
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Jakob Mass

An Adaptive Mediation Framework for

Work�ow Management in the Internet of

Things

Master's Thesis (30 ECTS)

Supervisor: Chii Chang, PhD

Supervisor: Satish Narayana Srirama, PhD

Tartu 2016

Kohanemisel põhinev vahendusraamistik võimaldamaks töö-
voohaldust värkvõrgus

Lühikokkuvõte: Tärkavad värkvõrksüsteemid koosnevad arvukast hulgast he-
terogeensetest füüsilistest seadmetest mis ühenduvad Internetiga. Need seadmed
suudavad pidevalt ümbritseva keskkonnaga suhelda ja osana lõppkasutaja raken-
dusestest edendada valdkondi nagu tark kodu, e-tervis, logistika jne. Selleks, et
integreerida füüsilisi seadmeid värkvärgu haldussüssteemidega, on töövoo haldus-
süsteemid kerkinud esile sobiva lahendusena. Ent töövoo haldussüsteemide raken-
damine värkvõrku toob kaasa reaalajas teenuste komponeerimise väljakutseid nagu
pidev teenusavastus ja -käivitus. Lisaks kehtib küsimus, kuidas piiratud resurs-
sidega värkvõrgu seadmeid töövoo haldussüsteemidega integreerida ning kuidas
töövooge värkvõrgu seadmetel käitada. Tööülesanded nagu pidev seadmeavastus
võivad värkvõrgus osalevatele piiratud arvutusjõudluse ja akukestvusega seadme-
tele nagu nutitelefonid koormavaks osutuda. Siinkohal on võimalikuks lahenduseks
töö delegeerimine pilve. Käesolev magistritöö esitleb kontekstipõhist raamistikku
tööülesannete vahendamiseks värkvõrgurakendustes. Antud raamistikus modellee-
ritakse ning käitatakse tööülesandeid kasutades töövoogusid. Raamistiku proto-
tüübiga läbi viidud uurimus näitas, et raamistik on võimeline tuvastama, millal
seadmeavastusülesannete pilve delegeerimine on kuluefektiivsem. Vahel aga pole
töövoo käitamistarkvara paigaldamine värkvõrgu seadmetele soovitav, arvestades
energiasäästlikkust ning käituskiirust. Käesolev töö võrdles kaht tüüpi töövookäi-
tust: a) töövoo mudeli käitamine käitusmootoriga ning b) töövoo mudelist tõlgitud
programmikoodi käitamine. Lähtudes katsetest päris seadmetega, võrreldi nimeta-
tud kahte meetodit pidades silmas süsteemiressursside- ning energiakasutust.

Võtmesõnad:Värkvõrk, Töövoohaldussüsteemid, teenuskompositsioon, Teenusavas-
tus, SOA, Teenusorienteeritud arhitektuur, Mobiili- ja pilvearvutus, Edge network,
Töövookäitus

CERCS: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria) (P170)

2

An Adaptive Mediation Framework for Work�ow Manage-
ment in the Internet of Things

Abstract: Emerging Internet of Things (IoT) systems consist of great num-
bers of heterogeneous physical entities that are interconnected via the Internet.
These devices can continuously interact with the surrounding environment and
be used for user applications that bene�t human life in domains such as assisted
living, e-health, transportation etc. In order to integrate the frontend physical
things with IoT management systems, Work�ow Management Systems (WfMS)
have gained attention as a viable option. However, applying WfMS in IoT faces
real-time service composition challenges such as continuous service discovery and
invocation. Another question is how to integrate resource-contained IoT devices
with the WfMS and execute work�ows on the IoT devices. Tasks such as continu-
ous device discovery can be taxing for IoT-involved devices with limited processing
power and battery life such as smartphones. In order to overcome this, some tasks
can be delegated to a utility Cloud instance. This thesis proposes a context-based
framework for task mediation in Internet of Things applications. In the frame-
work, tasks are modelled and executed as work�ows. A case study carried out
with a prototype of the framework showed that the proposed framework is able
to decide when it is more cost-e�cient to delegate discovery tasks to the cloud.
However, sometimes embedding a work�ow engine in an IoT device is not bene�-
cial considering agility and energy conservation. This thesis compared two types
of work�ow execution: a) execution of work�ow models using an embedded work-
�ow engine and b) execution of program code translations based on the work�ow
models. Based on experiments with real devices, the two methods were compared
in terms of system resource and energy usage.

Keywords: Internet of Things, Work�ow Management Systems, Service Com-
position, Service discovery, Service-Oriented Architecture, Mobile Cloud, Edge
network, Work�ow Execution, Work�ow Translation

CERCS: Computer science, numerical analysis, systems, control (P170)

3

Contents

1 Introduction 8
1.1 Preamble . 8
1.2 Motivation . 8

1.2.1 Example Scenario . 9
1.2.2 Challenges . 9

1.3 Research Objectives and Contribution 11
1.4 Thesis Outline . 11
1.5 Publications . 11

2 Literature Review 13
2.1 Internet of Things . 13

2.1.1 Connectivity . 13
2.1.2 The Features of an IoT sytem 14

2.2 Service Oriented Architecture . 15
2.3 Service-Oriented IoT . 16

2.3.1 Virtualisation of Things . 16
2.3.2 Middleware Architecture . 17
2.3.3 Discovery . 18
2.3.4 Service Description for IoT 18

2.4 Mobile Cloud Computing . 21
2.4.1 Task Delegation and Code O�oading 21

2.5 Work�ow Management Systems . 22
2.5.1 Work�ow Languages . 22
2.5.2 Business Process Management Life Cycle 23
2.5.3 Orchestration and Choreography 24

2.6 Mobile Work�ow Management Systems for IoT 24
2.6.1 Modelling IoT for WfMS . 24
2.6.2 Implementing and executing work�ows in IoT systems . . . 25

3 System Overview 26
3.1 Scenario . 26
3.2 SCORPII framework design . 27

3.2.1 SCORPII - Mobile Host Side (ScoMH) 28
3.2.2 SCORPII - Utility Cloud Side (ScoUC) 29

3.3 Cost-e�cient and Context-aware Work�ow Approach Selection Model 30
3.3.1 Preliminary . 30
3.3.2 Time-span of Approach . 33
3.3.3 Raw Cost Elements and Context Parameters of Approach . 34
3.3.4 Cost-Performance Index-based Approach Selection 34

4

3.3.5 Context-aware weight calculation of the cost elements 35
3.4 SCORPII Prototype . 36

4 Adaptive Work�ow Execution in the Internet of Things 37
4.1 Overview . 37
4.2 Work�ow Translator implementation 39

4.2.1 Code Generation . 39
4.2.2 Groovy language example 39
4.2.3 Work�ow Engine . 40
4.2.4 Test Scenario . 40

5 Evaluation 43
5.1 Dynamic Con�guration Use Case 43
5.2 Dynamic Con�guration Evaluation 44

5.2.1 Context-aware Cost Element Weighing 46
5.3 CPI Scores and Approach Selection 49
5.4 Work�ow Execution Approach Comparison 51

5.4.1 Bootstrapping . 51
5.4.2 Process Execution Time . 51
5.4.3 System Resource and Power usage 53

5.5 Bootstrapping and Resource Consumption of Deployment 56
5.6 Discussion . 56

6 Conclusion 57
6.1 Future Research Direction . 57

5

List of Figures

1 Example environment with smart objects 10
2 The general SOA model . 15
3 A general service-oriented IoT system architecture 17
4 Example of sensor data represented using JSON-LD 19
5 Example of Air Temperature sensor and its value represented using

SensorML 2.0 . 20
6 Simple BPMN 2.0 process model example 23
7 Service discovery scenario. 26
8 Architecture of SCORPII middleware framework. 28
9 Work�ow patterns. 33
10 System design overview . 37
11 BPMN 2.0 Business process model of parallel tasks 41
12 BPMN 2.0 BP model with no parallel tasks 41
13 Default service work�ow (simpli�ed) 43
14 Bandwidth measurement comparison 44
15 CPU usage comparison . 45
16 Time-span comparison . 45
17 CPI comparison of the two approaches in the test scenario with

Context A . 48
18 CPI comparison of the two approaches in the test scenario with

Context B . 50
19 Tomcat startup CPU usage . 52
20 Tomcat startup Memory usage . 52
21 Tomcat startup power consumption 52
22 CPU usage during execution (Parallel BP) 54
23 Memory usage during execution (Parallel BP) 54
24 Power consumption during execution (Parallel BP) 54
25 CPU usage during execution (Non-Parallel BP) 55
26 Memory usage during execution (Non-Parallel BP) 55
27 Power consumption during execution (Non-Parallel BP) 55

6

List of Tables

1 Context parameters used in the regression training dataset 46
2 Fuzzy representation of the context parameters and weights 47
3 Weight formulas with regression coe�cients plugged in 48
4 Final weights of the cost elements with Context A 49
5 Final weights of the cost elements with Context B 50
6 Parallel BP execution times . 51
7 Non-Parallel BP execution times . 53

7

1 Introduction

1.1 Preamble

New, emerging technologies in the �elds of mobile and ubiquitous computing pro-
mote the phenomena where heterogeneous physical entities connect with the In-
ternet via various embedded services and lightweight wireless communication pro-
tocols. This development is called the Internet of Things (IoT). Cisco predicts
that by 2020, the number of things connected to the Internet will reach 50 billion
[Eva11].

IoT bears the potential of greatly in�uencing (and improving) the way we work
and live. In our daily lives, IoT may enhance assisted living, domotics, e-health,
transportation and so forth. Businesses are also expected to bene�t greatly, e.g.
via enhanced logistics, industrial automation, etc [AIM10].

However, introducing various types of things into the same network brings along
challenges such as overcoming the heterogeneous nature of the things in terms of
varying communication protocols, operating systems and software stack. Further-
more, the framework which integrates information systems with physical things
should o�er an easy-to-use interface for designing the tasks and processes assigned
to the things. The framework should be able to re-con�gure and optimize how the
things function together without the need of performing low-level con�guration on
each individual thing.

One solution for overcoming this issue of management and composition of things
is to use Work�ow Management Systems (WfMS). A work�ow is a sequence of
tasks, events and decisions. Work�ow management is the �eld of designing, ex-
ecuting and observing work sequences and providing methods for improving and
managing the work e�ciently.

WfMS can bene�t IoT by providing a language to de�ne arbitrary processes in-
volving the things and the functionalities they o�er. Secondly, WfMS provide the
methodology for monitoring, interpreting and improving how these processes are
run. By using work�ow modelling languages such as Web Services Business Pro-
cess Execution Language (WS-BPEL) or BPMN 2.0 [bpm], analysts can focus on
work�ow design, while developers can focus on providing software for integrating
the things with WfMS.

1.2 Motivation

WfMS for IoT has applications such as in logistics, where cargo could be monitored
by a management system in real-time, triggering events immediately after some-
thing happens (e.g. the temperature of the goods exceeds a threshold) [GEPF11].
In the smart building domain, a building's heating, ventilating, and air condition-

8

ing (HVAC) systems can bene�t from a WfMS. For instance, a hotel could keep
track of electricity and heating usage per room, allowing the system to bill the
customer according to the usage instead of charging a �xed rate [TSD+12]. The
healthcare domain is another very promising target for WfMS IoT applications. In
healthcare scenarios, a person is often equipped with wearable sensor devices such
as a heart rate and temperature monitor. The sensor data is collected by a broker
device and may be forwarded to a remote system, such as a hospital information
system, where a doctor is able to use it to analyse patient status [DTRE11].

1.2.1 Example Scenario

Consider the following scenario: Alice is travelling through urban space inhabited
by a large number of smart objects (see Fig. 1). These include smartphones,
sensors, media content providers, such as for example text and video content as-
sociated with a historic statue near Alice (object A in Fig. 1). Alice is equipped
with a smartphone, which gathers data from nearby things while she is walking.
For example, her smartphone may collect noise level, temperature and light levels
of various locations in the current area. The smartphone combines these functions
of the proximal smart objects with additional services from the web, such as news
reports, social media or weather broadcasts. The composition of all this content
results in a mobile application for aiding Alice in her travels. However, in some
cases, Alice's smartphone does not support the communication standards used by
certain smart objects (e.g. device C in Fig. 1) . In such cases, Alice's smartphone
uses another type of smart object nearby (object B in Fig. 1), a gateway, which
gathers the data from sensor objects and provides them to Alice's smartphone.

This thesis aims to conceive a middleware platform for realizing such scenarios.
The proposed Service-oriented Composer for Orchestrating Real-time Proximity-
based Industrial Internet of Things (SCORPII), as we call it, manages the work
(sensor data gathering, service composition) and objects involved in the scenario
by means of using a service-oriented WfMS. As such, it is assumed that the smart
objects are capable of executing work�ows or being invoked as part of work�ows.

1.2.2 Challenges

Service Discovery In the above scenario however, before the smartphone can
retrieve useful data from nearby smart objects, the services (functionality) o�ered
by them must be discovered. The services provided by the smart objects are
described in Service description metadata (SDM), which can be obtained in 2
ways:

1. Using direct peer-to-peer communication (such as Bluetooth, WiFi Direct,
etc.), to retrieve the SDM directly from the device [Rag15].

9

A

Alice

B

C

Discovery Servers

‘

Web Services

WeatherTraffic

Figure 1: Example environment with smart objects

2. The smart object provides (e.g. via Radio-frequency identi�cation [RFID])
an address to a cloud discovery server corresponding to the smart object
[Goo] (see Fig. 1). This cloud service then provides the SDM. This option
is useful when the smart object is a more constrained device in terms of
communication capabilities.

Alice's smartphone then processes the SDMs of the nearby devices to �lter out
the ones which provide the desired services that �t the current work�ow require-
ments. However, as the number of nearby devices can be large, processing all these
SDMs can be cumbersome for the smartphone. To remedy this, the task of �ltering
SDMs could be o�oaded to the cloud. On the other hand, if the number of devices
near Alice is small, processing SDMs locally on smartphone may be preferred to
improve responsiveness of the user application.

This raises two questions:

• How does Alice's smartphone decide which processes require computational
task o�oading and when?

• How does Alice's smartphone perform the con�guration dynamically at run-
time?

Execution approaches A second matter of interest in the previously described
IoT scenario is the question of how to execute work�ows on smart objects? One
option is to embed the smart object with a work�ow engine capable of directly

10

executing work�ow models [DTB+15]. The alternative is to translate the work-
�ow model into executable code and execute the program code on the smart ob-
ject [CK11b, GEPF11, CDD+12]. While both approaches have been previously
explored, a direct comparison of the two is missing to the best of the authors
knowledge.

1.3 Research Objectives and Contribution

This thesis aims to reach two goals.

1. To investigate, develop and validate an adaptive middleware framework for
proximity based service composition in IoT.

2. Secondly, to develop and validate a testing environment for providing a
guideline for developers in the domain of work�ow execution on resource-
constrained devices. More precisely, the guideline focuses on comparing ex-
ecuting a work�ow using as input:

(a) a model of the work�ow

(b) executable code corresponding to the model.

1.4 Thesis Outline

The rest of this thesis is structured as follows. Section 2 provides a background of
technologies and related works. Section 3 details the design and implementation
of the SCORPII framework and section 4 describes the work�ow execution exten-
sion for resource-constrained devices. Section 5 compares the performance of the
decision-making mechanism in SCORPII and provides a comparison of work�ow
execution approaches. Finally, Section 6 concludes and summarizes the work done
in this thesis and provides future research directions.

1.5 Publications

Publications involved in this thesis are listed as follows.

1. C. Chang, S. N. Srirama, J. Mass: A Middleware for Discovering Proximity-
based Service-Oriented Industrial Internet of Things, 12th IEEE Interna-
tional Conference on Services Computing (SCC 2015), June 27 - July 2,
2015, pp. 130-137. IEEE.

2. C. Chang, S. N. Srirama, J. Mass: Adaptive Mobile Cloud Work�ow Man-
agement System for Service Discovery in Proximity-Based Internet of Things,

11

International Journal of Services Computing (IJSC), ISSN: 2330-4472, 3(1):44-
56, 2015. The Services Society (SS).

3. J. Mass, C.Chang, S. N. Srirama: Work�ow Model Distribution or Code Dis-
tribution? Ideal Approach for Service Composition of the Internet of Things,
13th IEEE International Conference on Services Computing (SCC 2016) (Ac-
cepted for publication)

12

2 Literature Review

This section explains terms, concepts and previous research relevant to this thesis,
including the Internet of Things, Service Oriented Architecture, Mobile Cloud
Computing and Work�ow Management Systems.

2.1 Internet of Things

The term Internet of Things (IoT) was coined by Kevin Ashton in 1999 [Ash09], but
has since been used to describe various visions, resulting in di�erent de�nitions.
The IEEE Internet Initiative has published an entire report [MBR15] aimed at
de�ning IoT. For instance, Vermesan et al. de�ne:

"The goal of the Internet of Things is to enable things to be con-
nected anytime, anyplace, with anything and anyone ideally using any
path/network and any service." [VFG+15]

In short, IoT marks the rapid spread of devices with communicating, sensing
and actuating capabilities [GBMP13]. Communication is usually achieved using
the Internet, but can also involve proximal communication such as Bluetooth. The
sensing and actuating abilities of the devices bring together the daily environment
of humans and the connected devices. Using sensors, smart objects can capture
information from their surroundings, e.g. gather temperature or light readings.
With actuator capabilities, smart objects can in�uence their surroundings, for
example toggle switches, open doors.

2.1.1 Connectivity

As the name suggests, one of the fundamental ideas of IoT is the fact that all things
which make up an IoT system are connected to the Internet. This is supported
by the Internet Protocol (IP) standard, the latest iteration of which, IPv6, theo-
retically allows for 2128 unique addresses. This means that using IPv6 virtually all
the objects of our daily lives can be uniquely addressed.

Thanks to advances in wireless technology, the physical size of modern wireless
radio modules is minuscule, thus extending even very small objects with wireless
capability comes with insigni�cant overheard in terms of physical size.

In addition to being connected, the IoT objects interact with their surrounding
world in various forms. They may collect information from their surroundings
(using sensors) or they interact with the physical world by either using actuators
or forwarding commands to devices which manipulate the physical world, such as
a light.

13

In the �rst IoT conceptualizations, the things were simply represented by
Radio-Frequency IDenti�cation (RFID) tags. Between 1999 and 2003 institutions
Auto-ID Labs [aut] and EPCGlobal [TAB+15] introduced the concept of attaching
low-cost RFID tags on any products so that they could be tracked. The informa-
tion about the products could be retrieved up from databases via the Internet
[MBR15]. Later, the IoT vision evolved beyond only RFID-enhanced objects, in-
cluding devices with embedded computing capabilities and using other technologies
instead of RFID such as Near Field Communication (NFC) or QR-codes (Quick
Response Code).

2.1.2 The Features of an IoT sytem

A IEEE Internet Initiative report [MBR15] highlights some distinct features of an
IoT system:

• Interconnection of Things: the things are able to communicate with one
another.

• Connection of Things to the Internet: the things are connected to the
Internet, thus an Intranet is not quali�ed as an IoT network.

• Uniquely Identi�able Things: each of the things within the IoT system
are uniquely identi�able

• Ubiquity: this feature refers to the "anytime, anyplace" portion of the
de�nition mentioned previously. Ubiquity represents the idea that the IoT
system is available for use whenever necessary for the application scenario,
and that IoT scenarios can be found in any application �eld (smart home,
assisted living, healthcare, logistics, etc.).

• Sensing/Actuation capability: the physical objects are enhanced by sen-
sor / actuator devices, this adds smart behaviour to the objects.

• Embedded Intelligence: the smart objects contain intelligence and knowl-
edge capabilities which allow them to become tools for aiding human life

• Interoperable Communication Capability: the communication of the
Things is based on established standards and protocols.

• Self-con�gurability: in the heterogeneous environment of IoT, the things
have self-management capabilities such as service discovery and network or-
ganization. [CHK+12]

• Programmability: behaviour of the thing can be modi�ed without physical
changes.

14

2.2 Service Oriented Architecture

Service-Oriented Architecture (SOA), also knowns as Service-Oriented Computing
(SOC), is a computing paradigm in which the fundamental building blocks for
software solutions are software services.

Software services are interfaces that enable devices and their hosted applica-
tions to provide their functionalities while being platform-independent and self-
contained [Pap03, GP08]. Self-containment here means that the service provider
manages its state independently of clients using the software service.

Loose coupling is a feature where each component of a software system utilizes
little knowledge about other components in the same system. Loose coupling
is fundamental to SOA systems, allowing entities involved in the system to be
interacted with using a higher level of abstraction.

Additionally, SOA services support dynamic service discovery and composi-
tion. Dynamic service discovery allows clients to query some third-party discovery
service to identify which service(s) can meet their requirements.

Service composition allows a system to create a service that utilises the mecha-
nisms derived from other providers [GP08]. For example, a location-based service
can integrate Google Maps1 and Foursquare2 to provide point-of-interest informa-
tion in a map-review based application.

When a service provides its features using application layer Internet standards,
such as Hypertext Transfer Protocol (HTTP), XML or REST, it is called a Web
service. Web services are well compatible with the fundamental SOA aspects such
as platform independence.

Service
Provider

Service
Registry

Service
Requester

Publish Bind

Find

Figure 2: The general SOA model

The model of SOA consists of three types of participants [IGH+11, Pap03]:

1https://developers.google.com/maps/
2https://developer.foursquare.com/

15

https://developers.google.com/maps/
https://developer.foursquare.com/

1. Service providers, the endpoints of the services. These are the devices which
provide the functionality contained in the service.

2. Service requesters, which are the clients who use the functionalities provided
by the services.

3. Service registries, who provide information about services providers so that
service requesters can discover them.

The interaction between these three has been illustrated in Figure 2. Service
Providers notify Service Registries of their existence and their capabilities, after
which the Service Registry makes this information (the service descriptor) dis-
coverable to others. Using the Service Registry, Service Requesters can discover
Service Providers that match their needs and get the necessary metadata to enable
service invocation between the Requester and Provider.

2.3 Service-Oriented IoT

SOA has become an important paradigm for realizing IoT middlewares. A mid-
dleware is a software layer (or layers) standing between two levels of a software
solution. An IoT middleware allows application developers to focus on their do-
main (e.g. smart health) without concerning themselves with details about other
lower layer technologies such as network protocols.

IoT middleware architectures proposed in the recent years often follow the SOA
approach [AIM10, THIG11]. Following the SOA model enables structuring large,
complex systems in a way where the individual components are well-de�ned and
can be easily composed and re-composed.

2.3.1 Virtualisation of Things

As an IoT system consists of a large group of heterogeneous objects using di�erent
communication methods and protocols, it is desirable to have a layer which ab-
stracts the di�erent technologies so that they can be used with a common language
[AIM10]. Using SOA, the heterogeneity and isolation issues of IoT systems can
be addressed. By abstracting the IoT devices, things can be utilised as atomic
services or they can be used to form a composite service. In practice, Web services
have often been used for this [GTW10, DGV09, SJP06].

Web service standards such as SOAP, WSDL etc. reduce the need for gateway
devices and translations between the components [GTK+10]. They also allow
orchestration of the services with higher-level Enterprise Resource Planning (ERP)
applications. Generally, Web service-based IoT systems are implemented using

16

Web Service (WS) protocols such as Device Pro�les for Web Services (DPWS),
Constrained Application Protocol (CoAP) or REST.

For connecting the resource-constrained smart objects to the Internet, conven-
tional networking standards are not su�cient. A key concept, IPv6 over low-power
wireless area networks (6LoWPAN), aims to realize IPv6 usage on the low-power
smart objects with limited processing capability. 6LoWPAN simpli�es IPv6 func-
tionality, by restricting header formats to very compact sizes. At the same time,
the established bene�ts of Internet protocols are preserved, such as re-using exist-
ing network infrastructure, existing standards (such as TCP, UDP, HTTP, CoAP,
MQTT), APIs and tools for managing and using IP-networks. [SB11]

In this way, IoT devices act as the service providers in SOA.

2.3.2 Middleware Architecture

This section describes the common architecture used in existing SOA-based IoT
systems, such as MOSDEN [PJZ+14] (part of European Commision project �Ope-
nIoT� 3) and Mobile Digcovery [JLF+14].

Registry
Component

IoT Devices

Middleware
Component

Application

Request

Resource
discovery
& lookup

Device access

Registration

Device ADevice A Device BDevice B Device NDevice N...

Application

Device
Adaptor

Device
Adaptor

Device
Adaptor

REST
API

CoAP
API

Other
API

Figure 3: A general service-oriented IoT system architecture

As presented in Figure 3, end user applications (such as Web or mobile appli-
cations) make requests to a middleware component. This request does not need

3http://cordis.europa.eu/project/rcn/101534_en.html

17

http://cordis.europa.eu/project/rcn/101534_en.html

to specify which protocol or technology is needed to communicate with the IoT
devices because the process is handled by the middleware.

The middleware uses a registry component to query for devices which can be
used to create a composite service for ful�lling the requirements of the request.

The Registry component is capable of providing the information of the regis-
tered things (e.g. their supported functionalities) to the middleware. After the
middleware component has used the Registry component to look up appropriate
devices to ful�l the request, the middleware can access the devices to execute the
subtasks which compose the original application request. Access to the devices
is provided by adaptor components within the middleware. These adaptor com-
ponents allow accessing the heterogenous devices which may be using di�erent
protocols and technologies.

Finally after having accessed the device, the middleware can process the results
and respond to the user application with the �nal request response.

2.3.3 Discovery

Technologies enabling the discovery of things and their details can be divided into
two: a) global network -based and b) edge network -based approaches.

Global network based approaches In this approach, a global registry, ac-
cessible anywhere via the Internet, is used to manage a listing of devices and
their metadata. There, devices and details regarding their supported features and
protocols can be queried. Examples of this are [PJZ+14, JLF+14].

Edge network based approaches In this approach, the smart object being
discovered itself serves as the entry-point for obtaining information about the
device. The smart object may provide information about itself using technologies
such as Bluetooth Low Energy4, Wi-Fi Aware5 or ZigBee6. However, to maintain
energy-e�ciency for the smart object, the device may provide an address to an
external cloud server which provides the details about the smart object. This has
been done for example by: Google Physical Web [Goo] or Apple iBeacon [Ap].

2.3.4 Service Description for IoT

To be able to advertise smart objects and their capabilities in a formal way, several
standards have emerged. These standards enable discovering the heterogenous
objects in a structured and machine-readable fashion. By adding semantic data

4https://www.bluetooth.com/
5http://www.wi-fi.org/discover-wi-fi/wi-fi-aware
6http://www.zigbee.org/

18

https://www.bluetooth.com/
http://www.wi-fi.org/discover-wi-fi/wi-fi-aware
http://www.zigbee.org/

to the service description of the IoT nodes, the system can support autonomous
service invocation.

While metadata description has been well covered in the domain of Semantic
Web, the standards therein such as Resource Description Framework (RDF)[G+04]
do not �t the constrained resource requirements set by IoT [SRN+15]. Here we
list some standards for IoT device metadata representation.

Sensor Markup Language (SenML) [JAS12] is a data model for connecting
sensors and actuators to the Internet by providing device parameters and measure-
ments. The format is designed to be able to transport sensor data using devices
that are very limited in terms of hardware speci�cation (computing power). SenML
can be serialized using JSON, XML and E�cient XML Interchange (EXI) and can
be extended with custom attributes.

JSON for Linked Data (JSON-LD) is a format which aims to represent
the RDF metadata model in a JSON representation. JSON-LD is endorsed by
the World Wide Web Consortium as a promising attempt among the several ap-
proaches to capturing RDF semantics using JSON [SRN+15]. Figure 4 shows some
sensor data represented in the JSON-LD format.

{

"@context":

{

"i": "http ://iot.fi/o#",

"accX": "i:accX", "accY": "i:accY", "accZ": "i:accZ",

"magX": "i:magX", "magY": "i:magY", "magZ": "i:magZ",

"temp": "i:temp", "timeStamp": "i:timeStamp"

},

"@id": "i:accmagSensor01",

"@type": "i:Sensor",

"accX": "618", "accY": "319", "accZ": "671",

"magX": "123", "magY": "234", "temp": "22.5",

"timeStamp": "2012 -05 -18 T12 :00:00"

}

Figure 4: Example of sensor data represented using JSON-LD
[SRN+15]

Sensor Model Language (SensorML) [BRGW14] is a standard for modelling
and encoding arbitrary sensor-related processes. In SensorML, processes include
hardware devices such as sensors and actuators. Processes are de�ned by their
input, output, methods and parameters. As such, SensorML processes are discov-
erable and executable.

An example of a temperature sensors reading formatted using SensorML 2.0 is
presented in �gure 5

19

<?xml version="1.0" encoding="UTF-8"?>

<sml:PhysicalComponent gml:id="MY_SENSOR"

xmlns:sml="http://www.opengis.net/sensorml/2.0"

xmlns:swe="http://www.opengis.net/swe/2.0"

xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:gmd="http://www.isotc211.org/2005/gmd"

xmlns:gco="http://www.isotc211.org/2005/gco"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink"

xsi:schemaLocation="http://www.opengis.net/sensorml/2.0 http://schemas.opengis.

net/sensorml/2.0/sensorML.xsd">

<!-- === -->

<!-- System Description -->

<!-- === -->

<gml:description> Temperature sensor on my window </gml:description>

<gml:identifier codeSpace="uid">myCompany.com.63547</gml:identifier>

<!-- === -->

<!-- Observed Property = Output -->

<!-- === -->

<sml:outputs>

<sml:OutputList>

<sml:output name="temp">

<swe:Quantity definition="http://sweet.jpl.nasa.gov/2.2/

quanTemperature.owl#Temperature">

<swe:label>Air Temperature</swe:label>

<swe:uom code="Cel"/>

</swe:Quantity>

</sml:output>

</sml:OutputList>

</sml:outputs>

<!-- === -->

<!-- Sensor Location -->

<!-- === -->

<sml:position>

<gml:Point gml:id="stationLocation" srsName="http://www.opengis.net/def/

crs/EPSG/0/4326">

<gml:coordinates>47.8 88.56</gml:coordinates>

</gml:Point>

</sml:position>

</sml:PhysicalComponent>

Figure 5: Example of Air Temperature sensor and its value represented using
SensorML 2.0
[Bot]

Device Pro�les for Web Services (DPWS) is a set of Web service speci�-

20

cations for enabling secure messaging, discovery, description and eventing that is
suitable for automation systems.

2.4 Mobile Cloud Computing

As described by [BYV+09], Cloud Computing (CC) is a paradigm in which "com-
puting is being transformed to a model consisting of services that are commoditized
and delivered in a manner similar to traditional utilities such as water, electricity,
gas, and telephony."

In cloud computing, users have at their disposal the exact amount of computing
power they need and exactly as long as they need it, available for use anywhere. In
other words, CC provides users with infrastructure (such as servers, networks and
storage), software (middleware services and platforms) in an on-demand fashion,
i.e. the resources can be used elastically [DLNW13].

The major providers of Cloud computing applications and platforms today
are Amazon, Google, Salesforce, Microsoft. They provide various con�gurations
that are suitable for integration with di�erent devices, including mobile phones
(smartphones).

The signi�cant emergence of smartphones within the last decade together
with the maturing of Cloud Computing has motivated Mobile Cloud Comput-
ing (MCC). In short, MCC is an infrastructure where data processing (and data
storage) takes place outside of the mobile device.

Via MCC, the mobile environment inherits the features of CC such as elasticity
and on-demand usage [DLNW13]. As modern smartphones provide applications
and services which aggregate several data sources, involved computational tasks
can be quite resource intensive. For example, processing high resolution images
or processing natural language on smartphones can be both time- and energy
consuming. By utilising MCC, the resource intensive tasks can be o�oaded to
external computational resources in order to improve the overall performance of
the process [FLR13a].

In general, computational o�oading in MCC can be performed in two ap-
proaches: task delegation and mobile code o�oading [FS14].

2.4.1 Task Delegation and Code O�oading

Task delegation represents a computational process, where a process that was orig-
inally to be performed on the mobile device, is o�oaded to a cloud service which
has an equivalent mechanism to execute the process. Task delegation involves mo-
bile network communication, which in some cases can cause extra latency. Hence,
when a system involves task delegation, the overall cost and performance of the
process need to be considered.

21

On the other hand, according to the o�oading model, portions of software
may be detected to require too much computational e�ort and will be accordingly
executed either locally or remotely. The remote execution commonly uses an
approach similar to traditional Remote Procedure Call (RPC) methods [FLR13b].
When using this model, the questions of what, when, where and how to o�oad
must be answered. To determine which parts of code could be o�oaded, code
pro�lers or manual code annotations are often used [FHT+15]. To determine when
the system should try to save energy by o�oading, system pro�lers can be used
[FLR13b].

2.5 Work�ow Management Systems

Work�ow Managements Systems (WfMS) are a suiting approach for service com-
position [SQV+14, RS04]. A work�ow is a sequence of tasks, events and decisions.
Some of these elements of the sequence may happen in parallel. Alternatively, a
work�ow may be called a business process (BP) [VDAVH04].

Work�ow management is the �eld of observing and designing work�ows and
providing methods and software tools for managing and improving the work being
carried out.

Work�ow Management Systems are generic software packages for managing
business processes [VDAVH04]. WfMS distribute work to to executors (actors)
based on a process model [DLRMR13]. Because the system automates the exe-
cution and distribution of tasks, it is easy to introduce changes to the work�ow
model, e.g. change the order of tasks done.

However, this process-centric perspective of information systems lacks a gen-
eral agreement (standard) on fundamental concepts [vdA13]. As a result, a large
number of di�erent languages for modelling work�ows exist. As described by Du-
mas et al. [DLRMR13], a work�ow modelling language generally involves two
basic types of nodes: activity nodes and control nodes. Activity nodes represent
work that may be executed by a human, software agent or a combination of them.
Control nodes represent the �ow of execution between activities (the arrangement
of work within the sequence). Additionally, event nodes are often also included in
a work�ow modelling language. Event nodes represent events which may happen
within the work�ow or execution environment, to which the work�ow can then re-
act to. For example, upon receiving a message (an event), the user may be asked
to respond to it (an activity).

2.5.1 Work�ow Languages

In this subsection, the major work�ow modelling languages are summarised. One
of the most well known work�ow languages is Business Process Model and Notation

22

(BPMN 2.0) [bpm], a standard introduced by the Object Management Group
(OMG) in 2011. BPMN is a graphical notation. BPMN targets to allow business
analysts and system architects to describe processes, resulting in a higher level
of abstraction which means that direct execution of BPMN models is not usually
existent in BPMN software tools [ODTHVdA06]. Figure 6 presents a simplistic
BPMN 2.0 process model, including parallel execution of tasks and a decision
point.

Figure 6: Simple BPMN 2.0 process model example

Web Services Business Process Execution Language (WS-BPEL) [AAA+06],
a standard of the Organization introduced by the Organization for the Advance-
ment of Structured Information Standards (OASIS), provides a more formal and
strict way to describe business processes, integrated with Web service technologies.
Because WS-BPEL describes precise semantics for process execution, WS-BPEL
based software tools can directly execute WS-BPEL models.

Introduced by the Work�ow Management Coalition (WfMC), the XML Pro-
cess De�nition Language (XPDL) [Int01] is a format that aims to be platform-
independent, meaning compatibility across di�erent modelling and management
tools. In essence, XPDL is an exchange format for process de�nitions between
di�erent work�ow languages, it may be considered as the serialization Format for
BPMN [xpd].

Comparing these languages, BPMN's main focus is visualization and commu-
nication of work�ows, WS-BPEL focuses on execution with the integration of Web
Services and XPDL aims at serialization and documentation [LW13].

2.5.2 Business Process Management Life Cycle

The work�ow life cycle can be broken down into three distinct phases: (re)design
phase, implement/con�gure phase and the run and adjust phase [vdA13].

In the (re)design phase, the process model is designed. Considering IoT-based
WfMS, this involves the question how the smart objects of IoT are represented
in the model. The implement/con�gure phase involves implementing a mapping
so that the designed model can be enacted by a work�ow engine. The run and

23

adjust phase corresponds to how the WfMS executes the process. In this phase,
the process model itself is not redesigned, but con�guration adjustments do take
place. Executing the process results in log traces which depict how the execution
went. This can then be analysed to further improve the process model. As such,
the life-cycle begins a new, as the (re)design phase is entered again.

2.5.3 Orchestration and Choreography

WfMS can generally be divided into two architectures: orchestration and chore-
ography. The idea of orchestration follows a centralized architecture, where the
entire business process is managed by a single management system. Choreography
follows a de-centralized architecture, where the process model (or parts of it) are
handled by a several external information systems. While orchestration has been
the dominant approach in existing IoT-related WfMS, recently, the importance of
using choreography for IoT has been recognized. Considering the IoT environment
in which participating devices require agile reaction, a centralized, orchestration
approach may be insu�cient [DTRE11]

2.6 Mobile Work�ow Management Systems for IoT

As mentioned in section 2.3, Service Oriented IoT can abstract the heterogeneous
IoT environment into a more uniform set of services. Using WfMS allows for
service composition to support any kind of work sequences that are also easy to
monitor and manage.

2.6.1 Modelling IoT for WfMS

Bringing IoT objects into WfMS is not a straightforward task, as the objects typi-
cally involve di�erent communication protocols, network topologies and hardware
speci�cations. There are two main approaches to modelling IoT objects for usage
in WfMS:

1. Things as services. In this approach, the smart objects are expressed
as network services that can be invoked by following the request-response
model. The network service embedded in the smart object can be imple-
mented e.g. as a SOAP service [PRS+13] or a REST-based service [DTB+15].
Hence, existing modelling standards such as BPMN are left unmodi�ed.

2. De�ning new IoT elements. Conventional WfMS assume that all de-
vices involved in the system provide the capability to be directly invoked
and automated by the system. However, this assumption may not always be

24

applicable in IoT systems [MRH15]. IoT objects that have di�erent capabil-
ities may be connected to the WfMS in di�erent ways. Instead of direct IP
network connectivity, some things may be connected via multiple network
layers or routings. For example, the management system may interact with
a gateway service which is connected to multiple sensor nodes.

Another example is continuous tasks, such as sensor data streaming. Existing
standard-based BPM modellings tools and WfMS cannot properly handle
such processes [MRH15].

As a solution, extensions to languages such as BPMN can be created, which
capture the intrinsics of IoT elements and are di�erent from the common
work�ow nodes.

2.6.2 Implementing and executing work�ows in IoT systems

As mentioned previously, the implement/con�gure phase involves mapping the
abstract work�ow model to a machine-executable software program. Existing com-
mon tools for business process execution, such as Activiti7, Camunda8, BonitaBPM9

or Apache ODE10 however lack support for many of the protocols used in IoT de-
vices such as CoAP and MQTT.

IoT objects can take part in a business process not only as a service, but also by
executing an entire business process model themselves. To execute a work�ow on
a device, there are two approaches: 1) Execute the process model in a work�ow en-
gine which is running on the thing [DTB+15, GCFP10] and 2) translate the process
model into executable code and run the code on the thing [GEPF11, CDD+12].

7http://activiti.org/
8https://camunda.org/
9http://www.bonitasoft.com/
10http://ode.apache.org/

25

http://activiti.org/
https://camunda.org/
http://www.bonitasoft.com/
http://ode.apache.org/

3 System Overview

This chapter describes the Service-oriented Composer for Orchestrating Real-time
Proximity-based Industrial Internet of Things (SCORPII) middleware framework.
SCORPII is a service-oriented middleware for real time service composition from
heterogeneous proximal pervasive resources. The framework utilizes dynamic elas-
tic Cloud computing and work�ow automation to optimize the task allocation
among localhost services and Cloud services based on resource availability and a
cost-performance index model.

3.1 Scenario

Here we consider the scenario introduced in section 1.2.1, in which Alice is travel-
ling in an urban IoT environment with her smartphone. Alice's device is providing
a real time content mashup service to Alice to serve her purpose. Since the content
mashup process requires continuous proximal discovery of surrounding, it can con-
sume a lot of computing power of the mobile device if the number of smart objects
is large. As Figure 7 shows, in the �rst timestamp, the mobile device (SCORPII
Mobile Host) has only discovered a small number of smart objects, which includes
3 smart objects that have registered to two di�erent discovery servers, and one
smart object (n1) that is available for direct P2P communication.

Figure 7: Service discovery scenario.

While Alice is moving, at timestamp 2, the number of smart objects discovered
by Alice's device has greatly increased. The large number of discovery processes

26

involve the discovery servers from which the mobile device needs to retrieve service
description metadata and also process them. Using SCORPII's analysis compo-
nent, SCORPII has decided to launch a Utility Cloud service instance to assist
certain computational tasks. The tasks which involve interacting and processing
the data between SCORPII and external discovery servers have been partitioned
as separate work�ows and have been executed on the Utility Cloud side. Note
that in this environment, n1, n2, n3, n4 and n5 are direct communicable smart
objects that do not require further communication with discovery servers. The
interaction between Alice's device and those smart objects can be performed in
the P2P manner.

Afterwards, at timestamp 3, Alice has moved to an area that consists of a
minor number of smart objects. Since the data transmission and processes have
decreased, SCORPII's analysis component is able to determine that mobile device-
based processing is more cost-e�cient. Thus, SCORPII terminates the Utility
Cloud side components to reduce the cost. This scenario raises the following
questions:

• How does SCORPII decide when and which processes require computational
task o�oading?

• How does SCORPII perform the con�guration dynamically at runtime?

3.2 SCORPII framework design

The framework design is based on the Enterprise Service Bus (ESB) architecture
[VdA98]. ESB is a software infrastructure that can easily connect resources by
combining and assembling services to achieve a Service Oriented Architecture.
Figure 8 illustrates the architecture and the main components of SCORPII. The
architecture consists of three parts that are described as follows.

General Internet consists of general Web services such as the discovery servers
of the proximal smart objects or third party services that can be utilized to assist
certain tasks such as semantic ontology processes. They are reachable through
proper Unique Resource Identi�ers (URIs) and standard communication technolo-
gies such as HTTP or CoAP.

Proximal P2P environment consists of various smart objects. SCORPII can
utilize common standard protocols to discover and interact with the proximal
smart objects to retrieve data or to retrieve the description of their discovery
servers that can provide further information or data regarding the smart object.

SCORPII is a dual work�ow controlled middleware service. It consists of
Mobile Host side (ScoMH) and Utility Cloud side (ScoUC). ScoMH is the main
controller of the entire middleware and ScoUC is mainly used for resource intensive
tasks. The components of each side are described as follows.

27

Normalized Message Routing Control

Request
Handling

Workflow
Manager

Resource
State

Management

Service
Pool

Functional
Components

Trust/QoS/
Privacy/

Security etc.

Proximity
Communication

Cloud Service
Mediator

Web Service
Mediator

SCORPII Utility Cloud Side (ScoUC)

SCORPII Mobile Host
Side (ScoMH)

Virtual Machine

Workflow
Manager

SCORPII

Things
Discovery

Servers
3rd Party Web

Services

General Internet

Proximal Service
Providers

Proximal P2P Cloud
Storage

PaaS/
SaaS

Figure 8: Architecture of SCORPII middleware framework.

3.2.1 SCORPII - Mobile Host Side (ScoMH)

ScoMH consists of the following main components.
Proximity Communication consists of a number of components that enable

short range networked resource discovery and interaction using communication
protocols such as, Bluetooth, Wi-Fi direct, ZigBee etc.

Web Service Mediator allows ScoMH to interact with global networked services
such as the smart object discovery servers using standard communication protocols
such as HTTP or CoAP.

Cloud Service Mediator can dynamically con�gure and launch virtual machine
instances and set up the needed components to enable ScoUC.

Normalized Message Routing Control component handles incoming and out-
going messages. It processes the message to meet the required format for the
receivers of the message.

Request Handling (RHMH) component receives request messages from other
applications (e.g., a User Application, which provides user interface for users to
access SCORPII) and forward the request message to corresponding components
via the Normalized Message Routing Control component.

Work�ow Manager consists of following mechanisms.

• Manages, monitors, and executes work�ow. It creates a number of Task

28

Manager components to analyse the status of tasks.

• Manages a collection of pre-de�ned abstract work�ow models and approaches.
When it receives a request that contains the goal of the process, a correspond-
ing abstract work�ow model will be executed. A �ow relation pattern de�nes
the structure of a set of work�ow nodes. The de�nition of abstract work�ow
model and approach will be described in Section 3.3.1.

• Handles runtime work�ow con�guration processes. For example, after a
work�ow is executed, Task Managers will monitor the cost-e�ciency of the
tasks. If certain tasks are more cost-e�cient to be replaced by di�erent tasks,
the corresponding Task Manager will request the controller of the work�ow
to perform re-con�guration.

The Resource State Management component is responsible for continuously
monitoring the resource usages such as CPU usage, network bandwidth usage,
cloud utility service usage, etc. These resource usages are cost intensive, and are
the main elements in�uencing the decision making of the adaptation scheme that
is described in the next section.

The Service Pool is responsible for managing information on internal services,
Utility Cloud services, and services provided by external service providers. It con-
tains a collection of the service descriptions of external service providers, the service
descriptions of each internal service and each accessible utility Cloud service.

Functional Components are miscellaneous utility components such as semantic
metadata matchmaking component, message parsing and calculation component,
for calculating the Cost Performance Index (CPI) value described in the next
section.

Trust/QoS/Privacy/Security, etc. are additional components needed to pro-
vide trustworthy service discovery processes and to improve the quality of service
and security requirements. They are not within the scope of this thesis. They are
considered as a future research direction.

3.2.2 SCORPII - Utility Cloud Side (ScoUC)

Di�erent to the common design which assumes the cloud middleware to be always
deployed and always available, SCORPII utility cloud � ScoUC is launched on-
demand. Same as the other local services, if ScoUC is no longer needed, it will
be terminated. One drawback of the on-demand utility cloud component is that
it takes time to launch the instance and prepare the cloud platform. For simple
processes (e.g., only one single request), ScoUC may not be cost-e�cient and will
not be needed. The instance can be stored as a snapshot in Cloud storage to reduce

29

the need of uploading the �le directly from mobile host. The main advantage of
this design is to fully achieve the pay-per-use concept of Utility Cloud services.

Work�ow Manager. The Work�ow Manager (WM) takes care of both work�ow
execution and also handling requests related to processes. The Work�ow Manager
includes a Work�ow Engine (WEUC) which is a work�ow execution service that
handles the work�ow passed from the ScoMH.

Secondly, the Work�ow Manager processes and analyses the request messages
in order to perform corresponding actions. For example, a work�ow that is sent
from ScoMH will be passed to WEUC after the payload of the request message has
been analysed.

Paas/SaaS denotes other Web services that have been pre-deployed by SCOR-
PII user on Platform as a Service (PaaS)-based Cloud service or the known Soft-
ware as a Service (SaaS)-based Cloud service that can be used as the substitution
of the self-managed Web application in the virtual machine.

Cloud Storage. SCORPII can also utilize Cloud storage services to store �les
that are needed for ScoUC. E.g., customized Web application packages.

3.3 Cost-e�cient and Context-aware Work�ow Approach

Selection Model

This section describes the cost-performance index-based scheme for selecting the
con�guration of work�ow processes at runtime.

3.3.1 Preliminary

De�nition 1 (Cost element set�E). E is a �nite set. Each e ∈ E is a cost
element de�ned as a tuple (id, v) where:

� id is a unique identi�cation of e.

� v is the cost value of e.

A cost element can be CPU usage, RAM, bandwidth, cost of Cloud service and
so on.

De�nition 2 (Context parameter set� X). X is a �nite set. Each x ∈ X is
a context parameter de�ned as a tuple (id, v) where:

� id is a unique identi�cation of x.

� v is the cost value of x.

30

A context parameter can be the remaining battery life, the connection type
(3G/WiFi), the mobile data plan cost etc.

De�nition 3 (Abstract work�ow model). An abstract work�ow model is
de�ned as a tuple (N , F , τ), where:

� N is a �nite set of nodes.

� F ⊆ N ×N is a set of �ow relation rules.

� τ : N → Υ maps nodes to node types. A node type can be parallel gateway,
start event, end event, task, sub-process etc.

Let n ∈ N be a node: •n = {m|(m,n) ∈ F} is a preset of n, and n• = {m|(n,m) ∈
F} is a post-set of n.

An abstract work�ow model describes the structure of a process in the ab-
straction level. Each request received by SCORPII will trigger a corresponding
work�ow execution process, which consists of a set of sequences and parallel tasks.

De�nition 4 (Task Type�tType). tType is a type of node that represents a
main task which needs to be accomplished in the work�ow. It is de�ned as a tuple
(ID, IN , OUT) where:

� ID is the identi�cation of tType.

� IN is the input message type.

� OUT is the output message type.

A tType node can be substituted by another tType node or it can be substituted
by another work�ow as a sub-process as long as the substitution matches the IN
and the OUT of the original tType node de�ned in the abstract work�ow model.

Here, we refer to the terms described in [VdA98]: a task that is to be accom-
plished is called a work item. A work item is executed by a resource. A resource,
in our case, is a localhost component/service or a Web application that has been
deployed in the Cloud. When a resource is executing a work item, it is called an
activity.

Additionally, we de�ne the following term:

De�nition 5 (Approach�h). An approach is de�ned as a tuple (N,F, τ, α, %, c,$, ρ),
where:

� (N,F, τ) corresponding to the descriptions in De�nition 3.

31

� α : N → A maps nodes to activities.

� % : A → R maps activities to resources.

� c : A → E maps activities to cost elements.

� $: Ë → X maps cost elements to context parameters.

� ρ : A → T maps activities to time-span.

Each element of α, %, c,$, ρ is de�ned as a tuple (key, value).

An approach can consist of one or multiple activities. In other words, an
approach can be seen as an individual work�ow (or a sub-process in BPMN).
A tType node in an abstract work�ow model can be accomplished by di�erent
approaches as long as the approach satis�es the IN and the OUT of the tType
node. The approach of a tType node can be dynamically changed at runtime of
work�ow execution. However, the activities in an approach are static unchangeable
when the approach is chosen, because the elements (α, %, c,$, ρ) of the approach
have already de�ned the con�guration.

An activity can be performed by a pre-de�ned approach or it can be performed
by a dynamic de�ned approach at runtime. A dynamic de�ned approach is based
on composing a number of pre-de�ned approaches to achieve the same output.

Example 1 (Dynamic Approach Pattern). Suppose a sequence work�ow
consists of 3 tasks: task1 → task2 → task3. The arrows correspond to the process
�ow. task2, which has the IN type as �X" and the OUT type as �Y". Assume
at runtime, task2 cannot be accomplished by its original de�ned approach due to
the resources of the activity are suddenly unavailable, and a substitute approach
that matches to the IN and the OUT types could not be found in the pre-de�ned
approach patterns. Hence, the Work�ow Manager attempts to de�ne a substitution
based on a composite approach. By searching the approach patterns, Work�ow
Manager discovered the following 3 patterns:

Pattern 1 consists of 2 nodes with structure as below:

� n1 : IN = “X”, OUT = “A1”, n1• = {n2}.

� n2 : IN = “A1”, OUT = “B1”.

Pattern 2 consists of 6 nodes with structure as below:

� n1 : IN = “B1”, OUT = “O1”, n1• = {n2}.

� n2 : IN = “O1”, OUT = “P1”or“P2”, n2• = {n3, n4}.

32

� n3 : IN = “P1”, OUT = “Q1”, n3• = {n5}.

� n4 : IN = “P2”, OUT = “Q2”, n4• = {n5}.

� n5 : IN = “Q1”or“Q2”, OUT = “L1”, n5• = {n6}.

� n6 : IN = “L1”, OUT = “G1”.

Pattern 3 consists of 2 nodes with structure as below:

� n1 : IN = “G1”, OUT = “F1”, n1• = {n2}.

� n2 : IN = “F1”, OUT = “Y ”.

Figure 9: Work�ow patterns.

Figure 9 illustrates the conceptual approach patterns described above. By
composing the three patterns, an approach with the IN = �X" and the OUT =
�Y" can be generated for accomplishing the task2. For more information regarding
to pattern similarity searching scheme can be found in [DDGB09].

3.3.2 Time-span of Approach

In this thesis, we consider time-span as the performance of an approach. The
time-span of an approach is in�uenced by the involved tasks and the resources.
The formal method to measure the time-span of approaches is omitted in this
thesis. The related approach has been introduced in [DB07]. In this prototype,
we measured the time-span by manually recording the time-span of each test case
using customized methods.

Based on the �ow relation rules of a given approach, a number of routes (process
�ow) can be discovered. Each route may consume di�erent time-span depending
on the activities involved. Let h be an approach, and Nh denotes the nodes in
approach h. Let Oh be a set of routes that can occur in h. o ∈ Oh denotes one
of the routes. N tType

o ⊆ Nh denotes the set of tType nodes involved in o route.
To = {ti|1 ≤ i ≤ N} corresponding to the time-spans of each activity involved in
N tType
o . E.g., t1 denotes the time-span of the activity that is executed for the task

node�n1 ∈ N tType
o , which has been de�ned in ρ map (see De�nition 5). The

time-span of o (denoted by TSo) is computed by:

33

TSo =
∑

i∈|NtType
o |

tsi (1)

where: tsi is time-span value of ni ∈ N tType
o .

Based on the calculation above, if the approach h has more than one route, its
time-span value will be presented with [TSminh , TSmaxh] where TSminh = min

o∈Oh
{TSo}

denotes the minimum time-span value and TSmaxh = max
o∈Oh
{TSo} denotes the

maximum time-span value.
Fundamentally, an approach that has a shorter time-span is considered as hav-

ing better performance. However, the shortest time-span may not always mean
that the approach is the most e�cient selection. Hence, we utilize the cost-
performance index (CPI) scheme to optimize the approach selection. The scheme
combines fuzzy set [Zad65] and the weight of context [HKZG08]. The reason we
use fuzzy set is to compare the performance and cost between approaches instead
of using static values.

3.3.3 Raw Cost Elements and Context Parameters of Approach

First, we describe how the raw cost element and raw context parameter sets are
generated before we explain the cost-performance index model.

Similar to the measurement of time-span, the cost of an approach is also in�u-
enced by the number of routes de�ned in the approach. For each route o ∈ Oh of
approach h, let Ëo denote the cost elements of o de�ned in E map of approach (see
De�nition 5). Each element ë ∈ Ëo denotes the sum of the cost element�e's
value from all the tType nodes involved in o. The cost elements of o will be within
[Ëmin

o , Ëmax
o] where Ëmin

o = min
o∈Oh
{ëo} corresponds to the minimum cost elements,

and Ëmax
o = max

o∈Oh
{ëo} corresponds to the maximum cost elements.

3.3.4 Cost-Performance Index-based Approach Selection

Let D be a �nite set of time-span values of the selective approaches�H, H =
{hl|1 ≤ l ≤ N}, where |D| = |H|, D = {dl|1 ≤ l ≤ |H|}, in which dl is the
maximum time-span of hl by measurement.

Let ST be the shortest time-span in D, where ST = min{dl ∈ D}. The
performance ranking value of an approach�hy (denoted by PRhy) is computed by
below:

34

PRhy =

1 +
ST∑

l∈|D|
vdl

− vdy∑
l∈|D|

vdl
(2)

where vdl is the value of dl, and vdy is the value of dy.
The formula (2) can generate the ranking value for approaches in which the

lower time-span the approach has, the higher ranking value it has.
We need the normalized fuzzy number of the ranking value. Hence, the fuzzy

number of an approach's ranking value (denoted by P̃P hy) is:

P̃P hy =
PRhy∑

l∈|H|
PRhl

(3)

where PRhy is the performance ranking value of hy derived from (2), and P̃P hy

is the normalized fuzzy number of the performance ranking value of hy, in which

0 ≤ P̃P hy ≤ 1.
The cost element set (De�nition 1) must be comparable between di�erent

related approaches. If cost elements of approach h1�Ëh1 contains the value of
`battery cost', then the approach h2�Ëh2 must also contain such a value. Accord-
ingly, the overall CPI between di�erent approaches can be computed.

3.3.5 Context-aware weight calculation of the cost elements

Since we are comparing the cost elements between di�erent approaches, the nor-
malized value of a cost element�ṽëy is computed as below.

ṽëy =
vëy∑

η∈|Ëhl |
vëη
×
wëy
|W |

(4)

where wëy is the importance weight of the cost element, and W denotes all the
weight values of cost elements. It is considered because a cost element is di�erent
for di�erent users. For example, when the device battery-life remains 50%, the
user may consider that saving the battery life of his/her mobile device is more
important than spending money on using cloud services for computational needs.
In this case, the weight of the battery life cost element will be higher than the
weight of the bandwidth cost of the cloud service. The weight of the cost element
for the approach is dependent on the context parameters. The context of a cost
element hl (denoted by ë

hl
η) is retrieved by using function �$(ëhlη) (seeDe�nition

5) where

Kë
hl
η = {kë

hl
η

1 , k
ë
hl
η

2 , · · · , kë
hl
η
n }, n ∈ N . Hence, the weights can be de�ned as:

35

wëy = Θ
ë
hl
y

0 + Θ
ë
hl
y

1 k
ë
hl
η

1 + Θ
ë
hl
y

2 k
ë
hl
η

2 + · · ·+ Θë
hl
y
n kë

hl
η
n , n ∈ N (5)

Where Θë
hl
y are the regression coe�cients for a given cost element ëy ∈ Ëhy and

ëy is in�uenced by context parameters Kë
hl
η . Θë

hl
y is a (n+ 1)-dimensional vector.

The average value of the total cost of an approach (denoted by CEhl) is com-
puted as:

CEhl =

∑
η∈|Ëhl |

ṽëη

|Ëhl |
(6)

By applying the basic CPI model, the cost-performance value of an approach
(denoted by CPVhl) is:

CPVhl =
P̃Rhl

CEhl
(7)

3.4 SCORPII Prototype

A prototype of SCORPII has been implemented for real Android-based mobile
devices together with certain components hosted on Amazon Web service. The
prototype consists of two parts:

ScoMH components (i.e. Work�ow Manager, Resource State Manager, Func-
tional Components, etc.) have been implemented in Google Nexus 5 mobile device
that runs on Android OS 5.0. The Work�ow Manager has been implemented as a
localhost service that can process BPEL [MIS+03] documents. The current version
of ScoMH's BPEL engine can support sequential and parallel tasks.

ScoUC, which is managed by ScoMH, is a dynamically launched instance on
Amazon EC2 (t2.medium) with a Ubuntu OS. ScoUC components are Web ap-
plications operated in Apache Tomcat 7 and the work�ow engine of ScoUC is
managed by Apache ODE, which is hosted using Apache Tomcat.

36

4 Adaptive Work�ow Execution in the Internet of

Things

4.1 Overview

The SCORPII framework design is extended with an additional component, in
which the work�ow manager is extended with the ability to allow IoT devices to
execute either a model representation of a business process or a piece of program
code corresponding to the work�ow.

In Fig. 10 we present how this extension is applied to SCORPII. Most impor-
tantly, the Work�ow Manager of SCORPII Utility Cloud side has been extended
with a Work�ow Translator component.

SCORPII
Mobile Host

Side (ScoMH) Workflow
Engine

Mediator

Workflow Translator

Wf Engine

Business
Process

Process Segment

Process Segment
translated to code

Process Segment

A

Code
execution

B

A

B

Device
Information

Services

Language plugin container

.py .groovy …

General Internet

Workflow Manager

SCORPII Utility Cloud Side (ScoUC)

Figure 10: System design overview

The Utility Cloud Side (ScoUC) provides a façade for executing work�ows in
the IoT edge network/environment. The Mobile Host sends their business process
to the Cloud Side, where the process model is then parsed. Using a decision
making mechanism (as described in section 3.3, ScoUC may execute the process
work�ow entirely in the Cloud, invoking IoT nodes as part of Work�ow Tasks
in the conventional SOA style, alternatively it may partition the work�ow into
segments that are to be executed on the IoT nodes.

37

Information about an IoT device in the edge network can be inquired using
the corresponding Device Information Service (DIS). A DIS provides information
regarding the device capabilities such as whether the device has a work�ow engine
or a code execution environment, what kind network protocols are supported,
which functions (e.g. sensors, programming languages) are supported.

With this information, a user application which uses the SCORPII Mobile
Host Side middleware may con�gure a composite service involving a number of
edge nodes, and submit it to ScoUC for execution.

In our illustrated example, the Cloud Side has determined that the Busi-
ness Process provided by the ScoMH should be divided into two segments (sub-
processes) to be executed by two IoT devices, A and B.

Device A supports model execution as it is running its own work�ow engine,
while device B supports code execution only.

For device A, the matching segment of work�ow is transferred (e.g. in the
BPMN format) to the device. However, for device B, ScoUC invokes the Work�ow
Translator component to convert the work�ow model document to executable code
in a programming language supported by B.

The Work�ow Translator uses a plugin-based design which allows developers
to easily add translators from work�ow languages to programming languages. The
translated business process is sent to the device and executed there.

Communication between the ScoUC and IoT devices is carried out using Inter-
net standards such as HTTP (Hypertext Transfer Protocol), CoAP (Constrained
Application Protocol) or MQTT (formerly MQ Telemetry Transport). Addition-
ally, executing the business process on the IoT device may involve Machine-to-
Machine communication with other nearby IoT entities (e.g. via Bluetooth Low
Energy, WiFi).

The above description illustrates the conceptual approach of work�ow execu-
tion and service composition at the edge nodes in an IoT environment. Code
execution is commonly considered as a lightweight approach that is more feasible
to the resource constrained IoT devices [CK11a, GEPF11, CDD+12]. However,
there is no comprehensive comparison between the two approaches in previous
research works.

The main question is whether the code execution approach is able to
outperform the work�ow engine approach decidedly or can the work-
�ow engine approach be applied equally e�ciently for edge network BP
execution?

38

4.2 Work�ow Translator implementation

This section describes the implementation of the work�ow translator component of
SCORPII Cloud-Side. The translator prototype consists of two components: (a)
the software which transforms BPMN processes into executable code (translated
BP execution) and (b) the resource constrained IoT device which executes the
work�ow.

To run experiments regarding di�erent approaches of BP execution, we used
a Raspberry Pi B+ 11, running Raspbian GNU/Linux 8. The device has a single
core CPU, con�gured to allow a maximum CPU clock speed of 900MHz and has
512MB SDRAM. The Java JDK installed is Oracle JDK 8.

4.2.1 Code Generation

The main mechanism of Work�ow Translator is to convert the input BPMN 2.0
model (i.e. .bpmn �le) to executable program code. The converted code depends
on which programming language is supported by the code executor.

General architecture In order to be able to map the process into a given
programming language, a developer should provide modules which de�ne how
elements of the BPMN language are to be represented in that language. For
example, XOR gateways are denoted by the syntax of an if-else statement in that
language, or parallel gateways are denoted by syntax and constructs for parallel
threaded execution.

In addition to transforming the �ow and gateway elements of a BPMN process
model, the tasks and events must also be transformed to code representation.
This is also language-speci�c and described by the language module (plugin). The
following section provides an example based on the case where the supported
language is Groovy.

4.2.2 Groovy language example

We created a Groovy language module for generating Groovy scripts from .bpmn

�les. Groovy was chosen as it is one of the two scripting languages included in
the prepackaged Camunda distributions. To create a Groovy representation for
a task, the developer should include a folder with the name of the corresponding
task, containing a .groovy �le which depicts the groovy code for that task, and
an imports.groovy �le which includes the necessary dependency statements.

11https://www.raspberrypi.org/products/model-b-plus/

39

https://www.raspberrypi.org/products/model-b-plus/

Note that the above folder-based approach could easily be switched with a dif-
ferent Groovy module implementation where per-task implementations are looked
up from a remote service.

In our prototype implementation, we have also developed a Python-based mod-
ule. We will consider the comparison of di�erent modules in the future.

4.2.3 Work�ow Engine

For BP model execution on the edge node, we chose the free (community) edition
of the Camunda BPM work�ow engine. Camunda BPM supports scripting with
JSR-223 compatible script engines [Cam] and comes with a Groovy script engine
included. While the Groovy environment included with Camunda BPM is version
2.4.5, we installed Groovy 2.4.6 on the Raspberry Pi.

We used the pre-packaged Tomcat Camunda distribution (released November
30, 2015), which contains the Camunda BPM platform v.7.4.0 as a set of Tomcat
8.0.24 web applications. The sample web applications and work�ows provided
with this distribution were removed to improve the start time of the platform.

In order to deploy (and run) a business process on the Camunda BPM platform,
a Java process application for the process must be created.

4.2.4 Test Scenario

To conduct experiments regarding the di�erent work�ow execution approach, we
conceived the following test scenarios and corresponding business processes.

The �rst business process used in our experiments is a simple IoT scenario
where tasks are executed in parallel (see Fig. 11).

The work�ow consists of two �ows of parallel tasks. The �rst �ow consist of two
sequential tasks��Read File� and �Sending using MQTT�. �Read File� represents
the retrieval of sensory data collected by the device that have been stored in its
local memory. Once the data is retrieved, it is sent to a speci�c remote client
via MQTT protocol. The second �ow also consists of two sequential tasks��Get
CPU Temperature� and �Send using HTTP�, which represent the device invokes
an internal service to retrieve its current CPU temperature data and afterwards
sending the data via HTTP to the remote management system which is monitoring
the activities of the device.

Each of the tasks in the test process model has a corresponding Groovy imple-
mentation in the Groovy module of the work�ow translator.

The .bpmn �le itself was created with the Camunda Process modeler 12, all tasks
are of type script task, their implementations described in the Groovy language,
equivalent to the ones provided to the work�ow translator.

12https://camunda.org/bpmn/tool/

40

https://camunda.org/bpmn/tool/

Figure 11: BPMN 2.0 Business process model of parallel tasks

We also included a second, simpli�ed version of the business process, in which
no parallel tasks are present. The second business process is presented in Fig. 12.

Figure 12: BPMN 2.0 BP model with no parallel tasks

Camunda BPM execution To start an instance of the business process, the
Java Web application containing the BP must �rst be deployed to the Tomcat
container. We did this by placing a .war �le in the �webapps� folder of Tomcat.

To benchmark the performance of the process execution on Camunda BPM,
our approach was the following. First, the process is deployed onto the server.
Then, a new process instance is started using the REST API of Camunda BPM,
this is considered as the starting point of the work�ow execution. The framework

41

does not respond to the REST call until the work�ow execution has been �nished.
The moment when the REST response is received, it is considered the end of
execution.

Groovy script translation execution The Groovy translation of the BP is
executed using the command line Groovy invocation command. The starting point
of execution is considered the moment the command is executed. The execution
end is considered as the moment the Groovy program has �nished, the Groovy
environment has exited and returned control to the command line.

42

5 Evaluation

The SCORPII framework prototype has been tested based on case studies in order
to evaluate: 1) the runtime dynamic work�ow con�guration which is based on the
cost-performance index scheme, 2) the di�erent work�ow execution approaches on
resource-constrained devices.

5.1 Dynamic Con�guration Use Case

We used a case study to evaluate our prototype based on the scenario described in
Section 3.1. The aim is to validate the CPI-based approach selection and work�ow
recon�guration. The basic setting is as follows. Fig. 13 illustrates the default
work�ow of the use case. A localhost application (reqApp) in ScoMH can browse
smart objects in proximity and retrieve the name or ID of the device from their
advertisement.

For each timestamp (5 seconds), device names or IDs retrieved by the reqApp,
will be sent to the Work�ow Manager of ScoMH.

Figure 13: Default service work�ow (simpli�ed)

As Figure 13 shows, each device ID is the input parameter of the work�ow
process, the Device ID will be forwarded to proximity communication service
(PComm) and PComm will perform a simple GET request to the corresponding
device (step mark 1). After PComm retrieves the response, the response mes-
sage will be forwarded to another component to analyze what type of message it
is (mark 2). If it is an URL address, ScoMH will use the Web Service Media-
tor (WSM) to GET the service description metadata (SDM) from the discovery
server based on the URL (mark 3). On the other hand, if the message contains a
document, ScoMH will use a corresponding functional component to process the
document to analyze if the document is a SDM (mark 4). Afterwards, the SDM,
which is either retrieved from either step 3 or step 4, will be forwarded to another
local host service to perform the service matchmaking (mark 5). If the service

43

described in SDM matches the requested type (in this case study, the type is "cur-
rent noise level"), the work�ow manager will use PComm to retrieve the data from
the corresponding device based on the URI described in SDM (mark 6), otherwise,
a simple "no match" response will be generated as a response. Afterwards, the
work�ow service will send the result back to the reqApp (mark 7).

At the beginning, mobile requester averagely discovers 50 service providers per
timestamp. After 10 timestamps, the discovery frequency has increased from 50 to
500. Hence, the Work�ow Manager performed re-con�guration based on the two
selectable approaches:

• Approach 1 (A1) : The activities are unchanged as the work�ow of �gure 13
described. All the SDM retrieval and matchmaking processes were done in
ScoMH.

• Approach 2 (A2) : The SDM retrieval and matchmaking processes, which
involved discovery servers, are distributed to ScoUC.

The context that in�uences the decision-making is based on the context pa-
rameters de�ned for each approach, plus the frequency of discovering new service
providers. The context parameters we used in our test scenario are explained
later. The costs considered in the use case are: CPU usage of the mobile device,
bandwidth of mobile device and bandwidth of Cloud service. CPU and bandwidth
usages are the major in�uencers of the energy consumption of mobile devices. Note
that in reality, there are more cost elements which need to be considered.

We have been studying cloud cost models and auto-scaling models for a while
now [SO14] and these models will be introduced into SCORPII at later stages.

5.2 Dynamic Con�guration Evaluation

10	
260	
510	
760	

50	 100	 150	 200	 250	 300	 350	 400	 450	

K
ilo
by
te
s	

No.	 of	 SDM	 from	 discovery	 servers	 (among	 500)	

A1-‐MP2P	 A1-‐MWeb	 A1-‐UCWeb	 A2-‐MP2P	 A2-‐MWeb	 A2-‐UCWeb	

Figure 14: Bandwidth measurement comparison

Figure 14 illustrates the bandwidth measurement comparison between the two
approaches (A1 and A2) recorded by SCORPII for the CPI calculation. The mea-
surement of each approach consists of three cost elements: (1) MP2P, correspond-
ing to the bandwidth cost of retrieving SDMs directly from proximal nodes; (2)

44

MWeb denotes the bandwidth cost of the mobile Internet connection; (3) UCWeb
denotes the bandwidth cost of ScoUC for retrieving SDMs from discovery servers.
Since A1 did not use Cloud at all. Hence, A1-UCWeb is always consuming 0 band-
width. Although A2 used ScoUC to retrieve SDMs, it also consumed the mobile
Internet bandwidth because the communication between ScoMH and ScoUC con-
sumed a minor bandwidth, in which the number is around 9.5 kilobytes and it is
too little to be shown on the �gure.

0%	
10%	
20%	
30%	
40%	
50%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 0	

CP
U
	 u
sa
ge
	

Timestamp	

Approach	 1	 Approach	 2	

Figure 15: CPU usage comparison

Figure 15 illustrates the CPU usage comparison between A1 and A2 when
200 (among 500 nodes; the rest SDM were already retrieved directly from the
smart objects) service discovery processes involved retrieving and processing SDMs
from discovery servers. As the �gure shows, A1 consumed CPU over 10% for
4 timestamps, and A2 consumed CPU over 10% for 2 timestamps because A2
distributed its tasks to ScoUC. The CPU cost element in our test case was based
on how long the CPU usage retains over 10%.

0.00	
5.00	
10.00	
15.00	
20.00	
25.00	
30.00	

50	 100	 150	 200	 250	 300	 350	 400	 450	

Se
co
nd
s	

No.	 of	 SDM	 from	 discovery	 servers	

Approach	 1	 Approach	 2	

Figure 16: Time-span comparison

45

5.2.1 Context-aware Cost Element Weighing

To attribute weights to the mentioned cost elements, the regression coe�cients
in equation (5) must be found. To obtain these, we used multiple linear regres-
sion, using the context parameters as explanatory variables and the weight as the
dependent variable, as already explained in section 3.3.

Table 1: Context parameters used in the regression training dataset

Cost element Context parameters ad-
dressed in A1

Context parameters ad-
dressed in A2

CPU cost CPU load, Battery level,
Connection type

CPU load, instance type

Mobile internet
cost

Data plan cost, Connection
type, Signal strength

Data plan cost, Connection
type, Signal strength

Cloud instance
cost

∅ Cloud infrastructure load,
Cloud endpoint distance

For multiple linear regression, we need a dataset of observed weight values,
then �tting the linear equation optimally to that dataset gives us the coe�cients.
However, we were unable to obtain a dataset based on real-life data traces and as
such, we decided to generate the dataset, using certain user preferences based on
expert knowledge to de�ne the behaviour how the weight values vary in response
to context values.

First, we �xed a set of context parameters for each cost element, as shown in
Table 1. The context parameters for a given cost element may vary per approach.
In some cases (such as with Cloud instance cost for A1), the context parameter
set may be empty. In this case, the weight defaults to the value 1.

To obtain a meaningful dataset, in which the context parameter values a�ect
the weights in a realistic manner, we used fuzzy rules and fuzzy inference. In
order to do fuzzy inference, we �rst had to de�ne the context parameters as fuzzy
variables.

The values of the context parameters have been normalized to the interval
[0.0, 1.0]. Then, a fuzzy representation for the context parameter could be created.
In addition, a fuzzy representation of the weight itself is also required in order to
do fuzzy inference. An overview of the created fuzzy variables for our test scenario
can be seen in Table 2.

In order to embed various desired qualities into the dataset, based on expert
advice, fuzzy rules were de�ned. An example rule is "If the battery is high and
the signal strength is low, then cloud instance cost weight is high" or "If battery
is medium and data plan cost is high, then the CPU cost weight is low".

46

Table 2: Fuzzy representation of the context parameters and weights

Cost Ele-
ment

A1 fuzzy context variables A2 fuzzy context variables

CPU Cost

Mobile in-
ternet cost

Cloud cost ∅

47

With such rules and fuzzy variables in place, we used Mamdani fuzzy infer-
ence [MA75] to infer weight values according to the fuzzy rules and a randomly
generated set of raw fuzzi�ed context parameter values. The inference process
combines the distributions of the fuzzy rules in�uencing the weight into a single
fuzzy output distribution. Taking the centroid of this resulting distribution will
give us an exact numeric value for the weight.

●

●

●

●
●

● ● ● ●

0.85

0.90

0.95

1.00

1.05

1.10

1.15

50 100 150 200 250 300 350 400 450
No. of SDM (among 500)

C
P

I V
al

ue

●
Approach 1
Approach 2

Figure 17: CPI comparison of the two approaches in the test scenario with Context
A

These inferred weight values were then used with their corresponding context
parameters values as training examples to �t the multiple linear regression lines.
The resulting values for our experiment can be seen in Table 3.

Table 3: Weight formulas with regression coe�cients plugged in

Cost element
Weight formula with our test case

regression coe�cients

A1 CPU
0.435 + 0.1158 × CpuLoad + 0.1301

× ConnectionType − 0.1196 × Battery

A2 CPU
0.4935 + 0.2265 × CpuLoad

− 0.23 × InstanceType

A1 Mobile

bandwidth

0.558 − 0.121 × CpuLoad + 0.125

× DataPlan − 0.117 × Battery + 0.006 × Signal

A2 Mobile

bandwidth

0.507 − 0.239 × ConnectionType

+ 0.23 × DataPlan − 0.004 × Signal

A2 Cloud

bandwidth

0.462 + 0.117 × EndpointDistance

− 0.122 × ConnectionType + 0.08 × CloudLoad

48

Table 4: Final weights of the cost elements with Context A

Cost element A1 weight A2 weight

CPU 0.61 0.316

Mobile Bandwidth 0.428 0.2898

Cloud Bandwidth 1 0.405

5.3 CPI Scores and Approach Selection

In the test case, we considered two context scenarios, Context A, in which the
mobile device's resources are exhausted and Context B, where the mobile device is
in a "normal state", with abundant resources. Weights attributed to the various
costs based on Context A can be seen in Table 4. The context parameter values
considered for Context A are the following:

1. Connection type : Excellent (WiFi)

2. Battery: low (20 %)

3. Data plan: cheap (price per kb is low)

4. Signal strength: Medium (50%)

5. Mobile phone CPU load: 65%

6. Cloud CPU load: 1%

7. Cloud instance type: large

8. Cloud Endpoint geographic distance: medium

Figure 17 illustrates the CPI computation records (Equation 7) for Context A
when a di�erent number of service discovery processes are involved in the discovery
service.

Such a context implies that the mobile phones resources are constrained as
it is already low on battery and the CPU is already under considerable load.
Meanwhile, the phones connection type and mobile data plan bene�t mobile cloud
o�oading.

For the second set of context parameters examined, Context B, we changed
context parameters which a�ected the device itself (such as CPU load, battery,
signal etc.), while the cloud-related context (e.g. instance type) remained the
same as it was in Context A. The corresponding CPI computation for Context B

49

can be seen in Figure 18. Weights attributed to the costs in case of Context B can
be seen in Table 5.

The values used were the following.

1. Connection type : Excellent (WiFi)

2. Battery: High (75 %)

3. Data plan: cheap (price per kb is low)

4. Signal strength: Good (90%)

5. Mobile phone CPU load: 1%

6. Cloud CPU load: 1%

7. Cloud instance type: large

8. Cloud Endpoint geographic distance: medium

Table 5: Final weights of the cost elements with Context B

Cost element A1 weight A2 weight

CPU 0.48 0.316

Mobile Bandwidth 0.366 0.2898

Cloud Bandwidth 1 0.405

●

●
●

● ●
● ● ● ●

0.8

0.9

1.0

1.1

1.2

50 100 150 200 250 300 350 400 450
No. of SDM (among 500)

C
P

I V
al

ue

●
Approach 1
Approach 2

Figure 18: CPI comparison of the two approaches in the test scenario with Context
B

With Context A, Approach 1 initially outscores Approach 2, but as the num-
ber of actual Service descriptor metadata received from nearby devices grows,

50

Approach 2 starts outperforming Approach 1, as parsing the SDMs on the cloud
becomes increasingly more cost-e�cient for the entire approach.

However, in the case of Context B, the Work�ow Manager decided to launch
Approach 1 instead of Approach 2 in all cases, as the mobile device is in an idle
state and o�-loading to the cloud is more costly.

5.4 Work�ow Execution Approach Comparison

In this section, we compare two work�ow execution methods:

• Executing the translated BP Model and

• Executing BP Model on a work�ow engine on the device

We monitored the following characteristics. The CPU and Memory usage was
recorded using the sysstat13 performance monitoring software tools. Power con-
sumption was found based on current measurements done with a PeakTech 3430
Digital-Multimeter.

5.4.1 Bootstrapping

For approach (a), the mandatory preceding steps are booting the Tomcat server
itself and then deploying the BP Java project onto the Tomcat server. With our
scenario, the server launch took on average 290 seconds and the process deployment
took 35 seconds. Fig. 19�21 show the CPU, memory and power usage during the
Tomcat launch.

Table 6: Parallel BP execution times
Groovy Translation
of BP

BP model deployed
to Camunda BPM

Cold Execution Time 1m09s 1m16s
Warm Execution Time 1021ms 807ms

The server startup is tasking for the CPU, using up the full capability of the
CPU for essentially the entire server launch time.

5.4.2 Process Execution Time

In our case, executing an instance of the BP involves initializing the Groovy run-
time, which itself is time consuming (on average 54s). This is necessary for both

13http://sebastien.godard.pagesperso-orange.fr/

51

http://sebastien.godard.pagesperso-orange.fr/

�

��

��

��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

����

Figure 19: Tomcat startup CPU usage

������

������

������

������

������

������

������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

	

	

�

	

�

�

	

�

�

	

�

�

	

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

��������

Figure 20: Tomcat startup Memory usage

�

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������

Figure 21: Tomcat startup power consumption

approaches and we denote execution which involves the runtime initialization as a
�cold execution�.

However, an important feature of the Camunda BPM engine is the fact that
the script language runtime is not stopped after �nishing execution of a work�ow
instance. This results in much faster subsequent execution times after a language
runtime has been already started for work�ows using the same script language.
We denote these faster, subsequent execution types as �warm executions�.

On the other hand, when running a Groovy translation of the work�ow from

52

the command line, the runtime environment is started and stopped after each
execution (�cold executions�). In order to compare methods (a) and (b) in the
case of a warm execution, we iterated the Groovy translation within the Groovy
runtime.

Parallel task BP An overview of cold execution times, warm execution times
and deployment times for Business Processes with a parallel gateway introduced
in the previous section (see Fig. 11) can be seen in Table 6.

The execution of the translated version outperforms work�ow engine execution
by a few seconds in the case of cold execution, yet the Worfklow engine execution
outperforms the translation execution in the case of warm execution. The better
performance of Camunda BPM can attributed to caching mechanisms within the
Camunda platform.

Simple BP In the case of the second work�ow model with no parallel tasks
(see Fig. 12), the execution time was smaller for both approaches, but still the
translated execution outperformed the work�ow engine in case of cold execution.
Table 7 presents the average execution times for the simpler BP model.

Table 7: Non-Parallel BP execution times
Groovy Translation
of BP

BP model deployed
to Camunda BPM

Cold Execution Time 45s 56s
Warm Execution Time 1003ms 966ms

5.4.3 System Resource and Power usage

We examined the usage of power consumption and system resource usage for both
work�ow models.

Parallel Task Business Process Memory Usage. Speaking of memory con-
sumption, executing the translated code consumes ∼2 times less memory than
executing the BP Model in the Work�ow Engine, as the Software stack required
for execution on the Camunda Platform consists of several web applications, as
described in section 4.2.3.

Secondly, as can be seen in Fig. 23, which depicts memory usage during ex-
ecution of the BP using both methods, when the execution ends, the translated
version execution immediately releases used memory, while Camunda BPM keeps
the loaded runtime in memory, resulting in a continuous, high usage of memory.

53

�

��

��

��

���

� � �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	�
�
�

�

�

�

�

�

�

�

�

	

�

�

�

����

������ ������

Figure 22: CPU usage during execution (Parallel BP)

������

������

������

������

� � �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 	�
�
�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

����

������ ������

Figure 23: Memory usage during execution (Parallel BP)

�

���

���

���

���

���

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

	

�

	

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

����

��	
��� �����

Figure 24: Power consumption during execution (Parallel BP)

Parallel Task Business Process CPU & Energy consumption. Power con-
sumption and CPU usage measurements showed largely similar results for both
approaches during execution time (see Fig. 22, Fig. 24) but at the end time of
execution, higher power consumption is evident for the work�ow engine approach.
This is likely due to additional callbacks which take place within the Camunda
Platform after a process execution �nishes.

54

�

��

��

��

���

� � � �� �� �� �	 �� �� �
 �� �� �� �� �� �� �	 �� �� �
 �� �� ��

�

�

�

�

�

�

�

�

�

�

	

�

����

������ ������

Figure 25: CPU usage during execution (Non-Parallel BP)

������

������

������

������

������

� � � �� �� �� �� �� �� �� �� �� �� �� �� 	� 	� 	�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

����

����� ������

Figure 26: Memory usage during execution (Non-Parallel BP)

�

���

���

���

���

���

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

����

��	
��� �����

Figure 27: Power consumption during execution (Non-Parallel BP)

Non-parallel BP model Memory Usage. The memory footprint is lower for
code translation in comparison to the parallel gateway work�ow (see Fig. 26. This
is due to the smaller amount of dependencies used for the simpler work�ow.

Non-parallel CPU & Energy consumption. CPU usage in the case of the
non-parallel work�ow shows continuous high usage throughout execution (Fig.

55

25). The power consumption(Fig. 27) shows a similar pattern, with the work�ow
engine approach consuming more power in total as the execution time is larger.

5.5 Bootstrapping and Resource Consumption of Deploy-

ment

When we consider the CPU consumption during the bootstrapping of the Camunda
Platform, this was continuous near-100% CPU usage throughout the 290 seconds
(Fig. 19) that it takes to launch the Tomcat Server on the Raspberry Pi.

Similarly, each deployment of a work�ow resulted in continuous high CPU
utilization. This is a serious drawback in terms of energy and CPU usage in cases
where work�ow deployments occur often or when the work�ow engine must be
re-launched.

Meanwhile, deployment of a translated BP is not necessary, the only cost is
transferring the translated BP to the executing edge node, which we excluded from
our evaluation.

5.6 Discussion

Experiments showed that running a work�ow engine for model execution comes
at the price of noticeably larger memory consumption, and when work�ows are
deployed and run on the engine only once, the execution time is slightly higher in
comparison to executing code which was translated from the BP model.

Additionally, �rst-time launching of the work�ow engine and deployment of
new BPs to the work�ow engine platform are tasking in terms of processor usage.

However, if a single work�ow deployment is reused multiple times in the work-
�ow engine, the larger memory consumption pays o� as subsequent runs of the
work�ow reuse necessary components for execution that had been cached.

Thus, for one-o� work�ow execution where the business process is not re-used,
translated model execution is bene�cial in terms of both execution time and energy
consumption. In cases where the same BP is executed multiple times and memory
can be spared, running a work�ow engine on the edge node is very viable.

56

6 Conclusion

This thesis aimed to develop and validate an IoT service composition middleware
framework. Secondly, the thesis aimed to provide a guideline for developers in
the domain of work�ow execution on resource-constrained devices. Namely, the
guideline should focus on comparing executing a work�ow using as input:

1. a model of the work�ow

2. executable code corresponding to the model.

In this thesis, we introduced a service-oriented Internet of Things middleware
framework�SCORPII. SCORPII utilizes a hybrid service-oriented work�ow sys-
tem to achieve the autonomous task recon�guration at runtime by partitioning and
allocating tasks among the mobile terminal and the Utility Cloud. Furthermore,
the framework is capable of automatically deciding task allocation based on the
context in�uence (e.g., the number of interacting nodes), hardware and network
resource availability, and the importance weight of the resource usage based on
user preference.

Additionally, a component which enables work�ow execution on resource-const-
rained devices where embedding a work�ow engine is not plausible, was proposed.
The component is able to translate work�ow models into program code that can
be directly executed on the resource-constrained device. The component uses a
design which allows for easy development of plugins to support translation into
additional languages.

Experiments were conducted based on a use case and the results have shown
that the proposed SCORPII framework is capable of providing a cost-e�cient
work�ow task con�guration dynamically. The success of the approach also paves
way for utilizing similar adaptive mediation frameworks in solving several domain
speci�c issues.

A direct comparison of two execution approaches for Business Processes on
resource-constrained IoT edge nodes was also carried out: executing the BP model
on a work�ow engine deployed to the node and executing a translated BP model
in a programming language supported by the node. According to the comparison
experiments, executing BPs on a work�ow engine cannot be justi�ed in cases
where system memory is sparse and the model is not reused. Instead, for one-o�
executions of business processes, translated work�ow execution is bene�cial.

6.1 Future Research Directions

• Application of an Adaptive Mediation Framework in Internet of
Things Scenarios. We plan to evaluate the SCORPII framework in di�er-
ent IoT scenarios, such as smart o�ce or smart home.

57

• Quality of Service for Internet of Things Middleware. We also plan
to extend the framework with additional mechanisms that enable Quality of
Service (QoS)-aware dynamic service composition with resource constrained
IoT service.

• Study of Translated Work�ow Execution on Resource-constrained
Devices. Additionally we aim to compare additional programming language
translations. We are also interested in repeating the translated work�ow
execution experiments on Android compatible smart phones and Arduino
kits [ard].

58

References

[Ap] Apple Inc. . ibeacon for developers. https://developer.apple.
com/ibeacon/ [Accessed: 13.05.2016].

[AAA+06] Alexandre Alves, Assaf Arkin, Sid Askary, Ben Bloch, Fran-
cisco Curbera, Yaron Goland, Neelakantan Kartha, Dieter König,
Vinkesh Mehta, Satish Thatte, et al. Web services business process
execution language version 2.0. 2006.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet
of things: A survey. Computer networks, 54(15):2787�2805, 2010.

[ard] Arduino. https://www.arduino.cc/ [Accessed: 28.04.2015].

[Ash09] Kevin Ashton. That 'internet of things' thing. RFID Journal,
2009. http://www.rfidjournal.com/articles/view?4986.

[aut] Auto-id labs. http://autoidlabs.org, Accessed: 06.04.2016.

[Bot] Botts Innovative Research Inc. Sensorml 2.0 examples.
http://www.sensorml.com/sensorML-2.0/examples/ [Ac-
cessed: 18.05.2016].

[bpm] Business process model and notation 2.0.

[BRGW14] M Botts, A Robin, J Greenwood, and D Wesloh. Ogc R© sensorml:
Model and xml encoding standard. Technical Standard, 2, 2014.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg, and Ivona Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation computer systems, 25(6):599�
616, 2009.

[Cam] Camunda Services GmbH. Script task. Docs.camunda.org.
https://docs.camunda.org/manual/7.4/reference/bpmn20/

tasks/scripttask/ [Accessed: 21-Mar-2016].

[CDD+12] Fabio Casati, Florian Daniel, Guenadi Dantchev, Joakim Eriksson,
Niclas Finne, Stamatis Karnouskos, Patricio Moreno Montera,
Luca Mottola, Felix Jonathan Oppermann, Gian Pietro Picco,
et al. Towards business processes orchestrating the physical en-
terprise with wireless sensor networks. In Software Engineering

59

https://developer.apple.com/ibeacon/
https://developer.apple.com/ibeacon/
https://www.arduino.cc/
http://www.rfidjournal.com/articles/view?4986
http://autoidlabs.org
http://www.sensorml.com/sensorML-2.0/examples/
https://docs.camunda.org/manual/7.4/reference/bpmn20/tasks/scripttask/
https://docs.camunda.org/manual/7.4/reference/bpmn20/tasks/scripttask/

(ICSE), 2012 34th International Conference on, pages 1357�1360.
IEEE, 2012.

[CHK+12] Ioannis Chatzigiannakis, Henning Hasemann, Marcel Karnstedt,
Oliver Kleine, Alexander Kroller, Myriam Leggieri, Dennis P�s-
terer, Kay Romer, and Connie Truong. True self-con�guration
for the iot. In Internet of Things (IOT), 2012 3rd International
Conference on the, pages 9�15. IEEE, 2012.

[CK11a] Alexandru Caraca³ and Thorsten Kramp. Business Process
Model and Notation: Third International Workshop, BPMN 2011,
Lucerne, Switzerland, November 21-22, 2011. Proceedings, chap-
ter On the Expressiveness of BPMN for Modeling Wireless Sensor
Networks Applications, pages 16�30. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[CK11b] Alexandru Caraca³ and Thorsten Kramp. On the expressiveness of
bpmn for modeling wireless sensor networks applications. In Busi-
ness Process Model and Notation, pages 16�30. Springer, 2011.

[DB07] Andrea D'Ambrogio and Paolo Bocciarelli. A model-driven ap-
proach to describe and predict the performance of composite ser-
vices. In Proceedings of the 6th international workshop on Software
and performance, pages 78�89. ACM, 2007.

[DDGB09] Remco Dijkman, Marlon Dumas, and Luciano García-Bañuelos.
Graph matching algorithms for business process model similarity
search. In Business Process Management, pages 48�63. Springer,
2009.

[DGV09] Simon Duquennoy, Gilles Grimaud, and Jean-Jacques Vandewalle.
The web of things: interconnecting devices with high usabil-
ity and performance. In Embedded Software and Systems, 2009.
ICESS'09. International Conference on, pages 323�330. IEEE,
2009.

[DLNW13] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A
survey of mobile cloud computing: architecture, applications,
and approaches. Wireless communications and mobile computing,
13(18):1587�1611, 2013.

[DLRMR13] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A
Reijers. Fundamentals of business process management. Springer,
2013.

60

[DTB+15] Kashif Dar, Amir Taherkordi, Harun Baraki, Frank Eliassen, and
Kurt Geihs. A resource oriented integration architecture for the
internet of things: A business process perspective. Pervasive and
Mobile Computing, 20:145�159, 2015.

[DTRE11] Kashif Dar, Amirhosein Taherkordi, Romain Rouvoy, and Frank
Eliassen. Adaptable service composition for very-large-scale in-
ternet of things systems. In Proceedings of the 8th Middleware
Doctoral Symposium, page 2. ACM, 2011.

[Eva11] Dave Evans. The internet of things: How the next evolution of
the internet is changing everything. CISCO white paper, 1:1�11,
2011.

[FHT+15] Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Srirama,
and Rajkumar Buyya. Mobile code o�oading: from concept to
practice and beyond. Communications Magazine, IEEE, 53(3):80�
88, 2015.

[FLR13a] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile
cloud computing: A survey. Future Generation Computer Systems,
29(1):84�106, 2013.

[FLR13b] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile
cloud computing: A survey. Future Generation Computer Systems,
29(1):84�106, 2013.

[FS14] Huber Flores and Satish Narayana Srirama. Mobile cloud middle-
ware. Journal of Systems and Software, 92:82�94, 2014.

[G+04] RDF Working Group et al. Resource description framework (rdf).
W3C�Semantic Web, 1, 2004.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, ar-
chitectural elements, and future directions. Future Generation
Computer Systems, 29(7):1645�1660, 2013.

[GCFP10] Pau Giner, Carlos Cetina, Joan Fons, and Vicente Pelechano. De-
veloping mobile work�ow support in the internet of things. IEEE
Pervasive Computing, (2):18�26, 2010.

[GEPF11] Nils Glombitza, Sebastian Ebers, Dennis P�sterer, and Stefan Fis-
cher. Using bpel to realize business processes for an internet of

61

things. In Ad-hoc, Mobile, and Wireless Networks, pages 294�307.
Springer, 2011.

[Goo] Google Inc. The physical web cookbook. the physi-
cal web, http://google.github.io/physical-web/cookbook/.
http://google.github.io/physical-web/cookbook/ [Ac-
cessed: 29.04.2016].

[GP08] Dimitrios Georgakopoulos and Michael P Papazoglou. Service-
oriented computing. The MIT Press, 2008.

[GTK+10] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik
Spiess, and Domnic Savio. Interacting with the soa-based internet
of things: Discovery, query, selection, and on-demand provision-
ing of web services. Services Computing, IEEE Transactions on,
3(3):223�235, 2010.

[GTW10] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource ori-
ented architecture for the web of things. In Internet of Things
(IOT), 2010, pages 1�8. IEEE, 2010.

[HKZG08] Pari Delir Haghighi, Shonali Krishnaswamy, Arkady Zaslavsky,
and Mohamed Medhat Gaber. Reasoning about context in un-
certain pervasive computing environments. In Smart Sensing and
Context, pages 112�125. Springer, 2008.

[IGH+11] Valérie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos
Zarras, Panos Vassiliadist, Marco Autili, Marco Aurelio Gerosa,
and Amira Ben Hamida. Service-oriented middleware for the fu-
ture internet: state of the art and research directions. Journal of
Internet Services and Applications, 2(1):23�45, 2011.

[Int01] Work�ow Process De�nition Interface. Work�ow management
coalition work�ow standard work�ow process de�nition interface�
xml process de�nition language. 2001.

[JAS12] Cullen Jennings, Jari Arkko, and Zach Shelby. Media types for
sensor markup language (senml). 2012.

[JLF+14] Antonio J Jara, Pablo Lopez, David Fernandez, Jose F Castillo,
Miguel A Zamora, and Antonio F Skarmeta. Mobile digcovery:
discovering and interacting with the world through the internet of
things. Personal and ubiquitous computing, 18(2):323�338, 2014.

62

http://google.github.io/physical-web/cookbook/

[LW13] Jorg Lenhard and Guido Wirtz. Measuring the portability of
executable service-oriented processes. In Enterprise Distributed
Object Computing Conference (EDOC), 2013 17th IEEE Interna-
tional, pages 117�126. IEEE, 2013.

[MA75] Ebrahim H Mamdani and Sedrak Assilian. An experiment in lin-
guistic synthesis with a fuzzy logic controller. International journal
of man-machine studies, 7(1):1�13, 1975.

[MBR15] Roberto Minerva, Abyi Biru, and Domenico Rotondi. Towards
a de�nition of the internet of things (iot). IEEE Internet of
Things: "De�ne IoT" Document, May 2015. http://iot.ieee.

org/definition.

[MIS+03] Microsoft, IBM, Siebel, BEA, and SAP. Business Process Execu-
tion Language for Web Services Version 1.1, May 2003.

[MRH15] Sonja Meyer, Andreas Ruppen, and Lorenz Hilty. The things of
the internet of things in bpmn. In Advanced Information Systems
Engineering Workshops, pages 285�297. Springer, 2015.

[ODTHVdA06] C Ouvans, Marlon Dumas, Arthur HM Ter Hofstede, and Wil MP
Van der Aalst. From bpmn process models to bpel web services. In
Web Services, 2006. ICWS'06. International Conference on, pages
285�292. IEEE, 2006.

[Pap03] Mike P Papazoglou. Service-oriented computing: Concepts, char-
acteristics and directions. In Web Information Systems Engineer-
ing, 2003. WISE 2003. Proceedings of the Fourth International
Conference on, pages 3�12. IEEE, 2003.

[PJZ+14] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky,
Dimitrios Georgakopoulos, and Peter Christen. Mosden: An inter-
net of things middleware for resource constrained mobile devices.
In System Sciences (HICSS), 2014 47th Hawaii International Con-
ference on, pages 1053�1062. IEEE, 2014.

[PRS+13] Tao Peng, Marco Ronchetti, Jovan Stevovic, Annamaria Chiasera,
and Giampaolo Armellin. Business process assignment and exe-
cution from cloud to mobile. In Business Process Management
Workshops, pages 264�276. Springer, 2013.

63

http://iot.ieee.org/definition
http://iot.ieee.org/definition

[Rag15] Dave Raggett. An introduction to the web of things framework,
May 2015. https://www.w3.org/2015/05/wot-framework.pdf

[Accessed: 29.04.2016].

[RS04] Jinghai Rao and Xiaomeng Su. A survey of automated web service
composition methods. In Semantic Web Services and Web Process
Composition, pages 43�54. Springer, 2004.

[SB11] Zach Shelby and Carsten Bormann. 6LoWPAN: The wireless em-
bedded Internet, volume 43. John Wiley & Sons, 2011.

[SJP06] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz.
Mobile web service provisioning. In null, page 120. IEEE, 2006.

[SO14] Satish Narayana Srirama and Alireza Ostovar. Optimal re-
source provisioning for scaling enterprise applications on the cloud.
In Cloud Computing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on, pages 262�271. IEEE,
2014.

[SQV+14] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia
Szabo, Scott Bourne, and Xiaofei Xu. Web services composition:
A decade's overview. Information Sciences, 280:218�238, 2014.

[SRN+15] Xiang Su, Jukka Riekki, Jukka K Nurminen, Johanna Niemi-
nen, and Markus Koskimies. Adding semantics to internet of
things. Concurrency and Computation: Practice and Experience,
27(8):1844�1860, 2015.

[TAB+15] Ken Traub, Felice Armenio, Henri Barthel, Paul Di-
etrich, John Duker, Christian Floerkemeier, John Gar-
rett, Mark Harrison, Bernie Hogan, Jin Mitsugi, Josef
Preishuber-P�uegl, Oleg Ryaboy, Sanjay Sarma, and
KK Suen. The epcglobal architecture framework, April
2015. http://www.gs1.org/id-keys-epcrfid-epcis/

epc-rfid-architecture-framework/1-6 Accessed: 06.04.2016.

[THIG11] Thiago Teixeira, Sara Hachem, Valérie Issarny, and Nikolaos Geor-
gantas. Service oriented middleware for the internet of things: a
perspective. In Towards a Service-Based Internet, pages 220�229.
Springer, 2011.

64

https://www.w3.org/2015/05/wot-framework.pdf
http://www.gs1.org/id-keys-epcrfid-epcis/epc-rfid-architecture-framework/1-6
http://www.gs1.org/id-keys-epcrfid-epcis/epc-rfid-architecture-framework/1-6

[TSD+12] Stefano Tranquillini, Patrik Spieÿ, Florian Daniel, Stamatis
Karnouskos, Fabio Casati, Nina Oertel, Luca Mottola, Fe-
lix Jonathan Oppermann, Gian Pietro Picco, Kay Römer, et al.
Process-based design and integration of wireless sensor network
applications. In Business Process Management, pages 134�149.
Springer, 2012.

[VdA98] Wil MP Van der Aalst. The application of petri nets to work-
�ow management. Journal of circuits, systems, and computers,
8(01):21�66, 1998.

[vdA13] Wil MP van der Aalst. Business process management: A compre-
hensive survey. ISRN Software Engineering, 2013, 2013.

[VDAVH04] Wil Van Der Aalst and Kees Max Van Hee. Work�ow manage-
ment: models, methods, and systems. MIT press, 2004.

[VFG+15] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Ra�aele Gi-
a�reda, Hanne Grindvoll, Markus Eisenhauer, Martin Serrano,
Klaus Moessner, Maurizio Spirito, Lars-Cyril Blystad, and Elias Z.
Tragos. Internet of Things beyond the Hype: Research, Innovation
and Deployment. European Research Cluster on the Internet of
Things, 2015.

[xpd] Xml process de�nition language (xpdl). http://www.xpdl.org/

Accessed: April 14, 2016.

[Zad65] Lot� A Zadeh. Fuzzy sets. Information and control, 8(3):338�353,
1965.

65

http://www.xpdl.org/

Non-exclusive licence to reproduce thesis and make thesis public

I, Jakob Mass(date of birth: 22nd of January 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

An Adaptive Mediation Framework for Work�ow Management in the Internet
of Things

supervised by Chii Chang and Satish Narayana Srirama

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu 19.05.2016

66

	Introduction
	Preamble
	Motivation
	Example Scenario
	Challenges

	Research Objectives and Contribution
	Thesis Outline
	Publications

	Literature Review
	Internet of Things
	 Connectivity
	 The Features of an IoT sytem

	Service Oriented Architecture
	Service-Oriented IoT
	Virtualisation of Things
	Middleware Architecture
	Discovery
	Service Description for IoT

	Mobile Cloud Computing
	Task Delegation and Code Offloading

	Workflow Management Systems
	Workflow Languages
	 Business Process Management Life Cycle
	Orchestration and Choreography

	Mobile Workflow Management Systems for IoT
	Modelling IoT for WfMS
	Implementing and executing workflows in IoT systems

	System Overview
	Scenario
	SCORPII framework design
	 SCORPII - Mobile Host Side (ScoMH)
	SCORPII - Utility Cloud Side (ScoUC)

	Cost-efficient and Context-aware Workflow Approach Selection Model
	Preliminary
	Time-span of Approach
	Raw Cost Elements and Context Parameters of Approach
	Cost-Performance Index-based Approach Selection
	Context-aware weight calculation of the cost elements

	SCORPII Prototype

	Adaptive Workflow Execution in the Internet of Things
	Overview
	Workflow Translator implementation
	Code Generation
	 Groovy language example
	 Workflow Engine
	 Test Scenario

	Evaluation
	Dynamic Configuration Use Case
	Dynamic Configuration Evaluation
	Context-aware Cost Element Weighing

	CPI Scores and Approach Selection
	Workflow Execution Approach Comparison
	Bootstrapping
	Process Execution Time
	System Resource and Power usage

	Bootstrapping and Resource Consumption of Deployment
	Discussion

	Conclusion
	Future Research Direction

