77 research outputs found

    Middleware-Driven Intelligent Glove for Industrial Applications

    Get PDF
    It is estimated that by the year 2020, 700 million wearable technology devices will be sold worldwide. One of the reasons is the industries’ need to increase their productivity. Some of the tools welcomed by industries are handheld devices such as tablets, PDAs and mobile phones. However, handheld devices are not ideal for industrial applications because they often subject users to fatigue during their long working hours. A viable solution to this problem is wearable devices. The advantage of wearable devices is that they become part of the user. Hence, they subject the user to less fatigue, thereby increasing their productivity. This chapter presents the development of an intelligent glove, which is designed to control actuators in an industrial environment. This system utilizes RTI connext data distributed service middleware to facilitate communication over WiFi. Our experiments show very promising results with maximum power consumption of 310 mW and latency as low as 23 ms. These results make the proposed system a perfect fit for most industrial applications

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Privacy in Internet of Things: from Principles to Technologies

    Get PDF
    Ubiquitous deployment of low-cost smart devices and widespread use of high-speed wireless networks have led to the rapid development of the Internet of Things (IoT). IoT embraces countless physical objects that have not been involved in the traditional Internet and enables their interaction and cooperation to provide a wide range of IoT applications. Many services in the IoT may require a comprehensive understanding and analysis of data collected through a large number of physical devices that challenges both personal information privacy and the development of IoT. Information privacy in IoT is a broad and complex concept as its understanding and perception differ among individuals and its enforcement requires efforts from both legislation as well as technologies. In this paper, we review the state-of-the-art principles of privacy laws, the architectures for IoT and the representative privacy enhancing technologies (PETs). We analyze how legal principles can be supported through a careful implementation of privacy enhancing technologies (PETs) at various layers of a layered IoT architecture model to meet the privacy requirements of the individuals interacting with IoT systems. We demonstrate how privacy legislation maps to privacy principles which in turn drives the design of necessary privacy enhancing technologies to be employed in the IoT architecture stack

    An Adaptive Mediation Framework for Workflow Management in the Internet of Things

    Get PDF
    Tärkavad värkvõrksüsteemid koosnevad arvukast hulgast heterogeensetest füüsilistest seadmetest, mis ühenduvad Internetiga. Need seadmed suudavad pidevalt ümbritseva keskkonnaga suhelda ja osana lõppkasutaja rakendusestest edendada valdkondi nagu tark kodu, e-tervis, logistika jne. Selleks, et integreerida füüsilisi seadmeid värkvõrgu haldussüssteemidega, on töövoo haldussüsteemid kerkinud esile sobiva lahendusena. Ent töövoo haldussüsteemide rakendamine värkvõrku toob kaasa reaalajas teenuste komponeerimise väljakutseid nagu pidev teenusavastus ja -käivitus. Lisaks kerkib küsimus, kuidas piiratud resurssidega värkvõrgu seadmeid töövoo haldussüsteemidega integreerida ning kuidas töövooge värkvõrgu seadmetel käivitada. Tööülesanded (nagu pidev seadmeavastus) võivad värkvõrgus osalevatele piiratud arvutusjõudluse ja akukestvusega seadmetele nagu nutitelefonid koormavaks osutuda. Siinkohal on võimalikuks lahenduseks töö delegeerimine pilve. Käesolev magistritöö esitleb kontekstipõhist raamistikku tööülesannete vahendamiseks värkvõrgurakendustes. Antud raamistikus modelleeritakse ning käitatakse tööülesandeid kasutades töövoogusid. Raamistiku prototüübiga läbi viidud uurimus näitas, et raamistik on võimeline tuvastama, millal seadme avastusülesannete pilve delegeerimine on kuluefektiivsem. Vahel aga pole töövoo käitamistarkvara paigaldamine värkvõrgu seadmetele soovitav, arvestades energiasäästlikkust ning käituskiirust. Käesolev töö võrdles kaht tüüpi töövookäitust: a) töövoo mudeli käitamine käitusmootoriga ning b) töövoo mudelist tõlgitud programmikoodi käitamine. Lähtudes katsetest päris seadmetega, võrreldi nimetatud kahte meetodit silmas pidades süsteemiressursside- ning energiakasutust.Emerging Internet of Things (IoT) systems consist of great numbers of heterogeneous physical entities that are interconnected via the Internet. These devices can continuously interact with the surrounding environment and be used for user applications that benefit human life in domains such as assisted living, e-health, transportation etc. In order to integrate the frontend physical things with IoT management systems, Workflow Management Systems (WfMS) have gained attention as a viable option. However, applying WfMS in IoT faces real-time service composition challenges such as continuous service discovery and invocation. Another question is how to integrate resource-contained IoT devices with the WfMS and execute workflows on the IoT devices. Tasks such as continuous device discovery can be taxing for IoT-involved devices with limited processing power and battery life such as smartphones. In order to overcome this, some tasks can be delegated to a utility Cloud instance. This thesis proposes a context-based framework for task mediation in Internet of Things applications. In the framework, tasks are modelled and executed as workflows. A case study carried out with a prototype of the framework showed that the proposed framework is able to decide when it is more cost-efficient to delegate discovery tasks to the cloud. However, sometimes embedding a workflow engine in an IoT device is not beneficial considering agility and energy conservation. This thesis compared two types of workflow execution: a) execution of workflow models using an embedded workflow engine and b) execution of program code translations based on the workflow models. Based on experiments with real devices, the two methods were compared in terms of system resource and energy usage

    Is Fragmentation a Threat to the Success of the Internet of Things?

    Full text link
    The current revolution in collaborating distributed things is seen as the first phase of IoT to develop various services. Such collaboration is threatened by the fragmentation found in the industry nowadays as it brings challenges stemming from the difficulty to integrate diverse technologies in system. Diverse networking technologies induce interoperability issues, hence, limiting the possibility of reusing the data to develop new services. Different aspects of handling data collection must be available to provide interoperability to the diverse objects interacting; however, such approaches are challenged as they bring substantial performance impairments in settings with the increasing number of collaborating devices/technologies.Comment: 16 pages, 2 figures, Internet of Things Journal (http://ieee-iotj.org

    DiaSuite: a Tool Suite To Develop Sense/Compute/Control Applications

    Get PDF
    International audienceWe present DiaSuite, a tool suite that uses a software design approach to drive the development process. DiaSuite focuses on a specific domain, namely Sense/Compute/Control (SCC) applications. It comprises a domain-specific design language, a compiler producing a Java programming framework, a 2D-renderer to simulate an application, and a deployment framework. We have validated our tool suite on a variety of concrete applications in areas including telecommunications, building automation, robotics and avionics
    corecore