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Abstract: This research paper addresses a novel parallel machine scheduling problem with re-entrant and group processing features, specifically motivated by the hot 
milling process in the modern steel manufacturing industry. The objective is to minimize the makespan. As no existing literature exists on this problem, the paper begins by 
analyzing the key characteristics of the problem. Subsequently, a mixed integer linear programming model is formulated. To tackle the problem, an improved iterated greedy 
algorithm (IGA) is proposed. The IGA incorporates a problem-specific heuristic to construct the initial solution. Additionally, it incorporates an effective destruction and 
reconstruction procedure. Furthermore, an acceptance rule is developed to prevent the IGA from getting stuck in local optima. The proposed approach is evaluated through 
computational experiments. The results demonstrate that the proposed IGA outperforms three state-of-the-art meta-heuristics, highlighting its high effectiveness. Overall, 
this research contributes to the understanding and solution of the parallel machine scheduling problem with re-entrant and group processing features in the context of the 
hot milling process. The proposed algorithm provides insights for practical applications in the steel manufacturing industry. 
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1 INTRODUCTION 

Scheduling is one of the core links of manufacturing 
systems [1-3]. The main motivation of this study is a real-
life parallel machine scheduling problem with re-entrant 
and group processing features, which is arisen from the hot 
rolling process of steel plate products in the modern steel 
manufacturing industry. Hot rolling is a key procedure in 
the steel production process. However, as shown in Fig. 1, 
unlike the conventional processing processes, the rolling 
process of steel slab products has the following 
characteristics: (1) for each slab, two operations, namely 
rough and finishing rolling operations, need to be 
performed in sequence on the same rolling mill; (2) due to 
the specific process requirements, a certain waiting time is 
required between the two operations to conform the rolling 
temperature requirement and avoid uncontrollable 
deformation of a slab (e.g., wave roll and sickle bend); (3) 
a slab can temporarily release the rolling mill during the 
waiting period, but after a certain waiting time, it must 
immediately re-enter the mill for subsequent processing. 
To make full use of the waiting time between the rolling 
operations and thus improve the utilization rate of the mill, 
decision-makers usually schedule two slabs for group 
rolling. Therefore, for two adjacent slabs on the same 
rolling mill, if the group rolling conditions are met, they 
can be group rolling shown in Fig. 2a. That is, the former 
slab, slab i, first preempts the rolling mill for rough rolling 
until its completion and then temporarily releases the mill 
and enters the back roller (buffer) area to wait. During the 
waiting period, the latter slab, slab j, enters the rolling mill 
at the right moment to complete its rough rolling. After the 
waiting time specified for slab i is reached, it re-enters the 
rolling mill to complete the finishing rolling. Finally, slab 
j is sent back to the mill for finishing rolling. However, if 
two adjacent slabs do not meet the conditions for group 
rolling, they can only be rolled in a one-by-one manner, 
denoted as non-group rolling, as shown in Fig. 2b. This will 
result in long idle time on the rolling mill, which decreases 
productivity and increases energy consumption. 

Back rollerFront roller

Machine 1

……
Machine m

Figure 1 Hot rolling process 

Figure 2 Schematic diagram for group rolling and non-group rolling 

Combing the scheduling theory, the above-mentioned 
rolling process of slabs can be regarded as a complex 
parallel machine scheduling problem with re-entrant and 
group processing features. The re-entrant feature means 
that each slab (job) needs to visit the same machine (rolling 
mill) repeatedly to perform two operations, and there is a 
fixed waiting time between the two operations. The group 
processing feature indicates that for any two adjacent jobs 
processed on a machine, group processing is allowed if the 
given conditions are met. This problem needs to determine 
the assignment of jobs to machines, the sequence of jobs 
assigned to each machine, and the processing manner of 
adjacent jobs to maximize production efficiency. The 
specific problem is discussed in Section 3. 

A number of studies have considered the hot rolling 
scheduling problem in the steel manufacturing field, but 
the existing research has been mainly focused on the basic 
rolling process constraints, such as heating temperature, 
roll change, and wide-to-narrow constraints [4]. In 
addition, one of the basic assumptions in the previous 
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studies has been that each slab is not allowed to leave a mill 
before the entire operation is completed. Thus, re-entrant 
and group processing features have not been considered, 
which deviates from the actual production of the 
enterprises. To the best of the authors' knowledge, there has 
been no published literature that addresses this problem. 
Designing an effective scheduling method for this problem 
is crucial to guiding workshop management of the modern 
iron and steel industry. Therefore, we are motivated to 
investigate such a problem and develop an effective 
solution method. The objective is to minimize the 
makespan. 

The main contributions of this paper can be 
summarized as follows. First, some important 
characteristics of the studied problem are analyzed, which 
lays a solid foundation for the design of algorithm. Second, 
a mixed integer linear programming model is designed to 
formulate the considered problem. Third, a simple but 
efficient meta-heuristic algorithm, the iterated greedy 
algorithm (IGA), is developed to solve the studied 
problem. In the IGA, a series of efficient techniques, 
including a problem-specific initialization strategy, a 
destruction and reconstruction (DR) procedure and a local 
search strategy based on tailored variable neighborhood 
descent procedures, are used to achieve a balanced trade-
off between the solution quality and computation time. 
Finally, the effectiveness of the proposed IGA is 
demonstrated by extensive numerical comparisons. 

The remainder of this paper is structured as follows. In 
Section 2, the literature review relevant to this study is 
provided. Section 3 presents the formal descriptions of the 
problem, the properties of the problem and a mixed integer 
linear programming model. The developed IGA is then 
presented in Section 4. Computational results are carried 
out in Section 5. Finally, Section 6 concludes the paper and 
suggests areas for future study. 

2 RELATED WORK 

The related studies on the parallel machine scheduling, 
re-entrant scheduling, group scheduling, and IGA are 
briefly reviewed. 

Parallel machine scheduling problems have been 
widely studied due to the ubiquity in practical industrial 
applications [5]. Bitar et al. [6] presented an unrelated 
parallel machine scheduling problem with auxiliary 
resources in a semiconductor plant. A memetic algorithm 
was proposed with two objective functions including the 
maximization of the number of produced wafers and the 
minimization of the weighted completion times. A series 
of experiments were conducted to determine the best 
configurations of the proposed algorithm. However, the 
results were not compared with other works or reference 
values. Chen et al. [7] investigated an unrelated parallel 
machine scheduling problem with sequence-dependent 
setup times and job release times, which was arisen from 
the ion implantation process of wafer fabrication. The 
objective was first to maximize the number of processed 
jobs and then minimize the makespan, and finally 
minimize the maximum completion times of non-
bottleneck machines. A mixed integer programming model 
was proposed as a solution approach to satisfy the first two 
objectives. Using the obtained solution, a hybrid tabu 

search algorithm was further developed to satisfy all the 
three objectives. For the same problem, Soares et al. [8] 
designed a biased random-key genetic algorithm 
hybridized with variable neighborhood descent method. 
Abu-Marrul et al. [9] dealt with a problem arising from the 
oil industry, and regarded it as an identical parallel machine 
scheduling problem where jobs were composed of 
intersecting sets of operations. Three integer linear 
programming formulations were designed to solve the 
problem. On the basis of this research, Abu-Marrul et al. 
[10] further addressed a batch scheduling problem with
identical parallel machines and non-anticipatory family
setup times to minimize the total weighted completion
time. A greedy randomized adaptive mate-heuristic was
developed using a constructive heuristic. Zhang et al. [11]
studied a parallel machine scheduling problem with
machine health conditions and preventive maintenance,
which was derived from the semiconductor manufacturing.
Two mixed integer linear programming models and a
general variable neighborhood search algorithm were
presented. Chung et al. [12] addressed a resource-
constrained parallel machine scheduling problem with
setup times in microelectronic components manufacturing,
where a mathematical model and three effective
constructive heuristics were presented. To assess the
quality of the proposed methods, a discrete particle swarm
optimization algorithm and a variable neighborhood search
method were additionally presented.

In the above-mentioned parallel machine scheduling 
studies, each job visits each machine at most once. 
Nevertheless, in some manufacturing processes, a job may 
be processed by the same machine twice or more due to the 
high cost of processing equipment and the repeated sets of 
processes. Such a processing environment is called "re-
entrant" in the scheduling area [13, 14]. Wang et al. [15] 
considered a novel surgery scheduling problem in 
outpatient procedure centers to minimize the average 
recovery completion time of all patients. The problem was 
regarded as a no-wait re-entrant hybrid flow shop 
scheduling problem with fuzzy service times. A new 
hybrid meta-heuristic, integrating genetic algorithm and 
variable neighborhood search, was developed to schedule 
outpatients for surgical services. Wu et al. [16] studied a 
re-entrant hybrid flow shop scheduling problem with batch 
processing machines, which was arisen from the 
production process of the cold-drawn seamless steel pipe 
in steel manufacturing sector. To minimize the makespan 
and the energy consumption of the batch processing 
machines, a mathematical model was formulated at first, 
and then an improved multi-objective evolutionary 
algorithm based on decomposition technique was 
developed. Frihat et al. [17] addressed a realistic re-entrant 
hybrid job-shop problem with time lags and sequence-
dependent setup times, which was derived from the tannery 
industries. Two different models based on mixed integer 
programming and constraint programming were proposed. 
For both models, a problem-oriented optimization 
technique was proposed to reduce the problem size. Xu et 
al. [18] considered a re-entrant permutation flowshop 
scheduling problem to minimize the makespan. A memetic 
algorithm was developed to solve the problem.  

As for the re-entrant scheduling problem with parallel 
machine environment, there are few related studies. Shin 
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[19] addressed a re-entrant parallel machine scheduling
problem with process quality, due dates, and sequence-
dependent setup times from a viewpoint of process stability
as well as on-time delivery. A dispatching algorithm called
quality and rework with due dates was proposed.
Chakhlevitch et al. [20] explored a two stage re-entrant
workshop with parallel machines at the first stage and a
single machine at the second stage. A heuristic based on a
simple strategy of initializing jobs in batches on the
primary machines was developed. Computational
experiments on a broad range of benchmark problem sets
indicated that the algorithm can find optimal or near
optimal schedules in different production scenarios.

Another topic related to our problem is the group 
scheduling. Although a lot of studies can be found in the 
literature [21], they all assume that the group formation 
problem (i.e., the assignment of jobs to groups) is known, 
and mainly focus on other two sub-problems, namely the 
sequence of groups and the sequence of jobs within each 
group. However, in this work, the group formation problem 
is an important decision item, even though there are only 
two jobs in a group. Thus, there is a great difference 
between the classical group scheduling problem and the 
studied problem. 

Meta-heuristic algorithm has been proven to be an 
effective method for solving scheduling problems [22-26]. 
The IGA is a simple and efficient meta-heuristic algorithm 
[27]. It always records two solutions including the current 
solution and the best solution found so far. In each 
iteration, it starts from an initial solution and then tries to 
improve the current solution by DR operation. To improve 
the global search ability, an acceptance rule is usually 
adopted. Compared with other meta-heuristic algorithms, 
the IGA has a simpler structure and fewer parameters, and 
thus is easy to code and implement. Some studies have 
used the IGA to solve scheduling problems, and good 
results were achieved [28-30]. In view of this, the idea of 
proposing an IGA with problem-specific search strategies 
to solve the studied problem seems promising and thus is 
one of the main goals of this work. 

3 RESEARCH PROBLEM 
3.1 Problem Description 

The problem considered in this work can be described 
as follows. A set of n jobs { }1 2, ,..., nJ J J J=  need to be
processed on a set of m  identical parallel machines

1 2{ , ,..., }mM M M M= . Each job iJ  is composed by two 

operations ( )1 2, i iO O , respectively with associated 

processing times 1ip  and 2ip . Two operations within a job 
have to be assigned sequentially to the same machine, 
which means that the operation 1iO  must precede the 
operation 2iO . For each job, there is a certain waiting time, 
denoted as iw , between the two operations. During the 
waiting period, the job can be temporarily released from 
the machine, but after the waiting time is reached, it must 
re-enter the machine immediately to complete the second 
operation. Therefore, the re-entrant properties (i.e., jobs 
may visit a machine more than once) exit in this problem. 
In addition, as shown in Section 1, for any two jobs iJ  and 

jJ  processed on the same machine, if the conditions for 
group processing are met, it is allowed to process them in 
a group. In this case, the processing order is 

1 1 2 2, , , i j i jO O O O ; otherwise, they can only be processed 
one by one, where the processing order is 

1 2 1 2, , , i i j jO O O O . For the convenience of the description 
below, the former processing manner is defined as group 
processing, and the latter as non-group processing. 
Obviously, arranging group processing for two jobs can 
make full use of the idle times of machines, thereby 
improving production efficiency. For any two jobs iJ  and 

jJ , the sufficient conditions for group processing are 

1i jw p≥  and 2i jp w≤ . 
To illustrate the scheduling problem more clearly, a 

simple instance with two machines and five jobs is given 
in the following. The processing times of operations and 
waiting time between the operations are shown in Tab. 1. 
Fig. 3 plots three different scheduling schemes. For scheme 
1 shown in Fig. 3a, jobs 1 2,J J , and 3J  are processed on 

1M , where jobs 1J  and 2J  are group processing. Jobs 4J  
and 5J  are processed on machine 2M  and are non-group 
processing. The makespan of this scheme is 31. For scheme 
2 shown in Fig. 3b, jobs 1 2,J J , and 3J  are still processed 
on 1M , where jobs 2J  and 3J  are arranged for group 
processing. On machine 2M , the job sequence is changed 
to 5 4J J→ , and they are group processing. The makespan 
is reduced to 25. Regarding scheme 3 shown in Fig. 3c, the 
sequence on machine 1M  is changed to 3 1 2J J J→ → , 
and jobs 3J  and 1J  are group processing. 

Table 1 Job information of the example instance 
Job index 1ip iw 2ip

1 2 3 4 
2 3 5 5 
3 2 7 3 
4 4 5 6 
5 6 7 3 

2

5

time

Group processing

2

43 5 2 7 3

27

time

2 3 4 3 52 3

22 25

(a) Solution 1

(b) Solution 2

time

1M

1M

2M

2M

1M

2M

1 2[ , ]J J

4J 5J

1J 2 3[ , ]J J

5 4[ , ]J J

3 1[ , ]J J

5 4[ , ]J J

2J

3J

Figure 3 Gantt charts for three scheduling schemes 

The scheduling information on machine M2 is consistent 
with scheme 2. In this way, the makespan is 29. Therefore, 
even if the assignment scheme of jobs to machines is the 
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same, different scheduling sequences and the processing 
manner can impact the Cmax value. 

3.2 Mathematical Model 

Except for the notations mentioned above, the 
following indices and notations are used throughout the 
study. 

(1) Indices and notations:
,i i′  Job index, , 0,1,2,...,i i n′ = .

k  Machine index, 1,2,...,k m= .

iP  Sum of processing time and waiting time for job iJ
, having 1 2i i i iP p w p= + + . 

M  A large positive value. 
(2) Decision variables and objective:

ijλ  Auxiliary decision binary variable, equal to 1 if iJ

and jJ  meet the group processing conditions; otherwise, 
equal to 0. 

ijkx  Binary variable, equal to 1 if job iJ  immediately 

precedes job jJ  on machine k ; otherwise, equal to 0. 

ijy  Binary variable, equal to 1 if jobs iJ  and jJ  are 
arranged for group processing; otherwise, equal to 0. 

1 2,i iC C  Completion time for the first, second 
operation of job iJ , respectively. 

maxC  Objective of makespan. 
A mixed integer linear programming model is 

formulated as follows. 

maxmin  C  (1) 

0, 1
1,  1, 2,...,

n m

ijk
i i j k

x j n
= ≠ =

= =∑ ∑  (2) 

0, 1
1,  1, 2,...,

n m

jik
i i j k

x j n
= ≠ =

= =∑ ∑   (3) 

1 1
( ) 1  1, 2,...,

n m

ijk jik
i k

x x j n
= =

+ ≤ =∑∑  (4) 

0
1

1,  1, 2,..,
n

ik
i

x k m
=

= =∑  (5) 

,   1, 2,..., ,  1, 2,...,ij ijy i n j nλ≤ = =       (6) 

1
,   1, 2,..., ,  1, 2,...,

m

ij ijk
k

y x i n j n
=

≤ = =∑    (7) 

1
( ) 1,   1, 2,...,

n

ij ji
i

y y j n
=

+ ≤ =∑   (8) 

1 1,   1, 2,...,j jC p j n≥ =   (9) 

2 1 2 ,   1, 2,...,j j j jC C w p j n= + + =   (10) 

1 1 2
1

(1 ),   , 1, 2,...,
m

j j i ijk ij
k

C p C M x y i j n
=

− ≥ − ⋅ − + =∑  (11) 

1 1 1
1

(2 ),   , 1, 2,...,
m

j j i ijk ij
k

C p C M x y i j n
=

− ≥ − ⋅ − − =∑   (12) 

2 2 2
1

(2 ),   , 1, 2,...,
m

j j i ijk ij
k

C p C M x y i j n
=

− ≥ − ⋅ − − =∑   (13) 

max 2   1, 2,...,iC C i n≥ =   (14) 

, {0,1} 0,1,2,..., ,  0,1, 2,...,ijk ijx y i n j n∈ = =   (15) 

1 2, 0,  1, 2,...,j jC C j n≥ =   (16) 

Objective (1) is to minimize the makespan. Eq. (2) and 
Eq. (3) represent that each job should be assigned to 
exactly one machine, and have exactly one predecessor and 
one successor (including the dummy job 0J ). Eq. (4) 
ensures that the predecessor and the successor cannot be 
same. Eq. (5) indicates that on each machine, the dummy 
job 0J  must be arranged at the first position. Eq. (6) and 
Eq. (7) represent the preconditions for any two jobs to 
perform group processing. One is the time relation 
mentioned in Section 3.1, and the other is the sequence 
relation, i.e., the two jobs are on the same machine and 
adjacent. Eq. (8) indicates that a job can be assigned for 
group processing at most once. Eq. (9) and Eq. (10) restrict 
the completion time of the first operation and second 
operation, respectively, for each job. Eq. (11) suggests the 
temporal relationship between a job and its predecessor 
when they are non-group processing. That is, a job cannot 
start processing until its predecessor has completed all the 
two operations. Eq. (12) and Eq. (13) relate the starting 
times of a job and the completion times of its predecessor 
on two operations, respectively, when they are group 
processing. Specifically, for an arbitrary job iJ , the 
starting times of the two operations are no less than the 
completion times of the two operations for its predecessor. 
Eq. (14) indicates that the makespan is equivalent to the 
maximum completion time of all jobs. Eq. (15) and 
Eq. (16) represent the types and value ranges of decision 
variables. 
The above model has been verified by CPLEX solver 
12.10. However, due to the complexity and existence of the 
big-M constraints, only very small scale instances can be 
solved, resulting in a low practicability.  

3.3 Property Analysis 

The classical parallel machine scheduling problem 
max||mP C  has been proven to be strongly NP-hard when 

2m ≥ ; so, the problem max| ,  |mP rcrc group C  is also 
strongly NP-hard and more complex. To improve solution 
efficiency, theorem 1presents the properties of the 
problem. To facilitate the description, the following two 
definitions are first given. 
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Definition 1. If jobs iJ  and jJ  are two jobs processed 
on the same machine and arranged for group processing, 
they are defined as a block, and one is called partner of 
another. 

Definition 2. If there is a job iJ  that does not meet the 
group processing conditions with all other jobs, i.e., 

( ) 0ij jij
λ λ

∀
+ =∑ , iJ  is defined as a non-active job; 

otherwise, it is defined as an active job. 
Theorem 1. On each parallel machine, if the jobs 

assigned to the machine are identified, there exists at least 
one optimal job sequence, where the processing manner 
(group or non-group processing) of adjacent jobs satisfies 
the following greedy rule. Starting from the first position 
of the sequence, if the job at the current position and its 
successor meet the conditions for group processing, they 
can be arranged directly for group processing without 
considering the processing manner of jobs in the 
subsequent sequence. 

Proof of Theorem 1. It is proven by a contradiction 
way. Suppose that there exists an optimal schedule 
containing subsequence { , , }i j kπ J J J′ =  that does not 

satisfy the above greedy rule. That is, although job jJ  and 

its predecessor iJ  meet the group processing conditions, 
they are arranged for non-group processing. It suffices to 
conclude that jJ  is processed either independently or 

together with its successor kJ  as a group. ①  If jJ  is 
processed independently, it can always be processed with 

iJ  as a group, constructing a more optimal sub-sequence 
that satisfies the greedy rule, which contradicts the 
optimality assumption. ② If jJ  is processed together with 

kJ  as a group，then iJ  must be processed independently. 
We can always move iJ  to the end of the sequence, 

making jJ  and kJ  process preferentially, and constructing 

a schedule satisfying the greedy rule. Since iJ  is processed 
independently before moving, the movement does not 
increase the maxC  value. This completes the proof.   

4 THE PROPOSED IGA 

To solve the problem max| ,  |mP rcrc group C , this 
paper proposes an improved IGA. In the IGA, a simplified 
encoding-decoding strategy is designed to deal with the 
three sub-problems, which can effectively control the 
search regions of optimal solution space. A problem-
specific heuristic is used to construct an initial solution 
with high quality. To guide the search, an innovative DR 
strategy, a local search strategy and an acceptance rule, are 
developed. All the steps of the IGA are explained in the 
following subsections. 

4.1 Encoding and Decoding 

For the problem max| ,  |mP rcrc group C , three sub-
problems, including the assignment of jobs to machines, 
the sequences of jobs on each machine, and the processing 

manner of adjacent jobs, should be determined. It can be 
known from Theorem 1 that for any one instance, there 
exists at least one optimal schedule where the processing 
manner of adjacent jobs on each machine satisfies the 
greedy rule. Therefore, to improve the search efficiency, 
only other two sub-problems are considered in the 
encoding phase, and a decoding method based on greedy 
rule is presented to map a coding scheme to a feasible 
solution. The specific encoding and decoding strategies are 
as follows. A permutation-based vector σ  ranging from 
one to ( )1n m+ −  is used to represent the considered 
problem. In σ , the 1m −  elements that are greater than n  
divide the σ  into m  sub-sequences, denoted as 

,  1, 2,...,k k mσ = . In the decoding phase, jobs in kσ  are 
assigned to machine kM  and processed in the order of their 
position. Furthermore, the greedy rule presented in 
Theorem 1 is used to determine whether adjacent jobs are 
arranged for group processing or not. 

4.2 Initialization 

To promote the algorithm to evolve to the dominant 
region at a faster rate, an effective approach is to design a 
problem-specific heuristic to construct an initial solution 
with higher quality [31]. Regarding the studied problem, 
the following heuristic is introduced to construct the initial 
solution. 

Step 1: Initialize related information, including the job 
set J , the machine set M , and the earliest available time 
of each parallel machine. 

Step 2: Calculate the reduction value ijs  for any two 
jobs iJ  and jJ  while they are arranged for group 
processing, and generate a reduction matrix S . If iJ  and 

jJ  do not meet the group processing conditions, set ijs =0. 
Step 3: Identify the element with the largest reduction 

value, denoted as i js ′ ′ , from S  and schedule the 
corresponding jobs iJ ′  and jJ ′  to the parallel machine 
with the earliest available time. Simultaneously, update the 
earliest available time of the selected machine. 

Step 4: Remove the selected jobs iJ ′  and jJ ′  from set 
J , and reset the related elements in S to zero, i.e., set

( ,  :) 0S i′ = , ( ,  :) 0S j′ = , (:, ) 0S i′ = , and (:, ) 0S j′ = . 
Step 5: Repeat Step 3 and Step 4 until J = ∅  or all 

elements in S are equal to 0. If there are unscheduled jobs, 
i.e., J ≠ ∅ , proceed to Step 6; otherwise, proceed to Step
9.

Step 6: For unscheduled jobs in J , sort them in 
decreasing order of their total processing time iP . 

Step 7: Extract one job from J  at a time according to 
the sorting results, and assign it to the machine with the 
earliest available time. 

Step 8: Repeat Step 7 until all jobs in J  are scheduled, 
and proceed to Step 9. 

Step 9: Construct a complete schedule according to the 
sub-sequence kσ  on each machine. 

Given an instance with 9 jobs and 3 machines (see Tab. 
2), the construction process of the initial solution is shown 
in Fig. 4. It can be known from the matrix S that jobs 6J  
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and 3J  have the largest reduction value when they are 
arranged for group processing; so, they are preferably 
scheduled to machine 1M . Among the remaining jobs, 5J
and 2J become the largest contributors and thus are 
scheduled to machine 2M . Next, jobs 4J and 8J  win and 
are assigned to machine 3M . Further, jobs 9J and 1J  are 
selected and assigned to machine 1M  that has the earliest 
available time. Afterword, only job 7J  is left, which can 
only be processed by Non-group processing; so it is 
assigned to machine 2M  according to the assignment 
rules. Finally, the initial schedule with an objective value 
of 38 is obtained. The corresponding scheduling Gantt 
chart is shown in Fig. 5a. 

Table 2 Job information for an example instance 
iJ 1ip

iw .
2ip

1 3 2 3 
2 6 3 8 
3 5 5 4 
4 5 2 6 
5 3 6 3 
6 2 5 5 
7 10 2 6 
8 1 6 10 
9 2 4 2 

Figure 4 Construction process for the initial solution 

4.3 DR Procedure 

In the classical DR strategies, jobs are randomly 
extracted from the current solution and inserted into all 
possible positions to construct several new solutions [32]. 
However, as described in Section 4.1, the coding strategy 
used in this work not only includes the sequence 
information of jobs but also the information on the 
processing manner of adjacent jobs. Therefore, using the 
classical DR strategies can severely destroy the existing 
blocks in the current solution, which is not conducive to 
algorithm convergence. In view of this, an improved DR 
procedure is developed to mine better solutions, where two 
terms, including mining new block structures and 
balancing the load of parallel machines, are mainly 
considered to improve the effectiveness. The specific steps 
of the implementation process are as follows. 

Step1: Randomly select an active job iJ  from the job 
sequence on the bottleneck parallel machine. 

Step2: Identify all jobs that can be group processed 
with iJ  and sort them in non-decreasing order of the 
reduction value; then, generate a list π . 

Step 3: Extract a job, denoted as jJ , from list π  in 
turn, and generate a block according to the configuration 
relationship of the reduction value, that is, if the reduction 
value ij jis s> , set [ , ]i jblock J J= ; otherwise, set 

[ , ]j iblock J J= . 
Step 4: Determine whether the generated block already 

exists in the current solution, and if so, proceed to Step 8; 
otherwise, proceed to Step 5. 

Step 5: Remove job iJ  from the current solution and 
determine whether there is a partner of job iJ  in the 
current solution; if so, move it to the end of the sub-
sequence corresponding to the weakest machine. 

Step 6: Remove job jJ  from the current solution and 
judge whether there is a partner for job jJ , and if so, move 
the partner to the end of the sub-sequence corresponding to 
the weakest machine. 

Step 7: Insert block  into the front of the sequence on 
the weakest machine and generate a new complete 
solution. 

Step 8: Repeat Steps 4 - 7 to obtain 
min(| |,  _ )new solutionsπ  solutions. 

Step 9: Select the best solution from the generated 
solutions as a new solution. 

It should be noted that in the reconstruction phase, the 
number of new solutions constructed in each iteration is 
denoted by _new solutions , and its value is related to the 
solution efficiency. The optimal value of _new solutions  
is determined experimentally. In addition, to ensure load 
balancing of parallel machines, the completion time of 
each machine is dynamically updated in each move, and 
the weakest machine is always selected for every insert 
operation. 

Taking the initial solution obtained in Fig. 4 as an 
example, Fig. 5 illustrates the process of the DR procedure. 

Figure 5 The proposed DR procedure 

Assume that job 7J  on machine 2M  is selected, 
according to the matrix S, only job 8J  can be processed 
with job 7J  as a group, i.e., [8]π = . Because job 7J  has 
no partner, it is first removed from the current solution, 
then machine 2M  becomes the weakest one. Job 8J  has 
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already processed as a group with job 4J  in the current 
solution; so, job 4J  is moved to machine 2M . By doing 
so, machine 3M  becomes the weakest one. Thus, the new 
block 7 8[ , ]J J  is inserted into machine 3M . Finally, a new 
solution with an objective of 33 is obtained. 

4.4 Local Search Strategy 

The VND strategy has been commonly used as a local 
search strategy. Insert and exchange are two widely-used 
operations in solving the scheduling problem, and their 
effectiveness has been validated [33]. In view of this, based 
on the classical insert and exchange operations, two 
problem-oriented VNDs, including block- and job-insert 
operations, are designed to explore the search space. It 
should be noted that whenever an improved neighbour 
solution is found, the exploration is restarted from the first 
neighbourhood. 

4.4.1 Block-Insert Operation 

Because a lot of block information exists in the current 
solution, a simple block-insert operation is designed. First, 
sequence on the bottleneck machine is analyzed, and the 
block with the shortest processing time is removed and 
inserted into the weakest machine. To avoid insert 
operation destroying the existing block structures in the 
current solution, the selected block inserted into the first 
position of the sequence corresponds to the weakest 
machine. In particular, if no block exists on the bottleneck 
machine, skip this operation. 

4.4.2 Job-Insert Operation 

After completing the block-insert operation, job-insert 
operation is further performed for jobs that are non-group 
processing on the bottleneck machine. Namely, if there are 
independently processed jobs, the one with the shortest 
processing time is removed and inserted into the weakest 
machine. Unlike the block-insert operation, the selected 
job is inserted at the end of the sequence on the weakest 
machine. It should be noted that throughout the whole local 
search procedure, if a block needs to be inserted into a new 
sequence, it is always inserted at the beginning of the 
sequence, and if the inserted object is a single job, it is 
inserted at the end of the sequence. The purpose of this is 
to prevent the move operation from destroying the existing 
block structures in the current solution. 

4.5 Acceptance Rule 

In the IGA, an improved acceptance criterion is 
defined following the idea of the age threshold used in the 
migratory bird optimization algorithm, that is, age is used 
to indicate the updating status. During each iteration, if the 
current solution cannot be improved, its age is increased by 
one; otherwise, its age is initialized as zero. If the age 
exceeds the preset threshold ϕ , the algorithm will accept 
a new (worse) solution with a probability /Ee τ−∆ , where 

E∆  is the gap of maxC  between the new solution and the 

current solution, and τ  is the temperature parameter, and 
is set that 1 21

( )n
i i ii

p w pτ
=

= + +∑ .

4.6 Procedure of the IGA 

Algorithm 1 presents the pseudo code for the proposed 
IGA, where the number of new solutions is generated in the 
reconstruction phase, and   is the age threshold in the 
acceptance rule. 

Algorithm 1: IGA 
Parameters: _new solutions , ϕ  

Output: Solution bestX
Generate initial solutioninitX ←

,best cur initX X X←
 1 iter ← //consecutive iterations that have not been improved 

While stop criterion is not meet do 
( , _ )curX DR X new solutions′ ←

( )X LocalSerach X′ ′←  

if ( ) ( )bestf X f X′ < then //f is the evaluation function 

bestX X ′←
end 
if ( ) ( ) curf X f X′ < then 

curX X ′←  

1iter =  
else 

1iter iter← +  

if ( , , , )  curaccept X X iter ϕ′ // Acceptance rule 

curX X ′←  

1iter ←  
end 
end 
end 
return bestX

5 COMPUTATIONAL EXPERIMENTS 

In this section, computational experiments are 
presented to evaluate the performance of the proposed 
model and IGA. First, instances with rich features are 
generated and grouped according to the problem scales. 
Next, the effectiveness of key strategies in the IGA is 
verified, and the parameter values are calibrated. Then, the 
solution performance of the model is tested using small 
scale instances. Finally, the IGA is compared with three 
state-of-art algorithms using large scale instances. All of 
the algorithms are implemented using MATLAB R2015a, 
and the model is solved by CPLEX 12.10. The code 
running environment is Intel(R) i5-6200U CPU /16.0 GB. 

5.1 Test Data 

Since the problem considered in this work is a new 
scheduling problem, and there have been no existing 
benchmarks in this field, a number of test instances are 
generated based on the real situations in a hot rolling 
workshop of a large steel enterprise in China. Each instance 
is defined by three parameters as { , , }m n W , where m 
represents the number of machines, n is the number of jobs, 
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and W  indicates the pattern used for generating the 
operation processing times and waiting times between the 
operations. 

The number of machines is classified into two sets: 
{2,3}m∈ (small scale), and {5,8,10}m∈ (large scale). 

The number of jobs is set to be {5,10,20,50}n∈ (small 
scale), and {100,150,300,500}n∈ (large scale). In the 
considered problem, the relationship between the 
processing time and the waiting time can affect the 
possibility of group processing, thus affecting the difficulty 
of the problem-solving process. Therefore, for a reliable 
comparison, three different patterns of parameter W  are 
set as follows. ① 1W =  represents that the value range of 
waiting time is less than that of the processing time, where 
the processing time is set as 1 2, [5,50]i ip p DU∈ , and the 
waiting time is set as [5, 25]iw DU∈ . [ , ]DU a b  denotes a 
discrete uniform distribution ranging from a to b. ② 2W =  
indicates that the value ranges of waiting and processing 
times are the same. Here, the processing time is set as 

1 2, [5,50]i ip p DU∈ , and the waiting time is set as 
[5,50]iw DU∈ . ③ 3W =  indicates that the value range of 

waiting time is larger than that of the processing time, 
having 1 2, [5,50]i ip p DU∈ , and [50,75]iw DU∈ . 

Combining different values of the three parameters, 24 
small-scale categories and 36 large-scale categories are 
generated. For each category, 10 problem instances are 
generated, which results in a total of (24 + 36) × 10 = 600 
instances. 

5.2 Algorithm Calibration 

The improvement strategies and parameters used in the 
IGA are calibrated. The improvement strategies include the 
initialization strategy, DR strategy, local search strategy, 
and acceptance rule. The IGA has two parameters, the 
number of new solutions ( _new solutions ) in the 
reconstruction phase and the age threshold in the 
acceptance rule ( φ ). Based on the preliminary 
experiments, the comparison strategies and parameter 
values are listed below. 
- Initialization ： two levels (our initial strategy and
random initial strategy).
- DR：two levels (our DR strategy and classical DR
strategy).
- Insert operation：three levels (our block and job insert
operation, classical insert operation, No insert operation).
- Exchange operation: three levels (our block- and job- 
exchange operation, classical exchange operation, No
exchange operation).
- Relocation operation: two levels (Use and no-use job
relocation operation).
- _new solutions : four levels (1,3, 5 and 10).
- φ : three levels (10, 30 and +∞ ), where +∞  means
no acceptance rule is used.

The above combinations can yield a total of 
2 × 2 × 3 × 3 × 2 × 4 × 3 = 864 different configurations for 
the IGA. All 864 configurations are evaluated using a full 
factorial experimental design. One instance is randomly 

selected from each of the 36 large-scale categories, 
obtaining 36 instances in total. Each algorithm is evaluated 
by 5 independent replications for each instance with a 
termination criterion of a maximum of 50000  50n m+ × ×
ms, which is composed by a basic term plus another term 
increasing with the problem size. The percentage relative 
deviation (PRD) [34] is used as the response variable to 
measure different algorithms. PRD is calculated by 

*
max max

*
max

( ) 100%C A CPRD
C

−
= ×  (17) 

where max ( )C A  is the makespan generated by algorithm A, 
and *

maxC  is the best makespan obtained by all algorithms. 
Following the statistical model commonly used in the 
literature, the experimental results are analyzed by a multi-
factor analysis of variance (ANOVA) at a 95% confidence 
level. The ANOVA results are shown in Tab. 3, where F-
value shows the influence of the factor on the algorithm 
performance, and P-value indicates whether there is a 
significant difference among the levels in each factor. 

Table 3 Results of ANOVA 
Source Sum of 

Squares DF Mean 
Square 

F-
value 

P-value

Initialization 1322.90 1 1322.87 132.3 <0.001 
DR 671.05 1 670.97 70.86 <0.001 
Insert operation 559.35 2 279.67 28.23 <0.001 
Exchange 
operation 894.73 2 447.37 44.74 <0.001 

Relocation 
operation 681.86 1 681.86 68.20 <0.001 

new_solutions 569.32 3 189.77 19.01 <0.001 
ϕ  228.5 2 114.28 15.38 0.035 
Error 8430.1 851 9.906 
Total 13078.13 863 

As shown in Tab. 3, P-value results of the seven 
factors are all less than 0.05, indicating significant 
differences in the performance between different levels of 
each factor. According to the results, the initialization 
strategy leads to the largest F-value, showing that it has the 
most important effect on the algorithm performance among 
all considered factors. Based on the results, using the 
proposed initialization strategy can significantly improve 
the solution performance. The DR strategy achieves the 
second largest F-value, demonstrating the effectiveness of 
the proposed DR strategy. 

For the three factors in the local search phase, job 
relocation strategy achieves the largest F-value, followed 
by the exchange operation and insert operation. It can be 
seen that the IGA effectiveness can be significantly 
improved when incorporating the designed job relocation 
operation. 

The two parameters _new solutions  and φ  are 
finally examined. In our results, the IGA produces the best 
results when  _new solutions  = 5 and 30φ = . Based on 
these results, we set _ 5new solutions =  and 30=ϕ  for 
the IGA in the following experiments. 
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5.3 Optimality Test 

Next, the aforementioned 24 small-scale categories 
containing 240 instances are used to evaluate the 
effectiveness of the two proposed models, and to observe 
the deviation of maxC  yielded by the IGA from the optimal 
one. For each instance, the time limit of CPLEX solver is 
set to 3600 s, and the maximum elapsed CPU time is set to 
50000 50n m+ × × ms for the IGA. Experimental results 
are shown in Tab. 4, maxC  represents the average maxC  
values, Time is the average running time required by the 
CPLEX solver, and optN  indicates the number of instances 

that the model and the IGA obtain the optimal maxC  in each 
category. 

Table 4 Experimental results for two models and IGA 

m n W 
Model IGA 

maxC optN Time maxC optN PRD 
2 5 1 171.0 10 0.89 171.0 10 0.000 
2 5 2 189.7 10 0.90 189.7 10 0.000 
2 5 3 233.2 10 0.92 233.2 10 0.000 
2 10 1 346.5 10 342.04 346.6 9 0.035 
2 10 2 316.3 10 363.61 316.3 10 0.000 
2 10 3 374.6 10 652.90 374.6 10 0.000 
2 20 1 605.7 10 14.36 605.8 9 0.016 
2 20 2 581.2 10 14.55 584.3 9 0.531 
2 20 3 699.9 10 14.86 702.4 8 0.358 
2 50 1 1558.2 4 128.95 1558.3 3 0.376 
2 50 2 1461.7 5 132.93 1461.7 5 0.780 
2 50 3 1714.0 6 132.08 1720.9 3 0.407 
3 5 1 132.4 10 1.157 132.4 10 0.000 
3 5 2 122.8 10 0.952 122.8 10 0.000 
3 5 3 150.9 10 0.886 150.9 10 0.000 
3 10 1 214.0 10 344.21 214.2 9 0.088 
3 10 2 226.0 10 353.63 226.0 10 0.000 
3 10 3 265.5 10 1333.96 265.7 9 0.080 
3 20 1 398.6 10 26.40 400.1 9 0.387 
3 20 2 426.7 10 30.79 430.7 6 1.217 
3 20 3 470.0 10 43.68 471.4 9 0.311 
3 50 - - 0 141.04 1070.7 - - 
3 50 - - 0 163.64 986.7 - - 
3 50 - - 0 182.37 1159.7 - - 

Average / / / / / 0.218 
Total / 195 / 178 / 

It can be seen from Tab. 4 that for the instances with a 
very small scale, the proposed model and IGA have the 
same maxC  value, which confirms the correctness of the 
model. With the increase in the problem size, the solution 
time of model shows a trend of rapid increase, and when 

3 & 50m n= =  , the model cannot obtain the optimal 
solution within the specified time. Overall, a total of 195 
out of 240 instances can be solved to be the optimal 
solution by the model, proving the feasibility of the model. 
As for the IGA, 178 out of 195 instances (45 instances 
without optimal solutions are not considered) can be solved 
with the optimal maxC , which shows that for most test 
instances (approximately 91%), the IGA can obtain the 
optimal solution in a limited time. For the instances whose 
optimal solution cannot be obtained by the IGA, the overall 
PRD value is only 0.218%, indicating that the deviations in 
the schedules obtained by the IGA from the optimal ones 
are very small. Consequently, the above results verify that 
the IGA has a good ability to construct high-quality 
solutions for small-scale instances. 

5.4 Comparison with State-of-Art Algorithms 
5.4.1 Adaptation and Aalibration of Atate-of-Art Algorithms 

Although many pieces of literature are cited in Section 
2, as mentioned above, there are certain differences 
between the problem studied in this work and those in the 
literature; so, no comparison algorithms can be directly 
applied to the problem considered in this paper. In addition, 
the problem studied in this wok can be regarded as a 
parallel machine scheduling problem. Therefore, three 
state-of-art meta-heuristic algorithms proposed in the 
literature for the parallel machine scheduling problem are 
selected for the comparison. To ensure fairness of the 
comparison, certain necessary adaptations in these 
algorithms are made. 

The selected algorithms include one population-
evolutionary meta-heuristic algorithm, the hybrid biased 
random-key genetic algorithm (HBRGA) proposed by [8]; 
two individual-evolutionary meta-heuristic algorithms, the 
general variable neighbourhood search (GVNS) algorithm 
proposed by [11] and the iterated greedy algorithm 
proposed by [29], denoted as IGA_O. The adaptations 
made to these algorithms are as follows. First, the objective 
functions of the three comparison algorithms are uniformly 
revised to makespan. Second, since the problem studied in 
this paper requires considering the processing manner of 
adjacent jobs, the designed decoding method is adopted for 
those algorithms to ensure the fairness of the comparison, 
that is, all algorithms only focus on other two sub-
problems, namely the assignment of jobs to machines and 
the sequence of jobs on each machine.  

Table 5 Parameter values of the state-of-art algorithms 
Algorithm Parameter Description 
GVNS None None 
HBRGA 

sizep n=

0.2elite sizep p= ×

0.1mutation sizep p= ×

Population size 
Elite group size 
Number of mutant individuals  

IGA_O 0.15ε =  
0.1λ =  

Destruction parameter 
Solution restore parameter 

To determine the best parameter values and thus 
ensure the fairness of the experiment, a similar procedure 
as that presented in Section 5.2 is used for each of the 
algorithms. Specifically, for each algorithm, a full factorial 
experimental design is adopted using the factors and levels 
taken from the original paper. The 36 instances presented 
in Section 5.2 are used as a criterion. The best parameter 
values of each algorithm are reported in Tab. 5. It should 
be noted that since some of the local search strategies that 
cannot be applied to the considered problem were 
discarded, the corresponding relevant parameters of these 
strategies are automatically discarded. 

5.4.2 Experimental Results 

The 360 large-scale instances are used to evaluate the 
performance of the comparison algorithms and IGA. Ten 
independent runs are conducted using each algorithm to 
solve each instance, and all of the algorithms are tested 
with the same termination criterion of 50000  50n m+ × ×
ms. The multi-factor ANOVA is used to analyse 
differences in the average PRD values of the four 
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algorithms, where the algorithm is regarded as a factor. The 
LSD intervals at the 95% confidence level are shown in 
Fig. 6. 

Figure 6 LSD intervals at the 95% confidence level for four algorithms 

According to the results in Fig. 6, the IGA obtains the 
lowest average PRD values on all 36 combinations, and its 
overall average PRD value is only 0.40%, which is much 
lower than that of the IGA_O (3.36%), GVNS (7.66%), 
and HBRGA (11.43%). This demonstrates that the quality 
of the IGA solution is better than those of the other three 
comparison algorithms. Regarding the confidence level of 
the PRD value, the IGA also has the lowest result among 
the four algorithms, which indicates that the IGA can not 
only generate better solutions but also perform more 
steadily with various problem instances. Among the three 
comparison algorithms, the IGA_O performs the best. The 
rankings of the GVNS and HBRGA deviate with the 
problem size, while GVNS is performed slightly better 
than the HBRGA on the whole. The reason for this result 
may be that the HBRGA adopts a coding strategy based on 
a continuous interval, where the processing order of jobs is 
determined by numerical sorting during decoding. 
However, this coding strategy is difficult to dig-out high-
quality blocks during evolution and has large randomness. 

Moreover, a series of statistical analyses of the average 
PRD values of the four algorithms is performed for 
different numbers of jobs and machines, and the results are 
shown in Figs. 7 and Fig. 8, respectively. As shown in Fig. 
7, the average PRD values of the IGA_O, GVNS, and 
HBRGA show an upward trend with the increase in the 
number of jobs, indicating that the job size has a certain 
influence on the performance of the algorithm. However, 
the IGA does not fluctuate significantly and maintains a 
low level, which is far lower than that of the second-ranked 
IGA_O. This further confirms the robustness of the 
proposed IGA. In Fig. 8, it can be seen that as the number 
of machines increases, the average PRD values of the IGA 
and IGA_O are relatively stable. The performances of the 
GVNS and HBRGA are relatively poor and have large 
fluctuations. In summary, the IGA has a stable 
performance for various combinations of jobs and 
machines. 

In addition to the job scale and machine numbers, the 
relationship between the processing time and the waiting 
time, i.e., parameter W , is also an influential factor of the 
algorithm performance. The mean plots of the four 
algorithms for different W values are shown in Fig. 9. It 
can be seen that for three levels of W, the average PRD 
values of the IGA, IGA_O, and GVNS all first increase and 
then decrease. For instance, the average PRD values of the 
IGA are 0.29%, 0.46%, and 0.43% for 1W = , 2W = , and 

3W = , respectively. However, the HBRGA deteriorates as 

W increases. This shows that the configuration relationship 
between the processing time and the waiting time has a 
great impact on the algorithm performance. Indeed, when 

1W = , there are many jobs that do not meet the conditions 
for group processing; so, the problem is relatively easy to 
solve, and performance differences between the four 
algorithms are small. For the case when 2W = , the 
combination space of jobs for group processing is large, 
increasing the difficulty of solving the problem. When 

3W = , although the combination space is very large, the 
impact of different schemes on maxC  is weakened, which 
reduces the problem-solving difficulty. 

Figure 7 Average PRD values with different number of jobs 

Figure 8 Average PRD values with different number of machines 

Figure 9 Average PRD values with different w 

Based on the above comparisons, it can be concluded 
that the IGA is very effective and superior to the IGA_O, 
GVNS, and HBRGA at solving the studied problem. 

6 CONCLUSIONS 

This work studies a new parallel machine scheduling 
problem with re-entrant and group processing features, 
which arises from the important production management 
requirements of hot rolling workshop in modern iron and 
steel enterprises, but has received little attention in the 
literature. First, a mixed integerlinear programming model 
with the makespan criterion is formulated, and then the 
properties of the studied problem are analyzed. Then, an 
improved IGA is developed. To improve the performance 
of the IGA, several new techniques, including an 
initialization strategy, an enhanced DR procedure, and a 
tailored local search strategy, are proposed. The 
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effectiveness of the model and IGA are verified by 
extensive instances. The results show that the proposed 
IGA is effective at solving the considered problem, and 
performs better than the other three mainstream meta-
heuristic algorithms.  

Although this paper has done some work, there are still 
the following limitations. ① In terms of problem 
characteristics, only a single optimization objective is 
considered, while in actual industrial environments, 
multiple optimization objectives, such as production 
efficiency and energy-saving indicators, often need to be 
considered simultaneously. Besides, this paper only 
considers the case of two jobs being processed in a group. 
In actual industrial environments, there may be more jobs 
being processed in a group, which will be the main 
direction in the future research. ② The algorithm designed 
in this work adopts a single threaded implementation 
method. In the future, distributed parallel algorithms can 
be developed using multi-threading technology to improve 
solution performance. 
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