6,203 research outputs found

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Multi-view constrained clustering with an incomplete mapping between views

    Full text link
    Multi-view learning algorithms typically assume a complete bipartite mapping between the different views in order to exchange information during the learning process. However, many applications provide only a partial mapping between the views, creating a challenge for current methods. To address this problem, we propose a multi-view algorithm based on constrained clustering that can operate with an incomplete mapping. Given a set of pairwise constraints in each view, our approach propagates these constraints using a local similarity measure to those instances that can be mapped to the other views, allowing the propagated constraints to be transferred across views via the partial mapping. It uses co-EM to iteratively estimate the propagation within each view based on the current clustering model, transfer the constraints across views, and then update the clustering model. By alternating the learning process between views, this approach produces a unified clustering model that is consistent with all views. We show that this approach significantly improves clustering performance over several other methods for transferring constraints and allows multi-view clustering to be reliably applied when given a limited mapping between the views. Our evaluation reveals that the propagated constraints have high precision with respect to the true clusters in the data, explaining their benefit to clustering performance in both single- and multi-view learning scenarios

    Metaphor as categorisation: a connectionist implementation

    Get PDF
    A key issue for models of metaphor comprehension is to explain how in some metaphorical comparison , only some features of B are transferred to A. The features of B that are transferred to A depend both on A and on B. This is the central thrust of Black's well known interaction theory of metaphor comprehension (1979). However, this theory is somewhat abstract, and it is not obvious how it may be implemented in terms of mental representations and processes. In this paper we describe a simple computational model of on-line metaphor comprehension which combines Black's interaction theory with the idea that metaphor comprehension is a type of categorisation process (Glucksberg & Keysar, 1990, 1993). The model is based on a distributed connectionist network depicting semantic memory (McClelland & Rumelhart, 1986). The network learns feature-based information about various concepts. A metaphor is comprehended by applying a representation of the first term A to the network storing knowledge of the second term B, in an attempt to categorise it as an exemplar of B. The output of this network is a representation of A transformed by the knowledge of B. We explain how this process embodies an interaction of knowledge between the two terms of the metaphor, how it accords with the contemporary theory of metaphor stating that comprehension for literal and metaphorical comparisons is carried out by identical mechanisms (Gibbs, 1994), and how it accounts for both existing empirical evidence (Glucksberg, McGlone, & Manfredi, 1997) and generates new predictions. In this model, the distinction between literal and metaphorical language is one of degree, not of kind

    DWIE : an entity-centric dataset for multi-task document-level information extraction

    Get PDF
    This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F-1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE
    corecore