
A Generic API for Load Balancing in Structured P2P

Systems

Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

To cite this version:

Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude. A Generic API for Load
Balancing in Structured P2P Systems. 26th International Symposium on Computer Archi-
tecture and High Performance Computing, Oct 2014, Paris, France. IEEE Computer Soci-
ety, pp.138 - 143, 2014, Computer Architecture and High Performance Computing Workshop
(SBAC-PADW), 2014 International Symposium on. <10.1109/SBAC-PADW.2014.17>. <hal-
01101688v2>

HAL Id: hal-01101688

https://hal.inria.fr/hal-01101688v2

Submitted on 15 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52776011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01101688v2


A Generic API for Load Balancing
in Structured P2P Systems

Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude
University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271

06900 Sophia Antipolis, France
firstname.lastname@inria.fr

Abstract—Real world datasets are known to be highly skewed,
often leading to an important load imbalance issue for distributed
systems managing them. To address this issue, there exist almost
as many load balancing strategies as there are different systems.
When designing a scalable distributed system geared towards
handling large amounts of information, it is often not so easy
to anticipate which kind of strategy will be the most efficient
to maintain adequate performance regarding response time,
scalability and reliability at any time. Based on this observation,
we describe the methodology behind the building of a generic API
to implement and experiment any strategy independently from
the rest of the code, prior to a definitive choice for instance.
We then show how this API is compatible with famous existing
systems and their load balancing scheme. We also present results
from our own distributed system which targets the continuous
storage of events structured according to the Semantic Web
standards, further retrieved by interested parties. As such, our
system constitutes a typical example of a Big Data environment.

Keywords—API, Load Balancing, Modularity, Structured P2P

I. INTRODUCTION

With the advent of Big Data, it becomes incredibly difficult
to manage realistic datasets on a single machine. To face the
incredible amount of information to manage, many solutions
have been proposed. One is to use structured Peer-to-Peer
(P2P) systems, which are an efficient and scalable solution for
data storage and retrieval in large distributed environments.
Some NoSQL databases are based on underlying P2P struc-
tures, like Cassandra [1] which is fully distributed and uses
consistent hashing which results in a Chord-like topology.

However, one key issue with distributed systems concerns
load balancing, in particular for systems geared towards data
dissemination. A few nodes can quickly become a bottleneck
since a biased data distribution can lead to large workloads
sent to very few nodes. Indeed, real world datasets are known
to be highly skewed [2]. The main reason for this lies in
the variation of size, popularity and lexicographic similarities
among resources. Information that is stored, shared or more
generally manipulated can come from different sources (world
wide data expressed in various languages) and be more or less
structured using various formats [3] providing reasoning capa-
bilities. Furthermore, imbalances in a distributed system may
also be caused by an unfair partitioning of network identifiers,
frequent peer arrival and departure or heterogeneity in terms
of bandwidth, storage and processing capacity between peers.

To address load imbalance issues in structured P2P net-
works, especially regarding data distribution, several load
balancing strategies have been proposed based on replication or
relocation. The model followed by these strategies usually con-
sists in controlling resources and/or peers location. However,

many variants are conceivable based on indirection, identifiers,
range space reassignation or virtual peers. Moreover, designing
a load balancing solution requires to consider parameters such
as the overload criteria to take into account, how overload is
detected, and how load information is exchanged. This variety
of parameters has led to the definition of multiple solutions
that often differ by minor but subtle changes. To date, this
topic is still relevant [4].

When designing a scalable distributed system, it is often not
so easy to anticipate which kind of load balancing strategy
will be the most efficient to ensure adequate performance
for users and prevent node failure. In this paper, we propose
to describe the main concepts behind a generic API for
load balancing in structured P2P systems. Our contribution
simplifies coding and maintenance by enabling the integration
of different strategies in a system, with minimal impact on the
existing business code. More precisely, we will focus on the
context of data management systems. Indeed, this work [5]
was motivated by the building of a distributed platform for
data storage and retrieval especially geared towards situational-
driven adaptability, taking the form of an event marketplace
platform1. However, the general ideas presented in this paper
can be applied on other types of truly distributed systems. To
this aim, we provide a guide of what criteria are important
to define and the essential principles to think about before
implementing a load balancing strategy. We propose to decom-
pose into components the main features arising from a load
balancing mechanism. This enables changing only a part of a
strategy without having to impact the other components. Our
contribution is to provide a synthetic and operational vision
of how different bricks that form a load balancing strategy
articulate, and at which time in its life cycle these bricks
are used. Therefore, our solution is especially useful when it
becomes necessary to experiment with various load balancing
strategies in a system, prior to a definitive choice for instance.

The rest of the paper is structured as follows. Section II
introduces some existing load balancing solutions we find
relevant in our context. Section III describes what we consider
as the main elements that make up a load balancing strategy.
Section IV presents our common API to implement any kind
of strategy. Section V shows how our API can be applied to the
previously mentioned systems from the literature. Section VI
describes the experiments and presents the results obtained to
balance the load of our own distributed storage system. Finally,
Section VII concludes the paper.

1http://www.play-project.eu/

1

http://www.play-project.eu/


II. EXISTING SYSTEMS

Many papers propose load balancing solutions for dis-
tributed systems, using various strategies. In the following, we
focus on three different systems, each implementing its own
load balancing strategy. Although the chosen papers do not
constitute an exhaustive list of load balancing solutions, they
are representative of existing works. Indeed, these strategies
are applied on various P2P systems (CAN, Chord) and in
different contexts (publish/subscribe, data storage). Load bal-
ancing is triggered at different states: when a new peer joins
the system (to implement horizontal elasticity for instance),
when inserting data, or periodically. Besides, and perhaps more
importantly, these papers are among the most-cited for the
topic of structured P2P systems. We focus on structured P2P
systems as they are an efficient solution to ease scalability.
Furthermore, nowadays, many Big Data systems employ P2P
as an underlying structure [6].

1) Rao et al.: In [7] the authors suggest three different
strategies based on virtual peers to address the issue of
load imbalance in P2P systems that provide a Distributed
Hash Table (DHT) abstraction. This paper proposes a general
solution, not especially dedicated to data load balancing. Each
physical node is responsible for one or more virtual servers,
whose load is bounded by a predefined threshold. A node is
considered as imbalanced depending on this threshold: heavy
if its load is above, light otherwise. The proposed solutions
are meant to transfer the load between heavy and light nodes
by moving virtual peers only. The first scheme involves two
peers to decide whether a load transfer should be performed or
not. A peer contacts a random peer, and both exchange their
load information. If one of them is heavy and the other one
is light, then a virtual server transfer is initiated. The second
scheme relies on directories indexed on top of the overlay.
Each directory, indexed on a node, stores piggybacked load
information from light nodes. When a node receives a message
from a heavily loaded node, it looks at the light nodes in
its directory to transfer the heaviest virtual server from the
heavily loaded node to a lightly loaded one. Finally, the third
variant matches many heavily loaded nodes to many lightly
loaded nodes, still using directories. A node holding a directory
receives load information from both heavy and light nodes.
This node periodically performs an algorithm to calculate
how to balance the load between all these nodes. Solutions
specifying which virtual servers should be transferred to which
nodes are then sent to the concerned nodes.

2) Gupta et al.: Gupta et al. [8] exploit the characteristics
of CAN [9] and their publish/subscribe system (Meghdoot)
properties to balance the load when new peers join the system.
Each peer periodically propagates its load to its neighbors.
When a new peer wants to join the system, it contacts a known
peer in the system, responsible for locating the heaviest loaded
peer. The authors distinguish subscriptions load from events
load. To balance subscriptions matching load, the idea is to
split a heavy peer’s zone so that its number of subscriptions is
evenly divided with the peer that joins. The second solution,
to address event propagation load imbalance, creates alternate
propagation paths by using replication: when a new peer pj
joins a peer pi overloaded by events, the zone from pi is
replicated on pj (including its subscriptions).

3) Byers et al.: In [10] the authors investigate the direct
applicability of the power of two choices paradigm [11] on
the Chord [12] P2P network for addressing load imbalances

in terms of items per peer. A node that wishes to insert an
item applies d hash functions on the item key and gets back d
identifiers (each hash function is assumed to map items onto
a ring identifier). Afterwards, a probing request is sent for
each identifier computed previously and the peers managing
the identifiers answer with their load. Once load information
is retrieved, the peer with the lowest load plow is adopted for
indexing the item. The other d−1 peers that were contacted but
not selected receive a redirection pointer (key space identifier)
to plow for the corresponding item. Thus, a lookup can be
achieved by using only one hash function among d at random.

III. LOAD BALANCING DIFFERENTIATORS

Although they seem very different, all the load balancing
strategies cited above and most other existing solutions rely on
the same principle. A peer decides to move a given amount of
load to a certain target which will become responsible for the
load being moved. The decision to move load always comes
after a load comparison with a given source of information.
It is very common to trigger this load comparison during a
specific state of the system such as network construction, data
insertion or periodically. Overall, we identified the following
differentiators to establish a load balancing strategy. They
represent the main concerns to focus on in order to develop a
strategy.

a) Criteria: Before fixing load imbalances, disproportion
in terms of load must be detected. This implies to know which
load criteria are involved and how their variation is measured
on peers. This differentiator defines which load variations are
considered and to which resource(s) (CPU, bandwidth or disk
usage) and operation(s) (e.g. item lookup, item insertion, etc.)
they refer.

b) Load State Estimation Algorithm: This step consists
in defining whether a peer is experiencing an imbalance or
not, and how this decision is made. Usually, a peer relies
on a source of load information containing aggregated remote
information (see differentiatior g)) or uses local information
by comparing its local load(s) with predefined threshold(s).

c) Load Balancing Decision: The decision to trigger load
balancing often differs from a load balancing strategy to
another. This differentiator aims to identify when the decision
to evaluate load state is triggered. Consequently, it is related
to the time at which the whole load balancing mechanism is
triggered and will necessarily impact how a load balancing
implementation is welded to an existing system business code.

d) Load Balancing Mechanism: The mechanism identifies
which well known solution is applied to move load from a peer
to its target. It may consist in using virtual peers, redirection
pointers or even range space reassignation. It helps checking
whether prerequisite abstractions, required to define a given
load balancing strategy, are available or not.

e) Load to Move: Once an imbalance is detected, the next
stage is to fix it. This implies to know what is the load to move.
This differentiator defines the amount of load to move from a
peer to its target but also which part.

f) Target: Given an unbalanced peer p, its target is a set of
peers used to balance its load with. In other words, it describes
who receives the load when load balancing is triggered.

g) Load Information Exchange: A strategy optionally
embeds a mechanism to exchange information. It is often
used to compare the local load to an average system load

2



estimated through exchanged information. This differentiator
defines when estimations are transferred (if they are), from who
and how. Once received on a peer, these estimations compose
a source of information.

h) Load Information Recipients: Given a peer p, recip-
ients are peers that share load information with p. They are
mainly used to build a source of information involved in the
load balancing decision process.

IV. GENERIC API FOR LOAD BALANCING

Defining a generic load balancing API requires to identify
key abstractions suitable to model any strategy. In this section,
we define the components and functions of our API, based
on the differentiators presented above. An approach based
on hierarchical components was deliberately used because
components enable modularity and cohesion [13], which eases
reusability.

A. High-level Abstractions
Features associated to differentiators a) to f) relate to the

management of load balancing and could be gathered in a so
called Load Balancing Manager component. By pushing our
analysis deeper, we may argue that differentiators b), c) and e)
to f) identify two separate subcomponents. Indeed, the first
group of differentiators relates to the detection of imbalances
(Imbalance Detector), whereas the second (Load Balancer)
captures the method and the information required to balance
the load in case of imbalance. Finally, differentiators g) to h)
are merely involved in the process to give feedback about
resource utilization per criterion to peers. In a component-
oriented approach, this could be modelized as a Load Informa-
tion Manager with a subcomponent, dubbed Load Information
Exchanger, in charge of exchanging load information.

Figure 1 illustrates these components in charge of isolating
load balancing features on each peer. In addition to the
components presented above, the figure sketches an additional
one, named Load Information Registry, that aims to link the
two main composite components (Load Balancing Manager
and Load Information Manager), since each may run in its
own flow of control.

Components are wired together by calling actions on other
components. Some actions carry Load Information which
contain the following values:

- peer: the peer sending its load information. Can be
a peer identifier, a reference, etc.

- criterion: type of load (disk space, CPU consumption,
bandwidth, etc.).

- load: load of the peer for a given criterion.

These attributes and their value can be expressed in the form
of a key/value list. Optional elements such as optimal load,
internal threshold or a timestamp can also be included.
Details about internal components actions and their behavior
are given in the next subsection.

B. Core API
Function calls defined below capture the core of load

balancing strategies, classified per component. The signature
for required functions is given in a simple untyped pseudo
language, thus allowing any particular implementation.

Before entering into the description of the API for each
simple component, it is worth noting that the two main

composite components identified previously respectively ex-
pose a perform one load balancing iteration() and a per-
form load information exchange() function. They act as
entry points for peer instances to execute one step of the two
complementary composite components code, thus orchestrat-
ing in which order functions introduced below are run.

Load Information Exchanger: This component is responsi-
ble for sending the peer’s Load Information and receiving
Load Information from other peers in the network.

• exchange load information(recipients,
load information) → load information

A peer sends and receives Load Information from other
peers, for a given load criterion (storage, CPU, etc.) and a cor-
responding amount of load. The exchange load information
function may return Load Information from pull calls or
periodically sent by other peers, that will be directly used by
the Load Balancer component or stored in the peer’s Load
Information Registry (see details below). A push call is used
when a peer wants to unilaterally notify recipients (a given
number of peers: neighbors, all peers, a random peer, etc.)
about its load state Load Information.

Load Information Registry: This registry stores all Load
Information received by a peer. Optionally, time can be taken
into account when storing information as it is possible to
maintain synchronous clocks using protocols such as NTP.

• register(load information)
• get load report(criterion, peers)

→ load information

The register function writes into the registry Load Informa-
tion received by the peer’s Load Information Exchanger. The
get load report operation provides Load Information for a
given set of peers according to a certain criterion. This esti-
mation is calculated thanks to the Load Information messages
received and stored earlier. The returned Load Information can
help estimate the overall average load or the load of a given
peer, for example. There can be no result if the calling peer
has not recently received any Load Information message from
the concerned peer(s).

Imbalance Detector: Default behavior is to check if a load
criterion is unbalanced (overload or underload), in order to
trigger a load balancing strategy.

• make decision(criterion) → load state

Using a given algorithm, this function determines whether
to induce a load balancing strategy or not, according to a
given criterion. This operation is basically meant to return an
enumerated type: overloaded or underloaded if a rebalance is
necessary, normal otherwise. The returned value may depend
on a threshold value or not, typically to detect overload or
underload. If a threshold value is used, it can be calculated
using Load Information provided by the Load Information
Manager (locally, from the Load Information Registry using
get load report, or remotely by contacting peers with ex-
change load information).

Load Balancer: This component is responsible for balanc-
ing the load.

• select load to move(load information manager,
criterion, load state) → load to move

• select target(load information manager,
criterion, load state) → target

3



Imbalance
Detector

Load
Balancer

Load Information
Registry

Load Information
Exchanger

Fix
Imbalance

Register
load

Move
Load

Push / Pull / Receive
Load Information

Load
Information

Load Balancing Manager Load Information Manager

Perform One
Load Balancing Iteration

Perform Load
Information Exchange

Figure 1: Basic abstractions per peer for a generic API.

• rebalance(criterion, target, load to move)
The select load to move operation is necessary to calcu-

late the amount of load to move from one peer to another.
Optionally, it is possible to use local or remote information
from the Load Information Manager to determine how much
load has to be moved. The select target function is responsible
for finding which peer(s) will receive this load to move. To do
so, it is possible to query the Load Information Manager but
it is not mandatory (target can be a random peer, a new peer,
etc.). Finally, the rebalance method is used to move the load
to move between the calling peer and the target.

V. API REVIEW ON EXISTING SYSTEMS

This work was motivated by the building of our own dis-
tributed storage system, for which we wanted to apply the most
suitable load balancing strategy. Once implemented [5], we
picked various relevant papers from the literature (introduced
in section II) to see if they could validate our generic API, too.
Table I presents how these strategies, although very different at
first sight, match our differentiators. Next, we describe how our
API could prove successful in implementing these strategies.

Rao et al.: Peers periodically push their load information
(Load Information Exchanger) to a set of nodes maintaining
a directory (Load Information Registry). Load information
contains the load of each virtual server of a peer and the
peer’s internal threshold. Each peer p periodically compares
its load loadp for a given load criteria to its thresholdp
(Imbalance Detector). Depending on the peer’s load state, the
paper proposes three rebalancing strategies (Load Balancer):

1) If loadp < thresholdp, p is underloaded and triggers a
rebalancing. A random node is picked (select target)
and its load sent to p (Pull Load Information via Load
Information Exchanger). If the random node is heavy,
then a virtual server transfer (select load to move)
may take place between the two nodes (rebalance).

2) If loadp > thresholdp, p is overloaded and con-
tacts one of the peers holding a directory to request
a light peer (select target) and which virtual server
(select load to move) should be moved (Pull Load
Information via Load Information Exchanger). After-
wards, rebalance is called.

3) If loadp > thresholdp, p can also send its load infor-
mation to a peer dir holding a directory (Push Load

Information via Load Information Exchanger). After
dir has received enough information from heavy and
light nodes, dir performs an algorithm to pick which
virtual server p should send (select load to move) to
which light node (select target). The solution is then
sent back to p, to start the rebalance process.

The workflow associated to the second strategy is depicted in
Figure 2. Steps are numbered to sketch the sequence of actions
involved in a typical load balancing iteration with three peers.
Arrows between function calls depict remote communications.

Gupta et al.: Peers periodically exchange their load infor-
mation with their neighbors (Load Information Exchanger), as
well as an estimated list containing the most heavily loaded
peers they know (from their Load Information Registry). Load
balancing is only triggered (Imbalance Detector) when a new
peer p wants to join the system. The first step of the rebalanc-
ing process (Load Balancer) is for p to find an overloaded peer
in the system (select target). To do so, p sends a pull request
to a random peer. Then, the random peer will look at its registry
in order to tell p which node (target) is the most overloaded
to its knowledge. Finally, target is contacted by p. If the
overload is due to the amount of subscriptions, p will split its
zone with target and receive half of target’s subscriptions.
Otherwise, if target is overloaded because of its processing
load due to event propagation, p will replicate target’s zone
and subscriptions (select load to move and rebalance).

Byers et al.: A peer having to insert a data item into
the system triggers the process (Imbalance Detector). This
peer applies n hash functions on this item. Then, it contacts
each peer associated to an hash function (Load Information
Exchanger) to pull load information concerning the amount of
items already stored by each of these peers. The Load Balancer
then selects the lightest peer (select target) and sends it the
item to be inserted (rebalance).

VI. GENERIC API EVALUATION ON EVENTCLOUD

This work was originally motivated by the PLAY project2
which is a platform that allows for “event-driven interaction
in large highly distributed and heterogeneous service systems”.
In this context, we have developed the EventCloud (EC) [14]
middleware, a structured P2P system allowing continous in-
jection of big amounts of events and their retrieval.

2http://www.play-project.eu

4

http://www.play-project.eu


Rao et al. Gupta et al. Byers et al.

Criteria Resource agnostic (storage, bandwidth or
CPU) but only one

Subscriptions and data popularity Number of data items per peer

Load State
Estimation Algorithm

Given Li the load of node i (sum of
the loads of all virtual servers of node i)
and Ti a target load chosen beforehand,
a node is heavily loaded if Li > Ti,
lightly loaded otherwise

Always triggering rebalancing when a
new peer joins the system

Always triggering rebalancing when re-
ceiving an item to insert

Load Balancing Decision Periodically, on each peer When a peer joins the system Upon the insertion of an item (data) on
the entity that performs the insertion

Load Balancing Method Virtual peers transfer (with no virtual
peer split or merge)

Range space reassignation or replication
(zone + subscriptions)

Power of two choices paradigm

Load to Move One of the overloaded peer’s virtual
server

Half of a heavy peer’s subscriptions or
replication of a heavily loaded peer

The item to be inserted

Target A random peer, an underloaded peer or
the best underloaded peer according to
the scheme used

The heaviest peer in the system known
by the new peer joining the system

The least loaded peer among those con-
tacted in source for a given item

Load Information
Exchange

Random probing for the first scheme
(pull). Periodic load advertisement from
lightly loaded peers (push) and sampling
from heavily loaded peers (pull) with
the second scheme. Third scheme implies
load exchange from a peer to a directory
(push)

Periodically, peers update neighbors
about their load (push) and share their list
that contains the k most heavily loaded
peers detected

The peer that wants to insert an item
computes d hash values and contacts the
associated peers to retrieve their load
(pull)

Load Information
Recipients

A peer managing a random id for the first
scheme. Directory associated to some
peers for the second and third scheme

One hop neighbors For d hash functions applied on an item
to insert, the n peers managing the com-
puted hash values

Table I: Load balancing strategies mapped to differentiators.

A. EventCloud
The EC is a Java software block that offers the possibility for

services to communicate in a loosely coupled fashion thanks to
the publish/subscribe paradigm but also to store and to retrieve
past events in a synchronous manner. Events are semantically
described as a list of quadruples. Quadruples are in the form
of (graph, subject, predicate, object) tuples where each
element is named an RDF term in the RDF [3] terminology.

Load balancing with the EC was motivated by the fact that
some RDF terms are more popular than others (especially
predicates) but also because many RDF terms share common
prefixes since they are URIs. In that case, one or a few adjacent
peers from the identifier space manage most data while many
index no information.
B. Load Balancing Strategies

The focus is on two key aspects with the EC: load criteria
and load information exchange. The former is to provide a
load balancing method that allows to consider the unbalance
of multiple different criteria. The latter aspect concerns infor-
mation being exchanged. The more information is spread, the
more precise the average system load estimate is. To assess the
API, two load dissemination strategies are proposed, namely
absolute and relative. The first aims to detect imbalances with-
out exchanging information between peers. Load balancing is
triggered when a local threshold is exceeded. In contrast, the
second relies on exchanged information to detect whether an
imbalance is experienced.
C. Results

Relative and Absolute strategies have been implemented and
assessed with micro benchmarks using real data extracted from
a Twitter data flow and up to 32 peers deployed on the French
Grid’5000 testbed [15]. The workload is about 105 quadruples.

Before evaluating both strategies, an experiment has been
performed to see what could be the best distribution. The
scheme consists in injecting the workload on a single peer and
once all quadruples have been stored to start load balancing
iterations. Each load balancing iteration consists in picking a
new peer from a preallocated pool of peers to make it join the
most loaded one in the network, thus simulating an oracle. The
action is repeated until having a network containing 32 peers.
The number of peers is deliberately low as we aim to assess
the API in this paper, not the load balancing strategies. To
compare results for a same configuration (i.e. same workload
and number of peers), a good estimator is the coefficient of
variation, also known as the relative standard deviation. It is
expressed as a percentage by dividing the standard deviation by
the mean times 100. In the following, we use this estimator to
compare strategies. For information, the coefficient for the best
possible distribution in this configuration and for this dataset
is 69.5% by using the oracle assumption.

Then, we ran experiments for the absolute and relative
schemes. For the absolute one, the threshold value is set to the
number of quadruples divided by the final number of peers.
The relative strategy does not rely on global knowledge but
triggers load balancing when local measurements on peers are
greater than or equal to 1.1 times the estimate value computed
by receiving load information from immediate neighbors. The
last value was set according to emperical evaluations that let
suppose the best distribution is achieved for this value. The
absolute strategy achieves 119.75% while the relative 96.57%.

When correlated with the results obtained for the first
experiment that exhibit the best distribution (69.5%) due
to the “oracle” assumption, the relative standard deviation
is almost twice as large (119.75%). Similarly, the relative
strategy performs worse than the oracle one but achieves a

5



P1

P2

P3
1. perform load information exchange()
2. exchange load information(

P2, load information)

3. register(load information)4. run one load balancing iteration()
5. make decision(c) → overloaded

6. exchange load information(
P2, load information)

7.1 select target(
load information manager, c,

overloaded) → P3

7.1.1 get load report(c, all)
→ load information

7.2 select load to move(
load information manager, c,

overloaded) → load to move

8. rebalance(c, P3, load to move)

Push Load Information

Pull Load Information

Move Load

(P3 , load to move)

Figure 2: Workflow associated to the second scheme proposed by Rao et al.

better distribution (96.57%) than the absolute strategy and
this without using global knowledge. Besides, since more
peers are receiving RDF data, more nodes are involved to
answer subscriptions with the pub/sub layer, thus increasing
the throughput in terms of notifications received per second
for end-users of EC.

Although the analysis of the results is not the central
point of this paper, it shows that investigating different im-
plementations for the functions identified in section IV may
have strong impact on results. Thanks to the proposed API,
the behaviour of the different load balancing stages can be
simply changed by writing a new method with less than
10 lines of code in our case. The main reason is that key
features of the load balancing workflow are clearly identified.
Obviously, the example shown in this section still requires
one line of code change and a full code recompilation to
switch from a component implementation to another. In our
case, an alternative based on dynamic class loading could
be used [16]. In this situation, some code redeployment is
required. Moreover, synchronization between nodes have to be
taken into consideration to prevent inconsistent states due to
stale information that could transit during the transition from
a component implementation to another on peers.

VII. CONCLUSION

In this paper, we have described concepts behind the build-
ing of an API for load balancing in structured P2P systems. We
have presented three different schemes from some of the most-
cited papers for the topic. Strategies are triggered at various
moments, impact more or less peers and require to move
or replicate data. By decomposing a strategy into essential
differentiators, we have shown it is possible to implement
these different solutions using our generic API. Regarding the
programming aspect, the API allows to separate the code con-
cerning load balancing from the rest of the system. To further
assess its utility, the API has been used to evaluate different
load balancing methods on our own distributed system [5].
Although we presented this API in the context of structured
P2P systems, the ideas introduced in this paper could be
adapted to many Big Data systems using an underlying P2P
structure. Finally, two interesting perspectives are possible.
The first is about the flexibility of the proposed API which
can lead to implement adaptive load balancing strategies, for
example, by changing one of the key features in a load
balancing workflow at run-time [17]. The second is related
to the properties of our system presented in VI. Although it
provides scale-up load balancing only, since events are stored
in a sustainable manner, supporting scale-down load balancing

by extending our solution would enable better resource usage
through (even autonomic [18]) elasticity.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[2] S. Kotoulas et al., “Mind the data skew: distributed inferencing by
speeddating in elastic regions,” in Proceedings of the International
conference on World Wide Web. ACM, 2010, pp. 531–540.

[3] O. Lassila and R. R. Swick, “Resource Description Framework (RDF)
model and syntax specification,” 1999.

[4] P. Felber, P. Kropf, E. Schiller, and S. Serbu, “Survey on load balancing
in peer-to-peer distributed hash tables,” 2014.

[5] M. Antoine, L. Pellegrino et al., “Towards a generic API for data load
balancing in structured P2P systems,” INRIA, Research Report 8564,
2014. [Online]. Available: http://hal.inria.fr/hal-01022722

[6] W. X. Goh and K.-L. Tan, “Elastic mapreduce execution.” in CCGRID,
2014, pp. 216–225.

[7] A. Rao et al., “Load balancing in structured P2P systems,” in Peer-to-
Peer Systems II. Springer, 2003, pp. 68–79.

[8] A. Gupta et al., “Meghdoot: content-based publish/subscribe over P2P
networks,” in Proceedings of the ACM/IFIP/USENIX International
Conference on Middleware. Springer-Verlag, 2004, pp. 254–273.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
scalable content-addressable network. ACM, 2001, vol. 31, no. 4.

[10] J. Byers et al., “Simple load balancing for distributed hash tables,” in
Peer-to-peer Systems II. Springer, 2003, pp. 80–87.

[11] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[12] I. Stoica, R. Morris et al., “Chord: A scalable peer-to-peer lookup
service for internet applications,” ACM SIGCOMM Computer Commu-
nication Review, vol. 31, no. 4, pp. 149–160, 2001.

[13] G. T. Heineman and W. T. Councill, “Component-based software
engineering,” Putting the Pieces Together, Addison-Westley, 2001.

[14] L. Pellegrino, “Pushing dynamic and ubiquitous event-based interaction
in the Internet of services: a middleware for event clouds,” PhD Thesis,
University of Nice Sophia Antipolis, Apr. 2014.

[15] F. Cappello, E. Caron, M. Dayde et al., “Grid’5000: A large scale
and highly reconfigurable grid experimental testbed,” in Proceedings
of the IEEE/ACM International Workshop on Grid Computing. IEEE
Computer Society, 2005, pp. 99–106.

[16] S. Liang and G. Bracha, “Dynamic class loading in the Java virtual
machine,” ACM SIGPLAN Notices, vol. 33, no. 10, pp. 36–44, 1998.

[17] N. DePalma, K. Popov et al., “Tools for architecture based autonomic
systems,” in International Conference on Autonomic and Autonomous
Systems (ICAS). IEEE, 2009, pp. 313–320.

[18] A. Al-Shishtawy and V. Vlassov, “Elastman: autonomic elasticity
manager for cloud-based key-value stores,” in Proceedings of the
international symposium on High-performance Parallel and Distributed
Computing. ACM, 2013, pp. 115–116.

6

http://hal.inria.fr/hal-01022722

