6 research outputs found

    Emergent bimodal firing patterns implement different encoding strategies during gamma-band oscillations

    Get PDF
    Upon sensory stimulation, primary cortical areas readily engage in narrow-band rhythmic activity between 30 and 90 Hz, the so-called gamma oscillations. Here we show that, when embedded in a balanced network, type-I excitable neurons entrained to the collective rhythm show a discontinuity in their firing-rates between a slow and a fast spiking mode. This jump in the spiking frequencies is characteristic to type II neurons, but is not present in the frequency-current curve (f-I curve) of isolated type I neurons. Therefore, this rate bimodality arises as an emerging network property in type I population models. We have studied the mechanisms underlying the generation of these two firing modes, in order to reproduce the spiking activity of in vivo cortical recordings, which is known to be highly irregular and sparse. We have also analyzed the relation between afferent inputs and the single unit activity, and between the latter and the local field potential (LFP) phase, in order to establish how the collective dynamics modulates the spiking activity of the individual neurons. Our results reveal that the inhibitory-excitatory balance allows two encoding mechanisms, for input rate variations and LFP phase, to coexist within the network

    Emergent bimodal firing patterns implement different encoding strategies during gamma-band oscillations

    No full text
    Upon sensory stimulation, primary cortical areas readily engage in narrow-band rhythmic activity between 30 and 90 Hz, the so-called gamma oscillations. Here we show that, when embedded in a balanced network, type-I excitable neurons entrained to the collective rhythm show a discontinuity in their firing-rates between a slow and a fast spiking mode. This jump in the spiking frequencies is characteristic to type II neurons, but is not present in the frequency-current curve (f-I curve) of isolated type I neurons. Therefore, this rate bimodality arises as an emerging network property in type I population models. We have studied the mechanisms underlying the generation of these two firing modes, in order to reproduce the spiking activity of in vivo cortical recordings, which is known to be highly irregular and sparse. We have also analyzed the relation between afferent inputs and the single unit activity, and between the latter and the local field potential (LFP) phase, in order to establish how the collective dynamics modulates the spiking activity of the individual neurons. Our results reveal that the inhibitory-excitatory balance allows two encoding mechanisms, for input rate variations and LFP phase, to coexist within the network.This work has been financially supported by the Ministerio de Ciencia e Innovación (project FIS2012-37655) and the Generalitat de Catalunya (project2009SGR1168). J. Garcia-Ojalvo acknowledges financial support from the ICREA Academia program. R. Vicente also acknowledges financial support from the HERTIE Foundation

    Articles indexats publicats per investigadors del Campus de Terrassa: 2013

    Get PDF
    Aquest informe recull els 228 treballs publicats per 177 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2013Preprin

    Neuronal oscillations: from single-unit activity to emergent dynamics and back

    Get PDF
    L’objectiu principal d’aquesta tesi és avançar en la comprensió del processament d’informació en xarxes neuronals en presència d’oscil lacions subumbrals. La majoria de neurones propaguen la seva activitat elèctrica a través de sinapsis químiques que són activades, exclusivament, quan el corrent elèctric que les travessa supera un cert llindar. És per aquest motiu que les descàrregues ràpides i intenses produïdes al soma neuronal, els anomenats potencials d’acció, són considerades la unitat bàsica d’informació neuronal, és a dir, el senyal mínim i necessari per a iniciar la comunicació entre dues neurones. El codi neuronal és entès, doncs, com un llenguatge binari que expressa qualsevol missatge (estímul sensorial, memòries, etc.) en un tren de potencials d’acció. Tanmateix, cap funció cognitiva rau en la dinàmica d’una única neurona. Circuits de milers de neurones connectades entre sí donen lloc a determinats ritmes, palesos en registres d’activitat colectiva com els electroencefalogrames (EEG) o els potencials de camp local (LFP). Si els potencials d’acció de cada cèl lula, desencadenats per fluctuacions estocàstiques de les corrents sinàptiques, no assolissin un cert grau de sincronia, no apareixeria aquesta periodicitat a nivell de xarxa. Per tal de poder entendre si aquests ritmes intervenen en el codi neuronal hem estudiat tres situacions. Primer, en el Capítol 2, hem mostrat com una cadena oberta de neurones amb un potencial de membrana intrínsecament oscil latori filtra un senyal periòdic arribant per un dels extrems. La resposta de cada neurona (pulsar o no pulsar) depèn de la seva fase, de forma que cada una d’elles rep un missatge filtrat per la precedent. A més, cada potencial d’acció presinàptic provoca un canvi de fase en la neurona postsinàptica que depèn de la seva posició en l’espai de fases. Els períodes d’entrada capaços de sincronitzar les oscil lacions subumbrals són aquells que mantenen la fase d’arribada dels potencials d’acció fixa al llarg de la cadena. Per tal de què el missatge arribi intacte a la darrera neurona cal, a més a més, que aquesta fase permeti la descàrrega del voltatge transmembrana. En segon cas, hem estudiat una xarxa neuronal amb connexions tant a veïns propers com de llarg abast, on les oscil lacions subumbrals emergeixen de l’activitat col lectiva reflectida en els corrents sinàptics (o equivalentment en el LFP). Les neurones inhibidores aporten un ritme a l’excitabilitat de la xarxa, és a dir, que els episodis en què la inhibició és baixa, la probabilitat d’una descàrrega global de la població neuronal és alta. En el Capítol 3 mostrem com aquest ritme implica l’aparició d’una bretxa en la freqüència de descàrrega de les neurones: o bé polsen espaiadament en el temps o bé en ràfegues d’elevada intensitat. La fase del LFP determina l’estat de la xarxa neuronal codificant l’activitat de la població: els mínims indiquen la descàrrega simultània de moltes neurones que, ocasionalment, han superat el llindar d’excitabilitat degut a un decreixement global de la inhibició, mentre que els màxims indiquen la coexistència de ràfegues en diferents punts de la xarxa degut a decreixements locals de la inhibició en estats globals d’excitació. Aquesta dinàmica és possible gràcies al domini de la inhibició sobre l’excitació. En el Capítol 4 considerem acoblament entre dues xarxes neuronals per tal d’estudiar la interacció entre ritmes diferents. Les oscil lacions indiquen recurrència en la sincronització de l’activitat col lectiva, de manera que durant aquestes finestres temporals una població optimitza el seu impacte en una xarxa diana. Quan el ritme de la població receptora i el de l’emissora difereixen significativament, l’eficiència en la comunicació decreix, ja que les fases de màxima resposta de cada senyal LFP no mantenen una diferència constant entre elles. Finalment, en el Capítol 5 hem estudiat com les oscil lacions col lectives pròpies de l’estat de son donen lloc al fenomen de coherència estocàstica. Per a una intensitat òptima del soroll, modulat per l’excitabilitat de la xarxa, el LFP assoleix una regularitat màxima donant lloc a un període refractari de la població neuronal. En resum, aquesta Tesi mostra escenaris d’interacció entre els potencials d’acció, característics de la dinàmica de neurones individuals, i les oscil lacions subumbrals, fruit de l’acoblament entre les cèl lules i ubiqües en la dinàmica de poblacions neuronals. Els resultats obtinguts aporten funcionalitat a aquests ritmes emergents, agents sincronitzadors i moduladors de les descàrregues neuronals i reguladors de la comunicació entre xarxes neuronals.The main objective of this thesis is to better understand information processing in neuronal networks in the presence of subthreshold oscillations. Most neurons propagate their electrical activity via chemical synapses, which are only activated when the electric current that passes through them surpasses a certain threshold. Therefore, fast and intense discharges produced at the neuronal soma (the action potentials or spikes) are considered the basic unit of neuronal information. The neuronal code is understood, then, as a binary language that expresses any message (sensory stimulus, memories, etc.) in a train of action potentials. Circuits of thousands of interconnected neurons give rise to certain rhythms, revealed in collective activity measures such as electroencephalograms (EEG) and local field potentials (LFP). Synchronization of action potentials of each cell, triggered by stochastic fluctuations of the synaptic currents, cause this periodicity at the network level.To understand whether these rhythms are involved in the neuronal code we studied three situations. First, in Chapter 2, we showed how an open chain of neurons with an intrinsically oscillatory membrane potential filters a periodic signal coming from one of its ends. The response of each neuron (to spike or not) depends on its phase, so that each cell receives a message filtered by the preceding one. Each presynaptic action potential causes a phase change in the postsynaptic neuron, which depends on its position in the phase space. Those incoming periods that are able to synchronize the subthreshold oscillations, keep the phase of arrival of action potentials fixed along the chain. The original message reaches intact the last neuron provided that this phase allows the discharge of the transmembrane voltage.I the second case, we studied a neuronal network with connections to both long range and close neighbors, in which the subthreshold oscillations emerge from the collective activity apparent in the synaptic currents. The inhibitory neurons provide a rhythm to the excitability of the network. When inhibition is low, the likelihood of a global discharge of the neuronal population is high. In Chapter 3 we show how this rhythm causes a gap in the discharge frequency of neurons: either they pulse single spikes or they fire bursts of high intensity. The LFP phase determines the state of the neuronal network, coding the activity of the population: its minima indicate the simultaneous discharge of many neurons, while its maxima indicate the coexistence of bursts due to local decreases of inhibition at global states of excitation. In Chapter 4 we consider coupling between two neural networks in order to study the interaction between different rhythms. The oscillations indicate recurrence in the synchronization of collective activity, so that during these time windows a population optimizes its impact on a target network. When the rhythm of the emitter and receiver population differ significantly, the communication efficiency decreases as the phases of maximum response of each LFP signal do not maintain a constant difference between them.Finally, in Chapter 5 we studied how oscillations typical of the collective sleep state give rise to stochastic coherence. For an optimal noise intensity, modulated by the excitability of the network, the LFP reaches a maximal regularity leading to a refractory period of the neuronal population.In summary, this Thesis shows scenarios of interaction between action potentials, characteristics of the dynamics of individual neurons, and the subthreshold oscillations, outcome of the coupling between the cells and ubiquitous in the dynamics of neuronal populations . The results obtained provide functionality to these emerging rhythms, triggers of synchronization and modulator agents of the neuronal discharges and regulators of the communication between neuronal networks

    Stochastic and complex dynamics in mesoscopic brain networks

    Get PDF
    The aim of this thesis is to deepen into the understanding of the mechanisms responsible for the generation of complex and stochastic dynamics, as well as emerging phenomena, in the human brain. We study typical features from the mesoscopic scale, i.e., the scale in which the dynamics is given by the activity of thousands or even millions of neurons. At this scale the synchronous activity of large neuronal populations gives rise to collective oscillations of the average voltage potential. These oscillations can easily be recorded using electroencephalography devices (EEG) or measuring the Local Field Potentials (LFPs). In Chapter 5 we show how the communication between two cortical columns (mesoscopic structures) can be mediated efficiently by a microscopic neural network. We use the synchronization of both cortical columns as a probe to ensure that an effective communication is established between the three neural structures. Our results indicate that there are certain dynamical regimes from the microscopic neural network that favor the correct communication between the cortical columns: therefore, if the LFP frequency of the neural network is of around 40Hz, the synchronization between the cortical columns is more robust compared to the situation in which the neural network oscillates at a lower frequency (10Hz). However, microscopic topological characteristics of the network also influence communication, being a small-world structure the one that best promotes the synchronization of the cortical columns. Finally, this Chapter shows how the mediation exerted by the neural network cannot be substituted by the average of its activity, that is, the dynamic properties of the microscopic neural network are essential for the proper transmission of information between all neural structures. The oscillatory brain electrical activity is largely dependent on the interplay between excitation and inhibition. In Chapter 6 we study how groups of cortical columns show complex patterns of cortical excitation and inhibition taking into account their topological features and the strength of their couplings. These cortical columns segregate between those dominated by excitation and those dominated by inhibition, affecting the synchronization properties of networks of cortical columns. In Chapter 7 we study a dynamic regime by which complex patterns of synchronization between chaotic oscillators appear spontaneously in a network. We show what conditions must a set of coupled dynamical systems fulfill in order to display heterogeneity in synchronization. Therefore, our results are related to the complex phenomenon of synchronization in the brain, which is a focus of study nowadays. Finally, in Chapter 8 we study the ability of the brain to compute and process information. The novelty here is our use of complex synchronization in the brain in order to implement basic elements of Boolean computation. In this way, we show that the partial synchronization of the oscillations in the brain establishes a code in terms of synchronization / non-synchronization (1/0, respectively), and thus all simple Boolean functions can be implemented (AND, OR, XOR, etc.). We also show that complex Boolean functions, such as a flip-flop memory, can be constructed in terms of states of dynamic synchronization of brain oscillations.L'objectiu d'aquesta Tesi és aprofundir en la comprensió dels mecanismes responsables de la generació de dinàmica complexa i estocàstica, així com de fenòmens emergents, en el cervell humà. Estudiem la fenomenologia característica de l'escala mesoscòpica, és a dir, aquella en la que la dinàmica característica ve donada per l'activitat de milers de neurones. En aquesta escala l'activitat síncrona de grans poblacions neuronals dóna lloc a un fenomen col·lectiu pel qual es produeixen oscil·lacions del seu potencial mitjà. Aquestes oscil·lacions poden ser fàcilment enregistrades mitjançant aparells d'electroencefalograma (EEG) o enregistradors de Potencials de Camp Local (LFP). En el Capítol 5 mostrem com la comunicació entre dos columnes corticals (estructures mesoscòpiques) pot ser conduïda de forma eficient per una xarxa neuronal microscòpica. De fet, emprem la sincronització de les dues columnes corticals per comprovar que s'ha establert una comunicació efectiva entre les tres estructures neuronals. Els resultats indiquen que hi ha règims dinàmics de la xarxa neuronal microscòpica que afavoreixen la correcta comunicació entre les columnes corticals: si la freqüència típica de LFP a la xarxa neuronal està al voltant dels 40Hz la sincronització entre les columnes corticals és més robusta que a una menor freqüència (10Hz). La topologia de la xarxa microscòpica també influeix en la comunicació, essent una estructura de tipus món petit (small-world) la que més afavoreix la sincronització. Finalment, la mediació de xarxa neuronal no pot ser substituïda per la mitjana de la seva activitat, és a dir, les propietats dinàmiques microscòpiques són imprescindibles per a la correcta transmissió d'informació entre totes les escales cerebrals. L'activitat elèctrica oscil·latòria cerebral ve donada en gran mesura per la interacció entre excitació i inhibició neuronal. En el Capítol 6 estudiem com grups de columnes corticals mostren patrons complexos d'excitació i inhibició segons quina sigui la seva topologia i d'acoblament. D'aquesta manera les columnes corticals se segreguen entre aquelles dominades per l'excitació i aquelles dominades per la inhibició, influint en les capacitats de sincronització de xarxes de columnes corticals. En el Capítol 7 estudiem un règim dinàmic segons el qual patrons complexos de sincronització apareixen espontàniament en xarxes d'oscil·ladors caòtics. Mostrem quines condicions s'han de donar en un conjunt de sistemes dinàmics acoblats per tal de mostrar heterogeneïtat en la sincronització, és a dir, coexistència de sincronitzacions. D'aquesta manera relacionem els nostres resultats amb el fenomen de sincronització complexa en el cervell. Finalment, en el Capítol 8 estudiem com el cervell computa i processa informació. La novetat aquí és l'ús que fem de la sincronització complexa de columnes corticals per tal d'implementar elements bàsics de computació Booleana. Mostrem com la sincronització parcial de les oscil·lacions cerebrals estableix un codi neuronal en termes de sincronització/no sincronització (1/0, respectivament) amb el qual totes les funcions Booleanes simples poden ésser implementades (AND, OR, XOR, etc). Mostrem, també, com emprant xarxes mesoscòpiques extenses les capacitats de computació creixen proporcionalment. Així funcions Booleanes complexes, com una memòria del tipus flip-flop, pot ésser construïda en termes d'estats de sincronització dinàmica d'oscil·lacions cerebrals.Postprint (published version

    Coupling and stochasticity in mesoscopic brain dynamics

    Get PDF
    The brain is known to operate under the constant influence of noise arising from a variety of sources. It also organises its activity into rhythms spanning multiple frequency bands. These rhythms originate from neuronal oscillations which can be detected via measurements such as electroen-cephalography (EEG) and functional magnetic resonance (fMRI). Experimental evidence suggests that interactions between rhythms from distinct frequency bands play a key role in brain processing, but the dynamical mechanisms underlying this cross-frequency interactions are still under investigation. Some rhythms are pathological and harmful to brain function. Such is the case of epileptiform rhythms characterising epileptic seizures. Much has been learnt about the dynamics of the brain from computational modelling. Particularly relevant is mesoscopic scale modelling, which is concerned with spatial scales exceeding those of individual neurons and corresponding to processes and structures underlying the generation of signals registered in the EEG and fMRI recordings. Such modelling usually involves assumptions regarding the characteristics of the background noise, which represents afferents from remote, non-modelled brain areas. To this end, Gaussian white noise, characterised by a flat power spectrum, is often used. In contrast, macroscopic fluctuations in the brain typically follow a `1/f b ¿ spectrum, which is a characteristic feature of temporally correlated, coloured noise. In Chapters 3-5 of this Thesis we address by means of a stochastically driven mesoscopic neuronal model, the three following questions. First, in Chapter 3 we ask about the significance of deviations from the assumption of white noise in the context of brain dynamics, and in particular we study the role that temporally correlated noise plays in eliciting aberrant rhythms in the model of an epileptic brain. We find that the generation of epileptiform dynamics in the model depends non-monotonically on the noise correlation time. We show that this is due to the maximisation of the spectral content of epileptogenic rhythms in the noise. These rhythms fall into frequency bands that indeed were experimentally shown to increase in power prior to epileptic seizures. We explain these effects in terms of the interplay between specific driving frequencies and bifurcation structure of the model. Second, in Chapter 4 we show how coupling between cortical modules leads to complex activity patterns and to the emergence of a phenomenon that we term collective excitability. Temporal patterns generated by this model bear resemblance to clinically observed characteristics of epileptic seizures. In that chapter we also introduce a fast method of tracking a loss of stability caused by excessive inter-modular coupling in a neuronal network. Third, in Chapter 5 we focus on cross-frequency interactions occurring in a network of cortical modules, in the presence of coloured noise. We suggest a mechanism that underlies the increase of power in a fast rhythm due to driving with a slow rhythm, and we find the noise parameters that best recapitulate experimental power spectra. Finally, in Chapter 6, we examine models of haemodynamic and metabolic brain processes, we test them on experimental data, and we consider the consequences of coupling them with mesoscopic neuronal models. Taken together, our results show the combined influence of noise and coupling in computational models of neuronal activity. Moreover, they demonstrate the relevance of dynamical properties of neuronal systems to specific physiological phenomena, in particular related to cross-frequency interactions and epilepsy. Insights from this Thesis could in the future empower studies of epilepsy as a dynamic disease, and could contribute to the development of treatment methods applicable to drug-resistant epileptic patients.El cervell opera sota la influència de sorolls amb diversos orígens. També organitza la seva activitat en una sèrie de ritmes que s'expandeixen en diverses bandes de freqüència. Aquests ritmes tenen el seu origen en les osci∙lacions neuronals i poden detectar-se via mesures com les electroencefalogràfiques (EEG) o la ressonància magnètica funcional (fMRI). Les evidències experimentals suggereixen que les interaccions entre ritmes operant en bandes de freqüència diferents juguen un paper central en el processat cerebral però els mecanismes dinàmics subjacents a les interaccions inter-freqüència encara estan investigant-se. Alguns ritmes són patològics i fan malbé el funcionament cerebral. És el cas dels ritmes epileptiformes que caracteritzen les convulsions epilèptiques. Fent servir el modelatge computacional s'ha après molt sobre la dinàmica del cervell. Especialment rellevant és el modelatge a l’escala mesoscòpica, que té a veure amb les escales espacials superiors a les de les neurones individuals i que correspon als processos que generen EEG i fMRI. Tal modelatge, en general, implica supòsits relatius a les característiques del soroll de fons que representa zones remotes del cervell no modelades. Amb aquesta finalitat s'utilitza sovint el soroll blanc gaussià, que es caracteritza per un espectre de potència pla. Les fluctuacions macroscòpiques en el cervell, però, normalment segueixen un espectre '1/fb', que és un tret característic de les correlacions temporals i el soroll de color. Als Capítols 3-5 d'aquesta tesi abordem mitjançant un model neuronal mesoscòpic forçat estocàsticament, les tres preguntes següents. En primer lloc, en el Capítol 3 ens preguntem sobre la importància de les desviacions de l'assumpció de soroll blanc en el context de la dinàmica del cervell i, en particular, estudiem el paper que juga el soroll amb correlació temporal en l'obtenció de ritmes aberrants d'un cervell epilèptic. Trobem que la generació de les dinàmiques epileptiformes depèn de forma monòtona del temps de correlació del soroll. Aquests ritmes es divideixen en bandes de freqüència que, segons, s'ha mostrat experimentalment, augmenten la seva potència espectral abans de les crisis epilèptiques. Expliquem aquests efectes en termes de la interacció entre les freqüències específiques del forçament i l'estructura de bifurcació del model. En segon lloc, en el Capítol 4 es mostra com l'acoblament entre mòduls corticals condueix a patrons d'activitat complexes i a l'aparició d'un fenomen que anomenem excitabilitat col∙lectiva. Els patrons temporals generats per aquest model s'assemblen a les observacions clíniques de les convulsions epilèptiques. En aquest capítol també introduïm un mètode d'anàlisi de la pèrdua d'estabilitat causada per l'acoblament inter-modular excessiu en les xarxes neuronals. En tercer lloc, en el Capítol 5 ens centrem en les interaccions inter-freqüència que es produeixen en una xarxa de mòduls corticals en presència de soroll de color. Suggerim un mecanisme subjacent a l'augment de la potència spectral de ritmes ràpids a causa del forçament amb un ritme lent, i veiem quins paràmetres del soroll descriuen millor els espectres de potència experimental. Finalment, en el Capítol 6, estudiem models dels processos hemodinàmics i metabòlics del cervell, els comparem amb dades experimentals i considerem les conseqüències del seu acoblament amb models neuronals mesoscopics. En conjunt, els nostres resultats mostren la influència combinada del soroll i l'acoblament en models computacionals de l'activitat neuronal. D'altra banda, també demostren la importància de les propietats dinàmiques dels sistemes neuronals en fenòmens fisiològics específics com les interaccions inter-frequència i l'epilèpsia. Els resultats d'aquesta Tesi contribueixen a potenciar l’estudi de l'epilèpsia com una malaltia dinàmica, i el desenvolupament de mètodes de tractament aplicables a pacients epilèptics resistents als fàrmacs.Postprint (published version
    corecore