961 research outputs found

    A novel elastic sensor sheet for pressure injury monitoring: design, integration, and performance analysis

    Get PDF
    This study presents the SENSOMATT sensor sheet, a novel, non-invasive pressure monitoring technology intended for placement beneath a mattress. The development and design process of the sheet, which includes a novel sensor arrangement, material selection, and incorporation of an elastic rubber sheet, is investigated in depth. Highlighted features include the ability to adjust to varied mattress sizes and the incorporation of AI technology for pressure mapping. A comparison with conventional piezoelectric contact sensor sheets demonstrates the better accuracy of the SENSOMATT sensor for monitoring pressures beneath a mattress. The report highlights the sensor network’s cost-effectiveness, durability, and enhanced data measurement, alongside the problems experienced in its design. Evaluations of performance under diverse settings contribute to a full understanding of its potential pressure injury prediction and patient care applications. Proposed future paths for the SENSOMATT sensor sheet include clinical validation, more cost and performance improvement, wireless connection possibilities, and improved long-term monitoring data analysis. The study concludes that the SENSOMATT sensor sheet has the potential to transform pressure injury prevention techniques in healthcare.This work was carried out under the SensoMatt project, grant agreement no. CENTRO-01-0247-FEDER-070107, co-financed by European Funds (FEDER) by CENTRO2020.info:eu-repo/semantics/publishedVersio

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    FOS: A Modular FPGA Operating System for Dynamic Workloads

    Get PDF
    With FPGAs now being deployed in the cloud and at the edge, there is a need for scalable design methods which can incorporate the heterogeneity present in the hardware and software components of FPGA systems. Moreover, these FPGA systems need to be maintainable and adaptable to changing workloads while improving accessibility for the application developers. However, current FPGA systems fail to achieve modularity and support for multi-tenancy due to dependencies between system components and lack of standardised abstraction layers. To solve this, we introduce a modular FPGA operating system -- FOS, which adopts a modular FPGA development flow to allow each system component to be changed and be agnostic to the heterogeneity of EDA tool versions, hardware and software layers. Further, to dynamically maximise the utilisation transparently from the users, FOS employs resource-elastic scheduling to arbitrate the FPGA resources in both time and spatial domain for any type of accelerators. Our evaluation on different FPGA boards shows that FOS can provide performance improvements in both single-tenant and multi-tenant environments while substantially reducing the development time and, at the same time, improving flexibility

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    A Generic API for Load Balancing in Structured P2P Systems

    Get PDF
    International audienceReal world datasets are known to be highly skewed, often leading to an important load imbalance issue for distributed systems managing them. To address this issue, there exist almost as many load balancing strategies as there are different systems. When designing a scalable distributed system geared towards handling large amounts of information, it is often not so easy to anticipate which kind of strategy will be the most efficient to maintain adequate performance regarding response time, scalability and reliability at any time. Based on this observation, we describe the methodology behind the building of a generic API to implement and experiment any strategy independently from the rest of the code, prior to a definitive choice for instance. We then show how this API is compatible with famous existing systems and their load balancing scheme. We also present results from our own distributed system which targets the continuous storage of events structured according to the Semantic Web standards, further retrieved by interested parties. As such, our system constitutes a typical example of a Big Data environment

    Unleashing the power of decentralized serverless IoT dataflow architecture for the Cloud-to-Edge Continuum: a performance comparison

    Get PDF
    The advent of new computing and communication trends that link pervasive data sources and consumers, such as Edge Computing, 5G and IIoT, has led to the development of the Cloud-to-Edge Continuum in order to take advantage of the resources available in massive IoT scenarios and to conduct data analysis to leverage intelligence at all levels. This paper outlines the challenging requirements of this novel IoT context and presents an innovative IoT framework to develop dataflow applications for data-centric environments. The proposed design takes advantage of decentralized Pub/Sub communication and serverless nanoservice architecture, using novel technologies such as Zenoh and WebAssembly, respectively, to implement lightweight services along the Cloud-to-Edge infrastructure. We also describe some use cases to illustrate the benefits and concerns of the coming IoT generation, giving a communication performance comparison of Zenoh over brokered MQTT strategies.Ministerio de Universidades | Ref. FPU19/01284Agencia Estatal de Investigación | Ref. PCI2020-112174Agencia Estatal de Investigación | Ref. PID2020-113795RB-C33Agencia Estatal de Investigación | Ref. PID2020-116329GB-C21Xunta de Galicia | Ref. GRC-ED431C2022/04 T254Universidade de Vigo/CISU

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Force Generation upon T Cell Receptor Engagement

    Get PDF
    T cells are major players of adaptive immune response in mammals. Recognition of an antigenic peptide in association with the major histocompatibility complex at the surface of an antigen presenting cell (APC) is a specific and sensitive process whose mechanism is not fully understood. The potential contribution of mechanical forces in the T cell activation process is increasingly debated, although these forces are scarcely defined and hold only limited experimental evidence. In this work, we have implemented a biomembrane force probe (BFP) setup and a model APC to explore the nature and the characteristics of the mechanical forces potentially generated upon engagement of the T cell receptor (TCR) and/or lymphocyte function-associated antigen-1 (LFA-1). We show that upon contact with a model APC coated with antibodies towards TCR-CD3, after a short latency, the T cell developed a timed sequence of pushing and pulling forces against its target. These processes were defined by their initial constant growth velocity and loading rate (force increase per unit of time). LFA-1 engagement together with TCR-CD3 reduced the growing speed during the pushing phase without triggering the same mechanical behavior when engaged alone. Intracellular Ca2+ concentration ([Ca2+]i) was monitored simultaneously to verify the cell commitment in the activation process. [Ca2+]i increased a few tens of seconds after the beginning of the pushing phase although no strong correlation appeared between the two events. The pushing phase was driven by actin polymerization. Tuning the BFP mechanical properties, we could show that the loading rate during the pulling phase increased with the target stiffness. This indicated that a mechanosensing mechanism is implemented in the early steps of the activation process. We provide here the first quantified description of force generation sequence upon local bidimensional engagement of TCR-CD3 and discuss its potential role in a T cell mechanically-regulated activation process
    corecore