mm}, subject

to a set of constraints. There are precedence constraints, so each job Jj, consists of

mj ≤ m tasks (o(j, 1), . . . , o(j,mj)) to be sequentially scheduled. There are also capacity

constraints, whereby each task o(j, l) requires the uninterrupted and exclusive use of a

specific machine νo(j,l) ∈M for its whole processing time po(j,l). Additionally, each job Jj

has a desirable completion due date dj.

A solution to this problem is a schedule s, i.e. an allocation of starting times so(j,l) for

each task o(j, l) that satisfies all constraints and is optimal according to some criterion,

in our case, minimum total tardiness with respect to due dates.

A schedule s establishes an order π among the tasks requiring the same machine.

Conversely, given a task processing order π, the schedule s(π) can be computed as follows.

Let so(j,l)(π) denote the starting time of task o(j, l) given π, co(j,l)(π) = so(j,l)(π) + po(j,l)

its completion time, and PMo(j,l)(π) its predecessor in its required machine. The starting

time of a task o(j, l) is given by so(j,l)(π) = max(co(j,l−1)(π), cPMo(j,l)(π)(π)). If task o(j, l)

has no machine predecessor in π, then cPMo(j,l)(π)(π) = 0 (similarly, co(j,0) = 0). The total

tardiness of the schedule is given by Ttot(π) =
∑n

j=1 Tj(π), where Tj(π) is the tardiness

of job Jj according to π, Tj(π) = max(0, co(j,mj)(π)− dj).

2.1 Uncertain Processing Times and Due Dates

As argued in Section 1, in real life applications is common to encounter uncertainty

regarding the exact time it will take to process a task on the final due dat for a job. If

only an upper and a lower bound of each duration and due date are known, uncertainty
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can be represented as a closed interval a = [a, a] = {x ∈ R : a ≤ x ≤ a}, with a and a

the corresponding lower and upper bounds.

Let IR denote the set of closed intervals. The job shop problem with total tardiness

minimisation requires three arithmetic operations on IR: addition, subtraction and maxi-

mum. These are defined by extending the corresponding operations on real numbers [29],

so given two intervals a = [a, a],b = [b, b] ∈ IR, the addition is expressed as [a+ b, a+ b],

the subtraction as [a− b, a− b] and the maximum as [max(a, b),max(a, b)].

Comparisons are a key point in scheduling, as the “best” schedule should be the one

with “minimal” total tardiness (an interval). However, there is no natural total order

in the set of intervals, so an interval ranking method needs to be considered among

those proposed in the literature [21]. However, no consensus exists in the literature as

to which ranking is the most appropriate for scheduling problems. Furthermore, it has

been shown in a different uncertainty framework [33] that the choice of ranking method

to compare uncertain objective function values noticeable affects the robustness of the

obtained solution. Among the multiple existing rankings in IR, here we consider the

following:

a ≤Lex1 b⇔ a < b ∨ (a = b ∧ a ≤ b), (1)

a ≤Lex2 b⇔ a < b ∨ (a = b ∧ a ≤ b), (2)

a ≤Y X b⇔ a+ a < b+ b ∨ (a+ a = b+ b ∧ a− a ≤ b− b), (3)

a ≤MP b⇔ m(a) ≤ m(b) with m(a) = (a+ a)/2. (4)

It can be seen that (1), (2) and (3) actually define total order relations in IR [8]. Both (1)

and (2) are derived from a lexicographical order of interval extreme points. The ranking

in expression (3) is proposed in [38], and the last one (midpoint order) is a particular

case of the classical Hurwitz criterion and is equivalent to the one used in [24] for interval

JSP.

2.2 The JSP with Interval Uncertainty

Given the above, the Interval Job Shop Scheduling Problem or IJSP for total tardiness

minimisation can be formulated as follows:
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min
R

Ttot =
n∑
j=1

Tj (5)

s.t.: T j = max(0, co(j,mj)
− dj) (6)

T j = max(0, co(j,mj) − dj) (7)

co(j,l) = so(j,l) + p
o(j,l)

1 ≤ l ≤ mj, 1 ≤ j ≤ n (8)

co(j,l) = so(j,l) + po(j,l) 1 ≤ l ≤ mj, 1 ≤ j ≤ n (9)

so(j,l) ≥ co(j,l−1) 1 ≤ l ≤ mj, 1 ≤ j ≤ n (10)

so(j,l) ≥ co(j,l−1) 1 ≤ l ≤ mj, 1 ≤ j ≤ n (11)

so(j,l) ≥ co(j′,l′) ∨ so(j′,l′) ≥ co(j,l) ∀o(j, l) 6= o(j′, l′) : νo(j,l) = νo(j′,l′) (12)

so(j,l) ≥ co(j′,l′) ∨ so(j′,l′) ≥ co(j,l) ∀o(j, l) 6= o(j′, l′) : νo(j,l) = νo(j′,l′) (13)

where the minimum minR Ttot in (5) is the smallest interval according to a given ranking

R in the set of intervals IR. Constraints (6) and (7) define the tardiness of each job

Jj as the interval difference between the completion time of the job and its due date.

Constraints (8) and (9) establish the relationship between the starting and completion

time of each task. Constraints (10) and (11) correspond to precedence relations between

tasks within each job, and constraints (12) and (13) establish that the execution of two

tasks requiring the same machine cannot overlap. Clearly, this problem is NP-hard, since

setting all processing times and due dates to crisp numbers yields the classical JSP, which

is itself NP-hard [34].

3 Robustness on Interval Schedules

At the time of scheduling, it is impossible to predict what the exact due dates and

processing times will be when the project is executed. Thus, a solution to the IJSP

provides an interval of all possible values for the total tardiness based on the possible

values for the starting time of each task and the due date for each job. This should be

understood as an a-priori or predictive solution [18]. Only when the project is actually

executed, we shall know the real (deterministic) duration of each task po(j,l) ∈ [p
o(j,l)

, po(j,l)]

and the final due date dj ∈ [dj, dj] for each job. However, a solution to the IJSP provides

a task ordering π, which can be implemented in a real scenario as explained in Section 2.

After execution, when processing times and due dates are exactly known, we obtain the

a-posteriori solution, in which actual delays w.r.t. each job, Tj ∈ [T j, T j] are computed.

This idea inspires the ε-robustness measure introduced in [32] for the job shop with

fuzzy processing times and makespan minimisation, which measures the relative error of

a performance metric between the a-priori and the a-posteriori solutions. In [11] we find
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a first proposal to adapt this measure to the interval framework and to total tardiness

minimisation. It can be argued, however, that this first definition is ill-suited for the

tardiness objective in the sense that it penalises the cases where the tardiness of the

a-posteriori solution is lower than the predicted one. Furthermore, surpassing or staying

below the predicted tardiness with the a-posteriori solution are considered equally wrong.

This contradicts the idea of tardiness, a non-negative value which is worse the further it

deviates from a due date and becomes null as soon a job is completed before its due date.

This calls for a different robustness measure that better reflects the nature of tardiness,

motivating our proposal of a new definition of robustness measure below. It relates to

the proposal from [11] in the sense that they share the same inspiration based on a-priori

and a-posteriori solutions, but it is crucially different in the sense that it is more in line

with the idea of tardiness and it only penalises the cases where the predictive value is

surpassed.

In this case, the total tardiness Ttot (an interval) is compared to the real total tar-

diness T extot obtained after executing a specific realization of particular task processing

times and job due dates. In absence of any other information, it seems natural to esti-

mate the total tardiness as the midpoint of Ttot, m(Ttot). The prediction error made

by the a-priori solution can be estimated by measuring the (relative) delay of the actual

executed total tardiness T extot with respect to this expected value m(Ttot). We consider

that given the nature of our objective function, as long as T extot ≤ m(Ttot) the solution

can be considered robust, as the outcome is objectively better than predicted. Therefore,

an a-priori solution is considered to be robust if the delay in the a-posteriori solution

does not exceed the predicted one. That is, there are no “unexpected delays” in real

executions. In consequence, a predictive schedule with total tardiness Ttot is ε-robust if

the relative delay of the total tardiness T extot with respect to m(Ttot) is less or equal than

ε, that is:

Rex =
max(0, T extot −m(Ttot))

m(Ttot)
≤ ε and ε ≥ 0. (14)

Clearly, the smaller the bound ε is, the more robust the interval schedule is.

It is quite common to use synthetic benchmark instances when real data regarding

project executions are not available. In that case, K possible scenarios can be obtained

using Monte-Carlo simulations [32] where deterministic values for due dates and process-

ing times are sampled on their respective interval using uniform probability distributions.

Then, the average ε-robustness of the predictive schedule across the K possible configu-

rations, denoted ε, can be calculated as:

ε =
1

K

K∑
k=1

Rk =
1

K

K∑
k=1

max(0, T ktot −m(Ttot))

m(Ttot)
. (15)
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Algorithm 1 Schema of the Genetic Algorithm
Require: An IJSP instance
Ensure: A schedule

Generate a pool P0 of random solutions
Evaluate P0

i← 0
while stopping condition is not satisfied do

Offi ← pairs of individuals selected from Pi
for each pair of individuals in Offi do

Apply crossover operator with probability pcross
Apply mutation operator with probability pmut

Evaluate Offi
Pi+1 ← Apply replacement operator in (Pi,Offi)
i← i + 1

Best← Best solution in Pi according to the interval ranking
return Best

with T ktot denoting the deterministic total tardiness obtained after executing tasks accord-

ing to the ordering π provided by the predictive schedule s on each scenario k = 1, . . . , K.

This value provides an estimation of how robust the schedule s is across different possible

real scenarios.

4 A Genetic Algorithm for Tardiness Minimisation

Evolutionary algorithms (EAs) are a powerful tool for solving scheduling problems [19,

27]. Among them, genetic algorithms (GAs) are some of the most popular and suc-

cessful, showing a superior performance either on their own or hybridised with other

methods [22]. Perhaps this is the reason why, according to [9], GAs constitute the most

popular approach to job shop scheduling.

In general, a GA starts by generating an initial population P0 of individuals codify-

ing solutions. These individuals are evaluated and assigned a fitness value each. The

population is then left to evolve until a stopping criterion is met. At each iteration i,

individuals from population Pi are paired for mating following a selection procedure, and

recombination operators of crossover and mutation are applied to each pair with a certain

probability. The new population of individuals Offi is evaluated and a replacement oper-

ator is applied to combine Pi and Offi into a new population Pi+1 for the next iteration,

rewarding individuals with better fitness and keeping a constant population size. Once

the stopping criterion is met, the best individual from the last generation is returned.

Following this template, the actual GA to be applied to solve a problem depends on

the choice of solution coding schema and the genetic operators. Here we adopt the GA

proposed in [11]; its pseudocode can be seen in Algorithm 1.

To encode solutions, we use classical permutations with repetition [6], where each
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task o(j, l) is represented by its job number j. The decoding follows an insertion strategy

for interval durations, which roughly consists in iterating along the chromosome and

scheduling each task o(j,l) at its earliest feasible insertion position. In so doing, we

always obtain a so-called active schedule in the sense that no operation can start earlier

without delaying the starting time of at least another operation.

The initial population is generated at random. Different selection, crossover, mu-

tation and replacement operators from the literature can be applied for this encoding.

For selection we consider population shuffle, roulette, stochastic universal sampling and

tournament 1/3 on the population. As crossover operators we take Generalised Order

Crossover (GOX), Job-Order Crossover (JOX) and Precedence Preservative Crossover

(PPX) and for mutation, Swap, Inversion and Insertion. Finally, for replacement we con-

sider Generational replacement with elitism (k=1, 5%, 10%), Tournament 2/4 parents-

offspring allowing repetition and Tournament 2/4 parents-offspring without repetitions.

The specific choice of one operator of each kind will be decided after an empirical pre-

liminary analysis. The stopping criterion will be having a given number of consecutive

iterations without improving the best solution found so far. For more detail on the GA,

we refer the interested reader to [11].

The choice of interval ranking method is also a key issue for the GA, since it affects

the selection and replacement strategies, and ultimately it will decide which is the best

solution to return. Therefore, in the following we shall denote by GAL1, GAL2, GAY X

and GAMP the four variants of the GA obtained by considering Lex1, Lex2, Y X and

MP as corresponding ranking method.

In this setting, one may wonder if it is worth the extra computational cost of dealing

with uncertainty through the optimisation process. An alternative strategy would be to

transform the original problem with uncertainty into a deterministic one where task du-

rations and due dates are taken to be the expected values of their uncertain counterparts.

Therefore, we also consider another variant of the GA, GAc, that solves this deterministic

problem.

5 Experimental Results

The objective of this study is twofold: to evaluate the robustness of the schedules gener-

ated with the five variants of the proposed GA and test the sensitivity of the GA to an

increasing uncertainty in data.

Tests are run on the set of instances proposed in [24], which consists in four instances

(instances 1-4) with 10 jobs and 10 resources (10 × 10) and three instances (instances

5-7) sized 15× 10. We use a PC with Intel Xeon Gold 6132 processor at 2.6 Ghz and 128

Gb RAM with Linux (CentOS v6.10) and a C++ implementation. Every variant of the

algorithm is run 30 times on each instance to obtain representative data.
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In [11] a parameter tuning was carried out testing several genetic operators and prob-

abilities to find that the best setup for the GAMP . This parameter tuning has been

extended here to the remaining variants of the GA. The final configuration obtained for

some of the parameters is common to all the variants, namely: the replacement operator,

a 2/4 parents-offspring tournament without repetitions; population size equal to 250; and

the stopping criterion, which consists in 25 consecutive iterations without improving the

best solution found so far. As for the remaining parameters, the final configuration for

each variant of the GA is shown in Table 1.

Table 1: Final parameter setup for each variant of the GA
Instance GAMP GAL1 GAL2 GAY X

Crossover operator JOX GOX JOX JOX
Crossover probability 1.0 0.9 1.0 1.0
Mutation operator Insertion Inversion Swap Insertion
Mutation probability 0.05 0.05 0.05 0.1
Selection operator Shuffle Shuffle Shuffle Shuffle

The GA developed in [24] (named GA-L hereafter) is, to the best of our knowledge, the

state-of-the-art method for interval JSP with uncertain due dates. Since GA-L uses the

≤MP ranking method, the first comparison was done using GAMP . Table 2 summarizes

for both GAMP and GA-L the total tardiness of the best-found solution together with its

middle point, the average expected total tardiness across all runs, and the average CPU

time in seconds In average, values GAMP outperforms GA-L in 5 out of the 7 instances,

with greater improvement on the larger instances (up to 21% better on instance 7). How-

ever, on instances 1 and 3, GAMP performs worse than GA-L, with its best solution not

even reaching the average result of GA-L. To better understand this surprising difference,

a basic CP model of the problem was solved with the IBM CPLEX CP Optimizer solver.

The solver failed to prove optimality for any instance but, noticeably, the lower bounds

for the expected total tardiness obtained for the instances marked with (!) in Table 2

are greater than the values corresponding to the best solutions obtained by GA-L on

those instances. This indicates that the results published for GA-L on those instances

are unattainable and, hence, any comparison with them should be very cautious. In fact,

the lower bound for instance 4 matches the upper bound obtained by GAMP , proving the

optimality of the obtained solution (see its Gantt Chart in [11]).

Once one of the variants of our GA has been compared against the state-of-the-art

method, the five variants induced by the rankings introduced in section 2.1 are compared

one to each other. A parameter tuning was carried out to find the best set up for each

variant. As the objective function is an interval in all cases except GAc, they are not

directly comparable since comparisons depend on the chosen ranking. To overcome this

issue, the ε-robustness measure is considered so the resulting solutions are compared in

terms of their quality as predictive schedules. For each instance and run, each variant of
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Table 2: Computational results and times of GA-L and GAMP

GA-L GAMP

Instance Best m(Best) Avg. Time Best m(Best) Avg. Time

1 [5, 321] 163.0 166.1 6.5 [3, 335] 169.0 169.3 0.4

2(!) [0, 493] 246.5 264.0 6.6 [0, 497] 248.5 258.6 0.5

3(!) [7, 459] 233.0 243.4 6.4 [8, 479] 243.5 252.9 0.6

4(!) [4, 451] 227.5 245.2 6.3 [1, 458] 229.5 242.3 0.5
5 [79, 1678] 878.5 943.9 21.5 [43, 1651] 847.0 891.9 1.4
6 [0, 1048] 524.0 568.8 22.0 [0, 949] 474.5 497.4 1.4
7 [69, 1524] 796.5 999.0 21.1 [68, 1376] 722.0 785.0 1.2

the GA returns a predictive tardiness and a task processing order, which is then executed

in K = 1000 deterministic realisations of the instance to calculate the ε value. Table 3

shows the mean of the 30 ε values multiplied by 103 to improve its readability. The best

result in each instance is highlighted in bold. An the overwhelming difference can be

appreciated between the robustness values obtained with GAc and those obtained with

any of the other four methods. Clearly, solving the associated crisp problem yields much

less robust solutions than considering uncertainty during the optimisation process.

Table 3: ε(×103) values for all variants of the GA

Instance GAc GAMP GAL1 GAL2 GAY X

1 389.862 65.738 64.009 51.254 57.876
2 338.584 3.732 3.666 2.894 3.626
3 368.921 3.419 1.424 3.534 3.666
4 352.129 5.145 6.750 5.125 5.277
5 169.927 44.508 72.295 30.932 45.868
6 815.074 0.004 0.002 0.014 0.010
7 168.204 0.086 0.384 0.811 0.296

Interestingly there is not a clear winner among the interval ranking methods in terms

of robustness: GAL2 is the best for four instances, GAL1 in the other two instances and

GAMP in the remaining one. Grey cells on Table 3 correspond to those methods for

which a Kruskal-Wallis statistical test indicates that there are no significant differences

w.r.t. the best solution on that instance. For a more detailed insight, Figure 1 depicts

the boxplots of the 30 ε values computed with each variant for those instances where

the differences are clearer. These boxplots and the statistical tests confirm that there

is no consensus about the most promising option in terms of ε-robustness and instance

consistency. However, it is possible to obtain a consensus ranking by applying one of the

different methods that provide a ranking of candidates based on the preferences of several

voters just by considering each instance as a voter that expresses its preference over the

different methods as a ranking (see Table 4) induced by the ε-robustness value.
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Table 4: Rankings induced by the 7 instances

Instance Ranking

1,2 GAL2 � GAY X � GAL1 � GAMP

3 GAL1 � GAMP � GAL2 � GAY X

4,5 GAL2 � GAMP � GAY X � GAL1

6 GAL1 � GAMP � GAY X � GAL2

7 GAMP � GAY X � GAL1 � GAL2

Scoring ranking rules methods assign a score to each candidate based on its position

in a ranking. A convex scoring ranking rules gives greater rewards to the candidates in

better positions. The Borda count is a quite simple convex ranking rule [7] that is one

of the most popular social choice functions due to its simplicity. It tries to elect broadly

acceptable candidates, rather than those preferred by a majority. For this reason, it is

used here to find the consensus winner GA.

For each ranking from a ranking set a candidate ci is rewarded as many points as the

number of candidates that are ranked in a position worse than ci. The points obtained

for each candidate in each ranking are then summed to obtain a final score for that

candidate. The candidates are then ranked in decreasing order, so the candidate with

the highest score is the winner. Applying the Borda count to the rankings in Table 4,

the consensus ranking is GAL2 � GAMP � GAY X ∼ GAL1 and thus GAL2 is selected as

the best choice.
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Figure 1: ε-robustness of schedules obtained with the different variants of GA

To illustrate the differences between GAc and GAL2, Figure 2 (subfigures (a), (b), (d)

and (e)) depicts the histograms with the 1000 tardiness values obtained after executing the

best schedules obtained with GAc and GAL2 on the K = 1000 deterministic realisations

of large instances 5 and 7. Instance 5 behaves similarly to the small-size instances, in the

sense that the tardiness of the executed schedules does not seem to be highly affected by

the choice of method. The situation is slightly different for large instances 6 and 7 where

executed tardiness values seem to increase for GAL2, in what appears to be the typical

trade-off between robustness and objective function optimality. However, even in the
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Figure 2: Histograms of T extot values of 1000 simulations for the best solutions of GAc and
GAL2 for instances 5 and 7, and of GAL2 solution for instances 5+40%+20% and 7+40%+20%
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worst case, the quality loss (around 30%) is outweighed by the robustness improvement,

with an increase between two and five orders of magnitude. Also, the predictive tardiness

with GAc is always lower than that with GAL2. Indeed, the predictive value of GAc tends

to be on the left side of the histogram, suggesting that it is too optimistic regarding the

tardiness on real executions. In other words, for the schedule obtained with GAc there

are many “unexpected” delays when it is implemented. On the other hand, the expected

tardiness of the solution from GAL2 is more conservative and real executions are mostly

below this value, thus reducing the amount of non-expected delays.

To understand better the influence of uncertainty, we perform a sensitivity analysis.

Clearly, the wider an interval representing an uncertain variable, the wider the range of

possible values and, hence, the greater the uncertainty. For each instance, a set of new

ones with more uncertainty is generated by increasing the amplitude of the intervals rep-

resenting task durations and job due dates. Taking into account the different dimension

of intervals (much smaller in durations than in due dates), we have modified the range of

each task duration by +20% and +40% or the amplitude of each due date by +10% and

+20%. Considering the relevance of the middle point, those modifications are applied

symmetrically, ensuring that there are no negative values in the lower bounds of intervals.
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In total, eight variants of each original instance are created depending on whether only

due dates, tasks or both are modified and on the modification rate.

Figure 2 (subfigures (c) and (f)) shows the histograms with the 1000 tardiness values

obtained after executing the best schedule obtained withGAL2 on the variants of instances

5 and 7 that increase by 40% and 20% the amplitude of each task duration and due

date respectively (denoted 5+40%+20% and 7+40%+20%). Comparing these histograms with

those in the subfigures (b) and (e), we can see that for the new instances (with greater

uncertainty), the range of different executed tardiness values is wider, but the predictive

tardiness is also more conservative in the sense that it is greater than the majority of the

executed values. This behaviour is similar on the other instances and for every increment

of uncertainty; in general, the more uncertainty is present in the instance, the more robust

the obtained solutions are.

6 Conclusions

We have considered the IJSP, a version of JSP that models the uncertainty on task

durations and job due dates in real-world problems using intervals. Five variants of

a GA have been used to analyse the influence of the interval ranking methods on the

optimisation process and also the importance of modelling the uncertainty. We have

proposed a new robustness measure tailored for tardiness and we have used it to compare

the different variants. Results show that when uncertainty is not modelled, the obtained

solutions tend to be very optimistic, and hence much less robust. Among the different

ranking methods for intervals, there seems to be no clear winner in terms of robustness,

although ≤MP and ≤Y X appear to be the most consistent in their results. We have also

carried out a sensitivity analysis that has shown that when uncertainty in data increases,

the proposed GA yields more robust solutions.
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[8] Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders

for intervals by means of aggregation functions. Fuzzy Sets and Systems 220, 69–77

(2013)
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minimisation for job shop scheduling with interval uncertainty. In: Hybrid Artificial

Intelligent Systems. pp. 209–220. Springer (2020)

[12] Dubois, D., Prade, H., Smets, P.: Representing partial ignorance. IEEE Transactions

on Systems, Man and Cybernetics, Part A 26(3), 361–377 (1996)

[13] Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible con-

straints vs. coping with incomplete knowledge. European Journal of Operational

Research 147, 231–252 (2003)

16



[14] Essafi, I., Mati, Y., Dauzère-Pérès, S.: A genetic local search algorithm for mini-

mizing total weighted tardiness in the job-shop scheduling problem. Computers &

Operations Research 35, 2599–2616 (2008)

[15] Fortin, J., Zielinski, P., Dubois, D., Fargier, H.: Criticality analysis of activity net-

works under interval uncertainty. Journal of Scheduling 13(6), 609–627 (2010)

[16] Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop schedul-

ing. Mathematics of Operations Research 1(2), 117–129 (1976)

[17] González, M., Vela, C.R., Varela, R.: A competent memetic algorithm for complex

scheduling. Natural Computing 11, 151–160 (2012), 10.1007/s11047-011-9300-y
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