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Abstract 

A key issue for models of metaphor comprehension is to explain how in some 

metaphorical comparison <A is B>, only some features of B are transferred to A. The 

features of B that are transferred to A depend both on A and on B. This is the central 

thrust of Black's well known interaction theory of metaphor comprehension (1979). 

However, this theory is somewhat abstract, and it is not obvious how it may be 

implemented in terms of mental representations and processes. In this paper we 

describe a simple computational model of on-line metaphor comprehension which 

combines Black's interaction theory with the idea that metaphor comprehension is a 

type of categorisation process (Glucksberg & Keysar, 1990, 1993). The model is 

based on a distributed connectionist network depicting semantic memory (McClelland 

& Rumelhart, 1986). The network learns feature-based information about various 

concepts. A metaphor is comprehended by applying a representation of the first term 

A to the network storing knowledge of the second term B, in an attempt to categorise 

it as an exemplar of B. The output of this network is a representation of A 

transformed by the knowledge of B. We explain how this process embodies an 

interaction of knowledge between the two terms of the metaphor, how it accords with 

the contemporary theory of metaphor stating that comprehension for literal and 

metaphorical comparisons is carried out by identical mechanisms (Gibbs, 1994), and 

how it accounts for both existing empirical evidence (Glucksberg, McGlone, & 

Manfredi, 1997) and generates new predictions. In this model, the distinction between 

literal and metaphorical language is one of degree, not of kind. 
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Why use metaphor in language? Gibbs (1994) summarises three kinds of answers to 

this question (Fainsilber & Ortony, 1987; Ortony, 1975). First, the inexpressibility 

hypothesis suggests that metaphors allow us to express ideas that we cannot easily 

express using literal language. Second, the compactness hypothesis suggests that 

metaphors allow the communication of complex configurations of information to 

capture the richness of a particular experience. The use of literal language to 

communicate the same meaning would be cumbersome and inefficient. Third, the 

vividness hypothesis suggests that the ideas communicable via a metaphor are in fact 

richer than those we may achieve using literal language. 

When we receive information coded in the form of a metaphor (e.g., not that 

Richard is brave, aggressive, and so on, but that Richard is a lion), how do we process 

such language to extract its vivid meaning? The traditional view in philosophy and 

linguistics was that language comprehension and production are built around literal 

language, that metaphorical language is both harder to comprehend (given that it is 

literally false – in our example, Richard is not a lion) and requires special processing 

mechanisms to decode. Although it is distinguished by its communicative advantages, 

metaphor was seen as a purely linguistic phenomenon (Grice, 1975; Searle, 1975). 

More recently, this view has been challenged on two grounds (e.g. Gibbs, 1994, 1996; 

Lakoff, 1993). First, it is claimed that metaphor is conceptual rather than linguistic. 

Second, it is claimed that metaphor is not an add-on to the more primary literal 

language processing system, but a key aspect of language itself, sharing the same kind 

of processing mechanisms. In this paper, we will be focussing on the second of these 

claims. 

The argument that metaphor comprehension does not require special 

processing mechanisms has two strands (Gibbs & Gerrig, 1989). The first of these is 
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that on-line processing studies suggest that (with appropriate contextual support) 

metaphors and literal statements take the same amount of time to process (e.g. Inhoff, 

Lima, & Carroll, 1984; Ortony, Schallert, Reynolds, & Antos, 1978). This seems to 

rule out the possibility that metaphors are initially processed as literal statements, 

found to be false, and only then processed by metaphor-specific mechanisms. It does 

not, however, rule out the possibility that literal and metaphorical meanings of a 

sentence may be computed simultaneously and in parallel by separate mechanisms. 

The second strand suggests that literal language processing is no easier than 

metaphorical processing, given that both rely on a "common ground" between speaker 

and listener to comprehend what a given utterance means (Gibbs, 1994). That is, an 

apparently literal statement may well have an implicated meaning given a certain set 

of shared assumptions between speaker and listener. If both types of language involve 

similar problems, it makes sense to see them as engaging the same sort of 

mechanisms. 

Black (1955, 1962, 1979) outlined three views of how the metaphor 

comprehension process may work. In the first of these, the substitution view, to 

understand the metaphorical comparison Richard is a lion, this comparison must 

initially be replaced by a set of literal propositions that fit the same context, e.g. 

Richard is brave, Richard is aggressive. In the comparison view, the metaphor is taken 

to imply that the two terms are similar to each other in certain (communicatively 

relevant) respects. For example, both Richard and the lion are brave, aggressive, and 

so forth. The intention of the comparison is to highlight these properties in the first 

term Richard. In effect, the comparison is shorthand for the simile Richard is like a 

lion. In the interactive view, the comparison of the two terms in the metaphor is not 

taken to emphasise pre-existing similarities between them, but itself plays a role in 
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creating that similarity. The topic (first term) and vehicle (second term) interact such 

that the topic itself causes the selection of certain of the features of the vehicle, which 

may then be used in the comparison with the topic. In turn, this “parallel implication 

complex” may cause changes in our understanding of the vehicle in the comparison. 

Although the interaction view has been described as “the dominant theory in 

the multidisciplinary study of metaphor” (Gibbs, 1994, p. 234), it has nevertheless 

been criticised for the vagueness of its central terms (ibid., p. 235). One of the key 

issues for psycholinguistic models of metaphor comprehension is to explain the nature 

of the interaction between topic and vehicle that constrains the emergent meaning of 

the comparison. Three main models have been proposed. These are the salience 

imbalance model (Ortony, 1979), the structural mapping model (Gentner, 1983; 

Gentner & Clements, 1988), and the class inclusion model (Glucksberg & Keysar, 

1990, 1993). The salience imbalance model proposes that metaphors are similarity 

statements whose two terms share attributes. However, the salience of these attributes 

is much higher in the second term than the first. The comparison serves to emphasise 

these attributes in the first term. The structural mapping model suggests that topic and 

vehicle can be matched in three ways: in terms of their relational structure (that is, in 

the hierarchical organisation of their properties and attributes); in terms of those 

properties themselves; or in terms of both relational structure and properties. People 

tend to show a preference for relational mappings in metaphors. Lastly, the class 

inclusion model proposes that metaphors are understood as categorical assertions. In a 

metaphor <A is B>, A is assigned to a category denoted by B (that is, Richard falls 

into the class of brave, aggressive things whose prototypical member is lions). Only 

those categories of which B is a member that could also plausibly contain A are 

considered as the intended meaning of the categorical assertion. 
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The view of metaphor as a form of categorisation seems perhaps most 

consistent with the claim that metaphor comprehension requires no special processes 

over and above literal comprehension. Both the salience imbalance model and the 

structural mapping model imply a property matching procedure which is engaged for 

non-literal comparisons (Glucksberg, McGlone, & Manfredi, 1997). Moreover, 

Glucksberg et al. (1997) have argued that the class inclusion theory is empirically 

distinguishable from these property matching models. Although literal comparisons 

are asymmetric (in that the similarity of two terms can be rated differently depending 

on the order of presentation; e.g. Tversky & Gati, 1982), class inclusion statements 

should be more than asymmetric, they should be non-reversible. The lion is Richard 

should make very much less sense than Richard is a lion, unless Richard happens to 

be a prototypical member of a category of which lion could also be a member. 

Secondly, Glucksberg et al. claimed that the topic and vehicle should make very 

different (though interactive) contributions to the metaphor’s meaning, and that these 

contributions are predictable. While the vehicle provides the properties that may be 

attributed to the topic, the listener’s familiarity with the topic constrains those 

properties that may be attributed to it. Glucksberg et al. primed comprehension of 

metaphorical comparisons by pre-exposure to either topic or vehicle. They predicted 

that only comparisons involving topics with few potentially relevant attributes, or 

vehicles with few properties available as candidate attributes, should benefit from pre-

exposure. In their view, neither property-matching model should predict the non-

reversibility or specific interactivity effects. Nevertheless, Glucksberg et al. (1997) 

found empirical support for both of their predictions. 

The class inclusion model contrasts with Lakoff and colleague’s theory that 

metaphors rely on established mappings between pairs of domains in long term 
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memory (Lakoff, 1987, 1990, 1993; Lakoff & Johnson, 1980; Lakoff & Turner, 

1989). Thus comprehension of the metaphor this relationship is going nowhere 

proceeds via a pre-existing system of correspondences between the conceptual 

domains of LOVE and JOURNEY. The class inclusion theory on the other hand 

posits no such pre-existing metaphorical structures. In a comparison of the class 

inclusion and conceptual metaphor theories, McGlone (1996) determined that it was 

not yet possible to find conclusive evidence for either theory. McGlone presented four 

experiments, employing metaphor paraphrasing, comparison, and cued recall, the 

results of which he took to support the class inclusion theory over the conceptual 

metaphor theory. However, he admitted that the use of these off-line measures may 

not have tapped the use of conceptual metaphors during on-line interpretation. 

Evidence for the class inclusion model comes from the irreversibility of metaphors 

and related discourse phenomena (Glucksberg, 1991), while the primary evidence for 

the conceptual metaphor theory comes from the observed systematicity of idiomatic 

expressions in certain semantic domains. Lakoff  (1993) has criticised the class 

inclusion model for its use of ‘metaphorical attributive categories’ to mediate 

metaphor comprehension. Thus the metaphor my job is a jail must be understood via 

appeal to the category ‘restraining’ things (of which jail is a prototypical member). 

However, the application of the term ‘restraining’ to the concept job itself is itself 

metaphorical. Yet Lakoff’s own theory incurs the same problem in his use of the 

Invariance Principle, by which domains are linked in long term memory. Thus 

containers and categories, for instance, are linked in a particular way such that ‘source 

domain interiors correspond to target domain interiors’ (1993, p. 215). But the notion 

of the ‘interior’ of a container can only be metaphorically applied to the concept 
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category. In sum, it is premature to reject either of these theories at the current time. 

In what follows, we will be concentrating on the class inclusion theory. 

In this paper, our aim is to propose a computational model of metaphor 

comprehension based on a categorisation device, as opposed to the property-matching 

device which would have to lie at the heart of a salience imbalance or a structural 

mapping model. Since our model will be based on a previously proposed mechanism 

of semantic memory, it exemplifies the idea that metaphor comprehension is not a 

“special” function of the language processing system. Indeed we suggest that within 

this mechanism, literal and metaphorical comparisons are distinguished only 

quantitatively, not qualitatively. The implemented model demonstrates in concrete 

terms how topic and vehicle interact in metaphor comprehension, addressing some of 

the vagueness in the interaction position. Lastly, we show how the model accounts for 

both of the empirical findings demonstrated by Glucksberg et al., and how it generates 

new predictions. 

First however, we lay out the assumptions of the MPC (metaphor by pattern 

completion) model. 

 

Assumptions of the model 

The model builds on the following assumptions: 

1. The aim of comprehension is the on-going development of a semantic 

representation, and that representation is feature-based. 

2. The on-going semantic representation is continually monitored against 

expectations based on a common ground between listener and speaker. 

Specifically with regard to metaphor comprehension, the on-going semantic 
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representation is monitored for degree of expected meaning change. (It will be 

monitored in other ways for other non-literal communication). 

3. Comparisons of the form <A is B> are class inclusion statements where the 

intended meaning is that A is a member of category B and so should inherit its 

attributes (Glucksberg & Keysar, 1990, 1993). 

4. The meaning produced by a metaphor is the result of using a categorisation 

mechanism to transfer attributes from B to A when A is not in fact a member of B. 

However, membership of B is not all-or-nothing but depends on degree of featural 

overlap. 

5. The categorisation mechanism is an autoassociative neural network. Category 

membership is established by the accuracy of reproduction of a novel input A to a 

network trained to reproduce exemplars of category B. The output of such a 

network is a version of A transformed to make it more consistent with B. 

6. Metaphorical comparisons must exceed some expected level of semantic 

distortion (for a given context) to be interpreted as metaphorical. When a 

comparison is interpreted as metaphorical, not all feature changes induced in the 

topic A are accepted as the communicative intent of the comparison. More 

specifically, the accepted features of the comparison are those initially non-zero 

features of the topic A that are amplified by the transformation caused by the 

vehicle knowledge base B. 

7. Metaphorical mappings caused by the topic may be learnt in the network storing 

the vehicle knowledge. The topic may become a (highly atypical) member of the 

vehicle category, so changing that category in long term memory. Thus metaphors 

may either be computed on-line or retrieved from long term memory. 
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Before describing the details of the model, we wish to expand on two of these 

assumptions, and situate our model with respect to previous connectionist models of 

metaphor comprehension. The first is the idea that meaning can be described as a set 

of features, or in connectionist terms, as a vector representation. Although there is a 

significant debate surrounding the legitimacy of feature vectors, much research has 

used vector-based semantic representations. For instance, connectionist models of 

word recognition which employ such representations have successfully captured a 

great deal of empirical data in both normal and impaired language processing (Plaut, 

McClelland, Seidenberg, & Patternson, 1996; Plaut & Shallice, 1993). Moreover, 

using a semantic priming paradigm, McRae, Cree, and McNorgan (1998) generated 

empirical predictions for the feature-based theory of lexical semantic representation 

and its main competitor, the hierarchical semantic network theory. Their results 

supported feature-based accounts, finding no evidence that priming proceeded via 

intervening superordinate nodes rather than shared feature sets. McRae et al. 

concluded that “lexical concepts are not represented as static nodes in a hierarchical 

system” (p. 681). Lastly, corpus-based approaches have demonstrated that valid 

measures of word meaning can be generated using vector based co-occurrence 

statistics of the context in which words appear (Lund & Burgess, 1996). This has led 

to new theories of the acquisition of word meaning per se (Landauer & Dumais, 

1997). While there are certainly problems with vector-based accounts and their 

difficulty in representing conceptual structure, they are nevertheless an active 

theoretical approach to the representation of meaning. 

The second assumption is that connectionist networks are a valid cognitive 

model of categorisation. Connectionist models have tended to take two approaches to 

categorisation (see e.g. Small, Hart, Nguyen, & Gordon, 1996). In one approach, the 
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network takes object features as inputs, and maps to category names as outputs. In the 

other, a network is trained to simply reproduce the object features for the category it is 

storing (a task known as “autoassociation”). Category membership is tested 

depending on the accuracy with which a novel input is reproduced. An accurate 

reproduction indicates a high probability of category membership. It is the latter 

approach we will be adopting for our model. This approach has been used previously 

in models of the acquisition of word meaning (Plunkett, Sinha, Mueller, & Strandsby, 

1992) and of semantic memory (McClelland & Rumelhart, 1986; Small et al., 1996). 

A number of previous researchers have exploited the soft multiple constraint 

satisfaction capabilities of connectionist systems to propose models which find 

systematic mappings between the two concepts of a metaphor. Some of these models 

build in complex pre-existing structure to represent the various concepts (e.g., 

Holyoak & Thagard, 1989; Hummel & Holyoak, 1997; Narayanan, 1999; Veale & 

Keane, 1992; Weber, 1994). Others have emphasised featural representations. Thus 

Sun (1995) showed how a network trained on a subset of metaphors relating items in 

the landscape to facial features (around the core metaphor, billboards are warts), could 

generalise this knowledge to produce plausible meanings for metaphors it had not 

seen (see also Chandler, 1991). In our model we minimise the weight attributed to 

structural relations in metaphor, focusing on the learnability of the concepts in a 

distributed system. Models that build in complex pre-existing structured 

representations entrust much of their performance to the precise nature of these 

representations, limiting their generality and robustness. We build in no a priori 

metaphor structures other than the ability of a system to select the knowledge with 

which it attempts to categorise a given input. However, the concepts learned by our 
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model do contain structure in the form of systematic (though probabilistic) co-

variation of the features which define them. 

 

The Metaphor by Pattern Completion (MPC) model 

The model below is simple and is primarily intended to illustrate the “metaphor as 

categorisation” approach. Figure 1 illustrates the model architecture. A three-layer 

connectionist network is trained to autoassociate (reproduce across the output units) 

semantic vector representations of exemplars from a number of different categories. 

Each category knowledge base is stored across a different set of hidden units 

[Footnote 1]. Metaphor processing is modelled by inputting a semantic vector for the 

topic to the part of the network storing a category of which it is not a member (i.e., the 

vehicle). The output of the network is a semantic representation of the topic 

transformed to make it more consistent with the vehicle. To understand why this 

transformation should occur, we need to consider a property of connectionist 

networks known as pattern completion. 

 

-------------------------------- 

Insert Figure 1 about here. 

-------------------------------- 

 

Pattern completion is a property of connectionist networks that derives from 

their non-linear processing (Rumelhart & McClelland, 1986). A network trained to 

respond to a given input set will still respond adequately given noisy versions of the 

input patterns. For example, if an autoassociator is trained to reproduce the vector 

<0 1 0 0> and is subsequently given the input <.2 .6 .2 .2>, its output is likely to be 

much closer to the vector it 'knows', perhaps <.0 .9 .0 .0>. An input is transformed so 

as to make it more consistent with the knowledge that the network has been 



Metaphor as categorisation     14  

previously trained on. The connection weights store the feature correlation 

information in previously experienced examples. If a partial input is presented to the 

network, it can use that correlation information to reconstruct the missing features. 

When processing metaphors, the input is not a noisy version of a pattern on 

which the network has previously been trained, but an exemplar of another concept. 

The output is then a transformed version of the topic, changed to make it more 

consistent with the knowledge stored about the vehicle. Metaphorical meaning 

emerges as a result of deliberate misclassification. As we will shortly see, the way in 

which a network transforms an input depends on that input. In this way, the model 

captures the interactivity between the terms of the metaphor. 

For this simple model, we chose a small set of features with which to describe 

the concepts. In order to generate knowledge bases for separate concepts, the network 

was trained to autoassociate exemplars of each concept. For simplicity, we restricted 

the model to the formation of A is B metaphors between three concepts: Apples, 

Balls, and Forks. Two of these could plausibly be used in a metaphorical comparison 

(e.g. the apple is a ball), one of them much less so (e.g. the apple is a fork). 

The concepts were defined by a set of prototypical tokens representing 

different kinds of apples, balls, and forks that could be encountered in the individual's 

world (see Table 1). The network was not trained on the prototypes themselves, but 

on exemplars clustered around these prototypes. Exemplars were generated from each 

prototype by adding Gaussian noise (variance 0.15) to the original. 

 

-------------------------------- 

Insert Table 1 about here. 

-------------------------------- 
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The exemplars for each concept formed three training sets used to develop the 

network’s three prior-knowledge bases ‘about’ apples, balls, and forks. The existence 

of a prior knowledge base is a necessary feature of metaphor comprehension. Prior 

knowledge bases are analogous to Black’s (1979) “implicative complex” and reflect 

an individual’s personal experience with exemplars of each concept. The apple 

sub-network was trained to autoassociate patterns corresponding to 10 exemplars of 

each of three apple kinds (e.g., red, green, and rotten) for a total of 30 patterns. 

Similarly, the ball sub-network was trained to autoassociate 10 exemplars from three 

different kinds (for a total of 30 patterns). Finally, the fork sub-network was trained to 

autoassociate 10 exemplars from 1 kind (for a total of 10 patterns). Because there was 

only 1 kind of fork (as opposed to 3 kinds of both apples and balls), a single blank 

training pattern (zero input and output) was added to the fork training set to inhibit 

over-learning of the fork exemplars. All networks were trained with Backpropagation 

using the following parameter values: learning-rate: 0.1, momentum: 0.0, initial 

weight range: ±0.5. Each sub-network (knowledge-base) was trained for 1000 epochs. 

All reported results are averaged over n=10 replications using different random 

starting weights and concept exemplars. 

After training, the network demonstrated prototype effects in each knowledge 

base. They responded most strongly to the prototypes for each category, despite never 

encountering them in training (cf. human performance, Posner & Keele, 1968). This 

suggests that the Apple, Ball, and Fork categories had been adequately learnt. 

Metaphors were processed by the redirection of information flow into one knowledge 

base or another. The role of the ‘is’ in the <A is B> metaphor is to trigger that 

redirection. 
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Results 

Interaction between topic and vehicle 

Figure 2 shows the transformation of the semantic features of an apple concept for the 

metaphor the apple is a ball. The input is an exemplar of apple close to its prototype 

kind and is presented to the network storing knowledge about balls. The effect of this 

metaphor is to produce as output a representation of apple in which the suitability for 

throwing, the hardness, and roundness features are exaggerated, while the edibility 

feature is reduced and the colour features become more ambiguous. Provided the 

context dependent threshold for semantic distortion is exceeded, this metaphor will be 

interpreted to mean that the apple is question is round, hard, and likely to be thrown. 

 

-------------------------------- 

Insert Figure 2 about here. 

-------------------------------- 

 

In Glucksberg and Keysar’s class inclusion theory (1990), a metaphor 

highlights an underlying category of which both topic and vehicle are members (but 

the vehicle is the prototypical member). Thus my job is a jail highlights that job is a 

member of the underlying category {restraining things}. In the MPC model, one 

could see such a new inclusive category as emerging from the juxtaposition. That is, 

the features of A that are emphasised by processing in the B network define the 

category of which apple and ball are both members (but of which ball is the 

prototypical member): {hard round things that can be thrown}. This is a possible 

response to Lakoff’s (1993) criticism that in the class inclusion theory, metaphor 

comprehension relies on unlikely pre-existing ‘metaphoric attributive categories’ (e.g. 

‘restraining things’ in the above example) – in the current model, such attributive 

categories are newly created by the categorisation process itself. 
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Alternatively, we could describe this transformation in terms of Black's 

parallel implication complex. Either way, these modified features are a result of the 

interaction of the topic and vehicle. For example, note that despite the fact that 20 of 

the 30 Ball exemplars are soft beachballs, apple is still made to look harder rather than 

softer by this metaphor. This is because the apple is closer in size to a hard baseball 

than it is to a soft beachball. The semantic transformation is not a default imposition 

of ball features onto those of an apple, but an interaction between stored ball 

knowledge and the nature of the apple exemplar being presented to the ball sub-

network. Thus the model offers an instantiation of Black’s interactive theory of 

metaphor comprehension. 

We can now attempt to formulate a clearer answer to the question of why in a 

metaphor <A is B>, some features of B should be transferred to A but not others. Let 

us assume that features x, y, and z tend to co-occur in exemplars of B. Transfer of 

feature z from B to A will occur only when features x and y are present in A. Concept 

A can ‘key in’ to a strong co-variance of features in B, thus triggering the pattern 

completion processes to transfer the additional feature z. Pattern completion would 

cause the set of features x, y, z to be completed in A. Such pattern completion is even 

more effective if z is already present to some extent in A, so that this feature need 

only be exaggerated. Metaphorical comparisons are thus used to exaggerate existing 

features of the topic. 

The transfer of features also depends on the strictness of co-variance in 

exemplars of B. Thus, if x, y, and z always co-occur in B, A is highly likely to inherit 

feature z when it already possesses x and y. However, if there are some exemplars of 

B which have x and y but not z, transfer is less likely. It may only occur if A shares 

other features of the particular exemplars of B which have x, y, and z in common. 
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In terms of the communicative advantage of metaphor, this model accords 

most closely with the compactness hypothesis. That is, vehicles embody a co-variance 

of features which, so long as the topic can key into them, may be transferred to the 

topic as a whole. Figure 2 demonstrates that the transformation of the features of the 

topic is a subtle one – features are not all or nothing, but enhanced or attenuated. It 

may also be that transformations of meaning of this sort cannot be achieved by the use 

of literal language alone. Thus the model may also accord with the inexpressibility 

hypothesis.  

 

The reversibility of metaphors 

Glucksberg, McGlone, and Manfredi (1997) have claimed that metaphors are 

characterised by the property of non-reversibility, a property that only the class 

inclusion model can explain. The authors had subjects rate the sense of literal and 

metaphorical comparisons in original (sermons are sleeping pills) and reversed 

(sleeping pills are sermons) formats. The subjects also paraphrased the two versions. 

The experimenters judged the forward and reverse paraphrases for how much sense 

they made. The results showed that literal comparisons were far more reversible than 

metaphors. Glucksberg et al concluded that their data “provided strong support for the 

claim that metaphors and similes either lose or change meaning when reversed” 

(1997, p. 57). 

Figure 3 shows the transformation for the metaphor the ball is an apple, the 

reverse of the metaphor shown in Figure 2. In Figure 3, the effect of comparing the 

ball to an apple is to exaggerate the softness and irregularity and edibility of the ball, 

whilst reducing its likelihood of being thrown, its size, and its roundness. The 

semantic effect of this metaphor is quite different from that in the previous case 
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despite the fact that the feature overlap of ball exemplars and apple exemplars 

defining the knowledge bases is the same in each case. The change in meaning 

between the forward and reverse metaphors, found in the empirical data, arises in the 

MPC model  from the non-linear nature of its transformations. These transformations 

are not symmetrical. 

 

 

-------------------------------- 

Insert Figure 3 about here. 

-------------------------------- 

 

Glucksberg et al noted that literal similarity statements are asymmetric – the 

rated similarity changes with the order of presentation of two terms – and that 

property matching models can account for this asymmetry by rating properties of the 

first and second term differently. However, Glucksberg et al maintained that non-

reversibility is different in kind than asymmetry, and that property-matching models 

such as the salience imbalance and the structural mapping model cannot account for 

non-reversibility. We see literal and metaphorical comparisons as lying on a 

continuum, just as category membership can be a graded rather than binary 

phenomenon. We have shown elsewhere that an architecture similar to the MPC 

model is able to account for the asymmetry in general similarity judgements (Thomas 

& Mareschal, 1997). Reversibility and asymmetry are also matters of degree. Support 

for this is provided by Sternberg, Tourangeau, and Nigro (1979) who found an inverse 

relationship between the similarity of two terms in a comparison and the aesthetic 

impact of that comparison. Metaphors are about having just the right amount of 

dissimilarity. The greater the dissimilarity, the greater the asymmetry. 
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Predictability of interactions 

Glucksberg et al (1997) manipulated the ambiguity of vehicles and the number of 

potentially relevant attributes of topics in metaphorical comparisons. They primed 

comprehension of metaphors either by prior exposure of the topic or the vehicle. The 

results showed that when either ambiguity or number of potentially relevant attributes 

was constrained, subjects benefited from the prime, in terms of the time it took them 

to comprehend the metaphors. It is difficult to directly relate our current model to 

reaction time data, since we do not believe the simple mechanism depicted in our 

model is the only mechanism involved in metaphorical comprehension. Other more 

complex mechanisms may contribute to a comprehension response time. 

Nevertheless, we are able in our model to systematically alter aspects of the topic or 

vehicle and demonstrate how the interaction is affected. 

Figure 4 shows the metaphorical comparison the apple is a fork. Where there 

is little overlap between the concepts, the resulting output shows no strongly activated 

features, only a weak activation of the characteristics of a fork. Comparisons 

involving a narrowly defined vehicle with little similarity to the topic produce a weak 

and non-interactive metaphor. 

 

-------------------------------- 

Insert Figure 4 about here. 

-------------------------------- 

 

Figure 5 shows the metaphorical comparison the ball is a fork for balls of 

various different colours. The results again show weak imposition of the fork’s 

characteristics, except when the ball is of the same colour of the fork. In this case, the 

topic can key into the narrowly defined vehicle concept and evoke a stronger 

transformation. 
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-------------------------------- 

Insert Figure 5 about here. 

-------------------------------- 

 

Figure 6 shows the metaphorical comparison the ball is an apple, again for 

balls of various different colours. Here the vehicle, apple, is more ambiguous than 

fork, in that it has more widely varying prototypes. The resulting transformation is 

thus more interactive – that is, it depends more on the particular features of the topic. 

Once more, when the topic keys into a particular co-variance in the vehicle (red and 

green apples are firm, rotten brown apples are soft), the nature of the transformation 

differs – brown balls are seen as softer as a result of this metaphor in contrast to red 

and green balls. 

 

-------------------------------- 

Insert Figure 6 about here. 

-------------------------------- 

 

Figure 7 shows the metaphorical comparison the apple is a ball, but now 

supplying contextual information to further specify the type of ball referred to in the 

vehicle. (This is implemented by providing a label to each type of ball during 

training). When the apple is compared to a small hard baseball, the transformation is 

very different to when it is compared to a large soft beachball. Nevertheless, both 

types of ball knowledge are represented over the same hidden units within the 

network. 

 

-------------------------------- 

Insert Figure 7 about here. 

-------------------------------- 
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These effects show that under certain circumstances, the nature of the 

interaction between topic and vehicle is predictable. With regard to Glucksberg et 

al.’s data, we might suggest the following explanation. A topic which has many 

potentially relevant properties (e.g. life is a _ ) is less able to prime subsequent 

metaphors than a topic with few (e.g. temper is a _ ) since such a topic has many keys 

which could engage patterns of co-variant features in the vehicle. Subsequent 

interactions are therefore less predictable. A vehicle with a variety of sets of co-

variant features (e.g. _ is an ocean) is a less effective prime that one with few (e.g. _ is 

a crutch) since it has more patterns which could be keyed into by the topic. Once 

more, the interaction is less predictable. (Examples from Glucksberg et al., 1997). 

 

Further predictions 

Our model makes the following testable predictions. 

Two phenomena can be predicted on the basis of the way autoassociative 

networks generalise to novel patterns given their training set and the degree of 

training they have undergone. (1) A lack of variance in the exemplars of the vehicle 

category will reduce interactivity in metaphor comparisons - that is, it will produce 

the same transfer of attributes across a range of topics. (2) In the same way, over-

trained or highly familiar vehicles will also generate less interactivity in metaphorical 

comparisons. 

We have proposed an explicit example of how literal and metaphorical 

comparisons may involve the same type of processing mechanism. However, for a 

metaphorical comparison, the listener does not accept the full meaning change 

implied by the comparison, but accepts only features that have been enhanced. This 

suggests that there is feature change in a metaphorical comparison that is not reported 
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by the subjects. For example, in the metaphor my rock is a pet, we do not conclude 

that the rock is alive. But we predict that (3) given a metaphorical comparison, 

subjects will show delayed responses to questions about features of the topic which 

they would nevertheless not report as aspects of the metaphorical expression (e.g., for 

my rock is a pet, the question ‘Is a rock animate or inanimate?’). Evidence for such 

implicit featural change would support the idea that the reported meaning of a 

metaphor is the tip of the iceberg of a process of featural enhancement that has much 

in common with literal language processing. 

 

Discussion 

The relation of literal to metaphorical comparisons 

The MPC model uses a categorisation device to transfer attributes of the category 

onto a novel input. Categorisation causes a transformation of the input vector to make 

it more consistent with the category. Metaphor occurs when the novel input is not a 

member of the category to which it is applied. However, category membership is a 

graded notion and categories themselves have internal structure, having more or less 

typical members (Rosch, 1975). 

If we see metaphor as categorisation, it only requires a small step to see literal 

and metaphorical categorisation as differing in degree rather than kind. A literal 

comparison involves categorisation of a novel input that is a member of the vehicle 

category. However, the novel item may be a highly prototypical member of the 

category. This defines one end of a continuum. The item may be a less typical 

member – still falling within the category but in some sense being less similar to it. A 

metaphorical comparison involves an input that has some similarities to the category 

but falls beyond the normal limits of the category. An anomalous comparison 
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involves an input that falls beyond the normal limits and has few if any similarities to 

the category. 

We propose then, that literal and metaphorical comparisons are on a 

continuum of reducing similarity. However, importantly, we propose that literal and 

metaphorical comparisons are also distinguished by how the semantic distortion 

caused by the categorisation process is then handled. If the change in meaning of the 

topic caused by the semantic distortion exceeds (context dependent) expectations, the 

comparison is taken to be metaphorical, and the communicative intent is taken to refer 

only to the features of the topic that have been amplified by the transformation. If the 

threshold is low and we are told that Richard (whom we thought to be a man) is a 

lion, we are likely to view this claim as literally false and ask for clarification. A 

higher threshold will cause us to focus only on enhanced features of the topic 

distortion, viewing the statement as a metaphor. If the threshold expectation of 

meaning change is very high (for instance, the listener expects the speaker to convey 

brand new information), then the same statement can be taken as literal and all 

meaning change accepted as the communicative intent. Richard is a lion can be false, 

or it can tell us that a man we know, Richard, is a brave and aggressive man; or it can 

tell us that a particular lion has been named Richard (a name usually reserved for 

humans). The actual meaning is not derivable from the comparison alone, but depends 

on context. Similarly, before context definitively disambiguates the meaning, my job 

is a jail could be seen as incongruous (occupations can’t be buildings), or it could tell 

us that I feel constrained by my job, or it could tell us that my daytime occupation is 

to act as a physical restraint for some sentient being. 

 

 



Metaphor as categorisation     25  

Criticisms of semantic feature explanations of metaphor 

The MPC model is based on simple semantic feature representations of concepts. 

Such representations have been criticised on a number of grounds as insufficient to 

explain the processes of metaphor comprehension. In this section, we consider a 

number of these criticisms. Criticisms 1-4 are from Gibbs (1994). Criticism 5 

considers the importance of conceptual structure in metaphor comprehension. 

Criticism 1: How can feature-based representations deal with semantically 

non-deviant representations that are nevertheless metaphorical, i.e. those that can have 

a valid literal interpretation? Response: Our response to this criticism is detailed in the 

previous section. Simple metaphor comprehension is a two-stage process involving 

both semantic distortion caused by the juxtaposition and context-dependent 

interpretation of that distortion. 

Criticism 2: Feature-based representations seem insufficient to deal with the 

complexities of sophisticated metaphorical expressions. Response: At the moment, 

this criticism is certainly valid. However, it is also true that we do not know what a 

more realistic feature-based representation of meaning looks like. The representations 

in our model are undoubtedly too simple to deal with anymore than two term 

metaphors involving attribute mapping. We would expect more realistic and complex 

feature-based representations to support richer metaphorical distortions in a system 

following the same principles – that metaphor relies on pattern completion processes 

invoked through deliberate mis-classification. 

Criticism 3: The property transferred from vehicle to topic may not be a 

property of the vehicle itself (e.g. the girl is a lollipop may be taken to imply that she 

is frivolous - but lollipops themselves can be described as frivolous). Furthermore, 

features must not themselves be metaphorical. For example, in the metaphor the 
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legislative program was a rocket to the moon, we might think this implies that both 

are fast. But legislative programs and rockets are not fast in the same way. Response: 

One response for a feature-based account would be that semantic features are not 

lexical concepts. That is, in the previous example, a cluster of semantic features 

defines fast for the rocket, and a different cluster, though sharing many of the same 

features, defines fast for legislative program. Similarly, in the girl is a lollipop, the 

cluster of features which is enhanced in the representation of girl by the knowledge 

base for lollipop would share features with the cluster that defines the lexical concept 

“frivolous”.  

The notion that lexical concepts are made up of features is the essence of sub-

symbolic representation. Features only appear as lexical concepts in our own model 

for ease of exposition. Thus ‘hard’ in our model might itself correspond to a set of 

lower level features, different groups of which would make up different versions of 

hardness. (See Harris, 1994, for an example of a connectionist model exhibiting sub-

symbolic, context dependent meanings of a lexical concept). Clearly such an account 

needs to be fleshed out, but we don’t believe that this criticism is a terminal one for 

feature-based representations. 

Criticism 4: Feature overlap accounts do not explain why metaphors have 

directionality. Response: In the section entitled The Reversibility of Metaphors, we 

show how the model accounts for the directionality of metaphorical comparisons. 

Criticism 5: Feature-based or vector representations cannot deal with 

relational structure in concepts. Gentner (1988) has shown that adults prefer topics 

and vehicles to be structurally related in metaphors. Response: The current model can 

only address part of the metaphor story, for more complex metaphors will necessarily 

involve semantic distortions at various levels of conceptual structure. Structured 
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representations are not easily implemented in connectionist systems. However, recent 

work in the connectionist modelling of analogy formation has shown how feature-

based attributes may be dynamically bound to relational structure in a distributed 

network (Hummel & Holyoak, 1997). Such a network still exploits similarity-based 

processing and pattern completion in forming and retrieving analogies. Moreover, 

Henderson and Lane (1998) have shown that such dynamically bound representations 

may be learnt in a neural network architecture. We would make two claims. First, we 

believe that the approach of the MPC model is extendable to structured 

representations in a connectionist system (similar to that of Hummel & Holyoak, 

1997). The principles of such a model would be the same: metaphor comprehension 

would rely on pattern completion and subsequent semantic distortion in a system 

designed for categorisation, in this case of structured concepts. Second, we believe it 

important to embed such future accounts in neurally plausible learning systems, which 

minimise the proportion of the theory that relies on arbitrary decisions about the 

nature of pre-existing structured representations (or, indeed, postulates representations 

with no apparently learnability at all). 

An interesting avenue of research will be to explain why children show a shift 

in preference from attribute mapping to relational mapping during development. Thus 

far, we have applied the MPC model only to the emergence of the distinction between 

literal and metaphorical similarity in young children, based on the maturity of their 

semantic representations (Thomas, Mareschal, & Hinds, under revision). In future 

work we hope to explore extensions of the model to include relational structure, and 

therefore investigate the developmental shift to more complex metaphors. 
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Conclusion 

In this paper we have introduced a simple and predominantly illustrative model of 

how metaphor comprehension may be explained as a form of categorisation 

(Glucksberg & Keysar, 1990, 1993). We have offered the beginnings of an answer to 

the thorny question of why certain attributes are transferred from the vehicle to the 

topic in a metaphorical comparison, but not others. The answer was in terms of 

attributes that the topic possesses which key into co-variances of features in the 

vehicle, and which pattern completion processes in a neural network allow to be 

transferred to the topic. This is an essentially interactive account, in line with Black’s 

favoured view of metaphor comprehension (1979). The model is able to offer 

accounts for recent empirical evidence on the non-reversibility of metaphorical 

expressions, and the nature of the interaction between topic and vehicle (Glucksberg 

et al., 1997), as well as generating further testable predictions.  

Lastly, in wider theoretical terms, the model conforms to the notion that 

metaphor comprehension requires no special processes over and above literal 

language comprehension, by suggesting that metaphorical language and literal 

language are different points on a continuum of meaning change. Literal and 

metaphorical statements update comprehension in a different way. 
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Footnotes 

 

 

Footnote 1. The use of separate banks of hidden units is not a necessary assumption of 

the model. ‘Soft’ modularity of knowledge bases can be achieved by using input and 

output labels to index each concept during training and categorisation. 
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Tables 

 

 
 

Table 1: Prototype feature sets for each category. 
 

 

Feature sets      

  Colour Actions Shape Texture Size 

Concepts Red Green Brown White Edible Thrown Round Irregular Pointed Soft Hard Hand 

Sized 

Lap 

Sized 

               

Apples              

 Red 1 0 0 0 1 .2 .8 .3 0 .3 .7 1 0 

 Green 0 1 0 0 1 .2 .8 .3 0 .3 .7 1 0 

 Rotten 0 0 1 0 0 .2 .8 .3 0 1 0 1 0 

Balls              

 Baseballs 0 0 0 1 0 1 1 0 0 0 1 .9 .1 

 Beachballs              

  Red 1 0 0 0 0 1 1 0 0 1 0 .1 .9 

  Green 0 1 0 0 0 1 1 0 0 1 0 .1 .9 

Forks              

 Fork 0 0 0 .9 0 .1 0 0 1 0 1 .7 .3 
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Figure Captions 

 

 

Figure 1. Architecture of the MPC model. 

Figure 2. Transformations of semantic features by a metaphorical comparison 

(Topic/Input = Apple; Vehicle/Network = Ball). 

Figure 3. The non-reversibility of metaphorical comparisons (see text). 

Figure 4. When metaphors fail: interactions between topic and vehicle (see text). 

Figure 5. The role of the topic in determining the interaction between topic and 

vehicle (see text). 

Figure 6. The role of the topic in determining the interaction between topic and 

vehicle (see text). 

Figure 7. The role of the vehicle in determining the interaction between topic and 

vehicle (see text). 
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