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Abstract

In geo-replicated distributed systems, data is redundantly stored across nodes at different geo-
graphical sites, increasing fault tolerance and reducing latency for end users.

With updates being concurrently issued across sites, replicas should converge to a consis-
tent view of the data, which leads toward adopting fine-tuned consistency models, namely causal
consistency (CC). CC captures the potential causality between events, guaranteeing that all repli-
cas agree on the order of causally related operations. When coupled with read-only transactions
(ROTs), CC can improve over the limitations of eventual consistency (EC), mainly its lack of
ordering guarantees, even when the data is partitioned across servers.

ROTs are necessary to extract a consistent view across partitions. However, they incur addi-
tional coordination overhead compared to non-transactional reads, making it crucial to optimize
their performance, especially given the prevalence of read operations in several real-world appli-
cations.

In this regard, the literature has focused on improving the latency, throughput, and data visi-
bility of ROTs within causally consistent key-value data stores. In particular, it has identified the
properties of ROT algorithms that maximize their performance.

Despite the relevancy of these novel results in the scope of read-heavy systems, existing so-
lutions for assembling geo-replicated causally consistent systems (1) focus narrowly on the algo-
rithmic design to ensure causality within key-value data stores, lacking a generic architecture for
applying CC to read-heavy systems, (2) do not fully leverage the benefits of existing cloud stor-
age infrastructure, and (3) overlook the auditing properties of their designs, limiting developers’
ability to reason about the system’s behavior.

With this in mind, there is a need to bridge the gap between academic research and industry
requirements by transposing the literature’s findings into a reference architecture for delivering
CC in read-heavy systems and determining how it can be realized to enable auditing.

To that end, the present study aims to demonstrate that:
There exists a reference architecture that (1) manifests the ideal properties of geo-
replicated causally consistent read-heavy systems, (2) upgrades the consistency guar-
antees of existing cloud storage services, and (3) enables value semantics, thereby
facilitating auditing and enabling developers to reason about the system’s state and
data at a point in time.

To validate the hypothesis, we first survey the state of the art of causally consistent distributed
systems, identifying the properties that maximize ROTs’ performance and the strategies that en-
able those properties. Then, we propose a reference architecture for read-heavy systems that
enables CC atop existing cloud storage services and manifests the properties identified in the lit-
erature. Finally, we realize and validate the reference architecture above Amazon Simple Storage
Service (Amazon S3), demonstrating how enabling value semantics in our implementation in-
creases auditability.
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This work’s empirical validation suggests that data staleness is the main trade-off of upgrad-
ing existing storage services with CC. This trade-off can be managed by adjusting the periodicity
at which new versions get persisted and retrieved from the storage layer. Moreover, the results
confirm the system’s scalability upon increased read load, affirming the suitability of the reference
architecture for read-heavy systems. Finally, our experimental verification demonstrates how en-
abling value semantics improves the system’s auditability, allowing developers to observe its state
at a point in time.

Keywords: Read-heavy, Causal Consistency, Performance, Distributed Systems, Geo-replication,
Read-only transactions, Value Semantics

ACM Classification: Computer systems organization→ Distributed Architectures, Software and
its engineering→ Distributed systems organizing principles



Resumo

Num sistema distribuído geo-replicado, os dados são armazenados de forma redundante em nós lo-
calizados em diferentes regiões geográficas, permitindo uma maior tolerância a falhas e reduzindo
a latência de acesso aos dados.

Com operações de escrita a ocorrerem em simultâneo em diferentes regiões, as réplicas devem
convergir para uma visão consistente dos dados, levando à adoção de modelos de consistência tais
como a consistência causal. A consistência causal capta a potencial causalidade entre eventos,
garantindo que todas as réplicas concordam na ordem das operações causalmente relacionadas.
Quando associada a transações de leitura, a consistência causal permite ultrapassar as limitações
da consistência eventual, principalmente a falta de garantias no que diz respeito à ordenação dos
eventos, mesmo quando os dados estão repartidos pelos servidores.

As transações de leitura são necessárias para obter uma visão consistente dos dados armazena-
dos nas diferentes partições. No entanto, elas impõe uma sobrecarga de coordenação adicional em
comparação com as leituras não transacionais, sendo crucial otimizar o seu desempenho, especial-
mente dada a prevalência de operações de leitura em várias aplicações.

Neste sentido, a literatura tem procurado melhorar a latência, taxa de transferência e visibil-
idade dos dados das transações de leitura em bases de dados de chave-valor causalmente consis-
tentes, tendo, em particular, identificado as propriedades dos algoritmos de transações de leitura
que permitem maximizar o seu desempenho.

Apesar da relevância destes resultados no contexto de sistemas de leitura intensiva, as soluções
existentes para a implementação de sistemas geo-replicados causalmente consistentes (1) focam-
se maioritariamente nos algoritmos utilizados para garantir causalidade em bases de dados de
chave-valor, não apresentando uma arquitetura genérica para construir sistemas de leitura intensiva
causalmente consistentes, (2) não tiram partido dos atuais serviços de armazenamento na nuvem
e (3) dificultam a análise do comportamento do sistema ao não potenciarem as propriedades de
auditoria inerentes à sua arquitetura.

Tendo isto em conta, é necessário colmatar a lacuna entre a investigação académica e os req-
uisitos da indústria, transpondo os resultados da literatura para uma arquitetura de referência que
garanta consistência causal em sistemas de leitura intensiva e determinando de que forma esta
pode ser implementada de modo a tornar o sistema auditável.

Para tal, esta dissertação visa demonstrar que:
Existe uma arquitetura de referência que (1) manifesta as propriedades ideais de sis-
temas geo-replicados causalmente consistentes de leitura intensiva, (2) amplifica as
garantias de consistência dos atuais serviços de armazenamento na nuvem e (3) per-
mite a utilização de semântica de valor, tornando o sistema auditável e possibilitando
a análise do seu estado e dados num ponto no tempo.

Para validar a hipótese, começamos por analisar o estado da arte no âmbito de sistemas dis-
tribuídos causalmente consistentes, identificando as propriedades que maximizam o desempenho
das transações de leitura e as estratégias que permitem garantir essas propriedades. Em seguida,
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propomos uma arquitetura de referência para sistemas de leitura intensiva que garante consistên-
cia causal sobre os serviços de armazenamento na nuvem existentes e manifesta as propriedades
identificadas na literatura. Por fim, aplicamos e validamos a arquitetura de referência sobre o Ama-
zon S3, demonstrando de que forma a utilização de semântica de valor na nossa implementação
aumenta a sua auditabilidade.

A validação empírica deste trabalho sugere que o fator mais afetado ao amplificar os serviços
de armazenamento existentes com consistência causal é a visibilidade dos dados. Esta desvan-
tagem pode ser gerida ajustando a periodicidade com que as novas versões são armazenadas e
recuperadas da camada de armazenamento. Os resultados confirmam ainda a escalabilidade do
sistema aquando do aumento da carga de leitura, afirmando a adequação da arquitetura de refer-
ência para sistemas de leitura intensiva. Finalmente, a nossa verificação experimental demonstra
que a utilização de semântica de valor melhora a auditabilidade do sistema, permitindo aos pro-
gramadores observar o seu estado num determinado momento.
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This chapter introduces the scope of this dissertation. Firstly, sections 1.1 and 1.2, respectively,

describe the context and motivation of this work. Then, section 1.3 summarizes the problem under

study, and section 1.4 details the main goals of this dissertation. Finally, section 1.5 describes how

this document is structured.

1.1 Context

A distributed system consists of a set of nodes that coordinate through the exchange of messages,

appearing to their users as a single cohesive unit [47, 94]. By replicating data across nodes at

possibly different geographical sites (geo-replication), they can provide fault tolerance and bring

data closer to the user, thus reducing latency [55].

With replication, data writes can simultaneously occur across nodes, making it necessary to

keep replicas consistent — "when one copy is updated we need to ensure that the other copies are

updated as well; otherwise the replicas will no longer be the same" [94, p.357]. For that purpose,

consistency models apply weaker or stricter restrictions on the values returned by read operations,

offering various guarantees.

Stronger consistency models impose stricter ordering constraints but are incompatible with low

latency [2] and, in the presence of network partitions, with high availability [32]. In this regard,

especially with the rise of cloud computing, weaker consistency models have been an attractive

choice for implementing distributed systems [95].

1
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One such model is eventual consistency (EC). In the absence of updates, EC guarantees that

all reads will eventually return the last value [95]. However, it does not guarantee safety, and thus,

until replicas converge, reads may not reflect the operations in the expected order or the last writes.

Causal consistency (CC) is another weak consistency model that ensures replicas process po-

tentially causally related events in the same order [94]. The appeal of CC stems from its ability

to address the limitations of EC, particularly its lack of ordering guarantees, and to minimize

the coordination overhead of stronger consistency models. Moreover, in the presence of network

partitions, CC is the strongest consistency model compatible with high availability [62]. Lastly,

by capturing the causality relationship between events, CC facilitates reasoning about distributed

computations [78], ensuring users observe events in the order they intuitively expect [55].

Regardless of its benefits, CC does not overcome all the challenges of real-world workloads

where data does not fit on a single machine [55]. For example, Meta’s geographically distributed

data store serves over ten billion requests per second on a changing data set of many petabytes,

making it necessary to shard the data across nodes to scale capacity and throughput [15, 18]. With

data spread across servers, the client’s reads may reach different servers, possibly resulting in an

inconsistent view of the data, which led previous studies to rely on read-only transactions (ROTs)

to unify the view of data across shards. Even though there are many techniques to implement

ROTs, to assure availability, a common strategy is to maintain multiple versions of the data and

perform all read operations of the ROT from the same logical time [55].

ROTs, however, introduce an extra coordination overhead, which may hamper the system’s

overall performance, especially in the large class of read-heavy systems [15, 18, 69, 92, 100].

Motivated by the importance of reducing the overhead of ROT algorithms, especially in read-

dominated applications, Lu et al. [56] identified the properties of ROTs that make them latency-

optimal. In a later work [58], the authors identified the properties that make ROTs performance-

optimal (NOC properties) and proposed a causally consistent key-value store that attains those

properties, Eiger-PORT [58], presenting further progress toward optimizing read performance in

causally consistent systems.

1.2 Motivation

The prevalence of reads is evident in several real-world applications [15, 18, 69, 92, 100]. In

social networks, for example, reads account for 99.7% of TAO’s requests, Meta’s geo-replicated

data store [18]. Similarly, in Ambry [69], Linkedin’s production environment, read operations

make up 95% of the requests.

In online advertising, the dominance of read operations is also evident in Kevel’s cloud-native

ad-decision system, where decision engines perform read-only workloads to select the best subset

of ads to return.

The read-heavy nature of these applications, together with the scale of data, makes it crucial to

optimize ROTs, which incur additional coordination overhead than non-transactional reads but are

necessary for retrieving a consistent view across shards. Optimizing ROTs is especially relevant
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to deliver quality service to the end users and satisfying service requirements. In Kevel’s system,

in particular, the stringent service level agreements (SLAs) impose that 99% of the requests are

answered within 50 milliseconds and that the availability is at least 99.999%.

Several other real-world geo-replicated read-heavy applications face similar requirements for

performance and availability, which leads them to trade off strong consistency [32]. However,

when data is globally replicated, partitioned across servers, and constantly being updated and

accessed, ensuring low latency, high throughput, and availability while keeping replicas consistent

requires trade-offs in the design of these systems.

Motivated by the importance of ROTs’ performance for the large class of read-heavy systems,

academic research has proposed novel algorithms capable of providing latency and performance-

optimal ROTs within causally consistent key-value data stores [56, 58].

Even though this vein of academic research may unveil insights for read-heavy applications,

the literature is not readily applicable to real-world systems, where data management is used to

enforce each service’s unique business rules and requirements and where the system’s implemen-

tation may have to adhere to specific constraints. Furthermore, most designs lack auditability and,

thus, make it difficult to detect faults and understand the system’s behavior [53, 54, 5, 24, 8, 25,

98, 56, 4, 65, 86, 84, 23, 85, 91, 58].

With this in mind, there is a need to bridge the gap between academic research and industry

requirements by transposing the results achieved in Eiger-PORT [58] and other key-values stores

into a reference architecture for delivering CC in read-heavy systems and determining how it can

be realized to enable auditing.

1.3 Problem

Despite the potential benefits of translating the results achieved in Eiger-PORT [58] and other re-

lated works to the broad class of read-heavy systems, existing research focuses on the algorithmic

design to ensure causality, primarily within key-value data stores, lacking a system architecture

that applies to a broader class of read-heavy systems.

Additionally, most systems do not harness the benefits of existing cloud storage services,

namely their availability and data management capacities (e.g., accessibility, durability, and re-

liability), pointing toward the need to incorporate recent literature’s findings in a storage-agnostic

way, akin to Bailis et al. Bolt-on approach.

Moreover, even though versioning is inherent to several causally consistent systems, making

it possible to read stale versions of the data, its auditing capabilities could be further exploited,

particularly by integrating and expanding the core ideas of replicated state machines (like View-

stamped Replication [71, 51]) with stronger value semantics.

In light of these shortcomings, the present dissertation aims to assess whether the results

achieved in existing causally consistent key-value stores can be extrapolated into a storage-agnostic
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reference architecture for read-heavy systems that can provide CC atop existing cloud storage ser-

vices. In addition, it strives to improve the auditability of these systems by leveraging value

semantics, an interface for computation that enables the perception of values in time.

1.4 Goals

The present work seeks to research the design of geo-replicated causally consistent systems to

identify the properties and design choices that enable better read performance, data visibility,

and auditability and extrapolate them into a storage-agnostic reference architecture for read-heavy

systems. To that end, it aims to:

Identify the ideal properties of a geo-replicated causally consistent read-heavy system:
The read-heavy nature of several real-world applications [15, 18, 69, 92, 100], together with

the scale of data, point towards the relevance of identifying the properties that potential-

ize ROTs performance, enabling low latency and high throughput under read-dominated

workloads. With this in mind, we aim to identify in the literature, namely in Eiger-PORT

[58], which properties are necessary to meet these requirements. In particular, we want to

understand the properties that make ROTs performance-optimal.

Determine which strategies and design choices are required to achieve those properties:
In order to idealize a reference architecture for read-heavy systems, it is crucial to review

the architectures of existing systems and analyze their trade-offs. In particular, it is essential

to understand how their design choices impact the performance of ROTs. In that regard, we

intend to survey existing systems through the lens of the performance-optimal properties of

ROTs.

Produce a storage-agnostic reference architecture for read-heavy systems that manifests
those properties:
Based on our survey of causally consistent systems, we set ourselves to build a reference

architecture for read-heavy systems that can ensure optimal ROT performance and mini-

mize data staleness regardless of the specific service to which it is applied. Additionally, we

aim to leverage the benefits of existing cloud storage infrastructure by incorporating recent

literature findings in a storage-agnostic way.

Determine how this reference architecture can be designed to ensure value semantics:
Providing a reference architecture that can ensure value semantics is desirable because it

makes it possible to implement and perceive the system as a succession of atomic states,

each resulting from applying an operation to the previous one. Therefore, it enables devel-

opers to reason about the system at a point in time, simplifying programming, debugging,

and decision-making.
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1.5 Document Structure

This document is organized into nine chapters, structured as follows:

• Chapter 1 (p. 1), Introduction, outlines the context and motivation, as well as the problem

under study and the main goals of this work.

• Chapter 2 (p. 6), Background, presents the fundamental concepts required to understand

this work.

• Chapter 3 (p. 23), State of the Art, describes the literature review process and surveys the

state of the art of causally consistent distributed systems.

• Chapter 4 (p. 60), Problem Statement, identifies the open problems, the scope of this work,

the research questions, and the validation methodology.

• Chapter 5 (p. 67), Preliminary Studies, extends the literature review with an architectural

analysis of existing causally consistent systems and presents the process through which the

reference architecture was iteratively built and refined.

• Chapter 6 (p. 86), Reference Architecture, presents the reference architecture that resulted

from our initial contributions and compares it with the works identified in the literature

review.

• Chapter 7 (p. 99), Reference Architecture Realization, discusses the implementation of a

prototype system that realizes the proposed architecture.

• Chapter 8 (p. 114), Verification and Validation, covers the verification and validation of

our hypothesis.

• Chapter 9 (p. 133), Conclusions, summarizes the work developed throughout this disserta-

tion, outlines its main contributions and identifies possible directions for future work.
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This chapter outlines the fundamental concepts required to understand the present work. Firstly,

section 2.1 introduces the main concepts of Distributed Systems, such as physical and logical time,

replication, and consistency. Then, section 2.2 describes the general characteristics of read-heavy

systems and some theorems that provide relevant results regarding the performance of ROTs. Sec-

tion 2.3 explains the notion of value semantics. Finally, section 2.4 summarizes the key concepts

mentioned in the previous sections.

2.1 Distributed Systems

In the literature, authors have proposed several definitions for distributed systems. For instance,

Lamport stated that "A distributed system consists of a collection of distinct processes which

are spatially separated, and which communicate with one another by exchanging messages" [47,

p. 558]. The notion of spatial separation between processes, however, does not imply that those

processes must be geographically distant, only that the delay resulting from the exchange of mes-

sages is significant when compared with the time between events within a single process.

The present work assumes the broader definition proposed by van Steen and Tanenbaum, who

described a distributed system as "a collection of autonomous computing elements that appears

to its users as a single coherent system" [94, p. 2]. This definition makes no assumptions about

the node topology nor imposes restrictions on how nodes are connected. Instead, it focuses on the

behavior observed by the user, to whom the system must appear as a single unit, thus requiring

that independent nodes coordinate in some way.

6
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2.1.1 Time and Clocks

In a distributed system, achieving agreement on time is required to accurately timestamp events at

different nodes and, thus, to know the order in which they occurred or whether they co-occurred

[21, 94]. Having a common notion of time is also a requirement of many algorithms for maintain-

ing the consistency of distributed data across nodes [21].

However, unlike in centralized systems, there is no global time reference, as each independent

node has its perception of time [21, 94].

2.1.1.1 Physical Time

Most computers rely on hardware timers, often referred to as physical clocks, which use a quartz

crystal oscillator to keep track of time [94]. Even though the frequency at which a crystal oscillator

operates is reasonably steady, it is impacted by external factors such as temperature. As a result,

it is not easy to ensure that crystals in different computers operate at the same frequency, causing

clocks to drift at varying rates. Hence, different clocks exhibit different values (clock skew), so

when higher precision is required, atomic clocks provide greater accuracy [94]. "Atomic clocks

are based on the transitions of the cesium 133 atom, which is not only very high, but also very

constant" [94, p. 304]. However, atomic clocks come at higher prices, making them unsuitable for

most applications [101, 81].

In order to overcome this, clocks are synchronized through the Network Time Protocol (NTP)

[1]. This protocol uses a hierarchical system of time sources, where the top level consists of

high-precision timekeeping devices, such as atomic clocks, also referred to as reference clocks. It

enables clock synchronization to a few milliseconds of the Coordinated Universal Time (UTC),

a time standard based on the International Atomic Time (TAI) and Universal Time (UT), which

accounts for the Earth’s rotation. To that end, the clock skew is estimated based on the round-

trip network delay. When measuring the elapsed time between two intervals, it is vital to use

monotonic clocks, which apply this correction by adjusting the time rate, thus ensuring that time

moves forward at a near-constant rate. If, instead, time-of-day clocks are employed, time can

move backward, resulting in unexpected behavior.

Despite the possibility of synchronizing clocks, asynchrony and network unreliability make

time uncertainty inevitable when using physical clocks [43]. As a result, using physical times-

tamps is not enough to define an ordering of events always compatible with the order observed by

each node in a distributed system.

2.1.1.2 Logical Time

In light of the shortcomings of physical time, Lamport [47] introduced the happened before re-

lation (→), which establishes a partial order between events (i.e., a binary relation that does not

specify the exact order between all pairs of events) without using physical clocks. The partial or-

dering specified by the happened before relation has its grounds on the potential causality between
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events of a distributed system. In its definition, Lamport considers a system composed of a collec-

tion of processes, each consisting of a sequence of events. An event can either be a computation

performed in a process or represent the sending or receiving of a message. With this in mind, the

happened before relation is defined as follows:

(1) If events a and b occur on the same process, a→ b if the occurrence of a preceded the

occurrence of b;

(2) If events a and b occur in distinct processes, a→ b if a is the sending of a message by a

process and b is the reception of that same message in another process;

(3) Transitive Property: if a happened before b, and b happened before c, then a must have

happened before c;

(4) If a ↛ b and b ↛ a, then a and b are concurrent (a ∥ b).

"Another way to view the definition is to say that a→ b means that it is possible for event a

to causally affect event b. Two events are concurrent if neither can causally affect the other." [47,

p. 559]

In fig. 2.1, which illustrates the happened before relationship between events, it is possible

to observe, for example, that a1 precedes a2. Thus, as both events occur on node A, a1 → a2.

Moreover, assuming a1 is the sending of a message between nodes A and B, and b1 is the receiving

of that message, we can also assert that a1→ b1. From the transitive property, it is also possible to

conclude that a1→ b2 because a1→ b1 and b1→ b2. Finally, a1 and c1 are concurrent (a1 ∥ c1).

Figure 2.1: Happened before relationship between events. A • represents an event and an arrow
from event a to b indicates that a happened before b (adapted from [53] and [47]).

Based on the happened before relation, Lamport also proposed Lamport’s logical clocks,

which provide a way to order events without depending on physical time. These clocks are usu-

ally implemented as numerical event counters [94]. When using Lamport’s logical clocks, the

following rules must be respected:

(1) Process Pi increments its logical clock before executing an event (LCi← LCi +1);
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(2) When Pi sends a message m, it must perform the first step, incrementing its clock by one,

and then set the message’s timestamp t to the new value of LCi;

(3) When Pi receives a message, it must set its clock to the maximum between its clock and the

message’s timestamp and then execute the first step, incrementing its clock by one (LCi←
max{LCi, t}+1).

Figure 2.2 illustrates the algorithm described above.

Figure 2.2: Lamport’s logical clocks algorithm. A • represents an event. An arrow between two
events represents the happened before relationship. The numbers represent the value of the logical
clock of the node upon each event (adapted from [53] and [47]).

With Lamport’s logical clocks, it is possible to achieve a total order of events (i.e., to estab-

lish the exact order between all pairs of events) by concatenating the process’s unique identifier.

Moreover, Lamport’s logical clocks are coherent with the happened before relation, assuring that

if a happened before b (a→ b), then LC(a)< LC(b). However, the opposite implication does not

hold, i.e., when LC(a) < LC(b), it is impossible to know whether a and b are concurrent or if a

happened before b.

To address the limitation of logical clocks, Fidge [28] and Mattern [64] concurrently intro-

duced the concept of vector clocks. This mechanism enables partial ordering of events in a dis-

tributed system and, in contrast with logical clocks, also captures causality.

Vector clocks are data structures that allow each node to get an approximation of the global

time. Each node i has a vector clock Vi (i.e., a vector with a logical clock for each node in the

system), which must be initialized to zeros. On each internal event or message sent, node i must

increment its entry by one (VCi[i]←VCi[i]+1). When a node i receives a message from node j, it

increments its own entry by one (VCi[i]←VCi[i]+1) and updates the remaining entries by comput-

ing the maximum of its vector clock and the vector of the sender (VCi←max(VCi[k],VC j[k]),∀k).

Like in Lamport’s timestamps, the node’s vector clock is attached to each message.

Figure 2.3 illustrates the algorithm described above.

With vector clocks, it is possible to know whether two events are causally dependent or con-

current. If VC(a) < V (b) (i.e., if all entries of VC(a) are less or equal to the respective entries
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Figure 2.3: Example of the usage of vector clocks. A • represents an event. An arrow between
two events represents the happened before relationship. The vectors near each event represent the
vector clock of the node upon that event.

of VC(b) and there is at least one entry for which the value in VC(a) is smaller than the one in

VC(b)) then a→ b. If that is not the case and the vector clocks differ (i.e., each vector contains

at least one logical clock that is ahead of the other), then the events are concurrent (a ∥ b). In that

case, a conflict resolution technique (e.g., last-writer-wins rule) can be used to order concurrent

events.

Despite their advantage, vector clocks’ size increases with the number of nodes in the system,

introducing an extra space overhead.

In order to leverage the benefits of both hybrid and logical clocks while overcoming some of

their limitations, Kulkarni, Demirbas, Madappa, et al. introduced HLCs [44]. "HLC captures the

causality relationship like logical clocks, and enables easy identification of consistent snapshots

in distributed systems" [44, p. 17]. To that end, an HLC preserves the property of logical clocks

(a→ b =⇒ LC(a)< LC(b)) and therefore does not need to wait due to clock skew. "Dually, HLC

can be used in lieu of physical/NTP clocks since it maintains its logical clock to be always close

to the NTP clock" [44, p. 17]. The drift between HLC and the physical clock is less than the clock

drift, so "it can be used to take a snapshot at a given physical time" [44, p. 31]. Finally, HLCs have

the advantage of being monotonic.

The HLC algorithm shown in fig. 2.4 and exemplified in fig. 2.5 consists of the following:

(1) A node j stores two variables to keep track of logical time, l j and c j, which are initially set

to 0. It also keeps track of physical time with pt j;

(2) Upon a local or send event f on node j, l j is set to the maximum of le and pt j (max{le, pt j}),
being e the previous event on j. This ensures that l j ≥ pt j. The value of l j is used to times-

tamp the event f . However, this may lead consecutive events to have the same l j. Therefore,

c j is incremented by one and used to timestamp the event together with l j, ensuring that ⟨le,
ce⟩< ⟨l f ,c f ⟩. If le differs from l f then c j is reset, which allows bounding the value of c j;
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(3) Upon the reception of message m on node j, l j is set to the maximum of le, lm and pt j. If

the new l j is equal to lm, le, or both, then c j must be set. Otherwise, c j may be reset. l j and

c j are then used to timestamp the received event.

Figure 2.4: HLC algorithm for node j [44].

2.1.2 Replication

In distributed systems, replication refers to the technique in which a copy of the data is kept in

more than one node [21]. When these copies are stored across nodes at geographically dispersed

locations, the system is usually said to be geo-replicated.

Replication can provide many of the desirable properties of distributed systems, namely:

Reliability: The ability of a system to continue operating without disruption even under

network partitions (e.g., arbitrary message loss or node failures) or faults [43, 94].

Availability: The probability that a system is available and responsive at a given time, thus,

ensuring that all requests eventually terminate [53, 94].

Performance: A property usually measured in terms of latency (the time that a request is

waiting to be handled), response time (the time it takes to get a response to a request), and

throughput (the number of operations that can be processed per unit of time) [43, 29].

Scalability: Refers to the system’s ability to accommodate growth (e.g., new users, nodes,

or resources) without compromising performance [43].

In sum, replication provides system scalability by enabling load balancing. Moreover, through

spatial redundancy, it enables systems to continue operating regardless of the presence of net-

work partitions or failing nodes, as nodes fail independently. It also provides higher performance
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Figure 2.5: Example of the usage of HLCs. A • represents an event. An arrow between two events
represents the sending of a message between nodes. Near each event are the values of the HLC in
the node: l and c represent the variables used to track the logical time, whereas pt represents the
value of the physical clock (based on [44]).

by placing data closer to the end users. Despite its benefits, it also raises additional challenges

concerning consistency, which will be described in section 2.1.3.

2.1.2.1 Replication protocols

Over the years, different protocols have been proposed to leverage replication to implement fault-

tolerant services.

State Machine Replication, for instance, was first introduced by Lamport [47, 46] and later

explained by Schneider [79]. It consists of "a general method for implementing a fault-tolerant

service by replicating servers and coordinating client interactions with server replicas" [79, p. 229].

In this approach, client requests are sent to all replicas, which "independently simulate the execu-

tion of a State Machine" [47, p. 562]. Each machine, comprised of a set of state variables, applies

deterministic commands that transform the state or produce some output [79]. Provided that all

replicas start in the same initial state, that commands are deterministic, and that all replicas receive

the same sequence of client requests, consistency is guaranteed because replicas will produce the

same output [96]. Therefore, the greatest challenge is ensuring that all replicas execute the same

sequence of operations. To that end, one such approach is to use atomic broadcast [22], and an-

other is to use consensus protocols like Paxos [48, 49] and Raft [73], which aim to ensure that all

nodes in the system agree on a state.

In other protocols, such as the primary-backup approach [17], the client request is only sent

to a primary replica, which propagates the updates to the backups and returns the response to the

client. A protocol that uses this approach is Viewstamped Replication [71, 51].

2.1.2.2 Full and partial replication

Replication can also be described concerning the degree to which data is replicated across multiple

nodes in a distributed system.
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(a) Full Replication with two objects, A and B. (b) Partial Replication with two objects, A and B.

Figure 2.6: Full and Partial Replication. On the left (Full Replication), there is a copy of A and
B in all three sites. There is an arrow between all replicas because an update in one replica must
be propagated to all the others. On the right (Partial Replication), the top replica stores A and B,
whereas the bottom replicas store only one of the objects. There is no arrow between the bottom
replicas because they do not store copies of the same objects (adapted from [83]).

Full replication, illustrated in fig. 2.6a, implies storing copies of all data items on every site.

On the one hand, this approach ensures availability since every item is available on every site. On

the other hand, it is resource-intensive as it requires every machine to store a full copy of the data

[83, 67].

Partial replication, illustrated in fig. 2.6b, involves storing copies of only a subset of the data

on each site. This approach is less resource-intensive than full replication since each site stores

only a portion of the data. However, it may compromise availability since not all data items are

available on every site [83, 67].

Overall, with partial replication, it is possible to reduce the cost of data storage and com-

munication between servers [67] because updates are propagated to fewer replicas. Despite this,

having fewer copies of the data may reduce fault tolerance and availability. Therefore, "in partial

replication, it is very important to find a right replication factor" [83, p. 304].

2.1.3 Consistency

In the context of distributed systems, consistency refers to the degree to which nodes agree on

the order of events. In replicated systems, ensuring consistency becomes challenging since it is

necessary to propagate the changes to all the replicas when one of the copies is updated, which

may penalize performance.

This trade-off motivated the study of a broad set of consistency models, ranging from lin-

earizability [35], the strongest consistency model, to eventual consistency (EC) [95], the one that

provides the weakest guarantees. Consistency models specify the conditions under which the

replicas will converge to the same state and the guarantees provided by the replication protocol

concerning the order of operations, the visibility of updates, and the handling of conflicts.

Linearizability "provides the illusion that each operation applied by concurrent processes takes

effect instantaneously at some point between its invocation and its response" [35, p. 485]. A lin-

earizable system behaves as if it was not replicated, thus simplifying programming and improving
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understandability — "if the application program gets the same behavior as with a single site, un-

replicated system, then writing the application logic is no different to conventional programming"

[26, p. 4].

Nevertheless, according to the CAP theorem [32], it is infeasible to provide linearizability

when aiming toward highly available and fault-tolerant systems, as a distributed data store can

provide at most two of these three guarantees: consistency, availability, and partition tolerance;

and one of the two must be partition tolerance. "Faced with the choice of at most two of these

properties, many systems have chosen to sacrifice strong consistency to ensure availability and

partition tolerance" [55, p. 2]. Furthermore, in a replicated system, one has to choose between

latency and consistency in the absence of failures [2]. Thus, owing to the availability and per-

formance benefits of weak consistency over stronger consistency models, "a common theme in

replication research is to seek improved performance by giving up some level of consistency be-

tween replicas" [26, p. 2].

EC has emerged as an attractive form of weak consistency, especially with the recent rise of

cloud computing services. With EC, "if no new updates are made to the object, eventually all

accesses will return the last updated value" [95]. However, the lack of ordering guarantees of EC

makes it less intuitive, as reads may not reflect the last updates, and different nodes may return

incoherent values.

In order to avoid the potential anomalies of EC, researchers have proposed novel consistency

models [3, 80] and explored ways to combine multiple models in the same system [50, 90].

2.1.3.1 Causal consistency

Causal consistency (CC) [3] was introduced in 1995, based on Lamport’s concept of potential

causality (happened before) [47], and motivated by the significant latency penalty entailed by

strong consistency models to establish a common order of operations. On the one hand, its ability

to surpass the limitations and anomalies of EC, mainly the lack of guarantees regarding the order

of operations, makes it easier for developers to reason about the system’s behavior. On the other

hand, it minimizes the coordination overhead of strong consistency models, thus achieving lower

latency. Due to these benefits, several academic studies have built causally consistent systems,

some of which are reviewed in section 3.2.

This weak consistency model establishes a partial order of events that is consistent with the

order defined by the happened before relationship [47]. Thus, all processes observe causally

related operations in the same order, even though they may disagree on the order of concurrent

operations. As stated by Brzezinski, Sobaniec, and Wawrzyniak [16], CC may be provided as the

combination of the following session guarantees [89, p. 141] (quoting from the original paper):

Read-your-writes: read operations reflect previous writes.

Monotonic-reads: successive reads reflect a non-decreasing set of writes.

Write-follows-read: writes are propagated after reads on which they depend.
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Monotonic-writes: writes are propagated after writes that logically precede them.

To illustrate the benefits of CC over EC, imagine the case of fig. 2.7, where Alice removes her

coach from her friends. After that, Alice makes a post complaining about the game. With EC, due

to the lack of ordering guarantees, the first operation might be executed in another replica later

than the second request. Therefore, it would be possible for the coach to see Alice’s post. On

the other hand, if the system provides CC, as the operation that removes the coach from Alice’s

friend precedes the creation of the post, all replicas would apply the operations in the same order,

avoiding this undesirable scenario.

Figure 2.7: Possible anomaly introduced by Eventual consistency (EC). In the west coast data
center, Alice removes her coach from her friends and then makes a post complaining about the
game. However, in the east coast data center, the first operation is executed later than the second.
Consequently, the coach can see Alice’s post (adapted from [55]).

In practice, CC can be enforced using the mechanisms described in section 2.1.1.2, namely

logical clocks [47], vector clocks [28, 64], and HLCs [44]. However, in some applications, "there

is no need to register causality for all the events in a distributed computation" [10]. "For example,

to modify replicas of data, it often suffices to register only those events that change replicas." [10]

To this end, version vectors [74], whose usage is illustrated in Figure 2.8, are a mechanism similar

to vector clocks but that only track the causality of the relevant events. Other alternatives, such

as dotted version vectors [77], have been proposed to address the scalability limitations of classic

version vectors.

2.1.3.2 Causal+ Consistency

CC does not impose an order between concurrent events. Therefore, in a replicated causally

consistent system where, for example, key x is replicated in nodes A and B, if both nodes write

concurrently to x, then they may diverge forever.

With this in mind, Lloyd et al. [53] introduced the definition of Causal Consistency with

convergent conflict handling, which is also referred to as causal+ consistency (CC+). This con-

sistency model extends CC to ensure that all replicas deal with conflicts identically and, thus, that

they eventually converge to the same state after exchanging their write operations. One common
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Figure 2.8: Example of the usage of version vectors to track the changes of a data item between
replicas. A • represents an event registered for causality, whereas a ◦ represents an event not
registered for causality. An arrow between two events represents the happened before relationship.
The vectors near each event represent the version vector of the node upon that event. Nodes A and
B update the data item concurrently. Node A propagates its state to node B in a message. The
receiver detects that the events are concurrent and merges the updates. When replica C receives
the new state, it updates its version vector but does not create a new version because it has not
performed any concurrent update (adapted from [10]).

way to ensure convergence is the last-writer-wins rule, with which, upon two conflicting writes,

the one with the highest timestamp overwrites the other.

2.1.3.3 Transactions

CC alone does not overcome all the challenges of real-world workloads, where data does not fit

on a single machine and must be partitioned over multiple servers [55]. TAO, for example, serves

over ten billion requests per second on a changing data set of many petabytes [18], which makes

it necessary to split the data across distributed nodes to scale capacity and throughput. With data

spread across servers, the client’s reads may reach different servers at different times, possibly

resulting in an inconsistent view of the data.

To exemplify, assume the scenario above where Alice removes her coach from her friends and

then makes a post complaining about the game. Even though causality assures that the order of

the operations is preserved, the coach may still see the post in the scenario illustrated in fig. 2.9,

where the friend verification and the post-fetching requests are sent to different servers. In that

case, the friend verification request may arrive at a server before Alice unfriends the coach, and

the post may be fetched from the other server after Alice removes the coach from her friends.

In order to avoid these potential anomalies and ensure a unified view of the data across parti-

tions, previous research relies on read and write transactions.

A transaction is a unit of work commonly used in data storage systems to guarantee consis-

tency in the presence of failures and ensure isolation. A transaction may comprise several read

and write operations on multiple data items stored across partitions.

Transactions are defined by four key characteristics, which are commonly referred to as ACID

properties [34]:
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Figure 2.9: Possible scenario when using Causal consistency (CC). Alice removes her coach from
her friends and then makes a post complaining about the game. However, different servers handle
the post requests and the friend requests. Therefore, if the friend verification request arrives at
the "Friends Server" before Alice unfriends the coach, and the posts are fetched from the "Posts
Server" after Alice makes the new post, the coach may still be able to see the new private post
(adapted from [55]).

Atomicity: "It must be of the all-or-nothing" [34, p. 289], so either all the operations in a

transaction are executed, or none are.

Consistency: A transaction must take the system from one valid state to another. Hence it

must preserve the consistency of the system.

Isolation: "Events within a transaction must be hidden from other transactions" [34, p. 290].

This ensures that the execution of one transaction does not affect the execution of other

transactions.

Durability: Once a transaction has committed its results, they must survive subsequent

failures.

Transactions that only perform read operations and do not modify the data are usually referred

to as read-only transactions (ROTs) [31]. These transactions make it possible to extract a consistent

view of data spread across different servers. For instance, using ROTs in the previous scenario, as

shown in fig. 2.10, the coach would either extract a view where he is still friends with Alice and

can see her posts or where he is no longer friends with Alice and cannot see her private posts.

By taking advantage of the knowledge that these transactions only read, many systems [53,

56, 54, 23, 25, 4, 19] use specialized algorithms to handle their processing.

Additionally, to enable atomic writes on multiple items (i.e., ensure that multiple writes are

either all made visible or none), some works use write-only transactions (WOTs).

To enable even stronger semantics, namely to allow transactions that comprise both read and

write operations, Akkoorath et al. [4] defined Transactional causal consistency (TCC), which

extends CC+ with read-write transactions. TCC ensures the atomicity of write operations and that

transactions can read from a causally consistent snapshot.
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Figure 2.10: Causal consistency (CC) with ROTs. Alice removes her coach from her friends and
then makes a post complaining about the game. In this scenario, the usage of CC and ROTs makes
it possible to extract a consistent view of data spread across different servers: the coach would
either extract a view where (1) he is friends with Alice and the incriminating post has not been
published yet, (2) he is not Alice’s friend and the incriminating post has not been published yet, or
(3) he is not Alice’s friend and the incriminating post was already posted, even though he cannot
see it because it is private (adapted from [55]).

2.2 Read-Heavy Systems

The prevalence of reads is evident in several real-world applications [15, 18, 69, 92, 100]. Due to

the pervasiveness of read requests, these applications have usually been designated as read-heavy

or read-intensive. A well-known example of read-heavy applications is social networks. By way

of illustration, Facebook reported TAO’s ability to process "a billion reads and millions of writes

each second" [15, p. 49], with 99.8% of the client requests being reads. A subsequent work [18,

p. 1967] disclosed that TAO could support "over ten billion reads and tens of millions of writes per

second on a changing dataset of many petabytes" and that reads accounted for 99.7% of Meta’s

social network requests workload. The dominance of reads is also evident in the case of Linkedin,

where data "is written once, and read many times (>95% read traffic)" [69, p. 254]. Moreover,

Linkedin’s production environment serves up to "10K requests per second across more than 400

million users" [69, p. 253]. Even though social networks are the prevailing example in most

studies [15, 18, 69], a diversity of distributed applications, such as e-commerce systems [100] or

other content delivery systems whose focus is on delivering content to the user, like Wikipedia

[92], are also prone to read-heavy workloads.

Due to the intrinsic read-heavy nature of these systems, they all share similar scalability, avail-

ability, and performance requirements. For instance, Noghabi et al. argue that: "A worldwide

social network has to continually serve billions of variable-sized media objects" [69, p. 253],

which "must be stored and served with low latency and high throughput by a system that is geo-

distributed, highly scalable, and load-balanced" [69, p. 253]. Similarly, Bronson et al. [15, p. 49]

assert: "The personalized experience of social applications comes from timely, efficient, and scal-

able access to ... the social graph".
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Given the importance of read latency and throughput, recent research has explored novel tech-

niques for increasing read efficiency in geo-replicated systems, yielding critical insights for the

design of read-heavy systems. The aforementioned results will be highlighted in the following

subsections.

2.2.1 SNOW Theorem

Preliminary work by Lu et al. [56] highlighted the importance of reducing the overhead of ROT

algorithms, which are commonly used to ensure isolation and extract a consistent view across a

partitioned data store. More importantly, this study proved the existence of a fundamental trade-

off between the power and latency of ROT algorithms. More specifically, this work presents the

SNOW Theorem, an impossibility result that shows that no ROT algorithm can simultaneously

provide all the four desirable properties of ROTs (SNOW properties), namely:

• Strict serializability (S), which guarantees that the transactions respect a total order com-

patible with their real-time ordering (linearizability [35]), take place atomically and are fully

isolated (serializability), i.e., a transaction does not observe partial effects of other transac-

tions.

• Non-blocking operations (N), which ensures that each server can handle the operations

within a ROT without blocking for any external event.

• One response per read (O), which indicates that only one value is sent for each read (a

property designated as one version); and that the client sends at most one request to each

server and the server sends at most one response back (a property known as one round).

• Write transactions that conflict (W), which denotes the ability of a ROT algorithm to

coexist with conflicting write transactions.

The aforesaid properties are either associated with optimal latency or with high power. To be

more precise, as stated by Lu et al. [56, p. 139]:

"Providing optimal latency requires providing the non-blocking (N) and one response

(O) properties. Providing the highest power requires providing strict serializability

(S) and being compatible with conflicting write transactions (W)".

Considering the impossibility result of the SNOW theorem, Lu et al. define any ROT algorithm

as SNOW-optimal if it achieves three of the four SNOW properties.

2.2.2 NOCS Theorem

Following the results from SNOW [56], Lu, Sen, and Lloyd [58] refined the latter definition of

performance optimality for ROT algorithms by accounting for both ROTs’ latency and throughput.

More specifically, they defined the three performance-optimal properties of ROT algorithms (NOC

properties):

Non-blocking: Each read request is processed without waiting for any external event.
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One-round communication: The algorithm uses only one parallel round of on-path mes-

sages and no off-path messages.

Constant metadata: The amount of information required to coordinate consistent values

in the system does not grow given the size of the system, transaction, or the number of

concurrent operations.

As these properties are characteristic of simple reads, they capture the minor coordination

overhead and the best performance that can be achieved with ROTs. Non-blocking transactions

result in lower latency and higher throughput because transactions do not have to wait for locks,

timeouts, or other events in order to complete and because it avoids context switches. Similarly,

the one-round property enables lower latency and higher throughput because transactions require

fewer network and CPU resources. Finally, fewer metadata leads to lower consumption of re-

sources and hence better performance.

The NOCS theorem states that no ROT algorithm can be both performance-optimal and provide

strict serializability, the strongest form of consistency. Thus, a system must either respect the three

NOC properties or provide strict serializability.

2.3 Value Semantics

In computer science, the term value has been used to refer to an eternal, unchangeable, and

implementation-agnostic abstraction that can neither be created nor destroyed and thus is atempo-

ral and non-instantiable [61]. The immutability of values makes them sharable, conveyable, and

perceivable [37].

Sequences of values can describe the evolution of the state of a concrete entity, i.e., "an indi-

vidual thing that comes into and out of existence in space and time" [87, p. 1].

On the other hand, the term semantics has been used to refer to the system’s behavior [33].

In the scope of programming languages, the term value semantics has been used to refer to a

design principle that provides an immutable and persistent interface for the programmer, present-

ing data structures and types not subject to mutation post-construction [38]. For example, with

value semantics, modifications perform a logical copy of the value instead of creating a new alias

to the same memory address. Thus, modifying a copy does not affect the original value. Further-

more, equality comparisons only compare the contents (values) and not the identity [13]. Finally,

value semantics enables referential transparency, i.e., "we may replace one expression with an-

other of equal value anywhere in a program without changing the meaning of the program" [66].

Even though these characteristics are intrinsic to primitive types, most languages use reference

semantics for objects and collections.

Overall, a programming language that supports value semantics effectively detaches state and

identity (e.g., variable name), with control over each independently. In contrast, in languages

that provide reference semantics, the notions of state and identity are tightly coupled [7] and thus

cannot be treated independently.
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In database systems like Spanner [19], Multi-Version Concurrency Control (MVCC) provides

a way to realize this idea of causal value succession by keeping immutable versions of each identity

that can be retrieved without impeding the system’s progress. Furthermore, MVCC algorithms can

avoid anomalies when executing transactions concurrently by returning slightly stale values. With

MVCC, each write generates a new immutable version of the data item; hence a snapshot at a

specific timestamp yields the value of the latest version that precedes that timestamp, ensuring

write isolation.

Analogously, within distributed systems, value semantics closely relates to the idea that each

node depicts a state machine [51, 47, 79] in which the application of an operation, coupled with

its output, produces a new version of the state, identifiable by the operation number [51]. Hence,

each operation generates an immutable and persistent value and moves the node’s state forward in

logical time.

Since no formal definition of value semantics has been found, in the present study, based on

the definition of the terms value and semantics, value semantics is abstracted as an interface for

computation that enables the perception of values in time. Values are immutable data items that

causally succeed like a series of atomic states, each resulting from applying an operation to the

previous one. They are stable and perceivable at a given point in time, and creating a value does

not impede the perception of prior values [36, 37].

Achieving value semantics is desirable because values are semantically transparent, provide

reproducible results, and are stable, thus simplifying decision-making [36, 37]. Moreover, by

enabling developers to observe the progression of values in time, value semantics can also help

identify any sequence of operations that resulted in unexpected behavior, making it easier to re-

produce it and, thus, simplifying debugging.

2.4 Summary

This chapter outlined the fundamental concepts required to understand the present work.

Section 2.1 addressed relevant topics in the scope of distributed systems, such as physical and

logical time (section 2.1.1), replication (section 2.1.2), and consistency (section 2.1.3).

Firstly, section 2.1.1 focused on the notion of time in distributed systems. Each node has its

own physical clock and, thus, its independent perception of time. This lack of a global clock

requires synchronization to ensure consistency. However, asynchrony and network unreliability

make time uncertainty inevitable when using physical clocks. With this in mind, Lamport intro-

duced the concept of logical time by defining the happened before relation [47], which establishes

a partial order between events.

Section 2.1.2 defined replication, where a copy of the data is kept on several nodes, and its

main benefits, namely reliability, availability, performance, and scalability. With full replication,

a copy of the data is stored on every site, whereas with partial replication, only a subset of the data

is stored on each site.
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Section 2.1.3 described some consistency models, emphasizing CC. Consistency models range

from linearizability [35], the stronger model, to weaker consistency models, such as CC [3] and

EC [95], each providing different consistency guarantees within a distributed system. The incom-

patibility of stronger consistency models with high availability [32] and low latency [2] and the

anomalies of EC make CC an attractive model. CC is based on the happened before relation and

can be enforced using logical clocks [47], vector clocks [28, 64], HLCs [44], or version vectors

[74]. CC+ extends CC with the guarantee that, eventually, all replicas will converge to the same

state. To ensure a consistent view across shards, CC is usually coupled with ROTs.

Section 2.2 highlighted the prevalence of read-dominant workloads in many real-world appli-

cations, such as social networks [15, 18, 69], e-commerce systems [100], or other systems whose

focus is on delivering content to the end user [92]. The read-heavy nature of these applications led

recent works to focus on optimizing the performance of ROT algorithms. In this regard, SNOW

[56] defined the properties that make ROTs latency-optimal and PORT [58] formalized the notion

of performance-optimality for ROTs based on the characteristics of simple reads, which capture the

minor coordination overhead: performance-optimal ROTs are non-blocking, take a single round

of on-path communication, and use constant metadata.

Finally, section 2.3 introduced the concept of value semantics within the scope of distributed

systems and its benefits in terms of auditability. In the context of this work, value semantics is

abstracted as an interface for computation that enables the perception of values: immutable, stable,

and perceivable data items that causally succeed like a series of atomic states, each resulting from

applying an operation to the previous one.
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This chapter reviews the state of the art of causally consistent distributed systems. Section 3.1

describes the systematic literature review that guided the research process. Then, section 3.2 iden-

tifies the existing causally consistent systems with support for ROTs. In particular, it describes the

implementation of each of the causally consistent systems identified in the literature review (sec-

tion 3.2.1), discusses the design of these systems through the lens of the NOC properties of ROTs

(section 3.2.2), and specifies the common strategies employed to ensure causality (section 3.2.3).

Then, section 3.3 reviews the design choices of two causally consistent architectures, present-

ing relevant insights for the implementation of the proposed reference architecture. Section 3.4

identifies the common metrics used to evaluate causally consistent distributed systems. Finally,

section 3.5 summarizes the main findings on the topics mentioned above.

3.1 Systematic Literature Review

A systematic literature review was performed to survey the state of the art in this dissertation’s

domain and to address some of its research questions, particularly RQ1, RQ2, and RQ3. Adopting

this research process results in a reproducible analysis and reduces bias, thus leading to reliable

and verifiable findings [82].

3.1.1 Methodology

The methodology used for the systematic review process consisted of the following steps:

(1) Research Questions: Identify the research questions that will drive the literature review.

23



State of the Art 24

(2) Data sources: Define the data sources to be used.

(3) Base references: Identify the base references on the dissertation’s proposal bibliography

and get acquainted with their core ideas.

(4) Search Query: Formulate a research query based on the research questions.

(5) Inclusion and exclusion criteria: Define the inclusion and exclusion criteria, particularly

the time frame to be considered, the type and subject of the documents, and other criteria to

include or exclude a result.

(6) Screening for inclusion: Identify relevant documents according to their similarity to the

domain. Analyze the title, abstract, and keywords in the first phase and scan the document

in the second phase.

(7) Backward search: Perform a backward search in the base references to identify related

work that might be missing.

(8) Expert advice: Consult experts in the field to cross-check the search’s completeness.

(9) Full-text analysis: Read the full text of the relevant documents and consult the correspond-

ing references if new domain concepts arise.

The above process was iterative. Search results helped refine the research questions and search

queries, thus increasing the results’ relevance. In order to ensure a reproducible literature review,

each step of the process was reported [72] in the subsections below and illustrated in the flow

diagram [70] of fig. 3.1.

Figure 3.1: Systematic literature review.
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3.1.2 Research Questions

The research questions addressed in this review were the following:

RQ1. What are the ideal properties of a geo-replicated causally consistent read-heavy sys-
tem?
The prevalence of reads in real-world applications indicates the significance of optimizing

the latency and throughput of ROTs for improving the system’s overall performance and

meeting customer expectations and service requirements. In this regard, reviewing the re-

sults achieved in PORT [58], particularly the performance-optimal properties of ROTs, is

crucial for understanding how a read-heavy system can be designed to ensure the desired

performance.

RQ2. What properties and strategies do existing causally consistent systems employ?
In order to build a reference architecture for read-heavy systems, it is crucial to review the

architectural and algorithmic properties of existing systems, analyze their trade-offs, and

determine how their strategies for ensuring CC affect the performance-optimal properties of

ROTs identified in RQ1.

RQ3. What metrics have been used to evaluate these systems?
Given that any reference architecture must be empirically validated and evaluated to prove

its applicability, it is relevant to identify which metrics must be considered when assessing

the implementation of distributed causally consistent systems.

Table 3.1 maps these research questions to the sections where they are addressed.

ID Research question Related sections

RQ1 What are the ideal properties of a geo-replicated causally

consistent read-heavy system?

Sections 2.2.2 and 3.2.2

RQ2 What properties and strategies do existing causally consistent

systems employ?

Sections 3.2 and 3.3

RQ3 What metrics have been used to evaluate these systems? Section 3.4

Table 3.1: The research questions addressed through the literature review and their corresponding
sections in the document.

3.1.3 Data Sources

The digital libraries selected for the literature review process were ACM Digital Library and IEEE

Xplore. The ACM Digital Library platform comprises a bibliographic database on the field of

computing, namely the ACM Guide to Computing Literature, and IEEE Xplore provides access to

highly-cited publications in the field of computer science, which makes them appropriate for the

scope of the present work.
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3.1.4 Base References

The base references of this dissertation portray relevant insights for optimizing read performance

in causally consistent systems. SNOW [56] identifies the properties that make ROTs latency-

optimal. PORT [58] formalizes the notion of performance-optimal ROTs not only through the lens

of latency but also by considering throughput. Therefore, these works provide a way to analyze

existing systems and identify room for improvement in their design, especially concerning read

performance, which is crucial for read-heavy applications. Additionally, PaRiS [85] was the first

system to provide CC and non-blocking ROTs in a partially replicated data platform.

3.1.5 Literature Analysis

3.1.5.1 Inclusion and Exclusion Criteria

In order to select the documents to be included, the systematic literature review followed the

inclusion and exclusion criteria documented in table 3.2.

Inclusion Criteria

IC1 Must be on the topic of distributed systems.
IC2 Published between 2011 and 2022.
IC3 Proposes a novel causally consistent distributed system that supports ROTs.
IC4 Research articles published on the proceedings of distinguished conferences or journals

on topics associated with distributed systems.

Exclusion Criteria

EC1 Presents a study unrelated to distributed systems.
EC2 Is not a research article published on the proceedings of a distinguished conference or

journal on topics associated with distributed systems.
EC3 Presents techniques, consistency models, systems, or others, but not the actual imple-

mentation of a novel causally consistent distributed system.
EC4 Reviews the literature within the scope of distributed systems but does not present an

actual implementation of a causally consistent distributed system.
EC5 Presents a system that does not support ROTs.

Table 3.2: Inclusion and exclusion criteria.

3.1.5.2 Search Queries

The initial queries were formulated based on the research questions. Listing 3.1 shows the query

used in ACM Digital Library, whereas listing 3.2 illustrates the query used in IEEE Xplore. Con-

sidering that the included results would be assessed through the lens of the performance-optimal

properties of ROTs (described in section 2.2.2), these search queries were refined to identify

causally consistent systems that support ROTs.
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ACM (ACM Full-Text Collection + ACM Guide to Computing Literature)

[[All: "distributed"] OR [All: "geo-replicated"]] AND

[All: "transactions"] AND [All: read*] AND [All: "evaluation"] AND

[[All: "causally consistent"] OR [All: "causal consistency"] OR

[All: causality]] AND

[[Abstract: "distributed"] OR [Abstract: "geo-replicated"] OR

[Abstract: "causally consistent"] OR [Abstract: "causal consistency"] OR

[Abstract: causality]]

Listing 3.1: The search query used in ACM Digital Library

(("Full Text Only": "distributed" OR "Full Text Only": "geo-replicated") AND

"Full Text Only": "transactions" AND "Full Text Only": "read" AND "Full Text

Only": "evaluation" AND

("Full Text Only": "causally consistent" OR "Full Text Only":"causality" OR

"Full Text Only": "causal consistency") AND

("Abstract": "distributed" OR "Abstract": "geo-replicated" OR

"Abstract": "causally consistent" OR "Abstract":"causal consistency" OR "

Abstract":"causality"))

Listing 3.2: The search query used in IEEE

3.1.5.3 Review Process

The review process outlined in fig. 3.1 can be described by the following stages:

Identification:
The results were retrieved from each digital library using the queries described in sec-

tion 3.1.5.2.

Screening:

(1) Automatic filtering: The results were refined using the available filtering options of

each digital library. In ACM, the results were filtered according to IC1 by restricting

the ACM Computing Classification System to the following categories: Distributed

computing methodologies, Distributed computing models, Distributed systems orga-

nizing principles, or Distributed architectures. In IEEE, IC4 was applied by constrain-

ing the results to proceedings and journals. In both digital libraries, the results were

filtered according to the publication date (IC2), only keeping the documents published

between 2011 and 2022.

(2) Filtering by title, abstract, and keywords: The results were reviewed according to

their title, abstract, and keywords. Documents presenting studies unrelated to dis-

tributed systems (EC1), not published in conferences or journals related to the topic
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(EC2/IC4), that did not present implementations of causally consistent distributed

systems (EC3), or that only reviewed the literature (EC4) were excluded.

(3) Filtering based on full-text scanning The results were filtered according to EC5 and

IC3 to exclude documents that proposed causally consistent systems without support

for ROTs.

Inclusion:

(1) Additional references: The missing base references (SNOW [56], and PORT [58])

and the results from the backward search (Contrarian [23]) were also included for

review. Finally, through expert advice, two other publications (Bolt-on [8] and Mon-

goDB [91]) were considered for review. Even though these works do not support

ROTs, they present general architectures for causally consistent systems. Therefore,

they present great relevance for the main goal of this work — providing a causally

consistent reference architecture for causally consistent read-heavy systems.

(2) Included publications: Even though the literature review yielded twenty-three rel-

evant results (documented in appendix A), it was necessary to select which would

be included in the qualitative synthesis due to time constraints. Apart from the base

references of the dissertation (SNOW [56], PORT [58] and PaRiS [85]), and given

the importance of understanding the core ideas on top of which several systems were

built, the selection for full-text analysis was based on the original publication date of

the works, prioritizing the ones published prior to PORT [58], and on the number of

citations. The final selection comprises the following publications: COPS [53], Eiger

[54], ChainReaction [5], Orbe [24], GentleRain [25], SwiftCloud [98], Cure [4], Oc-

cult [65], COPS-SNOW [56], POCC [86], Wren [84], Contrarian [23], PaRiS [85],

Eiger-PORT [58], Bolt-on [8], and MongoDB [91].

3.2 Causally Consistent Systems

CC has been used in geo-replicated systems due to its ability to surpass the ordering anomalies of

EC while avoiding the latency penalty and availability constraints of stronger consistency models.

Moreover, unlike EC, CC’s intuitive semantics [23] makes it easier to reason about the programs’

decisions.

Regardless of its benefits, CC alone does not overcome all the challenges of real-world work-

loads where data does not fit on a single machine. With this in mind, TCC extends CC by providing

transactions that observe a causally consistent view of the data.

There are several trade-offs to consider when designing these systems. In particular, to opti-

mize the latency and throughput of ROTs, it may be necessary to return slightly stale data to the

user.

In the scope of read-heavy systems, it is relevant to analyze how different strategies and de-

sign choices affect the properties of the system and namely of read operations such as ROTs. To
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that end, section 3.2.1 reviews the implementation of existing causally consistent systems, sec-

tion 3.2.2 analyzes these systems through the lens of the performance-optimal properties of ROTs,

and finally, section 3.2.3 analyzes how the strategies commonly used to enforce causality impact

the systems’ properties.

3.2.1 Existing Systems

This section reviews the architecture and algorithms of existing causally consistent systems to

understand how they were implemented, the trade-offs in their design, and how they compare with

other solutions.

3.2.1.1 COPS

Lloyd et al. [53] presented COPS, the first system to provide CC in a partitioned fully replicated

key-value data store — previous designs [75, 12, 11, 45] assumed replicas were limited to a single

machine and relied on log exchange to provide consistency, thus inhibiting scalability. COPS and

COPS-GT, which extends the core version with non-blocking ROTs, not only realize CC+, using

by default the last-writer-wins rule but also assure availability, low latency, partition tolerance, and

scalability (also known as ALPS properties).

Each data center (DC) comprises a local copy of a linearizable [35] key-value store and a client

library. This option ensures low latency for client operations and availability in the face of external

partitions. Each key-value pair is associated with a version number and a list of dependencies. The

client library supports read and write requests and, in the case of COPS-GT, ROTs. Moreover, it

keeps track of the causal dependencies within each client’s operations.

Every key stored in COPS has one primary node in each cluster (also named "equivalent

node"), which handles read operations. Write operations are first committed locally, with the

version assigned by the primary node (a Lamport timestamp [47]). Replication to remote nodes

is handled asynchronously, and updates only commit remotely when the value’s dependencies are

satisfied. Moreover, to provide fault tolerance, COPS relies on chain replication [93].

COPS-GT also provides non-blocking ROTs, which take at most two rounds within the DC. In

the first round, the system retrieves from the respective primary node the latest version of each key

in the transaction, along with their dependencies. If some dependencies are unsatisfied, the library

issues a second round to request the newest version of the respective keys seen in any dependency

list from the first round.

Both systems garbage-collect client metadata to minimize storage overhead. COPS-GT also

garbage-collects versions and dependencies. COPS only verifies the nearest dependencies, reduc-

ing the number of dependency checks.

Comparing both systems demonstrates that COPS-GT’s throughput becomes competitive with

COPS for read-heavy workloads.



State of the Art 30

3.2.1.2 Eiger

Lloyd et al. introduced COPS’ [53] successor, Eiger [54]. Besides providing low latency and

CC with ROTs, Eiger uses a rich column-family model and supports WOTs. Like COPS, it also

assumes full data replication across DCs.

To provide CC, Eiger ensures that all its dependencies are applied before an operation is per-

formed. However, in contrast to COPS, which stores dependencies on values, Eiger tracks depen-

dencies on operations, which is crucial to improve efficiency in the column family data model,

where many columns can be simultaneously written or read for a single key. Furthermore, Eiger

tracks only the one-hop dependencies for each write at the client, minimizing dependency check

overhead.

Similarly to COPS, Eiger’s ROT algorithm usually completes in a single round of local reads

and two rounds in the case of concurrent updates. However, it achieves this using logical clocks

and timestamps instead of explicit dependencies. This way, Eiger achieves greater efficiency and

is more tolerant under long partitions between DCs, while COPS may suffer a metadata explosion

that can degrade availability.

Eiger also proposes a novel WOT algorithm that atomically updates a set of keys across differ-

ent servers of a DC. This algorithm is lock-free and does not block concurrent ROTs, even though

it may affect the number of rounds a ROT takes to complete. For instance, if a ROT is issued

while a WOT is pending, then the client library must request a second version at a specific logical

time. If there are still pending WOTs executing upon the second round, then the third round of

communication is needed to resolve the ordering.

Eiger’s experimental evaluation demonstrates that the overhead of providing CC with ROTs

and WOTs is low compared to a non-transactional, eventually consistent baseline. Furthermore,

compared with COPS-GT, Eiger’s ROTs achieve higher performance, as its implementation avoids

the metadata explosion that COPS-GT’s ROTs can suffer.

3.2.1.3 ChainReaction

Similarly to COPS [53], ChainReaction [5] is a key-value store that delivers CC+. Its architecture

encompasses a set of DCs, each comprising several client proxies and data servers. Client proxies

receive requests and redirect them to the appropriate data servers, which in turn handle the requests

for a set of keys defined through consistent hashing [41]. To ensure fault tolerance and distribute

load across nodes, these servers employ a novel variant of the chain replication [93] protocol. In

this variant, writes may return as soon as the first k replicas process them (where k is the fault

tolerance of the chain), and the remaining propagation is lazily handled.

ChainReaction’s client library provides an interface for PUT, GET, and GET-TRANSACTION

operations and also manages the client’s metadata. In particular, it keeps ⟨key,versionVector,

chainIndexVector⟩ tuples for each object accessed by the client, where the version vector identifies

the version of the object and the chainIndexVector keeps an estimate of how far the current version

has been propagated across chains in all DCs.
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Before handling a PUT, the protocol guarantees that the local DC has applied all the PUT de-

pendencies of the current request. For that purpose, it directs a blocking read to the tail of the

chains of the objects belonging to the client’s causal history (referred to as dependency stabiliza-

tion procedure). Then, the request is forwarded to the appropriate server head and passed along

the chain until it reaches the kth element. The client receives the response and sets its local entry

of the chainIndexVector to k. When the lazy propagation completes, a notification is sent up the

chain and to sibling chains in remote DCs. In the background, the request is sent to a remote-

proxy which combines several updates in a single remote-update and propagates it to other DCs.

Remote-proxies rely on version vectors to ensure causality. Moreover, to ensure the order of op-

erations within a remote-update, Almeida et al. utilize Adaptable Bloom Filters [20]. Eventually,

an update becomes stable in all DCs. In the case of concurrent updates, the protocol uses the

last-writer-wins policy.

For GET requests, the client proxy consults the ith entry of the chainIndexVector to decide

which data server must handle the operation — it selects a data server at random with an index

from 0 to chainIndexVector[i], thus distributing the load between servers. As updates are propa-

gated asynchronously, the local chain may be unable to respond to a GET. In this case, the server

must redirect the request to another DC or block the operation until its value can be returned.

GET-TRANSACTIONS are assured in each DC by a sequencer process that orders the opera-

tions through sequence numbers. When a GET-TRANSACTION is issued, the server returns the

version created by the last PUT that preceded the transaction. The transaction is aborted if the

required version is unavailable for more than a certain timeout. Furthermore, it may be the case

that one of the requested values includes dependencies on operations performed on other DCs. In

that case, the algorithm consists of two rounds: a blocking read to get the values of the missing

dependencies and the GET-TRANSACTION.

On read-heavy workloads, evaluating ChainReaction against a system that provides stronger

local guarantees like COPS reflects better throughput and performance. Additionally, in COPS,

dependencies make up most of the message payload, and the message’s size increases during

execution, resulting in higher communication overhead. In contrast, ChainReaction’s metadata is

limited to a key, value, and two bloom filters, and the messages’ size is constant.

3.2.1.4 Orbe

To provide scalable CC in replicated and partitioned data stores, Du et al. implemented Orbe

[24], a distributed key-value store whose functioning primarily relies on dependency matrices and

physical clocks.

Like previous systems, Orbe assumes a fully replicated data store with M DCs and N partitions

per DC. A client only interacts with his local DC servers.

The key novelty of Orbe is the usage of dependency matrices. Each row of the matrix is a

version vector that stores the causal dependencies of each replica of a partition, more specifically,

the last update timestamp it has seen so far from that replica.
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Orbe supports read (GET) and write (PUT) operations, as well as ROTs (GET-TX). Clients

keep track of their causal history by storing the nearest dependencies of the current session in a

dependency matrix DMc with N rows and M columns. Furthermore, clients maintain a physical de-

pendency time (PDTc) for the current session, which stores the greatest physical update timestamp

of all its dependencies.

Partitions keep a version vector (VV ) to track the updates applied by each of its replicas and

the total of updates it executed locally. They also keep a physical version vector (PVV ) that tracks

the last physical timestamp seen from each replica of that partition. If replicas do not exchange

updates for some time, the periodic broadcast of heartbeat messages ensures that these values are

kept up to date.

GET operations are sent to the correspondent partition of the local DC. Its reply includes the

update timestamp of the requested item and the physical update timestamp, which are used to

update DMc and PDTc, respectively.

Upon a PUT operation, the client attaches DMc and PDTc to the request. To ensure causality,

the partition that receives the request waits until its physical time is higher than PDTc and, only

then, increments its VV and uses it to timestamp the new item. To support ROTs, items are

also versioned with physical update timestamps using the physical clock value. Furthermore, it

attaches DMc and the replica id to the item. The reply, which includes the replica id and both

update timestamps, is sent to the client. The client resets DMc and stores the timestamp received.

Furthermore, it updates his physical dependency time to the maximum of the current value and the

item’s physical update timestamp. Each partition replicates updates in timestamp order to other

replicas. To guarantee CC, before applying the update of item d, partition n waits until it has

installed the dependencies of d, (i.e., VV ≥ DMd [n]). It also assures that the other local partitions

have installed all dependencies through dependency check messages. Finally, it updates VV and

PVV .

ROTs are timestamped with a physical time slightly older than the actual clock time of the

server to reduce the probability of a transaction being delayed and the duration of the delay. If

the partition that performs the transaction does not store all the keys, then it retrieves them from

other local partitions. However, before reading an item at a partition, that partition must have

executed all local updates and applied all remote updates with update timestamps lower than the

transaction’s timestamp. Therefore, it waits until the timestamp is lower than the partition’s clock

value and lower than its minimum PVV .

If remote replicas or the network among partitions fails, the transaction may be delayed with-

out knowing if all dependencies are satisfied. To solve this problem, Du et al. propose two possi-

ble approaches: re-execute the transaction with a smaller timestamp to avoid blocking on the same

failing partition or use a two-round protocol like Eiger [54] to avoid returning a stale snapshot.

In addition, the authors propose an optimization they call dependency cleaning, which can be

used to reduce the size of dependency metadata at the cost of higher communication overhead.

In comparison to COPS [53], Orbe delivers greater throughput since COPS must track all

dependencies, whereas Orbe only tracks the nearest dependencies. Furthermore, Orbe uses sparse
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matrix encoding to compress the dependency matrix and resets the matrix of a client after each

update operation, which also minimizes throughput.

3.2.1.5 GentleRain

Du, Jiaqing, et al. proposed GentleRain [25], a causally consistent geo-replicated data store that, in

contrast to previous implementations [53, 54, 5, 24], does not require dependency check messages

to track causality. Instead, it uses physical clocks to generate scalar timestamps for each update,

which leads to an increase in throughput and a decrease in storage and communication overhead.

However, this strategy results in a slight staleness increase at remote DCs.

Their work assumes a multi-versioned data store where the data is split across partitions of

a DC and fully replicated in other DCs. Each server has a loosely synchronized physical clock

that provides monotonically increasing timestamps. The data store supports simple GET and PUT

operations, snapshots, and ROTs.

Like in COPS [53] and Eiger [54], in GentleRain, updates become instantly visible locally but

are propagated asynchronously to remote replicas. Each server resorts to a version vector to keep

the last update seen from each replica, including itself. From it, each server computes its local

stable time (LST ), the minimum element of its version vector, which represents the highest update

timestamp seen from all replicas. The global stable time (GST ) is computed periodically and

represents the minimum LST of all partitions within the same DC. Updates originating at remote

DCs only become visible when their update timestamp is smaller than the GST .

In opposition to the snapshot operation, where the datastore may return a snapshot from any

point in the past, ROTs must include any values the client has already read. Thus, the implemen-

tation either blocks the transaction until the client’s time meets the GST or uses Eiger’s protocol,

which may take two rounds to complete.

The comparison between GentleRain and COPS shows that GentleRain yields a considerably

higher throughput for read-heavy workloads, as COPS needs to track more dependencies.

3.2.1.6 SwiftCloud

Targeting client-side applications, which typically need to ensure high availability, Zawirski et al.

proposed SwiftCloud [98], a distributed object database that scales with the number of client-side

replicas and provides CC+ even in the presence of DC failures. Furthermore, SwiftCloud uses

Conflict-Free Replicated Data Types (CRDTs) [80] for confluence, supporting high-level objects.

SwiftCoud’s cloud infrastructure connects tens of geo-replicated DCs, each storing a full

replica of the database, to thousands of partial client-side replicas, which specify the subset of

the database they are interested in (i.e., their interest set). Clients read locally from a causally

consistent cache and register updates in a log, which is asynchronously transferred to a DC and

regularly pruned through checkpointing. The interest set of the client can change dynamically.

Each DC keeps the object versions in stable storage and a version vector (VVDC) representing

a recent version of the database. Clients keep a base version of the database provided by a DC and
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its corresponding version vector, both provided by a DC through a notification protocol, and a log

with the updates performed on the client side (UC).

A client starts a transaction by setting its snapshot vector with the version vector of the base

version it knows (VVDC). Any internal updates performed during the transaction are stored in

the transaction’s buffer. Reads are performed from the snapshot vector merged with the internal

updates of the client. The transaction is committed locally by assigning a client timestamp, a

sequence number representing the number of writes performed by the client. Each update belong-

ing to the transaction is added to the client’s commit log together with its dependencies, which

correspond to the transaction’s snapshot vector.

Asynchronously, unacknowledged updates are transferred to the current DC in order. When

a DC receives an update, it verifies if its dependencies are satisfied and, if so, assigns it a DC

timestamp, stores it, updates its version vector, and acknowledges the client.

To tolerate DC failures, SwiftCloud’s clients only depend on their internal updates and ex-

ternal updates that are stable in at least k DCs. Thus, the base versions transmitted from DCs to

clients have been acknowledged by k−1 other DCs. The parameter k provides a trade-off between

freshness and availability - a higher k means higher availability and lower freshness and vice versa.

Considering this strategy, the client retries with another DC if a transfer request times out. On the

other hand, if the DC is missing any external dependency, the client must retry with another. It is

also possible that a DC is missing an internal dependency, in which case the client must resend

possibly missing updates.

New updates are replicated to other DCs using uniform reliable broadcast. Upon receiving an

update, a DC buffers it until all its dependencies are satisfied, stores it, and updates its version

vector with the DCs timestamps of the update.

SwiftCloud was evaluated against the standard read-heavy and update-heavy Yahoo! Cloud

Serving Benchmark (YCSB)’s workloads and through a social network workload that employs

higher-level operations. The results suggest that the latency of reads and writes of cached opera-

tions is less than 1 ms, the throughput scales with the number of DCs, and that the metadata grows

linearly concerning the number of DCs, all at the cost of a slight staleness under 1%.

3.2.1.7 Cure

In pursuit of a flexible programming model and stronger semantics, Akkoorath et al. introduced

Cure [4], the first system to achieve TCC, which extends CC+ with transactions that can interleave

read and write operations. Furthermore, Cure’s implementation leverages CRDTs [80] to ensure

the replica’s convergence while providing a richer interface to developers.

Like previous systems, this work assumes a fully replicated multi-versioned key-value store

where objects are replicated across M DCs, each comprised of N partitions. Cure’s programming

interface provides operations to start a transaction, read or update a set of keys, and commit or

abort the transaction.

Each partition is equipped with a loosely synchronized physical clock that generates mono-

tonically increasing timestamps, which are used to annotate the updates with their commit time.
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Additionally, a vector clock with one entry per DC (pvc) keeps track of the last update timestamp

received from each remote replica. Another vector clock (GSS) is used to track the timestamp of

the last snapshot known to be available at all the partitions of the DC (i.e., the globally stable snap-

shot). To compute the GSS, partitions within each DC periodically exchange their pvc through a

stabilization protocol. The minimum of the received pvc determines the GSS.

To start a transaction, the client sends his last seen update (cvc) to a local DC that acts as

the transaction coordinator. First, the coordinator may need to wait until its GSS catches up with

cvc. Afterward, it computes the snapshot visible to that transaction (svc) by copying the GSS

and setting the local entry to the maximum of the cvc and the server’s physical clock. The id of

the transaction is returned to the client, who may then issue updates and read operations to the

coordinator.

Each read request is forwarded to the responsible local partition together with the transaction’s

snapshot (svc). A server may need to wait until its vector clock (pvc) catches up with the trans-

action’s snapshot (svc) before returning the latest version of the requested item with a timestamp

at most equivalent to the requested snapshot. To ensure read-your-writes, the coordinator applies

any updates performed to that same key in the current transaction. The result is returned to the

client.

Upon receiving a commit request, the server performs a Two-Phase Commit (2PC) protocol.

First, it sends a prepare message to the involved servers with the writes to be performed. Each

server waits, if necessary, until its clock catches up with svc and then registers the write set in

its log, records the transaction in its list of prepared transactions, and proposes its clock values as

commit time. The coordinator chooses the maximum of the received timestamps and generates the

commit vector clock of the transaction (ct) by applying this timestamp to the local DC’s index on

the svc. In the commit phase, the coordinator sends ct to the involved servers, which update their

log, remove the record from the prepared list and add it with the commit time to the committed

list.

The committed transactions with commit timestamps lower than all the prepared transactions

are periodically propagated to replicas in other DCs. In the absence of updates, heartbeat messages

are used for synchronization. When receiving a remote update, the replica applies the operation to

its log and updates the index of the sender in the pvc, indicating that all the updates from that server

until the received timestamp have been received. The visibility of the remote updates depends on

the stabilization protocol described above.

Periodically, servers exchange the oldest snapshot vector clock of their ongoing transactions,

compute the aggregate minimum, and prune their logs accordingly.

In terms of throughput, Cure outperforms Eiger [54] as the update rate increases due to the

overhead incurred by the dependency checks. Furthermore, by employing vector clocks instead

of scalar timestamps to track the stable snapshot, Cure achieves lower update visibility latency

at remote sites than GentleRain [25], which also relies on a stabilization protocol. Additionally,

it tolerates network partitions and DC failures. Nevertheless, these enhancements come at the

expense of increased metadata size.
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3.2.1.8 COPS-SNOW

Based on the SNOW Theorem, Lu et al. [56] proposed a design for COPS [53] (the predecessor

of Eiger [54]) that makes it latency-optimal - "it keeps the non-blocking property of the current

algorithm and adds the one response property" [56, p. 142]. To achieve this improvement, the

trade-off made by COPS-SNOW is to incur extra costs on writes instead of reads to make reads

more efficient, which is crucial in read-heavy workloads. In COPS, ROTs may complete in one

or two rounds. Servers respond to the first request with the current value for the requested keys

and each value’s causal dependencies. The client must verify if those dependencies are satisfied

and, in case they are not, send the second request for each of the values whose dependencies were

not satisfied. As the second round only occurs if keys involved in the ROT are updated during the

first round, COPS-SNOW flips this scenario by moving this verification to the writes. A write that

is issued during a ROT must check if any of its causal dependencies have not been observed by

an ongoing ROT (a technique referred to as readers check [23]). The current write should not be

observed if any dependencies are not applied yet. Apart from the dependency checks, writes must

also record the ROTs that observed the value they overwrote.

The evaluation of the proposed algorithm for varying write frequencies shows an improvement

in latency for ROTs at the cost of lower system throughput when compared with COPS. This loss

results from the additional messages in the write algorithm. Furthermore, COPS-SNOW’s latency

advantage increases as ROTs increase in size (i.e., number of keys read) because the ROTs in

COPS are more likely to go to the second round. In the same scenario, however, the throughput of

COPS-SNOW becomes worse relative to COPS because each write has more causal dependencies

to check.

3.2.1.9 Occult

Motivated by the susceptibility of previous work against slowdown cascades, a problem that may

be at the root of the industry’s unwillingness to apply CC, Mehdi et al. introduced Occult [65],

the first causally consistent system to work around this problem.

In previous causally consistent systems such as COPS [53], Eiger [54], and GentleRain [25],

a shard in a replica only applies a write when all the shards in that replica have applied the write’s

causal dependencies. Therefore, if a shard fails, the visibility of the writes is delayed, affecting not

only the faulty shard but impacting the performance of all the others (i.e., leading to a slowdown

cascade).

To overcome this problem, Occult shifts the enforcement of CC from the data store to the

clients. By adopting this optimistic approach, where writes are immediately applied in the data

store, Occult trades off the availability of read operations from lagging shards for write visibility.

Furthermore, it requires clients to track the dependencies concerning the entire data store.

Occult is a fully replicated multi-versioned key-value store with M DCs, split into N partitions.

It implements a primary-replica architecture with one primary node per shard accepting writes and

asynchronously replicating them to replica nodes.
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To track causality, Occult proposes the use of shardstamps and causal timestamps. Shard-

stamps count the number of writes that a shard has accepted. Causal timestamps are vectors of

shardstamps, each entry concerning a shard. They encode the most recent state observed by the

client and the causal history of each write.

To compress the size of causal timestamps and avoid metadata overhead before large numbers

of shards, the authors propose several methods to compress causal timestamps: structural com-

pression, temporal compression, and DC-isolation. In the first strategy, structural compression,

shards whose ids are congruent modulo n, where n is the number of entries of the causal times-

tamp, are mapped to the same entry. This strategy, however, results in false dependencies, which

may affect read latency. To minimize this effect, shardstamps can be replaced by physical times-

tamps. Nonetheless, this strategy falls short when shardstamps of shards that map to the same

entry are very different. In this regard, the authors propose temporal compression, a technique

based on the intuition that recent shardstamps are more likely to generate false dependencies. In

this strategy, n−1 entries are reserved for the most recent shardstamps, whereas a catch-all entry

compresses the remaining shardstamps. Finally, DC-isolation consists of using a vector of causal

timestamps with one entry per DC, an optimization that aims to reduce read staleness differences

across DCs, which is affected by the existence of primary and secondary partitions on different

DCs.

In Occult’s protocol, clients typically issue requests to shards of the replica they are co-located

with, even though they are not required to be sticky to that replica. A client library enforces CC

and attaches the necessary metadata.

To perform a write, the client library attaches the client’s causal timestamp to the request and

sends it to the primary of the respective shard. The primary node increments its shardstamp and

updates its entry of the causal timestamp to reflect the write, storing it together with the new value.

Replication occurs asynchronously and in order to replicas. The response to the client library

includes the causal timestamp of the write, which the client uses to update his own.

Read requests are usually sent to the local shard. The reply includes the most recent value for

the requested key, its dependencies in the form of a causal timestamp, and the shardstamp of the

contacted shard. The client verifies if the contacted shard entry matches the received shardstamp

to know if it is safe to read the returned value. If it is not safe to read, the client can either retry

until the local replica advances or forward the request to the primary shard, which invariably stores

the most recent version. The response to the client library includes the requested values and the

server’s causal timestamp, which is used to update the causal timestamp of the client.

Occult’s transactions protocol consists of three phases. During the read phase, the client re-

trieves the values for the requested keys from his local shards, forming his read set, and buffers

the writes. During the validation phase, it first validates if the values form a causally consistent

snapshot. Specifically, it checks if the items are pairwise consistent by verifying if a shardstamp

of item a is at least as recent as its entry in the causal timestamp of item b and vice versa. If

this check does not hold, the transaction aborts. Otherwise, the client tries to lock the access to

the items of his write set by contacting the corresponding primary shards. In the absence of an
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acknowledgment, the client retries and may eventually abort the transaction. If the request is suc-

cessful, the server returns the causal timestamp of the item and the shardstamp of the new write,

which is stored on the overwrite set. In the last step of the validation phase, the client verifies if its

read set is at least as recent as its overwrite set (i.e., that the dependencies of the new transaction

are present), aborting otherwise. Finally, in the commit phase, the client generates the commit

timestamp of the transaction by combining the causal timestamp of the read snapshot with the

received shardstamps. All writes are assigned the same commit timestamp in their primary shards,

ensuring atomicity.

Occult was evaluated against an eventually consistent data store to understand the overhead

introduced by CC. In contrast to previous systems, which typically measure throughput, Occult

measures goodput instead, which does not count operations that abort nor retries. In a read-heavy

workload with 95% reads, results from the evaluation suggest that DC-isolation is competitive

with the eventually consistent system. Furthermore, they emphasize the trade-off between the

causal timestamps’ size and the reads’ staleness.

3.2.1.10 POCC

Spirovska, Didona, and Zwaenepoel [86], backed by the fact that updates are often inherently

replicated consistently [9, 59], and that network partitions and DC failures are infrequent [9, 14],

argue that previous approaches to CC are overly pessimistic. In this regard, the authors propose

Optimistic Causal Consistency (OCC), an optimistic protocol that trades off availability for higher

data freshness, always returning the most recent available version to the client, even if its depen-

dencies have not yet been installed.

On the one end, OCC does not rely on stabilization or dependency checking, thus imposing

lower communication and computational overhead. On the other hand, it presents a blocking

behavior because reads may need to wait for missing dependencies to be installed, making the

system vulnerable to network partitions and DC failures. Therefore, under failure scenarios, the

system must fall back to a pessimistic protocol, such as Cure’s [4].

This optimistic strategy requires clients to store and transmit their dependencies when execut-

ing an operation. When performing a read, the client’s history will determine if the server must

wait for missing dependencies, and when writing, the new version of the item will take the client’s

history as its dependencies.

The authors implemented OCC on POCC, a multi-versioned key-value store whose data set is

split into N disjoint partitions. Each partition is replicated at M different DCs. Clients connect to

a node in the closest DC, which takes the coordinator role and forwards any requests for keys it

does not store.

Each server relies on a loosely synchronized physical clock that assigns monotonically in-

creasing timestamps to new writes. Furthermore, it keeps a version vector with one entry per DC

(VV ), which stores the highest update timestamp seen from each replica. Apart from the key,

value, and creation timestamp, each item is stored together with its dependencies, represented by

a dependency vector (DV ) with one entry per DC.
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To resolve dependencies upon a read, clients also hold a dependency vector (DV ) and a read

dependency vector (RDV ), which represents the potential dependencies of the items he has read

and is the maximum of the dependency vectors of those items.

POCC provides clients with the following operations: simple reads, writes, and ROTs.

A read returns the most recent version of the key compatible with the client’s history. The

client attaches its RDV to the request to perform a read operation. The server checks if its version

vector is entry-wise greater than the client’s RDV . If it is, it returns the latest version of the

requested item. Otherwise, it must block until that condition holds. The server sends back the

item, and the client uses the item’s dependency vector to update its own RDV and DV and uses the

update timestamp of the item to update DV .

In a write request, the client sends its DV , and the server must wait until its clock is higher

than the maximum of DV , ensuring the new update gets a higher timestamp than its potential

dependencies. Then, the server uses its physical clock value to set the timestamp of the new item,

adds it to the corresponding version chain, and sends the reply with the update time, which the

client uses to update DV .

In ROTs, the server defines the snapshot visible to the transaction as the items currently re-

ceived by nodes in the local data center, whereas in other systems, the snapshots assigned to ROTs

only include stable items. When performing a ROT, the client attaches its RDV . The server first

determines the timestamp vector that defines the snapshot visible to the transaction (TV ) - the

entry-wise maximum between the version vector of the server and the client’s RDV . The server

sends that vector to all involved partitions. Each partition waits until its version vector is higher

than TV and then returns the freshest version of that snapshot. All the items are then sent back to

the client.

Replication is handled asynchronously to other DCs in timestamp order. A server that receives

a remote update must insert the item in its version chain and update the corresponding entry of

its version vector. Additionally, to allow items to be garbage collected, a partition that does not

receive requests for local updates for some time broadcasts its latest clock time to its replicas

through a heartbeat message.

When a network partition occurs, the session is reinitialized using a pessimist protocol based

on Cure. The consequence of this is similar to what happens in other pessimistic approaches,

where the fall-back server may not know the same versions as the old one.

POCC’s performance was assessed against a pessimistic system, namely Cure*, a version

of Cure that also supports simple read and write operations. In a transactional workload, the

throughput varies identically with the number of contacted partitions in both systems, though

POCC’s throughput outreaches Cure’s up to 15 % when transactions involve the majority of the

partitions due to POCC’s greater resource efficiency. POCC presents lower staleness than Cure*

by two orders of magnitude.
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3.2.1.11 Wren

Despite the existence of prior TCC designs, they either blocked reads, like Cure [4], or did not sup-

port sharding, like SwiftCloud [98]. In this regard, Spirovska, Didona, and Zwaenepoel presented

Wren [84], the first TCC system to support both non-blocking reads and sharding.

Like in previous works, the authors assume a multi-versioned distributed key-value store split

into N partitions and fully replicated across M DCs. Furthermore, they assume that any replica

can update a key for which it is responsible (multi-master).

The main novelty of Wren resides in its transactional protocol, with which the snapshot made

visible to the client is the union of a stable snapshot installed in every partition of the DC and a

client cache. With this strategy, Wren avoids blocking reads, in opposition to previous designs that

assign snapshots that may not have been installed yet in all the partitions of the DC, which is the

case of GentleRain [25] and Cure [4]. Furthermore, by equipping each client with a private cache,

Wren ensures that client writes not yet reflected in the stable snapshot are also visible to the client.

With Wren’s stabilization protocol (Binary Stable Time), partitions within a DC periodically

exchange the latest local and remote commit timestamps they have applied to determine which

local and remote updates can be made visible, i.e., the Local Stable Time (LST) and the Remote

Stable Time (RST). In contrast with systems that use a single timestamp to track dependencies,

this protocol enables local items to become visible independently of the visibility of remote items.

Additionally, Wren leverages a new dependency tracking protocol (Binary Dependency Time)

where each write’s dependencies are depicted by two timestamps, representing dependencies on

remote and local updates.

Similarly to Cure [4], Wren’s programming interface does not provide a specific operation for

simple reads or writes. Instead, clients must issue an operation to start a transaction, issue the

desired read and write operations for a set of keys and commit the transaction.

A partition keeps a version vector (VV ) that stores the timestamp of the last applied transac-

tions on each replica, including itself. Furthermore, it stores lst and rst, computed periodically

through the stabilization protocol. Partitions additionally store two queues required for the 2PC

protocol, which is used to commit the transactions. One queue stores the prepared transactions,

and another is used for the committed transactions. For timestamping, each server uses its HLC.

The client state comprises a private cache (WC) that stores the versions written by the client

that may not yet be reflected in the stable snapshot. Additionally, a client maintains the commit

time of its last update transaction (hwt), and the metadata and data of the current transaction (i.e.,

its id, local and remote stable snapshots (lst and rst), write set, and read set).

To start a transaction, the client sends the lst and rst of its last transaction to a coordinator

partition, which updates its lst and rst and proposes a snapshot at least as fresh as the one accessed

by the client in previous transactions. The server sends the transaction’s id and timestamps back

to the client, which uses lst to prune the cache. Wren enforces the rst assigned to a snapshot to be

lower than its lst so that the client does not have to deal with conflicting updates and can directly

read from his cache the versions that remain after pruning.
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For each key to read, the client checks the transaction’s write set, read set, and then the cache,

ensuring read-your-writes and repeatable reads. If a read cannot be served locally, the client

issues a request to the concerned partitions together with the transaction’s snapshot. Each partition

updates its lst and rst and returns to the client the versions with the highest timestamp enclosed in

the transaction’s snapshot.

Writes are stored in the client’s write set and sent in the commit request along with the trans-

action’s id and hwt. The commit protocol is based on 2PC. First, the coordinator contacts the

partitions responsible for the updated keys. These partitions update their clocks and propose a

commit timestamp, which must be higher than the transaction’s timestamps and hwt to reflect

causality. Then, they send the proposed commit time to the coordinator and add the transaction

to the respective queue. In the second phase, the coordinator selects the commit timestamp by

computing the maximum of the received timestamps, sends it to the partitions and the client, and

removes the transaction from storage. Upon the reception of the commit message, a partition

updates its clock and moves the transaction to the committed queue.

Committed transactions are periodically applied in commit timestamp order and replicated

whenever their commit timestamp is lower than any pending transactions. More specifically, the

partition creates a new version of the key, stores it in the key’s version chain, updates its version

vector, and replicates the update. In the absence of updates, heartbeat messages are used to ensure

the progress of the RST protocol.

Compared with Cure [4], which may block reads due to clock skew, Wren achieves up to a

2.33x improvement in response time and 25% in throughput in strongly skewed workloads. When

compared with H-Cure, a version of Cure that uses HLCs, it also achieves better latency and

throughput because, even though this version does not block due to clock skew, it may still block

if a transaction is assigned a snapshot that is not installed on the partition. Wren reduces latency

by up to 3.6x and 1.6x compared to Cure and H-Cure, respectively. Additionally, it improves

throughput by 1.33x and 1.23x when compared with the same systems. It is also highly scalable

concerning the number of partitions, presenting almost the ideal throughput improvement. The

performance gains come at the cost of a slight increase in update visibility.

3.2.1.12 Contrarian

Only two years since Lu et al. presented COPS-SNOW [56], the first system to implement latency-

optimal ROTs, Didona et al. [23] proved that COPS-SNOW protocol induces an extra overhead

on writes that jeopardizes performance even in read-dominated workloads. More precisely, their

work shows that this overhead grows linearly with the number of clients due to the readers check

procedure (described in section 3.2.1.8).

With this in mind, Didona et al. present the Contrarian protocol, which respects the non-

blocking and single-version SNOW properties [56] but requires two rounds of communication.

However, it has the advantage of not imposing any overhead on writes. Similarly to GentleRain
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[25] and Cure [4], Contrarian relies on a stabilization protocol to track causality. However, in con-

trast with the systems mentioned earlier, it relies on dependency vectors instead of scalar times-

tamps.

Like previous designs, Contrarian targets a fully replicated key-value store. For each version

of a key, a dependency vector stores the last update timestamp it has seen from each DC. Likewise,

each client keeps a dependency vector with identical structure and size, which tracks the versions

on which it depends. Upon a write operation, the client’s dependency vector is appended to the

request and copied to the corresponding remote entries of the dependency vector of the key version.

The timestamp of the new version, which must be higher than the ones in the client’s dependency

vector to ensure causality, is then used to set the entry of the local DC. Replication is handled

asynchronously to remote DCs.

Additionally, each DC independently calculates a vector of cutoff timestamps (referred to as

GSS) that tracks the lower bound of the remote versions received in the DC. For that, partitions

maintain a version vector with the last received update from each DC. These version vectors are

periodically exchanged among the partitions of a DC to compute the GSS.

These procedures and data structures ensure that clients can only read stable versions (i.e.,

whose dependencies have already been received in the DC). This condition holds when remote

entries in the dependency vector of the version are lower or equal to the respective entries in the

GSS of the DC’s partition responsible for the key.

Contrarian’s ROTs take two rounds to complete. First, the client selects a coordinator from the

partitions that store the keys he wishes to read and sends its dependency vector to that partition.

The server then calculates the snapshot vector as follows: the local entry is set to the maximum

between the coordinator’s clock and the highest local timestamp seen by the client; the remote en-

tries are set to the "entry-wise maximum between the GSS at the coordinator, and the dependency

vector of the client" [23, p. 1622]. The snapshot is returned to the client, which forwards it to the

appropriate partitions, along with the keys to read. For each key, the version returned to the client

will be the one with the highest timestamp that belongs to the snapshot.

Unlike previous solutions [25, 4], which use physical clocks and thus need to block when

the ROTs’ timestamps are higher than the partition’s clock, Contrarian uses HLCs to ensure the

non-blocking property.

When evaluated against COPS-SNOW [56], Contrarian achieves better latency due to the

higher replication cost that results from communicating the dependency lists and to COPS-SNOW’s

readers check procedure. Contrarian only shows higher latencies than COPS-SNOW in under-

utilization scenarios.

3.2.1.13 PaRiS

Spirovska, Didona, and Zwaenepoel [85] presented PaRiS, the first TCC system built on a partially

replicated data store that supports non-blocking ROTs.
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Implementing TCC with non-blocking reads in a partially replicated data store is not trivial

because servers of different DCs may concurrently serve different reads of the same transaction.

Conversely, a transaction executes entirely within a single DC in a fully replicated scenario.

To address this, PaRiS relies on a novel causal dependency tracking protocol, UST. This pro-

tocol finds and retrieves a stable snapshot installed in all DCs, ensuring that ROTs do not block.

PaRiS uses a client-side cache, in which the client stores his updates that the snapshot identified

by the UST protocol does not yet reflect. This way, it ensures that clients observe monotonically

increasing snapshots. To improve the freshness of the snapshot determined by UST over a solution

that uses logical clocks, which can advance at very different rates on different partitions, PaRiS

uses HLCs.

Like previous systems, PaRiS assumes a multi-versioned distributed key-value store split into

N partitions and replicated in M DCs. However, as they consider a partially replicated data store,

a DC may only comprise a subset of the dataset (R, the replication factor, is lower than M). Hence

clients may need to contact remote replicas for specific keys. PaRiS also assumes that any replica

can update a key for which it is responsible (multi-master system).

PaRiS’s shares the same programming interface as Wren [84], providing operations to start a

transaction, read and write a set of keys, and commit the transaction.

A partition keeps a version vector (VV ) that stores the timestamp of the last applied transac-

tions for each replica, including itself. Periodically, each partition exchanges the minimum of its

version vector with other local partitions to compute the local DC’s Global Stable Time (GST).

The nodes within a DC are organized as a tree to reduce message overhead, and the GST is aggre-

gated from the leaves to the root. The root of each DC exchanges the DC’s GST to compute the

minimum of all exchanged values (ust). ust identifies a timestamp such that all transactions with

lower timestamps have been applied in all DCs. The roots share this value with all the other nodes

of their DC. This protocol identifies a stable snapshot with a single timestamp. Partitions addi-

tionally store two queues required for the 2PC protocol, which is used to commit the transactions.

One queue stores the prepared transactions, and another is used for the committed transactions.

PaRiS equips each client with a cache (WCc) that stores the versions written by the client that

may not yet be reflected in the stable snapshot. Additionally, a client maintains the highest stable

snapshot timestamp he knows (ustc), the commit time of its last update transaction (hwtc), and the

metadata and data of the current transaction (i.e., its id, write set (WSc) and read set (RSc)).

Whenever a client issues a transaction, it sends ustc to the selected coordinator partition, which

updates its utc and assigns a snapshot timestamp ts at least as fresh as the one accessed by the client

in previous transactions. The server assigns an id to the transaction, stores it, and sends a response

to the client, including the transaction’s id and timestamp. The client uses the received timestamp

to remove the versions with timestamp lower or equal to that value from his cache. Then, for

each key to read, the client first checks the transaction’s write set, followed by the read set and

then its cache, ensuring read-your-writes and repeatable reads. If a read cannot be served locally,

the client issues a request to the coordinator, which sends the request to the involved partitions

together with the transaction’s timestamp. The cohorts update their ust and return the version of
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the keys with the highest timestamp below the snapshot timestamp. The coordinator sends them

back to the client, who adds them to RSc.

Writes are stored in WSc and sent in the commit request along with the transaction’s id and

hwtc. The commit protocol is based on 2PC. First, the coordinator contacts the partitions responsi-

ble for the updated keys. These partitions update their clocks to be at least as high as the maximum

of the transaction’s timestamp and hwtc. Then, they update ust, send the proposed commit time to

the coordinator (i.e., the maximum of his clock and ust), and add the transaction to the respective

queue. In the second phase, the coordinator picks the commit timestamp, the maximum of the

received timestamps, sends it to the partitions and the client, and removes the transaction from

storage. Upon the reception of the commit message, a partition updates its clock and moves the

transaction to the committed queue.

Committed transactions are periodically applied and replicated whenever their commit times-

tamp is lower than pending transactions. More specifically, the partition creates a new version of

the key, stores it in the key’s version chain, updates its version vector, and replicates the update. In

the absence of updates, heartbeat messages are used to ensure the progress of the UST protocol.

PaRiS evaluation shows it achieves the same latency for both read-heavy and write-heavy

workloads compared to an eventually consistent system. Additionally, it proves that PaRiS scales

well with the number of DCs. Compared to a blocking system, the worst-case difference between

the visibility latency is around 200ms. Overall, PaRiS achieves low latency, low storage require-

ments, and rich transactional semantics at the cost of slight data staleness.

3.2.1.14 Eiger-PORT

Guided by the NOCS theorem (described in section 2.2.2), which suggests the possibility of further

optimizing systems with ROTs, Lu, Sen, and Lloyd [58] proposed a novel system design, PORT.

This design features performance-optimal ROTs without sacrificing the write’s performance, con-

trary to what happens in COPS-SNOW [56]. Furthermore, in systems with only simple writes,

this design is compatible with process-ordered serializability, a consistency model that combines

serializability and sequential consistency. On the other hand, in the presence of WOTs, namely

when applied to Eiger [54], PORT’s design provides CC while enabling significant performance

improvements due to its performance-optimal ROT algorithm. More specifically, while Eiger’s

original algorithm takes up to three rounds of communication and uses linear-sized metadata,

Eiger-PORT’s ROTs terminate in a single round using constant metadata.

The core of PORT’s design lies in version clocks. These logical clocks capture both the or-

dering constraints between requests and the stable frontier, the most recent snapshot in which

all writes are in the stable region (i.e., "where all writes have committed and system states are

finalized" [58, p. 336]). In particular, the version clock of a client tracks the minimum write ver-

sionstamp of all the servers he has contacted. For reads to be able to read stale values, the servers

also comprise a multi-versioning framework, which stores written values indexable through ver-

sionstamps. The clock is advanced when a response to a write is received, ensuring that subsequent

reads have a greater versionstamp than the write (read-your-writes).
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In Eiger-PORT, clients keep a lstmap, which tracks the local safe time (lst) of each server,

and a global stable time (gst) which is the minimum lst across all servers. Both of these values

are Lamport timestamps. When the client issues a ROT, it uses gst as the read timestamp. When

issuing a WOT, the gst is also attached to specify the stable frontier it causally depends on. The

client updates lstmap after each read/write request.

The proposed WOT algorithm uses the 2PC protocol and is similar to the one used in the base

system. Upon a WOT request, the coordinator records the current Lamport time, creates a new

pending version, and saves it in pending_wtxns, which tracks ongoing WOTs in order of pending

time. The minimum of the time in pending_wtxns is the lst of the server and indicates that there

are no pending writes before that timestamp. In the prepare phase of the protocol, each cohort

sends a prepared_time to the coordinator, which calculates the maximum of all received times

to define the commit time and sends it to the cohorts. The cohorts receive the commit time and

update their lst.

Upon a ROT, the coordinator finds the version at the requested versionstamp (the stable fron-

tier) and verifies if there are any recent writes by the same client. If there are, then they must

be returned to ensure read-your-writes, thus logically moving the client’s writes before the stable

frontier. In case the version at the requested versionstamp was written by the client, it checks if

there exists any version between the version’s snapshot time and the version’s commit time. If

there is, it is returned to ensure write isolation.

The evaluation of Eiger-PORT reflects a significant performance improvement of its transac-

tional base system that results from the reduced number of messages and metadata. In particular,

the comparison between these systems shows up to three times throughput improvement and 60%

latency reduction, at the cost of some data staleness.

Furthermore, Eiger-PORT provides performance-optimal ROTs because it reads at the stable

frontier from a pre-determined snapshot and only uses one versionstamp per read request.

3.2.1.15 Summary

This section reviewed several causally consistent distributed systems that support ROTs.

COPS [53] was the first causally consistent system to support sharding within each replica. It

tracks the dependencies of each operation in metadata and verifies them upon a ROT.

Eiger [54] extends COPS with a richer column-family model and WOTs. It avoids the meta-

data explosion of COPS by keeping track of dependencies on operations either than on values,

which also results in higher performance.

ChainReaction [5] uses a new variant of chain replication where writes may return as soon

as the first k replicas process them, ensuring fault tolerance. To order the operations, it uses a

sequencer process within each replica. On read-heavy workloads, ChainReaction exhibits higher

throughput and requires fewer metadata than COPS.

Orbe’s [24] key novelty is the usage and compression of dependency matrices, which result in

increased throughput compared to COPS.
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GentleRain [25] was the first system to employ a stabilization-based technique and to intro-

duce the trade-off between visibility and throughput. The comparison between GentleRain and

COPS shows that GentleRain yields a considerably higher throughput for read-heavy workloads,

as COPS needs to track more dependencies.

SwiftCloud [98] uses a log-based approach where client-side replicas keep a partial set of the

data store. Therefore, operations can be handled locally with minimal latency. To tolerate DC

failures, SwiftCloud’s clients only depend on updates that are stable in at least k DCs. SwiftCloud

also supports CRDTs.

Cure [4] was the first system to provide TCC. It supports CRDTs and uses a stabilization

strategy similar to GentleRain. However, it uses a coordinator-based approach where the client

must first retrieve the stable snapshot of the transaction. By employing vector clocks instead

of scalar timestamps to track the stable snapshot, Cure achieves less staleness at remote sites

than GentleRain, introducing a new trade-off between staleness and metadata size. In terms of

throughput, Cure outperforms Eiger as the update rate increases due to the overhead incurred by

the dependency checks.

COPS-SNOW [56] extends COPS with latency-optimal ROTs by incurring extra costs on

writes. Compared with COPS, it shows an improvement in latency for ROTs at the expense of

lower system throughput.

Occult [65] adopts an optimistic approach where writes are immediately applied in the data

store, trading off the availability of read operations for write visibility. Occult also presents a

novel way to track causality using shardstamps and causal timestamps and emphasizes the trade-

off between the causal timestamps’ size and the reads’ staleness.

Similarly to Occult, POCC [86] trades off availability for higher data freshness, always re-

turning the most recent available version to the client, even if its dependencies have not yet been

installed.

Wren [84] was the first system to provide TCC and support non-blocking reads and sharding

— Cure could block reads due to clock skew, and ShiftCloud did not support sharding. Its main

novelty resides in its transaction protocol, with which the snapshot made visible to the client is

the union of a stable snapshot installed in every partition of the DC and a client cache. Compared

with Cure, Wren reduces latency by up to 3.6x and improves throughput by 1.33x.

In a later work, Didona et al. [23] proved that COPS-SNOW’s protocol induces an extra over-

head on writes that jeopardizes performance even in read-dominated workloads. With this in mind,

they proposed Contrarian [23], which respects the non-blocking and single-version SNOW proper-

ties [56] but requires two rounds of communication. The system relies on a stabilization protocol

to track causality. However, in contrast with Cure and GentleRain, it uses a HLC to timestamp the

operations. Contrarian achieves higher latency than COPS-SNOW in most scenarios.

PaRiS [85], was the first TCC system built on a partially replicated data store that supports non-

blocking ROTs by relying on a novel causal dependency tracking protocol, UST, which retrieves

a stable snapshot installed in all DCs. Furthermore, like Wren, it uses a client-side cache to ensure
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read-your-writes and a HLC to increase the freshness of the snapshots. PaRiS achieves similar

latencies to an eventually consistent system at the cost of slight data staleness.

Eiger-PORT [58] improves Eiger’s original algorithm, which takes up to three rounds of com-

munication and uses linear-sized metadata, by terminating in a single round and using constant

metadata. Its design features performance-optimal ROTs without sacrificing the write’s perfor-

mance, contrary to what happens in COPS-SNOW. The core of PORT’s design lies in version

clocks, a new logical clock that captures both the ordering constraints between requests and the

stable frontier. It improves Eiger’s throughput up to three times and reduces latency up to 60%, at

the cost of increased data staleness.

Overall, most systems assume a similar architecture: a fully replicated key-value store split

into N partitions, each replicated at all M DCs. SwiftCloud supports client-side partial replication,

but only PaRiS supports partial replication on server-side replicas. Furthermore, multi-versioning

has proven essential for concurrency, isolation, and read performance in these systems because it

allows returning stale versions to the client without waiting indefinitely. However, it is insufficient

to ensure performance-optimal ROTs: computing a stable snapshot may require extra off-path

messages and metadata, and blocking reads may be necessary due to clock skew. Finally, we also

observed a trade-off between staleness and several other properties, namely availability, perfor-

mance, and the size of the metadata that encodes a version’s dependencies.

The following section classifies these systems through the lens of the NOC properties.

3.2.2 Classification of Existing Causally Consistent Systems

The NOC properties described in section 2.2.2 provide a way to analyze existing systems and

identify room for improvement in their design. In this regard, table 3.3 categorizes the systems

reviewed in the previous section according to these properties. It also identifies the clock used, the

operations provided, and the type of replication supported.

As shown in table 3.3, some systems, such as GentleRain [25], Cure [4], ChainReaction [5],

Orbe [24], and POCC [86], block ROTs until a consistent view of the data is available, thus

penalizing availability and latency. GentleRain [25], for example, blocks ROTs until the global

stable time (i.e., the last update timestamp seen by all the partitions at the DC) advances past the

dependency time of the client (i.e., the last update timestamp seen by the client). This way, it

can guarantee that the snapshot reflects any values previously seen by the client that requested the

operation.

Except for SwiftCloud [98] and PORT [58], all the systems presented in table 3.3 require

more than one round of messages to perform a ROT. Even though most systems’ ROTs take a

bounded number of rounds, in ChainReaction [5] and Occult [65], a transaction can be aborted,

resulting in an unbounded number of on-path messages, which has a similar effect to blocking.

Other algorithms, such as the ones used in COPS-SNOW [56], GentleRain [25], and Cure [4], use

additional off-path messages "whose removal affects only the correctness of read-only transac-

tions" [58, p. 335]. COPS-GT [53] and Eiger [54], on the other hand, use more than one on-path

round. Furthermore, many systems, particularly Orbe [24], Cure [4], Wren [84], Contrarian [23],
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PaRiS [85], and POCC [86], adopt a coordinator-based approach, where "a coordinator partition

is responsible for assigning a stable snapshot to a transaction that starts" [85, p. 307]. This strat-

egy results in two rounds of communication, the first to get the stable snapshot and the second to

request the values of the keys to read. On the other hand, Eiger-PORT [58] always completes a

ROT in a single round as clients specify the version from where they want to read. However, in the

"worst case scenario where every read-only transaction is issued by a brand new (or inactive) user"

[57, p. 24] and "there is no bound on clock-skew"[57, p. 24], Eiger-PORT’s approach would, on a

first request, return an arbitrarily stale value of the data, whereas in other systems the coordinator

establishes the stable frontier from which the read can be performed. In SwiftCloud [98], reads

are performed from the base version of the data store that the client holds, so they always succeed

locally without any synchronous communication with the DC provided that the client requests

keys from his interest set. Asynchronously, the client’s local state is updated through a notification

session established with a DC, and the client’s updates are transmitted to a DC through a log-based

approach.

The table also shows that most algorithms require metadata to be exchanged upon a ROT to

compute a consistent view. In COPS [53], Eiger [54], and COPS-SNOW [56], the metadata size

required in a ROT depends on the number of dependencies of the requested keys. In COPS-GT

[53], for example, in the first round of communication, the client issues a request for each key

in parallel to his local cluster, which returns a ⟨value,version,deps⟩ tuple where deps is the list

of dependencies of the key. On the other hand, in Cure [4], POCC [86], and Contrarian [23],

the metadata is linear in size concerning the number of DCs because the client exchanges his

dependency vector with the coordinator, and this vector has one entry per DC. GentleRain [25],

Orbe [24], Wren [84], PaRiS [85], and Eiger-PORT [58] use constant metadata, particularly one or

two timestamps. Swift Cloud’s [98] ROTs are performed locally and, thus, do not synchronously

exchange any metadata.

Smaller metadata, however, results in false dependencies, which inevitably leads to higher data

staleness. Furthermore, as Kakwani and Nasre argue: "even though the metadata-size required for

ROT in some systems is smaller, that cost is transferred to periodic metadata exchange messages"

[40, p. 5]. In Wren [84], for example, partitions within a DC exchange the commit timestamp

of the latest local and remote transactions they have applied. Similarly, in PaRiS [85], partitions

periodically exchange the minimum of their version vectors to compute the global stable time of

the local DC [85]. On the other hand, in SwiftCloud [98], updates are asynchronously transferred

from the clients to a DC, and a notification protocol is used to send updates to the clients according

to their interest set.

All systems that use physical clocks [5, 24, 25, 4, 86] are blocking because the clock "cannot

be moved forward to match the timestamp of an incoming ROT" [23, p. 1622]. To overcome this,

some protocols rely on HLCs [85, 84, 23] while others use logical time [53, 54, 65, 56, 58], namely

timestamps, vector clocks, version vectors, or variants of these mechanisms.

Overall, most of the systems provide ROTs. Only Eiger [54] and Eiger-PORT [58] provide

WOTs, whereas SwiftCloud [98], Cure [4], Occult [65], Wren [84], and PaRiS [85] support
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System Taxonomy Clock Replication ROT performance optimality

Non-blocking Rounds Metadata

COPS [53] ROT Logical Full ✓ ≤ 2 O(D)

Eiger [54] ROT & WOT Logical Full ✓ ≤ 3 O(D)

ChainReaction [5] ROT Logical & Physical Full ✗ ≥ 2 O(M)

Orbe [24] ROT Logical & Physical Full ✗ 2 O(1)
GentleRain [25] Snapshot & ROT Physical Full ✗ ≤ 2+o f f -path O(1)
SwiftCloud [98] Generic Logical Partial* ✓ 0 O(1)
Cure [4] Generic Physical Full ✗ 2 + o f f -path O(M)

Occult [65] Generic Logical Full ✓ ≥ 1 O(N)

COPS-SNOW [56] ROT Logical Full ✓ 1 + o f f -path O(D)

POCC [86] ROT Physical Full ✗ 2 O(M)

Wren [84] Generic Hybrid Full ✓ 2 O(1)
Contrarian [23] ROT Hybrid Full ✓ 2 O(M)

PaRiS [85] Generic Hybrid Partial ✓ 2 O(1)
Eiger-PORT [58] ROT & WOT Logical Full ✓ 1 O(1)

Table 3.3: Characterization of geo-replicated causally consistent systems that support ROTs. Partial* stands
for partial replication at the client. D stands for the number of dependencies, M is the number of DCs and
N is the number of partitions. (Adapted from [58], [85] and [23]).

generic read/write transactions. GentleRain [25] provides a snapshot that may not reflect the last

reads of the client.

While most systems only support full replication, PaRiS [85] is the only system that supports

partial replication on the server side. SwiftCloud [98], on the other hand, allows client replicas to

declare the items they want to receive updates from but requires server-side replicas to store a full

copy of the data.

Finally, considering the NOC properties, only Eiger-PORT [58] and SwiftCloud [58] exhibit

the performance-optimal properties of ROTs. Despite this, SwiftCloud [98] does not support

sharding, and PORT’s [58] data freshness relies on the assumption that clients can determine the

timestamp from where to read, either because they have performed previous transactions on the

same client session or by leveraging information from other client’s transactions conducted on the

same machine [57].

3.2.3 Recurrent Strategies to Implement Causally Consistent Systems

One of the main challenges in causally consistent distributed systems is ensuring causality in sce-

narios where data is spread across partitions and replicated across DCs. In order to avoid the

overhead of synchronous replication on each request, most systems opt for asynchronous replica-

tion. However, this decision exacerbates the challenge of guaranteeing that operations are applied

in causal order within each DC, as it becomes possible that a new version of a data item may arrive

at a remote DC before its causal dependencies.

In this regard, the literature outlines several strategies to implement causally consistent sys-

tems, which generally fall into one of the following four: dependency checking, sequencer-based,

stabilization protocols, and optimistic approaches. In the following subsections, we outline these
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strategies and characterize causally consistent systems based on the current state of the art. Ta-

ble 3.4 summarizes each strategy and its limitations.

Strategy Summary Limitations Examples

Dependency
Checking

Encode causal dependencies in meta-
data, store them together with the corre-
sponding version or operation and send
them upon replication of writes. Depen-
dency check messages are used to en-
sure that updates are only installed be-
fore their dependencies.

Metadata and dependency
checks cause
communication overhead.

COPS [53],
Eiger [54],
COPS-SNOW
[56], Orbe
[24].

Sequencer-
based

Operations are totally ordered in each
replica.

Blocking;
Scalability constraints.

ChainReaction
[5],
SwiftCloud
[98]

Stabilization
Protocols

"In general, each DC establishes a
cutoff timestamp below which it has
received all remote versions" [23,
p. 1621]. Only versions with a times-
tamp lower than this cutoff timestamp
can be made visible. Other variants use
a vector with one timestamp per DC.

Normally combined with a
coordinator-based
approach, requiring at least
two rounds of
communication in ROTs;
Blocking (when using
physical clocks), but
non-blocking otherwise.

GentleRain
[25], PaRiS
[85], Cure [4],
Contrarian
[23], Wren
[84].

Optimistic Are based on the optimistic assumption
that the dependencies of a data item will
have been received in a remote DC by
the time the client wants to access them.
The client is responsible for enforcing
causality.

Blocking or require retry;
Unbounded number of
rounds;
Reduces data staleness;
Reduces coordination
overhead in the servers.

POCC [86],
Occult [65].

Table 3.4: Recurrent strategies to enforce causality.

3.2.3.1 Dependency Checking

A possible strategy to enforce causality is to encode causal dependencies in metadata and verify

them before applying an operation (a technique often named dependency checking). In general,

with this strategy, causal dependencies are sent along upon replication of a write operation. The

receiving DCs verify if those dependencies are installed by sending dependency check messages

to the responsible partitions. The new version can only be installed when the DC has installed all

the dependencies.

Examples of systems that rely on dependency checking are COPS [53], COPS-GT [53], Eiger

[54], Orbe [24], and COPS-SNOW [56]. COPS-GT [53], for example, associates each version

of a key with a list of dependencies (i.e., other keys that causally precede it and their respective

version). In contrast, Eiger [54] tracks dependencies on operations. Moreover, while COPS [53],

Eiger [54], and Orbe [24] check dependencies upon a ROT to ensure a unified view of the data,

COPS-SNOW [56] shifts the dependency checking to write operations. This way, COPS-SNOW
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[56] makes the ROT algorithm latency-optimal. Furthermore, while COPS-GT [53] tracks and

stores explicit dependencies, Eiger [54] and Orbe [24] use logical time.

Several systems that employ this technique incorporate optimizations to reduce the number of

dependencies and dependency check messages to reduce storage and communication overhead,

hence minimizing performance degradation. COPS [53] and Eiger [54] only track the nearest

dependencies and one-hop dependencies, respectively. COPS-GT [53], on the other hand, requires

all the dependencies to support ROTs and thus relies on a different solution, garbage collection, to

discard old dependencies when they are no longer necessary for correctness. Another example is

Orbe [24], which uses a sparse dependency matrix to store the nearest dependencies. Moreover,

by leveraging the transitivity rule of causality, Orbe [24] resets the dependency matrix of a client

session after each update operation.

Overall, despite various optimizations, the number of dependency check messages in the

worst-case scenario "remains linear in the number of partitions" [25, p. 12]. However, compared

to previous works [11, 45, 12, 75] that rely on log serialization and exchange, systems employing

dependency checking do not require a single serialization point. Therefore, they allow partitioned

data stores and eliminate the scalability constraints of previous works.

3.2.3.2 Sequencer-based

First solutions based on log serialization and exchange [11, 45, 12, 75] relied on a single serial-

ization point in each replica to order the operations and then exchanged these logs "to establish

potential causality and detect concurrency between operations at different replicas" [53, p. 404].

Therefore, they could only provide CC within single node replicas, i.e., they did not support par-

titioned data stores.

A later work [5] proposed a different sequencer-based solution that uses a central process in

each replica. In particular, ChainReaction [5] uses a sequencer that orders the reads of a ROT and

all writes to ensure a consistent view of multiple data items despite concurrent writes. This solu-

tion, however, affects scalability and performance, "increasing the latency of all update operations

by one round-trip network latency within the data center" [24, p. 13]. Introducing an extra round

of communication also inhibits the system from achieving performance optimality by affecting the

one-round property.

SwiftCloud [98], on the other hand, adopts a log-based strategy where clients register updates

locally in their log and asynchronously transfer them to a DC. DCs broadcast new updates and

merge them into their logs. The system prunes the log through checkpointing to bind storage and

network overhead.

Sequencer-based techniques impose a total order of operations on each replica, which may

hinder horizontal scalability by inhibiting sharding [98] or centralizing the ordering in a single

process [5].
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3.2.3.3 Stabilization Protocols

Another common approach among the studied causally consistent systems is to employ a stabi-

lization protocol [24, 25, 4, 85, 84, 23], which guarantees that the snapshot returned to the user

has been applied across all DCs. To that end, in several timestamp-based algorithms, such as

GentleRain [25], "each DC establishes a cutoff timestamp below which it has received all remote

versions" [23, p. 1621]. Only versions with a timestamp lower than this cutoff can be made visi-

ble. In other systems, like Contrarian [23], dependency vectors, with one entry per DC, are used

instead of scalar timestamps to track causality, and "the stabilization protocol determines, in each

DC, a vector of cutoff timestamps" [23, p. 1621].

One of the challenges when using stabilization protocols is to ensure the non-blocking property

of ROTs, which according to the SNOW [56] and NOCS [58] theorems (described in section 2.2.1

and section 2.2.2), is crucial to achieving latency-optimal or even performance-optimal ROTs.

In particular, when using physical clocks, ROTs may be blocked due to clock skew to enable the

clock to catch up with the transaction’s snapshot timestamp and to ensure local and remote updates

with a timestamp lower or equal to the transaction’s snapshot timestamp have been installed.

To avoid blocking due to clock skew, Contrarian [23], Wren [84], and PaRiS [85] use HLCs,

which allow partitions to advance their clock forward to match the timestamp of an incoming ROT,

while still ensuring progress in the absence of events.

Furthermore, most stabilization-based systems use a coordinator-based approach, requiring an

extra communication round for ROTs to request the stable snapshot to a coordinator. Hence, they

disrespect the one-round NOC [58] property (described in section 2.2.2).

3.2.3.4 Optimistic

A smaller set of systems have adopted an optimistic approach to CC. Based on the optimistic

assumption that the dependencies of a data item will have been received in a remote DC by the

time the client wants to access them, "a server always returns the most recent available version of

an item, even if some of its causal dependencies have not been replicated locally" [86, p. 527].

If, however, it is the case that the client requests a dependency of a data item that is missing,

then the request must either be blocked by the server until the dependency becomes available,

which happens in POCC [86], making the system vulnerable to network partitions, or retried by

the client, like in Occult [65].

In other strategies, such as stabilization protocols and dependency checking, the response to a

read includes the most recent version of the item whose causal dependencies are known to have

been already replicated. These strategies increase the staleness of the data returned to clients and

become susceptible to slowdowns when one component of the system is lagging behind the other.

With this in mind, the optimistic strategy never delays writes to enforce consistency. Instead, it

"shifts the responsibility for the enforcement of CC from the data store to its clients" [65, p. 453],

which results in increased data visibility and "relieves the data store from the responsibility of

tracking the delivery of updates" [86, p. 527-528].
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3.2.3.5 Summary

This section outlined four main strategies for implementing causally consistent distributed sys-

tems, discussed their impact on the NOC properties, and classified the systems described in the

previous section according to these strategies.

Section 3.2.3.1 described dependency checking, a strategy used by COPS [53], Eiger [54],

Orbe [24] and COPS-SNOW [56] where causal dependencies are encoded in metadata and verified

before applying an operation. Despite optimizations, the number and size of dependency check

messages results in higher communication overhead.

Section 3.2.3.2 introduced the sequencer-based technique, which comprises log-based solu-

tions, such as SwiftCloud [98], but also the strategy used by ChainReaction [5], where a single

process totally orders the operations. This strategy may hinder horizontal scalability by imposing

a total order of operations on each replica.

Section 3.2.3.3 addressed stabilization, the prevailing technique among the systems analyzed.

This technique ensures the client performs a read from a causally consistent snapshot. To that

end, it establishes a cutoff timestamp that identifies which updates can be safely made visible.

When using physical clocks, this means that a ROTs may be blocked due to clock skew [25, 4],

which leads to disrespecting the non-blocking NOC property. To avoid blocking due to clock skew,

Contrarian [23], Wren [84], and PaRiS [85] use HLCs. However, given they adopt a coordinator-

based approach, they still require an extra communication round, disrespecting the one-round

NOC property.

Finally, section 3.2.3.4 described the optimistic approaches employed by Occult [65] and

POCC [86]. In these strategies, updates are immediately made visible, attaining greater data visi-

bility than previous strategies but potentially blocking or retying ROTs to ensure consistency with

previously read versions.

3.3 Architectural Approaches to Causal Consistency

The previous sections described the algorithms and strategies used in existing causally consistent

systems and classified them according to the NOC properties of ROTs. This section extends

the review conducted thus far by describing two architectural approaches to CC. In particular, it

describes Bolt-On’s [8] layered approach, which upgrades existing cloud storage services with

CC, proposing a storage-agnostic architecture that decouples the algorithmic implementation of

CC from replication, liveness, and durability. Moreover, it analyzes the design choices that drove

the implementation of CC in MongoDB [91], one of the first commercial databases to provide CC.

3.3.1 Bolt-on Causal Consistency

In the "Bolt-on Causal Consistency" paper, Bailis et al. [8] describe a layered and storage-agnostic

approach to CC, presenting progress toward a general architecture for causally consistent systems.

Their approach relies on a shim layer that provides CC atop a wide range of eventually consistent
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storage systems. This "bolt-on" approach separates the durability, liveness, and replication con-

cerns, already supported by existing storage services, from the consistency guarantees provided

by the shim layer.

In Bolt-on’s architecture, clients forward get and put requests to the shim layer, which works

as a client-side library. For dependency tracking, their approach considers explicit causality, where

the application must track the writes’ causal history and provide it upon a put operation. Shim

layers keep a local copy of the items in their local store, which is causally consistent by design,

and use the interface provided by the Eventually Consistent Data Store (ECDS) to persist new data

versions and propagate them to other shims.

Due to using an ECDS for write propagation, which generally has single-value register seman-

tics, their approach must consider the problem of overwritten histories. For example, if x1→ y1

and y2 happen simultaneously, y2 may overwrite y1. If the shim only sees y2, it may never learn

about x1. On the other hand, if x1 → y1 → z1 and y2 occur concurrently, and only the nearest

dependencies are stored for each version, the shim may see z1 and y2 but not x1, violating CC.

Considering this problem, the authors reformulate the correctness criteria for CC through

causal cuts, which they define as follows: "The dependencies for each write in the causal cut

should either i.) be in the cut, ii.) happen-before a write to the same key that is already in the cut,

or iii.) be concurrent with a write to the same key that is already in the cut." [8, p. 765]. A new

write may only be applied to the local store if it establishes a causal cut when merged with it.

Based on this novel definition of causality, the authors propose two algorithms. In the op-

timistic algorithm, writes are immediately applied in the local store and ECDS, and reads are

satisfied locally. Asynchronously, a resolver process fetches the ECDS for newer versions of the

keys that were recently read. In order to ensure the local store forms a causal cut, the resolver

process must recursively fetch any missing dependencies of a new version before applying it.

The optimistic approach ensures fast reads and writes but may result in poor visibility. On

the other hand, in the pessimistic algorithm, reads synchronously request the latest value from the

ECDS, which may result in multiple rounds to get missing dependencies and penalize read latency.

Both approaches may result in metadata overhead because each write must be stored with its

dependency set and keep metadata of the writing shims, represented by a vector clock.

When realized and evaluated using Cassandra as the underlying ECDS, the results suggest

higher performance for the optimistic strategy, as reads are locally answered. For the pessimist

approach, throughput and latency fall within 20% and 50% of the eventually consistent baseline,

even though it attains better visibility than the optimistic approach. These results highlight the

trade-off between staleness and read latency.

3.3.2 MongoDB

In 2019, Tyulenev et al. [91] discussed the architectural design of MongoDB, presenting one of

the few industry implementations of CC to date. This work contributes with an applied solution of
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CC that proves its applicability in large-scale industry databases. Furthermore, it combines state-

of-the-art knowledge with new ideas to satisfy both the scalability and performance requirements

and provide security and backward compatibility.

MongoDB supports replication and sharding. Each shard comprises one primary node, elected

by consensus, and several secondary nodes. Primary nodes may accept both write and read oper-

ations, while secondaries are read-only nodes, which only receive updates from the primary node.

Primary nodes handle writes by adding them to the operation log and applying them to their data

set, adopting a state machine behavior. The log is replicated to the secondary nodes, which follow

a similar behavior, applying the updates to their data sets.

When issuing read and write requests, clients can specify a concern. In the case of write

operations, the concern specifies when a write can be acknowledged, thus enabling the client to

manage the fault tolerance of its writes. In the case of reads, it allows clients to manage the

consistency and isolation properties of the data read.

The primary node uses scalar timestamps generated by a HLC to version new writes and es-

tablish the log’s order. Upon a write, the server returns the operation time to the client, which must

attach it to subsequent requests. The node that receives the request must wait until its operation log

catches up with the requested time. For security against malicious attacks, MongoDB’s nodes sign

the time returned to clients, avoiding the possibility of clients advancing the time inadvertently.

To ensure progress in the absence of writes, when a primary receives a request with a time not

contained in its operation log, it uses a no-operation to advance the clock.

The evaluation of the system suggests that the impact of enabling CC when using a majority

write concern has minimal impact on throughput. Additionally, it indicates that the read capacity

increases with the number of available nodes.

3.3.3 Summary

This section reviewed two causally consistent architectures, which enable applications to man-

age some of the system’s trade-offs and provide a general solution for implementing a causally

consistent distributed system.

Bailis et al.’s [8] work presents progress toward standardizing a solution for implement-

ing causally consistent distributed systems. They describe a storage-agnosic system architec-

ture where a shim layer upgrades the consistency guarantees of the underlying storage system.

Additionally, their work describes two alternative algorithms for guaranteeing CC, enabling the

application to manage the trade-off between staleness and read latency.

Tyulenev et al. [91] described the design choices that drove the implementation of CC in

MongoDB, proving CC’s applicability in large-scale industry databases. MongoDB’s design relies

on HLCs to timestamp events and enables clients to manage the safety properties of read operations

and the fault-tolerance of write operations by specifying additional requirements on operations.
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3.4 Evaluation Metrics

Previous architectures for geo-replicated causally consistent systems were generally evaluated

with microbenchmarks, which "constitute the first line of performance testing" [76]. "Microbench-

marks are used to measure simple and well-defined quantities such as elapsed time, rate of opera-

tions, bandwidth, or latency" [76].

Table 3.5 describes the metrics used to evaluate the implementations reviewed in section 3.2.

Overall, these metrics do not vary much across the literature, and neither do the procedures used

to assess them.

The two metrics that are typically assessed are the latency and throughput of each operation.

For comparison, ping requests are sometimes used to establish the limits imposed by the hardware.

In Orbe [24] and GentleRain [25], for example, the Echo operation is used for this purpose. Addi-

tionally, other implementations, with other consistency guarantees or strategies, are normally used

for comparison. In some systems, such as COPS [53] and Eiger [54], the authors also measure

tail latency using high percentiles, such as 95th, 99th, and 99.9th, which can help identify a small

set of requests that are taking longer than the average. "Percentiles are often used in service level

objectives (SLOs) and service level agreements (SLAs), contracts that define the expected perfor-

mance and availability of a service" [43, p. 15]. A common approach is to assess these metrics in

a saturated system.

In most studies, the system’s throughput is characterized as a function of different variables.

Commonly, one is the ratio of reads and writes, thus assessing how the system performs under

read-heavy and write-heavy workloads. The throughput is sometimes assessed as a function of

other workload parameters, such as the number of keys per read or write operation, the inter-

operation delay, among others.

In order to quantify the scalability of the system, the throughput is typically measured for

different numbers of DCs and partitions per DC.

Most systems also measure resource overhead, namely the amount of metadata exchanged,

CPU usage, and memory usage. In PaRiS [85], for instance, the authors measure the amount of

data exchanged within each DC and between DCs.

Finally, in PaRiS [85] and GentleRain [25], the staleness of the data is also measured by

calculating the visibility latency of each update, i.e., the difference between the wall-clock time

when an update becomes visible in a DC and the wall-clock time when it was received in that same

DC.

3.5 Summary

Section 3.1 described the systematic review used to survey the state of the art in this dissertation’s

domain. It first outlined the methodology and the selected data sources. Then, it described the

research questions (RQs) that drove the search process. RQ1 focuses on identifying the ideal

properties of read-heavy systems, namely the performance-optimal properties of ROTs. RQ2



3.5 Summary 57

Metric Definition

Latency Even though it represents the time that a request is waiting to be handled
[43], in the context of distributed systems, it is often used to refer to the
response time of the operation.

Tail Latency Latency experienced by a small number of requests in a system. Often
measured using high percentiles, such as the 95th, 99th, or 99.9th per-
centile, to identify the performance of a small number of requests that
are experiencing delays significantly longer than the average request.

Throughput The amount of operations that can be handled by the system in a given
amount of time.

Scalability "A measure of how adding resources (e.g. usually hardware) affects
performance. A scalable system is one that allows you to add hardware
and get a commensurate performance improvement". [29]

Message size Amount of metadata exchanged between system components.

Number of messages Number of messages sent between nodes in a given period of time.

Memory usage Measures the amount of memory used by the system or component as a
percentage of the total available memory.

CPU usage Measures the amount of CPU time used by the system as a percentage
of the total available CPU time.

Data Staleness In PaRiS [85], this metric measures the time interval between the in-
stant at which an update is received in DCi and the instant at which the
update becomes visible in DCi. In GentleRain [25], it is the time inter-
val between the instant at which the update is installed at its local DC
and the time when it becomes visible at a remote DC.

Table 3.5: Metrics used to evaluate distributed systems.

seeks to identify the properties and strategies of the existing causally consistent systems that sup-

port ROTs. RQ3 aims to identify the metrics typically used to validate and evaluate these systems.

Then it presented the inclusion and exclusion criteria, the search query used in each engine, and

the primary stages of the systematic review.

Section 3.2, which focused on RQ1 and RQ2, described concrete implementations of sev-

eral causally consistent systems with support for ROTs (Section 3.2.1), examined their properties

(section 3.2.2), and explained the main strategies used to enforce causality (Section 3.2.3).

Section 3.2.1 described the causally consistent systems identified in the literature review. Most

of them share a similar architecture, featuring a fully replicated key-value store split into N par-

titions, each replicated at all M DCs. In contrast, SwiftCloud [98] supports client-side partial

replication, and PaRiS [85] supports partial replication on the server side. Furthermore, multi-

versioning stood out as a critical factor for concurrency, isolation, and read performance. How-

ever, multi-versioning alone fails to ensure performance-optimal ROTs because computing a stable

snapshot may require extra off-path messages and metadata, and clock skew may lead to block-

ing. Additionally, a trade-off was observed between staleness and several other properties, namely
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availability, performance, and the size of the metadata that encodes a version’s dependencies.

Section 3.2.2 examined existing causally consistent systems through the lens of the performance-

optimal properties of ROTs. It addressed how the properties of the ROT algorithms of each system

relate to the type of clock they use, analyzed their interdependencies, and pointed out the leading

causes for violating each property. The usage of physical clocks is the main reason for blocking

ROTs. Except for Eiger-PORT [58], which provides single-round ROTs, and SwiftCloud [98],

where the client-replica answers the read requests, all algorithms take more than one round to

complete. However, only those where a transaction may be aborted present an unbounded number

of rounds. Some systems use extra off-path communication to coordinate a consistent view across

shards, and several systems adopt a coordinator-based approach, which results in two rounds of

communication. In most algorithms, the metadata used in ROTs grows linearly with the num-

ber of DCs due to the exchange of vector clocks or version vectors. ROT algorithms that use

constant metadata usually require extra rounds of communication. PaRiS [85] and Wren [84] de-

liver two out of three of the performance-optimal properties of ROTs. Their ROT algorithms are

non-blocking and use constant metadata, but they both use two rounds of communication. Addi-

tionally, PaRiS [85] provides partial replication, while Wren [84] assumes a fully replicated data

store. Finally, considering the NOC properties, only Eiger-PORT [58] and SwiftCloud [58] ex-

hibit the performance-optimal properties of ROTs. SwiftCloud [98], however, does not support

sharding.

Section 3.2.3 described the main strategies used to ensure CC in replicated and partitioned

systems. Dependency checking, which consists in encoding causal dependencies in metadata and

verifying them before applying an operation, leads to an extra communication overhead due to the

number and size of dependency check messages. Sequencer-based techniques impose a total order

of operations on each replica, which may hinder horizontal scalability. Stabilization protocols are

another strategy where, in general, a cutoff timestamp is defined within each DC, and only updates

below this timestamp are made visible. It usually requires extra rounds of communication to define

the cutoff timestamp. Finally, in systems that adopt an optimistic approach, clients are the ones

to enforce causality, and updates are immediately applied, which reduces data staleness but may

lead to blocking if missing dependencies are requested. Eiger-PORT [58] does not employ any of

these strategies because each trades off at least one of the desired properties of ROTs.

Then, section 3.3 reviewed two causally consistent architectures, which enable applications

to manage some of the system’s trade-offs and present progress toward standardizing an architec-

ture for causally consistent distributed systems. Bailis et al.’s [8] work describes a layered and

storage-agnostic approach to CC, where a shim layer upgrades the consistency guarantees of an

ECDS. Tyulenev et al. [91] described the design choices that drove the implementation of CC in

MongoDB, which enables clients to manage the safety properties of read operations as well as the

fault-tolerance of write operations by specifying read and write concerns.

Section 3.4, which focused on RQ3, identified the metrics used in the reviewed systems. All

the analyzed systems use microbenchmarks to measure the latency of the operations and evaluate

the system’s throughput as a function of different variables (e.g., the read/write ratio). Further-
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more, scalability is usually measured by varying the number of partitions and DCs. Data visi-

bility, which is often traded off for higher latency and throughput, is also commonly assessed by

calculating the visibility latency of each update.
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The previous chapter reviewed the state of the art of causally consistent distributed systems,

analyzing their properties and strategies and identifying the metrics used to evaluate them. This

chapter formalizes the problem under investigation. First, section 4.1 explains the open problems,

and section 4.2 defines the scope of this dissertation. Section 4.3 presents the hypothesis this

dissertation seeks to validate. Section 4.4 presents the research questions that will drive this re-

search. Section 4.5 describes the methodology used to validate the hypothesis. Finally, section 4.6

summarizes the topics covered in this chapter.

4.1 Open Problems

CC has been an attractive consistency model for achieving high availability, performance, and

intuitive behavior in geo-replicated systems because it does not incur the overhead of stronger

consistency models or the ordering anomalies of EC. In this regard, the research community has

proposed several causally consistent system implementations and fewer architectural designs, such

as the ones surveyed in this work. More recently, the prevalence of reads in real-world workloads

[15, 18, 69, 92, 100] has encouraged some of these works to focus on improving read performance

within causally consistent systems. However, fewer studies have approached the applicability of

these findings to the industry.

Existing research focuses on the algorithmic design to ensure causality, primarily within key-

value data stores, which serve as a fundamental building block for many systems but make building
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several services arduous due to their basic construction [54]. In Eiger [54], the authors addressed

part of this problem by providing a richer data model. However, another core issue resides in the

lack of general solutions for applying CC to real-world read-heavy systems, pointing toward the

need to extrapolate the literature’s knowledge into a reference architecture that generalizes to the

broad class of read-heavy systems. Ideally, to leverage the added benefits of existing cloud storage

services, the literature’s findings should be incorporated in a storage-agnostic way, akin to Bailis

et al. Bolt-on approach.

Additionally, current causally consistent systems have been evaluated for demonstration pur-

poses (e.g., using microbenchmarks). However, there remains scarce evidence on how they per-

form when realized in real-world systems that use data to enforce business rules rather than for

pure data management.

Concerning the characteristics of existing causally consistent systems, the NOC properties of

ROTs provide a new baseline to analyze previous systems and identify room for improvement in

their design. In particular, the analysis performed in section 3.2.2 indicates that only Eiger-PORT

[58] supports performance-optimal ROTs in a sharded system. Hence, all other causally consistent

systems are potential candidates for improvement. Besides, as Eiger-PORT [58] assumes full

replication of the data, to the best of our knowledge, no system provides performance-optimal

ROTs and server-side partial replication, indicating the need to assess the possibility of achieving

both properties.

Finally, even though multi-versioning is inherent to several causally consistent systems, mak-

ing it possible to achieve greater concurrency, isolation, and support stale reads, it can be further

exploited to improve the system’s auditability by integrating and expanding the core ideas of repli-

cated state machines (like Viewstamped Replication [71, 51]) with stronger value semantics. By

integrating these ideas, the system can be perceived as a succession of deterministic, atomic states,

enabling developers to reason about the system at a stable point in time.

4.2 Scope

In light of the shortcomings outlined in section 4.1, the present dissertation aims to assess whether

the results achieved in existing causally consistent key-value stores can be extrapolated into a refer-

ence architecture that generalizes to the broad class of read-heavy systems. It seeks to identify the

building blocks and strategies that enable optimal ROT performance in geo-replicated read-heavy

systems and outline how they must be assembled regardless of the service provided. In addition, it

strives to incorporate the literature’s findings in a storage-agnostic way that can leverage the bene-

fits of existing cloud storage services, namely their high availability, data accessibility, durability,

and reliability. Lastly, it aspires to improve the auditability of these systems by leveraging value

semantics.
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4.3 Hypothesis

In order to address the problems identified in section 4.2 and to achieve the goals outlined in

section 1.4, the present dissertation aims to validate the following hypothesis:

There exists a reference architecture that (1) manifests the ideal properties of geo-

replicated causally consistent read-heavy systems, (2) upgrades the consistency guar-

antees of existing cloud storage services, and (3) enables value semantics, thereby

facilitating auditing and enabling developers to reason about the system’s state and

data at a point in time.

This work aims to provide a solution for delivering CC in read-dominant workloads. To that

end, it proposes to provide a storage-agnostic reference architecture for causally consistent read-

heavy systems. This solution can empower enterprises with the necessary tools to expedite their

systems’ development and leverage the availability, performance, and intuitive behavior of CC.

Moreover, this dissertation aims to prove that the reference architecture can be designed to:

1) Manifest the ideal properties of geo-replicated causally consistent read-heavy systems.
In order to meet customer expectations and service requirements and to increase user en-

gagement, the realized reference architecture must deliver the best overall performance un-

der read-heavy workloads. Therefore, it must be optimized for ROTs, whose performance is

generally worse than non-transactional reads due to the coordination overhead to establish

a consistent view across shards. To this end, leveraging the knowledge from PORT [58] and

insights from other solutions and strategies, we aim to build a reference architecture that

manifests the performance-optimal properties of ROTs.

2) Upgrade the consistency guarantees of existing cloud storage services.
Existing cloud storage services offer a wide range of benefits, including high availability,

data accessibility, and durability, and also relieve organizations from the intricacies of data

replication and reliability. However, most services provide weaker consistency models, such

as EC.

In order to leverage the properties provided by existing storage services, the reference ar-

chitecture aims to incorporate the literature’s findings in a storage-agnostic way that, akin

to Bailis et al. layered approach, can upgrade the consistency guarantees of the underlying

storage service provided that it complies with a set of assumptions.

3) Enable value semantics, thereby facilitating auditing and enabling developers to reason
about the system’s state and data at a point in time.
Finally, the inherent complexity of geo-replicated systems makes it desirable to provide a

way to audit the system, which can be achieved by implementing the reference architecture

with value semantics, where system states can be perceived at a given time.
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4.4 Research Questions

In order to validate the hypothesis and accomplish the goals established in section 1.4, the follow-

ing research questions were formulated to guide this work:

RQ1. What are the ideal properties of a geo-replicated causally consistent read-heavy sys-
tem?
The prevalence of reads in real-world applications indicates the significance of optimizing

the latency and throughput of ROTs for improving the system’s overall performance and

meeting customer expectations and service requirements. In this regard, reviewing the re-

sults achieved in PORT [58], particularly the performance-optimal properties of ROTs, is

crucial for understanding how a read-heavy system can be designed to ensure the desired

performance.

RQ2. What properties and strategies do existing causally consistent systems employ?
In order to build a reference architecture for read-heavy systems, it is crucial to review the

architectural and algorithmic properties of existing systems, analyze their trade-offs, and

determine how their strategies for ensuring CC affect the performance-optimal properties of

ROTs identified in RQ1.

RQ3. What metrics have been used to evaluate these systems?
Given that any reference architecture must be empirically validated and evaluated to prove

its applicability, it is relevant to identify which metrics must be considered when assessing

the implementation of distributed causally consistent systems.

RQ4. Can we produce a cloud-native reference architecture for read-heavy systems that
manifests the performance-optimal properties of read-only transactions? How does it
compare with state-of-the-art causally consistent systems?
Drawing upon the review undertaken in RQ1 and RQ2, how can we produce a reference

architecture that ensures optimal ROT performance? How does it incorporate the literature’s

findings, and which trade-offs arise from this integration?

RQ5. How can this reference architecture guarantee CC above eventually consistent cloud
storage services? What trade-offs arise from offering these guarantees? Considering

the benefits of existing cloud storage infrastructure, particularly their high availability, data

accessibility, and durability, we aim to assess how the architecture can upgrade the consis-

tency guarantees of weakly consistent cloud storage systems and to determine the impact of

this decision on the metrics identified in RQ3.

RQ6. How can we realize this reference architecture to ensure value semantics?
Geo-replication and sharding are paramount in large-scale applications to ensure fault toler-

ance, minimize access latency, and handle large volumes of data. However, they impose an
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extra complexity on the system’s architecture and communication across replicas to ensure

consistency. Consequently, they make it difficult for developers to reason about the system’s

behavior, understand the flow of data, and identify the root cause of a failure. In this regard,

if the reference architecture is designed to ensure value semantics, it can provide a way to

perceive the system as a succession of atomic states, thus enabling developers to audit the

system and reason about its behavior at a point in time.

Table 4.1 maps each of these research questions to the section of the document where it is ad-

dressed.

ID Research question Related chapters

RQ1 What are the ideal properties of a geo-replicated causally consis-
tent read-heavy system?

Chapters 2 and 3

RQ2 What properties and strategies do existing causally consistent sys-
tems employ?

Chapter 3

RQ3 What metrics have been used to evaluate these systems? Chapter 3
RQ4 Can we produce a cloud-native reference architecture that man-

ifests the ideal properties of a geo-replicated causally consistent
read-heavy system? How does it compare with state-of-the-art
causally consistent systems?

Chapters 6 to 8

RQ5 How can this reference architecture guarantee CC above eventu-
ally consistent cloud storage services? What trade-offs arise from
offering these guarantees?

Chapters 6 to 8

RQ6 How can we realize this reference architecture to ensure value se-
mantics?

Chapters 7 and 8

Table 4.1: The research questions in this dissertation and where they are addressed in the docu-
ment.

4.5 Validation and Evaluation

Zelkowitz and Wallace [99] classified experimental models for technology validation into the fol-

lowing four categories:

Scientific method. Scientists develop a theory to explain a phenomenon; they propose a hypoth-

esis and then test alternative variations of the hypothesis. As they do so, they collect data to

verify or refute the claims of the hypothesis.

Engineering method. Engineers develop and test a solution to a hypothesis. Based on the results

of the test, they improve the solution until it requires no further improvement.

Empirical method. A statistical method is proposed as a means to validate a given hypothesis.

Unlike the scientific method, there may not be a formal model or theory describing the

hypothesis. Data is collected to verify the hypothesis.
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Analytical method. A formal theory is developed, and results derived from that theory can be

compared with empirical observations. [99].

The validation of the present dissertation uses both Engineering and Empirical methods.

In the first phase, the knowledge extracted from the literature review is translated into four

system architectures, which serve as the starting point for the development of the reference archi-

tecture. Following an engineering approach, the reference architecture is then iteratively built and

refined through the Architectural Tradeoff Analysis Method (ATAM) method, illustrated in fig. 4.1.

This technique resorts to a spiral model that enables an iterative evaluation of architecture-level

designs with respect to a set of quality attributes. This process culminates in three candidate ar-

chitectures. These architectures are then evaluated against ten scenarios, each targeting one of the

selected quality attributes: performance, data staleness, and consistency. Following the scenario

realization and analysis, we discuss the trade-offs of each architecture and select the one that offers

greater scalability and adaptability to existing storage services.

In the second phase, the reference architecture is realized in a prototype system, using Amazon

S3 as the underlying storage service. The prototype is deployed using Amazon Web Services

(AWS)’s cloud infrastructure and evaluated against a set of metrics: read latency and throughput,

data staleness, and goodput. We compare the prototype against its base system, Amazon S3, and

assess the trade-offs of upgrading its consistency guarantees with CC. Additionally, to empirically

validate the suitability of the prototype and its underlying architecture to read-heavy systems, we

evaluate the latency and throughput of the system under read-heavy workloads and assess how it

scales with the number of nodes and clients. Finally, we experimentally show how the system’s

state can be reconstructed through its logs, enabling the developer to reason about its behavior at

a point in time or to observe the progression of values of a particular key.

4.6 Summary

Section 4.1 outlined the shortcomings identified in the literature review, particularly the lack of

general solutions for applying CC to real-world read-heavy systems. It also highlighted the scarce

evidence on how existing solutions perform when realized in real-world systems, the need to

integrate the benefits offered by cloud storage services, and the potential for improvement in terms

of auditability. Finally, it pointed out the inexistence of a system that achieves all the performance-

optimal properties of ROTs and supports partial replication.

Section 4.2 described the scope of this work — assess how the results achieved in existing

causally consistent key-value stores can be extrapolated into a storage-agnostic reference architec-

ture for read-heavy systems. Additionally, this work aspires to make the system auditable.

Then, section 4.3 presented the hypothesis that we aim to validate:

There exists a reference architecture that (1) manifests the ideal properties of geo-

replicated causally consistent read-heavy systems, (2) upgrades the consistency guar-

antees of existing cloud storage services, and (3) enables value semantics, thereby
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Figure 4.1: Steps of the ATAM [42]. This technique resorts to a spiral model that enables an it-
erative evaluation and refinement of architecture-level designs concerning some quality attributes.
In the first phase, the scenarios and requirements are set. Then, candidate architectural views are
proposed and evaluated against each scenario. After the evaluation, the architecture’s trade-offs
are analyzed.

facilitating auditing and enabling developers to reason about the system’s state and

data at a point in time.

The main research questions that will drive this work were then outlined in section 4.4.

Finally, section 4.5 described the validation process of this dissertation. First, following an

engineering approach [99], the reference architecture is iteratively built and refined through the

ATAM method and realized in a prototype system, using Amazon S3 as the underlying storage

service. Then, following an empirical method, the prototype system is assessed based on several

metrics, namely read latency and throughput, goodput, and data staleness. The prototype is com-

pared against its base system to assess the impact caused by CC and evaluated under read-heavy

workloads to study its suitability to read-heavy systems.
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In the previous chapter, we set out to assess whether the results achieved in existing causally

consistent key-value stores could be extrapolated into a reference architecture for read-heavy sys-

tems. To that end, before delving into the development of the reference architecture, we felt the

need to extend the literature review conducted for RQ2 by extracting the high-level architectures

of some of the systems identified in our review. Leveraging the results from this abstraction pro-

cess, which we describe in section 5.1, we followed the ATAM methodology to iteratively build

and refine a set of candidate architectures. This process, which we describe in section 5.2, resulted

in a final reference architecture further detailed in the following chapter. Finally, section 5.3 sum-

marizes the topics above.

5.1 State-of-the-Art Causally Consistent Architectures

Extending the literature review conducted for RQ2, the ideation phase of the reference architecture

entailed an analysis of the architectures of two state-of-the-art causally consistent systems (PaRiS

[85] and Eiger-PORT [58]) and of the two architectural approaches described in section 3.3 (Bolt-

on [8] and MongoDB [91]).

From the systems surveyed in chapter 3, PaRiS was the only system to enable server-side par-

tial replication. Furthermore, it was one of the few systems that complied with two of the three

NOC properties, so it was worth analyzing its architecture to understand how it could be adapted

to support the one-round property. Bolt-on’s architecture takes a layered and storage-agnostic

approach to CC, thus constituting a significant reference for designing the proposed reference

architecture to support existing cloud storage services. MongoDB was one of the first industry

databases to provide CC, presenting a proven solution for efficiently implementing CC at scale.
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Finally, Eiger-PORT [58] was specially designed to guarantee the NOC properties, and thus, de-

riving its architecture provides a baseline for comparison with the remaining architectures.

Through our analysis, we identified the core architectural characteristics and building blocks

of these systems and translated them into the following high-level architectures:

• PaRiS Architecture. Based on PaRiS [85], this architecture portrays a stabilization-based

system, where any server can assume the role of coordinator or cohort, and CC is enabled

through a stabilization protocol and a client-side cache.

• Bolt-on Architecture. This architecture represents Bolt-on’s [8] layered approach where a

shim layer upgrades an ECDS with CC.

• MongoDB Architecture. Based on MongoDB’s [91] redesign, this architecture illustrates

a system where writes are sequenced in a single node per shard and replicated to secondary

nodes that only support read operations.

• Eiger-PORT Architecture. Based on Eiger-PORT [58], this architecture can support performance-

optimal ROTs by letting clients define the snapshot from which to read.

5.1.1 PaRiS Architecture

PaRiS [85] is a partially replicated key-value store that provides all but one of the NOC properties

— it uses a single timestamp to track dependencies, provides non-blocking ROTs, but it uses a

coordinator-based approach which requires two communication rounds.

PaRiS uses a stabilization protocol (UST) to ensure updates are only made visible when they

are stable across all DCs. Additionally, it uses a client-side cache to store updates not yet reflected

in the snapshot defined by the UST. PaRiS uses a single scalar timestamp for tracking dependen-

cies and a HLC to timestamp events.

The diagram in fig. 5.1 illustrates the high-level architecture derived from PaRiS’s system

description. The client side provides an interface for performing generic read/write transactions

and a private cache. Servers may assume the role of coordinator or cohort for different transactions.

In order to handle a transaction, coordinator servers may need to communicate with other partitions

(cohorts) from the local DC and possibly from remote DCs. For that purpose, servers need to

accept connections from other servers to read a set of keys and to collaborate in the 2PC protocol,

which is necessary for write transactions.

Periodically, each server is also responsible for persisting committed updates into its copy of

the key-value store and replicating updates to other replicas, which in turn must be able to receive

replication requests and apply them to their local key-value stores.

Finally, given that any node can be a coordinator and that clients may read from partitions

in other DCs, servers across all DCs must asynchronously determine the stable frontier (i.e., a

timestamp below which all servers have received all updates). Figure 5.1 illustrates PaRiS UST

protocol, which organizes the servers in a tree to compute the stable frontier efficiently.
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Figure 5.1: PaRiS architecture UML deployment/component diagram. The client-side has a li-
brary that forwards the requests to the server and a cache that ensures read-your-writes. Servers
adopt a coordinator-based approach: the coordinator partition communicates with cohort parti-
tions of the same or other DCs to request versions of keys that it does not hold and perform the
2PC protocol. Persistence and replication are handled asynchronously (Based on PaRiS [85]).

Considering PaRiS architecture, we conclude that, to avoid the two communication rounds

required to perform a ROT, a client would need to directly contact every involved partition, pro-

viding it with the transaction’s snapshot. Therefore, it would need to be capable of determining a

snapshot that is stable in every partition, even before long periods of inactivity or when it joins the

system.

5.1.2 Bolt-on Architecture

As described in section 3.3, Bailis et al. [8] proposed a layered approach to CC that separates the

safety property of data consistency from the architectural concerns of liveness, replication, and

durability. Their proposed architecture upgrades an ECDS through a shim layer that provides CC.

Thus, it represents the first direction toward standardizing an architecture for causally consistent

systems.

Bolt-on’s approach uses vector clocks to track dependencies. To ensure that the shim is always

causally consistent, it only makes a write visible to a client when that write forms a causal cut with
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Figure 5.2: UST Stabilization Protocol implemented by PaRiS [85] to identify stable snapshots.
Nodes within a DC are organized in a tree. Periodically, partitions within a DC exchange the
minimum timestamp they have seen from all replicas. The minimum of the exchanged values
(GST) identifies a timestamp below which all transactions were applied in all partitions of the DC.
Root servers propagate the GST back to the leaf servers and exchange it with the root servers of
other DCs. Each root server calculates the UST as the aggregate minimum of the GSTs seen from
all DCs. The UST identifies a timestamp below which all partitions in every DC have applied all
transactions with lower timestamps (Based on PaRiS [85]).

the current local store.

The diagrams in fig. 5.3 and fig. 5.4 illustrate the two architectural approaches proposed in this

work.

In the optimistic approach (fig. 5.3), clients contact a shim, which works as a client-side li-

brary, to perform non-transactional read and write operations. The shim handles the operations by

reading or writing in a local store. A resolver process asynchronously updates the local store by

fetching the most recently accessed keys from the ECDS.

Figure 5.3: Bolt-on optimistic architecture UML deployment/component diagram. Clients con-
tact a shim component, which works as a client-side library, to perform non-transactional read and
write operations. The shim handles the operations by reading or writing in a local store. A resolver
process asynchronously updates the local store by fetching the last accessed keys from the ECDS
(Based on Bolt-on [8]).
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In the pessimist approach (fig. 5.4), the shim tries to get the most recent version of the re-

quested keys by synchronously and repeatedly reading from the ECDS and updating the local

store until all missing dependencies are satisfied.

Figure 5.4: Bolt-on pessimistic architecture UML deployment/component diagram. Writes are
immediately applied in the local store and persisted to the ECDS. Upon a read request, the shim
component synchronously fetches the most recent version of the requested keys, recursively gets
any missing dependencies, and updates its local store (Based on Bolt-on [8]).

A vital benefit of both approaches is their modularity, separation of concerns, and ability to

support modern cloud storage services, relieving software engineers from the intricacies of data

replication and reliability and increasing data accessibility. If combined with novel ideas from the

research community, this approach could be extended with ROTs and leverage other dependency

tracking forms to reduce the metadata overhead.

5.1.3 MongoDB Architecture

In 2019, Tyulenev et al. [91] shared the design choices that drove the implementation of CC in

MongoDB, a well-known distributed database that supports replication and sharding. Given the

ubiquity of MongoDB and its consequent performance and scalability requirements, their contri-

bution is valuable for understanding the possible paths for providing CC.

MongoDB uses HLCs to timestamp events, a single timestamp to track dependencies, and

synchronizes clocks between shards by advancing the clock.

In MongoDB’s architecture (illustrated in fig. 5.5), each shard comprises one primary node

and several secondary nodes. Primary nodes may accept both write and read operations, while

secondaries are read-only nodes, which only receive updates from the primary node. Primary

storage nodes handle writes by adding them to the operation log and answer read requests by

reading directly from memory. Write nodes behave like state machines that apply the operations

from the log to the data set. The log is replicated to the secondary nodes of the same shard, which

follow a similar behavior, applying the updates to their data sets.
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Clients use a driver to dispatch read and write requests. The driver, in turn, connects to a query

router, which uses the configuration servers to fetch the configuration and route the requests to the

appropriate primary nodes.

Overall, MongoDB’s architecture offers the ability to distribute read load across secondary

nodes and can easily scale horizontally. These features may prove particularly valuable in read-

heavy systems.

Figure 5.5: MongoDB architecture UML deployment/component diagram. A driver dispatches
read and write requests to a query router, which uses the configuration servers to route the requests
to the appropriate primary nodes. Each shard comprises one primary node and several secondary
nodes. Primary nodes accept write and read operations, while secondaries are read-only nodes.
Primary nodes register the operations in an operation log, which is periodically persisted and
propagated to the secondaries (Based on MongoDB [91]).

5.1.4 Eiger-PORT Architecture

PORT [58] is a system design that provides optimal ROT performance with the best possible

consistency guarantees. When applied to Eiger’s [54] causally consistent system, it preserves its

consistency properties and upgrades its transactional protocol to ensure the three NOC properties.
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PORT’s design relies on version clocks to capture causality: the servers track the last version-

stamp of their latest write, and the client tracks the minimum of such versionstamps he has seen

from the servers (the stable frontier). This value is used to perform subsequent requests.

Figures 5.6 and 5.7 illustrate the PORT’s design when realized in Eiger. Similarly to PaRiS

architecture, a client-side library accepts transactions. However, Eiger-PORT does not support

generic transactions and does not require a coordinator server for ROTs.

As we can observe in fig. 5.6, each server accepts ROT requests from clients, which it per-

forms from a multi-versioning framework by indexing the desired key with the client-provided

timestamp. This approach eliminates the need for inter-server communication, requires a single

scalar timestamp to be transferred to each involved server, and never blocks because it enables

stale reads.

Figure 5.6: Eiger-PORT architecture UML deployment/component diagram (ROTs). All servers
accept Read-only transaction (ROT) requests from clients. To handle a ROT request, the server
indexes the version chain of the desired key using the client-provided timestamp (Based on Eiger-
PORT [58]).

As shown in fig. 5.7, Eiger-PORT’s servers also accept WOT requests. Like in PaRiS, servers

may assume the role of coordinator or cohort in the WOT protocol. However, the client interacts

directly with the coordinator and the cohorts to deliver the transaction’s snapshot. All servers

accept connections from other servers to collaborate in the 2PC protocol. Replication occurs

asynchronously to remote DCs.

Eiger-PORT’s architecture enables all NOC properties because, in contrast with most coordinator-

based approaches where the coordinator determines a snapshot that is stable across partitions or

even DCs, it uses a client-provided timestamp to perform the transaction. This architectural choice

may penalize staleness, especially when dealing with high inter-operation delays.

5.1.5 Summary

In PaRiS [85], MongoDB[91], and Eiger-PORT [58], the client process must attach a timestamp

to the requests, which will be used to determine the snapshot of the transaction. In MongoDB,

the driver component provides that functionality, while in PaRiS and Eiger-PORT, the last update

timestamp is stored in the client’s state. In both Bolt-on architectures [8], the client side provides

more complex functionality, given that causality is exclusively guaranteed by the client-side shim
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Figure 5.7: Eiger-PORT architecture UML deployment/component diagram (WOTs). Eiger-
PORT’s Write-only transaction (WOT) protocol adopts a variant of the 2PC protocol where clients
interact with all involved servers to deliver the transaction’s snapshot. Replication occurs asyn-
chronously to remote DCs (Based on Eiger-PORT [58]).

layer. Like in MongoDB, PaRiS, and Eiger-PORT, clients must track their causal history. How-

ever, Bolt-on uses explicit dependency tracking, while other approaches require a single times-

tamp.

PaRiS’s and Eiger-PORT’s servers support transactions (PaRiS enables generic transactions

while Eiger-PORT provides ROTs and WOTs). MongoDB and Bolt-on only support non-transactional

reads and writes. In PaRiS, ROTs are sent to a single server that determines the transaction’s

snapshot and then contacts the necessary servers, resulting in two rounds of communication. In

contrast, in Eiger-PORT’s architecture, requests are directly forwarded to all involved servers, sup-

plying them with the snapshot for the ROT. In MongoDB, a query router contacts all the necessary

partitions.

Like in PaRiS, Eiger-PORT uses the 2PC protocol to perform WOTs. However, in PaRiS, the

client only contacts the coordinator node, while in Eiger-PORT, the client connects directly with

every partition involved in the transaction.

PaRiS and Eiger-PORT use a multi-master architecture, whereas MongoDB uses a primary-

replica strategy where only the primary node of each shard may perform write operations.

PaRiS, Eiger-PORT, and MongoDB are multi-versioned, whereas Bolt-on is built on top of an
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ECDS that provides single register semantics. In all systems, a local data store keeps a copy of the

data either in the servers or, in the case of Bolt-on, in a client-side local store.

Except in Bolt-on’s pessimistic approach, persistence is handled asynchronously.

Regarding synchronization, PaRiS uses a gossiping protocol and heartbeats (in the absence

of updates) to track dependencies, whereas, in MongoDB, servers only advance the clock when

clients make requests with higher logical times than the server. It does not require a stabilization

protocol because only a single node sequences the writes and propagates them to secondaries. In

Eiger-PORT, given that there is no stabilization protocol, the freshness is affected by the inter-

operation delay of the clients. In PaRiS, the client cache ensures read-your-writes, and in Mon-

goDB, the local data store is always guaranteed to be causally consistent. In MongoDB, it may be

necessary to wait if reading from a secondary until the requested keys are replicated.

To sum up, PaRiS and Eiger-PORT present a multi-master architecture, enabling load dis-

tribution across all servers. While Eiger-PORT ensures performance-optimal ROTs, this comes

with the cost of increased staleness, mainly when dealing with low request frequencies. On the

other hand, PaRiS architecture requires an extra communication round but supports partial repli-

cation and keeps staleness bounded by using heartbeats in the absence of updates to ensure the

progress of the UST. Despite the potential metadata overhead, Bolt-on’s architecture stands out

for its storage-agnostic nature, providing notable advantages compared to alternative approaches

that do not leverage existing cloud storage services. Lastly, MongoDB presents a log-based strat-

egy, enabling greater auditability. Additionally, its primary-replica strategy enables balancing read

load across secondary nodes. Finally, MongoDB does not require a stabilization protocol despite

using a similar strategy as PaRiS to track causality.

5.2 Architecture Trade-off Analysis

Based on the knowledge acquired from the literature review and the abstraction process described

in the previous section, the development of the reference architecture used the ATAM methodol-

ogy. This structured technique enables an iterative refinement and evaluation of architecture-level

designs concerning some quality attributes.

This section describes the architecture trade-off analysis of three candidate architecture-level

designs. First, section 5.2.1 identifies the quality attributes the architectures will be assessed

against. Then section 5.2.2 outlines the requirements considered when designing the candidate

architectures, and section 5.2.3 lists the ten scenarios that guided the analysis. Section 5.2.4 de-

scribes three candidate architectures that resulted from iterative refinement. Finally, section 5.2.5

assesses the architectural views against each scenario, and section 5.2.6 summarizes the main

trade-offs identified throughout the analysis.

It is worth mentioning that, even though the following sections describe the evaluation linearly,

the evaluation process required an iterative refinement of the architectural views and scenarios and

a re-evaluation of the different views against these scenarios. For simplicity, we only include the

analysis of the three final candidate architectures.
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5.2.1 Quality attributes

In this dissertation, we set out to design a causally consistent reference architecture for read-heavy

systems. In this regard, the first attribute considered in the evaluation was data consistency. More-

over, considering the relevance of read latency and throughput in read-heavy systems, and the im-

pact of response time on user engagement and satisfaction, we also analyzed a set of performance-

related scenarios. However, we leave the actual performance testing for the validation stage of

this dissertation (chapter 8), focusing instead on the variables that may affect the latency of each

operation. Finally, considering the trade-offs uncovered in the literature review, the candidate ar-

chitectures were also analyzed with respect to staleness, a property often sacrificed in favor of

enhanced performance.

5.2.2 Requirements

Considering our hypothesis, we derived the following requirements (Rs) to guide the design pro-

cess of our architecture:

Consistency Requirements:

R1. The architecture must provide CC+.

R2. The architecture must support ROTs.

R3. The architecture must be able to upgrade the consistency guarantees of ECDSs.

Data Staleness Requirements:

R4. Data staleness must be bounded (i.e., in the absence of updates to a partition, the system

must ensure progress so that clients do not observe arbitrarily stale data).

We did not establish any requirement for the performance quality attribute, given that this

initial analysis does not aim to evaluate the architecture empirically but to help refine a set of

alternatives to reach a final reference architecture.

These requirements constrained the initial design space, helped define the scenarios of the

following section, and guided the refinement of the architecture.

5.2.3 Test Scenarios

For each quality attribute, we then defined a set of scenarios (Ss) that guided the design of the

candidate architectures and enabled us to assess how they would behave.

Consistency Scenarios:

S1. A client issues two consecutive writes for items X and Y and another client issues a

ROT for the same items.
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S2. Clients in different regions concurrently issue two updates to the same item.

S3. A client issues two consecutive writes for different items followed by a ROT for those

items.

Performance Scenarios:

S4. A client issues a ROT and receives its response.

S5. The ROT request load increases by a factor of 10.

S6. A client issues a non-transactional write and receives its response.

S7. The write request load increases by a factor of 10.

S8. Multiple concurrent ROTs are issued by different clients.

Data Staleness Scenarios:

S9. A single write request updates a data item, eventually becoming visible to all reading

clients.

S10. Updates stop being issued to one partition.

These scenarios served as a way to exercise the candidate architectures, assess their behavior

and trade-offs, and get insight into whether the realized architecture could meet its requirements.

In particular, scenarios S1 to S3 enabled us to make an initial assessment of the architectures’

consistency guarantees and thus provided insight into whether they would meet requirements R1
to R3. Scenarios S4 to S8 allowed us to identify the factors influencing the requests’ latency and

the system’s throughput and assess the architecture’s ability to support concurrent reads. Thus,

they provided feedback regarding the performance that it could provide, even though we did not

establish requirements for this attribute. The last scenarios provided insight into the architecture’s

ability to meet requirement R4 by understanding which factors impact staleness.

5.2.4 Architectural Views

The requirements and scenarios identified in the previous sections led to an initial set of architec-

tural views. These views were iteratively refined and combined, culminating into three candidate

architectures (CAs), each presenting a small mutation concerning the previous one.

The three candidate architectures, illustrated in figs. 5.8 to 5.10, are organized into three tiers:

the client tier, where a client-side library provides an interface for user requests and forwards them

to the servers; the computing tier, which processes the client requests and guarantees CC; and the

data tier, a weakly consistent data store that handles data replication and guarantees durability.

The architectures comprise the same physical entities: client machines, write nodes, read

nodes, and a data store. The client machines include a client-side library, which exposes two
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operations: non-transactional writes, which enable the client to set the value of a specific data

item, and ROTs, which allow clients to retrieve a set of data items. The compute tier includes two

node types: write nodes, which provide an interface for write operations, and read nodes, which

support ROTs. The data tier consists of a general-purpose data store that offers weak consistency.

Figure 5.8: Candidate architecture 1 UML deployment/component diagram. This architecture
assumes the data store guarantees strongly consistent new writes. Write requests are sequenced in
an operation log by a single write node. The log is synchronously persisted in the data store upon
a request. Read nodes synchronously fetch the most recent log upon a ROT. The architecture also
supports a log per partition.

Moreover, all architectures adopt a log-based approach where write nodes sequence write

operations either in a single log or using one log per data partition. They persist the logs through

a Log Pusher component in the data store, versioning each log with its clock value. The data store

handles replication to other regions. Read nodes use a Log Puller component to fetch the most

recent log from the data store, either synchronously or asynchronously.

All architectures assume the usage of HLCs for sequencing write operations.



5.2 Architecture Trade-off Analysis 79

CA1 - Candidate architecture 1. The first candidate architecture (illustrated in fig. 5.8) as-

sumes that the data store guarantees strongly consistent new writes. This decision restricts its

applicability to existing cloud storage services, some of which exhibit eventually consistent be-

havior. On the other hand, it ensures that read requests have access to the last version of the data.

The architecture requires operations to be ordered on a single write node, creating a single point

of failure and contention. It also requires the log to be persisted and fetched synchronously upon

each request, which may affect latency. However, it does not depend on client-side metadata and

minimizes staleness by performing synchronous reads.

Figure 5.9: Candidate architecture 2 UML deployment/component diagram. A single write node
sequences the writes in a log or uses a log per partition and asynchronously persists the logs with
the timestamp of the last write. Assuming an ECDS, clients must keep their writes in the cache
until they are stable. Read nodes asynchronously fetch monotonically increasing versions of the
log and perform ROTs from their local copy of the data.
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CA2 - Candidate architecture 2. The second architecture (illustrated in fig. 5.9) removes the

data store’s behavior restriction, making it more adaptable to eventually consistent cloud storage

services. To do so, it adds a client-side cache that ensures read-your-writes. Compared to the

previous architecture, it allows write and read nodes to asynchronously persist and fetch the log,

trading visibility for improved performance, especially of read requests. This strategy also requires

read nodes to keep track of the last log version they saw (stableTime) and return it to clients

upon a read request so that they can prune their cache. In the case of a log per partition, the

stableTime is the highest timestamp that is stable across all partitions (i.e., the minimum of the

last log timestamps seen from each partition) and only versions whose timestamp is at most as

high as the stableTime can be made visible.

Figure 5.10: Candidate architecture 3 UML deployment/component diagram. Clients forward
requests to read and write nodes through a client library. A write node sequences write operations
for a given shard in its operation log. The log is asynchronously persisted in the data store. Read
nodes periodically fetch the latest log for each partition of their region. Clients store unstable
writes in their cache.
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CA3 - Candidate architecture 3. In contrast with the previous architectural views, the third ar-

chitecture (illustrated in fig. 5.10) dedicates a write node per shard, enabling a natural distribution

of the write load without the complexity of log merging. Each write node individually sequences

operations for a given shard. Like the previous candidate architecture, it also requires a client-side

cache. Moreover, given that there is a log per partition, the stableTime is the highest timestamp

that has been seen from all partitions, and only versions with a timestamp at most as high as the

stableTime can be made visible. Additionally, clients must track the timestamp of their last

write to ensure monotonic writes. Finally, this architecture makes the visibility of new updates

to a partition dependent on the frequency of updates in the partitions of the same region. In this

regard, it is necessary to establish a synchronization strategy that enables progress in the absence

of updates.

5.2.5 Scenario realization

To evaluate the architectural views against the quality attributes, we mapped the scenarios identi-

fied in section 5.2.3 onto each candidate architecture.

During this evaluation, we considered an execution environment where a server processes a

single request from its input buffer at a time. Even though, in practice, read nodes can concurrently

handle multiple ROTs, assuming that each server uses a single thread to process client requests

simplifies the analysis for most scenarios.

Finally, for each scenario, we describe the behavior of the three candidate architectures. Given

that the three architectures share several similarities, we perform a joint analysis of all candidate

architectures for each scenario:

S1. A client issues two consecutive writes for items X and Y , and another client issues a
ROT for the same items. In CA1, when client C1 writes to X and then Y , the write node will

timestamp Y with a higher timestamp than X . Moreover, as new writes are strongly consistent, the

log with the update to Y will only be persisted after receiving the confirmation that the previous

log with X’s update was successfully persisted and replicated. Read nodes will read from the

data store the latest log (or, in the case of a log per partition, the latest log from each partition).

Therefore, depending on the time when client C2 issues the ROT, he will observe one of these

outputs: (Xold , Yold), (Xnew,Yold), (Xnew,Ynew).

On the other hand, in CA2 and CA3, the data store does not guarantee that X will be replicated

before Y . However, in CA2, writes are sequenced by a single write node in order of arrival. Thus,

in the case of a single log, Y ’s write will never be seen before X’s because the read node always

fetches the most recent log, which will either include both versions or only X’s.

In CA3 and in the case where CA2 uses one log per partition, two scenarios may occur:

(1) X and Y belong to the same partition, and thus their writes were persisted in the same log

by the same write node. This scenario resembles the one described for CA2 when using a

single log.
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(2) X and Y belong to different partitions; thus, they are sequenced in different logs. In the case

of CA2, the same write node sequences both writes in arrival order. In CA3, the write node

that performs X’s write sends back its timestamp, which the client sends in the write request

to the write node of Y , ensuring Y ’s timestamp is higher than X’s. Then, both in CA2 and

CA3, the read node only makes a version visible if its timestamp is lower or equal to the

stableTime. Therefore, even if it sees the log from Y ’s partition before the one from X’s,

a ROT will never make Y ’s update visible before making X’s.

S2. Clients in different regions concurrently issue two updates to the same item. In the case

of CA1 and CA2, updates are totally ordered by the write node. In CA1, they will also be seen

by read nodes in the same order due to the strong consistency guarantees the data store provides

for new writes. In contrast, in CA2, if two updates target the same item, each client will keep his

write in the cache to ensure read-your-writes. Therefore, clients can observe concurrent requests

in a different order. If the client whose write got the lowest timestamp keeps reading the same

data item, it will eventually observe the value of the second write when it becomes stable. In CA3,

there is a log per partition. Therefore, when multiple clients update the same item, they will be

handled by the same write node, leading to similar behavior as described for CA2.

S3. A client issues two consecutive writes for different items followed by a ROT for those
items. In CA1, a single write node timestamps new writes so that the second write will have a

higher timestamp than the first. Given that writes are strongly consistent, the second write will

only be persisted after the first. Therefore, when issuing the ROT, the client is guaranteed to read

his writes or writes that causally succeed his writes because the read node synchronously fetches

the last log from the data store upon each request.

In CA2, even though the first write will have a lower timestamp than the second, the read node

may fetch the second log before the first. Regardless, each log contains the sequence of operations,

and a read node always fetches the last log. So it always applies the operations in order and only

then makes new stable writes visible. Furthermore, if the read node returns a snapshot that does

not yet reflect the client’s writes, the client library will return the cache’s value.

CA3 behaves like CA2 in this scenario.

S4. A client issues a ROT and receives its response. Assuming an even distribution of clients

across regions, there are C/R clients per region. The worst case occurs when all clients send a ROT

to their local read node and is experienced by the client whose request is the last to be answered

(assuming a single-threaded execution). Therefore, we have the following ROT latency:

CA1: C/R∗ (RT T + tQueue + tReadDS + tParseLog + tRead ∗K)

CA2 and CA3: C/R∗ (RT T + tQueue + tRead ∗K + tPruneCache + tReadCache ∗K)

In CA1, ROT latency includes the round-trip time to the server, the time that a request waits

to be processed, and the time to synchronously fetch the logs from the data store, parse them, and
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read the desired keys. In CA2 and CA3, the read is processed without contacting the data store

(i.e., tReadDS and tParseLog are removed). Furthermore, in these architectures, the server’s response

includes the timestamp that identifies the stable time across partitions, enabling the client to prune

his cache. So, read latency also includes the time to prune the cache and read the desired versions

(tPruneCache + tReadcache ∗K).

S5. The ROTs request load increases by a factor of 10. In all architectures, assuming a single-

threaded execution, the latency of ROTs increases by ten in the worst-case scenario where all

requests arrive simultaneously.

S6. A client issues a non-transactional write and receives its response. A single node handles

all the writes in CA1 and CA2. Thus, if we have C clients, the worst case occurs when all clients

send an update to the write node and is experienced by the client whose request is the last in

the queue. In CA3, there is one write node per partition, so the worst case occurs if all clients

issue a write request for the same partition. If requests are evenly distributed across write nodes,

multiple write requests can be handled simultaneously. The architectures enable the following

write latency:

CA1: C ∗ (RT T + tQueue + tWrite + tSerializeLog + tWriteDS + tRep)

CA2: C ∗ (RT T + tQueue + tWrite)

CA3: C ∗ (RT T + tQueue + tWrite) or C/P∗ (RT T + tQueue + tWrite)

In CA1, the write is performed synchronously to leverage the strong consistency guarantees of

the data store, thus taking the time needed to serialize and persist the logs as well as the replication

time (tSerializeLog + tWriteDS + tRep). In CA3, the writes can be parallelized if targeting different

partitions.

S7. The write request load increases by a factor of 10. In CA1, if the rate of updates increases

by 10, the write latency and log size increase by the same factor in the case of a single log. If

using a log per partition, and requests are evenly distributed across partitions, each log increases

by 10/P. Assuming the log is replicated in all R regions, the storage size increases by 10∗R items.

CA2 behaves similarly, but as it pushes the log asynchronously, the rate at which the storage size

increases will depend on the frequency of log pushes.

In CA3, assuming the requests increase evenly across all P partitions, the write latency and

log size increase by 10/P in each write node. Like CA2, the storage growth will depend on the

rate of log pushes.

S8. Multiple concurrent ROTs are issued by different clients. All architectural views support

concurrent reads. In CA1, a worker thread can be used per ROT request to fetch the log, parse

it, and return the response to the user. In CA2 and CA3, each worker thread must define the
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transaction’s snapshot (i.e., the current stable time across partitions), get the most recent versions

that belong to that snapshot, and issue the response to the client.

Additionally, all architectures could support multiple read nodes per region. However, that

would require clients to be sticky to a read node in CA2 and CA3.

S9. A single write request updates a data item, eventually becoming visible to all reading
clients. In CA1, the strong consistency guarantees provided for new writes and the synchronous

reads from the data store ensure clients always see the latest value. The staleness of the writes will

depend on the time to fetch the logs from the data store, parse them and read the requested values

(tReadDS + tParseLog + k ∗ tRead). However, for each ROT, a new request must be made to the data

store.

In CA2 and CA3, given that the data store does not offer strongly consistent new writes and

that the read nodes read asynchronously and periodically from the data store, the staleness of reads

will depend on the propagation delay of the data store, on the periodicity with which the logs are

pushed and pulled and on the time to serialize and parse each log.

S10. Updates stop being issued to one partition. In CA1 and CA2, considering a single log,

the log is pushed to the data store by the write node as long as there are updates in any partition.

Thus, the staleness of the writes to other partitions will not be affected. On the other hand, in CA3
and in case CA2 is used with a log per partition, if no synchronization protocol is in place, the

staleness will depend on the partition with fewer updates. A synchronization protocol is required

to ensure progress in the absence of updates.

5.2.6 Trade-off Identification

Following the scenario realization and analysis, we can observe a trade-off between staleness and

performance. We can maximize visibility by synchronously applying and reading new versions

from the data store, which will jeopardize the performance of reads and writes. On the other hand,

we can have periodic accesses to the data store, abiding frequent synchronous writes and reads but

penalizing visibility.

Concerning the adaptability of the candidate architectures, CA1’s strong assumptions regard-

ing the storage layer make it inapt for most eventually consistent data stores. On the other hand,

both CA2 and CA3 require additional logic both on the client to ensure read-your-writes (i.e., the

client cache) and on read nodes to compute the stableTime.

In comparison with CA2 and CA1, CA3 provides greater scalability by splitting the write load

across multiple write nodes at the cost of increased data staleness. Moreover, in the absence of

updates, CA3 requires that write nodes persist the log with their new clock value to ensure the

progress of the stableTime.

In CA2 and CA1, having a single log requires read nodes to keep track of the entire data set.

On the other hand, in CA1, using a log per partition requires the read node to fetch not one but

many logs synchronously. Having a log per partition requires more server-side logic to identify
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the stableTime in CA2 and CA3. However, it enables read nodes to only keep track of a partial

set of the data store.

Our analysis indicates that CA3 offers greater scalability by partitioning the write load across

write nodes. It is also more adaptable to eventually consistent storage services and provides a way

to balance the trade-off between visibility and performance by adjusting the frequency with which

the logs are pushed and fetched from the data store. More importantly, CA3 subsumes both CA1
and CA2, which led us to select it as our reference architecture.

5.3 Summary

This chapter has presented this work’s initial research and contributions. This process aimed to

collect additional knowledge regarding the architectural designs of existing causally consistent

systems and to build an architecture that responds to our hypothesis by incorporating the acquired

knowledge into a reference architecture.

In a first contribution (section 5.1), we extended the literature review conducted for RQ2 by

translating some of the systems and approaches identified in our review into high-level architec-

tures. This analysis resulted in a more practical understanding of the architecture and trade-offs

of each system. Most importantly, it provided relevant insights for developing the reference archi-

tecture.

In a second phase (section 5.2), leveraging the results from the literature review and the in-

sights provided by the architectural analysis described above, we applied the ATAM methodology

to iteratively build, refine and evaluate a set of candidate architectures. During this process, we

set the quality attributes that would drive the analysis: consistency, performance, and staleness.

We then set the architecture requirements and assessed the behavior of each candidate architecture

under ten usage scenarios. This process culminated in the proposed architecture, detailed in the

following section.
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The previous chapter outlined the preliminary contributions of this work, covering the study of

the architectural designs of some state-of-the-art systems and the architectural trade-off analysis

of three candidate architectures. This chapter addresses RQ4 by presenting the reference architec-

ture that resulted from our initial contributions and comparing it with the works identified in the

literature review.

First, section 6.1 describes the design of the reference architecture. Then, section 6.2 compares

the reference architecture with several works studied in the literature review. Finally, section 6.3

provides a brief summary of this chapter’s topics.

6.1 Reference Architecture

This section presents progress towards providing a general solution for applying CC to real-world

read-heavy systems by describing the design of the proposed reference architecture.

First, section 6.1.1 synthesizes the core components and characteristics of the reference archi-

tecture. Then, section 6.1.2 justifies some of our design choices, such as the type of clock, the de-

pendency tracking strategy, and clock synchronization. Section 6.1.3 states the assumptions about

the underlying data store, client-server communication, and data partitioning. The subsections that

follow describe the checkpointing strategy (section 6.1.4), garbage collection (section 6.1.5), and

fault tolerance (section 6.1.6).

86
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6.1.1 Architecture Description

Figure 6.1: Reference architecture UML deployment/component diagram. Clients forward re-
quests to read and write nodes through a client library. A write node sequences write operations
for a given shard in its operation log. The log is asynchronously persisted in the data store. Read
nodes periodically fetch the latest log for each partition of their region. Clients store unstable
writes in their cache.

The proposed reference architecture, illustrated in fig. 6.1, is organized into three tiers: the

client tier, where a client-side library provides an interface for user requests and forwards them

to the servers; the computing tier, which processes the client requests and possibly implements

business rules; and the data tier, which handles data replication and guarantees durability. More

importantly, it decouples the implementation of CC, handled by the top and middle layers, from

the underlying storage service.

The client tier represents any client-side application or machine that uses the system’s library

to perform requests to the service. The client-side library interface exposes two operations: non-

transactional writes, which enable the client to set the value of a specific data item, and ROTs,
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which enable clients to request the values of a set of data items. Furthermore, it attaches the

necessary metadata to the requests and abstracts the communication with the compute layer. Each

client-side node also comprises a private cache, which stores unstable versions written by the

client (i.e., any new update that may not yet be reflected in subsequent reads). The cache is

updated upon each write request. The diagram also foresees the existence of write-only or read-

only clients, which may be the case in two-sided content-delivery services where content may be

produced and consumed by separate entities. In this scenario, clients that exclusively perform read

or write operations do not require a private cache to ensure CC.

The compute tier includes two node types: write nodes, which provide an interface for non-

transactional write operations, and read nodes, which support ROTs.

Each write node is responsible for a single data partition. Through its HLC, a write node that

receives a new write assigns it a hybrid timestamp and registers it in the operation log, which

totally orders the writes to that partition. Asynchronously, the Log Pusher persists the log in the

data store, timestamping it with the last clock value. To ensure monotonic writes, the client must

store the timestamp of his last write (lastWriteTimestamp). That timestamp must be sent in

the subsequent write request so the server may update its clock and ensure the second write gets a

higher timestamp than the first.

Read nodes are responsible for a single region. Clients issue requests to the nearest read

node. Read nodes asynchronously and periodically fetch the latest logs from the data store. They

must also determine the stableTime, the maximum version timestamp they have seen from all

the partitions of their respective region. When a read node receives a ROT request, it defines

the snapshot of that request as the stableTime. It sends the stableTime together with the

requested values so that the client may prune his cache and determine which values to return to the

user to respect causality. If, after pruning, the cache still holds a version of any of the requested

items, then the client library must return that version to ensure read-your-writes.

Additionally, in a sharded system where a shard may receive write requests at different rates,

write nodes must advance their logical clocks to ensure writes eventually become visible. In the

absence of updates, write nodes must push the log either with their current clock value or by

synchronizing with peer nodes.

Finally, the data tier handles replication between regions and guarantees the durability of the

data. The architecture supports partial replication of the data in the data tier. Additionally, it does

not assume a specific data model, thus being adaptable to different storage services.

6.1.2 Design Choices

The design of the reference architecture considered several aspects, not only at the architectural

level but also concerning the type of clock to use, the way to track the causal dependencies of each

write, and the synchronization strategy. Below, we describe the most relevant aspects considered

during the architecture’s conceptualization and justify our decisions.
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6.1.2.1 Clock Type

Based on the literature review, the available clock alternatives were the following: a) Physical

Clocks, b) Lamport Clocks, c) Vector Clocks, or d) HLCs.

Considering the need to ensure the NOC properties of ROTs, option (a) was discarded because

clock skew can result in blocking behavior or multiple retries, which disrespects the N and O NOC

properties, respectively. Option (c) would result in O(N) sized messages, which is also incompat-

ible with the C NOC property. So the choice was reduced to options (b) and (d). Both alternatives

allow advancing the clock to match the timestamp of incoming events, and version writes using a

single scalar timestamp. However, contrary to logical clocks, HLCs provide reference to physical

time, making it possible to index versions in a user-friendly way. Moreover, HLCs can advance in

the absence of updates. Given their added benefits, the choice fell on HLCs.

6.1.2.2 Dependency Tracking

The choice of using a HLC to timestamp write operations also enables tracking causality through a

single scalar timestamp. Other strategies that explicitly track dependencies or where dependency

metadata grows linearly with the number of DCs or partitions would possibly be incompatible

with the C NOC property. However, the decision to use a single timestamp to track each version’s

causal dependencies trades off the metadata overhead for a potential increase in staleness.

6.1.2.3 General Strategy

Considering the review performed in section 3.2.3, the design of the reference architecture could

have adopted one of the following strategies to enforce causality: a) Dependency Checking, b)
Sequencer-based, c) Stabilization Protocol, d) Optimistic approach, or e) PORT’s approach [58].

However, given the requirement for performance-optimal ROTs, options (a) and (d) were dis-

carded, the first because it is incompatible with constant metadata and the second because it either

requires blocking or multiple retries. In the literature, option (c) was generally coupled with a

coordinator-based approach, where ROTs required two communication rounds. Option (b) may

inhibit horizontal scalability by introducing a single element to sequence writes. In PORT’s de-

sign, new or inactive clients may see arbitrarily stale data.

All options considered, the proposed architecture combines strategies (c), (d), and (e) with

the architectural approaches described in section 3.3. Similarly to sequencer-based approaches,

it totally orders writes in write nodes. However, instead of having a single sequencer process

per replica, it uses one write node per shard. Like stabilization-based approaches, read nodes

determine the stable frontier from where it is safe to read. Finally, like PORT, ROTs take a single

round of communication to the server.
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6.1.2.4 Clock Synchronization

In a sharded system, shards may receive write requests at different rates. Regardless, in the absence

of updates to a shard, the system must not indefinitely delay making the writes from other shards

visible. To that end, most systems use heartbeats to communicate the clock value of a shard that

has not processed new writes for some time. When using physical clocks, on the other hand,

visibility may depend on NTP synchronization. In the proposed architecture, if a write node does

not apply a write for ∆ time, a synchronization strategy must be used to ensure progress. To that

end, a node may synchronize its clock with other write nodes and persist the log with its new

clock value. Given the usage of HLCs, another alternative is to use the current clock value, which

advances in the absence of events, to timestamp the log. The architecture does not enforce a

concrete strategy, leaving this decision to the implementation.

6.1.2.5 Read and Write Nodes

The reference architecture decouples reads and writes by adopting an architecture where write

nodes handle the write requests issued for their respective shard and read nodes handle ROTs

issued for items available in their region. Regardless of using one write node per shard, this

choice results in higher write latency than multi-master approaches. However, assuming partitions

are disjoint, it avoids concurrent conflicting writes because each write node can independently

queue and process write requests in order of arrival. Additionally, it allows the system to scale

independently. In particular, in read-heavy systems, additional read nodes can be allocated to

handle increased read load without affecting the ordering of operations.

Furthermore, since read operations do not modify data, read nodes can execute them concur-

rently without conflicts. Also, as writes are asynchronously persisted, write nodes may require

disk access to back up new writes before they are stored in the storage service (e.g., writing in a

memory-mapped file before returning the response to the user). By decoupling reads and writes,

any contention due to I/O operations does not affect reads. Finally, in two-sided platforms, where

content consumers and producers require different functionalities, separating read and write han-

dling enables each component to cater to the specific needs of its audience.

6.1.2.6 Replication

Partial replication provides a way to balance propagation and storage costs. However, upon low

data locality in the data access pattern, requests may be forwarded to remote servers, impact-

ing read performance. Furthermore, partial replication makes it more challenging to ensure CC

because ROTs may need to read from remote servers whose stableTime may differ from the

client’s local server. To solve this problem, PaRiS [85] UST protocol establishes a stableTime

across all servers. Even though the reference architecture could support a similar strategy, that

would result in two rounds of communication for ROTs — one to get the transaction’s snapshot

and a second round to the remote DCs. Therefore, the architecture assumes data can be partitioned
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to ensure full data locality, implying that client requests are restricted to the partitions of their lo-

cal server. This choice ensures a lower propagation time of the requests and reduces staleness

compared to a global stabilization protocol at the cost of constraining the partitioning strategy.

Regardless, read nodes may keep track of the full data set.

6.1.2.7 Separation of Concerns

This cloud-native reference architecture integrates novel ideas from the literature into a layered

architecture akin to the one proposed by Bailis et al. [8], separating the causality concern from

data replication and durability. Consistency guarantees are enabled by the two top layers using a

strategy similar to Wren’s [84] and PaRiS’s [85], where a ROT is assigned with a snapshot that

is the union of a causal snapshot installed by every partition in the client’s local region and a

client-side cache. However, the ordering of operations is handled by the write node of each shard.

The underlying data store manages replication and durability. By decoupling these properties,

we effectively bring portability to CC, providing an architecture that can upgrade the consistency

guarantees of existing cloud storage services, which provide higher data accessibility and relieve

organizations from the intricacies of data replication and reliability.

The reference architecture is divided into three tiers, promoting modularity and allowing for

better maintainability and technology independence between tiers. The top client-side tier pro-

vides an interface for end users or applications to perform the desired requests, abstracting the

connection with the compute tier through a client library. The computing tier is responsible for

processing client requests, implementing business rules, and persisting the data in the data tier.

Finally, the data tier handles data replication and guarantees durability.

6.1.3 Assumptions

The reference architecture’s design holds onto the following assumptions (As) regarding the un-

derlying storage service, the distribution of client requests, and the partitioning of the data:

A1. The data store enables managing replication and specifying the partition in which a

write or read request must be performed.

A2. The data store ensures eventual convergence.

A3. The data store’s interface allows retrieving a data item whose identifier is lexicographi-

cally higher than the specified value.

A4. A read node in region R must only respond to read requests for partition P if it stores a

replica of P.

A5. A write node W responsible for partition P must only accept write requests for objects

stored in partition P.

A6. Data partitions are disjoint.
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A7. Clients are sticky to a read node.

A8. Client requests are restricted to the partitions of their local read node.

A9. A client only sends a request when it has received the response for the previous one.

Assumption A1 is necessary to ensure that write nodes can specify the data partition where

they want to persist the log. It also allows read nodes to specify where to read from and may

enable more efficient placement of the servers to minimize the latency of client requests and the

round-trip time to the storage layer.

Assumption A2 guarantees that all replicas eventually converge to the same state, which is

required to ensure liveness.

Assumption A3 requires that items can be range filtered by their identifier, which is necessary

to ensure read nodes can retrieve monotonically increasing log versions.

Assumption A4 ensures that read nodes do not violate consistency by answering a request for

a partition for which they are not responsible. Similarly, A5 ensures the correctness of the log by

impeding write nodes from registering an update in the log of another shard.

In A6, we assume that each partition stores a non-overlapping subset of the data. This as-

sumption is recurrent in the literature because it simplifies replication and consistency. In our

case, it also facilitates building a log per shard and avoids the complexity and overhead of log

synchronization.

To guarantee that each client session will always see monotonically increasing versions of the

data, A7 requires clients to be sticky to a read node. The reference architecture may be extended

to overcome this restriction, but we decided to leave that enhancement for future work section 9.6.

In this regard, A8 restricts client requests to partitions available in their local read node.

Finally, A9 assumes that each client may only issue a single request at a time, making it simpler

to ensure CC across a client session.

6.1.4 Checkpointing

The reference architecture relies on log-sequencing to establish a total order among each shard’s

versions. Therefore, it was necessary to establish a log pruning strategy to avoid unbounded

growth of the log and the resulting storage and network overhead.

In this regard, write nodes periodically replace a prefix of the log with a checkpoint. However,

due to the lack of ordering guarantees of the storage layer, write nodes must first determine when it

is safe to perform a checkpoint without compromising the consistency guarantees of the reference

architecture. Otherwise, as read nodes always fetch the most recent log from the data store, the

read node may miss a version pruned by a recent checkpoint.

For example, consider a system configuration where a read node R is responsible for partitions

P1 and P2, which hold keys x and y, respectively. W1 and W2 are the write nodes responsible for

partitions P1 and P2. xn represents version n of key x, and txn represents the timestamp of version

xn. Now, consider the following scenario:
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• A client writes versions x1, y1 and x2 in this order, which get timestamped with tx1 , ty1 and

tx2, where tx1 < ty1 < tx2 .

• W1 pushes its log with versions x1 and x2 and timestamps it with tx2 .

• W2 pushes its log with y1 and timestamps it with ty1 .

• The client writes version x3, which gets timestamped with tx3 .

• W1 replaces the prefix of the log by a checkpoint, keeping only its last version (x2). It then

attaches the newest version x3 to the log and pushes it with timestamp tx3 .

• R fetches the last log of each partition and gets the logs with tx3 from partition P1 and ty1

from partition P2. It computes the stableTime, which would be ty1 . Due to the checkpoint

performed in W1, R does not see any version of x stable in ty1 . Therefore, upon a ROT

of keys x and y, R would return a null value for x and version y1 for y, even though x1

happened-before y1, violating CC.

To overcome possible anomalies that may result from performing an arbitrary checkpoint, a

write node must determine the minimum stableTime across the read nodes responsible for his

partition. The architecture does not enforce a concrete approach to determining the minimum

stableTime, leaving this decision to the implementation. However, it requires that write nodes

use that value to perform the checkpoint: they must remove all but the latest version that happened

before the minimum stable time (i.e., leaving the nearest version of each item whose timestamp

either matches the minimum stable time or happened before that timestamp).

6.1.5 Garbage Collection

To prevent memory leaks and keep storage bounded, discarding older versions of the data from

compute nodes and deleting old log versions from the data store is also necessary.

To that end, read nodes may garbage collect the versions from each item’s version chain whose

timestamp is lower than their stableTime, provided that the latest stable version of each item is

preserved and that no active ROT has a lower snapshot. The checkpointing protocol introduced in

the previous section also makes it possible to garbage-collect old data versions at the write node.

Considering the architecture’s applicability to cloud-native systems and its support for cloud

storage services, which may charge for storage capacity and usage, a garbage collector process

may periodically discard old log versions, keeping the number of log versions bounded. How-

ever, when combined with the checkpointing strategy described in the previous section, garbage

collection at the data store will impact the number of stale versions available and, thus, may in-

hibit developers from auditing the system. In this sense, it is essential to balance the trade-off

between storage cost and loss of historical versions of the data. This detail is further discussed in

the validation of our solution section 8.5.
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6.1.6 Fault Tolerance

Assuming that failures are fail-stop (i.e., "components halt in response to a failure instead of

operating incorrectly or maliciously"[53, p. 409]) and that the underlying storage service follows

the assumptions described in section 6.1.3, this section covers the minimal set of failure-scenarios

and discusses possible failure-recovery techniques.

Client Failure

Similarly to PaRiS [85] and Wren [84], a client failure does not affect the system or other clients

because clients only store metadata regarding their last write operations, which have already been

committed to the data store. From the server’s perspective, the client stopped issuing requests,

so no recovery is necessary. For clients, however, the loss of state may affect the causality of his

operations (i.e., CC is only guaranteed within a session).

A possible approach to support client state losses would be to adapt the client recovery protocol

of ViewStamped Replication [51] but have the client sequence his requests with a vector clock with

one entry per partition.

Another possible issue, however, may arise if the client connects to another read node when

it recovers because the read node’s stableTime may be lower than the last one observed by the

client. This scenario and other possible client failure modes are left for future work.

Write Node Failure

In order to ensure durability when a write node fails and recovers, a write must be confirmed to

the client only after storing the log on disk (e.g., using a memory-mapped file). Because writes are

idempotent, if the write node fails by not responding, the client library may adopt an exponential

backoff technique to retry the request.

When a write node fails and recovers, it may recover the log from the disk. Since write nodes

handle one request at a time, the last write may have been registered on the log but not confirmed

to the client. In that case, the write node may need to store metadata about the client of the last

request it was processing to ensure that the client stores the new version in the cache and updates

his lastWriteTimestamp.

In case of hardware failures, a backup write node may fetch the latest log from storage and

advance the clock accordingly. The checkpointing protocol improves the recovery time. The write

node may, however, have failed before storing the log in the data store. In that case, some cloud

storage services offer robust recovery solutions (e.g., Amazon EBS volumes are automatically

replicated to protect against failures and can be attached to other machines). Another alternative

would be to use a replication recovery protocol where fail-over nodes handle the same operations.

In order to support additional failure modes, the write node may be adapted to use a robust

state machine replication protocol (e.g., [51]). Other failure recovery strategies are discussed in

the future work section.
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The failure of a write node also blocks the progress of the stableTime on the read nodes,

but only as long as the node has not recovered or a backup has not taken over.

Read Node Failure

Suppose a read node fails by not responding. In that case, the client may perform an exponential

backoff to retry the request. After some retries, the client may fail over to another read node

(if available). In this case, the protocol may be extended so that the client library stores the last

stableTime seen by the client and sends it to the fail-over read node to ensure the client always

observes a causally consistent snapshot of the data. If a snapshot is not available, the read node

may respond with an error message. While the new read node is not up to date with the previous

one, the client library may retry the read operation, avoiding a synchronous read on the read node.

When replacing a read node, that node may recover the log from the data store, determine the

stableTime and proceed like a fail-over node.

Data Store Failure

Suppose a log version fails to be persisted in the data store. In that case, the write node may

combine two approaches: retry using an exponential backoff technique and, given that the log is

persisted periodically, persist the log in the next run of the Log Pusher.

6.2 Comparative Analysis

The proposed reference architecture integrates ideas from some of the systems reviewed in sec-

tion 3.2.1, which support ROTs, and from the approaches described in section 3.3, presenting

progress towards a general solution for applying CC to real-world read-heavy systems. Table 6.1

extends the table presented in section 3.2.2 with the properties of MongoDB [91] and Bolt-on [8],

which, however, do not provide ROTs.

First, like several causally consistent systems reviewed in section 3.2.1, the reference architec-

ture provides ROTs and non-transactional writes.

Similarly to MongoDB’s causally consistent implementation, each shard can only be updated

by a single node (the write node) and reads must be directed to read nodes. However, while in

MongoDB, reads may be performed from the primary, this reference architecture separates read

and write operations, making the primary a fixed write-only node.

Another similarity to MongoDB’s architecture is its log-based approach and state machine

behavior.

The reference architecture uses HLCs to timestamp events and a single timestamp to track

dependencies. That is also the case of MongoDB and of PaRiS [85], Wren [84], and Contrarian

[23], which rely on stabilization protocols to determine which updates can be made visible. How-

ever, PaRiS tolerates intra-DC requests, thus requiring the stable frontier to be computed across

all nodes. In contrast, our reference architecture assumes full data locality. Moreover, it avoids the
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System Taxonomy Clock Replication ROT performance optimality

Non-blocking Rounds Metadata

COPS [53] ROT Logical Full ✓ ≤ 2 O(D)

Eiger [54] ROT & WOT Logical Full ✓ ≤ 3 O(D)

ChainReaction [5] ROT Logical & Physical Full ✗ ≥ 2 O(M)

Orbe [24] ROT Logical & Physical Full ✗ 2 O(1)
GentleRain [25] Snapshot & ROT Physical Full ✗ ≤ 2+o f f -path O(1)
SwiftCloud [98] Generic Logical Partial* ✓ 0 O(1)
Cure [4] Generic Physical Full ✗ 2 + o f f -path O(M)

Occult [65] Generic Logical Full ✓ ≥ 1 O(N)

COPS-SNOW [56] ROT Logical Full ✓ 1 + o f f -path O(D)

POCC [86] ROT Physical Full ✗ 2 O(M)

Wren [84] Generic Hybrid Full ✓ 2 O(1)
Contrarian [23] ROT Hybrid Full ✓ 2 O(M)

PaRiS [85] Generic Hybrid Partial ✓ 2 O(1)
Eiger-PORT [58] ROT & WOT Logical Full ✓ 1 O(1)
MongoDB [91] Reads & Writes Hybrid Full - - -
Bolt-on [8] Reads & Writes Logical Full - - -

Reference Architecture ROT Hybrid Partial ✓ 1 O(1)

Table 6.1: Characterization of geo-replicated causally consistent systems. Partial* stands for partial repli-
cation at the client. D stands for the number of dependencies, M is the number of DCs and N is the number
of partitions. MongoDB [91] and Bolt-on [8] do not support ROTs; thus, they are not classified according
to the last columns. The last row classifies the proposed reference architecture (Adapted from [58], [85]
and [23]).

extra communication round required by coordinator-based approaches by partitioning read nodes

by region instead of shard.

Like PaRiS and Wren’s transactional protocol, our design requires ROTs to be assigned with a

snapshot that is the union of a causal snapshot installed by every shard in the client’s local region

and a client-side cache.

For clock synchronization and liveness, in PaRiS and Wren, servers recur to heartbeats, and

MongoDB generates a no-op to advance the clock on the primary. In this reference architecture,

nodes may persist the log with their current clock or synchronize with peer nodes. Furthermore,

like in PaRiS, where the client piggybacks the timestamp of his last write transaction hwc, and in

MongoDB, where clients attach the operationTime to subsequent operations, write nodes may

advance their clock to match the lastWriteTimestamp of the client.

Like SwiftCloud [98], the reference architecture follows a log-based approach. However,

while SwiftCloud requires servers to keep a full copy of the data store and relies on CRDTs for

convergence, our proposed architecture enables read nodes to maintain a partial copy of the data

store. It avoids the complexity of log merging by adopting a log per shard handled by a dedicated

write node.

Like Bolt-on’s approach, the reference architecture enhances modularity and supports existing

cloud storage services, bringing portability to CC. However, given our solution’s visibility and read

performance requirements, we integrate existing stabilization and sequencer-based approaches

where the version’s timestamp identifies its causal dependencies instead of requiring that each
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version explicitly tracks individual dependencies. Like Bolt-on’s optimistic algorithm, where a

resolver process asynchronously updates the local store, the reference architecture uses a Log

Puller to fetch the log asynchronously.

In Bolt-on’s work, the authors mentioned the possibility of avoiding overwrites by storing a

new data item for every write [8, p. 17] but followed a different approach due to the storage costs

of this alternative. In contrast, our reference architecture stores a new item for each write. Still,

it gets around this limitation using a log-based approach where multiple writes are batched in a

single update and through checkpointing and garbage collection, avoiding unbounded storage and

network overhead.

Finally, our reference architecture targets read-heavy systems and, thus, was designed to en-

hance read performance. In this regard, like SwiftCloud and Eiger-PORT [58], the reference archi-

tecture enables performance-optimal ROTs. However, it ensures these properties through different

design choices, which will be further analyzed in section 8.3.

6.3 Summary

In this chapter, we have discussed the core decisions and reasoning behind the proposed reference

architecture and compared it with the systems and architectures identified in the literature review,

addressing RQ4.

Section 6.1 overviewed the main components and features of the reference architecture design.

Firstly, the architecture is organized into three tiers: the client tier, where clients use the client-

side library to issue ROTs and write operations; the computing tier, consisting of server nodes

specialized in either read or write operations; and the data tier, which provides data durability

and handles replication. To timestamp events, write nodes use HLCs. The architecture combines

several strategies described in section 3.2.3. For instance, like sequencer-based approaches, write

nodes order the writes in a log. Similarly to MongoDB [91], each write node handles the writes of

a single shard. Like stabilization-based approaches, read nodes also determine the stable frontier

from where it is safe to read. Moreover, like Bolt-on [8], the architecture is storage-agnostic and

capable of upgrading the consistency of existing cloud storage services.

Furthermore, this section has described the assumptions on which the architecture is built and

outlined its checkpointing and garbage collection strategy. Finally, it briefly touched upon possible

failure recovery strategies.

Section 6.2 compared the reference architecture with the systems and approaches surveyed in

the literature review. First, regarding the clock, the reference architecture shares similarities with

PaRiS [85], Wren [84], Contrarian [23], and MongoDB [91], using an HLC to order operations. It

supports partial replication on the server side but limits clients to the partitions of their region. In

contrast, PaRiS [85] enables clients to access data in partitions of other DCs, and SwiftCloud [98]

only supports client-side replication. Like Eiger-PORT [58] and SwiftCloud [98], the proposed

architecture enables the performance-optimal properties of ROTs. Finally, by integrating the ideas
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from Bolt-on’s [8] approach, the reference architecture enhances modularity and supports existing

cloud storage services, bringing portability to CC.



Chapter 7

Reference Architecture Realization

The previous chapter justified the design choices of the proposed reference architecture. This

chapter discusses the implementation of a prototype that realizes the reference architecture using

Amazon S3 as the underlying storage service, presenting progress toward RQ5. Additionally,

it discusses how this implementation enables value semantics, touching upon RQ6. The source

code of this prototype implementation and its instructions are available in this work’s replication

package [30].

Section 7.1 starts by describing the technology, tools, and cloud services used to develop the

prototype system. Then, section 7.2 presents an overview of the system’s components. Section 7.3

describes the system’s programming interface and is followed by an overview of the state of each

system component (section 7.4) and by a description of the protocols used for ROTs and write

operations (section 7.5). Section 7.6 explains the implementation of the HLC and section 7.7

describes the asynchronous log propagation and the clock synchronization algorithm. Section 7.8

describes the checkpointing and pruning strategy and the garbage collection of stale versions.

Section 7.9 discusses how the prototype system enables value semantics. Finally, section 7.10

summarizes the topics above.

7.1 Technology Stack and Cloud Infrastructure

The prototype was developed in Java, using Maven as the build tool. It uses the AWS’s Java SDK

to interact with Amazon S3 and Amazon Elastic Compute Cloud (Amazon EC2). Amazon S3 was

used as the underlying storage service. It is an object storage service with high scalability and

durability that delivers read-after-write consistency. Amazon EC2 was used to deploy the system

components, namely the read and write nodes and the clients. It is a cloud computing service that

provides many instance types optimized for different use cases.

For client-server communication, the prototype uses Google Remote Procedure Call (gRPC), a

high-performance, open-source gRPC framework with the default Protocol Buffers for serializing

the data. For the logs, we used JSON format.

99



Reference Architecture Realization 100

Additionally, Localstack was required during the development of the prototype to emulate the

AWS cloud services in a local environment.

Lastly, to containerize the prototype system and its dependencies and make it easier to test and

deploy, we built a Docker image that can be used to run any of the system components.

7.2 System Overview

This prototype implements a causally consistent multi-versioned key-value data store, using Ama-

zon S3 as the underlying storage service. It allows clients to create or update a single key or to

extract a consistent view of a set of keys. Additionally, it supports atomic write operations, which

enable the client to conditionally set the value of a given key.

It implements two gRPC server processes and a client process destined to be deployed in the

physical entities identified in the reference architecture, namely in write and read nodes and in

each client machine. Figure 7.1 illustrates the system’s architecture and core components.

Client Process. The client process works as a client-side library and can be used by client-side

applications to perform ROTs and write operations. The client process is single-threaded, and

forwards client read requests to its designated read node and write requests to the respective write

nodes through gRPC stubs. The client process also keeps track of the lastWriteTimestamp

and stores unstable writes in a private cache.

Write Nodes. Write processes are single-threaded gRPC servers that handle write requests to a

data partition in order of arrival. They use a HLC to timestamp each write and store them in their

storage (WriterStorage). Periodically, a thread (StoragePusher) builds the log and persists

it in the Amazon S3 bucket of the respective data partition. Each Amazon S3 bucket stores the

logs of a single partition, and write nodes only persist the log in one bucket. Replication to other

buckets is specified in the bucket’s configuration and handled by Amazon S3.

Read Nodes. Read processes are multi-threaded gRPC servers that concurrently process ROT

requests. They asynchronously fetch the most recent logs of a predetermined set of partitions

from the respective Amazon S3 buckets, parse them, and update their storage (ReaderStorage).

These tasks are periodically performed by the StoragePuller. Read nodes keep track of the

stableTime, a timestamp below which all versions are stable in that node. Versions with a

timestamp above the stableTime cannot be visible to clients.

7.3 Programming Interface

The client library provides the following operations to the client:
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Figure 7.1: Prototype system components UML deployment/component diagram. The system
realizes the reference architecture using Amazon S3 as the storage service and Amazon EC2 to
deploy the servers (i.e., write and read nodes). The Client process works like a client-side
library, handling the interaction with the servers and keeping metadata of his previous writes. The
WriteNode server exposes a gRPC service that provides write operations. Write nodes use a
HLC (i.e., the HLC) to order writes and use a (WriterStorage) for storing the new versions.
A StoragePusher thread reads the versions from storage, builds the log, and persists it in
the Amazon S3 bucket of its partition. Amazon S3 handles replication to other buckets. The
ReadNode server uses the StoragePuller thread to fetch the logs of the partitions it stores
from the appropriate buckets. It updates its storage (ReaderStorage) and the metadata required
to ensure CC. Read nodes expose a gRPC service that accepts ROTs.

• ⟨V,stableTime⟩ ← requestROT(⟨keys⟩): Reads the set of keys specified in the input

parameter and returns the set of values (V ) that correspond to the state of the requested keys

at stableTime.

• writeTimestamp← requestWrite(key,value): Creates a new version of the item iden-

tified by key with value value and returns the timestamp assigned to that version.

• ⟨writeTimestamp,currentVersion⟩← requestCompareVersionAndWrite(key,value,

expectedVersion,expectedValue): If the current version of the item identified by key has

the timestamp expectedVersion and the value expectedValue, it creates a new version of that

key with value value and returns the writeTimestamp assigned to the new write. Otherwise,
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it returns the last timestamp of that key (currentVersion). If expectedValue is not defined,

the write is performed if the current version is the one specified in expectedVersion.

• ⟨writeTimestamp,currentVersion⟩← requestCompareVersionAndWrite(key,value,

expectedValue): If the current version of the item identified by key has the expected value

(expectedValue), it creates a new version of that key with value value and returns the

writeTimestamp assigned to the new write. Otherwise, it returns the last timestamp of that

key (currentVersion).

7.4 State

As described in chapter 6, the client library and server nodes must keep metadata to guarantee CC.

Client State. The client process uses a map data structure that behaves like a private cache,

keeping track of the unstable versions written by the client. For each key, the map stores the

value and timestamp of the last unstable version of that key. Additionally, to guarantee monotonic

writes, the client keeps the timestamp of his last write (lastWriteTimestamp).

Write Node State. Write nodes store the version chain of each key in a dedicated

ConcurrentSkipListMap, a thread-safe sorted map that allows efficient access to the key’s

versions by timestamp and provides the ability to get an immutable snapshot of the data in a lock-

free way. This data structure is beneficial for atomic write operations, where its lastEntry

method provides access to the last version of a given key. The keyVersions ConcurrentMap

tracks the version chain of each key. Each write node also has access to a HLC, which assigns

timestamps to new item versions. The clock implementation is further detailed in section 7.6.

Read Node State. Like write nodes, read nodes store the version chain of each key in a dedicated

ConcurrentSkipListMap. This data structure provides a floorEntry method that returns

the highest entry lower or equal to a key, enabling read nodes to access the last stable version

of a key when computing the response to a ROT. Additionally, to guarantee that read nodes see

monotonically increasing versions of each partition’s log, they also keep track of the maximum

log timestamp they have seen from each partition (partitionsMaxTimestamp) and use that

value to compute the stableTime — the maximum log timestamp that has been seen from all

partitions.

7.5 Protocols

This section describes the protocols for executing each of the operations specified above.



7.5 Protocols 103

ROT: A client performs a requestROT for a set of keys through its client-side library, which

forwards the request to the server through a gRPC message, whose format is depicted in list-

ing B.1. The read node uses the current stableTime as the transaction’s timestamp, ensuring

all keys will be read from the same causal snapshot. For each key, the read node retrieves the

last stable version (i.e., the highest version that is at most equal to the transaction’s timestamp)

using the floorEntry method described before. The response to the client includes the value of

all requested keys and the transaction’s timestamp. The client transverses its cache and removes

all versions whose timestamp is lower than the stableTime. Then, for each key requested, it

verifies if a version remains in the cache. If so, it replaces that version in the response set. Finally,

the updated set of keys is returned to the client. Figure 7.2 illustrates the flow of a ROT.

Figure 7.2: ROT request UML sequence diagram. Read nodes use the stableTime to get the
last stable version of each key from their storage and return the response to the client. The client-
library prunes stable versions from its cache using the stableTime returned in the response and
updates the versions to be returned to the client if it finds a more recent version in the cache.

Writes: A client uses the requestWrite method to write a value v to key k. The client library

builds the respective gRPC message, attaching the lastWriteTimestamp of the client, and
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redirects it to the write node that is responsible for k’s partition. The message format used for

write requests is depicted in listing B.2. The write node uses its HLC to assign a timestamp to the

new version of k and assigns value v to that version, stores the new version in k’s version chain,

and returns the version’s timestamp to the client, which updates his lastWriteTimestamp.

Figure 7.2 depicts the flow of a write request.

Figure 7.3: Write request UML sequence diagram. The client requests to read a set of keys.
The client library appends the timestamp of the client’s last write to the request. The write node
increments its clock (HLC), getting the timestamp of the new write, adds the new version to the
key’s version chain, and returns the response to the client library, which updates its cache and the
timestamp of the client’s last write.

Atomic writes: When a client issues an atomic write, the client library converts the request to

a gRPC message that, like write operations, includes the lastWriteTimestamp of the client

but also two optional fields: expectedVersion and expectedValue. The format of the

messages is specified in listing B.2. If at least one of these fields is set, the write node will first

retrieve the current version of the specified key using the lastEntry method and compare its

timestamp and value with the ones provided by the client. If they match, it can apply the write

because it processes a write at a time, and no other process handles writes to this key. The rest of

the protocol resembles the one used for writes, returning the timestamp of the new version to the

client library. If the atomic write fails, the write node returns the timestamp of the current version

of the key to the client library, which may either retry the operation or wait until the read node

reflects the current version. The flow of atomic write operations is illustrated in fig. 7.4.

7.6 HLC Implementation

The prototype features an implementation of a HLC using Java atomic variables. This implemen-

tation targets two use cases: enabling write nodes to increment the clock upon receiving a new
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Figure 7.4: Atomic write request UML sequence diagram. The client issues an atomic write to
update a key only if its current timestamp is expectedVersion and its value is expectedValue. The
client library appends the timestamp of the client’s last write to the client’s request. The write is
performed if the timestamp and value of the current key version match the ones specified in the
request. Otherwise, the request is aborted, and the timestamp of the current version is sent back to
the client.

write and synchronizing the clock with other partitions’ clocks in the absence of updates. The

base clock implementation was later expanded to support additional state tracking, but this section

focuses on the base clock implementation.

Each write node uses a HLC instance, which tracks the current clock state (HLCState) through

an AtomicReference and provides methods to drive clock state changes. Each method updates

the clock state through the built-in accumulateAndGet function, which atomically applies a

given function to the current value and returns the updated value.

A HLCState represents a hybrid timestamp, with its two components: l and c. Just like in

the original algorithm [44], the first part (l) maintains the maximum physical timestamp that has

been seen so far, and c works as a logical counter to capture the causality when l is equal in two

timestamps.

Both parts are encoded as primitive longs and initialized to zero. To generate the timestamp

that corresponds to a HLCState, each part is padded with leading zeros and encoded as a string

with a fixed size (twenty characters). Both parts are then concatenated with a "-". This encoding

enables timestamps to be lexicographically comparable, which, as explained in the next section,

was required due to the selected storage service.

In a HLC, the first component advances with physical time. However, to avoid the over-

head of making a system call per write to get the current time, we use a TimeProvider thread
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that periodically updates an internal time field with the value of the current time in milliseconds

(currentTimeMillis). This time provider is used upon a clock operation to get the current

time.

Considering the use cases previously outlined, the first requirement of the HLC implemen-

tation was to increment the clock upon the reception of an incoming event, in this case, a write

request. Clients attach the timestamp of their last write (lastWriteTimestamp) in subsequent

requests, and the timestamp assigned to the new write must be higher than this value. In this sce-

nario, the prototype implements the original algorithm for the reception of a message. Algorithm 1

presents the pseudo-code of this algorithm.

Algorithm 1 Clock algorithm — Receive write request. pt is the physical time, l is the maximum
pt value learned so far, and c is a logical counter. lprev is the l before the request, and lrecv is the l
value of the client’s last write, which is attached to the write request (based on [44]).

l←max(lprev, lrecv, pt)
c← 0
if l = lprev = lrecv then

c←max(cprev,crecv)+1
else if l = lprev then

c← cprev +1
else if l = lrecv then

c← crecv +1
end if
return f ormat(l,”− ”,c)

In the absence of updates, the second requirement was to enable write nodes to synchronize

their clocks with other nodes. To that end, nodes must be able to advance their clocks to match the

timestamp of other partitions. In this regard, the implementation provides a method that adapts the

original algorithm, advancing the clock without incrementing it. Furthermore, unlike the previous

algorithm, the physical time is not used to calculate the l component because, if all partitions

stopped receiving write requests for some time and kept synchronizing with other clocks, the

clock skew would lead to a potentially infinite number of unnecessary synchronization rounds.

Algorithm 2 illustrates this algorithm.

7.7 Log Propagation

In order to guarantee that new versions of the data eventually become visible to clients, write nodes

periodically persist the log in the Amazon S3 bucket of their partition. Read nodes asynchronously

fetch the latest logs from each of their partitions from the respective Amazon S3 buckets and

update their copy of the data. An example of the log format is illustrated in listing B.4.

This section explains the behavior of the StoragePusher and StoragePuller threads,

which map to the Log Pusher and Log Puller components of the reference architecture, persisting

and fetching the log from Amazon S3.
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Algorithm 2 Clock algorithm — Synchronization. pt is the physical time, l is the maximum pt
value learned so far, and c is a logical counter. lprev is the l before the request and lrecv is the l
value of the client’s last write, which is attached to the write request (based on [44]).

l←max(lprev, lrecv)
c← 0
if l = lprev = lrecv then

c←max(cprev,crecv)
else if l = lprev then

c← cprev

else if l = lrecv then
c← crecv

end if
return l, c

7.7.1 Persisting the Log

Periodically, write nodes update the operation log and persist it to Amazon S3 through a dedicated

thread (StoragePusher), whose behavior is illustrated in fig. 7.5. On every execution, this

thread verifies if new updates have been made since the last push. If new writes have occurred, it

uses the timestamp of the last completed write (i.e., the last write that was appended to its version

chain) to timestamp the log. Otherwise, if no new updates have occurred since the last push and

there is currently no write in progress, this thread synchronizes the clock with the clock values of

other partitions. Each write node persists its last clock value in a shared Amazon S3 bucket so

that a node whose clock is behind and did not receive new write requests can advance its clock to

match others. The StoragePusher retrieves from the storage the item versions that are ready

to push, builds the log, and persists it to Amazon S3, creating a new Amazon S3 object where the

key is the log’s timestamp, and the body is the JSON log encoded as a string. For optimization,

the JSON log is saved between executions and extended with the new versions before each push,

avoiding the overhead of building the log from scratch every time.

In order to implement this strategy for log persistence and clock synchronization, we ex-

tended the HLCState class with two new attributes (lastWrite and writeInProgress).

The lastWrite field tracks the timestamp of the last successful write (i.e., which was already

inserted in its version chain). The writeInProgress field indicates if a write is being pro-

cessed. Even though these fields are not clock components, their state determines if the clock

must be synchronized and, thus, is directly related to the current clock value.

As we can see in fig. 7.6, the write node starts in its initial state, where no new versions

are ready to persist, and no write is in progress. When a new write occurs, the clock is incre-

mented, and its value is used to timestamp the new version. The writeInProgress flag is set

to true. When this write completes, the lastWrite is set to the timestamp of the new version

so that the StoragePusher knows the highest timestamp that can be included in the log. The

writeInProgress flag is reset. If new writes are received at this stage, then the write node

repeats this procedure. When the StoragePusher executes, it uses the lastWrite field to get
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Figure 7.5: Persisting the log UML sequence diagram. Periodically, a StoragePusher thread
persists the log into Amazon S3 if there are new versions to be pushed and runs the clock syn-
chronization protocol in the absence of updates. First, the thread gets the current clock value of
the HLC and the timestamp of the last completed write. The thread is canceled if no versions are
ready to persist and a write is currently in progress. If no writes are in progress or ready to be
pushed, it tries to run the clock synchronization protocol: it retrieves the last clock values from
other partitions from Amazon S3, uses the maximum of those values to advance the clock, and,
in case no new writes occurred in the meantime, it uses the new clock value to build the log and
persists both the log and the clock value to Amazon S3. If new writes have occurred, then the
timestamp of the last write that has completed (lastWrite) is used to get the version chains
from the storage (WriterStorage), version the log and then the log is persisted to Amazon S3

.

the versions up until that timestamp, builds the log, and persists it. If, during the process, no new

writes were executed (i.e., the lastWrite field did not change), then it resets the field so that in

a future execution, the StoragePusher knows that no new writes have occurred since the last

push. When no writes occur between the executions of the StoragePusher thread, the clock is
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Figure 7.6: Write node state UML state diagram. The write node starts in State 1, where no
new versions are ready to persist, and no write is in progress. When a new write occurs, the
write node increments the clock, using its value to set the timestamp of the new version. The
writeInProgress flag is set to true, and the node moves to State 2. When this write com-
pletes, the lastWrite is set to the timestamp of the new version, and the writeInProgress
flag is reset. The node moves to State 3. If new writes are received, then the write node repeats
this procedure, now moving between State 3 and State 4. When the StoragePusher executes,
it uses the current lastWrite to get the versions up until that timestamp. After persisting the
log, if no new writes were applied (i.e., the lastWrite has not changed), then the lastWrite
is reset, and the write node moves to State 1 or State 2, depending if a write is in progress. If the
write node does not process any write requests for some time, the node remains in State 1, and the
clock is synchronized with other nodes and used to persist the log.

synchronized with peer nodes.

7.7.2 Fetching the Log

Read nodes periodically fetch the log from the Amazon S3 buckets of each partition they track.

However, given that Amazon S3 does not guarantee that logs will be replicated in order, we must

adopt a strategy that ensures read nodes see monotonically increasing versions of each partition’s

log. To that end, the log fetching strategy recurs to AWS’s ListObjectsV2 action, which accepts

a startAfter field that specifies that only keys that are lexicographically after the provided key

should be retrieved. Given that each log version is identified by a timestamp, the timestamps had

to be specially encoded to preserve the desired ordering, as described in the previous section.

Read nodes keep track of the maximum log timestamp they have seen from each partition

and use that value to perform the subsequent fetch. Upon processing the logs from all partitions,

read nodes compute the stableTime as the maximum log timestamp seen from all partitions.

Figure 7.7 illustrates the behavior of the StoragePuller and its interaction with Amazon S3

and with other system components.

7.8 Checkpointing and Garbage Collection

As described in section 6.1.4, the log must be periodically pruned to avoid unbounded storage

without compromising the correctness of the system. For that, write nodes must determine the
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Figure 7.7: Fetching the log UML sequence diagram. The StoragePuller thread periodi-
cally fetches the last log of each partition from Amazon S3. It parses the log, updates its storage
(ReaderStorage) with the new versions, and tracks the last log timestamp it has seen from that
partition. After processing the logs of all partitions, it sets the stableTime as the minimum of
the last timestamps seen from all partitions.

minimum stableTime across the read nodes that hold a copy of their data partition.

To compute the minimum stableTime, read nodes provide an additional gRPC service,

depicted in listing B.3, which allows write nodes to request the current stableTime. Every

N run, the StoragePusher requests the stableTime of each read node and computes the

minimum of those times. It then uses this value to prune the log and to garbage-collect old data

versions. Once again, the ConcurrentSkipList data structure used for storing each version

chain proved helpful for determining the versions that can be safely removed. More specifically,

the floorKey method was used to determine the last stable version of each key (stable frontier),

and the headMap method was used to get the versions before that stable frontier, which can be

safely discarded. Listings B.4 and B.5 exemplify the log’s state before and after performing a

checkpoint.

Read nodes garbage-collect stale versions using their stableTime but only if there are no

active ROTs. Otherwise, an active ROT with a smaller timestamp than the current stableTime

might lose access to the stale versions that belong to its snapshot.

Due to time constraints, we did not implement garbage collection of the logs in Amazon S3,

deferring this aspect for future work.
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7.9 Value Semantics

In this work, we defined value semantics as an interface for computation that enables the per-

ception of values in time (cf. section 2.3). Considering this definition, our system enables value

semantics through four core properties:

Deterministic State Machine Behavior

In our implementation, server nodes assume a state machine behavior. Each server starts at an

initial state, where no writes have been applied, and performs the same sequence of deterministic

operations to a set of items, reaching the same state. A set of states describes the flow of writes

applied to the data items, making it easier to reason about the system’s behavior and enabling

value semantics.

To guarantee that all replicas execute operations in the same order despite conflicting client

requests and thus avoid a non-deterministic system behavior, a write node per data partition se-

quences the writes to items of that partition in order of arrival. Upon a write request, the write

node advances its HLC and uses its value to version the operation, ensuring that applying the op-

eration moves the state forward in logical time. The new version is stored in the item’s version

chain, a ConcurrentSkipListMap that maps each version to its value. The version chains are

then encoded in a log and replicated to other replicas (the read nodes). Each replica processes

the version chains in timestamp order, only applying them when they are stable. Thus, all read

nodes that replicate the same partitions will reflect the same sequence of versions determined by

the write node.

Log Versioning

The prototype system adopts a log-based approach where not only are writes versioned, but the

log itself is also versioned with the timestamp of the last operation or, in the absence of updates,

with the current clock value. Each log represents a snapshot of the partition’s state at a given point

in time. A sequence of logs portrays the evolution of the partition’s state in time, thus enabling

value semantics.

Additionally, by using a HLC to assign the timestamps and recording the logs of each partition

in a dedicated Amazon S3 bucket, it is possible to use the physical time to index these state

versions, which may be of practical use for manual or automatic auditing, or even for end users,

as it enables system versions to be indexed using physical time.

Stable View of the Data

In order to have value semantics, the system’s state must be stable and perceivable at a given point

in time. To that end, the prototype exposes ROT operations to end users, which deliver a snapshot

of the system that is stable but possibly stale. As previously described in section 7.4, the prototype

leverages the floorEntry method provided by the ConcurrentSkipListMap data structure
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to retrieve the highest stable version of each requested item. In order to support stale reads, just

like in other multi-versioned systems, old versions of the data must be stored until a new version

becomes stable. As the stableTime progresses monotonically and tracks a stable version of the

data, the users will always see increasing versions of the system’s state.

Atomic Operations

By taking advantage of the immutability of each item version, the prototype extends the program-

ming interface defined by the reference architecture with atomic write operations, where the client

can conditionally set the value of an item.

Atomic operations enable a key’s state to transparently transition from one value to another

and therefore are essential to have value semantics, where values causally succeed like atomic

states, each resulting from applying an operation to the other.

The atomicity of these write operations enables total transparency over the system’s behavior

and determinism. If the current version corresponds to the one specified by the user, then the

system state transitions to the new version. Otherwise, the new write is not applied, and the

current version is returned to the user or application, which may decide how to proceed.

As write nodes are single-threaded, enabling atomic writes requires the last version of the item

to be retrieved with the lastEntry method of ConcurrentSkipListMap data structure and

compared against the value or timestamp provided by the user. If the write cannot be applied,

the value of the current version may not be returned to the end user because that might violate

causality, given that the write node may be ahead of the client’s local read node. Instead, we return

the timestamp of the current version so the application may decide how to proceed.

7.10 Summary

In this chapter, we have discussed the implementation of a prototype system that realizes the

proposed reference architecture, upgrading Amazon S3 with CC and enabling ROTs and atomic

writes. This reference implementation and its execution instructions are available in this work’s

replication package [30].

First, in section 7.1, we specified the technologies and cloud services used in this implemen-

tation. The prototype is developed in Java and uses AWS’s Java SDK to interact with Amazon S3

and Amazon EC2. The client-server communication uses gRPC.

Section 7.2 overviewed the system’s main components. The client process works as a client-

side library, abstracting the communication with the server nodes. Write nodes use a HLC to

order writes and periodically persist the log of their partition to the respective Amazon S3 bucket.

Amazon S3 handles replication. Read nodes periodically get the logs, update their storage and

compute the stableTime, from which ROTs can be performed.

In section 7.3, we described the programming interface of the system. The client library

exposes ROTs and write operations but also incorporates atomic writes, which enable the client to

set the value of a key conditionally.
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Section 7.4 detailed the metadata kept by each component and justified the usage of some data

structures that enable easy access to a key by timestamp.

Section 7.5 followed up on the previous section by describing the flow of each operation. Upon

a ROT, the read node uses its stableTime to get the last stable versions of the requested keys

and returns the response to the client library, which prunes the cache and updates the versions to

be returned to the client, ensuring the client reads his last writes. Upon a write request, the client

library attaches the client’s lastWriteTimestamp to the request, sends it to the write node,

which timestamps it with its clock value, adds it to the storage, and returns the timestamp to the

client. Atomic writes behave like simple writes but only succeed if the last version of the key is

the one specified by the client.

In section 7.6, we explained the base implementation of the HLC. For incoming writes, the

clock behaves like in the original algorithm, advancing to be at least as high as the client’s

lastWriteTimestamp. For synchronization with the clock values of other partitions, the al-

gorithm advances the clock to match higher incoming timestamps.

Then section 7.7 explained how the log is persisted and pulled from Amazon S3. Write nodes

persist the log using the timestamp of the last completed write and version it with this same times-

tamp. In the absence of updates, they synchronize with other clocks and persist the log with their

current clock value. Read nodes fetch the logs of their respective partitions, ensuring they al-

ways get monotonically increasing log versions of each partition. They update their storage and

compute the stableTime based on the timestamp of the last logs.

Section 7.8 described the checkpointing and garbage collection implementation. Write nodes

request the stableTime of the read nodes that store their partition and compute the minimum,

with which they prune their storage and log. Read nodes use the stableTime to garbage-collect

stale versions. Garbage collection of the logs in Amazon S3 was not implemented due to time

constraints.

Finally, section 7.9 discussed how the realized reference architecture enables value semantics

through four main properties. First, it features a determinism state machine behavior, where writes

generate a new immutable version of a key, identified by a hybrid timestamp, enabling the percep-

tion of each key’s values in time. Secondly, by versioning logs and using hybrid timestamps, we

can observe the value of a key in time and audit the state of a partition at a given timestamp or

using physical time. Thirdly, ROTs capture a snapshot of the system, enabling users to perceive

the system at a given time. Finally, atomic operations allow a key’s state to transition from one

value to another.
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The previous chapters described the proposed reference architecture for read-heavy systems

and a prototype implementation that realizes this architecture. This chapter verifies and validates

our hypothesis, addressing RQ4 to RQ6.

First, section 8.1 describes the methodology used in the verification and validation process.

Sections 8.2 and 8.3 present a high-level argument on how the reference architecture achieves

CC+ and provides performance-optimal ROTs. Then, section 8.4 describes the empirical vali-

dation of the prototype, featuring a comparison of the prototype with its base system, assessing

its scalability, and discussing possible threats to the validity of our results. Section 8.5 demon-

strates how value semantics can be leveraged to audit the system’s data at a specific point in time.

Section 8.6 summarizes the previous topics.

8.1 Methodology

To verify our hypothesis, in sections 8.2 and 8.3, we discuss how the reference architecture guar-

antees CC+ and provides performance-optimal ROTs, addressing RQ4 and RQ5.

Then, following an empirical approach, the first phase of the validation (section 8.4.1) features

a comparison of the prototype system with its base storage service (Amazon S3). This experiment

contributes to RQ5 by assessing the trade-offs of upgrading the base system with CC. The second

phase of the validation (section 8.4.2) focuses on the scalability of the prototype and its underlying

114
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architecture, assessing how it behaves under read-heavy workloads and with an increasing number

of read nodes and partitions.

Finally, to address RQ6, section 8.5 experimentally demonstrates how enabling value seman-

tics facilitates auditing the system’s data at a specific point in time.

The scripts used to perform the empirical validation and the experimental verification of the

prototype are available in this work’s replication package [30], together with the source code and

the instructions to replicate each experiment.

8.2 Consistency Guarantees

This section provides a high-level argument on how the selected reference architecture achieves

CC+. To that end, it describes how the architecture assures each of the session guarantees ex-

pressed in section 2.1.3.1, how it ensures convergence, and discusses how a ROT always returns a

causally consistent snapshot of the data.

Read-your-writes. When a client issues a write request, the write node returns the timestamp

used to version the client’s write, which the client stores in his cache. If the client issues a read

request for the same item, and the read node’s stableTime already reflects the client’s write (i.e.,

is greater or equal to the write’s timestamp), then the client observes his write or a more recent

write. Otherwise, the client library returns the client’s most recent write, which it gets from the

client’s private cache.

Monotonic-reads. Clients are sticky to a read node (A7), and read nodes always return the

last value of each item that is already stable (i.e., the version with the greatest timestamp that is

lower or equal to the stableTime). Therefore, consecutive read requests would only return non-

monotonic values if: i) the stableTime was non-monotonic or ii) the read node applied versions

with lower timestamps than the stableTime. A single write node sequences the writes to one

partition in its log in order of arrival using a monotonic clock. Each log is versioned with the clock

value of the write node and reflects previous logs. Read nodes only update their stableTime

after processing the logs of all partitions, and, for each partition, they always fetch a log with a

more recent version than the last one they have seen for that partition. The stableTime is the

minimum of the timestamps of the logs of all partitions, so it always progresses monotonically (a

stale log will not be processed after a newer one has been applied), and read nodes will never see

a recent log that includes non-applied versions behind the stableTime. Thus, neither (i) nor (ii)

holds, and the architecture ensures monotonic-reads.

Write-follows-read. By assumption A8, clients can only read and update versions from the

partitions of their local read node. Thus, if a client observes a version, it must be stable in its local

read node. So, for each partition, the read node must already have processed a log version with a

timestamp at least as high as the write observed by the client. This implies that the current clock
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value of all write nodes is at least as high as that write’s timestamp. As the clock advances on each

write, regardless of the write node the client writes to, the new write will have a higher timestamp

than the write the client initially observed in his read.

Monotonic-writes. If a client performs two writes, the second will always be timestamped be-

fore the first. In a first scenario where both writes target items from the same partition, the same

write node timestamps them in arrival order and may persist them in the same or consecutive

logs. In the first case, read nodes process them in order. In the second case, the log with the low-

est timestamp will never be read after the one with the highest because read nodes always fetch

monotonically increasing log versions of each partition.

In a second scenario where different write nodes order the writes, the client attaches the times-

tamp of his last write (lastWriteTimestamp) to the second write request, enabling the write

node to ensure the second write gets a higher timestamp than the first. In this case, even if the read

node gets the log with the second write before the one with the first, it will not make it visible until

it has received a log from the first write node because it only advances the stableTime when

it knows it has seen all versions before that time from all partitions. So, other clients will always

observe the writes in their original order.

Convergence. Convergence is guaranteed in all cases because a single write node orders the

writes for an item using the last-writer-wins rule, avoiding conflicting writes. Clients may see

different versions when reading from their cache but provided that they keep issuing ROTs, their

request will eventually retrieve a stableTime that already reflects the new version. When that

happens, the client library prunes the old version from the cache and returns the most up-to-date

version that it received from the read node.

ROTs always return a causally consistent snapshot. ROTs are performed from the snapshot

defined by the read nodes’ stableTime, a timestamp below which it has applied all versions from

all partitions. If X is within the snapshot of a ROT, then all its causal dependencies on versions

of the same partition were timestamped by the same write node in order of arrival and thus have a

lower timestamp than X . Dependencies on versions from other partitions are also guaranteed to be

in the snapshot because i) if the same client generated them, the lastWriteTimestamp sent on

each request guarantees monotonic writes, whether ii) if other clients generated them, then they

were already read from a previous stableTime, and the stableTime increases monotonically.

8.3 Performance-Optimal ROTs

One of the main goals of this dissertation was to produce a reference architecture for read-heavy

systems that manifested the NOC properties of ROTs: non-blocking, one-round communication,

and constant metadata. In this regard, this section discusses how the proposed reference architec-

ture enables each of these properties.
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Non-blocking. In each read node, the stableTime identifies a stable snapshot across all par-

titions the read node tracks. A stable snapshot with timestamp ts includes all versions with a

timestamp lower or equal to ts, indicating that every write with a timestamp lower or equal to ts

has already been applied in that read node. Hence, a ROT can be performed from a stable snapshot

without blocking. The client-side cache stores the versions written by the client not yet included in

this snapshot, allowing clients to observe monotonically increasing snapshots. This strategy was

based on Wren [84] and PaRiS’s [85] Client-Assisted Nonblocking Transactional Reads (CAN-

ToR) transactional protocol "in which the snapshot of the data store visible to a transaction is

defined as the union of two components: i) a fresh causal snapshot that every partition within the

DC has installed; and ii) a per-client cache, which stores the updates performed by the client that

are not yet reflected in said snapshot"[84, p. 1]. However, given that, in our reference architecture,

clients perform all ROTs by contacting the same read node, the snapshot can be computed within

each read node. Overall, to ensure non-blocking ROTs, the trade-off is to return a slightly stale but

stable snapshot that consists of the union of a stable causal snapshot identified by the read node

and a client-side cache.

One-round. According to PORT’s definition, "a read-only transaction algorithm has one-round

communication if it uses exactly one parallel round of on-path messages and does not have any

off-path messages. This matches the messages of simple reads: the client sends a single request to

each server holding relevant data, and each server sends a single response back" [58, p. 335].

In the proposed architecture, each read node is responsible for all partitions of its region, and

clients are restricted to the items available in their local read node. Thus, a ROT will only require

one on-path round of communication to that read node. More precisely, the client sends a single

ROT request to its local read node, which computes the transaction’s snapshot without requiring

any communication with other nodes and returns a single response with the requested versions.

Regarding off-path communication, PORT’s [58] definition says that "a message is an off-

path message for read-only transactions if its removal affects only the correctness of read-only

transactions" [58, p. 335]. However, this definition assumes reliable in-order replication, which is

not the case in our reference architecture, where an eventually consistent storage service may be

handling write propagation. Thus, no ordering guarantees can be assumed. Consequently, a write

node must learn about the minimum stableTime across read nodes to perform a checkpoint,

which requires additional communication. We would not need the extra checkpointing round for

correctness if we assumed reliable in-order delivery. Furthermore, checkpointing communication

is not only necessary for ROTs but also for non-transactional reads, which emphasizes the idea

that the messages used for checkpointing are a consequence of the delivery mechanism. For the

reasons above, we do not consider the checkpointing communication off-path for ROTs.

Constant Metadata. To perform a ROT, a client only needs to specify the keys he wants to read.

The response to his request only includes the values of the requested keys and the stableTime

at the read node. Thus it does not increase with the size of the system.
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8.4 Empirical Validation

In this section, we empirically evaluate the prototype system against a set of metrics identified in

section 3.4, such as read and write latency and throughput, data staleness, and goodput.

Firstly, we compare the prototype system against its base system, Amazon S3, identifying the

trade-offs that arise from upgrading its consistency guarantees. Then, to validate the suitability of

the prototype for read-heavy systems, we evaluate the latency and throughput of the system under

read-heavy workloads and assess how it scales with the number of nodes and clients.

The workloads used for this validation were generated from scratch, enabling us to control the

validation environment, avoid randomness, and easily detect flaws. When aiming to validate read

latency, throughput, and visibility, we used a constant write generator, where each client thread

uses a client process to generate write requests at a fixed rate, and a busy write generator, where

each client issues read requests in a closed loop, as fast as possible. When validating goodput and

write throughput, we used a busy write generator, where each client thread generates write requests

in a closed loop, and a constant read generator, where clients issue read requests at a fixed rate.

When using multiple clients to generate requests, we deployed the load generator in an Amazon

EC2 instance, enabling each client thread to execute in a separate core. Given the prevalence of

small items in several production workloads [6], the payload of each write corresponds to an 8-

byte long (12 bytes when encoded for transfer). Overall, this strategy aimed to ensure that when

measuring read performance, the write load was as constant as possible and vice-versa.

In order to avoid bursts of checkpointing and garbage collection activity, especially given the

short time frame of each experiment, we deactivated these for all experiments.

The scripts used to perform this empirical validation are available in this work’s replication

package [30], together with the source code and the instructions to replicate each experiment.

8.4.1 Comparison with Amazon S3

To show the trade-offs of providing CC atop Amazon S3, we modified our codebase and archi-

tecture, removing the compute layer and the client-side logic used to guarantee causality. In the

baseline system, clients issue requests directly to Amazon S3, providing it with the necessary

conditions to deliver the best possible performance.

Given the pay-per-request policy of Amazon S3 and that clients of the baseline system issue

their requests directly to Amazon S3 buckets, these first experiments were conducted on a simple

setting: two AWS regions (Ireland and North Virginia), a single data partition replicated in both

regions and two clients per region, one issuing read requests and the other issuing write requests.

For each system component, we provisioned a t4g.small Amazon EC2 instance (2vCPU and

2GiB of RAM), keeping the costs low for anyone who wants to replicate these experiments. For

the prototype system, we set up a read node in each region and a write node in Ireland. In both

systems, one client issues write requests in Ireland, and two clients issue read requests, one in

each region. The diagram of fig. 8.1 illustrates the deployment of the baseline system, and fig. 8.2

shows the deployment of the prototype system.
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Figure 8.1: Baseline system validation infrastructure UML deployment/component diagram. One
Amazon EC2 instance was deployed for each client. Clients issue requests to the bucket of their
region. A client process per region issues read requests, and one in Ireland issues write requests.
Amazon S3 handles replication.

Figure 8.2: Prototype system validation infrastructure UML deployment/component diagram.
One Amazon EC2 instance was deployed for each client and server. Clients issue requests to the
servers of their region. One client process per region issues read requests, and one in Ireland
issues write requests. Write and read nodes persist and fetch the log from Amazon S3. Amazon
S3 handles replication.
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Clients issue read and write requests for a single key. In the prototype system, the log is

persisted and fetched every five seconds. After each experiment, we emptied all Amazon S3

buckets, extracted the generated logs, and destroyed the docker containers.

In the first round of the experiment, the reading clients issue requests in a closed loop, whereas

writing clients issue requests at a fixed rate. We only accounted for new reads (i.e., reads that re-

trieved a new version of the item), and only the last 100 observations of each test were considered.

We measure read and write latency in the local region of the write client and staleness in both

regions. The experiments were repeated for different inter-write delays (50, 100, and 200ms).

In the second round of the experiment, read clients read at a fixed rate for 20 seconds and write

clients perform requests in a closed loop. We measure the system’s goodput (i.e., the number of

versions that transverse the system from a writing client to a reading client in a second). This

experiment was repeated thrice for different inter-read delays (50, 100, and 200ms).

8.4.1.1 Results

Considering the relevancy of read performance in read-heavy systems, these experiments aim to

measure the impact of upgrading Amazon S3 ’s consistency guarantees on the latency of read re-

quests. Moreover, taking into account the trade-off between performance and visibility observed

in the literature [85, 8], especially in more recent stabilization-based protocols, they aim to under-

stand how this decision impacts visibility.

The following results derive from the two experiment rounds outlined earlier: latency and

visibility were measured in the first round with a constant inter-write delay, whereas goodput was

measured in the second round with a constant inter-read delay.

Table 8.1 shows the latency distribution for both systems using a 50ms inter-write delay. As we

can observe, the read latency of our prototype implementation consistently outperforms Amazon

S3, even though Amazon S3 is destined for frequently accessed data. It is noteworthy to mention

that this result was not an isolated occurrence. One factor that may have impacted the result is

client-server communication. In the prototype, we use gRPC, which relies on HTTP/2, providing

reduced latency over HTTP/1.1, and leverages Protocol Buffers for efficient data serialization. In

the baseline, the communication is done directly with Amazon S3 through AWS ’s SDK for Java,

which uses HTTP/1.1. The separation of read and write load in the prototype system may be

another factor influencing these results because, even though the clients target the same key, in

System maximum 99% 95% 70% 50% average minimum

Baseline 79.00 59.20 51.05 19.00 16.00 20.30 10.00

Prototype 22.00 15.07 6.10 1.00 1.00 1.47 < 0.01

Table 8.1: Read Latency (in ms) in the baseline and prototype systems for an inter-write delay
of 50ms. The results suggest lower read latency in the prototype, which may result from the
communication protocol, the separation of write and read load, or other implementation factors.
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(a) Average Read Latency (in ms) (b) 99th Percentile of Read Latency (in ms).

(c) Read Latency (in ms) boxplot (without outliers). Each box represents, from bottom to top, the minimum,
first, second and third quartiles and the maximum latency.

Figure 8.3: Read Latency (in ms) for the baseline and prototype systems using different inter-
write delays (50, 100, and 200ms). The prototype’s latency consistently outperforms the base-
line’s, possibly due to the communication protocol, the separation of write and read load in the
prototype or other implementation factors. Figures 8.3a and 8.3b suggest that the average and 99th

percentile latency improves with higher delays in the baseline system. The prototype’s average
latency does not exhibit a significant variation, but the 99th percentile slightly improves. Without
outliers (fig. 8.3c), the prototype’s latency increases for a 200ms delay.

the prototype, the write load is handled by the write node and the read load by the read node. In

contrast, in the baseline system, all requests target the same Amazon S3 key.

With CC, 70% of the read requests present a latency of less than 1ms, and 99% take less than

15.07ms, while, in the same setting, the baseline presents a 70th percentile read latency of 19ms

and a 99th percentile of 59.20ms.

Figures 8.3a and 8.3b show the average and 99th read latency for different inter-write delays.

As expected, with higher inter-write delay, the baseline shows an improvement in average and 99th

percentile latency, which probably results from lower contention on the key that is being accessed.

The prototype’s results for the average latency do not exhibit a significant variation with the inter-

write delay, whereas the 99th percentile exhibits a slight improvement. Figure 8.3c summarizes the
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latency results in a boxplot, excluding the outliers. Even though the results for a 200ms inter-write

delay suggest a slight latency degradation for the prototype, the 99th and average latency do not

exhibit a relevant difference, which leads us to dismiss this result.

(a) Average System Goodput (in writes/s). (b) Average Write Latency (in ms).

Figure 8.4: Average System Goodput (in writes/s) and Write Latency (in ms) of the baseline and
prototype systems using different inter-read delays (50, 100, and 200ms). The prototype exhibits
higher goodput and lower write latency because it only persists writes periodically, while in the
baseline, write requests are synchronous and only return when the write is durable.

Figure 8.4a shows the systems’ goodput in writes per second for different inter-read delays

in logarithmic scale. Both systems display a significant discrepancy because, in the baseline, the

writes are forwarded directly to Amazon S3, which, to guarantee durability, will only return a

response when the new item has been replicated across multiple availability zones. In contrast, in

the prototype, writes are persisted periodically and asynchronously, avoiding synchronous calls on

each request. Moreover, as we observed for read latency, we reduce the contention resulting from

simultaneous writes and reads performed for the same key by separating read and write load. This

claim is further supported by the results presented in fig. 8.4b, which exhibit lower write latency

for the prototype.

As expected, the read performance, goodput improvements, and additional consistency guar-

antees come at the cost of increased data staleness, as observed in fig. 8.5. As write requests are

batched in the operation log and only persisted after ∆s (5s in this case), the time it takes for a

new version to be persisted in Amazon S3 is higher in comparison with the baseline, where writes

are immediately persisted to the respective Amazon S3 bucket. Moreover, even though this ex-

periment uses a single partition, in case of multiple partitions, a version will only be made visible

when it is stable. However, due to clock synchronization, this time is bounded. Therefore, the

determinant factor in the increased staleness is the log propagation strategy. On the other hand,

this strategy offers the possibility to balance this trade-off by managing the frequency with which

logs are persisted at write nodes and with which read nodes update their cache. Regardless, in

remote regions, the impact of providing CC on visibility is less notable.

In light of these results, we highlight that the cost of upgrading existing cloud storage services
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Figure 8.5: Average Staleness (in ms) of the baseline and prototype systems using different inter-
write delays (50, 100, and 200ms). On the left, the figure shows the average staleness in the
write’s origin region. On the right, it shows the staleness in a remote region. Staleness is higher in
the prototype because writes are batched and persisted periodically. The discrepancy between the
baseline and the prototype’s staleness is lower in remote regions.

with CC is the increased data staleness, especially within the region where the write was initially

generated. However, changing the frequency of log pushes and pulls can control this trade-off.

The results suggest that the client and server-side logic for guaranteeing CC incur negligible per-

formance overhead. Moreover, they indicate that the proposed architecture, particularly its log

propagation strategy, can result in lower read latency and higher goodput.

8.4.2 Scalability

This set of experiments aims to study the system’s applicability, and more importantly, of its

underlying architecture, to read-heavy systems and evaluate its scalability.

We used the same replication sites (Ireland and North Virginia) for all experiments and co-

located clients with their local read nodes. We spawn two client processes in Ireland, one issuing

read requests and another issuing write requests. For the visibility tests, we provisioned another

reading client process in North Virginia. To generate different load conditions, we spawn a differ-

ent number of threads per client process.

We provisioned a t4g.small Amazon EC2 instance (2vCPU and 2GiB of RAM) for each server

(read and write nodes) and used a c6g.8xlarge Amazon EC2 instance (32 vCPU and 64 GiB of

RAM) for each client process. The deployment of this experiment is similar to the one described

in the previous section and is illustrated in fig. 8.2. However, we used different Amazon EC2

instances for client processes to enable more client threads.

The log persistence and fetch rates were set to five seconds in all the tests.

The first test assesses read latency, throughput, and visibility in a read-heavy workload. Read

clients issue ROTs in a closed loop for 60 seconds in the write’s origin region and 90 seconds in

the remote region. Each client performs two reads per ROT from a set of 8 keys (i.e., looping

through the list of keys two by two). Write clients issue 1000 write requests at a fixed rate (every

50ms) using an 8-byte payload. When measuring latency, we only account for new reads (i.e.,
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reads that retrieved a new item version). To simulate a read-heavy workload in this setting, we

required more writing than reading clients because of the different request rates. In particular,

we used double writers than readers, resulting in different read:write ratios with read prevalence

ranging from 92% to 98%. The measurements were repeated with increasing client threads until

the system was saturated (i.e., adding more client threads resulted in lower read throughput).

Then, using a fixed number of read and write clients (five readers and ten writers), we repeated

the measurements with varying partitions (1, 2, and 4).

We used a similar setting in a third experiment but evaluated how the system scales with the

number of read nodes, clients, and partitions. First, for an increasing number of read nodes (1, 2,

3, and 4), we used a fixed number of writing clients, each issuing 500 requests at a fixed rate, and

measured read throughput for an increasing number of reading clients (1, 5, 10, 15, 20, and 25),

until the system got saturated. Read clients issue read requests for 30 seconds for the same set of

8 keys, performing two reads per ROT. Then, to test how the system scales with the number of

partitions, we used a write-only workload with varying clients issuing write requests in a closed

loop for 30 seconds and measured write throughput for 1, 2, and 4 partitions.

8.4.2.1 Results

Figure 8.6a shows the read performance results for different numbers of client threads, each rep-

resented by a "dot" in the plot. We can observe the nearly ideal improvement in read throughput

with almost no penalty in read latency when moving from the minimum number of client threads

(a) Read Performance with different numbers of
client threads.

(b) Average Read Latency (in ms) with different
numbers of client threads.

Figure 8.6: Read Performance with different numbers of client threads. On the left, we can
observe the machine’s saturation point around 10K ROTs. Each "dot" corresponds to a different
number of client threads. On the right, we can see the average latency for the same number of
client threads and the corresponding read percentage. The average latency keeps below 4ms even
in overload conditions.
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Figure 8.7: Average Staleness (in ms) for different load conditions in logarithmic scale. The
load increase does not affect data visibility. On the write’s origin region, the average staleness is
around twice the rate at which the log is pushed and pulled to Amazon S3. In the remote region, it
is slightly higher due to the replication delay.

(one reader and two writers) to a setting with five times more read and write load. As more load

is added, the latency increases more rapidly, and read throughput decreases around 10K ROTs per

second, representing the machine’s limit for this particular setting. Figure 8.6b shows the average

latency for this experiment and the percentage of read requests for each number of client threads.

From the read-and-write ratio, we can observe a higher drop in the rate of reads when adding

new threads after the system is saturated. The average latency keeps below 4ms even in overload

conditions and when using a small-sized instance with limited capacity.

For the same setting, fig. 8.7 shows that the load increase does not affect data visibility. In the

local region, the average staleness is around 10 seconds for all workloads, twice the rate at which

the log is pushed and pulled to Amazon S3. In the remote region, it is slightly higher due to the

replication delay. These results suggest that, even though staleness is the price to pay for increased

(a) Average Read Latency (in ms) for
a different number of partitions.

(b) Average Staleness (in ms) in logarithmic scale for a different
number of partitions.

Figure 8.8: Average Read Latency and Staleness for a different number of partitions. Both results
show that the number of partitions does not affect read latency or visibility.
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Figure 8.9: Read Throughput (in ROT/s) for a different number of read nodes. The system’s read
capacity increases almost linearly with the number of available read nodes.

consistency, it is bounded by log upload and retrieval rates.

Figures 8.8a and 8.8b show that the average latency and staleness keep approximately stable

when varying the number of partitions. This result is expected because all write nodes periodically

persist the log at the same rate, the only difference being that with more partitions, read nodes

must fetch more logs. In terms of latency, it shows how separating writes and reads allows read

performance to be independent of how the write load is distributed.

Figure 8.9 reports the read throughput achieved with varying read nodes. As expected, the

system’s read capacity increases almost linearly with the number of available read nodes. These

results confirm the system’s scalability upon increased read load, affirming the suitability of its

architecture for read-heavy systems.

Finally, fig. 8.10 shows the write throughput achieved with 1, 2, and 4 partitions. The write

capacity increases almost linearly with the number of partitions, which is expected given that,

as the number of partitions increases, the items targeted by the writes nodes will become more

and more spread across partitions, thus decreasing the load in each write node. Even though the

reference architecture targets read-heavy systems, these results demonstrate that having a write

node sequencing the writes per partition also enables the write load to be balanced according to

the partitioning strategy.

8.4.3 Threats to Validity

Considering the empirical nature of the validation process, it is important to consider the threats to

the validity of its results [27]. In this regard, this section analyzes the internal (i.e., the possibility

that the conclusions observed were affected by other factors) and external validity (i.e., the extent

to which the results can be generalized to other contexts) of the present research.
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Figure 8.10: Write Throughput (in writes/s) for different number of partitions. The write capacity
increases almost linearly with the number of partitions.

8.4.3.1 Internal Threats

The experiments were performed on different Amazon EC2 instances.
During the validation process, experiments were conducted iteratively and occasionally re-

peated when bugs were detected. Moreover, instances were terminated upon each exper-

iment to minimize resource usage and costs. Therefore, there may be slight performance

discrepancies between experiments.

The start-up time of the client’s containers is beyond our control.
The start-up time of the client’s containers is beyond our control and may introduce dis-

crepancies between test executions. In particular, when evaluating goodput within short

experiments, even a minor disparity in the start-up time of the client’s container may result

in a significantly different result because the log gets pushed periodically. The disparity be-

tween executions may be enough for a set of versions only to be persisted in the subsequent

execution of the thread that persists new versions to Amazon S3. In order to mitigate this

limitation to the best extent possible, goodput experiments were repeated three times.

8.4.3.2 External Threats

The reference architecture was realized in a single storage service.
Due to time constraints, the reference architecture was only realized within the scope of

Amazon S3, a NoSQL key-value cloud storage service that provides read-after-write con-

sistency. Therefore, its validity when implemented on top of other cloud storage services

that offer pure EC or stronger semantics is yet to be tested in future research. If realized in a

purely eventually consistent storage service, we expect the baseline system to deliver better
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write latency, system goodput, and visibility, and thus the impact of providing CC may be

more significant concerning these metrics. If applied to other storage services, it may be

necessary to rethink the strategy used to index the logs by timestamp, which will depend on

the data model and provided interface.

The prototype’s servers were deployed in low-cost Amazon EC2 instances.
In order to reduce the costs of reproducing our findings and make it feasible to observe the

prototype’s behavior with small configuration and workload modifications, read and write

nodes were deployed using free-tier t4g.small instances. With fewer vCPUs, the system’s

capacity for concurrently processing ROTs and its ability to persist and retrieve the log in

parallel is constrained, potentially resulting in higher read latency and lower throughput.

If the experiments described in sections 8.4.1 and 8.4.2 are repeated in more powerful in-

stances, an overall improvement in the prototype’s performance is to be expected.

The prototype’s components were launched on a logically isolated virtual network.
The prototype was deployed and validated using AWS cloud infrastructure, where resources

run on an isolated virtual network. Therefore, the validation results (e.g., latency, visibility,

goodput, and throughput) may differ if the reference architecture is realized and assessed

using other cloud providers or in a production environment.

Amazon EC2 instances virtualize the hardware.
Even though AWS strives to minimize volatility, hardware virtualization in Amazon EC2

instances may introduce slight discrepancies in the performance between experiments, po-

tentially impacting the generalizability of the results to other execution environments.

The empirical comparison against the baseline system was limited to a two-client setting.
In order to assess the overhead of upgrading Amazon S3 ’s consistency guarantees, the

prototype implementation was directly compared with the base system. Despite enabling

the base system to deliver the best possible performance, this approach constrained the

comparison under heavier workloads because clients issue the requests directly to Amazon

S3 buckets. Due to Amazon S3 ’s pay-per-use service model, repeating this experience with

an increasing number of clients became impracticable, particularly since a subset of clients

issue requests at the maximum possible rate. However, repeating this comparison at scale

would complement our analysis, providing valuable insight into the impact of upgrading

Amazon S3 with CC under heavier load conditions.

The selected testing scenarios and workload configurations do not cover all possible load
conditions.
Even though we validated the prototype for various load conditions (e.g., varying inter-

operation delays, number of clients, read and write ratios, and number of system nodes),

testing all relevant load conditions and system configurations was unfeasible due to cost and

time constraints. Thus, different results may be observed in untested scenarios or load con-

ditions. In particular, we did not assess the prototype in skewed workloads, with more than
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two keys per ROT, or with different payload sizes. Furthermore, the prototype was tested for

only two regions because the clients always contact their local read node, and thus adding

new regions does not influence the system in terms of read performance. Regarding write

latency and staleness, the differences would only result from Amazon S3 ’s propagation

delay between regions and the distance of the clients to write nodes.

8.5 Value Semantics

This section addresses RQ6 by demonstrating how value semantics can be leveraged to audit the

system’s data at a specific point in time.

$ python3 . -k a,b -t 00000001687091100000-00000000000000000000

Key = a

> value = 274877906968

> timestamp = 00000001687091089108-00000000000000000006

> log version = 00000001687091109108-00000000000000000001

> partition = 2

Key = b

> value = 274877906969

> timestamp = 00000001687091089108-00000000000000000007

> log version = 00000001687091109108-00000000000000000002

> partition = 1

Listing 8.1: Value semantics experimental validation — Observing the state of a set of keys at a

given timestamp. The command returns the value and timestamp of keys a and b, each belonging

to a different partition, at the specified timestamp and the log version where those versions were

first observed.

To begin, we deployed the prototype system on Amazon EC2 using a setting with a single

region, two partitions, and two clients alternating write requests between partitions. We set up

two write nodes in Ireland and two clients in the same region. Each client issues write requests

for approximately 5 minutes at a constant rate, with a 3-second delay between each write. Clients

alternate between a set of four keys, two from each partition. To make it easier to observe the state

changes of each key, each client issues the first request with the payload "274877906944" and

increments this value for each write. As in our empirical validation, checkpointing and garbage

collection were deactivated for this experiment.

After running the experiment, we extracted the operation logs from the respective Amazon S3

buckets. Then, we developed a Python script that, given a set of keys and a date or timestamp,

retrieves the versions of the specified keys at the given time or shows the progression of values of

a given key in time. Listings 8.1 to 8.4 illustrate the four usage scenarios of this script.
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The first scenario, depicted in listing 8.1, demonstrates the ability to observe the version of a

set of keys, possibly distributed across partitions, at a specific timestamp. This can be done almost

linearly because logs are versioned with hybrid timestamps, making it possible to determine the

lowest log version that must be parsed (i.e., the lowest log version whose timestamp is at least

as high as the provided timestamp). If checkpointing and garbage collection of Amazon S3 logs

were enabled, there might not be a version available to display because it might already have been

removed. This highlights the need to balance the trade-off between storage space and auditability

by managing the periodicity with which a checkpoint is performed and the number of stale versions

kept in Amazon S3 buckets.

$ python3 . -v -k a,b -d "2023-06-18 13:25:00.0"

Key = a

> value = 274877906968

> timestamp = 00000001687091089108-00000000000000000006

> log version = 00000001687091109108-00000000000000000001

> partition = 2

Key = b

> value = 274877906969

> timestamp = 00000001687091089108-00000000000000000007

> log version = 00000001687091109108-00000000000000000002

> partition = 1

Listing 8.2: The command returns the value and timestamp of keys a and b, each belonging to a

different partition, at the specified date-time and the log version where those versions were first

observed.

In the second scenario, illustrated in listing 8.2, a human-readable date-time format is used

instead of a timestamp, confirming the benefit of using hybrid timestamps to sequence the write

operations, especially in terms of intuitiveness and ease of auditing.

$ python3 . -hist -k a -t 00000001687091029107-00000000000000000005

History of key a:

timestamp value

0 00000001687091029107-00000000000000000000 274877906944

1 00000001687091029107-00000000000000000001 274877906944

2 00000001687091029107-00000000000000000004 274877906948

3 00000001687091029107-00000000000000000005 274877906948

Listing 8.3: The command returns the ordered set of versions (timestamp and value) of key a up

to and including the provided timestamp.
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$ python3 . -hist -k a -d "2023-06-18 13:24:00.0"

History of key a:

timestamp value

0 00000001687091029107-00000000000000000000 274877906944

1 00000001687091029107-00000000000000000001 274877906944

2 00000001687091029107-00000000000000000004 274877906948

3 00000001687091029107-00000000000000000005 274877906948

Listing 8.4: The command returns the ordered set of versions (timestamp and value) of key a up

to and including the provided date-time.

In the remaining scenarios, illustrated in listings 8.3 and 8.4, given a key and a timestamp (or

a human-readable date-time format), it is possible to observe the succession of values of a given

key, enabling developers to analyze and verify the evolution of the key’s values throughout the

system’s operation. This operation can be performed by only fetching a single log, which contains

all the history until that point. If, however, checkpointing and garbage collection were enabled, it

might be necessary to fetch all the logs before the provided timestamp.

Overall, this experiment demonstrates how enabling value semantics, mainly by having im-

mutable versions of each key versioned with a hybrid timestamp and sequenced in logs, signifi-

cantly improves the auditability of the system by making it possible (1) to reason about the state of

the system at a given point in time, (2) to observe the progression of values for a given key, and (3)

to use physical time to audit the system intuitively. However, it also highlights the need to balance

the trade-off between storage space and auditability, specifically by controlling the periodicity of

checkpoints and by preserving a large enough number of log versions.

8.6 Summary

In this chapter, we have covered this work’s validation and verification process.

Section 8.1 described the methodology adopted. It combined a high-level argument on how

the reference architecture provides the desired properties, an empirical validation of the prototype

concerning a set of metrics, and an experimental verification to demonstrate how enabling value

semantics facilitates auditing.

Section 8.2 discussed how the reference architecture ensures each of the session guarantees

that characterize CC, convergence, and ROTs by combining a client-side cache, with log version-

ing and client and server-side logic.

Then, section 8.3 outlined how the proposed architecture enables the NOC properties of ROTs.

The CANToR transactional protocol [84] was leveraged to ensure non-blocking ROTs. We avoided

a coordinator-based approach to enable one-round communication between client and server by

restricting clients to their local read node, which tracks all partitions of its region. This strategy

and the usage of hybrid timestamps also enabled constant metadata.
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Section 8.4 described this work’s validation process.

First, section 8.4.1 featured the comparison of the prototype system with Amazon S3, the

storage service on top of which it is built. The results of this comparison show that the read latency

of our prototype implementation consistently outperforms Amazon S3 and highlight that the cost

to pay for upgrading existing cloud storage services with CC is the increased data staleness. This

trade-off can be managed by adjusting the frequency with which the log is persisted and fetched

from the storage service.

Section 8.4.2 assessed how the realized architecture performs under read-heavy workloads and

scales with the number of clients, system nodes, and partitions. The results demonstrated that the

average latency and staleness keep approximately stable when varying the number of partitions.

Read and write throughput increases almost linearly with the number of available read and write

nodes.

Section 8.4.3 pointed out the external and internal threads that may have impacted the valid-

ity of the results. External threats primarily relate to constraints introduced by the AWS cloud

infrastructure used in the validation process and with possible untested load conditions and con-

figurations. The internal threads identified relate to potential inconsistencies in the environment of

each experiment, which may have resulted from using different instances per experiment or from

slight delays when starting up each system component.

Finally, section 8.5 demonstrated how enabling value semantics in our prototype implementa-

tion makes it possible to reconstruct the system state, allowing the developer to reason about its

behavior at a point in time or to observe the progression of values of a particular key.



Chapter 9

Conclusions

The previous chapter discussed the verification and validation of our hypothesis. This chapter

presents the final remarks of this dissertation (cf. section 9.1). Section 9.2 summarizes the main

findings regarding each research question. Section 9.3 revisits the hypothesis, describing how

our work supported each premise. Section 9.4 outlines the main contributions of this work. Then,

section 9.5 presents the main challenges that arose throughout the development of this dissertation.

Finally, section 9.6 identifies possible directions for future work.

9.1 Summary

Academic literature has positioned CC as an attractive choice for achieving high availability, per-

formance, and intuitive behavior in geo-replicated systems without the overhead of stronger con-

sistency models or the ordering anomalies of EC. Additionally, it has proposed several causally

consistent system implementations, such as the ones surveyed in this work’s systematic literature

review (cf. chapter 3), each featuring its benefits and trade-offs. Most importantly, recent work

[58, 85], motivated by the prevalence of reads in real-world applications [15, 18, 69, 92, 100], has

focused on improving the performance of ROTs within causally consistent systems.

Despite the relevancy of these novel results in the scope of read-heavy systems, our literature

review highlighted the lack of a standard architecture for applying CC to read-heavy systems

and the need to integrate existing cloud storage solutions, which offer added benefits in terms of

availability, reliability and data accessibility. Additionally, it suggested the need to leverage the

auditing properties of existing implementations further.

In light of these shortcomings, in this dissertation, we designed a reference architecture for

read-heavy systems (cf. chapter 6) that provides CC+ atop existing cloud storage services, mani-

fests performance-optimal ROTs and enables auditing through value semantics.

To that end, we first translated the knowledge acquired in our systematic literature review

into four system architectures, which served as the starting point for developing the reference

architecture. Following an engineering approach, we iteratively built and refined the reference

133
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architecture through the ATAM method. This process culminated in our final reference architecture

(cf. chapter 5).

The reference architecture was then realized in a prototype system, using Amazon S3 as the

underlying storage service (cf. chapter 7). The prototype was deployed using AWS’s cloud in-

frastructure and evaluated against a set of metrics: read latency and throughput, data staleness,

and goodput. We compared the prototype against its base system, assessing the trade-offs that

arise from upgrading its consistency guarantees (cf. section 8.4.1). Additionally, we evaluated the

latency and throughput of the system under read-heavy workloads and assessed how it scales with

the number of nodes and clients (cf. section 8.4.2).

The results from our validation showed that the read latency of our prototype implementation

consistently outperformed its underlying storage service and highlighted that the cost to pay for

upgrading existing cloud storage services with CC is the increased data staleness. This trade-off

can be managed by adjusting the frequency with which the log is persisted and fetched from the

storage service. They also demonstrated the ability of the system to scale with the number of read

nodes, partitions, and clients.

Finally, we experimentally demonstrated how our prototype implementation provides value

semantics, enabling the developer to reason about the system’s behavior at a point in time (cf.

section 8.5).

In the next sections, we revisit our research questions and hypothesis, explaining how they

were addressed in this dissertation.

9.2 Research Questions

In this section, we revisit the research questions that guided this dissertation, showcasing how each

question was addressed and summarizing the key findings obtained.

RQ1. What are the ideal properties of a geo-replicated causally consistent read-heavy
system?

As described in section 2.2, in geo-replicated causally consistent read-heavy systems, read

operations comprise most of the request load, making it relevant to optimize the perfor-

mance of ROTs, which incur additional coordination overhead than non-transactional reads

but are necessary for retrieving a consistent view across shards. In this regard, the literature

defines performance-optimal ROTs based on the properties of non-transactional reads (see

section 2.2.2), which are non-blocking, complete in a single round of on-path communi-

cation, and use constant metadata. Ideally, a causally consistent read-heavy system should

support ROTs that exhibit these properties because they capture the minor coordination

overhead and the best performance that can be achieved with ROTs.

RQ2. What properties and strategies do existing causally consistent systems employ?
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Considering the fourteen causally consistent systems and two architectural approaches to

CC surveyed in our literature review (sections 3.2 and 3.3), existing causally consistent sys-

tems can be classified according to several properties, some of which being (1) the opera-

tions they support, (2) their clock type, (3) the replication model, and (4) the NOC properties

of their ROT algorithm. Concerning the taxonomy, some systems support generic transac-

tions [98, 4, 65, 85] or WOTs [54, 58], but the majority only supports ROTs. The prevalent

mechanism to enforce causality is logical time (e.g., Lamport timestamps or vector clocks),

but some protocols rely on HLCs [85, 84, 23, 91] or use physical clocks [5, 24, 25, 4, 86].

The majority of the systems do not support partial replication. Regarding the NOC prop-

erties, the systems that use physical clocks are blocking. Most algorithms require multiple

rounds to complete a ROT, except SwiftCloud [98], which reads from the cache, and Eiger-

PORT [58], which reads from a client-defined timestamp. Several systems use one scalar

timestamp to track causality; others use vector clocks or exchange dependencies. The ana-

lyzed architectures also feature relevant properties: Bolt-on [8] can upgrade an ECDS with

CC and is storage-agnostic, and MongoDB [91] integrates a primary-replica strategy with a

modified implementation of HLCs that considers an additional requirement, security.

To ensure CC, the systems typically use a strategy that falls within one of these categories:

dependency checking, sequencer-based, stabilization, or optimistic. Systems that use de-

pendency checking [53, 54, 24, 56] encode causal dependencies in metadata and verify

them before applying an operation. Sequencer-based techniques [5, 98] impose a total order

of operations on each replica. Stabilization protocols [25, 4, 23, 84, 85] establish a cutoff

timestamp (or set of timestamps) below which all updates from remote DCs have been ap-

plied and only make versions comprised in the snapshot defined by this timestamp visible to

clients. Finally, in systems that adopt an optimistic approach [86, 56], clients are the ones to

enforce causality, and updates are immediately applied, even if their dependencies are not

yet available.

RQ3. What metrics have been used to evaluate these systems?

Based on our review (section 3.4), metrics commonly used to evaluate causally consistent

distributed systems include latency, throughput, tail latency, scalability, resource overhead,

and data staleness. To assess latency and throughput for each operation, the authors com-

pare the results against ping requests, which establish hardware-imposed limits, or with

other systems with weaker consistency guarantees. Tail latency, measured using high per-

centiles like 95th, 99th, and 99.9th, helps identify requests that take longer than the average.

Throughput is commonly measured for varying read-to-write ratios, number of keys per op-

eration, and inter-operation delays. To assess how the system scales, authors evaluate the

system’s throughput for different numbers of DCs, partitions per DC, and client threads.

Resource overhead is evaluated through metrics such as metadata exchanged, CPU usage,
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and memory usage. Data staleness is measured by calculating the visibility latency of each

update.

RQ4. Can we produce a cloud-native reference architecture for read-heavy systems that
manifests the performance-optimal properties of read-only transactions? How does it
compare with state-of-the-art causally consistent systems?

Drawing upon the review undertaken in RQ1 and RQ2 and on our preliminary studies

(chapter 5), this work proposes a cloud-native reference architecture for read-heavy sys-

tems (chapter 6), compares it with state-of-the-art systems (section 6.2) and confirms its

ability to provide performance-optimal ROTs (section 8.3) by incorporating the literature’s

findings. First, the architecture adapts the CANToR transactional protocol used in Wren

[84] and PaRiS [85] to ensure non-blocking ROTs by enabling the client to read from a

slightly stale but stable snapshot defined by the read node and the client’s cache. Then, we

avoided the coordinator-based approach used in most stabilization protocols by restricting

clients to their local read node, which tracks all partitions of its region, enabling one-round

communication between client and server to perform a ROT. Like MongoDB [91], Con-

trarian [23], Wren [84], and PaRiS [85], the reference architecture uses HLCs to timestamp

write operations. Together with the restriction described above, this enables ROTs to use

constant metadata.

The comparison with the systems and approaches surveyed in the literature review also

highlights the ability of the architecture to support partial replication on the server side at

the cost of limiting clients to the partitions of their region. In contrast, PaRiS [85] enables

clients to access data in partitions of other DCs, and SwiftCloud [98] only supports client-

side replication.

The results of our validation also sustain the applicability of the architecture to read-heavy

systems — read throughput increases almost linearly with the number of read nodes, and

the average read latency is below 4ms in a saturated system (cf. section 8.4.2).

RQ5. How can this reference architecture guarantee CC above eventually consistent cloud
storage services? What trade-offs arise from offering these guarantees?

This work integrates the literature’s findings in a layered architecture that, akin to Bolt-on’s

approach, separates the causality concern from data replication and durability. This way,

it supports eventually consistent cloud storage services provided that they follow a set of

assumptions (section 6.1.3).

CC is enabled by the two top layers of the proposed architecture, which adapt the CANToR

protocol [84, 85], where the snapshot of a ROT is the union of a causal snapshot installed by

every partition in the client’s local region and of his client-side cache. To enable CC atop an
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ECDS, log versioning is also necessary to ensure read nodes see monotonically increasing

versions of the data regardless of the order in which they are replicated.

Using AWS’s cloud infrastructure, we demonstrate how the architecture can be realized

in Amazon S3, which offers read-after-write consistency (chapter 7). By leveraging the

methods exposed by Amazon S3’s API and the encoding of the hybrid timestamps generated

by the HLC, it is possible to guarantee that read nodes retrieve increasing versions of the

log.

The empirical validation of our work suggests that the main trade-off of providing CC on top

of existing storage services is staleness (cf. section 8.4.1). Enabling CC on top of Amazon

S3 results in improved read latency and goodput but prejudices data visibility because writes

are batched in a log and persisted periodically. This trade-off can be managed by adjusting

the rate at which the log is persisted to the storage service.

RQ6. How can we realize this reference architecture to ensure value semantics?

The realized reference architecture enables value semantics through four main properties (cf.

section 7.9). First, it features a determinism state machine behavior, where writes generate

a new immutable version of a key, enabling the perception of each key’s values in time.

Secondly, by versioning logs and using hybrid timestamps, we can observe the value of a

key in time and audit the state of a partition using physical time. Thirdly, through ROTs,

users can perceive the system at a stable point in time. Finally, by using atomic operations,

a key’s state transparently transitions from one value to another.

9.3 Hypothesis Revisited

The research questions that drove this work aimed to validate the following hypothesis:

There exists a reference architecture that (1) manifests the ideal properties of geo-

replicated causally consistent read-heavy systems, (2) upgrades the consistency guar-

antees of existing cloud storage services, and (3) enables value semantics, thereby

facilitating auditing and enabling developers to reason about the system’s state and

data at a point in time.

We now deconstruct this hypothesis and discuss how each premise has been addressed in this

dissertation:

1) There exists a reference architecture that manifests the ideal properties of geo-replicated
causally consistent read-heavy systems.
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From RQ1, we concluded that to achieve better performance in read-heavy systems, ROTs

must manifest the following properties: be non-blocking, take one round of on-path com-

munication, and use constant metadata. As described in section 8.3, the proposed reference

architecture ensures these three properties. First, to ensure the non-blocking property, the

snapshot visible to a ROT is the union of a stable snapshot identified by the read node with

the client’s cache. Secondly, each read node is responsible for all partitions of its region,

and clients are restricted to the items available in their local read node, ensuring that a ROT

can be performed with a single on-path round. To ensure constant metadata, we used hy-

brid timestamps to version writes and, therefore, the stableTime in each server, the only

additional metadata exchanged in a ROT, does not vary with the system’s size.

2) The reference architecture upgrades the consistency guarantees of existing cloud storage
services.

The proposed reference architecture takes a layered approach to CC, decoupling the causal-

ity concern, enabled by the two top layers, from replication and durability, which the data

store provides. This way, it brings portability to CC, making it possible to upgrade the con-

sistency guarantees of existing storage services, provided that they conform with a set of

assumptions (section 6.1.3).

We further support this claim by realizing the reference architecture in a prototype system

that uses Amazon S3 as the underlying storage service (chapter 7).

3) The reference architecture enables value semantics, thereby facilitating auditing and
enabling developers to reason about the system’s state and data at a point in time.

By adopting a deterministic state machine behavior where write nodes sequence writes in a

log together with a hybrid timestamp, versioning the logs, providing ROTs that capture a stable

snapshot of the data, and, finally, through atomic operations that transparently transition a key’s

state from one value to another, our reference architecture enables developers and users to perceive

the system as a succession of immutable values, enabling value semantics. We experimentally

demonstrated how providing value semantics makes it easier to audit the system by making it

possible (1) to reason about the state of the system at a given point in time, (2) to observe the

progression of values for a given key, and (3) to use physical time to audit the system.

9.4 Contributions

The work developed in this dissertation resulted in the following contributions to the state of the

art of causally consistent distributed systems:

Systematic Literature Review on Causally Consistent Distributed Systems. We surveyed the

state of the art of causally consistent distributed systems through a systematic literature
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review (cf. chapter 3). A summary of this contribution has been submitted to the ACM

Computing Surveys Journal and is currently under review.

Architectural Representation of Causally Consistent Distributed Systems. We extended the

literature review by deriving the high-level architecture of four state-of-the-art distributed

systems (cf. section 5.1).

Reference Architecture for Cloud-Native Causally Consistent Systems. We designed a refer-

ence architecture for cloud-native systems that enables CC atop existing cloud storage ser-

vices (cf. chapter 6) and manifests the performance-optimal properties of ROTs.

Prototype Implementation and Validation. To verify the viability of the proposed architecture,

we realized it in a prototype system that provides CC atop Amazon S3 and empirically

validated it against its baseline storage service and in read-heavy workloads (cf. chapter 7

and section 8.4). To facilitate replicating and expanding over this work, we have prepared a

replication package [30] that includes this implementation’s source code and the instructions

for replicating the validation experiments.

Value Semantics Realization in Read-Heavy Causally Consistent Systems. We provided

progress towards defining the properties of value semantics in the scope of distributed

data stores, realized those properties in our prototype implementation, and experimen-

tally demonstrated how enabling value semantics provides increased auditability (cf.

sections 2.3, 7.9 and 8.5).

9.5 Challenges

Throughout the development of this dissertation, we encountered several challenges.

One initial challenge lay in the literature’s definition of performance-optimal ROTs. While

this definition provides valuable insights into improving performance in read-heavy systems, it

alone does not fully elucidate the reasoning behind Lu et al.’s [58] classification of some systems.

Specifically, we felt the lack of an explanation regarding the classification of some systems con-

cerning the metadata size and the number of off-path rounds in systems employing stabilization

protocols. To address this, we performed our own analysis of each system.

During the development of the prototype system, we encountered a significant obstacle in

testing the system locally since it was primarily designed to run in the cloud. To partially address

this challenge, we used LocalStack for local development. However, LocalStack also presented

its limitations, including the inability to test replication locally and to handle specific request rates

and the need to configure certain calls to AWS SDK methods differently for local development.

These limitations slowed the prototype testing process, as some features could only be assessed

after deploying the system in AWS. Moreover, instances were terminated upon usage to minimize

resource usage and costs, so, in each experiment, we had to set up the instances from scratch.
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Although automating the testing process was not our research’s focus, it could prove beneficial for

future iterations or similar studies.

Defining the validation strategy posed a challenge due to the variations in programming lan-

guages, communication infrastructure, and cloud environments among different implementations.

To conduct a meaningful comparison, it would have been necessary to re-implement the systems

from scratch using the same code base, which was not feasible within the scope of this dissertation.

Instead, our focus shifted towards assessing the impact of providing CC atop an existing storage

service, leaving the comparison with state-of-the-art systems for future research.

Lastly, the concept of value semantics is not standardized in the scope of Distributed Systems.

This led us to propose our definition based on our literature review (section 2.3).

9.6 Future Work

This work represents a significant step towards establishing a generic solution for implement-

ing causally consistent read-heavy systems atop existing cloud storage services. Nevertheless,

further refinements and extensions can be pursued in the following areas:

Support Non-Sticky Clients. The proposed architecture assumes that the end users will always

contact the same read node for each session or desired scope of causality. Even though

this "stickiness" assumption is standard in existing implementations of CC, in a real-world

system, it may be necessary to bounce clients between read nodes because of failures or

for load balancing. In this regard, one possible path forward is to upgrade the proposed

reference architecture to support non-sticky clients. Provided that read nodes in the same

region store the same set of partitions, this could be achieved by making clients store the

last stableTime they know and send it in subsequent ROTs. In the worst-case scenario

where the read node’s stableTime is below the client’s, it may synchronously fetch the

latest log, update its stableTime and answer the client’s request.

Support WOTs . Another possible extension of the proposed architecture and prototype would be

to enable WOTs. To that end, a possible approach would be to make write nodes assign the

same timestamp to all the transaction updates, ensuring that they are made visible together.

Furthermore, to transition from a prototype to a production-ready solution, and hence to ensure

the practical applicability of the proposed solution in the industry, certain modifications would

need to be considered:

Log Format. A potential approach would involve appending writes to a memory-mapped file to

support durability while the log has not yet been persisted to Amazon S3. In this scenario,

modifying the log format to register each write on a separate line would be advantageous.

Additionally, this modification would facilitate parsing, enabling read nodes to easily keep

track of the last version they have applied and help reduce storage overhead by avoiding the

verbosity of JSON logs.
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Failure Recovery. In this dissertation, we have discussed failure-recovery techniques for client

and server failures, specifically focusing on checkpoint recovery (cf. section 6.1.6). How-

ever, due to time constraints, the prototype system does not currently address failure scenar-

ios. Moving forward, it is essential to consider and implement failure-recovery mechanisms

to enhance the system’s resilience, possibly by integrating ideas from the research commu-

nity.

For instance, one possibility would be to integrate SwiftCloud’s [98] failure recovery strat-

egy to ensure that updates only become visible when they become stable across a certain

number of read nodes. This strategy would make it easier to support non-sticky clients

without synchronous reads, although it would introduce additional communication and im-

pact visibility.

Another possible direction forward involves enabling parallel recovery by maintaining a

Distributed Hash Table (DHT) ring overlay where nodes store a fragment of their neighbor

write nodes, ensuring that the write node’s state can be efficiently reconstructed [52]

Synchronization in the absence of updates. In our proposed architecture, read nodes must con-

tinually observe new versions of each partition’s log to advance the stableTime and make

new versions visible. Consequently, write nodes must persist the log in the data store even

in the absence of updates, resulting in duplicate logs. This duplication can potentially im-

pact the ability to observe the partition’s history since duplicates occupy space that could

otherwise be used for storing stale log versions. Addressing these limitations and exploring

alternative approaches, such as replacing the log’s key when new updates cease to occur,

may offer potential avenues for improvement in this work.

Another opportunity for improvement lies in clock synchronization. Our prototype system

synchronizes each clock with other partitions using Amazon S3 to exchange clock values.

While this approach avoids persisting the log when all partitions cease to receive updates, it

requires additional requests to Amazon S3 and imposes extra storage costs. Alternatively,

assuming physical clocks are loosely synchronized by a time synchronization protocol such

as NTP [1], the current HLC value can be used to timestamp the log because, in the absence

of incoming events, it still progresses with physical time.

Garbage Collection. Due to time constraints, the prototype system does not currently incorporate

garbage collection of the logs stored in Amazon S3. However, implementing a garbage

collection mechanism that leverages Amazon S3’s programming interface is essential for

transitioning from a prototype to a production-ready solution, as it ensures bounded storage.

Finally, it would be valuable to expand the verification and validation through the following

approaches:

Extend the Empirical Validation. Following up on the validity threats identified in section 8.4.3,

due to time and cost constraints, the empirical validation of the prototype system does not
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encompass all possible load conditions, workloads, and testing scenarios. In this regard,

possible extensions of this validation include assessing the prototype in skewed workloads,

varying the number of keys per ROT, exploring different payload sizes, and incorporating

additional regions.

Compare with State-of-the-Art Systems. The state-of-the-art review identifies 16 implementa-

tions of CC, which could serve as potential candidates for comparison with our prototype

system. However, these implementations feature different programming languages and

communication infrastructure and have been evaluated in a distinct cloud environment. To

conduct a meaningful comparison, it would be necessary to reimplement the systems from

scratch using the same code base as our prototype and evaluate them in a standardized en-

vironment. Unfortunately, due to time and cost constraints, this was not feasible within the

scope of this dissertation. Nevertheless, performing such a comparison would be a valuable

step forward in future research.

Realize the Reference Architecture with different Cloud Storage Services. Due to time con-

straints, the reference architecture was only realized in the scope of Amazon S3, a NoSQL

key-value cloud storage service that provides read-after-write consistency. Therefore, its

validity when implemented on top of other cloud storage services that offer pure EC or

stronger semantics is yet to be tested in future research.

Realize the Reference Architecture in an Industry Scenario. Kevel’s internal data distribution

system is a CC+ key-value data store, which we were eager to compare against our pro-

totype. We were unable to achieve this goal since the CC enforcement and client-cache

management are part of the systems’ logic (not implemented as a dedicated storage layer).

Using our prototype as the storage layer within Kevel’s system would be redundant and only

introduce additional overhead. Nonetheless, we believe that the reference architecture can

be readily integrated into existing production systems.
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Appendix A

Literature review results

System First Published Data Source Review

COPS [53] 2011 ACM Digital Library Section 3.2.1.1

Eiger [54] 2013 ACM Digital Library Section 3.2.1.2

ChainReaction [5] 2013 ACM Digital Library Section 3.2.1.3

Orbe [24] 2013 ACM Digital Library Section 3.2.1.4

Bolt-on [8] 2013 ACM Digital Library Section 3.3.1

GentleRain [25] 2014 ACM Digital Library Section 3.2.1.5

SwiftCloud [98] 2014 ACM Digital Library Section 3.2.1.6

COPS-SNOW [56] 2016 ACM Digital Library Section 3.2.1.8

Cure [4] 2016 IEEE Xplore Section 3.2.1.7

CoCaCo [88] 2017 ACM Digital Library ✗

Occult [65] 2017 ACM Digital Library Section 3.2.1.9

POCC [86] 2017 IEEE Xplore Section 3.2.1.10

Karma [63] 2018 IEEE Xplore ✗

Wren [84] 2018 IEEE Xplore Section 3.2.1.11

Contrarian [23] 2018 ACM Digital Library Section 3.2.1.12

PaRiS [85] 2019 IEEE Xplore Section 3.2.1.13

MongoDB [91] 2019 ACM Digital Library Section 3.3.2

Orion [40] 2020 ACM Digital Library ✗

PORT [58] 2020 ACM Digital Library Section 3.2.1.14

HYDROCACHE [97] 2020 ACM Digital Library ✗

CaDRoP [39] 2021 IEEE Xplore ✗

K2 [68] 2021 IEEE Xplore ✗

FaaSTCC [60] 2021 ACM Digital Library ✗

Table A.1: Results of the systematic review.
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Appendix B

Prototype Communication Structures

This appendix exemplifies the message interchange and log format used in our prototype system.

B.1 Protocol Buffers Messages and Services

This section depicts the message interchange format used in the prototype and the gRPC services

provided by server nodes. All messages and services are specified using Protocol Buffers.

Listing B.1 exemplifies the message format used in ROTs and the service provided by read

nodes. Listing B.2 presents the format used for write and atomic write messages and the service

provided by write nodes. Finally, listing B.3 presents the messages used by write nodes to obtain

the read nodes’ stableTime and the service exposed by read nodes to provide this value.

B.1.1 ROTs Messages and Services

1 message KeyVersion {

2 string timestamp = 1;

3 bytes value = 2;

4 }

5

6 message ROTRequest {

7 repeated string keys = 1;

8 }

9

10 message ROTResponse {

11 map<string, KeyVersion> versions = 1;

12 string stableTime = 2;

13 int64 id = 3;

14 }

15

16 service ROTService {

17 rpc rot (ROTRequest) returns (ROTResponse);

18 }
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Listing B.1: Prototype Communication Structures — ROT Protocol Buffers Messages and

Services. ROT requests include the keys to read. ROT responses include a version of the keys, the

stable time, and the transaction’s id. The transaction id and the timestamp of each version were

only included for testing.

1 message WriteRequest {

2 string key = 1;

3 bytes value = 2;

4 string lastWriteTimestamp = 3;

5 optional string expectedVersion = 4;

6 optional bytes expectedValue = 5;

7 }

8

9 message WriteResponse {

10 string writeTimestamp = 1;

11 optional string currentVersion = 2;

12 }

13

14 service WriteService {

15 rpc write (WriteRequest) returns (WriteResponse);

16 rpc atomicWrite (WriteRequest) returns (WriteResponse);

17 }

Listing B.2: Prototype Communication Structures — Write Protocol Buffers Messages and

Services. Write requests include the key and value to write and the timestamp of the client’s last

write. Atomic writes may also include the expected value or timestamp. The response includes

the timestamp of the new write and, in case of a failed atomic write, the timestamp of the current

version of the key.

1 message StableTimeRequest {}

2

3 message StableTimeResponse {

4 string stableTime = 1;

5 }

6

7 service StableTimeService {

8 rpc stableTime (StableTimeRequest) returns (StableTimeResponse);

9 }

Listing B.3: Prototype Communication Structures — Checkpointing Protocol Buffers Messages

and Services. The response message includes the stableTime of the read node.
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B.2 Log Format

This section includes examples of the JSON log used in the prototype system. Listing B.4 presents

an example of a log and listing B.5 exemplifies the effect of checkpointing.

1 {

2 "state": [

3 {

4 "versions": [

5 {

6 "value": "1",

7 "timestamp": "00000001687424433835-00000000000000000000"

8 },

9 {

10 "value": "2",

11 "timestamp": "00000001687424433835-00000000000000000001"

12 }

13 ],

14 "key": "x"

15 },

16 {

17 "versions": [

18 {

19 "value": "8",

20 "timestamp": "00000001687424433835-00000000000000000002"

21 },

22 {

23 "value": "9",

24 "timestamp": "00000001687424453835-00000000000000000001"

25 }

26 ],

27 "key": "y"

28 },

29 {

30 "versions": [

31 {

32 "value": "14",

33 "timestamp": "00000001687424453835-00000000000000000000"

34 }

35 ],

36 "key": "z"

37 }

38 ]

39 }

Listing B.4: Prototype Communication Structures — Log format. For each key, an array orders

the versions of that key, each comprising its value and hybrid timestamp.
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1 {

2 "state": [

3 {

4 "versions": [

5 {

6 "value": "2",

7 "timestamp": "00000001687424433835-00000000000000000001"

8 }

9 ],

10 "key": "x"

11 },

12 {

13 "versions": [

14 {

15 "value": "9",

16 "timestamp": "00000001687424453835-00000000000000000001"

17 }

18 ],

19 "key": "y"

20 },

21 {

22 "versions": [

23 {

24 "value": "14",

25 "timestamp": "00000001687424453835-00000000000000000000"

26 }

27 ],

28 "key": "z"

29 }

30 ]

31 }

Listing B.5: Prototype Communication Structures — Checkpointing. The result of

performing a checkpoint on the log of listing B.4 using timestamp "00000001687424453835-

00000000000000000001". The stale versions of keys x and y are discarded because they are

already stable across read nodes. The last stable version of each key is preserved.
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