
University of Paderborn
Fürstenallee 11
33102 Paderborn

Biologically Inspired Methods for Organizing
Distributed Services on Sensor Networks

Dissertation

A thesis submitted to the

Faculty of Computer Science, Electrical Engineering and Mathematics

of the

University of Paderborn

in partial fulfillment of the requirements for the

degree of Dr. rer. nat.

Tales Heimfarth

Paderborn, Germany

November 27, 2007



Supervisors:

1. Prof. Dr. rer. nat. Franz J. Rammig, University of Paderborn

2. Prof. Dr.-Ing. Ulrich Rückert, University of Paderborn

Date of public examination:Dezember 21, 2007



Acknowledgements

I am grateful to several persons that contribute to this work. I am deeply in indebted to Prof. Dr. rer.
nat. Franz J. Rammig, who oriented and encouraged me during the development of my research. I am
thankful for the opportunity to work and share experiences in his research group.

Also, I am grateful to Prof. Dr.-Ing. Ulrich Rückert, for thesupport and for the fruitful time in the
“Graduiertenkolleg”.

A special thank to Prof. Dr. rer. net. Flávio R. Wagner, who always contributes to my research
and kindly helps me during my academic journey.

Furthermore, I would like to express my thanks to my colleagues Peter Janacik, Johannes Less-
mann and Dalimir Orfanus for contributing to this work. Without the many discussions with my
colleague Peter, this work would not be possible. In addition, the development of our network simula-
tor would not be possible without the valuable contributions of Peter and Johannes. The cooperation
with Dalimir will bring fruitful results for our future research.

It is also important to thank our working group, for the opportunity to research in a single envi-
ronment where the cooperation is very strong.

Very important to the development of this thesis was my wife Carolina A. Heimfarth. She gave
me incentive and support in all moments during the development of this work.

Last but not least, I would like to thank my parents, Celso D. Heimfarth and Carmen T. L. Heim-
farth, who supported my education and are always present in my life.





Contents

List of Figures v

List of Tables ix

1 Introduction 1

2 System Software for Wireless Sensor Networks 5
2.1 Embedded System OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5

2.1.1 Configurable Operating Systems . . . . . . . . . . . . . . . . . . .. . . . . 5
2.2 Sensor Network OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6

2.2.1 Single Node Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
2.2.2 Group Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Examples of OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
2.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.3.2 Relation to OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Examples of Middlewares . . . . . . . . . . . . . . . . . . . . . . . . .. . 23

2.4 Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28
2.4.1 Examples of Virtual Machines . . . . . . . . . . . . . . . . . . . . .. . . . 29

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 30

3 NanoOS Architecture 35
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 35
3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 36

3.2.1 Applications Scenario . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 37
3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 41
3.4 NanoOS Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44

3.4.1 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44
3.4.2 Software Components . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46
3.4.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
3.4.4 NanoOS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
3.4.5 Dynamic Mobile Services . . . . . . . . . . . . . . . . . . . . . . . . .. . 50
3.4.6 Service Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54
3.4.7 Distribution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 55
3.4.8 OS Network Organization . . . . . . . . . . . . . . . . . . . . . . . . .. . 55
3.4.9 Organizing the Network in Clusters . . . . . . . . . . . . . . . .. . . . . . 55

3.5 Communication Link Model . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 58

iii



iv CONTENTS

3.5.1 Links in a Wireless Network . . . . . . . . . . . . . . . . . . . . . . .. . . 58
3.5.2 Link Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61
3.5.3 The Combined Link Metric . . . . . . . . . . . . . . . . . . . . . . . . .. 62

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 67

4 Service Distribution 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 69
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69

4.2.1 Global Distributed Scheduling . . . . . . . . . . . . . . . . . . .. . . . . . 69
4.2.2 Migration of Service in WSN . . . . . . . . . . . . . . . . . . . . . . .. . 74
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 80
4.4 Ant Based Service Distribution . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 82

4.4.1 Basic Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82
4.4.2 Extended Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 88

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 97

5 Self-Organizing Cluster Construction 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 99
5.2 State of the Art - Clustering in Ad hoc Networks . . . . . . . . .. . . . . . . . . . 100

5.2.1 Maximum Independent Set Approaches . . . . . . . . . . . . . . .. . . . . 101
5.2.2 Dominance Only Approaches . . . . . . . . . . . . . . . . . . . . . . .. . 107
5.2.3 Multihop Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 108
5.2.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 116
5.3.1 Problem Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 119

5.4 Division of Labor and Task Allocation in Social Insects .. . . . . . . . . . . . . . . 122
5.5 Heuristics Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 124

5.5.1 General Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
5.6 Clustering “Quasi-Static” Ad hoc Networks . . . . . . . . . . .. . . . . . . . . . . 126

5.6.1 Clusterhead Selection . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 126
5.6.2 Member Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
5.6.3 Message Relay to Clusterhead . . . . . . . . . . . . . . . . . . . . .. . . . 135
5.6.4 Enforce Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

5.7 Clustering Dynamic Ad hoc Networks . . . . . . . . . . . . . . . . . .. . . . . . . 136
5.7.1 General View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7.2 Clusterhead Management . . . . . . . . . . . . . . . . . . . . . . . . .. . . 137
5.7.3 Member Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
5.7.4 Cluster Construction Process . . . . . . . . . . . . . . . . . . . .. . . . . . 146
5.7.5 Clustering Maintenance . . . . . . . . . . . . . . . . . . . . . . . . .. . . 153
5.7.6 Integrating Reference Point Group Mobility Model . . .. . . . . . . . . . . 154

5.8 Relation to Self-Organization Principles . . . . . . . . . . .. . . . . . . . . . . . . 159



CONTENTS v

6 Simulation and Results 161
6.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 161
6.2 Reference Methods for theMinimum Intracommunication-cost Clustering. . . . . . 164

6.2.1 Modeling as a Integer Linear Program . . . . . . . . . . . . . . .. . . . . . 165
6.2.2 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167
6.2.3 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
6.2.4 Representation of the Problem (Coding) . . . . . . . . . . . .. . . . . . . . 167
6.2.5 Crossover Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 169
6.2.6 Mutation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 170
6.2.7 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 171
6.2.8 Selection Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 172
6.2.9 GA Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 “Quasi-Static” Clustering Heuristic Simulation . . . . .. . . . . . . . . . . . . . . 173
6.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.2 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 175
6.3.3 Algorithms under Evaluation . . . . . . . . . . . . . . . . . . . . .. . . . . 179
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Service Distribution Simulation . . . . . . . . . . . . . . . . . . .. . . . . . . . . 196
6.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.2 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 196
6.4.3 Algorithms under Evaluation . . . . . . . . . . . . . . . . . . . . .. . . . . 197
6.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 205

7 Conclusion 207



vi CONTENTS



List of Figures

2.1 Design Space of Sensor OS . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 6
2.2 Classification of Embedded OS . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 6
2.3 Two possible options of interface between the application and a protocol stack . . . . 9
2.4 Three architectural paradigms for distribution . . . . . .. . . . . . . . . . . . . . . 11
2.5 Event-based system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 16
2.6 Example of a timer module . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 16
2.7 Organization of the MANTIS OS . . . . . . . . . . . . . . . . . . . . . . .. . . . . 17
2.8 Pushpin’s memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 19
2.9 Structure of the Cormos system . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 22
2.10 System that employs MiLAN . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 25
2.11 Framework of DSWare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 26
2.12 The sensor node architecture with SensorWare virtual machine . . . . . . . . . . . . 30

3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 37
3.2 Space exploration application using WSN . . . . . . . . . . . . .. . . . . . . . . . 38
3.3 Autonomous network for space exploration . . . . . . . . . . . .. . . . . . . . . . 39
3.4 Two-tiered sensor network for bird monitoring . . . . . . . .. . . . . . . . . . . . . 40
3.5 Task decomposition of the target localization task . . . .. . . . . . . . . . . . . . . 41
3.6 Target recognition task using the NanoOS approach . . . . .. . . . . . . . . . . . . 42
3.7 Target location task using the NanoOS approach . . . . . . . .. . . . . . . . . . . . 42
3.8 Generic sensor node architecture . . . . . . . . . . . . . . . . . . .. . . . . . . . . 44
3.9 The relation among processing threads, tasks, and services. . . . . . . . . . . . . . . 47
3.10 Example of a task using two different services. . . . . . . .. . . . . . . . . . . . . 47
3.11 Architecture of local node’s OS . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 48
3.12 Example of memory occupation of the NanoOS . . . . . . . . . . .. . . . . . . . . 49
3.13 Internal organization of the services . . . . . . . . . . . . . .. . . . . . . . . . . . 50
3.14 Example of a service instance containing tree contexts. . . . . . . . . . . . . . . . . 51
3.15 Cipher Block Chaining (CBC) mode encryption. . . . . . . . .. . . . . . . . . . . . 52
3.16 Example of data aggregation service using the NanoOS architecture. . . . . . . . . . 53
3.17 The data sources and sink and aggregation services placed in the WSN. . . . . . . . 54
3.18 Inter-cluster service migration . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 57
3.19 Example of a task changing the current cluster . . . . . . . .. . . . . . . . . . . . . 59
3.20 Reception success rate versus distance of the transmiter . . . . . . . . . . . . . . . . 60
3.21 Stability of a link between two stationary nodes . . . . . .. . . . . . . . . . . . . . 60
3.22 Chart showing that link quality does not just depend on the distance . . . . . . . . . 60
3.23 Correlation between signal strengh indication and distance . . . . . . . . . . . . . . 63

vii



viii LIST OF FIGURES

3.24 Correlation between signal strangh and data loss rate .. . . . . . . . . . . . . . . . 63
3.25 Example of stable versus volatile links . . . . . . . . . . . . .. . . . . . . . . . . . 64
3.26 Example of link metric ratings . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 66

4.1 Scheduling Taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 70
4.2 Example of a linear optimization . . . . . . . . . . . . . . . . . . . .. . . . . . . . 76
4.3 Example of a triangular optimization . . . . . . . . . . . . . . . .. . . . . . . . . . 77
4.4 Problem of the triangular optimization. . . . . . . . . . . . . .. . . . . . . . . . . . 79
4.5 Example of an instance of process allocation problem. . .. . . . . . . . . . . . . . 81
4.6 Example showing the new potential path of a flow . . . . . . . . .. . . . . . . . . . 85
4.7 Example of the algorithm for a scenario with 9 nodes. . . . .. . . . . . . . . . . . . 87
4.8 Wrong migration decision due greedy behavior . . . . . . . . .. . . . . . . . . . . 88
4.9 Concepts of followed and correlated requesters . . . . . . .. . . . . . . . . . . . . 91
4.10 Example of service migration using the extended heuristic. . . . . . . . . . . . . . . 96

5.1 Example showing cluster formation . . . . . . . . . . . . . . . . . .. . . . . . . . 102
5.2 Example of execution of theRapidalgorithm . . . . . . . . . . . . . . . . . . . . . 112
5.3 Example of execution of thePersistentalgorithm . . . . . . . . . . . . . . . . . . . 112
5.4 An example of execution of the upper lower bound algorithm. . . . . . . . . . . . . 114
5.5 Example of output of the clique-based clustering. . . . . .. . . . . . . . . . . . . . 115
5.6 Example of ad hoc network model with weighted links and nodes . . . . . . . . . . 116
5.7 Simple network clustering example . . . . . . . . . . . . . . . . . .. . . . . . . . . 118
5.8 Set of feasible solutionsM (G,w, r,q) for the input(G,w, r,q). . . . . . . . . . . . . 119
5.9 The resulting clustering of the network . . . . . . . . . . . . . .. . . . . . . . . . . 120
5.10 Network where the optimal solution is one cluster . . . . .. . . . . . . . . . . . . . 120
5.11 Example of graph construction . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 122
5.12 Minor andMajor subcastes of the workers in thePheidole rheaspecie . . . . . . . . 123
5.13 Some threshold response curves with different thresholds (θ = 1,4,8,20,60). . . . . 124
5.14 Hypothetical response curves for minors and majors . . .. . . . . . . . . . . . . . . 125
5.15 Example of a good solution of task allocation in an ad hocnetwork (q = 4). . . . . . 125
5.16 Cumulative of the geometric distribution for given response function probabilities . . 128
5.17 Least potential influence and interference areas for a grid network . . . . . . . . . . 128
5.18 Disturbance prone period of time. . . . . . . . . . . . . . . . . . .. . . . . . . . . 130
5.19 Diameter versus cluster cost in a cluster with 7 nodes . .. . . . . . . . . . . . . . . 131
5.20 Example of two candidates with different neighborhood. . . . . . . . . . . . . . . . 131
5.21 Example of member selection in a partial network . . . . . .. . . . . . . . . . . . . 133
5.22 Example of execution of the heuristic forq = 8 and∀v∈V, r(v) = 1. . . . . . . . . . 138
5.23 Examples of the positive and the negative feedback by the attraction force . . . . . . 143
5.24 Resulting attraction force after combination of the positive and the negative feedback 143
5.25 Example of cluster that has a part being disconnected . .. . . . . . . . . . . . . . . 145
5.26 Example of a clustering round . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 150
5.27 Cluster construction using positive/negative feedback mechanisms . . . . . . . . . . 152
5.28 Example of a cluster under formation . . . . . . . . . . . . . . . .. . . . . . . . . 153
5.29 Example of a new node position in the group mobility model . . . . . . . . . . . . . 155
5.30 Example of a group detection . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 157

6.1 Simplified class diagram of the Shox simulator, events . .. . . . . . . . . . . . . . 162



LIST OF FIGURES ix

6.2 Simplified class diagram of the Shox simulator, nodes . . .. . . . . . . . . . . . . . 163
6.3 Screenshot of Shox configuration dialog. . . . . . . . . . . . . .. . . . . . . . . . . 165
6.4 Example of modeled graph with integer programming . . . . .. . . . . . . . . . . . 166
6.5 Overview of a genetic algorithm run . . . . . . . . . . . . . . . . . .. . . . . . . . 168
6.6 Example of the possible genotypes that maps to a given phenotype. . . . . . . . . . . 169
6.7 Example of the crossover operation . . . . . . . . . . . . . . . . . .. . . . . . . . . 170
6.8 Example of the mutation operation . . . . . . . . . . . . . . . . . . .. . . . . . . . 171
6.9 Example of the fitness function . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 172
6.10 Average performance of the GA for different parameters, mean cost . . . . . . . . . 174
6.11 Average performance of the GA for different parameters, best cost . . . . . . . . . . 174
6.12 Connectivity probability for a 25m×25m field. . . . . . . . . . . . . . . . . . . . . 178
6.13 Theoretical probability mass function of the number ofneighbors . . . . . . . . . . . 178
6.14 The cost of theminimum intracommunication-cost clustering. . . . . . . . . . . . . 180
6.15 Example of scenario with increased cost for sparse networks (q = 3). . . . . . . . . . 180
6.16 Normalized results of selected experiments. . . . . . . . .. . . . . . . . . . . . . . 182
6.17 Clustering costs for the different heuristics . . . . . . .. . . . . . . . . . . . . . . . 183
6.18 Overview of the costs for all scenarios . . . . . . . . . . . . . .. . . . . . . . . . . 184
6.19 Normalized clustering costs for the different heuristics . . . . . . . . . . . . . . . . 185
6.20 Example of situation where the selection of the best members yields bad clustering . 186
6.21 Example of cluster solution (Emergent Clustering and Modified Expanding Ring) . . 187
6.22 Overview of the normalized costs for all scenarios . . . .. . . . . . . . . . . . . . . 187
6.23 Standard deviation for the different heuristics with small and large problem size. . . . 188
6.24 Density estimation for the optimal (GA) solutions . . . .. . . . . . . . . . . . . . . 190
6.25 Density estimation for the emergent clustering solutions . . . . . . . . . . . . . . . . 191
6.26 Density estimation for the modified expanding ring solutions . . . . . . . . . . . . . 191
6.27 Cumulative histogram of normalized results for large scenarios. . . . . . . . . . . . . 192
6.28 Number of clusters achieved for different node densities. . . . . . . . . . . . . . . . 193
6.29 Worst case clustering scenario when considering the number of messages (q = 4). . . 194
6.30 Total number of messages for large scenarios . . . . . . . . .. . . . . . . . . . . . 195
6.31 Number of Messages with different cluster sizes. . . . . .. . . . . . . . . . . . . . 195
6.32 Cumulative number of messages for a single simulation .. . . . . . . . . . . . . . . 196
6.33 Distribution of the messages through the simulation time . . . . . . . . . . . . . . . 196
6.34 Optimal assignment cost of sparse and dense scenarios.. . . . . . . . . . . . . . . . 198
6.35 Results of the realized experiments. . . . . . . . . . . . . . . .. . . . . . . . . . . 199
6.36 Absolute assignment costs for the different heuristics . . . . . . . . . . . . . . . . . 201
6.37 Normalized assignment costs for the different heuristics for the small scenarios. . . . 202
6.38 Cumulative distribution of the cases for small scenarios. . . . . . . . . . . . . . . . . 203
6.39 Normalized total distance from requesters to services. . . . . . . . . . . . . . . . . 204
6.40 Number of migrations for differentallowed h=k. . . . . . . . . . . . . . . . . . . . 204



x LIST OF FIGURES



List of Tables

2.1 Different technologies implementing service discovery . . . . . . . . . . . . . . . . 14
2.2 Distribution features of selected approaches . . . . . . . .. . . . . . . . . . . . . . 33

4.1 Task allocation solutions used by middleware / virtual machines . . . . . . . . . . . 75

6.1 Overview of the different simulation scenarios. . . . . . .. . . . . . . . . . . . . . 176
6.2 Overview of the different simulation scenarios. . . . . . .. . . . . . . . . . . . . . 197

xi



xii LIST OF TABLES



Abstract

Wireless sensor networks (WSN) enable a myriad of new applications, e.g. human-embedded
sensing, habitat exploration and ocean data monitoring. Nevertheless, they have different require-
ments from conventional systems. Self-configuration, energy-efficient operation, collaboration and
in-network processing are examples of important requirements. In order to achieve these require-
ments, the system software of a sensor node plays a fundamental role: it should provide useful abstrac-
tions to enable the development of the applications and at the same time comply with the constrained
resources of the sensor nodes.

The range of possible applications in a sensor node covers distinct tasks like clock synchroniza-
tion, data acquisition, signal processing and data fusion.The traditional approach in this area is to
provide operating system concepts with dramatically reduced functionality. In this work, we present
an alternative approach. Our OS provides potentially arbitrary functionality that dynamically adapts
to the actual profile of requirements. The basic idea is to offer services that are distributed over a
cluster of nodes instead of having the entire system on each node.

Cooperation is the keyword to achieve complex tasks using the restricted sensor nodes. Our oper-
ating system (OS) supports this cooperation among neighboring nodes using the concept of distributed
services. We are combining the typical OS functionality with the middleware one. Our system is
responsible to coordinate the migration and placement of those services. For that, we develop a bio-
logically inspired heuristic responsible to drive the placement of the services in the WSN. We develop
two version of the heuristic, with different complexity andperformance. Both are completely dis-
tributed and based on local information and local rules. Thecommunication necessary for organizing
the services is done by means of stigmergy.

Further, we present two clustering heuristics responsibleto decompose the network graph into
connected sub-graphs (called clusters). Each cluster willhold a complete instance of the OS and ap-
plication. With the network divided in clusters, the organization overhead is reduced, since protocols
that rely on some global information are restricted to a single cluster. This enhances the scalability of
the system.

The clustering problem is calledminimum intracommunication-cost clustering. The idea is that
a minimum amount of resources must be present in each clusterand the clusters should be well
connected. The first heuristic is able to handle networks with low topology changes, whereas the
second can deal with moderate changes. Both heuristics relyon the principle of division of labor in
social insects.

We evaluate our heuristics using the Shox wireless network simulator. The service distribution
heuristics were able to produce very good assignments, nearto the optimal, for most experiments.
Our clustering heuristic for systems with low topology changes outperforms an existing heuristic
(expanding ring) in term of cost for most cases. It was able toproduce clusters that were, at most, in
average 1.43 times the optimal for all simulated scenarios.Moreover, the results have low standard
deviation.

Several enhancements can be done in our heuristics. In orderto better distribute the burden im-
posed on the clusterhead, clusterhead rotation may be included in the emergent clustering. Moreover,
an additional negotiation phase at the end of the heuristic may be included to improve the performance
of the heuristic.

Moreover, we aim to combine the concept of our OS with the control script mechanism present in
virtual machines for WSN. This will enable a straightforward development of data-centric scripts that
use the extensive functionality of our distributed services to achieve complex goals.





Chapter 1

Introduction

Wireless sensor networks (WSN) belong to a new class of networks composed by lightweight wireless
nodes deployed in a physical environment. Normally, they have the tasks of sensing it and reacting
to the sensed values. Each node is equipped with sensors, a processor, some memory and a wireless
interface. A myriad of applications can be realized using such networks, e.g. human-embedded sens-
ing, habitat monitoring and ocean data exploration. Vantages of such systems are a very high spacial
resolution when increasing the number of nodes used, robustness due to the inherent redundancy, easy
deployment and reduced energy consumption.

Due to their specific nature, sensor networks have differentrequirements from standard systems.
Among others, self-configuration, energy-efficient operation, collaboration and in-network processing
are very important requirements. All layers in a sensor are designed to cope with those requirements
and cross-layer optimizations are very common in those systems. The system software of a sensor
node has a fundamental role in the sensor: at one side, it should provide useful abstractions and a
programming model to the applications’ programmer. At the other side, it must comply with the
requirements of the sensor network.

A very important requirement, which limits the system software functionality, is that a sensor OS
must have the ability to manage a very constrained hardware.More precisely, the constrained memory
poses a big challenge. The amount of functionality that may be present in each node is limited. There-
fore, cooperation between nodes is needed in order to accomplish complex tasks. Spacial correlation
among neighboring sensors represents also a motivation forlocal cooperation. In our opinion, such
cooperation among nodes must be well-supported by the system software of a sensor.

Due to the high cost of the communication in WSNs, it is a better choice, for several scenarios,
to process the data locally in order to reduce its amount before forwarding it to the access point (or
other sink). Moreover, if a higher autonomy of the network isdesired, where the nodes may react
by themselves to changes in the environment, this local processing is inevitable. Nevertheless, as
already said, each node has a constrained hardware and limited functionality. Hence, the work must
be distributed over multiple nodes, which cooperate towards the desired result. The system software
must provide abstractions that enable this cooperative work.

In this work, we propose the NanoOS, an operating system (OS)for sensor nodes that enables the
automatic distribution of services among the nodes of a sensor network. The idea of NanoOS is to
unify in one system typical OS functionality with middleware one. This means that the NanoOS is
responsible to manage the local resources of the nodes and topresent appropriate abstractions for the
local processing as well as to distributed processing amongthe sensor nodes.

Our main abstraction is the processing thread, that describes the execution of code associated with

1



2 CHAPTER 1. INTRODUCTION

a state. The processing thread can be tasks, that are startedin a particular node and aren’t mobile, and
services, whose functionality is shared among other services and tasks. Mobile services are services
that may migrate among the nodes in the system. The mobile services can be made available by our
OS or by the applications. Such services can be used, for example, to process the data generated in the
sensors, locally transforming it in a more high level indication, that will be transported to the access
point.

With our service architecture, we are aiming to support not just WSN traditional applications like
data fusion, but also provide means to an efficient development of distributed algorithms on top of the
sensor network.

As a requirement for our system, the distribution of the services among the sensor nodes should be
done in a transparent way. It is expected that the NanoOS coordinates the migration and placement of
the services in the system. In this work, we develop a biologically inspired heuristic that is responsible
for controlling the migration and optimizes the initial service placement. Both types of services, OS
and application, may be migrated automatically by our heuristic. We develop two versions of the
heuristic, with different complexity and performance. Both are completely distributed and based on
local information and local rules. Furthermore, the necessary communication used by our heuristics is
done by means of stigmergy, i.e., cues are left in the environment instead of direct messages exchange.
The main objective of the two heuristics is to minimize the amount of communication of the system,
i.e., modules that have intense interaction among themselves should be placed at nearby positions.

The presented migration results in a natural grouping of thecommunicating modules. Instead of
leaving this weak kind of clustering, we decide to make a hardseparation of the nodes of the system
into clusters. Each cluster will hold a complete instance ofthe OS and application, i.e., all services
needed by the processing threads inside a given cluster mustbe instantiated in the same cluster. The
decomposition of the network in clusters brings several advantages. First, the organization overhead
is reduced, since protocols that rely on some global information are restricted to a single cluster.
For example, the service discovery process and the routing tables can be restricted to contain mainly
information about modules and nodes residing in the same cluster. Moreover, the clustering may be
implemented as a layer in the protocol stack and used by otherlayers. For example, the medium
access layer may use the cluster in order to increase the communication system capacity through the
promotion of the spatial reuse of the wireless channel. Another example of benefit of clustering is that
a topology control may be constructed upon it.

The creation of a hierarchy in the network was also proposed as a means of achieving scalability.
Centralized algorithms may be applied locally to one cluster, not compromising the scalability of the
system as a whole.

We call our clustering problem theminimum intracommunication-cost clustering. The idea is
that a minimum amount of resources must be present in each cluster. In addition, it is assumed that
the nodes inside a cluster will heavily communicate, therefore, we desire well-connected clusters,
i.e., where nodes belonging to the same clusters have very good links among them. Two biologi-
cally inspired heuristics are proposed in this work to decompose the network in clusters. The first
was developed for clustering networks with low topology changes and the second one can cope with
moderate changes.

The heuristics are based on the election of a subset of nodes that represent the clusters. Those
nodes are called clusterheads. When a clusterhead emerges,it starts to look for members. The cluster-
head election is based on the division of labor and task allocation in social insects. In social insects,
different tasks are performed by specialized individuals.In the same way, our clusterhead election
procedure allocate the task of coordinating a cluster to thenode that is more suitable.

The members in both heuristics are selected based on their fitness to be included in the cluster.



3

This fitness is composed of different parameters, like connectivity to the cluster and distance to the
clusterhead. Each clusterhead tries locally to select the most connected nodes to be member of the
cluster.

In order to estimate the quality of the links in the network, we are also proposing a combined
link metric, that is responsible to summarize the goodness of a link. All the heuristics presented in
the thesis are based on this metric, i.e., we measure the quality of the service assignment and cluster
construction based on this metric.

The performance of the proposed approaches are evaluated using the Shox wireless network sim-
ulator. Shox is a discrete-event simulator developed in ourworking group targeting the simulation of
ad hoc wireless networks. Results show that the proposed service distribution is able to produce very
good assignments, near to the optimal, for most of our experiments. This incurs a much lower energy
consumption than the initial assignment for the service/task communications.

We have also tested our clustering heuristic for static topologies. For comparison, a modification
of the expanding ring clustering algorithm was used. Our heuristic outperforms the expanding ring
in every analysed scenario. The clustering cost produced byour approach was near the optimal for
several cases, and the average cost was at most 1.44 the optimal for all tested scenarios. Moreover,
our heuristic produces more predictable clusters than the expanding ring.

Document Outline

Chapter 2 provides the state-of-art of system software for wireless sensor networks. Three types of
systems are analyzed in this chapter: operating systems, middlewares and virtual machines. The
advantages and shortcomings of each type of system softwareare analyzed, and the differences to our
NanoOS are highlighted.

In Chapter 3, the architecture of our OS is described. Moreover, we present some applications
that would profit from our service distribution approach. Inaddition, our link metric is introduced in
this chapter. As already said, it is the basis for our servicedistribution and clustering heuristics.

Chapter 4 presents a basic and extended heuristic to controlthe migration of the mobile services.
First, the related work about migration of components in distributed systems and more specifically, in
WSN is presented. Further, the formal problem description is introduced and the heuristics developed
to solve the problem are shown in details.

The related work concerning cluster construction in ad hoc networks is presented at the beginning
of Chapter 5. Moreover, we describe formally our optimization problem and prove that it is NP-
complete. Further, we present our two heuristics that are able to decompose the networks to clusters.
At the same time, concepts from self-organizing and emergent systems that are used in the heuristics
are also described.

The experiments realized with the corresponding results are presented in the Chapter 6. Moreover,
we present in this chapter how we evaluate the results. This is made with reference approaches, and
the results are normalized against this reference. For small cases, we use as reference the optimal
solution calculated with integer linear programming (for the clustering problems) and branch-and-
bound (for service distribution). A genetic algorithm is responsible for delivering the reference cost
in large problems. At the end of the chapter, the results of several realized experiments are analysed.

Finally, Chapter 6 presents the conclusions of this thesis.



4 CHAPTER 1. INTRODUCTION



Chapter 2

System Software for Wireless Sensor
Networks

In this chapter, the state-of-art of system software for wireless sensor network is presented. By system
software, we mean software components providing application-independent services and managing
node resources [79]. We will survey the different kinds of system software for sensor networks, as
operating systems, middleware, and virtual machines.

2.1 Embedded System OS

There are several operating systems for embedded platformssuch as, for example:Vxworks, WinCE,
PalmOS, QNX, Apertos, and µLinux. Regarding their development aims, these systems split into
two groups:general purpose embedded OSandspecific application(-oriented) OS. The upper part of
Figure 2.2 depicts these groups and their members.

Many embedded system OS do not comply with the required properties for sensor nodes. In most
cases, their memory and performance requirements can only be satisfied by platforms larger than
sensor nodes by one order of magnitude. This fact is depictedin Figure 2.1. The figure shows the
design space that sensor OS are targeting. It further demonstrates that the footprint of sensor OS is
smaller than the footprint of PDA-class operating systems by one order of magnitude.

2.1.1 Configurable Operating Systems

Some embedded commercial operating systems likeVxWorks[125] have a rather fine-grained service
architecture and permit theconfigurationof the services tailored to the hardware and the application.
This modularity and configurability is also a desired characteristic in a sensor OS because it reduces
the resource requirements. Nonetheless, most OS of this class have a too large footprint for sensor
network use. Another point, also stressed here, is that the existing embedded system’s OS cannot
appropriately cope with the dynamic behavior of the nodes (and the topology) of a sensor network.
They don’t provide the support for the type of applications running on the sensors (e.g. data fusion,
database-like queries, data dissemination/gathering, etc).

Another group of OS goes a step further and permitsdynamic reconfigurationof the set of run-
ning services in order to adapt themselves to changed situations (e.g. change of the set of running
tasks). Such operating systems, like the academicApertos[139], are known asreflective operating
systems. A reflective operating systemhas the ability toreflect about its actual stateand, based on

5



6 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

1

1

10

P
er

m
an

en
t S

to
ra

ge
 (

K
b)

10000

1000

100

10 100 1000 10000 100000

100000

Volatile Storage (Kb)

MOS

TinyOS

JavaSC

PalmOS

PersonalJava
uCLinux

PocketPC

Mach

JVM
Linux

Figure 2.1: Design Space of Sensor OS [123].

Figure 2.2: Classification of Embedded OS

this reflection, to change the current structure in order to self-adapt to the new requirements of the
environment or the applicationsby using reconfiguration. The services in such operating systems are
implemented as objects with a correspondentmeta-object, which analyzesthe behavior of the object
and the requirements of the applications during run-time and re-configures the operating system in
order to better serve the application’s requirements. Although this is a highly desirable characteristic
in a dynamic sensor network environment, the existing reflective operating systems have the follow-
ing drawbacks (as presented above): they are not designed totake in account the diverse dynamics of
sensor networks and they have a too large footprint for this network class in most cases. Moreover,
they are not designed to support typical WSN applications.

2.2 Sensor Network OS

A sensor operating system must have a very small footprint and, at the same time, it must provide
a limited number of common services for application developers. These services comprise hardware
management of sensors, radios, and I/O buses, and devices such as external flash memory. Moreover,



2.2. SENSOR NETWORK OS 7

task coordination, power management, adaptation to resource constraints, and networking are also
required services [123].

The OS should support the specific needs of the WSN. For example, they must support energy
management. An appropriate programming model and a clearlyway to structure a protocol stack are
also necessary.

For example, in order to cope with the demands of sensor nodes, a series of OS were proposed/de-
veloped. Bertha can deal with some demands of WSN, whereas TinyOS, PeerOS and MANTIS OS
are specifically designed for sensor networks. A brief description of a selection of OS for sensor nodes
will be provided further below.

We will discuss in the next section some specific aspects relevant to a sensor network OS. We
divided the aspects in two groups: single node and node groupconcerns.

2.2.1 Single Node Concerns

2.2.1.1 Hardware Management

A main task of an OS is the management of the hardware resources of the node [116]. The OS should
provide abstract services (e.g. sensing and data delivery to neighbors). As there is no memory man-
agement unit (MMU) in a typical sensor processor, this hardware management can be implemented
by means of a library of functions.

The lack of an MMU leads to the consequences that there is no protection from erroneous hard-
ware (and memory) access.

2.2.1.2 Task Coordination

Another major problem of the sensor network OS is the task coordination of multiple tasks [123].
The OS should allocate the processor to a certain task and also control the synchronization among the
tasks (mutual exclusion).

There are two basic approaches: to leave the coordination tothe tasks or to handle this inside the
OS. Doing that inside the OS has two drawbacks: CPU bandwidthand memory utilization. On the
other hand, it frees the application developer from the complexity of task coordination and usually
supports the development of more elaborate and complex applications with less effort.

Usually these two task coordination approaches are implemented in a sensor network OS using
event-based and preemptive thread multitasking paradigms.

Event-based Kernels Tasks are implemented as event handlers that run until completion. This
provides concurrency without the need of mechanisms like per-thread stacks or mutual exclusion.
The main advantage of this approach is the small memory requirement: because processes cannot
block, just a global stack is necessary, saving the scarcestresource of a sensor node. A main problem
occurring in event-driven systems is the difficulty to implement applications using state-driven pro-
gramming: the event-driven model is hard to manage by the programmers and not all problems are
easily described as state machines. Moreover, most existing applications are written for preemptive
multithread environments.

Another problem is the description of concurrency, since, when a handler is running, all others are
blocked.



8 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

Preemptive Thread Multitasking Kernels Preemption leads to the necessity of saving the current
state of the registers in the stack. This means that one stackper thread is necessary, leading to a
relative high memory requirement. Moreover, the context switch operation is rather time-consuming,
that means, for a task set composed mainly of IO bound tasks orsmall tasks, the overhead caused by
the context switch is very high. Since sensor networks have aresource constrained hardware, this is a
strong argument against this OS paradigm.

Nonetheless, preemptive multitasking supports the development of more complex, elaborated dis-
tributed applications. Moreover, existing embedded applications can be ported more easily to such
an environment. In the NanoOS, we have a preemptive thread multitasking OS. However, we use a
special service organization in order to reduce the memory consumption of our OS.

2.2.1.3 OS Architecture

Classical operating systems running on CPU with MMU (memorymanagement unit) have either
monolithic kernel, microkernel, or exokernel architecture. The amount of functionalities implemented
in the kernel space (which runs in supervisor mode) is a criteria used to classify the architectures.

Monolithic Kernel: Implements all abstractions in the kernel space, includingfile system, virtual
memory, device drivers, networking, etc.

Microkernel: The low level facilities are implemented in the kernel space, whereas the higher-level
abstractions are processes in the user space. Moreover, a microkernel uses to be modular and
some of them support exchanging of modules by means of changing servers (processes) in the
user space.

Exokernel: In an exokernel, nothing is implemented in the kernel space.The kernel just multiplexes
the hardware resource used by the user space processes. Hardware events activate stub handlers
that pass the events to user-level processes. The user-level processes implement the policies.

A library-based OS is a set of functions that implement abstractions to facilitate the hardware
management. Nevertheless, it does not provide memory protection. Library-based OS are mainly
used in systems where the processor does not possess a memorymanagement unit. This is usual for
sensor nodes, which have small processors without MMU.

A variation of a library-based OS is a component-based one. Each component realizes some
abstraction and comprises code and state. They are composable. The OS and the protocol stack are
written as a set of components connected to each other. Moreover, in such operating systems the
application may be written just as another component in the system or a service interface can be used
(Figure 2.3). With a service interface, it is possible to rise the level of abstraction. Nevertheless, the
performance and the cross-layer optimization possibilities are penalized [69].

Another important point about the architecture of an WSN operating system is that often the
border between communication stack protocols, OS services, and application programs turns to be
subtle. Moreover, the standard layering method (in specialused in the communication stack inside
the OS) is relaxed due to the use of cross-layer optimizationmethods, where the strict confinement of
the layered approaches is loosened.

2.2.1.4 Power Management

The battery inside sensor nodes after their deployment cannot be easily exchanged. In addition, for
several applications, a long life time of the network is desired. Moreover, Moore’s law does not apply



2.2. SENSOR NETWORK OS 9

Figure 2.3: Two possible options of interface between the application and a protocol stack: applica-
tions as ordinary components or a deliberately designed service interface. Source: [69].

to battery capacity. Due to these facts, mechanisms to assure a good energy utilization using power
saving techniques are highly desirable.

There aren’t abstractions that remain consistent over the diversity of power management tech-
niques. Nonetheless, several techniques for power management exist [45]:

• duty-cycling - reduces the average power utilization by cycling the power of a given subsystem

• batching - amortizes the high cost of start-up by bundling several operations together and exe-
cuting them in a burst

• hierarchy techniques - order the operations by their energyconsumption and invoke the low-
energy ones before the high-energy ones in a fashion similarto the short-circuit techniques used
by several compilers for the evaluation of boolean expression in various languages

• redundancy reduction (or even elimination) - uses compression, aggregation, or message sup-
pression

The low-power operation mode in the sensor network can be addressed in various levels. In [45],
the following levels have been recognized:

Sensing Sensing is a very important task in a sensor network. The mostcommonly used technique
to lower the energy consumption spent in this operation is duty-cycling, i.e., cycling the power on and
off. In a data collection type of application, a sleep-wakeup-sample-compute-communicate cycle can
be used where the node sleeps most of the time [46]. For exceptional event detection applications,
rare events may pose problems if the sensing subsystem has tobe powered continuously.

Communication Communication is very important in a sensor network, but it is also power-consuming.
Several techniques has been developed to reduce the radio consumption [45]:

• Radio Management: in order to reduce the energy consumption, several techniques may be
used. Polled operation works by sampling the channel periodically (and power down during the



10 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

remaining time). Scheduled radio works by coordinating in advance when radio may transmit
and receive. Triggered operation uses a low-power secondary radio to signal a more capable,
but also more power-demanding radio to wake up.

• Middleware/OS level - energy-aware services. For example,the time synchronization, routing,
and dissemination services may be implemented in a way that saves energy. Because many
applications do not need constant time synchronization, reactive synchronization may be used
to save energy. In the routing level, nodes with lack of energy can be preserver as other nodes
are used to route the packets [83].

Services for data dissemination may use effective and energy-efficient algorithms instead of
naively flooding the network. Epidemic/gossip techniques as well as meta-data based tech-
niques can be used to reduce redundant transmissions.

• Miscellaneous optimizations include conserving energy atthe MAC layer like in PAMAS [117]
and S-MAC [138], snooping on application-level packets in the network layers, piggybacking,
and batching message transmission. Some of the techniques may be included in OS communi-
cation stack or services; others can be implemented in the application.

Computation Often sensor applications are neither computation nor I/O-bound [45]. There are
many opportunities for idling the processor and peripherals. Event-driven OS like TinyOS (see Section
2.2.3.1) may implement energy-saving modes of operation. For example, when the task queue is
empty, the system can go to a power-save mode until the next interrupt arrives.

Storage The memory hierarchy in sensor needs to cope not only with factors like speed and per-
sistence but also energy-efficiency issues. For example, normally the use of RAM as cache for the
EEPROM or Flash may be more energy-efficient that direct operation with those memories.

Energy harvesting For sensors deployed in environments where the replacementof the battery
is not possible, the energy harvesting systems might offer an alternative solution. In the software, a
management of these energy harvesting devices and of the primary and secondary storage is necessary.

Relation with OS There is a range of mechanisms for power saving in sensor networks. The OS
can offer two types of mechanisms to perform power management: implicit and explicit [116]. The
implicit power management is done by the OS without cooperation from user or application tasks.
This means that the OS can power off some hardware componentswithout participation of the tasks.
In the explicit power management, the tasks give hints to theOS using system calls. This is more
efficient than the implicit method since the OS has much more information for its power management
decisions.

2.2.1.5 Reconfigurability Support

Normally, sensor network OS are composed of a set of modules that can be selected to fulfill the needs
of a specific application, i.e., they are configurable. If it is possible to exchange fine-grained modules
during execution, in order to adapt the OS to a new environment situation or application requirements,
we are speaking about a reconfigurable OS. A reconfigurable OSnormally has a reflection unit with
is responsible for monitoring the current state of the system, and, based on this state, parameters and
modules are changed, aiming at optimizing a desired objective function.



2.2. SENSOR NETWORK OS 11

Figure 2.4: Three architectural paradigms for distribution: (a) client-server, (b) mobile code, and (c)
tuple space. Source [79].

2.2.2 Group Concerns

In this section, we will deal with concerns related to the distribution of the application among the nodes
of a sensor network and its communication. In [79], different approaches of distribution platform are
characterized: operating system (OS), virtual machine (VM), and middleware. The aspects presented
in this section are relevant for the tree types of platform.

We will discuss in the next sections the support of the OS/virtual machine/middleware to dis-
tributed applications.

2.2.2.1 Architectural Paradigms

We distinguish between tree possible architectural paradigms to support distributed applications:
client-server, mobile code, andtuple space[79].

Theclient-serverapproach consists of a set of services providing functionalities accessed by the
clients. A directory service is responsible for helping in the service discovery process. The idea
here is that the client outsources some task to be processed on the server. The service is called using
remote procedure calls (RPC) or, in an object-oriented environment, remote method invocation (RMI).
In the remote task communication, normally a stub proceduremarshals the call and the parameters,
which are unmarshaled back to the server. A similar, but moreefficient and commonly used way of
communication in WSN, is the active message: it is similar tothe RPC, but the sender is not blocked
and continues the processing. When the response from the call arrives, an event is used to notify the
caller.

In themobile codeparadigm, instead of moving data from client to a service, the code is moved
to the data it should process. Mobile agents carry also its own state and are autonomous (e.g., they
may decide to migrate by themselves). The virtual machine approaches in WSN normally implements
mobile agents due to the fact that the functionality (code) can be expressed in a very compact form,
being suitable for migration [52].

The concept oftuple spacemay be used for task communication and service discovery. Tuples
are collections of passive data values. A tuple space is a pool of shared information, where tuples are
inserted, removed, or read. Data are global and persistent in the tuple space and remain there until



12 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

explicitly removed. For the communication, the partners must not know each other and do not need
to exist at the same time.

The three paradigms are illustrated in Figure 2.4.
In this thesis, we will mainly focus on theclient-serverparadigm.

2.2.2.2 Service Discovery

Service discovery allows devices to automatically locate network services with their attributes and
to advertise their own capabilities to the rest of the network. It is a major component of modern
self-configurable sensor networks. The service discovery is important in the client-server model of
distributed computation. Although normally the service discovery is part of a middleware level, as
already argued, we believe that in WSN the OS should be mergedwith middleware functionality due
to the resource restrictions.

In a typical service discovery process, there are mainly twotasks. A client can request a service
issuing a request to the node’s lower layers and expect a service reply. The reply includes the network
address of the provider, to be used for subsequent communications. This subsequent communication
is modeled by aservice invocationand invocation acknowledgmenthandshake. Naturally, more or
other data messages may be exchanged [50].

The provider node interface is simple: Applications shall be able to register and unregister their
services with the service discovery layers.

Most of the service discovery protocols include the client-server paradigm as mode of opera-
tion. In this mode, the clients reactively send out service request messages and servers listen to such
messages. If the requested service is supported, a reply message is generated and sent back. In an-
other method, the service users listen passively to advertisements that are proactively generated at
the servers side. A further alternative scheme involves service brokers (or directory agents) residing
between clients and servers as a logical entity. Clients direct the requests to known service brokers,
whereas servers register their services with these brokers. The first two models are known as directory-
less architectures. It has been argued that the directory-less architecture is more suitable for MANETs
due to the absence of infrastructure [71] which may need a costly maintenance.

However, as we will present further in this thesis, in our approach, we are decomposing the net-
work in clusters. The cluster’s representative (clusterhead) is suitable for assuming the directory agent
role.

Table 2.1 shows different technologies used in local and mobile wireless networks to search for
services. The classical service discovery protocols are used in traditional wired networks. TheService
Location Protocol[56] is used to find services that match the client query. It can be implemented using
directory agents. Alternatively, it uses multicasts to service providers inorder to find services. The
Jini Lookup Service[94] resides on a node where client and services send advertisements or requests.
When usingSalutation[31], both clients and services uses the Salutation Managerto advertise or
request services. In a network without a Salutation Manager, broadcasts are used.Universal Plug
and Play[36] is very similar to theService Location Protocol, but it works withoutdirectory agents.
Discovery requests are sent using multicast towards servers. After receiving the requests, matching
services reply to it.

The classical protocols are not suitable for WSNs due to the fact that they mainly rely on central-
ized directory agents or maintain a costly multicast tree. Moreover, they are designed to be used in
wired networks and are heavyweight.

Several other protocols have been developed to be used in ad hoc wireless networks. Besides the
Tuple Space and GSD, almost all other protocols are based on requests/advertisements directed to the



2.2. SENSOR NETWORK OS 13

other nodes via broad/multicast or other kinds of directoryagents (network manager, SANDMAN).
Two problems can be recognized in those approaches: either they have a restricted scalability or
require intensive communication.

Client-server technologies are limited to nearby nodes anddo not scale for large WSNs. GSD
and tuple space scale, but they require a large amount of communication, which can be reduced by
increasing the distribution of service information [79]. Nevertheless, this brings an increasing memory
cost per node.

The centralized approaches (using a service broker) may be used in restricted parts of the network
without compromising the scalability. We select this option for our NanoOS, where the scope of the
broker is constrained inside a bounded cluster.



14
C

H
A

P
T

E
R

2.
S

Y
S

T
E

M
S

O
F

T
W

A
R

E
F

O
R

W
IR

E
LE

S
S

S
E

N
S

O
R

N
E

T
W

O
R

K
S

Technology Communication Scalability Requirements Benefits Drawbacks
Classical Service Discovery Protocols

Service Lookup Proto-
col (SLP)

Requests made to a direc-
tory agent or multicasted
to servers

Directory agents are cen-
tral entities, scalability
problem

Register to a directory
agent or multicast re-
quests

Language independent
protocol

Central Directory
agents limits scalabil-
ity

Jini Lookup Service Lookup service receives
requests

Poor, centralized structure,
cascade of lookup service
allowed

Nodes where lookup
service reside

Ability to spontaneously
integrate new services

Heavyweight RMI
based protocol, cen-
tralized structure

Salutation Clients and servers access
their local Salutation Man-
ager (SM) to discover or
advertise services

Not well scalable Salutation manager When service required,
SM with service must be
found.

Service discovery can
be performed across
multiple SM

Universal Plug and
Play (UPnP)

Multicast message for ad-
vertisement and search for
services

For local network Devices with UPnP
layers

Automatic detection when
service is down, directory
service optional

Periodic multicast
messages, made for
standard network
devices/OS

MANETs Service Discovery Protocols
Resource requests Requests to neighbors Restricted to neighbors Resource declaration One-hop communication Scalability
Tuple space Tuple operation Balancing between mem-

ory and scale
Memory pool in each
node

Source and target indepen-
dence

Communication and
memory load

Network manager Name resolution requests
to manager

Local manager area, but
extensible

Resource managers,
register to manager

Scalability due to naming Name resolution, com-
munication load

Hunting service Broadcasts hunt service
requests

Not restricted Remote service identi-
fication

Lightweight after initia-
tion

First hunt latency and
communication load

Bluetooth SDP Peer-to-peer link Only nearby nodes at a
time

Bluetooth protocol
stack

Querying for available ser-
vices

Scalability, no broad-
cast

RKS[137] Advertises for potential
clients

Only to nearby clients Context definitions for
services

Advertisements Scalability

GSD service groups
[29]

Service and group adver-
tisements

n-hop diameter Service registration Request routing basedon
group advertisements

Communication load
(both advertisements
and requests used)

SANDMAN [113] Service register and client
requests to clusterhead

Moderate thorough clus-
tering

Cluster maintenance No broad/multicast Cluster maintenance
overhead, moderate
scalability due to im-
possibility of request
to bigger number of
clusters

Table 2.1: Different technologies implementing service discovery [79, 56, 94, 31]



2.2. SENSOR NETWORK OS 15

2.2.2.3 Task Allocation

Task allocation is responsible for the assignment of the tasks to the nodes and for the communication
scheduler. An overview about this area for sensor network ispresented in Chapter 4.

2.2.2.4 Code mobility

Given the fact that sensor nodes have a very limited amount ofmemory, the nodes cannot store all
applications in the local memory. Moreover, during the lifetime of the network, applications of dif-
ferent kinds may be required in order to respond to diverse complex queries. A migration mechanism
that enables new applications to be transferred from a node to the next is desirable. Moreover, our
objective is the development of an OS that offers appropriate abstractions for supporting distributed
applications. This implies that the migration mechanism isa very important feature of the OS.

For online task allocation, discussed in Chapter 4 and introduced in the previous section, the code
mobility is a central mechanism to support it.

As the connections in a sensor network are constructed in an ad hoc fashion, which does not
include pre-organization, the mobility of code is also important to deal with the network’s dynamics.

2.2.2.5 Support of Network Dynamics

The sensor networks may exhibit a highly dynamic network topology due to node mobility, environ-
mental obstructions, or even hardware failures. This factslead to new challenges during the develop-
ment of distributed applications.

The migration of code, as already described in the previous section, is a very important mechanism
to support node mobility. Another important point that should be stressed is that the OS (or middle-
ware) should also support the robust operation of the sensornetwork despite the network dynamics
[106]. An important approach to support a “topology independent” processing is the data-centric
communication, where network nodes are addressed by using the function or data they provide (e.g.
“please return nodes into my vicinity that can measure temperature”).

2.2.3 Examples of OS

2.2.3.1 TinyOS

TinyOS[39] was developed by the University of California at Berkeley . It has a very small footprint
and provides an efficient management of hardware resources.

The execution model ofTinyOSis similar to a finite state machine, but it is more easily pro-
grammed. It consists of a set of components that are includedin the applications when necessary.
TinyOS addresses the main challenges of a sensor network: constrained resources, concurrent opera-
tions, robustness, and application requirement support. Like other OS, it aims at reducing the burden
of application development by providing convenient abstractions of physical devices. An additional
goal is to provide a rich expression of concurrency by the component model.

Each TinyOS application consists of a scheduler and a graph of components. The components
are described by their interface and internal implementation. An interface comprises synchronous
commands and asynchronous events. Therefore, TinyOS is an event-based operating system.

The concurrency model in TinyOS is a two-level scheduling hierarchy: events preempt tasks, but
tasks don’t preempt other tasks. Each task can issue commands or put other tasks to work. The



16 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

Figure 2.5: Event-based system [69]

StdCtrl Timer

Clock

TimerComponent

firesetRate

init start stop fired

Figure 2.6: Example of a timer module

arbitration between tasks - multiple tasks can be triggeredby different events and are ready to execute
- is done by a First-In-Fist-Out (FIFO) scheduler.

Events are initiated by hardware interrupts at the lowest levels. They travel from lower to higher
levels and can signal events, call commands, or post tasks. Commands cannot signal events.

Wherever a component could not accomplish the work in a bounded limit of time, it should post a
task to continue the work. This is because a non-blocking approach is implemented in TinyOS, where
locks or synchronization variables don’t exist. This meansthat components must terminate. For that
reason, the TinyOS just uses a global stack and each component has a static frame. The components
are similar to re-entrant state machines.

As an event-based OS, the system waits for events occurrenceand then react upon that. The
event-based programming model for sensor networks is illustrated in Figure 2.5.

As commands and events are the only interaction medium between components, a large number
of commands and events add up to a large program. The interface of the components consists of a set
of commands that the component understands and of events that it may emit.

The languagenesCallows the application developer to identify interface types that define com-
mands and events that belong together. Components provide certain interfaces and use them from
underlying components. An example of a timer component can be seen in Figure 2.6. It receives the
commandinit for initialization, start for starting the timer, andstop for stopping the timer and
triggers the eventfired when the programmed time elapses. The lower component is a clock, from
which the timer component receives periodicfire events.

Both, the TinyOS components and the application componentsare implemented using this pro-
gramming model. There is no support for distributed processing.



2.2. SENSOR NETWORK OS 17

Figure 2.7: Organization of the MANTIS OS [16].

2.2.3.2 Mantis Operating System (MOS)

The Mantis operating system (MOS) is a sensor OS designed to behave similarly to UNIX and pro-
vides a larger functionality thanTinyOS. It is a lightweight and energy-efficient multithreaded OS for
sensor nodes.

The design goals of MOS are:

Easy to use : In order to reduce the learning curve of the WSN platform, Mantis is structured using
the model of multilayer multithreaded OS. This means that multithreading with a preemptive
scheduling scheme is supported by the kernel. Moreover, thekernel (and programs) is written
in C, which allows the re-use of existing code.

Flexibility : The system provides flexibility for advanced research in sensor networks. Moreover,
remote debugging and dynamic programming of sensors using the network are supported.

The internal organization of the Mantis OS is presented in Figure 2.7 [16]. The system API
supports I/O and system interactions. The kernel of the operating system provides UNIX-like thread
(and POSIX) functionalities.

In contrast to TinyOS, the MANTIS kernel uses a priority-based thread scheduling with round-
robin semantics within one priority level. To avoid race conditions within the kernel, binary and
counting semaphores are supported. Moreover, timers and sleep functions are provided. The OS
offers a multiprogramming model similar to that seen in conventional OS, i.e., as already said, the OS
complies with the traditional multithread POSIX-based paradigm.

All threads coexist in the same address space. The kernel allocates a block of data memory every
time when a thread is spawned. The existence of multiple stacks (one per thread) makes MOS more
resource-intensive than single-threaded OS (e.g. TinyOS).

The kernel of the Mantis OS also provides device drivers and anetwork stack. The network stack
is implemented using user-level threads and focuses on efficient use of the limited memory. Different
layers can be implemented in different threads, or all layers can also be implemented in a single thread.
This leads to a trade-off between performance and flexibility. It is possible to the developers to easily
modify or replace layer modules of the network stack.

Like TinyOS, Mantis does not offer substantial support in the OS level for distributed processing.



18 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

2.2.3.3 Yatos

Yatos [42] is an OS designed by the Federal University of Minas Gerais (Brazil) specifically to run
in an WSN environment and has several interesting features.Like TinyOS, it is an event-based OS,
where events are mapped to tasks.

The structure of both OS and applications is component-based. Complex behavior can be created
using simpler modules. The communication between layers uses the same principle as TinyOS: events
travel from lower to upper levels, whereas commands are sentfrom upper layers to lower ones.

The concurrency in Yatos is achieved using tasks and events.The scheduler has two levels: the
high priority level (events) and the low priority level (tasks). The tasks are atomic structures that
run to completion, nevertheless they can be preempted by theevents. Tasks can send commands and
events and schedule additional tasks. Events are generalizations of the interruptions and propagate
the processing to the higher levels of the hierarchy (sending events) or to the lower levels (through
command execution).

The events in Yatos are classified in tree types: aperiodic, periodic, and oneshot events. Aperi-
odic events are generated by the hardware (without use of timers). Periodic events are timer events.
Oneshot events are programmed and executed only once.

The work on Yatos is currently in progress. It is implementedto run on the sensor node BEAN
from the Sensor Net project.

2.2.3.4 Bertha OS

The Bertha OS was developed to manage the hardware of the Pushpin computing platform [86]. The
goal of the Pushpin Project is to create sensor networks thatself-organize in such a way that they allow
preprocessing and condensing sensor data at local sensor level before (optionally) forwarding them to
more centralized systems. The OS, hardware, and programming environment follow the design points
coming from the Paintable Computing project [23].

Before starting to describe the Bertha OS in more depth, the programming model of the Pushpin
project should be described. The main idea of the system is that small algorithmic process fragments
can interact with the neighborhood. Based on these interactions, they generate a complex global
algorithmic behavior.

The process fragment (calledPFrag) is the atomic algorithmic unit in the algorithmic self-assembly.
It is contained and executed within a single node. Migrationis possible to neighboring nodes. Each
process fragment implementsinstall, uninstall, andupdatefunctions that are called by the BerthaOS.

Each Pushpin node has a complete instance of the OS to manage processor, memory, access to
hardware, and system services.

Up to 11 process fragments can be accommodated in one OS instance (one node). The fragments
can enter into the node through the wireless interface and are initialized using theinstall function. The
updatefunctions of the resident Pfrags are called in around-robin fashion and run until completion.
This means that theBertha OSdoes not have preemptive task scheduling.

Abstractions provided by the OS for the communication are BBS (bulletin board system) and a
Neighborhood Watch system that keeps a synopsis of the direct neighborhood BBS. The OS also
offers migration mechanism to a neighbor node. Figure 2.8 illustrates how the OS and the several
offered mechanisms and Pfrags are stored in the memory of thenode. Both the OS and PFrags code
are stored in a flash memory. This means that, for every migration, the flash RAM must be rewritten.
The extended RAM installed in the Pushpin nodes is used to store the state of the Pfrags as well as the
Neighborhood Watch and the Bulletin Board System.



2.2. SENSOR NETWORK OS 19

Native RAM
(256 bytes)

Extended RAM ISP Flash Memory
(32 KB)(2KB)

OS Scratch

Neighborhood

Watch(NW)

PFrag Bulletin
Board System

(BBS)

PFrag State
Table

Stack

Current PFrag
State Pointer

Pfrag Local
Scratch Memory

Bertha OS Code

PFrag #2 Code

PFrag #3 Code

PFrag #1 Code

Pushpin Memory Organization

Figure 2.8: Pushpin’s memory [86].

In addition to the abstractions already presented, the OS also offers an API that provides access to
the different hardware modules.

2.2.3.5 Contiki

TheContiki [44] operating system was developed for sensor nodes with a limited amount of resources.
It provides dynamic loading and unloading of programs and services during run-time. It supports also
dynamic downloading of code enabling the software upgrade of already deployed nodes. All this
functionality is offered at a moderate price: the system uses more memory than TinyOS but less than
the Mantis operating system.

The main idea ofContiki is to combine the advantages of event-driven and preemptivemulti-
threading in one system: the kernel of the system is event-driven, but applications desiring to use
multithreading facilities can simply use an optional library module for that.

A Contikisystem is partitioned in core and loaded programs. This partition is determined at com-
pilation time. The core comprises the kernel, program loader, run time libraries, and communication
system (communication stack and drivers).

The components of aContiki system are:

Process: A process can be an application program or a service. A service implements some function-
ality used by more than one process.

Kernel: Contains the basic functionality like CPU multiplexing andevent handling.

Libraries: Extend the kernel features.

Program Loader: Responsible for loading services and programs on-the-fly.

Processes Processes are application programs or services. The processes share a common address
space (i.e., there is no memory protection). The state of a process is held in the process local memory.

A process can be defined by event handler functions and an optional poll handler. Inter-process
communication is made by means of posting events.



20 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

A service is a kind of shared library. It can be replaced at runtime - therefore, it is dynamically
linked. Examples of services are the communication protocol stacks, device drivers, and high level
functionality like sensor data handling algorithms.

In order to find and manage the services, the OS has aService Layer. It provides a way of binding
services based on the textual strings that describe them. A service consists of a service interface and an
implementation (that is a process). Applications use a stublibrary to communicate with the services.

As already said, a service can be replaced during run-time (reconfiguration ability). In order to
provide such functionality, the internal state of the service should be preserved during the replacement.
For that, the kernel has a call to inform the pointer of the state to the new service and a state description
that is generated by the old service.

Kernel The kernel mainly consists of a lightweight event schedulerand a basic CPU multiplexing
module. The events can be asynchronous (deferred procedurecalls) and synchronous with immediate
execution. The control returns to the posting process afterthe target process has executed the event.
This provides an abstraction similar to the interprocess procedure call.

Besides normal events, the kernel provides a polling event with high priority. All events can be
preempted by the interrupts. Such interrupts cannot request events in order to avoid race conditions.
They must set a polling flag to ask for pool events.

TheContiki kernel has no abstractions to deal with power saving issues.Applications must im-
plement power saving mechanisms.

Libraries Libraries offer additional functionality besides that already provided by the kernel. A
program can be linked with three types of libraries: static core, part of loadable programs, and services
that implement specific libraries that can be dynamically replaced.

An important functionality provided by a library is the stack management function for threads that
need a separate stack due to preemption.

TheContiki kernel just provides a single shared stack to the processes.

2.2.3.6 Peeros

The objective of the Peeros[97] is the development of a real-time operating system that fits in the
limited memory of a sensor node while supporting low power modes and causing small overhead.

The design criteria of the OS are the following: offer priority-based multitasking, offer real-time
guarantees to the tasks, support low-power modes, and provide flexibility. Additionally, it should fit
in the small memory of the sensor node. The authors of thePeerosargue that no other WSN OS can
satisfy all those criteria.

The target hardware platform is the EYES sensor node (developed in the context of the EYES
project).

The main abstraction of the OS is the task, which is basicallya piece of code that can be executed.
If several tasks are active at the same time, an EDFI-based algorithm is responsible for scheduling this
task-set using preemption. All tasks should have a priorityor a deadline, which indicates the relative
importance of one task to the other tasks in the system.

In order to accomplish both internal and external communication, a messaging system was devel-
oped together withPeeros. It consists of three main blocks:

Internal Messaging System:Allows a task to send small data pieces to other tasks.



2.2. SENSOR NETWORK OS 21

Serial Messaging System:Permits the data exchange using the serial port.

Radio Messaging System:Similar to the previous component, it allows the data exchange using a
radio interface of the node.

In order to reduce the memory requirement of the OS, Peeros supports dynamic loading of device
drivers from the EEPROM to the main memory when required. This means that at a specific point of
time, not all modules must be loaded in the memory, they just are loaded when necessary.

Besides the interprocess communication subsystem alreadypresented, Peeros doesn’t provide
more high level abstractions for programming distributed applications.

2.2.3.7 Cormos

Cormos[135] stands forCommunication-Oriented Runtime System for Sensor Networks. The idea of
Cormosis to provide a convenient programming abstraction that integrates processing and communi-
cation and to use simple and unified internal and external interfaces that makes it easy to provide new
system or application components.

The authors of theCormosargue that the communication in a wireless sensor network should be
handled as the central abstraction (communication-centric) of the OS instead of being just an extension
of the run-time system.

There are two main abstractions in the OS: events and handlers, organized in modules. Mod-
ules can extend either application or system functionality. In order to communicate internally and
externally, the abstraction of event paths was introduced in the system.

The events trigger local and remote actions. An event is divided in a frame which contains the
event state and an array list that comprises a set of handlersresponsible for processing the event. The
events are created by the handlers to trigger certain actions. After processing all the handlers, the
event is automatically deallocated. When events cross nodeboundaries, they are deallocated in one
node and allocated in the next one.

Handlers are processing functions that perform the processing in each node. A handler is executed
when an event that contains that handler is scheduled (locally or remotely). During execution, they
can create new events, call library functions, or access module variables. Handlers are atomic and run
to completion.

The event pathsare a very important abstraction. A path is a flow of data from asource to
destination, specifying the modules that an event will passthrough. Paths allow source modules to
specify events that will occur in the system.

System Structure Figure 2.9 depicts the structure of theCormossystem. It consists of:

Modules: Encapsulate operations that extend the run-time system or are part of the user application.
They comprise events, static functions, and variables. Driver modules are special kinds of
modules that use hardware interrupts and provide abstractions to the hardware system devices.

Libraries: They are collections of code that can be used in any part of thesystem.

Run-time system core: Composed of scheduler, memory allocator, and module registry. The sched-
uler dispatches events following an event path specification. The memory manager maintains a
static table for allocation and deallocation of events. Themodule registry has a table for storing
information about all active modules and their handlers.

In order to save power, the scheduler puts the CPU to sleep when there is no pending computation.



22 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

D
riv

er
 M

od
ul

e

S
ys

te
m

M
od

ul
e

S
ys

te
m

M
od

ul
e

Runtime System
Core

Libraries

Hardware

. . .

Figure 2.9: Structure of the Cormos system [135].

2.3 Middleware

A middleware for sensor networks is responsible for supporting the development, maintenance, de-
ployment, and execution of sensing-based applications. This includes mechanisms for formulating
complex high-level sensing tasks, communication of this task to the WSN, coordination of sensor
nodes to split the task and distribute it to individual sensor nodes, and data fusion for merging the
sensor readings into a high-level result [107].

2.3.1 Requirements

In [106] and [140], some possible requirements of a middleware for WSN are sketched:

Programming paradigm: Due to the fact that sensor networks are used to monitor environmental
phenomena, mechanisms for specification of high-level sensing tasks and combination of sen-
sory data from individual nodes to high-level results are required. A programming paradigm
should support the development. Moreover, a data-centric mechanism may be included in the
programming paradigm.

Restricted resources: The middleware components must be lightweight, and adaptation of the re-
source consumption to the actual application needs and availability of resources in the node is
desired.

Network dynamics: The middleware should adapt itself to the network topology dynamics, that may
change due to mobility, communication failure, hardware failure, etc.

Scale of deployment:The middleware should support mechanisms to self-organizethe network even
in the presence of thousands or millions of nodes. This meansthat self-configuration is neces-
sary to achieve an operational state (set up a network topology, assign task to devices, collab-
oratively merge and evaluate collected data). It is desirable to use local interactions in order to
achieve global goals.

Real-word integration: Space and time play a crucial role in sensor networks to identify real-word
events and to distinguish these events. Hence, the establishment of a common time and space
scale (localization) may be an important service of the middleware.

Application knowledge: Application knowledge can be used to tailor the design and implementation
of the middleware services. A trade-off between the degree of application-specific services and



2.3. MIDDLEWARE 23

generality of the middleware needs to be explored. Nevertheless, some services like data fusion
are present in many applications and are often supported by the middleware.

Collection and processing of sensor data:These are the core functionalities of the sensor networks.
Complex sensing tasks may require that the data of several nodes are fused in a system-level
result. Sensor data may be processed at the local node (or at nearby nodes), features extracted
and, after this, data is fused when traveling to the user interested in these data. The middleware
should support such kind of processing.

2.3.2 Relation to OS

Normally, the middleware is designed to run on top of some existing OS, which already provides rich
abstractions such as task and memory management. For sensornetworks, however, the current OS are
topic of active research. Due to resource constraints, the functionalities of the OS are rather limited
when compared with traditional OS. [106] argues that one possible option is to give up the separation
between OS and middleware and to go towards a distributed operating system that unifies traditional
OS and middleware functionality. This is what we are aiming to achieve with our NanoOS proposal.
Therefore, our operating system addresses much of the requirements listed in Section 2.3.1.

Due to the fact that the separation of middleware and OS in WSNis subtle and some OS have
also middleware functionalities, section 2.2.2 is also analyzing group concerns that are implemented
either by OS, VM, or middleware. Hence, the topics presentedin that section are also valid here and
will not be repeated.

2.3.3 Examples of Middlewares

We are classifying existing middleware proposals in database, task allocation, mobile agents, and
events.

2.3.3.1 Database-Based Middlewares

The sensor network is considered a distributed database where SQL-like queries are issued and the
network performs a certain task in response to the query.

The middlewares presented in this section are specialized in sensor query processing - they imple-
ment algorithms to run queries over sensor networks.

TinyDB TinyDB [92, 132] runs over the TinyOS and supports a single “virtual”database table
sensors, where each column of the SQL query corresponds to a specific type of sensor. The query
language is a subset of SQL with some extensions.

The SQL query triggers the aggregation of information in theWSN, and the TinyDB supports
distributed aggregation of the data. TheTiny Aggregationconsists of two phases: a distribution phase,
in which the aggregate queries are inserted and propagated in the network, and a collection phase,
where the aggregate values are routed from children to parents until arriving at the requester. The
target of the Tiny Aggregation is to organize the aggregation of results in such a way that the number
of messages is minimized.

Cougar Cougar [21, 136] is a loosely-coupled distributed architecture to support both aggregation
and more complicated in-network computation. Each node hasaquery proxy layerthat is responsible



24 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

for handling locally the distributed query. A query optimizer is located on the gateway node and
generates distributed query processing plans after receiving queries from outside.

The query plan specifies the data flow (between sensors) and the computation plan at each sensor.
This plan is disseminated to all relevant sensors. After this dissemination phase, the query can be
started.

The Cougar query runs over the so calledsensor database. Sensor databaseis defined as the
combination of pre-stored data (sensor nodes list, sensor node location) with the sensor sampled data.

SINA SensorInformationNetworkingArchitecture [114] is a middleware that allows sensor appli-
cations to issue queries and command tasks into the network and collect the results. Differently from
the previous approach, in the SINA middleware, hierarchical clustering is used to facilitate scalable
operations. Moreover, an attribute-based naming system isused to support data-centric queries. It is
supposed that the nodes are aware about their location in theenvironment.

The network is conceptually viewed as a collection of datasheets, and each datasheet contains a
collection of attributes of each sensor node. Each attribute is referred as a cell, and the collection
of datasheets of the network represent the abstraction of anassociative spreadsheet. Initially, the
datasheet of each node contains a few predefined attributes.During run-time, some nodes may be re-
quested to create new cells by evaluating valid cell construction expressions that may use information
from other cells, invoke functions, or aggregate information from other datasheets.

The Sensor Query and Tasking Language is the programming interface between sensor applica-
tions and the SINA middleware. It is a procedural scripting language that can contain simple declara-
tive queries.

The Sensor Execution Environment is the part of the middleware that runs in each node and, upon
receiving an SQTL message, is responsible for propagating the message further and execute the script
inside the message by means of an application (if the messageis addressed to the node).

For applications that collect sensor information, the usermay choose to invoke the built-in query
interpreter instead of writing a procedural SQTL script. This query language is an adaptation of the
Structured Query Language (SQL) to serve as primary mechanism for querying sensor nodes.

2.3.3.2 QoS-Based Middlewares

In this class of middleware, the quality of service requirements coming from the application are used
in conjunction with the sensor and network information to distribute the tasks among the nodes of the
sensor network.

MiLAN The MiLAN middleware [58] stays on top of the network stack and is responsible for
linking the application requirements, described as a set ofvariables of interest (sensor data) and their
respective QoS, with the sensor and network architecture.

The applications in Milan are data-driven (i.e. collect andanalyze data from the environment) and
state-based (i.e. the requirements with respect to the quality of the sampling data may change based
on previously received data).

The middleware receives the description of the applicationrequirements. These requirements
specify in which variables the application is interested in(e.g. blood pressure in a body surveillance
application) and which degree of quality the variables should meet. Moreover, the middleware also has
as input the sensors description by means of which quality ofmeasurement each sensor can provide
for each of the variables. Based on these data, the middleware can calculate which sets of sensors



2.3. MIDDLEWARE 25

Figure 2.10: System that employs MiLAN. Each sensor runs a scaled-down version of MiLAN.
MiLAN receives information about their QoS requirements, asystem description of the interaction
among applications, and information about the network (e.g. available components and resources).
MiLAN, using this information, configures the network to support the application. Source: [58].

satisfy all the application’s QoS requirements for each variable. These sets define theapplication
feasible set FA.

Moreover, MiLAN uses a service discovery protocol to learn from the actual network condition.
This discovery retrieves information like accessibility of the nodes, energy level, modes of operation,
etc. In addition, the roles that the nodes may assume in the network are also observed. The subsets
of nodes that can be supported by the network define the so called network feasible set FN. As only
sets inFA provide the required application QoS, the sets are intersected to get an overall set of feasible
sets:F = FA∩FN.

The MiLAN middleware chooses, among the elements ofF, one elementfi that represents the
best performance/cost trade-off.

Figure 2.10 presents an overview of a system employing the MiLAN middleware.

2.3.3.3 Event-Based Middlewares

Another approach to sensor network middleware is based on the notion of events [106]. Applications
can specify interest in certain state changes of the real word (so called basic events) or certain patterns
of events (composed events). Upon detection of such an event, the sensor nodes send notifications to
the interested applications.

DSWare The data service middleware [84] has the goal of avoiding there-implementation of the
common data service part of various applications. It resides between the application layer and the
network layer and provides data service abstractions.

The most important services are related to event detection.The architecture of the middleware is
described in Figure 2.11. Each component of the middleware offers a different kind of service to the
application.

In the next paragraphs, we will describe briefly the components of the middleware.
The data-centric storage is a service that provides mechanisms to store information according to

its semantics. It has an efficient data look-up and is robust (upon node failures). Correlated data may
be stored in geographically adjacent regions to enable possible aggregation. Queries are directed to
any of the nodes that contains it. The system tries to avoid collision and to balance the load [120].



26 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

Figure 2.11: Framework of DSWare. Source [84].

The data caching service provides multiple copies of the most requested data. The service is
spread over the routing path in order to reduce the communication overhead. It uses a simplified
feedback control scheme to decide where to place the copies of data. This means that it monitors the
current use of the copies and automatically increases or reduces them in reaction to this use.

The DSWare incorporates a group management component that provides localized cooperation
among sensor nodes to accomplish a more global objective. A service responsible for managing
nearby group of nodes is important because:

• When a group of nearby nodes agree upon a measured value, thisshould receive a higher con-
fidence.

• Some tasks may require cooperation of multiple localized nodes.

• When the density of nodes is higher than necessary for the coverage, a subset of nodes may
sleep, thus saving energy.

The groups are organized by the group management component based on the queries. When a
query is leached, a criteria based on the query is used to select which nodes are part of the group. The
group is dissolved when the query expires or the task is accomplished.

The event detection component is the more important component of the system and detects pre-
registered target events. The events are classified in two types: the atomic and the compound ones. An
atomic event refers to an event that can be determined merelybased on the observation of a sensor,
whereas a compound event must be inferred from detections ofother atomic or compound events.
The notion of confidence is used in order to formulate compound events based on degrees of certainty.
Events and sub-events have an absolute validity interval associated with them. It depicts the temporal
consistency between the environment and its observed measurement. This brings real-time semantics
of events.

The data subscription service is a type of data dissemination service. It provides an optimized
network configuration when providing data to multiple subscribers in a publish/subscribe interaction
paradigm.

Finally, the scheduling component of the DSWare is responsible for scheduling all components of
the middleware. A real-time scheduling mechanism is the main scheme used.



2.3. MIDDLEWARE 27

Impala Impala [89] is a middleware and an API for sensor applicationadaptivity and updates. It is
a runtime system that acts as an event and device manager for each mobile sensor node.

An event-based programming model is used in the middleware,and actions are performed in
response to events.

The Impala middleware is formed by three main components:application updater, application
adapter, andevent filter.

The application adapter is responsible for making adaptation and responds to a range of events.
Impala uses compositional adaptation. Several versions ofan application (protocol) are given as in-
put to the middleware. The act of adaptation means selectingthe most appropriate one, based on
the current context. The adaptation has two objectives. Thefirst one is to increase the performance,
energy-efficiency, and other attributes of an application (protocol) by running the most suitable ap-
plication for an existing environment. The second one is to increase the robustness by selecting
applications (protocols) that do not relly on failing hardware. Switching rules are used to change the
current running application/protocol.

The application updater is responsible for updating software on the fly in an Impala environment.
A modular design model is required for applications. This modular design better supports the update
because just local changes within a module must be applied, whereas when a monolithic design is
used, small changes may have global repercussions in the code.

The event filter captures and dispatches events to other system units and initiates chains of pro-
cessing. There are four types of events: timer, packet, senddone, and device failure. The applications,
application adapter and application updater are programmed as a set of event handlers that are invoked
by the event filter when events are received [120].

2.3.3.4 Data Fusion Middlewares

The middleware of this category provides support for data fusion (aggregation) applications. The
idea is to support the application’s programmer by hiding several concerns like data synchronization,
buffer management, and fusion point placement, when programming data fusion applications.

Data aggregation consists of an in-network operation that combines multiple messages coming
from different sources in to a smaller representation that is equivalent or in a suitable manner rep-
resenting the original messages in its content. It capturesthe redundancy among data collected by
different sensors [91]. The data aggregation is often realized when multiple sources are sending data
to a common sink. The multiple messages are aggregated in some key nodes when traveling in direc-
tion of the sink node.

DFuse The DFuse middleware [78] is an architecture for programming data fusion applications. It
supports distributed data fusion with automatic placementand migration of the fusion points. This
migration has the goal of maximizing/minimizing some givencost function. This means that the role
assignment for each node is decided by the middleware considering the given cost function.

As example, the middleware offers the following cost functions: (1) minimize transmission cost
without node power considerations, (2) minimize power variance, (3) minimize the ratio of transmis-
sion cost to power, (4) minimize transmission cost with nodepower considerations.

Using the DFuse middleware, the developer is only responsible for implementing the fusion func-
tions and providing a data flow graph [120]. The distributionof this fusion points is made automati-
cally.

Moreover, DFuse provides a Fusion API that affords the easy development of complex sensor
fusion applications. The API allows custom synthesis operations on streaming data to be specified as



28 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

a fusion function, ranging from simple to complex operations [78].
The fusion operation is defined very broadly in the DFuse middleware: it is the application of an

arbitrary transformation to a correlated set of inputs, producing a combined output. The middleware
is targeted to streaming fusion processes. The transformation may produce a smaller output than each
single input (called contraction), a larger output (calledexpansion), or keep thestatus quoof the data
rate flow. The identification of the kind of transformation isimportant in order to find the appropriate
placement of each fusion point.

The following capabilities are provided by the fusion API [78]:

Structure management: This category offers “plumbing” capabilities. An abstraction called fusion
channel is offered by DFuse to the user in order to realize thefusion tasks. The programmer
provides the fusion function, and this fusion will be performed either on request or when input
data are available.

Correlation control: Responsible for handling specification and collection of “correlation sets” (re-
lated input items that should be supplied to the fusion function). Fusion requires identification
of a set of correlated input items.

Computation management: Handles the specification, application, and migration of fusion func-
tions.

Memory management: Handles the caching, prefetching, and buffer management.

Failure/latency handling: Responsible for the capability of fusion points to perform partial fusion,
i.e., fusion on incomplete input correlation sets. It dealswith sensor failures and communication
latency.

Status and feedback handling:Responsible for the communication between fusion functions and
data sources (e.g. sensor nodes).

2.4 Virtual Machine

The virtual machine approaches offer hardware platform independence and code expressiveness for
compactness of the code. This compactness enables the migration of the code among nodes with small
overhead when compared to binary code.

The main objective of the virtual machine approaches is to obtain dynamic re-programmability
at a reduced cost. For that, they assume that a sensor networksystem is composed by a common
set of services and sub-systems, combined in different ways. The language interpreted by the virtual
machine allows the composition of services and sub-systemsto be described concisely. This has an
advantage when compared to the transmission of raw binary code.

Moreover, it provides a programming model powerful enough to implement any distributed system
while, at the same time, hiding unnecessary low-level details from the application’s programmer [22].

Some authors [120, 106] classify virtual machines as a middleware approach, whereas others [79]
use a special category for them. We separate the virtual machines as a specific category of system
software for sensor network because, differently from the other middlewares, they do not only provide
abstractions for communication or organization of the system, but also an execution environment
independent from the underlying processor. This is an important difference from the middleware
approaches. Nevertheless, much of the requirements described for middleware approaches are also
valid for this class of system software.



2.4. VIRTUAL MACHINE 29

2.4.1 Examples of Virtual Machines

Maté The Maté [82] virtual machine enables a wide range of sensor network applications to be
composed based on a small set of high level primitives. It is abyte-code interpreter that runs on top
of TinyOS and has a stack-based architecture.

Maté is implemented as a single TinyOS component that interprets small pieces of code called
capsules. Each capsule has 24 instructions of one byte. Larger programs may be composed by several
capsules. Each capsule fits in a single network package.

There are four types of capsules: message send, message receive, timer, and subroutine. Every
capsule includes type and version information. The subroutine capsules form parts of the program
that may be called from the other types of capsules. The message send, receive, and timer capsules
are the routines executed as response to the events send packet, receive packet, and timer, respectively.
The virtual machine has three execution contexts, for the three types of events. The execution of the
capsules is always triggered by some event.

In the interpreted language of Maté, there is a command to send the capsules to all neighbors.
Upon receiving a capsule, each node tests whether the version is more recent than the current installed
one. If positive, the new version is automatically installed. Using this mechanism, it is possible to
easily distribute new versions of an existing application as well as new applications. In the paper, the
dissemination of code is compared to a virus. It makes possible for a user to enter a query (or other
type of application) in a single point of the network, and this application will propagate itself until
“infecting” all nodes.

Therefore, the Maté virtual machine provides a flexible way of programming a sensor network,
having a small system requirement and providing an efficientway of WSN dynamic programming.

SensorWare SensorWare [22] is a virtual machine for distributed applications running on a sensor
network. Differently from Maté it targets richer platforms, requiring more resources than it. The
authors argue that such resource-richer platforms will be mainstream in an immediate future.

The idea of Sensor Ware is to avoid the assembly-like programming of Maté by means of using
scripts of a high level interpreted language. The selected language for the implementation wasTcl.
A set of function/commands was defined besides the basic script interpreter. This set is composed of
the following APIs: radio, timer sensor, and mobility. These functions form the basic building blocks
that are combined through theTcl scripts. The scripts orchestrate the dataflow to assemble custom
protocols and signal processing stacks.

The programming model of SensorWare resembles state machines that are influenced by external
events (e.g. network message arrival, sensing data, expiration of timers). The idea is that an event
is processed by a light event handler that performs its processing according to the actual state. This
processing possibly generates new events or/and changes the current state.

Figure 2.12 presents the general sensor node architecture of SensorWare. The existence of a
script in the network starts with the injection of the code made by some external user. After this
initial injection, migration is responsible for the code dissemination. The scripts are interpreted by the
SensorWare layer, and API function calls are redirected to the underlying OS. Moreover, as the figure
depicts, scripts may divide the user space with other kinds of applications or services (native code).

Similarly to the Maté virtual machine, SensorWare providesa flexible way of dynamic program-
ming of sensor networks, but, differently from Maté, it avoids the complexity of a low-level assembly-
like language.



30 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

Figure 2.12: The sensor node architecture with SensorWare virtual machine. Source: [22]

MagnetOS The MagnetOS [88] is a virtual machine that provides a programming model where ap-
plications do not need to implement by themselves all required mechanisms to deal with the dynamics
of ad hoc networks. The authors argue that mechanisms for remote communication, naming, and
migration are very important in such environments. Moreover, the applications must be supported
in order to deal with the dynamic and resource-constrained of the system. Finally, it is important to
support facilities that enable the dynamic introduction ofnew functionality and its integration with
the current running application.

In order to address the described requirements, the MagnetOS supports an alternative program-
ming model, where a thin distributed virtual machine1 makes the entire network appear to applications
as a single Java virtual machine.

The higher level of abstraction provided by the MagnetOS simplifies the development of applica-
tions and enables the automatic placement and migration of modules of the application, thus saving
energy.

The MagnetOS applications are designed as a set of interconnected, mobile event handlers (imple-
mented as objects). The communication between the objects is made using events. The distribution of
the event handlers is made automatically by the MagnetOS with the objective of spending the minimal
energy for communications.

The system consists of a static application partitioning service that resides on hosts capable of
injecting new code into the network, a run-time module on each node that performs dynamic monitor-
ing and component migration, and a set of policies to guide object placement at run-time. The static
partitioning service rewrites applications intended for asingle JVM into objects (event handlers) that
can be distributed over the network. The migration in MagnetOS relies on profiling the communica-
tion pattern of objects in discrete, asynchronous epochs. The NetPull and NetCenter [9] algorithms
are used to migrate the objects of the application.

2.5 Discussion

In this chapter, we presented a survey of several OS, middleware, and virtual machine approaches
for sensor networks. In the layer nearest to the sensor node hardware lays the operating system.

1In the paper they are using the term operating system (OS) to the MagnetOS. However, despite the name, it isn’t an OS.



2.5. DISCUSSION 31

The general goal of the presented OS is to offer useful abstractions and extend node’s functionality.
At the same time, they are designed to consume as few resources as possible of the target platform
and to manage the power consumption. A key resource is memory. Systems like TinyOS and Yatos
support an event programming model which considerably reduces the memory requirement due to the
fact that just one global stack is necessary for the entire system. Nevertheless, this comes at a high
price: applications need to be developed as state machines without preemption. The challenge here
is how to efficiently use the power of the state machine programming model without getting lost in
the complexity of different state machines sending messages to each other. The event-based paradigm
is adequate for pure sensoring applications where nodes should react upon events occurring in the
physical environment (sense and forward paradigm).

Other OS provide a classical preemptive multi-threading programming environment trying to re-
duce the footprint by means of providing just a basic subset of capabilities. An example of this class
is the MantisOS, which is a configurable OS with a programmingenvironment similar to UNIX. The
dynamic re-configuration provides the functionality of replacing and loading services, device drivers,
and application tasks during run-time, avoiding the overhead of having the complete code in the mem-
ory all the time. Here we can highlight PeerOS which allows this dynamic reconfiguration.

There is also an attempt to combine event-driven and preemptive multitasking environments in
the Contiki OS, which is composed by a kernel and a reconfigurable set of services. The services
comprise, for example, a communication protocol stack, device drivers, or high level functionality
and can be loaded dynamically. The main kernel of Contiki is event-driven, however, optional library
modules offer preemptive multitasking functionality. This means that Contiki is even more flexible
than the other approaches, and, due to its high adaptabilityto the target applications, the footprint can
be reduced.

Nonetheless, all approaches have a common drawback: in order to reduce the footprint, the given
functionality is also restricted. In the event-based systems, the comfort of preemptive multitasking is
given away for the benefit of small footprint. For classical sensoring applications, this makes sense,
because they can be naturally modeled as a finite state machine. Nevertheless, when (background)
processing or complex distributed applications are desired, the paradigm has its disadvantages.

The preemptive multi-threading paradigm uses the dynamic reconfiguration for handling the lack
of resources and to dynamically adapt itself to the application. However, at a given moment, the
amount of functionality present in the system (OS plus application) is very limited. Moreover, an
additional shortcoming of most of the OS is the lack of support of high level functionality, leaving this
to the middleware level. The development of distributed sensing tasks or signal processing algorithms
is not supported by the OS. Even very common sensor network tasks, like data fusion, have no high-
level support from the OS. A better distributed programmingmodel is offered only by Bertha OS,
which also supports self-organization. Nonetheless, all OS include some abstraction for external
communication.

A system that presents a completely new programming paradigm and distributes the applications is
BerthaOS. The process fragments (PFrag) are the algorithmic unit of the application and may interact
with neighboring PFrag in order to generate some emerging desired result. Moreover, migration (ini-
tiated by the PFrag) is allowed. This approach has a very goodperspective. Nevertheless, it requires
a completely new programming model, and it is rather difficult to design distributed algorithms.

The VMs are situated in the middle between OS and middleware:they provide rather higher
level abstractions for distributed processing than the ones typically offered by OS. Nevertheless, on
average, they offer less then a middleware. The drawbacks ofthe existing VMs for sensor networks
are, in our opinion, mainly two. First, the majority of VMs provide an unusual programming model,
where the programmer must deal with questions like code replication, migration, etc. Second, they



32 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

don’t provide the usual abstractions for development of distributed processing applications. They are
based on the assumption that the sensor network will be used merely for sensor queries. Our proposal
tries to bring again complex processing capabilities to thesensor nodes. We aim at making the sensor
networks more autonomous in the sense that they may react to environmental phenomena without
interaction with a base station.

The only VM that does not have the described drawbacks is MagnetOS. The user, in this case,
does not need to worry about code migration and could create in a relatively easily way complex
applications. Nevertheless, MagnetOS is a Java virtual machine and brings a large overhead with
it. Moreover, typical sensor network applications like data fusion are not implemented in a adequate
manner within the MagnetOS framework.

The middleware solutions present myriads of different approaches for application development for
wireless sensor networks. Middlewares based on databases are very efficient on processing sampling
queries from the user. Based on the query input, the processing on each node is automatically deter-
mined as well as the data aggregation points. Some of the database middlewares have a centralized
decision of which role each node should assume (e.g. Cougar), whereas other ones have distributed
decisions (TinyDB), which increase the scalability. The main drawback of the database middlewares
is the lack of flexibility: they are mainly designed to process SQL-like queries. Expressing other kinds
of applications or even more complex queries may not be possible.

QoS-based middlewares, like MiLAN, can automatically select nodes that meet QoS requirements
defined by the user. It is used for collecting data applications. The middleware, opposed to our
approach in NanoOS, has a centralized element that decides which nodes should be queried and is
just specialized on collecting data applications. There isno support to distributed processing in the
network.

Another group of middlewares that is restricted to some specific type of applications is the group
of event-based middlewares. In such a middleware, the user can specify a set of events that should be
notified. The Impala middleware allows dynamic updates and application adaptation besides the basic
event-based processing. These are very interesting features but do not overcome the main limitation
of this class of middleware: the state-machine based programming model and the absence of methods
for functionality distribution, like in our OS.

Finally, data fusion middlewares are designed also for a very specific task in a sensor network,
without the possibility of supporting other types of in-network processing besides data fusion. More-
over, they do not allow the dynamic re-assignment of the functionality of the middleware/application
in response to topology/energy changes, like the features present in our NanoOS.

Due to the fact that a focus of this thesis is the distributed processing in the WSN, we are pre-
senting in Table 2.5 some examples of distributed processing mechanisms present in the different
approaches. Some task allocation mechanisms showed on thistable will be discussed in Section
4.2.2.



2.5. DISCUSSION 33

System

Name

Service

Discovery

Task Allocation Remote

Communi-

cation

Task Migration

OS Architectures
TinyOS Not sup-

ported
Not supported Active

messages
Not supported

Bertha OS Not sup-
ported

Not supported Bulletin
Board
System

Binary Code

MOS Not sup-
ported

Not supported Not sup-
ported

Binary code
download

Yatos Not sup-
ported

Not supported Messages Not supported

VM-based Architectures
Sensorware Not sup-

ported
Script population
specification

Not sup-
ported

TCL script migra-
tion

MagnetOS Not sup-
ported

Automatic object
placement

DVM Mobile Java ob-
jects

Mate Not sup-
ported

Not supported Not sup-
ported

Code capsule up-
date

Middleware architectures
TinyDB Not sup-

ported
Query optimizer Not sup-

ported
Not supported

SINA Not sup-
ported

Attribute matching Not sup-
ported

SQTL scripts

Cougar Not sup-
ported

Query optimizer Not sup-
ported

Not supported

MiLAN SLP, Blue-
tooth, SDP

Configuration
Adaptation

Not sup-
ported

Not supported

DFuse Not sup-
ported

Automatic fusion
point placement

Not sup-
ported

Fusion point mi-
gration

Table 2.2: Distribution features of selected approaches. Sources: [79], [78]



34 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS



Chapter 3

NanoOS Architecture

In this chapter, the basic architecture of our operating system for sensor networks is presented. More-
over, a model that represents the link quality in wireless adhoc networks is also introduced.

3.1 Motivation

In the Section 2.5 of the last chapter, a discussion about theexisting OS, VM, and Middlewares
for wireless sensor networks was presented. The different capabilities, programming models, and
application scenarios of the approaches were discussed. The development of the NanoOS operating
system has the intention of fulfilling the following gaps of the existing systems:

• Lack of support for generic, complex distributed in-network processing. Several approaches in
the middleware area support certain type of in-network processing (e.g. DFuse for data fusion),
but there is almost no system with a generic programming model where different kinds of
services implementing distributed processing can be easily and systematically developed. The
NanoOS supports the development of typical WSN services like data aggregation as well as
processing intensive services like distributed fourier transform or data encryption service. Even
OS abstractions like file system may be implemented as mobileservices. This brings the next
drawback of the existing approaches:

• Impossibility of complex OS functionality in constrained nodes. Our idea is to overcome this
limitation through distributing the application and also the OS functionality among the nodes of
the system. Whenever there are enough resources for the complete OS and application on every
single node, the system can behave as a normal multi-threading OS and all the services may be
started in the single node. But in situations where the applications require more services that
can fit on the resources physically presented in a single node, the services will be distributed to
external nodes and accessed remotely.

• Insufficient support of client-server programming model. Several approaches present alterna-
tive programming models due to different reasons. They may be more suitable for the type of
application envisioned. For example, BerthaOS or the virtual machines offer a programming
environment where small code fragments can replicate, migrate, and thus disseminate them-
selves through the network. This may be a very useful programming model for arbitrary sensor
data queries that should be spread through the network and collect results. Other possible rea-
son is the hardware limitation: the event-based systems of TinyOS and Yatos are very suitable

35



36 CHAPTER 3. NANOOS ARCHITECTURE

for heavily constrained nodes because they demand just one global stack. They are suitable
for the type of application they are envisioning. But besides the Java-based MagnetOS, there
isn’t a systematic approach to support the client-server programming model with automatic
distribution of modules. This allows an easy development ofdistributed sensor applications.

• Absence of a generic, dynamic, distributed, and automatic code migration mechanism for client-
server paradigm. Some of the present systems are able to calculate a suitable placement of
some system components (e.g. DFuse middleware has automatic placement of fusion points,
Tiny Aggregation, which selects the suitable points for data aggregation). Nevertheless, these
placement mechanisms are developed specifically for the kind of processing done by the mid-
dleware. In our case, our service distribution algorithm can distribute any kind of service based
on a dynamic assessment of the current traffic and network topology.

Hence, our proposal is an integrated approach, where OS basic functionality is integrated with
high-level support for distributed applications on sensornetworks. The same mechanisms offered to
manage the services at the application level are also used bythe OS services. With the support of
complex distributed processing, we aim at making a WSN more autonomous from the base station,
allowing new challenges to be mastered by sensor networks inenvironments where there isn’t con-
tinuous contact with the base station. Our programming model has costs: the programmer has to
design the application and partition it manually. Moreover, due to the distribution, the energy over-
head increases considerably. In addition, we need id-basednetworking instead of merely data-driven
protocols for the realization of our operating system. We argue that a combination of both paradigms
is the best solution in order to deal with the conventional problems of distributed processing (dis-
tributed algorithms, more node-driven) with the new challenges brought by canonical problems of
WSN (data-driven problems, like queries).

3.2 System Overview

In this section, a small overview of our complete system willbe described. This overview is necessary
to a better understanding of the details presented in the following sections.

Our system is composed of three main components: the hardware, the operating system, and the
application running on top of it (see Figure 3.1).

The hardware platform consists of a set of distributed sensor nodes. On top of this platform, runs
theNanoOSthat provides the adequate set of services to the application. Besides the basic operating
system services like processor and memory management and synchronization, the NanoOS provides
a set of special services to support the distributed processing.

One or more applications run on top of the operating system. Each applications has one goal and
is composed by a set of fixed tasks and application services; they are the atomic unit of the distributed
application. This means that their program code must not exceed the resource availability of one
single node. This will be in-depth discussed in further sections.

For the purpose of reducing the OS footprint in each node and therefore to enable the execution of
a rather complex OS application in hardware constrained nodes, the NanoOS uses a novel approach:
it distributes the services of the OS and application among the nodes. This means that each node of
the system has just a small part of the kernel of the complete operating system and some modules of
the distributed application; a group of nodes together forms an instance of the OS with one or more
applications. The services are shared among tasks sitting on different nodes. At any instant of time,



3.2. SYSTEM OVERVIEW 37

Figure 3.1: System overview

one node may connect and use a service residing in an externalnode using a remote method invocation
(RMI).

In order to facilitate the development of applications, theOS provides a uniform service interface
where the OS and application services may be requested even if they are not present at the current
node and must be accessed from remote nodes. This service interface must guarantee the access to
services in a dynamic topology environment.

Figure 3.1 presents an overview of the system. The tasks may use services of the operating system
and other services made available by the applications themselves. In order to reduce the resource
requirement in each node, those services are shared among different application tasks and it is possible
that services are executed in remote nodes.

We will discuss the OS architecture more deeply in the following sections.

3.2.1 Applications Scenario

Our service distribution architecture is designed to support WSN scenarios where complex processing
is required. We envision WSN applications that are more thanthe traditional sense-send-sleep loop.
Our target are applications that need complex, in-network processing components and sophisticate OS
support. For example, distributed collaborative signal processing and distributed compression may be
implemented as mobile services in our platform.

Besides the provision of a set of OS service and a framework that enables the developer to design
its own services, the advantage of the architecture is the automatic management of these services.
This means that even standard WSN services like data aggregation and data compression based on
correlation among different measurements (spatial and temporal) can be provided in an standard way
by the OS and are automatically placed on the network.

Due to the possibility of increasing the OS and application complexity using distributed shared
services, new applications scenarios can be considered. For example, it is possible to increase the
autonomy of the sensor network and its interaction with the environment. We can view of the net-
work as a kind of environment-embedded distributed computer that may sense the environment, make
complex calculations and decisions about the sample data, and, if actuators are available, react upon
detected events.



38 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.2: Space exploration application using WSN. (a) The polling phase where the rover requests
the sampled data using a flooding mechanism. (b) Every node reply the request and the data is routed
back to the rover.

In the next sections, we will present two existing WSN applications and the possibilities opened
by our operating system.

3.2.1.1 Scientific Exploration

Self-organizing sensor networks will probably play a key role in space exploration in the future. An
example of an envisioned application of sensor networks on the exploration of the surface of Mars is
presented in [64].

The types of data sensed by the nodes are, for example, seismic, chemicals, temperature, etc. One
or more landers or rovers function as base station and periodically collect the measurements and relay
the aggregated sensor field results to Earth.

In the application, the region covered by the sensor nodes islarge, so that multi-hop relay is used.
A poll-reply communication model is used to collect the data. Namely, each base station periodically
broadcasts a polling request and every sensor node returns the collected data to the base station. This
fact is illustrated in Figure 3.2.

We envision, with NanoOS, a solution where the sensor network has more autonomy. In our
hypothetical scenario, several disconnected regions of Mars receive a large pool of sensor nodes.
They are autonomous in the sense that the data are just requested by the rover (base station) in large
intervals. Just at this point the rover may send them to Earth. Instead of the intensive polling, the
sensors should process the collected data by themselves andsave the results in some flash memory
(designed to save intermediate results). The rover in this scenario may approach each disconnected
group of nodes at some sparsely distributed time to gather the results.

The idea of saving raw data in the nodes is impracticable due to memory restrictions. Therefore,
the data should be analyzed by the network itself and the results (the detection of some environmental
characteristic, for example) should be saved in a compact form and sent to the rover upon request. For
that, the architecture presented in Figure 3.3 was proposed.

In the figure, the sampling tasks send their read data to services that are responsible for analyz-



3.2. SYSTEM OVERVIEW 39

Figure 3.3: Autonomous network for space exploration. Instead of polling the area in an intensive way,
the rover just needs to approach the WSN in sporadic intervals to download some selected compressed
data and the analyzed result. The processing and compression of the data is done by the services in
the sensor network.

ing the data and detect desired patterns. This signal processing services may be also distributed, and
are placed in the network automatically, aiming to reduce the communication overhead and the en-
ergy consumption. The results are sent to a data fusion service that stores the results until the rover
approaches the network and polls the service.

A similar idea may be used in a scenario developed in the scopeof the EU project e-Cubes [1].
The idea is to make atmosphere assessment of Mars by means of asensor network that is dropped
in the atmosphere. During falling down, they should collectdata. After arriving an the surface of
the planet, a rover is responsible for receiving the measured data and sent to Earth. In this case, the
WSN must be autonomous during the period of time it is measuring. Moreover, it is important that
the nodes of the network remain alive during this phase, after that, the energy of the nodes is not that
important anymore. This means that our approach of exchanging energy for processing complexity
may represent a very attractive trade-off.

3.2.1.2 Habitat Monitoring

In this section, we will present an example how our architecture can be used to improve an existing
application on habitat monitoring.

In the work [127], a two-tiered sensor network is proposed for habitat monitoring. The main target
of the system is to recognize and localize specific types of birdcalls. To specify the birdcalls of interest
on the system input, the biologists typically have recordedbirdcall waveforms.

The idea of using a two-tiered hardware platform for habitatmonitoring was inspired in the work
of Cerpa et al [27]. The smaller, less capable nodes are used to exploit spatial diversity, whereas the
more powerful nodes combine and process the micro-node sensing data.

The organization of the network, as presented in the work [128], can be seen in Figure 3.4. The
macro-nodes are very powerful nodes with Pentium II CPU, up to 64MB RAM, and a full spectrum
of peripheral devices. Micro-nodes are Berkeley motes with128KB program memory, 4KB data
memory, and 512KB secondary storage. Both nodes are equipped with acoustic sensor.

The micro-nodes are densely distributed, whereas macro-nodes are sparsely due to their higher
power consumption and cost. The nodes form clusters with macro-nodes as clusterheads. GPS on
macro-nodes provides location and time reference. Location of other nodes can be determined inter-
actively.

Given the network, the macro-nodes receive the waveform of the birds calls and convert it to
an internal format used by the recognition. Spectrograms are complete descriptions of bio-acoustic
characteristics of birdcalls and are widely used. Macro-nodes have enough computational resources



40 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.4: Two-tiered sensor network for bird monitoring.Macro-nodes are PC 104s. Micro-nodes
are Berkeley modes. Source: [127]. The figure also shows the task decomposition of the target bird
recognition. (1) Waveforms of target birds are sent to macro-nodes. A service calculates the cross-zero
rate representation for the micro-nodes. (2) The representation is sent to the micro-nodes. (3) The task
samples the acoustic sensor and sends the data to be comparedwith the cross-zero representation. (4)
After being recognized by the cross-zero target detector service, this information is sent to the macro-
node where a system level decision (data fusion) will be done. (5) Finally, a system decision of the
detection is sent to the gateway.

to use spectrograms internally, however, micro-nodes not.
Therefore, a simpler internal representation using cross-zero rates is used in the micro-nodes. The

target recognition task is divided in two steps. First, all nodes independently determine whether their
acoustics signals are of the specified type of birdcall usinga pre-processing method with cross-zero
rate. After this, macro-nodes fuse all individual decisions into a more reliable, system-level, decision.
The details of the decision fusion were not discussed in the publication. In Figure 3.4, the target
recognition task has its components depicted.

The target location task was also divided into two steps. First, waveforms are recorded at nodes
distributed at different locations. Second, the data are accumulated on one macro-node, and beam-
forming is applied to determine the target location using arrival time differences. Before sending the
data to the macro-node, each micro-node simply compress it.The target localization task can be seen
in Figure 3.5.

The presented tiered sensor network approach for habitat monitoring has some disadvantages:

• There isn’t a self-organization mechanism in the task distribution between macro-nodes and
micro-nodes.

• The deployment must be carefully executed, random deployment is not possible.

• If some macro-node experiences failure, there isn’t a way ofsubstituting it by nearby nodes.

• The data fusion isn’t done at the optimal position (regarding communication energy usage).

• Cross-zero rate method looses some information from the spectrogram. With noise in the en-
vironment, the distorted cross-zero rate is not enough to detect the birdcall. A frequency filter



3.3. REQUIREMENTS 41

Figure 3.5: Task decomposition of the target localization task. (1) The task samples the acoustic
sensor and, after the recognition of the desired bird species, data are sent to the compression service.
(2) After being compressed, the data are sent to the target localization task in the macro-node. Using
beamforming estimation, the position of the target bird is calculated. (3) The resulting bird position
is sent to the gateway (access point).

may help, although some target birdcalls may be discarded even with filters due to environment
noise.

Using the NanoOS approach, we can design a bird monitoring system as following.
The target recognition task is shown in Figure 3.6. Every service present in the original architec-

ture is also present in our proposal. Nonetheless, instead of heaving a large service responsible for one
complete task, several distributed sub-services are used,due to the hardware limitations of each single
node. In our case, the waveform is divided in blocks (chunks)and each block is processed by one
service. For example, if the habitat monitoring would use visual data (cameras), each service would
be responsible for extracting one type of feature of the image. The birdcall detector sub-services are
shared among two birdcall detection services. Each sub-service has a spectrogram of the partial wave-
form. If the services would be duplicated, this same waveform would need to be stored in multiple
services, increasing the memory consumption.

An advantage of our architecture is the automatic placementof the services. For example, the data
fusion (system-level detection) service may migrate to anynode with enough resources to execute it.
Our placement algorithm (described in the next chapter) aims at finding the optimal position of each
service in the system. If the system is heterogeneous (with macro-nodes), a large bunch of services
will be automatically placed on those macro-nodes. Insteadof carefully designed, the task placement
of the system (like in the original paper) should be done in a self-organized fashion.

The second task of the system (target localization) is shownin Figure 3.7. Here, the architecture
is similar to the original one, nevertheless the services may be placed at appropriate positions and the
target location service uses external supporting sub-services when necessary.

3.3 Requirements

In this section, we will present some requirements of the NanoOS.

Geographically distributed services The services should be distributed among the geographically
distributed sensor nodes. Moreover, they should be shared among the application’s tasks and



42 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.6: Target recognition task using the NanoOS approach. (1) Waveform is sent to the spectro-
gram generator service. It calculates the spectrogram of chunks of the original waveform with help of
sub-services. (2) Spectrogram of a part (chunk) of the original waveform is sent to the corresponding
detection sub-service. (3) Sampling task sends data to the detection service. The detection is made
using sub-services for every waveform chunk. (4) Detectionis sent to a data fusion service. (5) The
detection of the target bird is announced.

Figure 3.7: Target location task using the NanoOS approach.(1) Waveform is sent to the data com-
pression service. (2) After this, the compressed data are sent to the target localization service. The
target is localized using beamforming procedure and with help of distributed supporting services. (3)
The bird position is the outcome of this procedure.



3.3. REQUIREMENTS 43

other services.

Uniform environment of execution It should be possible, for tasks and other services, to access
service providers locally and remotely. In order to simplify the development of applications,
uniform environment of execution is desired, i.e., the tasks may assume that a given set of
services is available independently from external factorslike node position. These services are
accessed using a unified service interface.

Low local resource utilization In the situation where the resource requirements of the application
and OS are larger than the availability of a single node, the services should be distributed in
order to comply with the hardware constraints.

Ad hoc networking The communication takes place using the wireless links present in the sensor
nodes. The network should be self-organizing. No globally centralized control is desired.

Dynamic adaptation Due to the high dynamics of the system (due to topology changes), dynamic
adaptability of the OS to the current network configuration and to the requirements of the ap-
plications is desired. This adaptability is achieved using:

• Compositional dynamic adaptation[93]: algorithmic or structural system components
may be exchanged in order to improve the OS performance in thecurrent environment.
The environment comprises task requests and network state.This brings also the possi-
bility to tailor the services to the requirements of the application, avoiding unnecessary
overhead.

• Service redistribution: We use the redistribution of the services in the network to react to
topology changes and request pattern changes. This redistribution aims at reducing the
communication cost (reflecting reduced energy expense). Inthis thesis, we will concen-
trate on this topic.

Self-organization After deployment of the WSN in the target environment, the organization of the
OS and application should be managed without any central entity. The system should orga-
nize itself by means of launching the appropriate software components and connecting them
appropriately. An example of mechanism used to connect the requesters of services with the
corresponding provider is the service discovery.

Self-optimization This requirement is linked with the dynamic adaptation. We aim at improving the
system performance during run-time, changing system parameters, exchanging components or
changing the placement of the objects in the system. We will focus on this last method aiming
at reducing energy consumption.

Self-healing Several errors may happen during the system life: node’s hardware failures, software
failures, and topology changes. The connection pattern (topology) in an ad hoc network isn’t
stable. Nodes can suffer of transitory (or even permanent) disconnection. This means that we
should design the OS in a way that make it robust against such failures. We are tackling this
challenge by means of two approaches:

• Designing algorithms that are robust by nature: We are usingself-organization princi-
ples in our proposals. One motivation for that is that they are robust against unpredicted
situation and partial failures.



44 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.8: Generic sensor node architecture. Source: [69].

• Using standard fault-tolerance techniques: In order to prevent interruption of service due
to hardware or software failures, services backups (replicas) may be used. This is out of
scope of this thesis and requests further development.

Transparency The following types of transparency are supported in the NanoOS:access(e.g to a
service, whether it is local or remote),location (the set of available services is the same at any
place),topology(topology changes mostly do not affect the execution of the tasks). Thefailure
transparency should be further developed.

Scalability Our system should scale to thousands of nodes. Due to the factthat the application
scenario assumes large areas of sensing, it may be necessaryto use a huge number of nodes.
Therefore, we cannot rely on a central controller for organizing our network.

In this thesis, we focus on some of the requirements of the NanoOS. In fact, we are mainly tackling
the OS self-optimization requirement using our service distribution heuristic and the self-organization
of the network through our clustering algorithm. For the developed algorithms, the scalability goal is
also observed.

3.4 NanoOS Approach

In this section we will present an overview of our complete system architecture. Subsequently, we will
present with more details the organization of our sensor operating system for distributed applications.

3.4.1 Hardware Platform

The hardware platform consists of a set of distributed sensor nodes. Each node comprises a commu-
nication device, a small processing unit, small memory, sensors, and actuators. A generic architecture
of a sensor node is presented in Figure 3.8.

We are considering typical sensor networks with the following characteristics:

Processing unit: We are considering nodes with a microcontroler as processing unit.

Memory: As usual, two types of memory are installed in each node. Volatile memory (RAM) is used
to store intermediate sensor readings, packets, and processing states. The programs are stored in
non-volatile memory and are executed there. Normally, the non-volatile memory is larger than
the volatile one. We assume that the complete OS/application code is stored in the non-volatile



3.4. NANOOS APPROACH 45

memory. This memory is normally a Flash. Flash memories havelong read and write access
delays and require more energy than the RAM.

Although we will not deal with different architectures in this work, the NanoOS could be also
adapted to other possible types of nodes: nodes where the code is loaded to the RAM before
executing or nodes where the non-volatile memory isn’t enough to store the complete OS/Ap-
plication. In this case, the migration of a service (that will be described latter) demands the
transfer of both state and code.

Communication Device: We are considering, in our work, that the devices have wireless communi-
cation based on radio frequency. Devices with high energy efficiency are desired. Moreover, we
assume that the data rate of the device is chosen in order to cope with the communication needs
of our distributed OS plus application. We are also assumingthat there is no power control in
the communication devices, i.e., they use always the same power to transmit. The range of the
device is specified based on the application’s requirements.

Sensor and actuators:Depends just upon application requirements. For the OS, anyset of sensors
or actuators may be used.

Power Supply: This is a crucial component in our system. Due to the fact thatwe are playing, in
our approach, with the trade-off between energy consumption and complexity of the OS/appli-
cation, an efficient and high capacity battery is supposed. Moreover, due to the relatively high
energy consumption brought by the OS/Application distribution, a good energy scavenging sys-
tem may be required.

3.4.1.1 Models for Reconfiguration

For the purpose of supporting the dynamic adaptation realized through the heuristics presented in
the following chapters, the load of the different hardware modules has to be exposed permanently to
the OS. Besides the load of the hardware modules, the communication pattern is another important
variable in the introspection of the OS. The following models are necessary in order to support the
introspection process:

Hardware Load Model This model is responsible for the characterization of the load in the different
hardware resources. Normally, such a module captures theprocessor utilizationand theamount
of used (and free) memory. Because our target are tiny sensor nodes, theavailable energyand
actual power consumptionare important information that should be also in the hardware load
model.

This relevant information for the reconfiguration process is extracted from the current state of
the hardware and is exposed to the heuristics presented in the next chapters.

Communication has to be modeled as well. In our case this means the wireless link states on the
ad hoc network. Link utilization, (history of) up-time, and signal strengthare examples of
important metrics of a wireless link of the network. Those metrics will be summarized in a
value calledvirtual distance. This model will be presented in more details in Section 3.5.

A neighborhood link table containing the virtual distance to the vicinity nodes is the main data
structure of our communication model. This will be heavily used in our service distribution
algorithm and in the cluster construction heuristic presented in the next chapters.



46 CHAPTER 3. NANOOS ARCHITECTURE

3.4.2 Software Components

Before describing in detail how the application and the OS are organized in our system, let us define
the software components (or blocks) used in their construction:

Processing thread: A processing thread describes the execution of code associated with a state.
There are two subtypes of processing threads:

Task: Tasks are stored at nodes for a particular purpose. For example, they can process locally
sensed data or execute an application-specific functionality. They can be thought as part
of the distributed application. They do not leave the node and can terminate at their own
will.

(Mobile) Service: Nodes may start services at request. Services can be seen as parts of a
distributed application that can be used by other parts. This means that the services are
offering functionality that is shared among tasks and otherservices. Services maintain
state information associated with each service requester.A service requester is some
processing thread that is using the functionality of an external service. It can be either
a task or a service. Services are created an request and are mobile entities, i.e., they may
migrate among the sensor nodes. Services can be divided in two types:

(Mobile) OS Service: A service made available by the OS that may migrate. Normally,
they are generic and do not implement any application-specific function.

Application Service: The applications may also implement functions that are shared.
Normally, they offer more high level (and specific) functions than the OS services.
Those services are treated by the OS in a similar way to the OS services, i.e., the
service distribution algorithm acts also on application services.

Additional components are:

Local Service: A service of the OS that does not migrate and may be called justin the local node. It
represents a conventional OS service.

Other components of the OS that have no relation to tasks or services will be presented in the
appropriate section.

Figure 3.9 shows the relation among processing threads, tasks, and services.

3.4.3 Application

An application in our system is a collection of tasks and application services that has a specific pur-
pose. The tasks and services are the atomic units of the distributed application. This means that
their program code must not exceed the resource availability of one single node. Application services
migrate using the migration policy offered by the OS (presented in the next chapter).

As already said, the tasks have a fixed placement in a given node, whereas services may migrate
in order to improve the system performance. The developer isresponsible for the division of the
application into several cooperative tasks and services. The idea is that one application has normally
fixed tasks placed on nodes, responsible for reading the sensor data, and mobile services, responsible
for handling the data and processing it.

An example of an application composed by a task and two services is shown in Figure 3.10. In the
example, the task is responsible for reading the data from the node sensor. After this, the domain of



3.4. NANOOS APPROACH 47ProcessingThreadTaskService
OSServiceApplication'sService
<<uses>>

Figure 3.9: The relation among processing threads, tasks, and services.

Figure 3.10: Example of a task using two different services.

the temporal series of samples is changed using a user-levelservice that implements the Fast Fourier
transformation. Afterwards, the spectral data is encrypted by an OS service and, finally, sent to the
destination (access point of the WSN).

3.4.4 NanoOS Structure

3.4.4.1 Architecture

The operating system is responsible for managing the resources of the system, controlling peripheral
devices, and providing software abstractions to the applications [120]. These tasks in the NanoOS are
managed using two layers:

Local Management Layer: Device drivers, process management, and memory managementare re-
alized at each local node. The hardware dependent part of theoperating system lies in this
layer.

Mobile Services Layer: Part of the OS functionality is implemented by means of mobile services
that may migrate among the nodes in the system. These mobile services implement hardware-
independent functions that are used by several applications. Due to the resource restrictions of
each single node, instead of having all functions in a singlenode, they are distributed among a
group of nodes.

In this section, we will present the architecture of the NanoOS. Figure 3.11 presents the basic
architecture of the OS. The application is also presented inthe figure.



48 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.11: Architecture of local node’s OS

The functional parts of our OS are:

Hardware Access Layer Translates the abstract hardware calls from the drivers inside the operating
system kernel to real hardware accesses.

Device Driver Like in a conventional OS, the device drivers are responsible for abstracting the low
level interaction with the devices present on the node.

Processor ManagementLike conventional embedded OS, our system use a preemptive multi-tasking
approach to manage the processor. We aim at reducing as much as possible the number of pro-
cessing threads in the system in order to avoid the overhead of saving a large number of process
states in local stacks. Each thread has its own stack.

Memory Management Also present in each node, it is responsible for managing thevolatile memory
of the system.

Synchronization Responsible for offering synchronization primitives likesemaphores to the appli-
cation and services and to the OS kernel itself.

Network Stack Here the complete network protocol stack of the system resides. It is responsible for
the establishment of an ad-hoc communication infrastructure.

Resource Monitor In a reflexive system, the existence of architecture structures capable of holding
the current state and semantics of both the application and system software is essential. The
models presented in Section 3.4.1.1 that capture the state of the system and also of the commu-
nication links are included in the resource monitor.



3.4. NANOOS APPROACH 49

Figure 3.12: Example of memory occupation of the NanoOS. This is a simplified view, just tasks and
mobile services are considered.

Service ManagementResponsible for managing the allocation of a service to a requester. This
means that when a certain kind of service is required, the service management starts a service
discovery process. Moreover, it is also responsible for creating a new instances of a service (if,
for example, the searched served is not found). It also manages a table containing the currently
used services (by some requester in the sensor node).

Mobile OS Service It has been already defined in Section 3.4.2.

Mobile Application Service It has been already defined in Section 3.4.2.

Call Abstraction Layer Responsible for receiving the system calls from the user-level tasks or from
the mobile services. Depending on the sort of call, it may be handled by a local OS component
or by a mobile service. In the last case, the call is redirected to the mobile service by means
of a local call (if the service is locally present) or the callis forwarded to the node hosting the
service currently. The Call Abstraction Layer is the WSN service interface.

This set of capabilities provides a basic hardware management at the local node as well as an
infrastructure to allow mobile services to be transparent to the requester. The upper functions are often
present in the middleware layer, nevertheless we decided toinclude them in the NanoOS in order to
reduce the overhead of having extra layers on top of the OS, thus providing a better integration of
the mobile services with the OS. Moreover, cross-layer optimization also benefits from this design
decision.

It is important to highlight that, with this architecture, the distribution of mobile services in the
system is completely transparent to the application (and tothe mobile services besides the reconfigu-
ration module). Every service may be installed in every nodein the system. The single constraint on
the free placement of services is the amount of resources present in the target node.

3.4.4.2 Memory Organization

In this section, the memory organization of the NanoOS is presented. In Figure 3.12.
As already mentioned, we assume nodes with a large non-volatile memory where the code of the

OS and application is stored (including services). The dataof the services and application are stored
in the smaller volatile memory. Moreover, one stack per thread is required and stored in the volatile
memory. The different elements of the state of a service are described in the next section.



50 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.13: Internal organization of the services

3.4.5 Dynamic Mobile Services

The dynamic mobile services are the basic units of the reconfigurable part of our OS. The application
services are managed by the OS in a similar manner to the OS mobile services. Therefore, when we
refer to a service, we mean both of them.

As already said, services may be installed in any node of the system and are shared among several
requesters. The requests may come from the local node as wellas from remote nodes.

In the next section, we will define the basic modules of each service.

3.4.5.1 Service Architecture

In this section, the architecture of the mobile services will be presented in detail.
The internal architecture of a service is depicted in Figure3.13. The following areas are part of a

service:

Request Queue:Store the remote procedure call (RPC) requests coming from the service requesters.
Here we use a first come first served (FCFS) policy to select which request should be handled
next.

Stack: Each service has just one execution thread, and, therefore,just one stack to store the process
context is necessary.

Context State area: In the context state area, the state of all currently runningcontexts of the service
are stored. Normally, we have as contexts as many independent applications are calling the
services. The contexts will be elucidated in Section 3.4.5.2.

Common state area: This area stores parameters and shared global variables that are not dependent
on any specific running context and are shared among all contexts. In an encryption service, for
example, this will be the key that is used to encrypt the data coming from all requesters.

Common working area: This area can be used by a context to store temporary values when execut-
ing some request. As just one context is active at the same time (because just one thread is
available), at the end of the request, it must be assumed thatthe area may be overwritten (by the
context activated in the sequence).



3.4. NANOOS APPROACH 51

Figure 3.14: Example of a service instance containing tree contexts.

Reconfiguration subsystem:The reconfiguration subsystem is responsible for storing the reflective
information regarding the service and determining the position of the service in the wireless
network. For that, it uses its own reflective information andglobal information stored inside the
OS.

Code area: Memory region where the code of the server is stored.

3.4.5.2 Service Instance and Contexts

The following terms are used to describe the running entities and states of a mobile service:

Service Instance: An executed copy of a certain service, with dedicated thread. Each memory block
described in the last section has its memory allocated. A certain type of service (e.g. encryption
service) may have more than one instance running at a given point of time in the NanoOS
system.

Service Context: Each requester (or group of requesters) using the service for a particular purpose
has the illusion that the service is running just on its own behalf. This defines a service context:
an independent run of the service, working on its own data. Inthe object-oriented nomenclature,
it is equivalent to an “instance” of an object. To better explain, an example is depicted in Figure
3.14. We have in this example three tasks. Each task is independent and is willing to use service
s. A service context is assigned to each of them. From the pointof view of each requester (task),
they are using the service exclusively. The state associated to each requester is stored separately.

The main reason for the introduction of the service contextsis to use the resources more efficiently.
If, for each independent requester, a service context is used instead of creating a completely new
instance of the service to manage the requests, overheads can be avoided:

⋄ Common state area. Here common parameters that are stored are identical for all requesters.

⋄ Common working area. Due to the fact that each request is processed until termination (because
each service has only one thread of execution), the memory that is allocated for temporary
processing may be reused for the next request (coming perhaps from other requester).

⋄ Stack. Just one local stack is used for all contexts. When theservice thread is preempted, just
one context can be active, which means that its state must be stored. If several instances of the
service are started (instead of contexts), each one will require a private stack.



52 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.15: Cipher Block Chaining (CBC) mode encryption.

Relationship between contexts and requestersA service context may handle related requests
coming from more than one requester. These requests are correlated from the point of view of the
service, i.e., they are using the same state. An example may be a service that compresses sensor data
using spatial and temporal correlation among the samples and sends this data to a sink. Several re-
questers are sending their sampled data to the same service context, which compresses it and sends it,
at end, to a sink, which is another requester.

The example shows that the relationship of a service contextto requesters is one-to-many.

Service Replicas Another concept related to the service instance are servicereplicas. A replica
maintains the same state of the principal service. It is usedto ensure fault tolerance and support
self-healing. It is not addressed in this work.

3.4.5.3 Examples

In order to clarify how the services are designed and work, wewill give here two examples.

Encryption Service The first example is a conventional processing service. The service is com-
posed by an encryption algorithm (in our example the well known DES algorithm).

DES is a block cipher, i.e., it takes a fixed length string of plaintext bits and transforms it through
a series of complicated operations into another ciphertextbitstring of the same length. We suppose
the use of DES in the cipher-block chaining (CBC) mode. The way of operation is shown in Figure
3.15. In the CBC mode, each block of plaintext is combined using a xor operation with the previous
ciphertext block before being encrypted. In this way, the ciphertext is dependent on all plaintext
blocks processed up to that point.

Let us now present how the service architecture looks like. The service acceptsn requesters and
for each requester a context of the service will be launched.This means that up ton context states are
needed in the state area. A special call initializes the key value that is stored in the common state area,
because for all instances using the service the same key willbe used. This saves memory that would
be wasted storing a copy of the key for every instance.

In the context state area, the last encrypted block is storedin order to be processed in the CBC
mode. Upon receiving a request of block encryption, the service uses the DES algorithm to encrypt it
using the key stored and the last ciphertext block from the respective context state. The result of the
encryption is sent to the requester, and, at the same time, the new cipherblock is stored in the context
state. The common working area is used for storage of the intermediate results of the 16 rounds of the
DES algorithm. Because the service is composed just by one single thread, upon receiving a request



3.4. NANOOS APPROACH 53

Figure 3.16: Example of data aggregation service using the NanoOS architecture.

for block encryption, this request is ran to completion before the next one be taken from the request
queue. Nevertheless, the thread may be preempted by anotherservice or by the OS. The current
execution state is then stored in the local stack of the service.

Data Aggregation Service In this example, we show how our service architecture may be used in
order to implement a typical sensor service, the data aggregation service.

Normally, data aggregation occurs in a scenario with data sources (which generate data, e.g. from
samples from sensor reading) and sinks (consumers of the data). While traveling through the network,
an in-network processing possibility is aggregation of thedata. This means that the data coming from
different sources are summarized in a smaller representation. An example may be computing the
mean or the maximum of measured values. There are also complex operations in sophisticated data
aggregation based on signal processing techniques. The benefit of such aggregation depends on the
position of the data source, relative to the data sink [69].

A common mechanism takes advantage of the fact that the data flows from source to sink along a
tree, therefore intermediate nodes may apply aggregation.One important question (among others) is
where the aggregation point should be placed.

We propose a data aggregation method based on our service architecture. For that, the aggregation
is implemented as an OS service. Each service context may have n requesters in the data source role
and one requester in the data sink role. In Figure 3.16, we show an example of an aggregation service
with four sources and one sink. In (a), the tasks 1 to 4 register themselves as data source. The task 5 is
the sink and will receive the aggregated data. After the set-up phase, the aggregation service receives
the data samples coming from the sources, summarize them in asmaller representation, and send it to
the sink node. This is shown in Figure 3.16(b).

An example of a possible configuration of the network with theaggregation service is shown in
Figure 3.17. In the NanoOS approach, we decompose the network in clusters (see Section 3.4.9 and
chapter 5). We define for this service that all sources must beinside one cluster (therefore, locality
is observed). As we will see in next sections, in the default situation, all requesters of a service are
located in the service’s cluster. This fit with our conception of the locality of sources. We make an
exception for the sink: it may be external to the cluster.

Our approach has some similarities with the LEACH protocol [57]. In LEACH, the network is
organized in terms of clusters, and the clusterhead is responsible for receiving the data from members,
aggregate them and forward it to the sink. Because we are alsoorganizing the network in clusters, our



54 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.17: The data sources and sink and aggregation services placed in the WSN.

aggregation service executes a similar service to the clusterhead in the LEACH. Nevertheless, there is
a notable advantage: to the service distribution heuristic, the system tries to optimize the placement
of the aggregation service automatically. This is not the case in LEACH.

Therefore, our advantage, besides the structuring of all services needed in the network into a
systematic framework, is the automatic placement of the services, whose goal is the reduction of the
communication. Moreover, differently from LECH, the reaction to topology changes is automatic.

3.4.6 Service Management

The service management is responsible for two tasks: the discovery of requested services in the WSN
and the creation, on demand, of new instances of services.

3.4.6.1 Service Discovery

The services of the OS are distributed among the nodes of the system. Therefore, before a task of the
application or other services can use a given type of service, a node that currently hosts a service of the
required type has to be located. This process is calledservice discoveryand is reviewed in Chapter 2.

Due to the fact that we are organizing the network in clusters(see Section 3.4.9), we are using a
central service directory located in the clusterhead to provide service discovery. Every new service
must register itself at the clusterhead. Nodes requiring services will send service discovery requests
to the clusterhead, which will return the current location from its internal table.

In the future, a more scalable service discovery mechanism may be used in the NanoOS.

3.4.6.2 Service Instantiation

The service discovery method described above allows a requester to find a required type of service
in the network. When the required service is not found, or it is not available (because it is already
serving the maximum number of requesters), a new service instance must be created. For that, two
methods may be used:

• When a service has been discovered, a quality metric1 is evaluated, which calculates both the

1If no instance of the service was found by the discovery, the quality is zero.



3.4. NANOOS APPROACH 55

virtual distancebetween requesting and service node and the load of the service instance (how
many other requesters are served). If the quality is below some threshold, a new instance of the
service will be created.

• In this method, the service discovery only creates a new service instance if no available service
of the requested type was found. If an available service was located, it will be used by the
requester.

The new instance of the service is either created in the localnode (when there are enough re-
sources) or in the next free node (measured using our link metric). The service distribution algorithm
described in Chapter 4 then is responsible for migrating theservice to a better network position when
necessary.

3.4.6.3 Service Termination

Each service that has no requesters associated to it and is idle for a configured period of time is consid-
ered unused. The service manager is responsible for deleting these services, freeing their resources.
In this case, any remaining state that eventually exists is erased.

3.4.7 Distribution Methods

After the service discovery phase, the communication phasebetween the requesters and a given ser-
vice takes place. We now assume a situation, where many requesters distributed in the system are
communicating with many services, which are distributed aswell. A single path routing algorithm is
responsible for finding a good route between the nodes.

The main goal of the distribution heuristic is to optimize the position of the services by migration,
in order to minimize some objective function. In this thesis, the communication overhead minimiza-
tion is our objective function. In Chapter 4, a service distribution method following this objective is
presented.

3.4.8 OS Network Organization

In a large system with a great number of nodes, the organization overhead of the service discovery
and distribution can be excessive. For example, in the discovery phase, it may happen that a node at
the other end of the system has to be contacted. Pheromone tables (used in the service distribution
presented in the chapter 4) will get large. These effects result in bad scalability. In addition, in an open
network environment, there is no efficient way of controlling how many instances of a given service
are running on the system.

Moreover, depending on which protocols are implemented in the WSN, there may be a need for
some local coordinator, in order to avoid the overhead of allnodes storing information about the
complete network. This local central coordinator also allows the use of algorithms with a central
controller that are sometimes necessary. Nonetheless, this centralistic approach is enclosed just in a
certain area of the network. In addition, organizing the network in clusters (and therefore creating
hierarchy) may be also useful to support the topology control.

3.4.9 Organizing the Network in Clusters

Since the goal of the distribution methods is the minimization of communication between the re-
questers and services, a natural grouping of these objects at nearby positions in the network can be



56 CHAPTER 3. NANOOS ARCHITECTURE

expected. If this weak kind of clustering happens anyway, itwould be an advantage to define a hard
separation of the nodes of the system into clusters. In each cluster, a complete instance of the OS
will run. This brings a reduction of the organization overhead, since the discovery process is con-
strained inside the local cluster and the pheromone tables must only store values for services used by
requesters inside the cluster. Moreover, the clusterhead also embraces additional controlling functions
like storing the list of all OS service instances (service discovery broker) and also a routing table to
other clusters. Each node must just know some information about the cluster to which it belongs to.

In Chapter 5, we investigate thoughtfully methods to solve our clustering problem, calledmini-
mum intracommunication-cost clustering.

The minimum intracommunication-cost clusteringproblem corresponds to the partition of the
nodes of the network into multi-hop groups with a guaranteedminimum amount of resourcesq (or
budget) per cluster. At the same time, it looks for the minimization of the sum of the internal commu-
nication costs of each cluster (measured using the link metric). This comes from the requirement of
the existence of a certain amount of resources inside a cluster. This amount must be enough to host a
complete instance of the OS, application and necessary mobile services inside each cluster. A cluster,
from the point of view of OS and distributed services, can be defined as follows:

Definition 3.4.1. A cluster is a set of nodes where all the services required by any application running
in this set are available in some member of the set.

Each cluster can haven ∈ IN applications using mobile services. The idea is that a cluster can
be seen as an “execution environment” where all necessary services required by the applications are
present.

When the network has been decomposed in to clusters using theclustering algorithm presented in
Chapter 5, the clusterhead is the representative and controller of the instance of the operating system
running on the cluster. Moreover, it hosts the central broker for service discovery.

A necessary task of the NanoOS in dynamic environments is to control whether all necessary
services are still inside the cluster when the topology changes, causing a re-clustering process. Instead
of a central controller polling the location of the components of the system repeatedly, the process of
restructuring the cluster is triggered by the moved entity.We recognize two kinds of entities that may
change the cluster affiliation:

• Services - When a service, due to topology changes, arrives undesired in another cluster, it must
be replaced in the original one.

• Application tasks - The same may happen with application tasks. They may arrive in another
cluster due to a topology change plus re-clustering process. Since the tasks’ location is not
controlled by the OS, some mechanism should adapt the new cluster to the arrived task. This
means that the state of the services that are in the old cluster must be transferred to the new one.

Mechanisms to handle these two cases are presented in the next section.

3.4.9.1 Constraining Services Inside the Cluster

Each service and each requester has an internal variableassigned_cluster that indicates to which
cluster it belongs to. Each time that a service receives the notificationnew_cluster, it checks whether
the node still belong to theassigned_cluster. When not, this means that, due to a cluster recon-
struction activity (triggered by, for example, a topology change), the node has to change the cluster
which it belongs to. This requires a migration of the serviceback to the corresponding cluster. For



3.4. NANOOS APPROACH 57

Figure 3.18: Inter-cluster service migration

that, the service contacts the clusterhead of the target cluster, and it assigns a node to the service. An
example of this situation is shown in Figure 3.18. In (a), an example of two clusters and a service-
requester in the first one is shown. In (b), the node with the service moves and a topology change
happens. As answer to this situation, a re-clustering process takes place and the node now belongs
to cluster two. In (c), the service notices this situation and negotiates with the clusterhead of itsas-
signed_cluster a new node to host it. After this migration, that can be seen in(c), a valid situation
is achieved again.

3.4.9.2 Reacting upon Task’s Cluster-Membership Changes

In this subsection, a mechanism to react upon cluster membership changes of the hosting node of a
task is presented. Differently from services, tasks can notbe replaced by the OS. When a task arrives
in a different cluster due to some re-clustering process, anapproach is required to prepare this new
cluster to execute the task.

Like services, tasks have an internal variableassigned_cluster to indicate which cluster they
belong to. When the node is assigned to a new cluster, the cluster sends the notificationnew_cluster
to all tasks and services. Upon receiving it, it checks whether the current cluster has been changed.
If positive, the service contexts that include the actual task as the only requester associated with them
should be transferred to the new cluster.

For each of these contexts, a negotiation occurs between thetask and the clusterhead of the new
cluster, to check whether the same type of service already exists in the new cluster. If positive, the
service context will be migrated to that service. If not, a new instance of the service is created. At
the same time, the service instance containing the context is contacted to check whether the migration
can occur. If positive, the context related with the task is migrated from the original cluster to the new
one.

In Figure 3.19, we depict this situation using an example. In(a), the taskst1 andt2 are using the



58 CHAPTER 3. NANOOS ARCHITECTURE

services1 inside the cluster 1. Each of them has its own state and represents independent executions
of the service context. In (b), the node hostingt2 changes its physical position. As reaction, the
re-clustering process takes place and now the node is in the cluster 2.

This situation is detected, and a negotiation takes place inorder to migrate the context related with
t2 from the services1, located in the cluster 1, to the cluster 2 (Figure 3.19 (b)).Due to the fact that no
service of the same type is currently instantiated in the cluster 2, a new instance is created and receives
the context state related to the taskt2 (Figure 3.19 (c)). The task may now resume its execution.

It is important to remark that our proposals are best effort approaches, i.e., there is no guarantee
that a service continues to be provided in the case of large topology changes. The applications must
be programmed to cope with situations where the service theywere using isn’t anymore accessible.

3.5 Communication Link Model

In this section, we will present the communication link model used as base in the algorithms developed
in this thesis. It is implemented in the logical link layer ofthe sensor nodes.

3.5.1 Links in a Wireless Network

A very important difference between the wired and the wireless networks is the behavior of the net-
work links. In a wired network, the links have a relatively stable quality. The parameter that has a
high influence on this type of link is the load of the network.

On the other hand, in ad hoc wireless networks, there are several parameters that influence the
link quality. First of all, the propagation of the waves in a wireless medium is affected by phenomena
like attenuation, distortion, exponential path loss, etc.Moreover, the environment is dynamic, with
changing obstacles, temperature, and pressure that affectthe transmission properties.

As already shown, the transmission over wireless channels are subject to several physical phe-
nomena that distort the original signal. This distortion introduces uncertainty at the receiver about the
original signal, resulting in bit errors. The wave propagation phenomena that contributes to the distor-
tion are reflection, diffraction, scattering, and doppler fading [69]. Moreover, noise and interference
lead also to reception errors.

Because the quality of a link is an important factor in a wireless network, our model the links is
based on alink rating provided by the logical link control layer. This rating reflects the “usefulness”
or “quality” of a link. The ad hoc network being modeled by an undirected graphG= (V,E), where V
is the set of wireless nodes and an edge{u,v} ∈ E if and only if a communication link is established
between nodeu∈V andv∈V, we define, for each link, a weighting function that assigns apositive
weightw : E→ [0,1], where 0 means an “excellent” quality and 1 means “very poor”quality. For a
link {u,v} /∈ E, we definew(u,v) = ∞.

The properties of a wireless link make the task of finding the appropriate link rating a challenge.
How the quality of a wireless link may change under a very uniform environment can be seen in
the experiment reported in by [133]. In this experiment, Berkeley Mica Motes running TinyOS were
arranged linearly with a spacing of 60cm. They measure the packet loss rates at different distances in
different pairs of nodes. In Figure 3.20, a scatter plot of how links vary over distance for a collection of
nodes on the ground of a tennis court is shown. Although in such an ideal environment a behavior near
to the theoretical path loss curve was expected, the resultsdepict a very different reality. After a certain
distance (4m), the difference on the reception success rate between nodes at the same distance was



3.5. COMMUNICATION LINK MODEL 59

Figure 3.19: Example of a task changing the current cluster and the service reorganization.



60 CHAPTER 3. NANOOS ARCHITECTURE

Figure 3.20: Reception success rate versus dis-
tance of the transmiter/receiver (data source:
[133]).

Figure 3.21: Stability of a link between two
stationary nodes [133].

Figure 3.22: 2-D chart demonstrating that the link quality does not depend only on the distance, but
also on the position of the sender and receiver. Data source:[133]

very significant. This could be verified in the regions markedby “acceptable” and “poor” receptions
(in the paper the areas are calledtransitional regions).

The labels in the picture were assigned based on the average reception success rate (RSR). We can
define thresholds for the inferior limit of the four defined regions, i.e.,RSRiexcellent, RSRiacceptableand
RSRibad.

In Figure 3.21, the stability of a link between nodes that are2.4m far from each other is shown.
Although the mean quality is relatively stable, there are significant variations in the instantaneous link
quality.

Figure 3.22 depicts the reception success rate in a 2-dimensional chart. We can conclude, from this
chart, that the link quality dependents not just on the distance between the communicating partners,
but also on the node’s physical position. Small changes in the position may generate considerable
changes in the reception success rate [68].

The experiments described here illustrate how challengingis the development of a trustworthy
link metric.



3.5. COMMUNICATION LINK MODEL 61

Besides this, many approaches are based on abimodallink quality, where a link may exist or not.
Although this may often be a true assumption for wired networks, it is not a reasonable approxima-
tion for wireless networks. Algorithms based on this simplistic assumption often choose low-capacity,
long-range links instead of high-capacity, low-error links. This affects negatively the performance. It
happens because bad links are good enough for control packetexchange, but during data transmis-
sions, much of the capacity is consumed by retransmissions and error corrections.

In the publications [37, 38], this effect is observed for routing protocols. The authors try to
minimize the hop-count, bringing a prioritization of bad signal strength and maximizing the loss
ration. The effects of this selection are analyzed in the papers.

3.5.2 Link Quality Estimation

To estimate the link quality based on the observations of thetransmissions that already took place is
an example of filtering problem. The following properties are desirable from a good estimation [69]:

Precision The collected statistics should give useful prediction precision.

Agility When a rapid change happens in a link (for example, the node moves), the metric should react
quickly.

Stability The metric should be immune to sporadic noise/fluctuations.For that, the filtering theory
can be applied.

Efficiency The snoop of packets from the neighborhood and the storage ofold values in order to
improve the filtering are costly operations in a wireless sensor network and should be avoided
when possible.

The most important properties are agility and stability. Ideally, a network estimator should be
agile when possible, nevertheless stable when necessary - it should adapt to the prevailing network
conditions [70].

There are two types of estimators. An active estimator uses special packets to measure the link
quality, whereas, in a passive estimator, the estimation ismade based on snooping the neighborhood
transmission and detecting packet loss based on sequence numbering.

In the work [131], the trade-offs between stability (in termof variance or standard deviation),
agility and history are studied. The problem observed is that the relation between the standard devi-
ation and the number of samples is quadratic, i.e., for a stable estimator, a large number of samples
may be required, which leads to a less agile estimator. Moreover, different kinds of estimators are
analyzed in the work.

The exponentially weighted moving average (EWMA) is simpleand memory efficient. Besides
that, it uses infinite history by means of a linear combination of all past events weighted exponentially.
It has the property of being reactive to small shifts. The basic principle of this filter can be summarized
by P = α ·P+(1−α)r, whereP is the estimator outcome andr is the actual input from some sensor.
α is the tuning parameter.

The publication [131] makes a comparison between the EWMA and other simple estimators
like the flip-flop EWMA, moving average, time weighted movingaverage, and window mean with
EWMA. They found that EWMA performs best overall over an average in a time window (WMEWMA).

In the work [70], the comparison of four filters and their adaptation to the network prevailing
conditions are shown. The filters were flip-flop EWMA, stability filter, error-based filter, and Kalman



62 CHAPTER 3. NANOOS ARCHITECTURE

filter. Although the Kalman filter, when applied to a linear system, isoptimal, it requires a significant
knowledge of the system that is not available when estimating network performance. Therefore,
reasonable guesses were employed and led to good results.

They conclude in the work that the flip-flip filter brought better results in terms of agility and
stability.

As we will present in the next section, instead of using just one parameter to obtain a link es-
timate (like here the error rate was used), we decide to make acombination of several parameters.
Some are used in order to give the estimator a fast response tochanges, others to improve the long
term prediction. Moreover, we decided to use, for some metrics, the basic exponentially weighted
moving average, due to its straightforward implementationand its low memory and computational
requirement. This is an advantage for sensor networks.

3.5.3 The Combined Link Metric

In this section, we will define a link metric that summarizes the “goodness” of a link. Each link
receives a real value that describes its quality. The algorithms developed in the next chapters of
this thesis use this link metric instead of using the bimodallink model as usual for many existing
approaches.

The following variables will be used in order to estimate thelink quality. They are summarized in
our combined link metric.

1. Success Rate

2. Received Signal Strength

3. History

4. Energy Reserve

3.5.3.1 Success Rate

The idea is to use past samples of the success rate in order to estimate the quality of a link. Besides the
filter analysis presented in the previous section, there aremore practical approaches using the success
rate as link metric. The approach presented in [37, 38] uses ametric calledexpected transmission
count(ETX) to estimate the success rate. The metric predicts the number of transmissions (including
retransmissions) required to successfully deliver a packet. It uses the values ofdf (forward delivery
ratio) anddr (reverse delivery ratio) to calculate ETX (ETX= 1

df ·dr
). The forward delivery ratio is the

measured probability that a given data packet successfullyarrives at the receiver. The reverse delivery
ratio is the probability that the acknowledgment packets are successfully received. The values ofdf

anddr are measured using dedicated beacon packets.
In the work [40], the authors use rewards associated to transmission and receptions events in order

to calculate the delivery ratio. Also promiscuously received packets are used in the metric.
Success rate is a relatively reliable method to predict the quality of a link. Nevertheless, there

are also some drawbacks: at the beginning of the observation, there is no data to be used for the
prediction; moreover, it reacts slowly to changes in the topology (a node has moved but the link rating
still indicates a good link). In addition, very old measurescould not estimate accurately the current
situation.



3.5. COMMUNICATION LINK MODEL 63

Figure 3.23: Correlation between signal
strengh indication and distance for two
nodes. Data source [141]

Figure 3.24: Correlation between sig-
nal strangh and data loss rate. Data
source [141]

3.5.3.2 Received Signal Strength

The received signal strength indication (RSSI) as link metric is a proposed substitute of the bimodal
links in some approaches, because most network hardware provides it.

The correlation between the received signal strength and the distance of two nodes is rather far
from the ideal path loss curve. This can be seen by the experiment performed by Zhao and Govindan
[141], showed in Figure 3.23. It has been measured in a office hallway. In the picture, the deviation
of the measured RSSI from the theoretical curve can be seen. Although the measured RSSI roughly
follows the curve, high deviations in both sides of the path loss model can be seen. Moreover, the
larger the distance the higher the variance of the measured data.

When analyzed out of context, the figure may give the impression that the RSSI alone could be
a good estimator, due to the fact that the measured data roughly follow the path loss. Figure 3.24
opposes this naive assumption. It analyzes the relationship between the signal strength rate and the
packet loss (complement of the reception success rate). Forsignal strength readings higher than 580,
almost all packets are received. In the range from 500 to 580,the packet loss is scattered over the
whole range of the packet loss. This fact shows a drawback of using the RSSI as the only estimator
for link quality. However, a small correlation between the signal strength and the packet loss can be
seen even in this region.

Because the received signal strength indicator roughly follows the path loss, we can compare
Figure 3.24 with Figure 3.20. The results from the experiments are similar: the behavior of the link
can not be clearly defined by means of the RSSI (or distance).

Cerpa et al. [28] performed similar experiments with mica motes in an indoor office, an out-
door urban, and outdoor habitat environments. They obtained similar results. However, for outdoor
environments, the variability of the links were even higherthan the results from [141]. They charac-
terized micas’ links as asymmetrical (some links have different reception rates between sending and
receiving), non-isotropic (the connectivity was not necessarily the same in all the directions from the
source), and with non-monotonic distance decay (nodes geographically far away from the source may
get better connectivity than closer ones).

As conclusion of this section, we argue that the signal strength may be used just as a roughly
indicator of the quality of the link. Therefore, we integrate it with other indicators in our combined
metric.



64 CHAPTER 3. NANOOS ARCHITECTURE

Stable Links

volatile links

Figure 3.25: Example of stable versus volatile links in motion of two groups of nodes.

3.5.3.3 History

In the algorithms developed in this work, it is important to select trustworthy and stable links instead of
newly created ones. In Figure 3.25, a situation where two groups of nodes are placed in two different
trains moving in opposite directions is presented. The connections between the nodes from one group
to the other on are volatile, because the connections will break soon. For the cluster construction or
service distribution (presented later in this thesis), using nodes from the opposite group has drawback,
because the link will be broken soon and a high overhead to reorganize the clusters (or services) will
result.

To prevent the use of temporarily links, an additional parameter is used in the metric. It measures
how long is the existence of the link and penalizes very new links.

It is important to say that for other applications (e.g. routing protocols), the use of volatile links
may bring some advantage because those links may reduce considerably the route between two nodes.

3.5.3.4 Energy Reserve

In a sensor network environment, the energy is a precious resource and the pattern how energy is spent
makes a real difference concerning the complete network life time. In [69], the network lifetime is
defined by the time during which a sensor network can fulfill its purpose. Some possible definitions
for this event are:

• Time to first node death

• Network half time - 50% of the nodes ran out of energy

• Time to partition

• Time to loss of coverage

• Time to failure of the first event notification

More generally, it is also possible to consider the nodes lifetime distribution. One question could
be which percentage of the nodes are still operational at anygiven moment. Curves where the proba-
bility of many nodes functioning in a short term sacrificing long life networks that have few nodes at
the end are a preferable situation, i.e., the energy should be spent in a uniform manner.

We decide to include the amount of energy of a node in the link metric to restrict the use of
exhausted nodes, because the link metric tends to evaluate them worse than links among nodes plenty
of energy. This brings a more uniform consumption of energy.The energy reserve parameter in the
link metric may improve a uniform energy use, specially by routing protocols.



3.5. COMMUNICATION LINK MODEL 65

3.5.3.5 Combined Metric

We combine the presented parameters in a link metric that indicates the goodness of a link. The
statistic-based observation of transmission success is a good indication of the future success rate,
nevertheless it reacts slowly to changes and at beginning has no data to be calculated. The received
signal strength indication makes possible quick indications, but it is not very precise. Therefore, the
combined metric uses these two parameters. Moreover, in order to prioritize stable links, the history
is also used. Finally, the energy is also included in the linkmetric to promote a uniform use of the
nodes in the sensor network. The combined metric is defined ineq. 3.1.

Mcombined= 1−
(
k1 ·MRSSI+k2 ·MRSR+k3 ·Mhistory+k4 ·Menergy+0·k5

)
(3.1)

whereMRSSI∈ [0,1] indicates the normalized signal strength indication,MRSR∈ [0,1] is the recep-
tion success rate,Mhistory∈ [0,1] returns 0 for new links and 1 for old ones,Menergy∈ [0,1] returns 0
for depleted nodes and 1 for full nodes. The last parameter indicates the cost of the hop, i.e., a fixed
cost that should be added to all links.

The terms virtual distance and link metric are synonyms in this work, i.e.,w(u,v) = Mcombined(u,v)
whereMcombined(u,v) is the combined link metric measure in the link{u,v}. A small virtual distance
means good connection, whereas a large one means a link with high error rate.

In Figure 3.26, examples of how the link metric works are shown. In (a), we have a network with
unrated links. If the node 1 wants to send a message to 2, thereare three paths using the minimal hop
count of 2. In (b), the same network is shown, but the links arerated using the link metric described in
this section. Now a differentiation between the possible routes from node 1 to 2 can be made, and the
route with the best metric would be selected. In (c), a new situation is illustrated: a new node appears.
At the beginning, the links to this node are relatively poorly rated, because of the lack of confidence
about the stability of the link. After some time, in (d), the metrics have been stabilized.

The effect of an almost depleted node is shown in (e),(f). In (e), the network in its normal operation
is presented. After routing several packets, the battery ofnode 3 becomes almost depleted. This
reflects in the link metric, and now another route between 1 and 2, not using node 3, is the preferred
one. This improves the uniformity of the energy consumptionamong nodes in the network.

Modifications of this basic link metric may be used in order tobetter assess the quality of the
link taking in account the environment where the nodes are deployed or to drive the higher level
protocols to achieve some desired property. For example, inorder to force the clustering heuristic
presented in the chapter 5 to produce a higher number of flat clusters instead of deep ones (to reduce
the interference among different clusters and improve the spacial correlations between sensors), a
linerization of the RSSI can be used. In the same way, other variations may be included in the link
metric to achieve a desired objective.

We now will present how the sub-metrics used in the equation 3.1 are calculated. The value of
MRSSI is adjusted upon reception of any packet (addressed to the node or acquired in promiscuous
mode). An average of the received values and the currentMRSSIwith an aging factorα is calculated,
i.e.,MRSSI= α ·MRSSI+(1−α) ·amRSSI, whereamRSSIdenotes the adjusted measured signal strength.
The adjustment in the signal strength is done in order to improve its performance by cutting out
extremes where the signal is excellent (RSSIexcellent) or very poor (RSSIverypoor).

Therefore,

amRSSI=







1 if measRSSI> RSSIexcellent

0 if measRSSI< RSSIverypoor
measRSSI−RSSIverypoor

RSSIexcellent−RSSIverypoor
otherwise



66 CHAPTER 3. NANOOS ARCHITECTURE

1

2

1

2

0.65

0.1
0.15

0.25

0.4
0.35

0.55

0.5

0.66

0.15 x

1

2

0.65

0.1
0.15

0.25

0.4
0.35

0.55

0.5

0.66

0.15

0.75

0.75

x

1

2

0.65

0.1
0.15

0.25

0.4
0.35

0.55

0.5

0.66

0.15

0.4

0.4

1

2

0.65

0.1
0.15

0.25

0.4
0.35

0.55

0.5

0.66

0.15

1

2

0.65

0.25

0.4

0.5

0.66

0.15

0.4
0.45

0.65

0.85

(a) (b) (c) (d)

(e) (f)

Unrated link

Excellent link

Acceptable Link

Poor Link

Figure 3.26: Example of link metric ratings. (a) Network with a bimodal metric. Hop count may be
used as distance metric. (b) The same network with our combined metric. (c) Situation where a new
node joins the network. Because these new links have been just created, the rating is poor. (d) After
confirming the stability of the links, the ratings got to a stable situation. (e) Same original network. (f)
Node 4 runs out of energy, link ratings reflect this fact. In (b),(c),(d),k1 = 0.33,k2 = 0.33,k3 = 0.33
andk4 = 0. In (e),(f),k1 = 0.33,k2 = 0.33,k3 = 0 andk4 = 0.33.



3.6. DISCUSSION 67

wheremeasRSSIis the raw measured RSSI.
The metricMRSRis just the combination of the current measured reception success rate with the

existing one, i.e.,MRSR= α ·MRSR+(1−α) ·measRSR. The measured reception success rate (measRSR)
is calculated based on the monitoring of packet transmission and correlated acknowledgment in the
MAC layer.

The history metric (Mhistory) is calculated using the number of received packets. LetCrx be the
number of received packets of the link. This counter is decremented periodically (down to 0) in order
to cope with extinguishing links. We defineMhistory= min(1, Crx

stable_link_count), wherestable_link_count
is the number of packets necessary to consider a link as fullyactive.

Finally, the energy reserve measures how much energy a node has, i.e.Menergyreturns one when
the battery is full and zero when depleted.

3.6 Discussion

In this chapter, we presented the basic architecture of our innovative operating system for wireless
sensor networks. Our approach is unified in the sense that it tries to combine basic OS functionality
with rather high-level support of distributed applications and an infrastructure that supports the easily
development of distributed services. Differently from most existing systems, we are not targeting
only at the classical data-driven sensor network applications, but also distributed processing (e.g.
distributed signal processing) and diversity of services.

Our basic abstractions for the application development arethe mobile service and the task. Tasks
have static position in the system and are responsible, for example, for reading sensing data. The mo-
bile services are responsible for transforming this sensing data in a more high-level system response.
In order to overcome the resource limitations of each node, these mobile services may be installed in
any node of the system and accessed remotely.

When designed as a conventional service middleware (e.g. Corba [96]), one main problem that
remains in this architecture is that for each requesting application, a service instance should be created
and a local stack should be used. This results in a large memory requirement for each requester. In
order to avoid that, we propose the service context concept.Each instance of the service may accept
several requesting applications, and, instead of a new instance being created for each of them, a
context is created and the instance of the service remains only with one stack. The drawback here is
that each request must be run to completion, there is no preemption between different contexts inside
a service, but just between different services, tasks, and OS core inside a node.

With the proposed architecture, it is possible to design classical WSN applications (like data-
fusion) as well as background processing tasks. Moreover, the system may include at some instant of
time a large amount of different services distributed inside a cluster of nodes.

Due to the facts that we are aiming at dynamic networks and we support self-organization and self-
optimization, an algorithm that controls the migration of the services to suitable positions is necessary
and presented in the next chapter.

Instead of supporting the overhead of keeping information of very distant nodes, we are also
logically joining together nearby nodes that form clusters. The clusters are the space where the service
distribution takes place. Moreover, “centralized” approaches may be used inside a cluster without
compromising the scalability of the system.

In order to measure how distant two nodes are, we decide to focus on the communication. We aim
at measuring how error-prone a certain connection between two nodes is using our combined linked
metric called virtual distance. Differently from many usual approaches in ad hoc or sensor networks,



68 CHAPTER 3. NANOOS ARCHITECTURE

we use our metric instead of the hop count to assess the communication cost between two nodes. Our
link metric is the base of all other algorithms developed in the scope of this thesis.

In the next chapter, we will provide a description of the service distribution algorithm. It is de-
centralized and uses just local information to take its decisions, thus complying with the philosophy
of our OS presented in this chapter. Moreover, in Chapter 5, two different heuristics aiming at the
decompositions of the network in clusters with a guaranteedsize are presented. The architecture of
the NanoOS is important to calculate this amount of service.It is necessary to know the applications
that will run in each cluster, their requirements in terms ofservices (and memory usage), and the
OS requirements in order to assess an adequate minimum cluster size to run an OS and application
instance.

Even if a more unified way of programming is desired, where theWSN is seen as an aggregate,
our OS can be used. An extension of the NanoOS can be implemented to allow the injection of new
tasks (queries) in the system and their autonomic replication. This replication may be to all or part
of the nodes of the WSN, like in Maté or Sensorware. Our systemcan provide a large set of mobile
services, where these services migrate automatically and are used by the injected tasks. The tasks may
orchestrate with help of the local services, sensors and mobile services the desired complex distributed
algorithm.



Chapter 4

Service Distribution

4.1 Introduction

In this chapter we will deal with a fundamental question in our system: where should the mobile
services be placed in the wireless sensor network. Several different metrics may be used to evaluate
how good is a given allocation. We decide to minimize the global communication cost measured by
means of our virtual distance metric. The idea is that the minimization of the communication overhead
has a direct impact on the energy used by the system.

There are several possible approaches to control the placement and migration of modules in a
distributed system. We review them in the section 4.2. In thesection 4.3, we define formally our
specific problem. Subsequently, we present two heuristics (section 4.4) that are responsible to control
the placement and migration of our services in the system. The basic and extended versions of our
heuristic aim at minimization of the objective function formally presented in the section 4.3. It was
very important in the design of the heuristics to assure thatthey use just local communications, impose
a small overhead on the node and network, and avoid as much as possible the use of control messages.
In addition, the cost of the new placement shouldn’t overcome its benefit in realistic conditions.

4.2 Related Work

4.2.1 Global Distributed Scheduling

4.2.1.1 Introduction

The placement and migration of components in a distributed system is a problem that has been studied
in various application areas. In the parallel/distributedsystems area, an extensible used approach is to
share the total processing load among the existing CPU resources.

Scheduling of tasks in a system with distributed load involves deciding when to execute a job and
where to execute it. Normally, the two tasks are handled separately by two components: the allocator
and the scheduler.

The allocator decides where to run a certain task. The decision in each local node of when to
select the task for execution is done by node’s local time-sharing based scheduler (this problem is
also called “local scheduling problem”). This means that each node decides when to run the existing
local tasks, but the higher level decision of allocating a processor to a task is made by the allocator.
These scheme brings modularity and separate the load distribution concerns from the details of the
local schedule.

69



70 CHAPTER 4. SERVICE DISTRIBUTION

Figure 4.1: Scheduling Taxonomy.

The problem of deciding where some task in a system will be executed is called in the literature
process allocation problem or global scheduling problem. Avariety of widely differing techniques
and methodologies for scheduling processes in a distributed system have been proposed.

In order to classify the approaches, a taxonomy was developed.

4.2.1.2 Scheduling Taxonomy

In the paper [26], a hierarchical classification of the scheduling methods focusing in the global
scheduling is made. The structure of this classification is shown in Fig. 4.1.

At the top of the hierarchy, the scheduling methods are classified in local andglobal, as already
discussed in the introduction section. Concerning global schedulers, a further classification isstatic
anddynamic. Thestaticglobal schedulers assume an initial information about the total mix of tasks
as well as the communication and the dependence among tasks.Using this information, a process
allocation is calculated and the tasks have a static assignment to target processors.

In a dynamicscheduler, the current and previous state information of the system are take into
account to make dynamic decisions (on-the-fly) where the tasks should be placed.

Thestaticapproaches can be optimal and sub-optimal. In the optimal ones, based in some objec-
tive function, the optimal assignment can be done. As the assignment problem is normally computa-
tionally infeasible, sub-optimal solutions may be tried. This can be anapproximatedsolution, where
some bound is desired and the same formal model of the algorithm for the optimal solution is used.
It can be also aheuristicsolution, where realistic assumptions are made abouta priory knowledge
concerning process and system loading characteristics.

The optimal solutions may be found searching the solution space, using graph theoretic ap-
proaches, mathematical programming or queuing theory.

The next classification concerningdynamicschedulers regards where the decision of the allocation
takes place:non-distributed, where the scheduler resides physically in a single processor distributed,
where it is physically distributed among processors.

Distributedallocation may be done usingcooperativeor non-cooperativetechniques. In theco-
operativemechanism, cooperation between the distributed components is used to take the decision
where to place a task in the system. In thenon-cooperativetechnique, each node individually makes
its decision about the placement of the components. In the cooperative method, all processors are
working toward a common system-wide goal, avoiding each entity trying to maximize just its local
performance (in an egoistic way).



4.2. RELATED WORK 71

4.2.1.3 Desirable Features

The following features (among others) are desirable in a global scheduling algorithm [118]:

• No a priory knowledge about tasks.

• Be able to deal with dynamically changing load. For that, it is necessary the existence of
migration mechanisms in order to rearrange the tasks in the system in response to a new system
load.

• Quick decision-making capability, in order to respond promptly to new situations in the system.

• Balanced system performance and scheduling overhead. Several scheduling algorithms collect
global information to make their process assignment decisions. This may impose a high burden
in the system.

• Stability. The system should not spend all the time making migration and calculating new
assignments without accomplishing any useful work.

• Scalability

From this list, we identify that a static scheduler can not meet some of them. Therefore, static
schedulers have a restricted applicability in real systems. Nevertheless, in our approach, we use a
static optimal scheduler that uses the current snapshot of the system in order to evaluate the results
coming from our dynamic assignment heuristic.

4.2.1.4 Static Scheduling

A static scheduler makes the decisions just with information available at compilation time. Informa-
tion regarding task execution times and processing resources is assumed to be known at compilation
time. A task is always executed on the processor to which it isassigned [115].

There are several alternatives for the objective function of the scheduling problem. Nevertheless,
typically, the goal is to minimize the overall execution time of a concurrent program while minimizing
the communication delays.

Two distinct models of parallel programming have often beenconsidered in the context of static
scheduling: the task interaction graph (TIG) model and the task precedence graph (TPG) model [80].

In the task interaction graph, the vertices represent parallel processes and edges denote the inter-
process interaction [17]. It is usually used in static scheduling of loosely coupled communication
processes (because it assumes that all tasks are executing in an independent and simultaneous form).
Normally, the objective of scheduling is to minimize parallel program completion time by mapping
the tasks to the processors. For that, the balance of the computation load among processors while
keeping the communication costs as low as possible are the goals [80].

In the task precedence graph model, the nodes represent the tasks and the directed edges represent
the execution dependencies and the amount of communication. It is mainly used by tightly coupled
tasks on multiprocessors. A very good overview of the different task models and different mapping
problems can be found in [98].

In the section 4.3, we formally present the optimization problem describing our service distribu-
tion. For that, we use a modified version of the task interaction graph model.

In the next paragraphs, we will review some theoretical analysis of the task assignment problem.



72 CHAPTER 4. SERVICE DISTRIBUTION

Stone [124] presents a method for assignment on a two-processor system based on a Max Flow/Min
Cut algorithm for sources and sinks in a weighted directed graph. This method finds the optimal
placement. Lo [90] extends the Stone model in order to increase the concurrency introducing the
interference costs among tasks in addition to the Stone model that just takes the communication and
the processing necessity of each task in account. Moreover,they present a heuristic that combines the
Max Flow/Min Cut algorithm with a greedy-type algorithm to find suboptimal assignments of tasks
to processors. Price and Salama [102] describes three heuristics for assigning precedence-constrained
tasks to a network of identical processors. Other approaches are presented in [103, 112].

Although the presented theoretic analysis can achieve a good static schedule, those methods do
not take in account the network topology, just the communication graph and the execution time of the
tasks. In our approach, the main metric is the communicationcost carried by tasks/service communi-
cation in a point to point network.

In the literature there are also approaches that take into account the communication and computa-
tion time of the tasks together with the connection topologyof the processors (with the bandwidth of
those connections). In [126], a graph-theoretic formulation of the problem of mapping communicat-
ing tasks to processors is presented. A heuristic algorithmis introduced as well. This algorithm takes
as input a task graph where the vertices represent the tasks and the edges represent the communication
between tasks and a resource (network) graph where verticesrepresent nodes and edges the links of
the network. The algorithm outputs the mapping from tasks toprocessors. They cluster the heavy-
communicating tasks and assign these clusters to processors. A greedy heuristic that uses a similar
model of the communicating tasks and network of processors is presented in [100]. [72] presents a
heuristic that first places the highly communicative tasks on adjacent nodes of the processor network.
Then, the remaining tasks are placed beginning from those close to thisbackbonefrom tasks. An-
other branch of studies on task scheduling in heterogeneousenvironments [48, 51] is done based on
scheduling DAGs, in which a task graph represents dependencies between tasks. Those methods are
more appropriate for set of tasks with small intercommunication.

In our approach, we are using a dynamic distributed non-cooperative scheduling strategy, i.e.,
the current state of the system is used in order to drive the migration of the services in the system.
Moreover, each service is an autonomous agent that by itselftakes the decisions when to migrate and
to which node. Nevertheless, in the evaluation of our heuristic, the models introduced in the theoretic
static analysis are useful in order to formulate instances of the problem and to compare the generated
results with the optimal assignment.

4.2.1.5 Dynamic Scheduling

In this section, we will describe some details about systemsusing a dynamic scheduler and also
present some approaches.

The dynamic scheduling is based on the redistribution of processes among the processors during
execution time (on-the-fly). This redistribution is performed by transferring tasks from the heavily
loaded processors to the lightly loaded ones with the aim of improving the performance of the ap-
plication (by some metric) [115]. Common used metrics are minimizing the execution time of an
application, maximizing the system throughput or maximizing the processors utilization.

There are basically two main approaches concerning systemswith dynamic scheduling.

Dynamic Load-sharing approach: attempts to conserve the ability of the system to perform work
by assuring that no node is idle while processes wait for being processed [118]. We will call
this approach simple as load sharing.



4.2. RELATED WORK 73

Dynamic Load-balancing approach: this is a stricter form of load sharing, wherein the system
strives to balance the load on all machines at all times [55].We will call this approach sim-
ple as load-balancing.

In this section we will present approaches that are from bothtypes.
A loading sharing/balancing algorithm can be separated in the following components based on the

four independent functionalities [55]:

Transfer policy: Determines whether a node is suitable for process transfer either as sender or as
receiver

Selection policy: Selects a process from the queue to migrate

Location policy: Finds a suitable partner of the migration among the potential sender/receiver rec-
ognized by the transfer policy.

Information policy: Responsible for gathering system state information to be used in allocation de-
cisions.

Now we will describe some approaches of dynamic scheduling that share some characteristics
with our heuristic for service distribution. The highlighted term before each approach stress some
share characteristic with our heuristics and will be betterexplained in the discussion section.

Autonomous Mobile Entity In [81], the authors present an approach where each process is an
autonomous entity that determines by itself the best location for the placement. Every time that a
task is started, a agent in behalf of the task observes the load in each machine of the system (or a
random subset) and selects the best one to place the process.In the paper, just the initial placement is
analyzed.

Forces Attracting Entities In [60] a decentralized dynamic load balancing mechanism based on
forces that correspond to independent optimization goals is proposed. The algorithm explicitly con-
siders communication and migration overhead. The algorithm is inspired in a physical model that
uses notion of forces in fluids: in a flat container with even bottom, different amount of non-mixable
fluids are placed at different positions. Gravity forces thefluids to run out, but frictional resistance
and cohesion forces are working against. Thinner fluids tendto spread out, where more viscous fluids
stick together. After some time, the fluid distribution willreach some stable state (balanced forces).

The correspondence to the load balancing problem is the following. The tasks in the parallel
computation are considered as particles of the fluid. Load potential of each node is the gravity force
that attracts those particles. Communication relations along with their intensities are associated with
a cohesion force, with direction and magnitude. The frictional resistance is associated with the mi-
gration costs and are together, with the cohesion, working against the load balancing. Using this
model, the algorithm pursues the following objectives: minimization of load unbalance, minimization
of communication costs, avoidance of unproductive migration and stability.

Every time when the load situation changes, all neighboringnodes are informed and the forces
described are calculated. A resulting force is calculated by a linear combination of the components.
The higher force is elected to initiate a migration. After this migration, the algorithm starts again,
what could bring a domino effect. The algorithm is a sort ofdistributed gradient search[60] which
converges into a local minimum. The authors argue, as the landscape of the objective function is
always changing, this is not a big drawback.



74 CHAPTER 4. SERVICE DISTRIBUTION

Greedy Approach Furthermore, a greedy distributed load sharing algorithm is proposed by [34].
The system load is used to decide where a job should be placed.The decisions are made for the local
goodness of a job and the assignments are always accepted.

There are several other approaches. A broad survey on distributed scheduling can be found in
[115, 30].

4.2.2 Migration of Service in WSN

In this section, the specific approaches of migration of services in wireless sensor networks will be
described. Although they are comparable and some belong to the dynamic scheduling presented
in the last section, we decide to introduce them in a separated section because the objective of the
distribution may deviate from the traditional dynamic scheduling algorithms. There are approaches
that even the distribution objective is decided by each task(or agent), and differentagentsmay have
different policies.

As already discussed, the allocator is responsible for the assignment of the tasks to the nodes. A
range of middleware and virtual machine approaches for WSN present different kinds of task alloca-
tion methods. Nevertheless, at this moment, the majority ofoperating systems for sensor networks do
not provide an appropriate task allocation mechanism.

Most of the task allocation mechanisms used in WSNs are online, i.e. they decide during run-time
where to place the software components. This means that the code mobility is necessary for such
approaches.

The table 4.1 shows some of the task allocation techniques used in VM and middlewares. In the
Sensorware [22] virtual machine, the application consistsof scripts that are deployed on a subset of
nodes of the network. Each script looks like a state machine that is influenced by external events. The
scripts can replicate themselves, i.e, the application hasthe control of the task allocation. This means
that each agent may have a different strategy or even the strategy may be adapted to the current envi-
ronment. The application programmer is responsible to select and implement the allocation strategies.
There isn’t a standard migration police.

MagnetOS [9] uses the online, power-aware algorithms called NetCenter and NetPull to decide
where to place a system component based on the communicationpattern. While NetPull profiles the
communication at the link level, migrating to the directionof the highest amount of communication,
NetCenter operates at network level migrating to the host where the object that it communicates at
most resides. Those heuristics try to allocate tasks dynamically in order to reduce the communication
overhead, diminishing with that the average energy consumption of the network.

In Cougar [136], the queries are broadcasted to the nodes of the network and the results are
aggregated and forwarded to a given leader node. The query optimizer, located on the gateway node,
is responsible to analyze the query and generate a good queryexecution plan, which contains the data
flow inside the node and network. A query plan contains, for example, which node will be the leader
and which sensor reading, aggregation and forwarding will be realized at each node of the sensor
network. A complex query can be composed by a large number of parameters and operators. This
brings to a larger space of querying processing plans, and a query optimizer is responsible to select
a good plan using some objective function, like energy usage. As the actual approach of the query
optimizer relies on a centralized node that calculates the query plans, this cannot be compared with
our distributed service distribution algorithm.

SINA [114] uses the attribute matching approach to select the nodes that will process the received
SQTL script by means of forwarding it to an running application on the node. Each SQTL message
has a SQTL wrapper that indicates, by means of attributes, which nodes should receive and forward



4.2. RELATED WORK 75

Technology Approach Scalability Requirements Benefits Drawbacks Used by
Script popu-
lation speci-
fication

Specification
in migrating
scripts

Scalable Control in
application
scripts

No control
required

Expressivity
of specifica-
tion

Sensorware
(VM)

Automatic
object Place-
ment

Activating
and moving
objects new
to source

Scalable Object
placement
algorithm

Reduced data
communica-
tion

Complexity,
overhead
(1-hop
migration)

MagnetOS
(VM)

Query Opti-
mizer

Optimizing
query routing
to network

Optimization
in gateway
node

Disseminated
query plan

Only re-
quired subset
of nodes
activated

Network
load of query
plans

TinyDB,
Cougar

Attribute
matching

Matching
script at-
tributes
with local
parameters

Scalable Attributed
Specifica-
tions

Local late
binding

Restricted
expressiv-
ity; just
suitable for
query-based
systems

SINA

Automatic
fusion point
placement

Distributed
heuristic for
fusion point
placement

Initial place-
ment of
fusion point
(tree struc-
ture)

Scalable Dynamic,
reduce data
communica-
tion

Specific for
data fusion,
overhead
(1-hop role
change)

DFuse

Table 4.1: Task allocation solutions used by middleware / virtual machines

the script to applications running on the node. When information gathering is required, the front-
end node is responsible to select an appropriate method to collect the results of the query based on
the network state and the nature of the query. For example, inthe diffused computation operation
mode, the attributes of the SQTL are not only responsible to select which nodes are replaying to a
given query and which sensor values should be sampled in the nodes, but also the aggregation logic
is programmed in the SQTL script. After the dissemination ofthe script, each node knows how to
aggregate the information and route it to the frontend.

The automatic fusion point placement [78] is responsible for the node role assignment in the
DFuse middleware. The role assignment in the case of the DFuse is the mapping from a fusion point
in an application task graph to a network node. The existing roles in the DFuse are:end point(source
or sink),relay (node that routes the request) orfusion point(node that accomplish the fusion task).

The role assignment heuristic has two parts. In the first part, an initial naive assignment is cal-
culated in order to initiate the transmission from the sources to the sink. The second part is the
optimization phase. In this phase, every fusion point node can decide locally if it wants to transfer the
role to any of its neighbor nodes. The decision for role transfer is taken based on local information.
The fusion node periodically informs its neighbors about its role and its health. The health is an indi-
cator of how good is a given node to host the fusion role. Upon receving the message, the neighbors
calculate their own health. If some neighbor determines that it can play a better role than the sender,
it informs the fusion point sending its own health. The actual fusion point selects from the coming
healths, the best neighbor to migrate the role.

There are several functions to calculate the heath of a givennode. Each one has a different ob-
jective. Examples areminimize the transmission cost, minimize power variance, minimize ratio of



76 CHAPTER 4. SERVICE DISTRIBUTION

Figure 4.2: Example of a linear optimization. In (a), two sources are generating data (nodesa andb).
The data stream coming from the sources are relayed by nodec and data fusion occurs ind. Finally,
nodee receive the aggregated data. In (b), nodec has a better health thand because if the fusion point
will be placed on it, thefan-in flows (in the example, two flows) will have a reduction of one hop,
whereas thefan-outflow (in the example, just one flow) will increase its path by one hop. Therefore,
a so called linear optimization occurs with the transference of the fusion point fromd to c, saving
500 “communication units”×1 hop.

transmission cost to power. The health function that aims the minimization of transmission cost cal-
culates the future communication cost that will be generated if the role is transfered to the candidate
neighbor. This cost is measured using the traffic of the incoming flows multiplied by the distance (in
hops) traveled added to the traffic of the outcoming flows multiplied by the distance (in hops) traveled.
Smaller health means less communication cost and it is preferable. If the transfer of the fusion role
from the actual fusion node to the neighbor (candidate) willreduce the amount of traffic (because the
neighbor has a smaller health value), it is realized.

Two types of role transfer are mainly induced by the heuristic, called linear and triangular op-
timizations. They are depicted in the Figure 4.2 and Figure 4.3. In the linear optimization, all the
inputs of a fusion point are coming via a relay node. There is data contraction (for details, see section
2.3.3.4) at the fusion point. Therefore, the relay node becomes the new fusion point. The fusion point
is moving away from sink and coming closer to the data source points. In the case of data expansion,
the fusion point tends to go to the direction of the sink.

In the triangular optimization, there are multiple paths for inputs and outputs to the fusion point,
and data contraction is being realized. The fusion point will move along the input path the maximize
the savings. An example is shown in the figure 4.3.

4.2.3 Discussion

Several approaches have been studied to deal with the globalscheduling problem. In the static
scheduling, the assignment of the tasks to the processing elements is done at compilation time. The
minimization of the program’s completion time together, assecondary objective, with the minimiza-
tion of communication delays is the most common optimization objective in this kind of scheduling.
This is different from our problem; we aim to minimize the communication overhead, which is mea-
sured by means of amount of data transported over a given distance (link metric). The general problem
of the static task assignment is NP-complete, even when the communication delays are not accounted
[115]. This is also true for our different formulation of theproblem, described in the section 4.3.

There are several models to describe the static assignment.For our work, the most important
is the task interaction graph (TIG). We use the TIG to model our system in a given instant of time
(system snapshot), and a problem very similar to the static assignment is solved in order to calculate



4.2. RELATED WORK 77

Figure 4.3: Example of a triangular optimization. In (a), two sources are generating data (nodesa and
b).Nodec is relaying the data coming froma, while d is resposible for the data fusion. Nodee is the
sink and it receives the fused data. In (b), nodec recognizes the its direct link to nodeb ande, having
a better health than noded. This triggers the so called triangular optimization and the fusion point is
transfered to nodec, saving 1000 “communication units”×1 hop.

the optimum assignment at that point of time. This value is compared to the result of our heuristic and
it is possible to assess how good it is performing. It is possible to test whether our heuristic, under a
given input, converges to a result that is not so far from the optimal solution.

Due the fact that in the static scheduling, tasks must be executed in the node decided by the initial
assignment and all system details should be known before thescheduling is calculated, they cannot
be used in a dynamic environment such as a sensor network.

Our heuristic is similar to a dynamic distributed non-cooperative scheduling strategy. There are
several approaches that have common concepts with our heuristic, described later in this chapter. In
our heuristic, the services are the migrating units. Each service decides by itself when to migrate and
to which node it should be transferred (new placement). Thishas some similarities to the work of [81],
where each process is an autonomous entity that selects by itself the best placement. Nevertheless,
the topology of the network is not observed, just the load of the nodes.

In [60], a concept of forces is used, which has some similarity with our approach. In our heuris-
tic, the pheromone deposited by the communication traffic inthe nodes acts as a force that attracts the
services of the system. Nevertheless, in the approach of [60], the load potential is considered as the at-
traction element. In the sensor network, the load is not the main factor to be analyzed. Moreover, they
are just analyzing neighboring loads, what turns such an approach useless in our WSN environment.
In addition, there is no concern about the different nature of the WSN network and its applications,
which differ from conventional ones.

Our heuristic has some greedy characteristics like the workpresented in [34]. Nevertheless, again
the system load is the main parameter used to guide the migration.

As we can see, although the dynamic load balancing/sharing share some characteristics with our
heuristic for service distribution, the main idea of most ofthe algorithms is to share the load among
nodes and not to minimize the network communication betweentask and OS services as our method.
In addition, they are designed to be used in an infrastructure network with traditional applications,
opposite to our approach. For example, the link quality and the dynamic topology of WSN are not
considered by any of the algorithms.

Other approaches of task allocation focused in the requirements of sensor network applications
are presented in the section 4.2.2. A possible classification of the approaches considers whether the
location policy resides in the system software or in the application.

In the Sensorware approach, the location policy is implemented by the applications. Each appli-



78 CHAPTER 4. SERVICE DISTRIBUTION

cation (or part of it, a script) may decide as an autonomous entity when to migrate or to copy itself
(replicate) to the neighbors. Each script contains the information of how it will populate the nodes of
the network after the initial injection at the access point.This process of populating the nodes can con-
tinue depending on events and the current state. This is radically different from our approach. In our
system, the operating system controls the migration of services trying to optimize a given objective
function. Different from Sensorware, every service in our system follows the OS location policy. This
means that the user, different from Sensorware, are not overloaded with the responsibility of writing
a location policy in each application.

The NetPull and NetCenter placement algorithms from the MagnetOS, like our heuristic, promote
a transparent migration of parts of the system in order to reduce the communication overhead. Like
the NanoOS, the location policy is implemented by the systemsoftware. Differently from our system,
NetCenter transfers the system components directly to the node hosting the object with the highest
interaction. This may bring a non-optimal placement, due the fact the the sum of the communication
coming from other objects residing in different nodes may easily exceed the communication traffic
generated by the single component with highest communication interaction.

Differently, the NetPull algorithm moves a system component in to the direction of the neighbor
from where the highest communication traffic comes from. When we just allow one hop migra-
tions (parameterallowed h = 1), the behavior of our basic heuristic has some similarities with the
NetPull algorithm. However, instead of dividing the time inepochs and profiling the communica-
tion pattern within one epoch and deciding about the migration based on this epoch result, we use a
pheromone level to describe the communication patterns. New communication events are changing
the pheromone on the node continuously, and the evaporationrate is erasing this pheromone also in a
continuous way, reducing the importance of old measures. This brings to a smoother mode of opera-
tion, without sudden changes based on the events occurring in a very loaded epoch. Moreover, when
the service migrates to the next hop, the pheromone trails are already deposited in the neighboring
nodes of this new host, i.e., a completely new communicationprofiling is not necessary.

Moreover, our basic heuristic makes the exploration of a given number of hops before selecting
one node that is the target of the migration (parameterallowed h = n). For that, we use a potential
pheromone concept to simulate the communication pattern that could occur if the service migrates
to the node being analyzed at the moment. This multi-hop migration has several advantages. First,
it avoids a large overhead of migrating the service several hops in sequence. Second, in NetPull, if
the neighbor selected as destination of the migrating component hasn’t enough resources for it, the
migration cannot take place. A blocking situation occurs. An additional point is that we analyze
also the amount of resources of the nodes in the migration path and their neighbors to select a more
appropriate node. This means that not only the communication, but also the actual resource availability
of the nodes is evaluated in order to select the destination of the service.

It is not necessary to compare NetPull with our extended heuristic, because it encloses all char-
acteristics of the basic one. Beyond this, the extended heuristic has several additional mechanisms to
enhance the module placement that are not present in the NetPull algorithm.

Another algorithm that share propreties with our developedheuristic is the automatic fusion point
of the DFuse middleware. Similarly to our approach, the neighborhood of the node containing the
fusion point is examined for its migration. The neighbor with the highest saving potential is selected
to receive the fusion service. The best next position of the fusion point depends on the operation
realized (contraction or expansion). For contraction, places near the source may save communication
and for expansion, nodes near to the sink tend to reduce the communication. The two kinds of transfer
mainly induced by the heuristic were presented in the section 4.2.2. The linear optimization can be
encountered in our heuristic, in the both versions. But different from the automatic fusion point, where



4.2. RELATED WORK 79

Figure 4.4: Problem of the triangular optimization.

the flows are constant and known, and the distance from every node to the sink and source must be
known, we realize the linear optimization with variable flows (measured by the pheromone levels)
and there is no necessity to know the distance from the neighbors to the requesters and providers.
Moreover, similarly to NetPull, just hop-by-hop migrations are allowed by the automatic fusion point
placement, which brings a large overhead when the migratingmodule is large.

A second kind of optimization generated by DFuse heuristic is the triangular optimization. It uses
the knowledge of links not being used at the moment for communication. It changes the fusion point
saving one hop of communication (see figure 4.3). Although ithas the potential to reduce the com-
munications cost, this potential is limited, in contrary toa more powerful concept introduced in our
extended heuristic. In Figure 4.4, we depict the limits of the triangular optimization. In the figure,
we present a scenario where multiple triangular optimizations would be stimulated. Although such
a topology has very low probability to occur in a geometric random graph, it would be a stimulating
topology for multiple triangular optimizations. We aim to have a chain of such optimizations. In
4.4(a), we can see that this, in fact, is not possible. After the first optimization (from noded to c, sim-
ilar to the optimization of the Figure 4.3), it is not possible to realize another triangular optimization.
This happens because a link to the sink node (or to the relay node receiving the output of the fusion
from the first optimization) is necessary for further triangular optimizations. In the case of the figure,
a link from nodef to d is needed for the next optimization. Such a link cannot exist, because when it
will exist, the noded would never be part of the tree generated to deliver the data from the sources to
the sink. DFuse uses a bimodal link model. Therefore, no chain triangular optimizations can occur in
the presented scenario.

Our concept of correlated flows, presented in the section 4.4.2.1, can cope with such situations in
a much better way. The two flows, coming from the source in nodea andb would be recognized as
correlated by nodesg and f of the figure 4.4(a). Due this correlation, they would act together to atract
the migrating module to their “direction” in the network. Inthe figure 4.4(b), the resulting migration
if our extended heuristic would be used in the DFuse is shown.As can be seen in the figure, with our
concept, a much larger migration with increased savings is possible.

Another important point is that the fusion point migration does not profile the communication,
because the user must enter the data flow graph and the operation (contraction or expansion) is already
know. Not less important to remark, the automatic fusion point placement is designed only taking in
mind data fusion applications, in contrast to our generic service migration.

An additional important point is that both DFuse and NetPulluse a bimodal link metric for routing
and distance calculations, which could yield to unfavorable situations, where bad links are used for
communication or migrations, decreasing the system performance.



80 CHAPTER 4. SERVICE DISTRIBUTION

4.3 Problem Definition

In our approach we are optimizing the position of the services of the system throughmigration, i.e.,
we try to find the optimal configuration where the communication overhead caused by the remote
requests is minimized.

For a determined system configuration, an assignment of the services to the sensor nodes exists,
where the total communication cost of the assignment is minimized. This optimal service allocation
stays only valid when there is no modification in the configuration of the application/services (in terms
of new services being created or some being extinguished, variation of the communication pattern and
network topology changes). We will call this situation asstable configuration phase.

We developed an heuristic that dynamically re-assigns the services in the system in order to reduce
the communication overhead. After some interaction, if thenetwork stays in astable configuration
phase, the reassignment of the services will achieve a stable situation with some communication cost
(the system will converge to a certain configuration). For evaluating our heuristic, we define the
problem to be solved in eachstable configuration phaseas an optimization problem.

The formal optimization problem is described here.
The system is represented by two graphs. The first is the network (resource) graph and the second

one is the processing thread (task/service) graph (similarto the task interaction graph).
The ad hoc network is modeled by an undirected graphG = (V,E), where V is the set of wireless

nodes and a edge{u,v} ∈ E if and only if a communication link is established between nodeu∈V
andv∈V. The two nodes in this case are neighbors.

For each link, a weighting function attributes a positive weight. w : E→R+. This weight measures
the quality of a wireless link (for details, seevirtual distanceconcept, section 3.5.3.5). We define for
each edge not in the graph ({u,v} /∈V), w(u,v) = ∞.

For each node, an additional weighting functionr is responsible to characterize the amount of
resources available in the node.r : E→ R+. This models the resource capacity of the node.

The processing thread (task/service) graphT = (M,C) models the communication requirements
between the diverse processing threads of the OS and application. M is the set of tasks and services
(processing threads) running at the moment in the system andan edge{m1,m2} ∈C when there exist
a interaction (with communication) between the executableunitsm1 andm2.

For each interactionc∈C, a functionb attributes a positive weight that measures average of traffic
between the tasks/services.b : C→ IR+. This function defines the amount of interaction between two
modules of the system.

Moreover, the functione: M→ IR+ attributes the amount of resources necessary for the execution
of each task/service.

Finally, the functionf : M→V defines the fixed assignment, i.e., the tasks that are fixed assigned
to a determined node and should not be moved.

Theservice allocation in ad hoc network problemconsists of allocating the tasks and services of
the task graphT in the nodes of the netwok graphG, minimizing the amount of communication. The
amount of communication is measured by the sum of all products of the amount of communication
by the distance of the communicating entities. This distance is measured in terms of our link metric.

A schematic diagram of the input and result of the allocationis shown in the Figure 4.5.
More formally, we describe our system as the following optimization problem:

Input: A processing threads (tasks and service) graph with weighted nodes, weighted links, and fixed
assignment function(T,b,e, f ) and a network graph with weighted nodes and links(G,w, r)



4.3. PROBLEM DEFINITION 81

Figure 4.5: Example of an instance of process allocation problem.

Constraints: For every input instance(G,w, r,T,b,e, f ),
Let S= {s1,s2, ..,sn}= {s∈M| f (s) = /0} be the set of mobile services (without a fixed assign-
ment)
The valid solution space is given by:
M (G,w, r,T,b,e, f ) =
=

{
(g1,g2, ..,gn) ∈Vn|∀v∈V,∑{i∈IN|gi =v}e(si)+ ∑{m∈M| f (m)=v} e(m)≤ r(v)

}

The tuple(g1,g2, ..,gn) is an assignment and has the following meaning: servicesi is assigned
to nodegi . The constraint assures that the services and tasks assigned to the nodev do not
request more resource than the availability on the node.

Costs: For every assignment(g1,g2, ..,gn) ∈M (G,w, r,T,b,e, f ), the cost is calculated as follows:
Let the functionq : M→V be:

q(m∈M) =

{
f (m) if f (m) 6= /0

gi |si = m otherwise

cost((g1,g2, ..,gn),(G,w, r,T,b,e, f )) = ∑
{m1,m2}∈C

b({m1,m2}) ·D(q(m1),q(m2)) (4.1)

WhereD(u,v) is the virtual distance between nodesu,v∈V.

Now, we define how the virtual distance is calculated.

Let P(u,v) =
{

p(u,v)
1 , p(u,v)

2 , .., p(u,v)
j

}

be the set of all possible paths between nodesu∈V and

v∈V.



82 CHAPTER 4. SERVICE DISTRIBUTION

p(u,v)
h ∈ Pot(E) is thehth possible path where:

p(u,v)
h =

{
{u,xh

1},{xh
1,x

h
2}, ..,{xh

k−1,x
h
k},{xh

k,v}
}

, xh
i ∈V, i = 1,2, ..,k, k∈ IN

Now, we introduce the cost of a path:

PCost(p(u,v)
h ) = w(u,xh

1)+
k−1

∑
i=1

w(xh
i ,x

h
i+1)+w(xh

k,v)

The virtual distance betweenu andv is the cost of the smallest path:

D(u,v) = PCost(p(u,v)
h ), wherePCost(p(u,v)

h ) = min
b

(

PCost(p(u,v)
b )

)

, for b = 1,2, .., j

Goal: Minimum

The problem is NP-complete (for a similar NP-complete allocation problem, see [49]), since it
generalizes the well-known NP-complete quadratic assignment Problem (QAP) [110]. The QAP is
a special case of our problem when the services are in the samenumber as the processors and just a
single service (anyone) may be assigned to each processor.

4.4 Ant Based Service Distribution

In this section our heuristic to distribute the services in the sensor (or ad hoc) network will be pre-
sented.

4.4.1 Basic Heuristic

In our approach, we are optimizing the position of the services in the system throughmigration, i.e.,
we try to find the optimal configuration where the communication overhead caused by the remote
requests is minimized. In order to solve this online discrete optimization problem, we decide to use
an ant inspired algorithm that is described in this section.It is relatively simple and has shown good
performance.

We assume, in our heuristic, that a initial distribution of the services in the network already exists.
This initial distribution is achieved through the service instantiation method of the service manager
layer of the NanoOS. This is explained in the section 3.4.6.2.

Given this initial distribution, the heuristic described here is responsible to re-distribute (migrate)
the services in order to react to new demands or topology changes.

In order to describe our heuristic, some additional definitions are necessary.
The setP contains the types of all possible services of the system. Each services is an instance of

some typep∈ P. Every taska∈ {M−S} has no type.
Let r ∈M be the requester (a service or a task) of some services∈S. The service stateSi

r represents
the connection between the requesterr to the services (a flow of communication, generated by the
requests and responses). The set of all flows of the system we will call W.

In our system, each nodev∈V has a pheromone tablePv = [pv
Ss

r
]r∈M,s∈S, wherepv

Ss
r
∈ [0,1].

This pheromone level represents the request rate (and traffic) made by the requesterr to the service
i that is crossing the nodev. In our approach, all nodes are responsible for the service distribution,
since each node’s evaluation is based on itslocal view. Moreover, the needed information is constantly



4.4. ANT BASED SERVICE DISTRIBUTION 83

changing, due to frequent pheromone updates so that transferring the decision to just certain nodes
would incur an high additional communication overhead withquestionable efficiency gain.

Using an analogy with the ant foraging behavior [19], the services in our approach are the equiva-
lent of the food source. The calls made by the requesters are the agents (or ants) and the requesters are
the nests. The wireless links form the pathway used by the ants. While the requests are being routed
to the destination service, they leave pheromone on the nodes.

The pheromone tables in each node are updated according to the equation:

pSi
r
(t +1) =

pSi
r
(t)+ δ p(h)

1+ δ p(h)
(4.2)

where theδ p(h) is the variation of the pheromone and it is a function of the size of the packet.
After the introduction of some basic concepts of our heuristic, we will present here the component

policy of our migration mechanism:

Transfer policy: In our heuristic, each service is independent and may decideitself the moment of
starting a migration. Therefore, there is no pre-selectionof nodes that will start a migration.
The target of a service migration is every node that has enough resources to accommodate the
incoming service.

Selection policy: There isn’t a node-wide selection of which service should migrate in our system.
As already said, this is a individual decision of each service. It is based on a thresholdθ that is
compared to the measure of the current communication overhead of the service (we denote here
γSs

r
, the communication overhead brought by the interaction between the requesterr with the

services). Each packet coming from the requesterr to the services brings the virtual distance
traveled. Multiplying the size of the packet by the traveleddistance, the communication cost of
the packet is calculated.γSs

r is the sum of all communication costs fromr to s in a given interval
of time tm. For a services, if ∑r∈M γSs

r > θ , the services is selected to migrate.

Location policy: The main part of the heuristic is about the location policy, i.e., which node should
receive a migrating service. This will be described in the next section.

Information policy: We use in our heuristic almost just passive information gathering. In several
load balancing algorithms, there is a active broadcast of the current status of a node, for example,
informing that the node is idle. We avoid this approach in order to save the scarced energy
resource. The gathering of information is made in the form ofpheromone tables in the nodes of
the network.

Now, we will describe our location policy in detail.
The general idea is to migrate the service to some node that rely in some requests flow (path)

or near to it, in the direction of a requester. Each service has several flows coming from the diverse
requesters.

In order to determine which node should receive the services, an explorer packet will be used.
The explorer packet is just a special packet that travels through the nodes of the network. The next hop
is defined based on the pheromone value of the neighborhood. The final location of the exploration
packet will eventually be the target node for the migration of s.



84 CHAPTER 4. SERVICE DISTRIBUTION

4.4.1.1 Exploration Packet

The explorer packet has the following fields:

packet id: The explorer packet identification

service id: The identification of the service

source: Node actually hosting the services, from where the packet originally comes.

allowed h: The number of hops that the packet may still migrate

history: A ordered list of the visited nodes. Letl ∈V be the last node visited by the explorer packet.

potential pheromone: Stores the potential pheromone value (will be described later). We will use
the termppotential to describe it.

In the initial situation, the node that actually hosts the service s receives the explorer packetpak
with allowed h=k. Thehistory field is empty and thepotential pheromone is 0.

Now we will describe the two main phases of the selection of the new target node to the service
s through the migration of the exploration packet. The first part is called exploration phase and the
second one settlement phase.

4.4.1.2 Exploration Phase

Upon receiving the packet, a node decrements the counter andverifies whetherallowed h=0, which
means that the heuristic should execute the settlement phase and no more new nodes exploration
is done. Ifallowed h> 0, the next destination of the packet will be selected using the following
procedure:

Let u∈V be the actual location (node) of the explorer packet.Nghu is the set of neighbors ofu,
andd ∈ Nghu is a neighbor ofu.

bs
u,d =







∑x∈M pd
Ss
x

∑y∈(Nghu−l ) ∑x∈M py
Ss
x
+pot_pher

if d 6= l
pot_pher

∑y∈(Nghu−l ) ∑x∈M py
Ss
x
+pot_pher

otherwise
(4.3)

bs
u,d represents the sum of the pheromone of all flows coming through noded to the services

normalized over the total amount of pheromone related to requests to the services in the neighborhood.
It represents relatively how much of the traffic directed to the services is using the noded as path
(proportional use ofd for the requests). Thebs

u,d, in the exploration phase, will act like a force
attracting the exploration packet to the corresponding node.

The potential pheromone field is used to store the sum of all other pheromones related to the
services, coming from the neighbors not selected as next hop for the exploration packetpak. It will
be used, during the travel of the exploration packet, to estimate the level of pheromone potentially
caused by those flows if the service would migrate to the node being evaluated. An example can be
seen in the Figure 4.6.

The main idea is try to forecast which situation would happenif the service would migrate to the
current exploration packet position and which would be the next hop for a possible migration. The
assumption made here is that the request flows not attended bythe first migration decision would
have their path size increased exactly by the pathway executed by the exploration packet. This means,



4.4. ANT BASED SERVICE DISTRIBUTION 85

Figure 4.6: Example showing the new potential path of a flow when service would migrate to the next
hop.

although the pheromone level from these flows would not appear to the exploration packet when far
away from the node (v) hostings, they should be considered when deciding the next exploration
packet hop. This is shown in Figure 4.6, where the exploration packet is in the nodeu. It uses the real
pheromone of the nodej and, in the case of nodev, the potential pheromone level measured by the
first migration of the exploration packet. The potential pheromone level is the sum of all pheromone
levels related to the services that are in all other nodes thanu, becauseu was selected as target for the
first exploration packet migration. In this example, the potential pheromone level is exactly the same
level of the pheromone on nodeh. It will be formally defined later on.

The next hop of the explorer packet is selected using the equation 4.4. Let’s call j the selected
node.

ei = max{d∈Nghu}(b
i
v→d),d ∈ Nghu (4.4)

If the selected node is the last visited node (i.e.,j = l ), the exploration phase ends and the set-
tlement phase (see next section) is executed. Otherwise, the allowed h field is decremented, and the
current node is inserted in thehistory field. Moreover, if the exploration packet is in the same hostof
its correlated service, the fieldpotential pheromone is updated using the equation given in 4.5.

pot_pher= ∑
{h∈Nghu|h6= j}

ph
Ss

x
, for x∈M (4.5)

Finally, the packet is sent to the new destinationj, where the exploration phase restarts.

4.4.1.3 Settlement Phase

After the exploration of possible candidates to host the service s, this phase is responsible to find the
appropriated node with enough resources to host the service.

Let’s call u the actual node of the exploration packet.
The idea of this phase is to proof whether there are enough resources in the candidate node to

host the services. In the positive case, the service will migrate to the node. In the negative one, the
neighborhood will be checked and, according the neighborhood actual situation, a neighbor may be
selected or the exploration packet may migrate to the last visited potential candidate (retrieved from
the history field), to search there for the final destination of the services.

The following procedure is executed in the settlement phase:



86 CHAPTER 4. SERVICE DISTRIBUTION

• The current nodeu is tested whether it may host the services. The test consist of checking
whether nodeu has enough free resources. The formalization of the test canbe seen in eq. 4.6.

e(s) ≤ r(u)− ∑
{m∈M|q(m)=u}

e(m) (4.6)

• If the resources are enough, the settlement phase is terminated and the nodeu sends a message
to the services to trigger the migration process.

• Otherwise, the same test is made in all the nodes of the directneighborhood ofu. The virtual
distance is used for ordering the test process. Nodes withinsmallest virtual distance are tested
first. The process ended when a suitable node is found, i.e., the node with enough resources and
the smallest virtual distance tou is selected. Let’s denote this node asf .

• If w(u, f ) < w(u, last(history)), i.e., the virtual distance betweenu and f is smaller than the
virtual distance betweenu and the last visited node by the exploration package (beforereaching
u), the nodeg is selected definitively to be the new host ofs. A message is sent tos in order to
start the migration.

• Otherwise, the exploration package is sent back to thelast(history) node. The nodeu is deleted
from thehistory field and the settlement procedure starts again.

The procedure described above repeats until an appropriatenode is found. In the improbable case
of not finding any new node to host the service, there are two possibilities. The first is to cancel
the migration. The second, when swap operations are desired, consist of swapping the services with
services hosted on the node where the exploration packet were where the settlement phase was started.

4.4.1.4 Example

In the Figure 4.7(a), a scenario with 9 nodes is presented. Inthis scenario, nodeg has a requester
(r1) of the services1 that is located at nodev. At the same time, requestersr2 and r3 ,located at
nodesb andc respectively, are accessing the same service. Let’s assumethat the pheromone related
to the connectionSs1

r1
in the nodeh is ph

S
s1
r1

= 0.3, the pheromone of the connectionSs1
r2

in the nodes

j,u,k is p j,u,k
S

s1
r2

= 0.2 and the pheromone of the connectionSs1
r3

is p j,u,l
S

s1
r3

= 0.2. After deciding to start

the migration process, the exploration packet is launched on nodev. According equation 4.3, force
attracting the exploration packet to the nodeh is bs1

v,h = 0.3
0.3+0.2+0.2 = 0.428 whereas the force attracting

to node j is bs1
v, j = 0.2+0.2

0.3+0.2+0.2 = 0.571. This means that the first step of exploration phase is to send
the packet to the nodej. Before that happens, the virtual pheromone field receivebs1

v,h = 0.428.
In the nodej, the same analyses is made in order to determine the next hop.But instead of using

the real pheromone levels on nodev in the equation, the potential pheromone value carried by the
exploration package is used. Now the packet is sent to the node u.

In this node, the situation is different. The force attracting the exploration packet to the nodej is
bs1

u, j =
0.3

0.3+0.2+0.2 = 0.428 whereas the force attracting to nodel ork isbs1
u,l = bs1

u,k = 0.2
0.3+0.2+0.2 = 0.285.

Therefore, the selected next hop of the exploration packageis the nodej. As nodej has been already
visited, the heuristic goes to the settlement phase.

The settlement phase is illustrated in the Figure 4.7(b). The first step is to check whether there
is enough resource for the service in the actual position of the exploration package. In the example,



4.4. ANT BASED SERVICE DISTRIBUTION 87

Figure 4.7: Example of the algorithm for a scenario with 9 nodes.



88 CHAPTER 4. SERVICE DISTRIBUTION

Figure 4.8: Instance of the problem that will result in a wrong migration decision due greedy behavior

this is not the case, because we suppose that each node may host at most one service and nodeu has
alreadys2. Therefore, a new candidate must be searched.

The neighborhood ofu is analyzed using the virtual distance to define the priorityorder. Better
links have priority. The nodej has enough resource for the services1. Because it is also the last node
visited, it is promptly selected for the migration. A message is sent to nodes1 to trigger the migration
of s to node j.

4.4.2 Extended Heuristic

In this section, an identified problem caused by the greedy nature of the presented algorithm is de-
scribed and a improved heuristic that tries to overcome someadversarial situations is proposed. It is
also inspired by the nature.

For the purpose of simplification, we will assume for the following example thatallowed h=1,
i.e., just one hop migrations are allowed. Nevertheless, the presented shortcoming of the heuristic is
present for arbitrary values of this parameter.

The presented basic heuristic has a behavior that leads to suboptimal solutions when the following
situation happens. More than one nearly located requestersuse the same service, but due the used
routing algorithm, the requests are routed through different paths. An example of such situation is
depicted in Fig. 4.8. This situation can only occur if there are more than two requesters using the
same service. It is more likely to occur when the service is located in a node-dense area of the
network.

In the Fig. 4.8, the requestersr1, r2 and r3 are acessing the services in the nodeu. The total
communication costC can be calculated using the eq. 4.1.

In order to calculate the communication cost, we assume thatthe average bandwidth utilization is
proportional to the pheromone deposited in a node inside theflow path. Thus, the total communication
cost is 1.135, calculated using the equation 4.1.

Now, we analyze the migration that would be decided by the basic heuristic. As the pheromone
value of the nodeh is higher than the value deposited in nodesj andk (separately), the exploration
packet is send to nodeh. Let’s suppose thatallowed h=1, the service would migrate to nodeh. The
total communication cost of the system is in this case 1.22.

This result shows that the heuristic, in such adverse situation, selects the wrong node to migrate
to, increasing the total communication cost of the system. This happens because of the lack of in-



4.4. ANT BASED SERVICE DISTRIBUTION 89

formation over not directly-connected parts of the network(each node has just thelocal view of the
system, i.e., just neighbors information is available). The main idea of the improvement is to migrate
the service not to the neighbor with the biggest amount of requests (highest flow), like presented in
the previous section, but to the neighbor whose flow, in some part, is crossing nodes near to other
flows requesting the same service. If the defined metric (virtual distance) has (geographical) norm
properties, this will be equivalent to migrate the service to the geographicaldirection from where the
highest amount of requests is coming. Two flows related to therequestersr1 andr2 (see Fig. 4.8) are
transversing neighboring nodes in their path tos, thus, they should attract the service instead ofr3.

We will define that such flows transversing neighboring nodesare called correlated flows. The
definition follows later on.

In addition, the new migration heuristic isn’t just based onthe pheromone level to drive the settle-
ment of the services, but also on a “potential goodness” of each node to receive highly loaded services
and the energy level of the nodes. The “potential goodness”ηvs measures how appropriate is the node
v to receive services, i.e., whether the node is central in the network and the service s is a highly
required one. If the complete network topology would be known by each node, the centrality could
be measured by the sum of the distance to every other node. Theidea of the potential goodness is that
services with high request rates are coupled with high probability to locations with good connections
to others. Just using this rule, it is possible to obtain good(but not optimal) placement of the services
in the network [19].

In the same way as the basic heuristic, the location policy ofthe extended is divided in two phases:
exploration phase, where a exploration packet is used for examining possible candidates for hosting
the service, and the settlement phase, where a good candidate among the explored nodes and their
direct vicinity is selected to host the services.

In the next section, we will describe formally what are correlated flows. Subsequently, the struc-
ture of the exploration packet will be presented. Following, the two phases of our extended heuristic
are described.

4.4.2.1 Correlated Flows

The concept of correlated flows is important in the extended heuristic. It will be defined here.
Let ngh(v), v ∈ V be the set of all neighbors of nodev, andnghn(v), v ∈ V be the set of all

neighbors of nodev, including nodev.

Definition 4.4.1. The flows Ssr1
,Ss

r2
,..,Ss

rn
, coming from different requesters and requesting the same

service s (hosted in the node u), arecorrelated flowsiff it exist an multiset O= {v1,v2, ..,vn}, where
the nth element of the multiset is one node selected from the path realized by the flow Ssrn

(i.e. vn is
selected from the path of the flow Ss

rn
), where the following holds:∀g,h ∈ O,∃ j1, j2, .., jm ∈ O| j1 ∈

nghn(g), j2 ∈ nghn( j1), ..., jm∈ nghn( jm−1),h∈ nghn( jm) and u/∈ ngh(g)∪ngh(h).

Wherengh(v) denotes the neighbors of the nodev andnghn(v) denotesngh(v)∪v. In the follow-
ing items, the characteristics of the correlated flows are once again explained:

• The correlated flows are originating from different requesters and are requesting the same ser-
vice

• They use different pathways to achieve the service

• Two flows are (direct by) correlated if they have at least one node in the pathway thatis direct
neighbor of a node in the pathway of the other flow



90 CHAPTER 4. SERVICE DISTRIBUTION

• The correlations are transitive, i.e., ifSs
r1

is correlated withSs
r2

andSs
r2

is correlated withSs
r3

, Ss
r1

is also correlated withSs
r3

4.4.2.2 Exploration Packet

The following new fields are necessary in the exploration packet (in addition to those described in the
section 4.4.1.1):

followed requesters: A list of requesters whose flows tos are being followed by the exploration
packet (in the first round). We will call this setFR⊂M.

correlated requesters: A list of all requesters that have correlated flows to some member of theFR
set. We will call this setCR⊂M.

correlated potential pheromone: List of pheromone values induced by the correlated requesters.
The variablePhr , r ∈CRreturns the correlated potential pheromone of a correlatedflow.

non-correlated potential pheromone: This is just a new name for thepotential pheromone field
of the basic heuristic. It include all pheromone (in the firstround) that don’t contribute to
the selection of the next hop of the exploration packet. In the equation, we call this field as
nc_pot_pher. Note that differently from the previous field, this is not a list of pheromone but a
field that store the sum of all non-correlated potential pheromone.

In Figure 4.9, the followed requesters, correlated requesters (and potential pheromone) can be
seen. In 4.9(a), the initial state of the system is shown. There are tree requesters (r1, r2, r3) using
the services. The service decides to start the migration process and launches the exploration packet.
The first selected node isj (the next section will clarify how this decision is made). The packet is
sent to nodej. This situation can be seen in the Figure 4.9(b). From this example, we will describe
the meaning of the new fields. Thefollowed requesters are the requesters that cause the decision of
migration of the exploration packet to the nodej. They are responsible for the flow that the exploration
packet is following. In the example, the requesterr1 is followed by the exploration packet. But for
that decision (going to nodej), the pheromone of the flow coming fromr1 was summed with the flow
Ss

r2
, because it is a correlated flow (due the link between nodesa andc). This means that the identifier

of requesterr2 should be stored in thecorrelated requesters field. As it can be seen in (b), we
assume that the correlated requesters have a shortcut to theservices if the service will migrate to the
actual position of the exploration packet. Potentially, they will generate pheromone that increase the
tendency of migration in the direction of the followed requesters, and not back as the non-correlated
potential pheromone do.

The fields described here are initialized with zero and filledwith the real values just before the
exploration packet leave its first node (the node hosting theservices).

4.4.2.3 Pheromone and Correlated Flows Table

In addition to the already presented pheromone tablePv that stores the rate of requests that are crossing
the nodev, there is a second tableFv that stores the information about flows occurring in the neigh-
borhood ofv (correlated flows).Fv(Ss

r) : M×S→{0,1} return 1, iff some direct neighbor of the node
v is routing a request from the requesterr to the services.



4.4. ANT BASED SERVICE DISTRIBUTION 91

Figure 4.9: Example depicting the concepts of followed requesters, correlated requesters and potential
pheromone.



92 CHAPTER 4. SERVICE DISTRIBUTION

The idea is that neighboring communications (like theSs
r1

andSs
r2

in the figure 4.8 and also in the
figure 4.9) can be recognized as being originated in the same network “direction” and traveling to the
services.

The tableFv is filled without the necessity of any direct exchange of messages between the node
v and the neighbors (just using passive listening, snooping). Each node just hears passively the com-
munication originated in neighboring nodes to fill the table. In the Figure 4.9(a), the nodesa andc are
neighbors, therefore the communication flowsSs

r1
andSs

r2
are considered correlated, i.e.,Fa(Ss

r2
) = 1

andFc(Ss
r1
) = 1.

There is a constraint when filling the table: if the nodev has a directed connection to the nodeu
where the services is located, it ignores all the neighboring communication going to to the service
s (i.e., for∀r ∈M, Fv(Ss

r) = 0). This avoids the problem that near the sink (services), all nodes can
hear each other, resulting on a false interpretation that all requests are coming from a similar network
“direction”.

Each requestr to the services now carries the information collected in the nodes about which
requests to the services are occurring in neighboring nodes (i.e., while being relayed to the services,
theFv information is added to a special field of the request packet). F(Ss

r1
,Ss

r2
) : M×M×S→ {0,1}

return 1 iff r1 andr2 are neighboring requests (correlated flows) regarding service s.

4.4.2.4 Exploration Phase

The exploration phase from the extended heuristic is similar to the basic one, nevertheless, here neigh-
boring flows are recognized as correlated and used in order todrive the exploration packet. The first
thing that the nodeu must do upon receiving the exploration packet is again to verify whetheral-
lowed h is 0. In this case, the settlement phase starts. If in some neighboring node, a flow coming
from a requester present in thecorrelated requesters is found and the node receiving the exploration
packet is not a direct neighbor of the node containing the service s, the exploration phase also ends
and the settlement starts. The fact of encountering a correlated flow in some direct neighbor highlight
that this position (nodeu) is the point causing the correlation. This is showed, for example, in the
figure 4.9.

Otherwise, the next destination of the packet is defined. In the original heuristic, the “force”
attracting the exploration packet from nodeu to noded (bs

u,d, see eq. 4.3) does not take into account
the requests coming from near areas of the network. In this version of the heuristic,bs

u,d is calculated
taking in account the pheromone values and correlated flows information (eq. 4.7 and 4.8). Here also
the non-correlated potential pheromone and the correlatedpotential pheromone are used.

If we are calculating the force of a node that has not been already visited (i.e. d 6= l , where
l = last(history)):

bs
u,d =

flows using d
︷ ︸︸ ︷

∑
x∈M

pd
Ss

x
+

correlated flows
︷ ︸︸ ︷

∑
x∈M

∑
z∈M

∑
g∈Nghv−{d,l}

pg
Ss

z
· ⌈pd

Ss
x
⌉ ·F(Ss

z,S
s
x)+

potentially correlated flows
︷ ︸︸ ︷

∑
x∈FR

∑
y∈CR

⌈pd
Ss

x
⌉ ·F(Ss

x,S
s
y) ·Phy

normalizer
(4.7)

And the attraction force for the last visited node is given by:

bs
u,d =

nc_pot_pher
normalizer

(4.8)



4.4. ANT BASED SERVICE DISTRIBUTION 93

where:

normalizer= ∑
y∈(Nghv−{l})

[ ∑
x∈M

py
Ss

x
+ ∑

x∈M
∑
z∈M

∑
g∈Nghv−{d,l}

pg
Ss

z
· ⌈py

Ss
x
⌉ ·F(Ss

z,S
s
x)]+

+ ∑
x∈ISF

∑
y∈ICF

⌈pd
Ss

x
⌉ ·F(Ss

x,S
s
y) ·Phy +nc_pot_pher

The first term of the eq 4.7 is the same of the eq. 4.3, that means, the sum of all requests coming
to services through noded. The second term of the numerator is the sum of the pheromone generated
by correlated flows of the flows present in the noded. As already explained, the functionF tests
whetherSs

z andSs
x are correlated flows, and the ceiling⌈pd

Ss
x
⌉ checks whether the connectionSs

x exists

in the noded (i.e. pd
Ss

x
> 0). The denominator normalizesbs

u,d (0≤ bs
u,d ≤ 1). The third term accounts

thecorrelated potential pheromone already explained and shown in Figure 4.9. As already said, we
assume that thecorrelated potential pheromone will act in the same direction of the followed flow,
i.e., should be summed to it.

In the eq. 4.8, we calculate the force in the direction back tothe node currently hostings, i.e., the
force attracting the exploration packet back to the last visited node (last(history) = l ). We use here
thenon-correlated potential pheromone because we assume that the flows that are not correlated to
followed flows will act with a contrary force (see Figure 4.9).

Again the main idea here is to forecast the situation that a service will encounter if it would migrate
to the position of the exploration packet.

The next hop of the exploration packet is again selected using the equation 4.4. Let’s call the
selected nodej. If the selected node is the last node visited (i.e.,j = l ), the heuristic starts the
settlement phase (see next section). Otherwise, theallowed h field is decremented, and the current
node is inserted in thehistory field. Moreover, if the exploration packet is in the same hostas the
service (is the first exploration phase being executed), thefields of the exploration packet presented in
the section 4.4.2.2 are updated:

• The field followed requesters receives all the requesters whose pheromone generated by the
corresponding flow contribute to selectj as winning node, i.e., all requesters usings that have
positive pheromone in the nodej. FR= {m∈M|p j

Ss
m

> 0}. In the example shown in the Figure
4.9, the requesterr1 would be added to this field.

• All correlated requesters of the flows added in the previous field are included in thecorrelated
requesters. This means thatCR= {x∈M|∃m∈FR,F(Ss

m,Ss
x) = 1 and∃h∈ (Nghu−{ j}), ph

Ss
x
>

0}. In the example, ther2 is included in this field.

• For each requester in thecorrelated requesters (r ∈CR), thecorrelated potential pheromone

is updated by:
Phr = pb

Ss
r

(4.9)

• Finally, the non-correlated potential pheromone is also update, here instead of individual
pheromone value, just a summarized value (sum) is stored.

nc_pot_pher=

flows that don’t usej
︷ ︸︸ ︷

∑
{h∈Nghu|h6= j}

∑
{x∈M}

ph
Ss

x
−

correlated flows
︷ ︸︸ ︷

∑
{k∈Nghu|k6= j}

∑
{x∈FR}

∑
{y∈M}

pk
Ss

y
·F(Ss

x,S
s
y) (4.10)

Finally, the exploration packet is forwarded to the nodej and the exploration phase starts again.



94 CHAPTER 4. SERVICE DISTRIBUTION

4.4.2.5 Settlement Phase

Again after the exploration phase, where possible hosts candidates for the servicesare appraised, the
settlement phase is responsible for selection of the de facto new host of services. For this section,
let’s call u the actual node of the exploration packet.

In the basic algorithm, the main concern of the settlement phase was about the amount of free
resources of each candidate. In this extension, besides theamount of free resources, a “potential
goodness” of each node to receive highly loaded services andthe energy level of each node are also
addressed in order to select an appropriate node to the service. The “potential goodness”ηvs measures
how appropriate is the nodev to receive services, i.e., whether the node is central in the network and
the services is a highly required one. If the complete network would be known by each node, the
centrality could be measured by the sum of the distance to every other node. The idea of the potential
goodness is that services with high amount of communicationare coupled, with higher probability, to
locations with good connections to others. Just using this rule, it is possible to obtain good (but not
optimal) placement of the services in the network [19].

Like in the basic heuristic, each node has just local information. This means that the “potential
goodness” cannot rely on global knowledge. Although without global knowledge about the network
topology we cannot determine exactly whether a node is central in the network, we use local informa-
tion to approximate it. We defineηvs, wherev∈V, s∈ Sand 0≤ ηvs≤ 1:

ηvs = [1− ∑
g∈Nghv

D(v,g)

(|Nghv|)δ ] ·h(s) (4.11)

WhereNghv,v ∈ V the set of neighbors ofv andδ ≥ 1 gives the importance of the number of
neighbors.h(s) : S→ [0,1] returns the current request load (how much traffic) that service s is cur-
rently serving. This can be measured by means of how much pheromone concerning the services the
neighbors of the hosting node have. Ah(h) = 0 means that there is no pheromone in the neighboring
nodes and 1 means a maximum pheromone sum was reached).

The energy of the node is modeled byEv and 0≤ Ev ≤ 1, where 1 means full battery and 0
depleted.

Now, we calculate the so called settlement fitness of a nodev to receive the services (∑3
i=1ki = 1):

s fuvs = k1 ·ηvs+k2 ·Ev+k3 · [1−w(u,v)] (4.12)

Whereu is the node where the exploration packet is currently located. The third term penalizes
nodes that are away from the existing flow, as we will describenext.

In order to gather the settlement fitness when exploring the network, a new field is necessary in
the exploration packet:best settlement fitness (or bs f). It stores the best settlement fitness found up
to the moment. For each node that the exploration packet visits (in the exploration phase), it calculates
the settlement fitness of the node and also calculate this fitness of good connected vicinity nodes (with
the link metric are less than a given thresholdγ). The third term in the equation 4.12 penalizes the
links according their virtual distance, i.e., nearer vicinity nodes are privileged. The node actually
visited by the exploration packet is benefited largely (becausew(u,u) = 0). Just nodes with enough
resources are considered (e(s)≤ r(u)−∑{m∈M|q(m)=u} e(m)). The calculated values are compared with
the existingbest settlement fitness and if it is necessary, the field is updated.

After these definitions, we will describe the procedure of the settlement phase.
The following procedure is executed:



4.4. ANT BASED SERVICE DISTRIBUTION 95

• The settlement fitness of the nodeu and the good connected neighborhood ({k∈Nghu|w(u,k)≤
γ}) is calculated. Just nodes with enough resource are selected(e(s)≤ r(u)−∑{m∈M|q(m)=u}e(m)).
Let’s call the highest settlement fitness ass fwin.

• Thebest settlement fitness is compared tos fwin. If s fwin > ρbs f, whereρ ≤ 1 is the accepted
difference, the winning node is automatically selected. Inthis case, the settlement phase is
terminated and the nodeu sends a message to the services in order to trigger the migration
process.

• Otherwise, the exploration package is sent back to thelast(history) node. The node is then
deleted from thehistory field and the settlement procedure, here described, is started again.
This is repeated until an appropriate node is found. In the case of not finding any new host, the
migration may be canceled otherwise the swap operation may be used as in the basic heuristic.

4.4.2.6 Example

In the Figure 4.10, an example of the service migration is showed. In (a), the initial situation, with
tree requesters (r1, r2 andr3) and a provider (services) is depicted. The exploration packet has been
launched and resides in the nodeu. The heuristic is in the exploration phase. Using the equations
4.7 and 4.4, the next hop is selected. The nodej has been chosen, becauseSs

r1
andSs

r2
are correlated

flows, therefore the pheromone of the both flows are used in order to take the decision. We have here
bs

u, j = 0.4 andbs
u,b = 0.3. The fieldsfollowed requesters, correlated requesters, correlated potential

pheromone, non-correlated potential pheromone are updated based on the rules described in section
4.4.2.4. For this example,followed requesters receivesr1, correlated requesters receivesr2, corre-

lated potential pheromone receives 0.2 andnon-correlated potential pheromone 0.3. Finally, the
exploration packet is sent to nodej.

In (b), the next situation is described. The exploration packet is in the nodej, the settlement fitness
is calculated and thebest settlement fitness field is updated. The next hop of the exploration packet is
calculated using equations 4.7, 4.8 and 4.4. It is importantto remark that now two pheromone values
are accounted in the nodea, the real pheromone generated by the flowSs

r1
and a potential correlated

pheromone. This correlated pheromone is used to forecast the situation in the node (in this casej)
if the service would be placed there. It is read from the fieldcorrelated potential pheromone. In
the nodeu, the pheromone that acts is the non-correlated potential pheromone, read from this field in
the exploration packet. Here we have againbs

j,a = 0.4 andbs
j,u = 0.3. The exploration packet is sent

therefore to nodea.

This next situation is depicted in Figure 4.10(c). The exploration packet is now in the nodea. The
settlement fitness of the nodes are calculated and compared with thebest settlement fitness. Nodea
has the higher fitness and the value is updated in the exploration packet. As nodea has a correlated
flow in a neighboring node (nodec), the exploration phase is ended and the heuristic goes to the
settlement phase.

In the settlement phase, the settlement fitness from nodeu and from the good connected neigh-
borhood is calculated. Just nodes with enough resource are selected (in this example, let’s assume
thata andc have enough resources). The higher settlement fitness is compared to thebest settlement

fitness. In the example, the both are the same, therefore, nodea is selected to host the services. The
services is informed about its new destination and the migration can start.



96 CHAPTER 4. SERVICE DISTRIBUTION

Figure 4.10: Example of service migration using the extended heuristic.



4.5. DISCUSSION 97

4.5 Discussion

In this chapter, we present two heuristics that aim to reducethe communication overhead among
the tasks and mobile services in an ad hoc wireless network orsensor network. Many existing load
sharing/balancing protocols have different objectives, between them we can stress the minimization
of the make span of a task set. Just in some proposals the communication delays are taken in account.
Differently from these algorithms, our main focus here is toreduce the communication cost. This
cost is calculated using the amount of communication being realized between two entities and the
distance of this communication (for this, the link metric isused). Moreover, our heuristic (the basic
and extended versions) is developed to provide dynamic self-optimization during the run time of the
system. If the topology of the network changes, there is an automatic response from the service
distribution heuristic.

As already presented in the section 4.2.3, other WSN middleware/virtual machines have also
pursued this objective. Nevertheless, as presented, our approach is more flexible (not targeting just
one special set of applications) and produce better placements.

In order to produce a self-organizing system, the algorithmis completely distributed and each
service can be seen as an agent with local information and local rules to decide about the migration.
We start from the idea coming from reactive agents: intelligent behavior (in our case, the search for
a global reduction of the communication overhead) emerges from the interaction of simple behavior
distributed over the agents [134]. Our services (or agents)recognize the current environment state
(pheromone levels in the neighborhood) and start the discovery process in a network direction, guided
by this local view. The communication is done by means of stigmergy: the exchanged message be-
tween the requesters and the services leave information in the communication path (the pheromone
values). Stigmergy means that the communication is done using the environment instead direct ex-
change. Because the heuristic deals with movement of components along paths in the network, the
approach of marking paths and communication through this mark instead of exchanging explicity
messages has an inherent advantage. The pheromone stores indirectly statistical information about
the communication patterns without the need of explicit control messages.

The agents, in our system, have an egoistic behavior: each one tries to optimize its local utility
function by means of how much its communications are costing, without taking in account the goal
of the other services in the system. We aim, with this approach, to find a good placement of the
services avoiding the complexity and overhead of an approach with a more global view and global
control about the system’s objective. Moreover, due to thisindependence between agents, the system
is robust against failures and topology changes. Nevertheless, as usual for such sort of algorithm, we
are finding suboptimal solutions.

Another important point to be highlighted here is that although some similar metaphors are used
(like pheromone value, ants and stigmergy), the basic and extended version of the heuristic developed
here are not modifications of the well known ant colony optimization algorithms [43, 19]. These are
based on a distributed autocatalytic process and may be usedto solve classical optimization prob-
lems. Like genetic algorithm and other meta-heuristics, they have been originally developed to run
in a centralized system (but may be distributed). Our algorithms, in other hand, are running in a
distributed-fashion among the nodes of the sensor network and are developed just for solving the pre-
sented problem. Moreover, they do not use the autocatalyticeffect in the same way as the described
in the ant colony optimization. Autocatalysis plays a central role in our dynamic clustering approach,
which is presented in the next chapter.

In the basic and extended version of the presented heuristic, we are dealing with migrations of
complete services. Those migrations have advantage when wewant to control the number of copies



98 CHAPTER 4. SERVICE DISTRIBUTION

of a service inside a given cluster or long distances exist between the service and the providers. We
combine this long distance migration with an approach that tries to better distribute the load of the ser-
vices by migrating just one context to another service. Whenthe service is migrating in the direction
of a group of providers, the context belonging to other providers being penalized by the migration
and placed far from the service are marked as available for this local context-only migration. This
algorithm will not be presented here and can be found in [151].

The disadvantage of such context migration is that the common state area of the service must be
the same for both source and target services. Moreover, if new services are always created, a large
overhead of controlling several incomplete instances of the same service is generated.

Another important point to remark is that the heuristic presented here is dependent of the underly-
ing routing algorithm. A single-path routing algorithm is desirable and, for a better performance, the
virtual distance should be used as metric instead of some traditional approaches that use the number
of hops.

A common situation that may occur in dynamic scheduling protocols and may be also a concern
to our heuristic is an instable behavior. For example, when one module communicate in burst mode,
carrying a lot of communication during certain periods and almost none in other periods, unnecessary
migrations may happen. To avoid that, the intensity of pheromone values layed by the communication
packets in the network and the evaporation of the pheromone must be correctly adjusted, in order to
trigger migrations just when a intensive communication holds a significant period of time.

Using the heuristic presented in this chapter, NanoOS can provide a transparent service placement
relieving the application’s designer. He can concentrate in the program’s logic and create complex
applications without concerning about the physical position of the services. This system level place-
ment results in a smaller energy utilization of the sensor network and adapts the system as well as
applications to the actual network topology and communication needs.



Chapter 5

Self-Organizing Cluster Construction

5.1 Introduction

In general, there are two heuristic design approaches for management of ad hoc networks at different
levels (e.g. topology control, network layer, application). The first method is to have in all nodes the
knowledge of the (entire) network and let they manage themselves. This circumvents the need for
more advanced organization. Nevertheless, this generatesthe overhead in terms of communication
and memory at each node. Each node must, for example, maintain routes to the other nodes in the
network. In large networks, the number of messages needed tomaintain routing tables may cause
congestion in the network and depletes the energy of the nodes. Ultimately, the need of individual
self-management will generate a huge exchange of messages and overhead.

The second approach is to identify a subset of nodes within the network and vest them with the ex-
tra responsibility of being a leader (clusterhead) of certain nodes in their proximity. The clusterheads
are normally responsible for managing communications between nodes in their own neighborhood as
well as routing information to other clusterheads in other neighborhoods [4]. This creates a hierarchy
in the network. Clustering in large-scale networks was proposed as a means of achieving scalabil-
ity through a hierarchical approach [123]. Some examples ofclustering benefits can be found at the
medium access layer, where clustering helps to increase system capacity due to the promotion of the
spatial reuse of the wireless channel, and at the network layer, where it helps to reduce the size of
routing tables. Wireless ad hoc networks benefit a great dealfrom clustering.

In this chapter, we present the state of the art of clusteringin ad hoc networks, and after this, two
new heuristics to organize an ad hoc network into clusters. Differently from the previous approaches,
our proposal addresses the problem of partitioning the nodes of the network in multi-hop groups with
a guaranteed minimum amount of resourcesq (or budget) in each one of them. This kind of clustering
is useful in various scenarios. In our case, the clustering heuristic is used in the development of an
efficient service distribution in our OS.

The idea is to group a complete instance of the OS and application services inside a single cluster.
This brings a reduction of the organization overhead, sincethe discovery process will be locally con-
strained (within one cluster) and the pheromone tables usedin the service distribution must only store
pheromone values for services used by the application inside the cluster. Furthermore, a simple but
efficient service discovery based on a central broker per cluster can be easily implemented. Moreover,
a topology control of the network can be easily realized based on the hierarchy created by the cluster-
ing. The clustering brings additional advantage: the applications can implement algorithms based on
this created hierarchy that help them scale.

99



100 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Constraining an instance of the OS inside a cluster facilitates the maintenance of the consistency
of the OS, because the dependencies among the different modules are constrained within the cluster’s
nodes. Moreover, in the worst case, for any distributed algorithm, a node may keep state information
about all other nodes in the cluster and not the complete network. This is true even if a central control
paradigm is used.

5.2 State of the Art - Clustering in Ad hoc Networks

In this section, a literature overview of clustering algorithms developed for ad hoc networks is pre-
sented.

The idea of clustering is to partition the nodes of a graph in subsets in a way that the union of the
subsets contains all nodes of the graph. For each subset (or cluster), some conditions should hold.

Given a graphG = (V,E) representing a communication network, where vertexes are the nodes
and edges the communication links. The clustering process construct subsets of nodesVi , i = 1, ..,n
where∪i=1,..,nVi = V, such that each subsetVi induces a connected sub-graph of G. These vertex
subsets are clusters. Ideally, the size of the clusters falls in a desired range. Moreover, for several
approaches, a special vertex in each cluster is elected to represent the cluster and it is called clusterhead
[32].

According to [69], the following design factors differentiate the various approaches:

Clusterheads: The partition of the graphV into clusters does not require considerations about the
internal structure of clusters. However, it is common to define a node that will assume the
leader role in the cluster.

Neighboring Clusterheads: It can be defined that clusterheads may or may not be direct neighbors.
When not, the clusterhead set forms anindependent set: a subsetC⊂V such that∀c1,c2 ∈C :
(c1,c2) /∈ E. Normally, the approaches try to calculate themaximum independent set, which
contains the maximum number of nodes. Themaximum independent setis also adominating
set1. Determining themaximum independent setis an NP complete problem.

Overlap of clusters: Clusters may overlap when it is allowed that member nodes participate in more
than one cluster.

Maximal Diameter: Although normally clusters have diameter of two (when constructed by thein-
dependent set), it is also possible to have multi-hop clusters with largerdiameters.

Hierarchy of Clusters: Either a two-level or multi-level hierarchy is used. In the multi-level hierar-
chy, each cluster is considered a node in a recursive clusterconstruction method.

Rotating clusterheads: It is possible to have clusters with fixed clusterheads during the life time of
the system or rotating clusterheads that reassign the clusterhead role to another node periodi-
cally.

Another aspect that should be considered is the communication among the clusters.Gateways,
nodes that are adjacent to two clusterheads, can be used. In case that clusterheads are separated by
more then one node, the so calleddistributed gatewayscan be used.

1A dominating setis a subset of nodesD ∈V where each node inV either is a member ofD or is a direct neighbor of a
node inD.



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 101

We divide the different approaches of obtaining a clusterednetwork in three main groups: the
Maximum independent setapproaches, where the objective is to find clusters where allmembers are
at most one hop away from the clusterhead and there are no neighboring clusterheads, the dom-
inance only approaches, where neighboring clusterheads are allowed, and the multihop clustering
approaches, where diverse multihop objectives are pursued.

5.2.1 Maximum Independent Set Approaches

There are several clustering algorithms that aim to find theMaximum independent set(MIS) of a
network modeled as an undirected graph. This is often combined with the dominance property, which
leads to the following clustering properties that should besatisfied:

IndependenceNo two clusterheads can be neighbors. This property assuresthat the set of cluster-
heads will be scattered, i.e., they will not be grouped in a small part of the network.

Dominance Every ordinary node has at least one clusterhead as direct neighbor.

Several heuristics have been proposed to find clusters basedon the maximum independent set.
The existing clustering algorithms differ on the criteriumfor the selection of the clusterhead [13]. For
example, the highest-ID and lowest-ID heuristics use the unique identifier (id) to select the cluster-
head. The choice can be also the degree of the nodes (number ofneighbors), as in the node-degree
heuristic. Others combine different parameters in a metric(e.g. VDBP heuristic).

Many of the heuristics are working in a similar manner. Each node with the highest (lowest)
metric in the nearby vicinity is selected locally as clusterhead (being included in the independent set).
This information is broadcasted and the neighborhood joinsthe forming cluster. The new members
also inform their neighbors about the member status (broadcating this status). This un-locks other
nodes that have lower a metric to eventually become clusterhead (i.e., the new elections are restricted
to nodes that are neither members nor clusterheads).

In the next section, we will present several algorithms thatare based on independent sets.

5.2.1.1 Identifier-based Clustering

In this section, we will present the heuristics that use a fixed identifier to elect the set of clusterheads.

Highest-ID ranking In [6, 47], the authors consider the problem of organizing a set of mobile,
radio-equipped nodes into a connected network. They argue that a reliable structure should be ac-
quired and maintained in the face of arbitrary topological changes due to motion or failure, and this
structure should be achieved without a central controller.For that, a self-starting distributed algorithm
that maintains a connected architecture is presented. The algorithm is based on a cluster construction
based on nodeid.

The two logical stages of the algorithm are the formation of the clusters and the linking of them.
Here we will concentrate on the formation stage.

Each node has aconnectivity matrix with binary entries.(k, j) = 1 means that packets sent by
k are received byj.

The algorithm is based on aTDMAscheme where the control messages have a fixed schedule. In
the TDMA frames, nodei transmits information in the sloti. The two steps (based on two communi-
cation rounds or frames) of the algorithm are:



102 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

7

4

2
8

10 5

3

9

1

6

Figure 5.1: Example showing cluster formation using the method described in [6].

1. Each node broadcasts its own identity and the identity of the already heard nodes.

2. Each node broadcasts the complete information about which nodes can be reached by its broad-
casts (thei row of theconnectivity matrix) plus the status of the node (undecided, cluster-
head, member).

For deciding the status, each node checks the connectivity row. If there is no neighbor with higher
id number, the node becomes clusterhead. The algorithm is a distributed version of the very simple
centralized procedure: start with the highest numbered node, say,N and declare it clusterhead. Draw
a circle around that node with radius equal to the range of communication. If some node is outside
the circle, then select the higherid among the nodes outside the circle and restart the process until all
nodes are inside at least some circle [47]. Figure 5.1 shows an example of a small network clustered
using this process.

The described procedure has four keys elements: knowledge of the neighbors of each node, a rule
to select the clusterhead from a set of candidates, knowledge of the sequence in which clusters are to
be formed, and knowledge of each node’s own clusterhead.

In [7], the same authors describe the same method with minor differences.

Lowest-ID heuristic Another approach calledLowest-ID Clusteris presented in [53]. The algo-
rithm works in a similar way. Periodically, each node broadcasts the list of nodes that it can hear
(including itself). A node which only hears nodes with ID higher than itself is a “clusterhead”. The
lowest-ID node heard by a node is its clusterhead, unless it gave up its role. The other nodes are
members. The difference to the previous algorithm is that the election is not realized in a fixed, deter-
mined TDMA order where the nodesid must be related to the transmission TDMA slot in a increasing
order. This means, it is easier to implement theLowest-ID Clusterin different architectures due to its
independence on a specific MAC protocol.

It is important to highlight that both algorithms here have asimilar structure: theid are exchanged
within the neighborhood. Each node decides whether it should become clusterhead based on those
receivedids. When a node become clusterhead, it announces that. The decision of becoming cluster-
head is taken based on the lowestid among the nonmember nodes.



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 103

At receiving a clusterhead announcement, the neighboring nodes become members of the cluster
and announce that also. This unlock lowerid nodes (because the clusterhead decision is done just
among nonmembers), that can now become clusterhead.

The cluster formation resulting from the application of theLowest-ID Clusteralgorithm has the
independence and domination properties. Moreover, the algorithm is also suitable for networks where
the nodes move, causing re-election of clusterheads and also changes in the members-clusterheads
assignment.

5.2.1.2 Node’s Degree Ranking

In this section, we will present some heuristics that use thenode degree in order to rank the nodes for
the clusterhead selection.

Highest Degree Clustering In [53], an additional clustering approach is presented. Instead of se-
lecting the clusterheads based on a pre-assigned rank of each node, the election relies on the degree
of the node in the graph. The heuristic is calledHighest-Connectivity Cluster Algorithmand has the
following steps:

1. Each node broadcasts the list of nodes that it can hear (including itself)

2. A node is elected clusterhead if it is the most connected node of all its “not clustered” neighbor
nodes

3. A node which has already elected another node as its clusterhead gives up its role as clusterhead
and becomes a member of the cluster.

Like in the previous section, the formation resulted by the application of this algorithm has the
independence and domination proprieties.

VDCA Heuristic The Variable Degree Based Clustering Algorithm [85] uses different rules based
on the node’s degree to assign priorities to the nodes for theclusterhead selection.

The different rules proposed in the algorithm are:

Maximum degree: The algorithm is similar to the highest degree clustering.

Degree two priority: Nodes with degree two have the highest priority. Under this rule, clusters with
three nodes will be build first.

Average Degree Priority: The average degree of the network has the highest priority.

The idea of not using the highest degree is to reduce the variance of the clusters size and to control
the number of clusters. The authors argue that reduced variance results in a smaller lower bound of
the total size of the routing table. Moreover, they aim to control the number of clusters in order to
keep it near the optimal number for reducing the size of the routing table.

A difference from the other algorithms is that each node keeps the complete topology of its voting
area, which can be one or two hops. Messages are exchanged in order to enable each node to construct
its topology map. Further, the algorithm was developed to enable multiple hierarchy levels.



104 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

5.2.1.3 Combined Metric Clustering

In this section, the clustering algorithms that use a combined metric to rank the nodes in order to select
the clusterhead are presented.

VDBP Heuristic The Virtual Dynamic Backbone Protocol [73] (VDBP) is a heuristic that con-
structs and maintain clusters that serve as backbone. In thefirst phase of the algorithm, a dominating
and independent set is constructed. The difference from theother heuristics here presented is that the
algorithm uses mobility information in the clusterhead election.

The idea is the selection of relative stable nodes to be part of the clusterhead set. Moreover, the
number of clusterheads should be also kept small. The clusterhead election is made based on the fol-
lowing information: normalized link failure frequency, number of nonmembers in the neighborhood,
node identifier (to break the ties). The nodes are rated basedon this information.

The normalized link failure frequency is used to estimate the relative mobility pattern of a node.
Higher link failures indicate a higher mobility. The numberof nonmembers in the neighborhood is
used to check how connected the node is. Nodes with plenty nonmembers in the vicinity have higher
priority to become clusterhead.

Every node sends this information periodically in two typesof messages: the Hello message and
the Global Broadcast Messages (GBM). The first is frequentlysent and has a reachability of 1 hop.
The GBM has a much larger inter-message period and is forwarded by the clusterheads, which put
their information inside before broadcasting.

When a node powers on, it starts sending the both messages. A timer for checking whether the
node should become clusterhead is set. At the same time, it collects information from the other nodes.
When the timer expires, the node checks whether it has the higher rate in the neighborhood. If positive,
it declares itself clusterhead. When not, it starts the timer again.

Upon receiving a Hello or GBM message from a direct neighbor that is clusterhead, a nonmember
node becomes member of the cluster.

MOBIC Heuristic The lowest mobility clustering algorithm (MOBIC) [14] usesa metric for rank-
ing the nodes that is exclusively based on the mobility of thenodes.

As usual for this class of heuristics, beacons are sent between neighboring nodes to advertise
their presence. But different from the other heuristic, thereceived power levels (RSSI) of the beacon
packets are used to calculate the relative mobility of the node. Before sending the next beacon, each
node computes an aggregate relative mobility metric. This value is sent with each beacon packet.

When a node has the lowest aggregate relative mobility amongall its neighbors, it assumes the
clusterhead status. Vicinity nodes are attached to the clusterhead with the lowest aggregate relative
mobility.

An additional enhancement to the other approaches is the introduction of a delay before re-
clustering the network when the topology changes. This is done to avoid incidental contacts between
passing clusterheads to trigger a re-clustering process.

WCA Heuristic In this section, we will present the Weighted Clustering Algorithm (WCA). The
clustering scheme tries to preserve its structure as much aspossible when nodes are moving or the
topology is slowly changing.

The combined metric tries to measure how appropriate a node is to be the clusterhead. It takes
into account the following parameters:



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 105

Ideal number of membersδ : It states how many members are desired in each cluster. Thedegree-
differenceof the nodev, ∆v = |dv−δ | returns the difference of the requested number of members
to the current number of neighbors (given bydv = |Ngb(v)|, Ngb(v) is the set of neighbors of
v).

Battery power: The clusterheads have an extra energy consumption. It is notdesired that nodes
almost depleted assume the clusterhead role.Pv is the cumulative time during which a nodev
acts as a clusterhead and has used extra battery power. This parameter acts for the rotation of
clusterheads in the heuristic.

Mobility: The election of nodes that do not move very quickly is desirable. The mobility is measured
by the average speed of the node up to the current timeT,
Mv = 1

T ∑T
t=1

√

((Xt −Xt−1)2 +(Yt −Yt−1)2

Distance to neighbors: A clusterhead can communicate better when its neighbors have a smaller
distance from it. The distance to neighbors is calculated using: Dv = ∑v′∈N(v) dist(v,v′).

The combined weightWv for each nodev is evaluated by:

Wv = w1∆v+w2Dv +w3Mv +w4Pv

w1, w2, w3, w4 are theweighing factors.
The node with the smallestWv is chosen as clusterhead in a very similar fashion to the other

algorithms. In order to cope with mobility, the clusterheadelection is invoked multiple times, however
as rarely as possible. It is not invoked if the relative distance between the clusterhead and the nodes
does not change significantly.

Nevertheless, due to the dynamic nature of the system, the nodes tend to move in different direc-
tions, disorganizing the stability of the network. The system has to update itself from time to time. In
WCA, all nodes continuously monitor their signal strength received from the clusterhead. If the signal
between a cluster member and the clusterhead gets weak, the member informs the clusterhead that it
is no longer able to attach itself to that clusterhead. Then,the clusterhead tries to hand over the node
to a neighboring cluster. If the node goes to a region not covered by any clusterhead, the clusterhead
selection algorithm is again invoked.

Additional characteristics of WCA are: the presence of a methodology to balance the load (amount
of members) among the clusterheads and the assumption the nodes have two power modes (radio) for
short and long distance communication. The short range modeis used for communication between
members and clusterheads, and the long range between clusterheads.

DCA and DMAC Heuristics The Distributed Clustering Algorithm (DCA) and the Distributed
Mobility-Adaptive Clustering (DMAC) were proposed in [12]and presents a generalization of the
greedy dominating independent set heuristics.

A common model presented in several previous algorithms is the greedy search for aMaximum
Weight Independent Set(MWIS) in a graph, where non-negative weights are associated with the nodes.
These weights are the degree of the node in theHighest-Connectivity Cluster Algorithmand the node’s
id in the “lowestid first” approach.

The objective of theMaximum Weight Independent Setproblem is to find an independent set of
nodes where the sum of weights is as big as possible. The MIS problem is a special case of the MWIS
problem, and as MIS, it is an NP-hard problem.



106 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

The main idea of the generalization is that with the appropriate selection of weights, thepreference
to have a given node as clusterhead can be expressed. The authors propose the centralizedGeneralized
Clustering Algorithm(GCA), that is a generalization of the previous clusterheadselection algorithms.
The procedure is showed in the Algorithm 1.

Algorithm 1 TheGeneralized Clustering Algorithm
{input: G = (V,E): network,w: weights; output:{Ci}i∈I⊂V ;}
i← 0
while V 6= /0 do

i← i +1
{Pick the node with the lowest ID among those with maximum weight}
v←min{u∈V : wu = max{wz : z∈V}}
{ Neigh(v) returns the set of neighbors of nodev}
Ci← {v}∪Neigh(v)
V ←V \Ci

end while

The author defined thequalityof a clustering algorithm as measure of how the algorithm performs
compared to the theoretical optimum and showed a theoretical nontrivial lower bound. This lower
bound depends on global network parameters. Moreover, it isshown that the greedy algorithms are
the best that can be done in polynomial time, given thatP 6= NP.

Two distributed heuristics are presented by the same authors in [11]. TheDistributed Clustering
Algorithm (DCA) is suitable for clustering “quasi-static” networks whereas theDistributed Mobility-
Adaptive Clustering(DMAC) can deal with mobility. Both algorithms are message-driven, i.e., except
for the initial routine, a specific procedure will be executed at a node depending on reception of the
corresponding message.

The fact that DCA uses a genericweightassociated with each node to measure how desirable it is
to the clusterhead position makes DCA a generalization of the previous algorithms. Theweightdrives
the clusterhead choice.

In DCA, there are two types of messages:CH(v), used by the nodev to make its neighbors aware
that it is going to be clusterhead, andJOIN(v,u). Every node starts the execution running at the same
time the procedureInit. Only the nodes with the higher weight among their neighborswill send aCH

message. The other nodes will wait in order to receive these messages.

• On receiving CH(u). The nodev receiving this message will check whether some other node in
the neighborhood with higher weight may send aCH message (in other words, no message was
already received from that neighbor, neitherCH nor JOIN). The nodev will select the neighbor
with the higher weight among them. After joining the cluster, theJOIN message will be sent.

• On receiving JOIN(u, t). The nodev checks whetherv is a clusterhead andu wants to join its
cluster (t = v). When all neighbors with smaller weight have joined some cluster, the algorithm
is ended.

As already said, DMAC is also a message-driven heuristic. Different from DCA, it is not assumed
that during the clustering process the nodes of the network do not move. Instead of just reacting upon
reception of messages from other nodes, it also reacts in thecase of link failure (possibly caused by
movement) or in the presence of a new link. The algorithm is similar to DCA, nevertheless a new
clusterhead election may be activated as response to theNew_LinkandLink_Failureevents.



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 107

5.2.2 Dominance Only Approaches

In the literature, there are also one hop clustering algorithms that do not aim at fulfilling the inde-
pendence property (nevertheless, the dominance is satisfied). This means that clusterheads can be
neighbors but every ordinary node has at least one clusterhead as direct neighbor.

5.2.2.1 LEACH Heuristic

TheLow-Energy Adaptive Clustering Hierarchy(LEACH) [57, 59] is a clustering-based protocol that
minimizes the energy dissipation in sensor networks. It hasa randomized rotation of clusterheads.
Such kinds of approach change dynamically the clusterheadsin order to avoid overburden of one node.
This may happen because normally the clusterheads have additional responsibility in the network (e.g.
to organize the set of nodes). This means that the battery of the clusterheads have a tendency to be
faster depleted.

In the LEACH architecture, the clusterhead has the task to coordinate the sleep time of the other
nodes, to receive the sensor data from the members of the cluster, to perform data fusion, and to send
the result to the base station.

The LEACH algorithm is probabilistic; sensors elect themselves to be local clusterheads at any
given time with a certain probability. These clusterhead nodes broadcast their status to the other sen-
sors in the network. Each sensor node determines to which cluster it wants to belong to by choosing
the clusterhead that requires the minimum communication energy. The decision of becoming clus-
terhead depends on the amount of energy left at the node. There is no extra negotiation among the
nodes.

To assure that the network, with high probability, will haveenough clusterheads to cover it and
at the same time does not overestimate this number, the optimal number of clusters is determined a
priory.

In each round of the algorithm, a nodev chooses a random numberr ∈ [0,1]. If r < T(v), the node
becomes clusterhead, whereT(v) is the threshold to become clusterhead and is given by:

T(n) =

{
P

1−P·(r ·mod1
P )

if n∈G

0 otherwise

WhereP is the desired percentage of clusterheads,r is the current round, andG is the set of nodes
that have not been clusterhead in the last1

P rounds.

5.2.2.2 GDMAC and MACA Heuristics

In [10], a generalization of the Distributed and Mobility-Adaptive Clustering (DMAC, see [11]) is
presented (called GDMAC). A very similar version of the algorithm, calledMobility-Adaptive Clus-
tering Algorithm(MACA) is presented in the [13]. Although the MACA algorithmhas about the same
functionality as the GDMAC, the comparison with the DMAC is not done in this paper.

The idea of the heuristic is to overcome some limitations of DMAC, but keeping its desirable
properties. As in DMAC, the nodes here can move during the cluster set up and decide by them-
selves about their own role based on their current one-hop neighbors. Nevertheless, the independence
property of DMAC is relaxed, and now a degree of independencecan be selected, i.e., the number of
clusterheads that are allowed to be neighbors. Moreover, a new weight-based criterion that allows the
nodes to decide whether to change their role depending on thecurrent condition is defined.



108 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

The heuristic runs continuously on each node of the network,and the decision about the role of a
node has to obey the following constraints:

• Ordinary (members) nodes are affiliated with only one clusterhead.

• For an ordinary (member)u, there is no clusterheadv such thatwv > wclusterhead+ h, where
clusterhead is the current clusterhead ofu. w is the current weight of the nodes serving as
clusterhead, andh ∈ R is a parameter. This constraint says that no member can be affiliated
with a clusterhead whosew is much (h) below another neighbor that is also clusterhead.

• A clusterhead cannot have more thank neighboring clusterheads (degree of independence).

Like DMAC (and DCA), the heuristic is message-driven. Thereare five types of messages:CH(v),
used by the nodev to make its neighbors aware that it is going to be clusterhead, JOIN(u,v), used to
inform the neighbors that nodeu is joining the clusterheadv, RESIGN(w), to force nodes with weight less
than w to leave the clusterhead condition (because the number of clusterheads in the neighborhood is
greater thenk), Link_failure, andNew_link.

The execution of the algorithm is similar to DCA (and DMAC), but k neighboring clusterheads
are tolerated before one of them has to withdraw its condition. Moreover, a member just changes its
clusterhead if there is another clusterhead in the vicinitythat has a considerably better weight. These
two measures result in a drastic reduction of message exchange during the maintenance phase of a
comparable DMAC algorithm.

5.2.2.3 The Zonal Clustering

The zonal clustering [33] is based on the dominating set property, but employs following enhance-
ment: In order to allow an easily communication among the clusterheads, facilitating the routing of
messages among clusters, the concept of weakly-connected dominating set is used.

Given a graphG= (V,E), the dominating setS⊆V, the subgraph weakly induced by S is denoted
by< S>w= (Ngh(S)∪S,E∩(Neg(S)×S). < S>w includes the vertices in S and all of their neighbors
as the vertex set. The edges are all of G that are incident to S.A vertex subset S is aweakly-connected
dominating set, if S is dominating and< S>w is connected.

The zonal clustering algorithm, a zone size control parameter x controls the size of each zone of
the graph. A zone is a connected subgraph of the input networkwith not more than 2·x vertices. Each
zone has a root vertex. The zonal construction algorithm hastwo levels: intrazonal and interzonal.

The intrazonal level is resposible to construct a weakly-connected dominating set inside the zone.
In the interzonal level, the root of a zone adds additional vertices to its weakly-connected dominating
set to guarantee that the union of the dominating sets for theindividual zones is a weakly-connected
dominating set for the whole network [32].

There are other algorithms that even desire a higher connectivity of the clusterheads. The con-
nected dominating setS is a dominating set where there exists a path among any two vertices in this
dominating set, and this path is also included inS. The idea is that this dominating set forms a back-
bone for routing the messages in the network. A survey about such algorithms (among others) can be
find in [32].

5.2.3 Multihop Clustering

In this section, the proposed approaches go beyond the search for the maximum independent set of
a graph or a dominant set. Instead of just finding clusters with members that are one hop away from



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 109

the respective clusterhead, the different proposals presented in this section comprise finding multihop
clusters with different construction objectives.

In this section, we will first present approaches that aim to create clusters with low diameter. They
try to decompose a graph to connected elements with a maximumdiameter. Further, the Max-Min
D-Cluster Formation [4], which aims at constructing clusters where any node within the cluster is at
mostd hops away from the clusterhead, will be presented. The difference here is that the diameter
is not dependent of the number of nodes in the system like in the first approach, where low diameter
meansO(log n). Nevertheless, big clusters may be formed.

Subsequently, other multihop cluster heuristics that pursue other objectives are introduced. For
example, theExpanding RingandBudged Approachtry to divide the ad hoc network into a set of
clusters whose sizes are close to a given bound. Beyond this is theUpper and under bound approach:
an inferior and a superior size limits are given, and the problem is to divide the network into clusters
that match the given boundaries.

5.2.3.1 Low Diameter Network Decompositions

In [87], the problem of finding a low-diameter network decomposition was studied in algorithmic
graph theory. The decomposition of a graphG = (V,E) is the partition of the vertex set into subsets
(called clusters). The idea is to decompose the network intoconnected clusters, each with a small
diameter.

A fast algorithm for low diameter network decomposition waspresented in [5].The problem is
that the approach considers low diameter asO(log n), and this does not bound the cluster size [76].

Because dense networks have nodes with a very high degree, decomposing such networks may
result in very large clusters. Although the algorithms presented are very fast and could be applied
usefully in ad hoc networks, the fact that the size of the cluster is dependent of the network density is
not a very good property.

5.2.3.2 Max-Min D-Cluster Formation

In [4], the issue of constructing the d-hop dominating set inan ad hoc network is addressed. The
publication presents a proof of the NP-completeness of the problem for unit disk graphs. In addition,
an heuristic to construct a good clustering solution is given.

Given a desired maximum number of hopsd (from the clusterhead), the heuristic runs for 2d
rounds of information exchange. During the execution, two arrays are maintained by each node: a
WINNER and a SENDER array. The WINNER array stores theid of the nodes that wins some round
of the algorithm. How the winner in a round is determined willbe described later. The SENDER
array stores the node that sends the winnerid.

The algorithm is composed of three phases. They are as follows:

Floodmax: This phase consist ofd rounds. In a round, each node locally broadcasts its current
WINNER value to all of its 1-hop neighbors (in the first round,each node takes its ownid as
current WINNER). After all neighboring nodes have been heard from in this single round, the
node chooses the largest value among its own WINNER value andthe values received. This is
the new WINNER. This new value is stored in the WINNER array, and the node that sent it is
stored in the SENDER array. This phase is used by the nodes to propagate the largest nodeids.

Floodmin: This phase also consists ofd rounds. It is the same asFloodmax, but each node selects the
smallest value as its new WINNER. The purpose of this phase isto let the nodes with smaller



110 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

ids reclaim some of their territory.

Selection of Clusterhead: In this phase, each node will locally select the clusterheadbased on the
WINNER array collected in the previous phase. For that, there are tree rules:

1. Each node checks whether it has received its own node id in the second phase. If it has, it
becomes clusterhead and skips the other rules.

2. The nodes look for node pairs, i.e., nodeids that appear both in the first phase and in the
second. From those nodes, it selects the smallestid to be its clusterhead.

3. Elect the maximum nodeid in the first phase as the clusterhead for this node.

The characteristics of the heuristic are that it can find goodsolutions with relative low communi-
cation (O(d)) and generalizes the dominating set problem.

5.2.3.3 ADBP Heuristic

The adaptive dynamic backbone protocol (ADBP) [67] is a clustering algorithm used to construct a
backbone in a WSN. The idea is to have multihop clusters wherethe clusterheads form a backbone to
route the packets in the network. Here, the diameter of the clusters is dynamically adjusted: instead
of a fixed distance to the clusterhead, as presented in the Max-Min D-Cluster Formation, the allowed
distance to the clusterhead is adapted to the current network conditions.

In networks with low topology changes, large clusters are allowed. This comes from the assump-
tion that the cluster will stay stable. In networks with higher dynamics, the size of the cluster is
reduced in order to avoid frequent cluster reconstruction.

The clusterhead election has some similarities to the rating system used in the maximum inde-
pendent set approaches. The node with the highest rate will become clusterhead. Nevertheless, at
the beginning, all nodes are clusterheads. The first step is to exchange beacons in order to discover
nodes in the vicinity. Among other information, the beaconscontain the distance from the clusterhead,
degree of the node and the accumulated error rate (a kind of link metric) to the clusterhead.

Every node checks by itself, based on the neighboring information, whether its rate is higher
than the neighboring. The rate is a linear combination of thedistance to the clusterhead, degree and
accumulated link metric (path to the clusterhead). If some neighbor has a higher rate, the node decides
to leave its position as clusterhead and assume the winning node as parent in a cluster tree (clusterhead
is the root). Nevertheless, there are two constraints in this clusterhead selection: a hop limit constraint,
and a accumulated link metric constraint.

In the case of mobility, if a node detects that its parent has moved out of range, it will do the same
thing when the parent violates the constraints: try to find a new parent with higher rate or become
again clusterhead.

5.2.3.4 Expanding Ring Algorithm

In [104], an algorithm for bounded size clustering based on an expanding ring search is presented.
The algorithm relies on a sequence of rounds. In each round, avariable indicating the maximum
hop limit is incremented. The initiator (clusterhead) sends this limit in the beginning of each round.
This message is repeated by the receivers after decrementing the maximum hop until it becomes zero.
At the end of the round, the clusterhead knows the total number and ids of the nodes added in the
last layer. After some rounds, eventually, the size bound will be exceeded. When this happens, the
clusterhead sends a message containing a list of arbitrary chosen nodes (from the last layer) that should



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 111

be dropped from the cluster (in order to achieve the bound). This message is simply flooded inside
the cluster.

5.2.3.5 Rapid and Persistent Clustering

In [75, 77], two clustering methods aiming at producing clusters with a maximum determined size (i.e.
number of member nodes) are presented. The algorithms are more efficient than the expanding ring.
The cluster sizes produced should be as close as possible to the specified bound (which we will call
hereB) in order to limit the total number of clusters. Nevertheless, the bound should not exceeded.

Two algorithms are presented: theRapid and thePersistentones. Both approaches rely on al-
locating growth budgets to neighbors. This significantly reduces the number of messages exchanged
because it allows the cluster to grow based on local decisions rather than involving the initiator at each
round.

Both of the algorithms produce clusters of bounded size. TheRapidheuristic uses less messages
than thePersistentone. Nevertheless, it has a poor worst-case analytical performance. ThePersistent
heuristic persistently tries to produce a cluster of the specified bound if possible. Simulations show
that this algorithm performs well on average when building asingle cluster. The proposed algorithms
do not violate the cluster size bound at any time. They generally produce flat rather than deep clusters.
Flat clusters means that the format of the cluster resemblesa circle, whereas deep clusters have less
connections and the shape of a line. This is advantageous because flat clusters lead to smaller end-to-
end delays.

The Rapid Clustering Algorithm In this algorithm, the initiator starts with a budget ofB, then
it counts itself and therefore hasB− 1 nodes missing to accomplish the requested cluster size. The
initiator distributes the current budget (B−1) among its neighbors by sending a message to each one
of them. If there are more neighbors than the budget, a subsetis arbitrarily selected. When receiving
the message, each neighbor counts itself and redistributesthe partial budget to its neighboring nodes
(except to the respective parent). This process is repeateduntil the complete budget is exhausted. An
example of the running algorithm is depicted in Figure 5.2.

In the example, the cluster bound is 8 nodes, and the result isa cluster of size 6. The initiator
(node “A”) allocates a budget of 3 to node “B”. As node “B” is just a leaf, it can only contribute with
1 to the cluster. Nodes that receive a message send acknowledgment to their parents in two situations:
the budget is exhausted or they have received acknowledgments from all their children. When the
initiator receives messages from all neighbors that it senta budget to, the algorithm terminates. When
the acknowledgments carry extra information like hop count, the clusterhead can compute the size
and depth of the cluster.

The PersistentClustering Algorithm Although theRapidalgorithm has a low message complexity
per cluster (maximum 2· (B−1) messages), it can construct clusters that are very small when com-
pared to the desired size. It is possible to see this in the example showed in Figure 5.2. ThePersistent
algorithm uses more messages, but it improves the worst-case behavior.

As in theRapidversion, thePersistentalgorithm has an initiator that distributesB− 1 (budget)
among its neighbors. All nodes receiving the message count themselves and distribute the remaining
budget among their neighbors (except the parent) until the budget is exhausted. The difference of
this algorithm is that, when receiving the acknowledgmentsof the children, each node does not send
immediately an acknowledgment to the parent. First it compares the size of its subtrees and compares
it to the budget allocated to it. If there is a residual budget, the node distributes it among its neighbors



112 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

In it ia tor8

2

1

3

2

1

A
B

C

D

E

F

Figure 5.2: Example of execution of the
Rapidalgorithm [75].

In it ia tor8

1

3

1

2 ,1

2 ,1

1

1

A
B

C

D

E

F

G

H

Figure 5.3: Example of execution of thePer-
sistentalgorithm [75].

that either did not receive any budget previously or met all previously allocated budgets. When the
budget is met or no further growing is possible, it returns anacknowledgment to its parent.

When the initiator realizes that the budget was met or no further growth is possible (e.g., no more
nodes are connected to the cluster), the heuristic terminates. An example of execution of the algorithm
is shown in Figure 5.3. As in the previous example, node “B” cannot allocate the requested budget.
Node “A” then realizes that the subtree “B” has consumed just1 from the budget and re-allocates it
among its children (nodes “C” and “E”).

When possible, thePersistentalgorithm always produces the cluster with the specified size. Wher-
ever this is not possible, it attempts to build the largest possible cluster.

Network decomposition TheRapidandPersistentalgorithms can produce a single cluster of bounded
size. To perform a network decomposition in clusters of bounded size, a systematic way of electing
the initiators (clusterheads) that will start the decomposition process must be used.

In [77], the following method to elect the clusterheads is presented. Each node that comes up
waits for clustering messages from the neighborhood. When atimeout (previously configured) oc-
curs, the node becomes an initiator (or in our terminology, aclusterhead) and invokes one of the two
clustering algorithms (in fact, the authors argue that thismethod can also be used in theExpanding
Ringalgorithm). This process is repeated in several (random) places in the network until the complete
network is clusterized.

In order to reduce the complete network decomposition time and at the same time to shrink the
number of initiators active at the same time, the paper presents a proposal of initialization of the
timeout in order to achieve a good trade-off between the two presented aspects. If the times when
the initiators become active are set too far apart, the totaltime of the network decomposition will be
large. In the other hand, when several initiators are concurrently active in a neighborhood locality,
some initiators will produce clusters of size smaller than the specified bound.

Some problems of both algorithms are the assumption that thenetwork is static and the fact that
the heuristics do not attempt to rank the links in order to select the best connected nodes to form the
cluster. Moreover, the initiators are also randomly chosen, in contrast to our two heuristics presented
in the next section, where clusterheads are carefully selected based on their fitness for the clusterhead



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 113

role.

5.2.3.6 Upper and Lower Bound Approach

In [8], a clustering scheme to create a hierarchical controlstructure is presented. The exact clustering
problem is formally described in the publication . Given thegraphG = (V,E) and a positive integer
1≤ q≤ |V|, the problem is to find the clustersV1,V2, ..,Vn with the following conditions:

1. All nodes should be included in at least one cluster (∪n
i=1Vi = V).

2. Each cluster should be connected (G[Vi ], and the subgraph induced byVi is connected.

3. All clusters should have a minimum (calledq) and a maximum size constraint 2·q (q≤ |Vi | ≤
2q).

4. Any two clusters should have small overlap (Vi ∩Vj ≈O(1)).

5. A vertex should belong to a constant number of clusters (S(v)≈O(1), S(v) = {Vi |v∈Vi}).

6. Clusters should be stable across node mobility.

An important remark is that in this approach, as opposed to our basic clustering problem, a small
overlap is allowed.

In their paper, the authors analyze how the allowed topologies may influence the feasibility of the
desired properties described above. For example, for a complete graph, the condition number five can
be violated, e.g. in a star graph, fork≥ 2, the center must be included in all clusters, i.e.,S(v) = O(n

q).
For the rest of the paper, the authors just analyze the properties for graphs with a special topology,

modeled by theDisk Graphs Model[35, 66]. A Disk Graphis a communication model that consists
of a valueR≥ 0 and a graphG = (V,E) embedded in an euclidean plane. The edges are defined
as follows: for each two vertices inG, iff the distance between them is less or equal thanR, there
is a {u,v} in E. If R = 1, the model is calledUnit Disk Graph. The model considers that with
omnidirectional antenna and fixed power, transmitted packages can be received successfully just inside
a given circle. This is not really true in practical cases, but theDisk Graphprovides a simple model
for theoretical analysis.

With anUnit Disk Graph, dense star topologies are not allowed, which avoids the problem exposed
in the previous paragraph. It is proven in the paper that evenwith Unit Disk Graph, the requirement
four could be violated for certain cases. In order to avoid this, the third constraint is altered to:

3a. ∀i, |Vi | ≤ 2q

3b. ∀i except one, |Vi | ≥ q, i.e., only one cluster smaller thanq is allowed.

With this new constraint, the algorithm described in the work is able to meet all constraints for
Disk Graphmodels.



114 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.4: An example of execution of the upper lower bound algorithm.

Clustering Algorithm The first step of the algorithm is to find a rooted spanning treeof the graph
G using Breadth-First-Search tree in order to bound the diameter of the tree. LetT be this tree and
T(u) be the subtree rooted by the vertexu. C(u) = {u1,u2, ..,ul}, denotes the children of vertexu in
the tree.

Now, a nodeu whereT(u)≥ q and fori = 1,2, .., l , T(ui) < q is selected. The idea is now to form
clusters from the subtrees ofu. The algorithm selects successively subtrees until the size reachesw,
whereq−1 < w < 2q−2. It is important to remark that, at the end, the last subtrees whose sum do
not achieve the needed size do not form a cluster.

All nodes belonging to some cluster are then deleted from thetreeT and the process is started
again. In practice, the treeT is created and then post-order transversed to find the nodeu (T(u) ≥ q,
i = 1,2, .., l , T(ui) < q). Then, subtrees are selected taking into consideration the connection between
theC(u), because wherever the subtrees are connected throughC(u), the nodeu does not need to be
included in the cluster. For subtrees starting at children from u that aren’t connected, the nodeu must
be included in order to assure the second constraint. It is easy to see that the clusters will have at most
one common node (u in the case).

An example of execution of the algorithm is depicted in Figure 5.4. In this step, the nodeu holds
the conditionsT(u) ≥ q, i = 1,2, .., l , T(ui) < q. Then, two clusters are formed: “cluster 1” has size
1.4q+1 because it must include the nodeu, since it is not known whether the subtrees are connected.
The “cluster 2” is formed by two subtrees whose roots are connected by a link. Therefore, the node
u is not necessary in this cluster. The “cluster 3” is not complete because the minimum amount of
nodesq has not being reached. Therefore, just clusters one and two are deleted, and the algorithm
goes ahead.

5.2.4 Other Approaches

There are also other clustering approaches that do not fit in any other presented category. For example,
in [74], a method that clusters are formed without clusterheads is presented. Aclique in graphG =



5.2. STATE OF THE ART - CLUSTERING IN AD HOC NETWORKS 115

Figure 5.5: Example of output of the clique-based clustering.

(V,E) is a subsetSof V, whose induced subgraph is complete. The clustering algorithm decomposes
the network in the maximal cliques as clusters [32]. Overlapping clusters are allowed and nodes
that are members of more than one cluster are called boundarynodes. They are responsible for
the communication among the different clusters. Figure 5.5shows an example of a clique-based
clustering.

5.2.5 Discussion

The maximum independent set and the dominating only approaches concern the division of the net-
work in one hop clusters. This is different from our approach, where multi-hop clusters are allowed.
Moreover, there are few approaches that take into account the link quality when constructing the
cluster. The WCA heuristic makes a very simple link assessment. In our approach, a much more
elaborated link metric is used. The MOBIC heuristic uses a simplified link metric too, but for the
purpose of mobility assessment. Stable nodes are desired asclusterheads. The used link metric just
uses the received signal streght indication. The VDBP clustering construction method uses the link
failure rate, but again, just for guessing the mobility pattern of the nodes.

Another interesting aspect presented inWCAis the combined metric weighting used to select the
clusterhead. In our algorithms, we use also combined metricweighting. Nevertheless, differently
from this approach, we use metrics for clusterhead and members election. Moreover, the links are
also rated with a much more elaborated link metric. Our metrics use a larger number of parameters
than the ones presented here.

In the approaches based on independent and/or dominating set, the membership selection does not
rate the possible members with a fitness metric as our approach does.

In the state of the art, we presented also multi-hop clustering strategies pursuing different objec-
tives. The Max-Min D-Cluster Formation aims at finding clusters with a maximum number of hops
d from the clusterhead. There is no distinction of the link quality when selecting cluster members.
Moreover, differently from our approach, the size of the cluster is uncontrolled. Dense network areas
result in bigger clusters than sparse ones. In the ADBP heuristic, variable cluster diameters are al-
lowed. The diameter of the cluster is controlled by the mobility of the network: when small topology
changes are detected, the clusters are larger than when larger topology changes are observed. The
idea is that a very high cluster reconstruction overhead is necessary when the network is experiencing
extensive topology changes and the clusters are large. Nevertheless, our approach tries to construct
clusters with a minimum amount of resources, different fromthis approach. Moreover, this approach
uses also a simplistic link metric for the clusterhead election.

A little bit more in the direction of this work are theRapidandPersistentalgorithms. They have
an objective boundB and try to produce clusters achieving this bound. However, the bound is just
given in number of nodes and there is no way to differentiate nodes. Moreover, the clusters are always
smaller or equal to the given size (bound). In our approach, all clusters have at least a specified amount
of resources (as can be seen in the next section).

In the Rapidand thePersistentalgorithms, the clusterheads are elected in a completely random



116 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.6: Example of ad hoc network model with weighted links and nodes

fashion, which leads to the selection of nodes that are not very suitable for the role. In our approaches
we use the opposite approach: strongly connected nodes withplenty energy have a higher probability
to be selected as clusterheads. Another difference is related to the links: theRapidand thePersistent
heuristics do not attempt to rank the member candidates’ (concerning, for example the links) in order
to select the best connected nodes to form the cluster.

The upper and lower bound approach try to keep the amount of nodes in the clusters inside a
specified interval. But different from our approach, overlaps are allowed. Moreover, the link quality
is also not relevant to the heuristic.

Another very important difference between all existing approaches and the one presented in this
work is the fact that we try to minimize the communication overhead among all nodes inside a cluster.
For that, as it will be presented in the next section, we use the smallest distance between each pair
of nodes inside the clusters for the objective function. This distance is calculated by means of our
combined link metric.

A final comment is also important: besides the different approaches presented in this state of
the art, there are several theoretical approaches of graph clustering and partitioning. Besides Section
5.2.3.1 that goes a little bit in this direction, we have concentrated on more practical approaches in
this survey, i.e. approaches for mobile ad hoc networks.

5.3 Problem Definition

In this section, a formal definition of our exact clustering problem is described. Moreover, a proof of
the NP-hardness of the problem is also given.

We call our problemminimum intracommunication-cost clustering.
The ad hoc network is modeled by an undirected graphG = (V,E), where V is the set of wireless

nodes and an edge{u,v} ∈ E if and only if a communication link is established between nodeu∈V
andv∈V. The two nodes in this case are neighbors. Each nodev∈V has an unique identifier (IDv).

For each link, a weighing function assigns a positive weight. w : E→ R+. This weight measures
the quality of a wireless link (for details see thevirtual distanceconcept). We define for each edge
not in the graph ({u,v} /∈V), w(u,v) = ∞.

For each node, an additional weighing functionr is responsible for characterizing the amount of
resources available in the node.r : E→ R+. This models the resource capacity of the node.

An example of a simple network with link and node weights corresponding to the link quality and
resource availability is shown in Figure 5.6.

The clustering process partitions the nodes intoclusters, each one with aclusterheadand possibly



5.3. PROBLEM DEFINITION 117

someordinary nodes. As presented in the related work section, there are severaldifferent types of
clustering strategies pursuing different objectives.

In our problem, the objective is to get multihop clusters with enough resources for the OS and
application processing. Moreover, the minimization of theintra-cluster communication cost is desired.

This optimization problem is modeled as following:

Input: A graph with weighted nodes and links(G,w, r) and a resource requirementq ∈ R+, where
the sum of all node weights in each cluster must be greater or equal toq

Constraints: For every input instance(G,w, r,q), M (G,w, r,q) = {C1,C2, ..,Ck|Ck is thekth cluster
configuration}, where the following properties hold
Ck =

{
ck1,ck2, ..,ck(nk)

}
is thekth possible cluster configuration of the graph, wherek= {1,2, ..,n}

(n is the number of possible configurations,nk is the number of clusters in thekth configuration,
nk= |Ck|)

cki =
{

v1
ki,v

2
ki, ..,v

|cki |
ki

}

∈ Pot(V) is the ith cluster of thekth configuration, wherev j
ki is the jth

element of the clustercki

For each configurationCk, k = 1,2, ..,n, the following properties must hold:

1.
⋃

i=1,2,..,nk cki = V (cluster definition constraint)

2.
⋂

i=1,2,..,nk cki = /0 (no overlapping constraint)

3. LetP(u,v) =
{

p(u,v)
1 , p(u,v)

2 , .., p(u,v)
m

}

be the set of all possible paths between nodesu and

v. p(u,v)
h ∈ Pot(E) is thehth possible path where:

p(u,v)
h =

{

{u,xh
1},{xh

1,x
h
2}, ..,{xh

g−1,x
h
g},{xh

g,v}
}

, xh
f ∈V, f = 1,2, ..,g, g∈ IN

For each{u,v} ∈ E∧u,v∈ cki, i = 1,2, ...,nk, ∃p(u,v)
h ∈ P(u,v)|xh

f ∈ cki for f = 1,2, ..,g.
(Connectivity constraint)

4. ∑|cki|
j=1 r(v j

ki
)≥ q, for eachi = 1,2, ...,nk (minimum amount of resources per cluster)

Costs: For every cluster configurationCk = {ck1,ck2, ..,ck(nk)} ∈M (G,w, r,q), the cost is given by:

cost(Ck,(G,w, r,q)) =
nk

∑
i=1

∑
u,v∈cki

1
2
·Dcki(u,v) ·

(
α · r(u)+ (1−α)

)
(5.1)

WhereD(u,v) is the virtual distance betweenu,v∈V. Dcki(u,v) is the virtual distance between
u,v using just edges that are inside the clustercki. Note that∀v,u∈ cki,Dcki(u,v) = D(u,v) iff
the clustercki is a convex cluster, i.e., the global shortest path between any two nodes in the
clustering must use just links inside the cluster.α ∈ [0,1] controls how much the amount of
resources influences the distance metric. Forα = 0, just the distances between cluster members
enter into the metric;α = 1 means that nodes withn times more resources have ann times
stronger influence.
Now, we define how the virtual distance is calculated. First,we introduce the cost of a path:

PCost(p(u,v)
h ) = w(u,xh

1)+
g−1

∑
f=1

w(xh
f ,x

h
f+1)+w(xh

g,v)

The virtual distance betweenu andv is the cost of the shortest path:

D(u,v) = PCost(p(u,v)
h ), wherePCost(p(u,v)

h ) = min
b

(

PCost(p(u,v)
b )

)

, for b = 1,2, ..,m (5.2)



118 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

1

2 3

4
[2 ] [1 ]

[2 ][1 ]

0 .2

0 .9

0 .2

0 .9

Node  ID

Re sou rce

Link Me tric

Figure 5.7: Simple network clustering example

The virtual distance using just nodes inside the cluster is defined by:

Dcki(u,v) = PCost(p(u,v)
h ), wherep(u,v)

h ∈ P(u,v)|xh
f ∈ cki andPCost(p(u,v)

h ) =

minb

(

PCost(p(u,v)
b )

)

, for b = 1,2, ..,m

Goal: Minimum, i.e. mink{cost(Ck,(G,w, r)) , for k = 1,2, ..,n}

To better clarify the definitions an example is presented. Consider the graphG = (V,E) with
V = {v1,v2,v3,v4}, IDvd = d andE =

{
{v1,v2},{v2,v3},{v3,v4},{v4,v1}

}
. G is shown in Figure 5.7.

The functionw : E→ R+ rated the links and in this case is defined as:

w(e) =







0.2 if e= {v1,v2}
0.2 if e= {v3,v4}
0.9 if e= {v1,v4}
0.9 if e= {v2,v3}

wheree∈ E.
The resource function (r : V → R+) returns the resource availability of each node and in the

example is defined as:

r(v) =







2 if v = v1

1 if v = v2

2 if v = v3

1 if v = v4

wherev∈V
Our objective in this example is to find the clustering with the objective of minimizing the intra-

cluster communication. The problem input is(G,w, r,q) whereq = 3, i.e. we want at least 3 resource
units in each cluster. For this problem, we useα = 0.

Theset of feasible solutionsfor our inputM (G,w, r,q) is:

M (G,w, r,q) = {C1,C2,C3}=
{{
{v1,v4},{v2,v3}

}
,
{
{v1,v2},{v3,v4}

}
,
{
{v1,v2,v3,v4}

}}

This set of solutions is depicted in Figure 5.8.
The following clusters, for example, are not part of the valid solutions:

{{
{v1},{v2,v3,v4}

}
,
{
{v1,v3},{v2,v4}

}
,
{
{v1,v2,v3},{v2,v3,v4}

}
, ..

}

* M (G,w, r,q)

because they violate some of the constraints, e.g.:



5.3. PROBLEM DEFINITION 119

1

2 3

4
[2 ] [1 ]

[2 ][1 ]

0 .2

0 .9

0 .2

0 .9

1

2 3

4
[2 ] [1 ]

[2 ][1 ]

0 .2

0 .9

0 .2

0 .9

(a ) (b )

1

2 3

4
[2 ] [1 ]

[2 ][1 ]

0 .2

0 .9

0 .2

0 .9

(c)

Figure 5.8:Set of feasible solutionsM (G,w, r,q) for the input(G,w, r,q).

•
{
{v1},{v2,v3,v4}

}
: The minimum amount of resources per clusterq = 3 (rule 3) is violated

because∑|c11|=1
j=1 r(v j

11
) = 2, note that (v1

11
= v1).

•
{
{v1,v3},{v2,v4}

}
: The same problem as above

•
{
{v1,v2,v3},{v2,v3,v4}

}
: The rule 2 is violated, because{v1,v2,v3}

⋂{v2,v3,v4} 6= /0

The costs of the valid solutions are:

cost(C1,(G,w, r,q)) = ∑2
i=1 ∑u,v∈c1i

1
2 ·Dc1i (u,v) = Dc11(v1,v4)+Dc12(v2,v3) = 1.8

cost(C2,(G,w, r,q)) = ∑2
i=1 ∑u,v∈c2i

1
2 ·Dc2i (u,v) = Dc21(v1,v2)+Dc22(v3,v4) = 0.4

cost(C3,(G,w, r,q)) = ∑2
i=1 ∑u,v∈c3i

1
2 ·Dc3i (u,v) = Dc31(v1,v2)+Dc31(v1,v3)+

+Dc31(v1,v4)+Dc31(v2,v3)+Dc31(v2,v4)+Dc31(v3,v4) = 4.4

Therefore, theminimum(i.e. mink{cost(Ck,(G,w, r)) for k = 1,2, ..,n}) is C2, that is showed in
Figure 5.8b.

The optimal solution for the network depicted in Figure 5.6 is presented in Figure 5.9.

5.3.1 Problem Properties

Let us analyze some properties of our problem. When the constraint number three is not considered, a
property of the optimal solution of the clustering problem is that, for someq and somer : r→]0,q[, the
smallest possible cluster size is obviouslyq and the biggest possible size in the worst case is 2q− ε ,
ε > 0. This is because whenever a clusterci achieves a size bigger than 2q, it can be divided in clusters
cia andcib, saving the cost of the paths among nodes belonging tocia and nodes belonging tocib.

If we consider again the constraint number three, the biggest possible size in the worst case turn
to be the complete network (with cost:∑u,v∈V D(u,v)). An example where∑v∈V r(v)≫ q and even so
the complete network should be a cluster is shown in Figure 5.10.

It is important to remark that theminimum intracommunication-cost clusteringis an NP-hard
problem (even for unit-disk graphs).



120 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.9: The resulting clustering of the network presented in Figure 5.6.

100

100

100

100

100

100

100

100
1

1

1

1

1

1

1

1

[1 ]

[1 ]

[1 ]

[1 ]

[1 ]

[1 ]

[1 ]

[1 ]

Figure 5.10: An example of network where forq > 1 the optimal solution is one cluster (complete
network).



5.3. PROBLEM DEFINITION 121

Proof. For the proof, we will use thepartition problem.
Partition Problem. Given a multiset of positive integers,M = {i1, i2, .., in}, n∈ IN, the problem is

whether a subset of the multiset exist (s⊂M) where, fork, l ∈M: ∑k∈sk = ∑l /∈s l
This means it is possible to divide the multisetM in two groups with the same sum. It is known

that thePartition Problemis NP-complete.
We will now reduce thePartition Problemto our clustering problem (Partition Problem≤p mini-

mum intracommunication-cost clustering).
The first step is to change our clustering from an optimization problem to a decision problem.

This is done by altering the goal:
Goal: Is there a solution with the total communication cost less thand? Formally, fork= 1,2, ..,n,

∃cost(Ck,(G,w, r)) < d?
For each instanceM of the Partition Problem, a Minimum intracommunication-cost clustering

problem instance(G,w, r,q) with the following characteristics will be constructed:

• The graphG= (V,E) is a complete graph, whereV = {v1,v2, ..,v j} (|V|= j) andE = {e1,e2, ..,e( j
2)
}.

• |V|= |M|, i.e., the number of vertices is the same of the number of positive integers inM.

• The functionw : E→ R+ is defined asw(e∈ E) = 1, i.e., all edges have unitary weight.

• The resource functionr : E→ R+ is defined asw(vg ∈ E) = ig ∈M, i.e., each vertice becomes
the weight of an element of the multisetM.

• As minimum resource request for each cluster, we selectq = 1
2 ·∑n

g=1 ig

• And finally, we selectα = 0.

The decision question is now, fork = 1,2, ..,n:

∃cost(Ck,(G,w, r)) <

(
j
2

)

= |E|?

If a clustering solution exists, then a partition inM exist. The clustering solution is composed by
two clustersc1 andc2, where for anyy∈ sand for anyz∈ (M−s), y∈ c1, z∈ c2 andc1∩c2 = /0.

In realistic environments, a constraint that may appear is that the amount of resources of a node
must fall in a specific range, i.e.,∀v∈V, r(v) ∈ [Lin f ,Lsup],Lin f ,Lsup∈ R+,0 < Lin f 6 Lsup. Even in
this case, the problem is still NP-hard.

Proof. The proof here is very similar to the previous one. ThePartition Problemis also used. We
will now reduce thePartition Problemto our clustering problem (PartitionProblem≤p constrained
minimum intracommunication-cost clustering).

For each instanceM of thePartition Problem, a Constrained minimum intracommunication-cost
Clustering) problem instance(G,w, r,q) with the following characteristics will be constructed:

• |V|= ∑n
h=1 ih, i.e., the number of vertices is the same of the sum of all positive integers inM.

• The resource functionr : E→ R+ is defined asw(v∈ E) = Lin f , i.e., each vertice becomes the
weight of the inferior allowed limit.



122 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.11: Example of graph construction. Notice that if apartition ofM exists, the solution of the
problem will be two connected clusters with the same number of nodes (q = 7 nodes) as can be seen
in Figure.

• The graphG = (V,E) whereV = {v1,v2, ..,v j} (|V|= j) is constructed as following:

– C = {v1,v2, ..,vm} (wherem is the number of integers in the problemM) forms a clique in
the graph

– The rest of the nodes are added to the vertices according to the value of the integerig
1 6 g 6 m. Nodevg is connected to a chain ofig− 1 nodes. An example of this graph
construction forM = {3,2,4,2,1,2} is depicted in Figure 5.11.

– The functionI : C→ N returns the correspondent integer of the problemM (ig = I(vg)).

• The functionw : E→R+ is defined asw({u, r}) = 1 if u 6= r, u∈C andr ∈C, i.e., all the edges
in the complete graph have unitary weight. For the other vertices in the graph (vertices forming
the chain)w(v) = 0.

• As minimum resource request for each cluster, we selectq =
Lin f

2 ·∑m
g=1 ig

• And finally, α = 0

The decision question is now, fork = 1,2, ..,n:

∃cost(Ck,(G,w, r)) <
1
2 ∑

u∈C

I(u) · ( j− I(u))?

5.4 Division of Labor and Task Allocation in Social Insects

The cluster construction approach presented in this chapter is based on a particular kind of self-
organization: the division of labor and task allocation in swarms of social insects, described in detail
by Bonabeau et al. [20]. In social insects, different tasks are performed by specialized individuals. It



5.4. DIVISION OF LABOR AND TASK ALLOCATION IN SOCIAL INSECTS 123

Figure 5.12:Minor andMajor subcastes of the workers in thePheidole rheaspecie. Image source:
[129]

is highly probable that specialized task performance is more efficient than sequential task execution
of unspecialized individuals.

All the different types of social insects have division of labor. The most basic level of division of
labor is the reproductive division: only a small part of the insects are involved in reproduction tasks.
Nevertheless, often a further division of labor exists.

The approach of cluster construction presented in this thesis is based on a sub-form of division of
labor calledworker polymorphism, i.e., the workers have different morphologies. Each of thedifferent
morphological castes tends to perform a different task in the colony.

The division of labor is normally not rigid, it exhibits plasticity [105]. Changes in the environment
or in the internal structure of the colony make adjustments in the allocation of tasks necessary, which
is possible due to the plasticity of individual workers.

An experiment made by Wilson [130] in the ant species from thePheidolegenus examined the
worker polymorphism. There are two morphological subcastes in the workers: the minors, which are
responsible for the quotidian tasks of the colony, and the majors, mainly responsible for seed milling,
abdominal food storage, or defense, normally known as “soldiers”. Figure 5.12 shows an example of
amajor and aminor of the speciePheidole rhea.

In the experiment, Wilson altered the structure of coloniesfrom thePheidolegenus. Themajors
exhibits elasticity, i.e. the behavior repertoire could bestretched back and forth in a predictable man-
ner in response to perturbations. The perturbation inserted by Wilson in his experiment was to change
the ratio betweenmajorsandminorsin a colony. Reducing the amount ofminors, themajorsstart to
execute tasks that were almost exclusive for theminorsin the normal situation. Wilson suggested that
the colony as a whole exhibits resilience, the degree of response to alterations was determined by the
elasticity of the individual ants. Therefore, the resilience of task allocation accomplished at colony
level is linked with the elasticity of individual workers.

The demand response behavior demonstrated by Wilson was formally modeled by Bonabeau et
al.[18]. In the model, individuals have a response threshold for every type of task. The task-associated
stimulus controls the engagement of the individuals in a specific task. When the stimulus for a certain
task rises, the probability that individuals will react to that stimulus and perform the task will increase.
This probability of task engagement depends on the threshold of a certain individual with respect to
the requested task.

Formally, the model used has the following components:

• Let sa be the stimulus associated with the taska



124 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100

T
(s

a
)

sa

θa = 1
θa = 4
θa = 8

θa = 20
θa = 60

Figure 5.13: Some threshold response curves with differentthresholds (θ = 1,4,8,20,60).

• Let θa be the threshold of an individual associated with the taska. It determines the tendency
of an individual to respond to a stimulus such thatsa≪ θa for low response probabilities and
sa≫ θa for high response probabilities.

The selected response function that brings a similar behavior to the one observed by Wilson is:

Tθa =
sβ
a

sβ
a + θβ

a

(5.3)

Tθa is the probability of performing the taska as a function of the stimulus intensitysa andβ > 1
determines the steepness of the threshold. Normally, in theexperiments, the valueβ = 2 was used.
Figure 5.13 shows the different response probabilities given some thresholds to perform the taska. In
this figure, the meaning ofθ could be easily recognized: it regulates the response of an individual to
a stimulus. Whenθa = sa, the probability of performing the taska is exactly1

2.
Monte Carlo simulations showed that this function brings a similar behavior as the one observed

in Wilson’s experiment. In Figure 5.14 a schematic representation of hypothetical response curves
for minors and majors in the polymorphic species of ants studied by Wilson are shown. The figure
represents the threshold for typical minor jobs.

5.5 Heuristics Basic Concepts

Our approach for cluster construction is based on several examples of task allocation coming from
nature (i.e., we developed a cluster construction based on division of labor in social insects). We aim
at mapping these behaviors to a consistent heuristic that finds and maintains clusters with a maximum
definedq during the runtime of an ad hoc (and sensor) network.

The possible “castes” (or roles) that a node can assume are:



5.5. HEURISTICS BASIC CONCEPTS 125

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10  100
Stimulus Intensity

Minor
Major

st
im

ul
us

P
ro

ba
bi

lit
y 

of
 e

ng
ag

in
g 

in
 ta

sk
 in

 r
es

po
ns

e 
to

Figure 5.14: Hypothetical response curves for minors and majors [19].

Figure 5.15: Example of a good solution of task allocation inan ad hoc network (q = 4).

Clusterhead (CH): The clusterhead nodes are the representatives of the clusters. The identification
of the cluster is given by the clusterhead, moreover specialtasks are assigned to the clusterhead.
Once the clusterhead is not present in a cluster anymore, thecluster ends its existence.

Member (Me): The members of the cluster are the nodes that have decided which cluster they belong
to.

Ordinary Node (Not member, Nm): Nodes that do not decide to enter into a cluster neither become
clusterhead.

A network where all nodes are already clustered is shown in Figure 5.15.

We have developed two heuristics that implement the clustering in a given ad hoc networks. The
first of them is designed for “quasi-static” networks, wherethe nodes do not move or move very
slowly. The second one was developed for sensor networks with certain movement patterns.



126 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

5.5.1 General Ideas

The idea of the clustering heuristic is that each node has probabilistic tendencies to assume a deter-
mined role in the network. For example, nodes with good connectivity and plenty of energy are good
candidates to be clusterheads and their clusters will probably have a small communication cost. In
the same way, poorly connected nodes with low energy level are not good clusterhead candidates,
and should stay as cluster members. This idea is derived fromthe division of labor of social insects.
Instead of having just a certain number of fixed morphology agents (like themajorsandminorsin the
Pheidolegenus), we have here the complete spectrum of nodes: from nodes very capable of assuming
the clusterhead role to nodes not suitable at all for this task. They all have a probability of assuming
a determined function based on their fitness to the specific role and the actualnecessity(stimulus)
that a determined role has in the network. The fitness to assume a role is modeled asθCH, i.e., the
threshold to become clusterhead andθMn, i.e., the threshold to become member of the clustern∈ IN.
The stimulus to become clusterhead is calledsCH.

5.6 Clustering “Quasi-Static” Ad hoc Networks

The heuristic presented in this section is responsible for finding a good clustering configuration in a
network with low mobility. Wherever big changes occur in thenetwork topology, the heuristic should
be called again in order to re-define the network partition byre-electing clusterheads.

5.6.1 Clusterhead Selection

The main difference between this and the next heuristic is that here only the clusterheads are elected
using a response function from ordinary node to clusterhead. In the initial state, all nodes of the
network are ordinary nodes, i.e., there is no cluster structure in the network. The variablestatev
describes the actual state of a nodev (statev ∈ {CH,Me,Nm}) andci is the set of current members of
clusteri ∈ IN. For simplification we define that theclusterID= i. Initially, for i = 0,1, ..,n, ci = /0.
The response function of Equation 5.4 is responsible for thetransition of a nodev∈V from ordinary
(Nm) to clusterhead.

TθCHv
(sCHv) =

sβ
CHv

sβ
CHv

+ θβ
CHv

·ρ (5.4)

WhereθCHv is the threshold of the nodev to become clusterhead andsCHv is the stimulus ofv
to assume the clusterhead role. The parameterρ ∈ (0,1] is used to control the speed at which the
clusterhead selection happens. It will be explained later on, for now it can be ignored.

The threshold specifies how appropriate a node is to the role,a smallθCHv means that the nodev
is very suitable to be clusterhead. The definition of the threshold can be seen in Equation 5.5.

θCHv = k1

(
∑u∈NgbNm(v) w(u,v)

|NgbNm(v)|

)

+k2(1−Ev)+k3

(

1−min

(

1,
|NgbNm(v)|

Max_Neighb

))

(5.5)

WhereEv ∈ (0,1) describe the energy level of nodev, where 1 means battery full and 0 depleted.
Let Ngb(v) be the set of nodes that are directly connected withv, i.e. u∈ Ngb(v) iff {u,v} ∈ E. A
nodeu is in the setNgbNm(v) iff u∈ Ngb(v) andstateu = Nm. This means thatNgbNm(v) is the set
of neighbors ofv that currently do not belong to any cluster.



5.6. CLUSTERING “QUASI-STATIC” AD HOC NETWORKS 127

The idea of this threshold function is that nodes with high energy level which are very connected
(vertices with high degree) are good candidates to be clusterheads (having a small threshold). The
energy is an important factor because clusterheads performadministrative (among other) tasks within
the cluster and have a special status in the network. Good connectivity comes from the greedy as-
sumption that starting a cluster from well connected nodes will result in a relative small clustering
cost (given by eq. 5.1).

The stimulus function is given by:

sCHv = k1
telapsed

trequired
+k2

(

1− |NgbMe(v)|+ |NgbCH(v)|
|Ngb(v)|

)

(5.6)

Wheretelapsedis the elapsed time since the clustering heuristic has started andtrequired is the max-
imum running time of the algorithm. A nodeu is in the setNgbMe(v) iff u∈Ngb(v) andstateu = Me.
Similarly, u∈ NgbCH(v) iff u∈ Ngb(v) andstateu = CH. With simple words,NgbMe(v) is the set of
neighbors ofv that are members of some cluster andNgbCH(v) is the set of neighboring nodes that
are already clusterheads.

The underlying idea is that nodes that for a long time did not belong to any cluster and nodes
without clusters in the vicinity should have a higher stimulus to become clusterheads.

With the transition function given by eq. 5.4, some nodes will spontaneously start to change the
role to clusterhead based on the stimulus function. When a node decides to be clusterhead, it selects a
randomClusterID.

Here we analyze briefly how the behavior of the nodes with different probabilities coming from the
response function evolves. As already stated, the clusterhead test is executed in a periodic way. Let’s
p1, p2, ..., pn be the probability returned by the response function from nodes 1 ton (p1 = TθCH1

(sCH1)).
We can model this behavior with a geometric distribution. This means, we calculate the probability
distribution of the number X ofBernoulli trials needed to change the state from nonmember to clus-
terhead, supported on the set{1,2,3, ...} (the trials). For example, forp1, the probability of becoming
clusterhead afterk trials (testing rounds) is:

P(X = k) = (1− p1)
(k−1)p1

In Figure 5.16, the cumulative distribution for different probabilities is shown. As expected, with
high clusterhead response-function probabilities, a small number of rounds is enough to virtually
ensure the clusterhead role assumption. Nodes with a higherthreshold and/or smaller stimulus will
have smaller probabilities, and this requires (with high probability) more time to decide to become
clusterhead. If a more suitable node is in the neighborhood,it will (with a high probability) become
clusterhead first and capture the node as member.

Another fact that can be derived from the cumulative distribution is that nodes with a very small
role changing probability returned by the response function perhaps need a rather large number of
rounds to become clusterhead. For very sparse areas of the network, this could be a normal situation.
In order to accelerate that, we add the elapsed time in the stimulus function. Therefore, the probabili-
ties are increasing with the time, which reduces the election time in sparse areas of the network.

A problem that arises from dense areas of the network is the fact that several nodes in some
neighborhood can decide in very short time to be clusterhead, before a neighboring clusterhead has
completed its cluster.

To understand the problem better, we define here the least potential area of influence and area of
interference (extension of the sphere of influence/interference definitions made in the work [77]).



128 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

Trials

p = 0.01
p = 0.2
p = 0.4
p = 0.6
p = 0.8

Figure 5.16: Cumulative of the geometric distribution for given response function probabilities

Figure 5.17: Least potential influence and interference areas for a grid network.[x] near the node
means that the node hasx units of resource.



5.6. CLUSTERING “QUASI-STATIC” AD HOC NETWORKS 129

Definition 5.6.1. A node u is in the least potential area of influence of clusterhead v (u∈ Ψv), if a
cluster constructed by v can contain u for a cluster with at least q resources and where no extra node
is taken after reaching (or overpassing) the limit q.

In Figure 5.17, an example of the least potential area of influence is shown.

Definition 5.6.2. A node u is in the least potential area of interference of the clusterhead v ( j∈Φv),
if there is a node j in the network whithin the least potentialarea of influence of both u and v.

An example of a least potential area of interference is also shown in Figure 5.17. The least poten-
tial area of influence is the (minimal) search space from members of the cluster whose clusterhead is
v. Two clusterheads inside the area of interference gathering members at the same time can potentially
compete for the same node. If both are inside the area of influence, they can even block themselves to
attract potential good members for the cluster.

To reduce the probability of occurrence of this situation, we introduce the parameterρ ∈ (0,1],
which controls how fast the emergence of clusterheads occurs (see Equation 5.4). A smallerρ means
that the nodes will take more trials (rounds) to have a higherprobability of becoming clusterhead. In
general, biggerρ values bring a faster network decomposition (complete network clustering time),
whereas smallerρ values bring a slower, but better quality (with less collisions) network decomposi-
tion. The parameter also depends on the size of the area of influence (|Φ|). As |Φ| is correlated with
the minimum amount of resources per cluster (q), with higherq, ρ should be smaller in order to avoid
collisions. Moreover, the worst case clustering time is also an important factor influencing an optimal
ρ . A longer cluster construction time brings higher probability of collisions because nodes in the
neighborhood have a higher chance to select themselves to beclusterhead in parallel2. The topology
of the network plays also an important role since dense (veryconnected) networks bring larger areas
of influence.

We present here a short analysis of the worst case probability of a collision when a nodev has fired
(and becomes clusterhead). Our analysis is very pessimistic, and in practical applications a much less
strict ρ can be used. Lettc be the worst case cluster construction time (defined later on). Let τ be the
time between two consecutive tests (trials) for clusterhead selection. We definerc to be the number
of trials happening during the cluster construction time (rc = ⌈ tc

τ ⌉). In a very adverse scenario, we
suppose that the threshold to become clusterhead for all nodes is approaching zero, which means that

the response function with a very small stimulus is already returningρ because
sβ
CHv

sβ
CHv

+θ β
CHv

= 1, i.e.,

TθCHv
(sCHv) = ρ .

We will calculate the probability that no node fires during the period where collisions may happen.
This period can be seen in Figure 5.18 and it is two equal to timestc, because whenvdecides to become
clusterhead, a potential inferencing node could already exist (started beforev) or can start afterv has
initiated. We will call the number of clusterhead trials happening during this periodr inter f which is
defined asr inter f = ⌈2·tc

τ ⌉.
As the geometric distribution is memoryless, we can state the probability of no other node in the

area of influence disturbing the cluster construction by clusterheadv by:

P
(
k > (r inter f · |Φ|)

)
= 1−

r inter f ·|Φ|

∑
k=1

(1−ρ)(k−1)ρ (5.7)

2A node test whether it should become clusterhead until receiving a call for members request from an actual member of
the cluster. If, at the end of the process, the node was not included in the cluster, it starts again to make the clusterheadtest.



130 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.18: Disturbance prone period of time.

Now, given a cluster construction time (tc), the time between two consecutive clusterhead tests
(τ), and the influence area of the node, we can calculate the probability of collisions to a givenρ . We
can also invert the equation and select a value ofρ appropriate for the desired collision probability.

In a more realistic environment, for most nodes, the threshold to become clusterhead will not be
near zero for the majority of nodes, therefore a much higherρ than the one calculated above could be
used with only a unsubstantial penalty in the quality of the clustering.

5.6.2 Member Selection

5.6.2.1 Influencing Parameters

When a node decides to become clusterhead, it must select theappropriate members of the cluster.
The following parameters influence the suitability of a nodeb to became member of the cluster:

1. The distance to the closest node already in the cluster. Nodes with a small distance to the cluster
will bring a smaller cost than nodes with bigger distances. The distance of the nodeb to the
clusteri is defined by:Db

i = min{w(b,e)|e∈ Ngb(b)∩ci}, i.e., the smallest vertex weight that
is adjacent to nodeb and to a member of the clusteri. If a noded is not directly connected to a
node which is already a cluster member,Dd

i = ∞.

2. The distance to the clusterhead. This parameter is responsible to shape the cluster, constraining
its diameter. For clusters with the same amount of nodes but different forms, large diameters
means higher cost (an example can be seen in Figure 5.19).

3. Connectivity to nonmembers. This parameter is importantwhen a lot of resources are still
missing in the cluster, i.e., the clustering process is in its initial phase. This is due to the fact
that nodes with a good connectivity probably will have good candidates for the next membership
selection. The connectivity of nodeb∈V to nonmembers is given byCnb

Nm = ∑e∈NgbNm(b)(1−
w(b,e)), i.e., the sum of the “proximity” (1−w(b,e)) of the set of the neighbors ofb that have
nonmember status. To understand the effect of this term, Figure 5.20 shows an example. Both
nodes have the same distance to the cluster. However, node 1 has a very near nonmember
node, and node 2 has a much more distant nonmember neighbor. In order to assure future good
candidates, node 1 should be preferred for membership. Nevertheless, if the clustering process
is in the end phase, we do not need additional members, which means that this parameter is not
important in this case.

4. Connectivity to members of the cluster. Selecting nodes highly connected to other nodes that
are already members of the cluster increases the probability of reducing the total cost of the
cluster because there is a chance that the connections contribute to reduce the size of the paths
through the nodes. The connectivity of nodeb to members of clusteri is given byCnb

i =

∑e∈{Ngb(b)∩ci}(1−w(b,e)), whereci is the current set of members of the clusteri ∈ IN.



5.6. CLUSTERING “QUASI-STATIC” AD HOC NETWORKS 131

1

1 1

1

1
1

1

1

1

1

1

1

(a )

1

1

1

1

1

1 (b )

Figure 5.19: Diameter versus cluster cost in a cluster with 7nodes. (a) Diameter is 2 and the cost is
63. (b) Diameter is 6 and the cost is 112

0 .5 0 .5
0 .2 0 .9

1 2

d

Ca nd ita te s

Figure 5.20: Example of two candidates with different neighborhood.

5. The resource availability of the node. As a general rule, nodes with higher resource availability
will potentially reduce the cost of the cluster because theyreduce the necessity of taking addi-
tional nodes. Nevertheless, to include nodes with plenty resources at the ending phase of the
membership selection with high resource (perhaps more thanthe cluster needs) could increase
the total cost due to the fact that the node may be better employed by another cluster.

These aspects will be explicitly or implicitly observed by theMembership-Selectalgorithm pre-
sented here.

5.6.2.2 Membership-SelectAlgorithm

For the membership selection, we have again astatev variable describing the actual state of a nodev.
Differently from the clusterhead selection, we have here anadditional state: the deciding (Dd) state
(statev ∈ {CH,Me,Nm,Dd}).

Let ∆q be the amount of resources still needed by the cluster in order to fulfill the requirementq.
TheMembership-Selectalgorithm is an incremental process, i.e., at beginning thecluster has just

the clusterhead (CH) node. During the clustering process, more and more nodes are added to the
existing cluster until the cluster achieves an appropriatesize (∑v∈ci

r(v) ≥ q).
At the beginning of the clustering process of clusteri, just one node belongs to the cluster: the

clusterhead, we will call it of nodehi (hi ∈ ci ,stateh = CH).
When a node becomes part of the cluster (including the clusterhead), immediately a message

is broadcasted to the neighboring nodes signalizing the newstatus and requesting for new members
(Call_Membersmessage). Each nonmember and deciding noded (statusd ∈ {Nm,Dd}) that receives
this message changes its state to deciding(statusd = Dd).

Deciding nodes are the potential new members of the cluster.Nevertheless, not all nodes are
the best choice to be included in the cluster. In order to privilege nodes potentially contributing to
a low global cluster cost (see eq. 5.1), each nodeb in the decision state estimates its own fitness



132 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

value 0≤ Fitnessi(b) ≤ 1. This value will be defined later.Fitnessi(b) represents how suitable is the
inclusion of nodeb∈V in the clusteri.

At this point, the nodeb waits a delay whose duration is proportional to the 1−Fitnessi(b) value.
When the waiting time is elapsed, the node sends aMembership_Requestmessage to the clusterhead,
informing that it is willing to be included in the cluster. Now, the clusterhead, based on the∆q and the
availability of resources of the candidate, can decide whether the node will be accepted as member. If
accepted, the clusterhead includes the new node in a table with all members of the cluster. A message
is sent back to the node confirming/refusing the entrance in the cluster. When receiving the response
message, the requester changes its status accordingly (stateb = Me, if accepted, andstateb = Nm,
if refused). If accepted, this new status is broadcasted immediately in a message calling for new
members (Call_Members) to the neighborhood ofb, starting the process again.

As already said, the decision of accepting/rejecting new members is done by the clusterhead node
based on∆q and r(b). If r(b) ≤ ∆q, the nodeb is promptly accepted by the clusterhead. When
r(b) > ∆q, before answering to a request, the clusterhead waits for anadditional period in order to
provide a chance to nodes with a not so good fitness request formembership. LetR⊂V be the set of
nodes requesting for membership during this period. The clusterhead will select the nodel ∈R, where
r(l)≥ ∆q and for∀v∈R,((r(v)−∆q) ≥ (r(l)−∆q))∨ r(v) < ∆q, i.e., the node that best fits to cover
the requested resources. This node will receive the accept message while the others ofR will receive
a reject message.

When∆q 6 0, i.e., the cluster is complete, all additional receiving requests will be rejected.
Before introducing additional aspects of theMembership-Selectalgorithm, a small example of

the process described is presented. Consider the example depicted in Figure 5.21. We colored the
nodes according to thestate; white nodes are nonmembers, black nodes are members (or clusterhead,
i.e. status∈ {Me,CH}) of the clusteri being formed, and gray members are deciding nodes.

In Figure 5.21a, the initial condition is shown. The clusterhas just one member: the clusterhead
(node 1), selected by the transition function presented in Section 5.6.1. The clusterhead makes a
broadcast of theCall_Members message transmitting its state (5.21b). At this point, all nodes that
receive the message change to the deciding state. A timer is set based on the calculated fitness for
each node. In Figure 5.21c, the programmed time of node 2 is already elapsed. The node now should
ask for membership. A message is sent to the clusterhead asking to be included in the cluster. As
the total resource request (q) is not satisfied by the current cluster size, the node 2 is included in the
cluster. Now it also broadcasts aCall_Members message to the neighborhood (Figure 5.21d). When
nodes 4 and 5 receive the broadcasted message, they start a timer that is related to the computed fitness
(1−Fitnessi(4)) and 1−Fitnessi(5)). Due to the fact that node 4 has already a timer, just the timer
with the shortest deadline is kept. In Figure 5.21e, the programmed time of node 4 is elapsed. Similar
to node 2, it requests for the permission to enter in the cluster (and it is included). Because the cluster
is already complete, the node 4 does not broadcast a newCall_Members message.

Finally, the waiting time for nodes 5 and 3 has ended. They request to become members of the
cluster to the clusterhead, but due to the fact that the cluster has enough resources, the permission to
integrate the cluster is refused.

Now we will integrate the already presented heuristic hints(see Section 5.6.2.1) that should guide
the member selection. The first point says that the heuristicshould privilege nodes with a small
distance to some of the nodes inside the actual cluster. In order to observe that, two aspects must be
addressed:

1. Include the distance to the next cluster member in the fitness function. As it will be presented
later in this section, an important parameter of the fitness function is the distance of a candidate



5.6. CLUSTERING “QUASI-STATIC” AD HOC NETWORKS 133

0 .2
0 .90 .3

0 .45

0 .5

0 .4
0 .2

0 .90 .3

0 .45

0 .5

0 .4

0 .2
0 .90 .3

0 .45

0 .5

0 .4

Fitne ss= 0 .1Fitne ss= 0 .8

Fitne ss= 0 .5

0 .2
0 .90 .3

0 .45

0 .5

0 .4

Fitne ss= 0 .1

Fitne ss= 0 .7

Fitne ss= 0 .6

Fitne ss= 0 .5

0 .2
0 .90 .3

0 .45

0 .5

0 .4

Fitne ss= 0 .1

Fitne ss= 0 .7

Fitne ss= 0 .6

Ela pse d  t im e

Ela pse d  t im e

Ela pse d  t im e

Ela pse d  t im e

0 .2
0 .90 .3

0 .45

0 .5

0 .4

Fitne ss= 0 .1

Fitne ss= 0 .7

Fitne ss= 0 .6

Ela pse d  t im e

(a ) (b )

(c)

(d )

(e ) (f)

1

2 3

4

5

2

2
2

2
2

1
1

11

1

3
3

33

3

4
4

4 4

4

5
5

5

5 5

Figure 5.21: Example of member selection in a partial network. All nodes have unitary amount of
resource (r(b) = 1,b∈V) andq = 3.



134 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

to the next member in the cluster. The distance is measured byour combined metric (“virtual
distance”). Nodes with good connection to the already existing cluster have better fitness than
nodes with just bad links to the cluster.

2. Using the example showed in Figure 5.21, we can highlight an implicit behavior of the heuristic
that does not befit this metric. The nodes that are near the clusterhead started the timer very
early during the members selection; nodes far away have the timer started later. This means
that nodes far of the clusterhead, but at the same time with good connection to the cluster, are
penalized in favor of nodes that perhaps do not have a good connection to the cluster, but are
near to the clusterhead.

This aspect should be addressed together with the point number two in our influence parameters
list: the distance to the clusterhead. This point is aided bythe implicit behavior of algorithm. The
two aspects are important to reduce the cluster cost. Nodes near to the cluster are suitable because the
connection cost is smaller, nevertheless, to keep clusterswith smaller diameter also helps to reduce
the total cost.

The distance to the clusterhead is also addressed by two points:

1. Including the distance to the clusterhead in the fitness function.

2. Implicit behavior of the heuristic. To show that, we againuse the example showed in Figure
5.21. The fact that nodes near to the clusterhead started thetimer earlier implicitly helps to get
small diameter clusters.

Analyzing this two different requirements, the following method was created in order to penalize
the distance to the clusterhead and reward the distance to the cluster. We will now count the rounds
that the algorithm has already executed. Using the example presented in Figure 5.21, (b) represents
the first round of the algorithm and (d) the second. Each time that a new member was selected and
makes a broadcast to the neighborhood, the variableroundv,v∈V is incremented.

Now, instead of just using the fitness to calculate the waiting time, the round also plays an impor-
tant role. We define the waiting time of a nodev to request to be included in the clusteri as:

WaitingTimevi = k · (1−Fitnessi(v)) ·
1

κ roundv +(1−κ)

Wherev∈V,κ ∈ [0,1],k ∈ R+ and 0≤ Fitnessi(v))≤ 1.
Using this equation, for bigger rounds the time that should be waited is shortened. With theκ

parameter, the amount of reward given to the distance to the cluster versus penalization of distance to
clusterhead can be controlled.

Now we can present the Fitness function that takes into account all points presented in Section
5.6.2.1 (for∑5

j=0k j = 1).

Fitnessi(v) = (5.8)

=







k1 · (1−Dv
i )+k2 · (1− min{D(v,Clusterheadi )

Max_dist ,1})+k3 ·min{ Cnv
Nm

Max_connect,1}+ if r(v) < q

+k4 ·min{ Cnb
i

Max_connect,1}+k5
r(v)

q

)

0 if r(v) > q



5.6. CLUSTERING “QUASI-STATIC” AD HOC NETWORKS 135

Wherek1, ..,k5 ∈ [0,1] define how each of the terms influence the fitness metric. It is important to
remark that 0≤ Fitnessi(v)≤ 1. For two nodesv,u∈V andFitnessi(v) < Fitnessi(u) means that the
nodev is less suitable for the clusteri than nodeu.

Max_dist gives the minimal distance to the clusterhead that should beconsidered, and the max-
imum penaltyMax_connectis the same for the connection measurements. An important remark is
that for nodes with more resources than required, the fitnessis always 0 because they should form a
cluster with one member itself.

Now we will calculate the worst case construction time of a cluster (tc). tc parameter is used in
the analysis of possible collisions during the clusterheadselection (Section 5.6.1). The worst case
tc happens when the members are selected in a line. For that, supposing that the members have the

minimum resourceLin f ,
⌈

q−Lin f

Lin f

⌉

rounds are necessary to complete the cluster. We definetc as:

tc =

⌈ q−Lin f
Lin f

⌉

∑
r=1

k · 1
κ · r +(1−κ)

The expression is derived from the worst caseWaitingTime, where the fitness of all nodes included
in the cluster is equal to zero. Here the time of message transmissions are not taken in account. Since
they are much smaller than theWaitingTime, they can be disconsidered in thetc approximation.

5.6.3 Message Relay to Clusterhead

This is a complement of the presented algorithm. The idea is to create a spanning tree with the
clusterhead as root, helping to select good paths when members communicate with the clusterhead.

Inside a cluster, good routes to the clusterhead are important because:

• TheMembership_Request is sent by all nodes to the clusterhead

• Often, clusterheads perform other administrative tasks oreven can be used to form a backbone
for message relay (topology control)

For creating the spanning tree, each node stores the actual known virtual distance to the clus-
terhead (D_CH) and the corresponding link that is used to achieve it (RelayNode_CH). Every time
a Call_Members message is transmitted, the current distance to the clusterhead is also transmitted.
Then, every receiverd of the message sent byv can identify whether the current path is the shortest
one. If not, the new route is assumed.

A further point that should discussed here is the inter-cluster communication. Nodes in the border
of the cluster, i.e., that have one or more links to nodes belonging to other clusters are called gateways.
Such nodes inform the clusterhead about which clusters theycan arrive. The clusterhead may select,
for each neighboring cluster, one of these gateways (a good connected one) to relay messages to the
neighboring cluster. The spanning tree can be used to route the message from the clusterhead to
selected the gateway (other routing algorithm may be also used).

5.6.4 Enforce Phase

Using the described algorithm, at the end of the clustering time, it may happen that some clusters
could not find enough nonmembers to include in the cluster. For example, between several formed
clusters, some nodes that haven’t been required by those clusters may remain. Together, they do not
have enough resource to form a autonomous complete cluster.



136 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Such incomplete clusters are disrupted by the clusterhead and the nodes enter in the nearest com-
plete cluster using enforce membership requests. The enforce phase guarantees that all nodes will be
included in some cluster in a finite time.

As a result of the clustering algorithm presented in this section, complete clusters have been built.
In each cluster, a spanning tree with the clusterhead as roothas been constructed.

5.7 Clustering Dynamic Ad hoc Networks

In dynamic ad hoc networks, the link quality and the network configuration change over time. New
links are created, links are destroyed, new nodes appear, and nodes can fail. In this section, a heuristic
that tries to find good clustering solutions and, at the same time, aiming at maintaining these clusters
over the time, is presented.

5.7.1 General View

Like the first clustering algorithm presented, the clusterheads in this heuristic are elected using a
threshold response function (see Section 5.6.1). Nevertheless, the other possible roles of the nodes are
also selected using threshold response functions. As in theprevious case, the variablestatev describes
the actual type (role) of a nodev (statev ∈ {Ch,Me,Nm}) andci is set of the current members of the
clusteri ∈ IN, and, for simplification, we define theclusterID= i. Initially, for i = 1, ..,n, we have
ci = /0. In the initial state, all nodes of the network are ordinary nodes, i.e., there is no cluster structure
in the network.

In the dynamic approach, we have the following response functions driving the changing of roles
of the nodes in the system:

Clusterhead related functions:

Nonmember→ Clusterhead: The response threshold function is calledTθchv
, v∈ V. It returns the

probability of a nonmemberv to become clusterhead. Similar to the first clustering algorithm
presented, this response function is responsible to model the emergence of clusterheads in areas
of the ad hoc network where no clustering is already taking place.

The exchange from the clusterhead status to nonmember (thismeans the end of existence of a cluster)
is controlled by a deterministic mechanism described later. Even so the exchange of the clusterheads
inside a cluster (clusterhead rotation) when the energy reserve of the current clusterhead gets low.

Membership related functions:

Nonmember, Member of x→ Member of y: This function (recruitment function,Tθrecrv,i
) models

the entrance of a node (here calledv) into the cluster withID = i. The nodev may be non-
member or a member of another cluster. When a cluster does nothave the necessary resources
to cover the requiredq, it “attracts” new nodes to join it. The response function tojoin a cluster
(Tθrecrv,i

) gives the probability of nodev to enter in the clusteri. It is possible for a cluster to
“steal” nodes from a neighboring cluster. The threshold forthis action (steal of nodes) is re-
duced when a node, for example, is changing the physical position to some place nearby the
new cluster (therefore, leaving the cluster from which it was previously member).

Member→ nonmember: This response function (Tθleavev
) models the situation when a node aban-

dons the cluster due to the fact that its connection to the cluster is very weak.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 137

Before describing the response functions in detail, the general idea of the algorithm is described
here. Nonmembers are “clusters” with no resource (Ri = 0). As the previous “quasi-static” version,
the first task of the heuristic is to elect the clusterheads ofthe network. This is made using the response
threshold functionTθchv

. A clusterhead is now an unitary cluster with some resource (Ri = r(v), v is
the clusterhead of clusteri). When a clusterhead is elected in some part of the network, it starts
as consequence of the existing resource to attract new members. Nevertheless, instead of using the
concept presented in the previous heuristic, here the response function (Tθrecrv,i

) is used to here recruit
new cluster members through a positive feedback process.

In the case of the equationTθrecrv,i
(attraction of new members to the cluster), the response threshold

and stimulus now here the following meaning:

Threshold θrecrv,i : Measures how connected is the node v to the clusteri.

Stimulus srecrv,i : Represents the volition of a cluster to attract new members.Here the positive feed-
back acts.

The idea is that a cluster incrementally grows until it achieves at least the requirementq. A
growing cluster exercises an attraction “force” to the nodes that are in the vicinity. This attraction
force is expressed by a higher stimuluss in theTθrecrv,i

response function. This concept is presented in
Figure 5.22.

As shown in Figure, an existing cluster exercise an attraction “force” to the neighboring nodes,
independent of its type. For nodes that are already members of the cluster, the same force is re-
sponsible for the cohesion of a cluster. This is because the response functionTθleavev

is the inverse of
Tθrecrv,i

(Tθleavev
= k1 · (1−Tθrecrv,i

)).
Returning to the attraction of the nodes, the intensity of the force is expressed in the stimulus of

the response functionTθrecrv,i
. The intensity of the force (and consequently the stimulus to enter into the

cluster) is regulated by the amount of resources already in the cluster. We use here a positive/negative
feedback mechanism typical for self-organizing systems.

5.7.2 Clusterhead Management

In this section we will describe how the clusterheads are elected and withdrawn in our cluster con-
struction heuristic.

5.7.2.1 Clusterhead Election

As in the previous heuristic, the clusterheads are elected using a stimulus-response function. The
function is the same as used in the “quasi” static heuristic (see eq. 5.4). The definition of the stimulus
is also the same as used in the previous heuristic (eq. 5.6), i.e., the idea is that nodes which for a long
time are not belonging to any cluster and nodes without clusters in the vicinity should have a higher
stimulus to become clusterhead.

The threshold for assuming the clusterhead role is similar to the previously presented (eq. 5.5)
with modification. The modification is the addition of a factor in the formula to take in consideration
the stability of the node as part of the threshold, i.e., nodes with stable neighborhood are preferred to
be clusterheads instead of nodes with constantly changing connections.

The modified version of the equation is given by Equation 5.9,for ∑3
j=1k j = 1.

θCHv = k1 ·
(

1− ∑u∈NgbNm(v) w(u,v)

|NgbNm(v)|

)

+k2 · (1−Ev)+k3 ·∆Wv (5.9)



138 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.22: Example of execution of the heuristic forq = 8 and∀v∈V, r(v) = 1.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 139

As already described,Ev ∈ (0,1) is the energy level of the nodev, Ngb(v) is the set of nodes that
are directly connected withv, andNgbNm(v) is the set of neighbors ofv that until now do not belong
to any cluster.

The third term (∆Wv) measures the stability of the node, i.e., how fast the neighboring of the node
is changing. For that, we measure the variation of the link weight of the neighborhood over time.
The function∆wt(v, j) returns the mean of the variation of the link between{v, j} until the timet.
The definition can be seen in eq. 5.10.Ngbt(v) returns the neighbors of the nodev on the timet, and
wt(v,u) returns the link metric of the link{v,u} in the instant of timet.

∆wt(v, j) =
1
2

(
∆wt(v, j)+ |wt(v, j)−wt−1(v, j)|

)
(5.10)

For this function (Equation 5.10), we usewt(u,v) = 1 for disconnected nodes (i.e.{u,v} /∈ E) on
the timet, (differently from the global definition). The reason is to keep the value ofWv inside the
[0,1] interval.

The initialization is done by∆wt=0(v, j) = 0.
Equation 5.11 gives the mean of all the variation of the linksof v’s recent neighborhood.t is in

this case the current time (t = now).

∆Wv =
1

|Ngb(v)∪Ngbt−1(v)| ∑
j∈(Ngb(v)∪Ngbt−1(v)

∆wt(v, j) (5.11)

The idea of this threshold function is similar to the first heuristic, i.e., nodes with high energy
level, strongly connected, and additionally with stable connections are good candidates to become
clusterhead. The stability factor comes from the assumption that nodes with less movements in the
past are good candidates for clusterhead because they have ahigher probability of staying in the
cluster, not migrating to remote regions of the network.

Similarly to the first heuristic, the transition function given by eq. 5.9 stimulates the spontaneous
change of role from some nodes to clusterhead. When a node decides to became clusterhead, it selects
a randomClusterID.

5.7.2.2 Clusterhead Withdrawal

This version of the heuristic is required to deal with dynamic networks, where the links are constantly
changing. Moreover, other parameters may also change, e.g.the actual battery status of a given node.
Therefore, it is necessary to design mechanisms that detectthis dynamic and react upon than by means
of cluster disruption (removing the clusterhead from the cluster) or clusterhead node exchange.

There are two types of withdrawal of the clusterhead:

Clusterhead Exchange:This happens when the energy level of the clusterhead is considerably below
the neighborhood. This means that the clusterhead role has used a big amount of energy of the
node due to the extra burden brought by the extra responsibilities of the role. Therefore, when
this bypasses a certain threshold, the actual clusterhead selects a neighbor with higher energy
level (and connection) to assume its role.

Cluster Disruption: This happens when a clusterhead, after a certain number of attempts, could not
keep the requirementq of resources per cluster. In this case, the (incomplete) cluster will cease
its existence and the current members are free to join other existing nodes.

Now we will briefly describe the both quoted mechanisms:



140 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Clusterhead Exchange In the cluster construction (and maintenance) round, the neighboring nodes
of the clusterheadv that are members of the clusteri (Ngh(v)∩ci ) send their connections and energy
rate. The clusterhead keeps this information in one table. For a neighboring node e (e∈Ngb(v)∩ci =
Ngbci(v)), the connection rate is given by (fork1 +k2 = 1):

CRi(e) = k1 ·min

( |Ngbi(e)|
Max_Neigbor_Cluster

,1

)

+k2 ·
(

1− ∑u∈Ngbi (e) w(u,e)

|Ngbi(e)|

)

(5.12)

WhereNgbi(v) is the set of neighbors ofv that belong to clusteri.
The energy rate (Ee ∈ [0,1]) is a measure of the current amount of energy of a node, where 0

means energy depleted.
For the decision of clusterhead exchange, the clusterhead calculates the average energy and con-

nection rate among the neighbors belonging to the cluster. The neighboring average connection and
energy rates are given by:

NgbCRi(v) =
∑e∈Ngbi (v)CRi(e)

|Ngbi(v)|
(5.13)

NgbERi(v) =
∑e∈Ngbi (v) Ee

|Ngbi(v)|
(5.14)

The role of the clusterhead is transferred if the average energy and connection of the neighboring

nodes is better by a factork∈ [0,1]. This means, ifCRi(v)+Ev < k ·
(

NgbCRi(v)+NgbERi(v)
)

, the

clusterhead withdraws and assigns its role to the node with the higher sum of energy and connection
rate using a message calledexchange_clusterhead.

Cluster Disruption As already mentioned, the disruption is used to extinguish the existence of
clusters without the necessary resources and without the possibility at short time to gather those re-
sources. In Section 5.7.4.1, a mechanism responsible to gather new nodes (or release some nodes
when the cluster is overcrowded) is presented. A round is executed every time when a clusterhead
notices the lack or excess of resources in the cluster. The cluster disruption acts based on the execu-
tion of the rounds. When a lack of resource is noticed by the clusterhead (the mechanisms used by
the clusterhead for this are discussed later), it starts a series of cluster construction rounds. A round
counter (roundi ) is initialized with zero. Every round within the cluster that achieves the minimum
requested resource (q), the counter is again initialized.

The cluster disruption happens whenever the counter achieves a given limitroundi ≥ ζ . This
means, after several tries, it was not possible to achieve a functional cluster. The messageclus-
ter_disruptionis broadcasted to all current members. Upon receiving the message, they return their
state to nonmember (Nm). Now they can be easily attracted by other clusters, or in the future a new
clusterhead may emerge.

5.7.3 Member Selection

In order to elucidate further the member selection of our heuristic, we first introduce concepts of
self-organization in biological systems.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 141

5.7.3.1 Self-Organizing Systems

Organization is defined in [61] as a structure with function.Therefore a system can be calledorganized
if it has certainstructureandfunctionality. Structuremeans that the components are organized in a
certain order. Function means that the system fulfills one purpose.

A system isself-organizedif it is organized without any external or central dedicatedcontrol [61].
The individual entities interact with each other in a distributed peer-to-peer fashion. This interaction
is normally local [101].

Self-organizing systems normally are composed by a large number of interacting components.
[24] presents two basic modes of interaction among the components: positive and negative feedback.

The positive feedback generally promotes changes in a system. An example of positive feed-
back coming from the biology is the clustering of several species of birds. For example, herons and
blackbirds nest in large colonies because such a behavior provides individuals with certain benefits,
such as better detection of predators or facilities in finding food. This nesting is an example of self-
organization driven by a positive feedback: birds tend to nest where other birds are already nesting.

The same behavior can be seen in male bluegill sunfish (Lepomis macrochirus). They follow the
same behavioral rule “I nest where others nest”. The nestingpattern appears in a large lake with
an initial homogeneous structure due to the amplification offluctuations: if the density of bluegills is
sufficient, through a random process, several nesting sitesoccasionally will be close enough to provide
a sufficiently attraction that stimulates even more bluegills to nest nearby. This random pattern of nest
sites now became unstable and a cluster of nest sites will grow. A process, like this, with positive
feedback is also called an autocatalytic process.

Now it is important to present the role of the negative feedback. Due to the amplifying nature
of positive feedback, a potential destructive explosion may be easily reached. The negative feedback
is responsible for controlling and shaping the system in a particular pattern. In the example of the
bluegill sunfish, the negative feedback plays a role to avoidovercrowded colonies of fish. The fish
have some limits in their behavioral tendency to nest where others nest. The behavioral rule has
an autocatalytic as well as an antagonistic component: “I nest where others nest, unless the area is
overcrowded”. The negative feedback may also come from physical constraints like depletion of the
building blocks.

Characteristics
Self-organizing systems present several typical characteristics. The most important are:

Dynamicity: The interactions about components characterizes self-organizing systems. This interac-
tion is dynamic and the production and maintenance of structures is dependent on this interac-
tion among the low-level components.

Emergence: Self-organizing systems usually posses emergent properties. This means that the system
acquires qualitatively new properties that cannot be understood as the simple addition of their
individual contributions, i.e., system-level propertiesarise unexpectedly from nonlinear inter-
actions among the system components. An example of spontaneous emergence of patterns is
the phenomenon of Bernard convection cells. An initially homogeneous layer of fluid becomes
organized into a regular array of hexagonal cells of moving fluid. This can be considered an
attractor of the system, i.e., under a particular set of initial conditions, and for particular param-
eter values, the system converges over the time to the attractor state. In the Bernard convection
system, when the temperature gradient is low, one attractoris the random motion of fluid. When



142 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

the gradient is increased (a parameter of the system is changed), a different attractor (the con-
vention cells) appears. This is called a phase change.

Robustness:Self-organizing systems possess a high level of robustnessagainst failures and dam-
age. There is no single point of failure, and the system returns to a stable state after certain
disruption [101].

Scalability: The system still works if the number of entities is very large.

An additional important aspect of self-organizing systemsis the possibility of controlling the
behavior by tunning the system’s parameters. The tuning of these parameters can trigger the sudden
emergence of novel behavior.

5.7.3.2 Aggregation Through Positive Feedback

As described above, in our clustering construction, positive feedback is used to control the stimulus
of neighboring nodes to enter a determined cluster.

Nodes that are of the typeNonmemberhave a total available resource of zero. Once the nodev
becomes clusterhead of the clusteri, it has the amount of resourcesRi = r(v).

The positive feedback is performed by considering the attraction force (or stimulus in the response
function) proportional to the amount of resources of the clusteri plus some bias, i.e.:

p(Ri) = k1 +k2 ·Ri (5.15)

Equation 5.15 denotes the relation between the amount of resources and the “force” (that is re-
flected in the stimulus) to attract new nodes to the cluster.k1 is the initial attraction or bias (even for
clusters with minimal resources), andk2 describes how fast the force increases with the amount of
resources.

There is still a problem in this positive feedback: it has an explosive nature, i.e., if there will not be
a negative feedback to control it, it tends to catch all nodesof the network in a single cluster. A small
fluctuation in the size of a cluster gives it an advantage to catch more nodes from the neighborhood,
fact that has as consequence even a larger force to attract more and more nodes. To avoid that, a
negative feedback is used.

5.7.3.3 Creating Structure Through Negative Feedback

The negative feedback is responsible for “controling” the explosive nature of the positive feedback
and to shape the emergent structures in the self-organizingprocess. In our case, we use equation 5.16
as negative feedback.

g(Ri) = 1−
(

Ri

k1 ·q

)β
(5.16)

In Figure 5.23, the positive and negative feedback functions can be seen. It is important to remark
that the negative feedback in our case controls how much the positive take effect, i.e., the result
stimulus is given by the multiplication of the feedbacks, a fact that is shown in Figure 5.24.

The β exponent controls how fast is the decreasing of the force once the cluster has enough
resources, i.e., forβ = 1 the force increases with the amount of resources till the requirement is
fulfilled and decreases at the same speed with more resourcesthan necessary. For higherβ , the
decrease curve is always faster. In Figures 5.23 and 5.24, aβ of 5 was used.

Other different functions could be used for the positive andnegative feedback.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 143

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
tt

ra
ct

io
n

F
or

ce

Resources of a cluster (×q)

Positive
Negative

Figure 5.23: Examples of the positive and the negative feedback by the attraction force

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
tt

ra
ct

io
n

F
or

ce

Resources of a cluster (×q)

Combined

Figure 5.24: Resulting attraction force after combinationof the positive and the negative feedback



144 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

5.7.3.4 Node Recruitment Response Function

As already presented, the recruitment of nodes is made usingthe response functionTθrecrv,i
. The

stimulus-response function for the recruitment of new nodes to the clusteri is given by Equation 5.17:

Tθrecrv,i
=

srecrv,i

srecrv,i + θrecrv,i
(5.17)

Where the threshold and the stimulus have the following meaning:

Threshold θrecrv,i : Measures how connected the nodev is to the clusteri. This function is similar to
the the fitness function presented in the “quasi” static cluster construction, with some modifica-
tions.

Stimulus srecrv,i : Represents the volition of a cluster to attract new members.

As already said, the thresholdθrecrv,i is similar to the fitness function, but it has an inverse meaning:
small values means high suitability of the node to be incorporated to (or continue to be part of) the
clusteri. The stimulus-response function reacts to smaller stimulus when the threshold is also small.

The threshold in this function is based on the fitness function (Section 5.6.2.2) with some differ-
ences. In that function, the parameters presented in Section 5.6.2.1 are used to calculate the suitability
of a certain node to enter a given cluster. In the threshold function here presented, a similar list of
parameters is used. In order to avoid the repetition of the list presented in Section 5.6.2.1, we will just
elucidate the differences:

1. The third parameter listed in the list (connectivity to nonmembers) is not used in the current
threshold function. This parameter was important when a lotof resources were still missing
in the cluster, i.e., the clustering process is at initial phase. This is due to the fact that nodes
with a good connectivity probably will have good candidatesfor the next membership selection.
Nevertheless, the same response function is used in our heuristic during the forming phase and
the maintenance phase (in fact, the two phases use the same principles). Therefore, this item
should not be used in the threshold function.

2. The poorest link to the clusterhead when considering all possible paths. This is a new parameter
that is necessary in order to deal with the dynamics of the network. It tests whether bad links
must be used to reach the clusterhead. The part of the clusterthatv belongs to may be almost
disconnected if in any possible path from nodev to the clusterhead a very bad link must be used
to reach it. This happens due to, for example, changes in the positions of the nodes. An example
of this situation is depicted in Figure 5.25.

3. An additional parameter to avoid oscillations (enteringin a cluster and leaving the same cluster
several times) is also included.

The threshold function is defined by Equation 5.18 (where∑6
j=1k j = 1).

θrecrv,i = k1 ·Dv
i +k2 · min

{
D(v,Clusterheadi )

Max_dist
,1

}

+k3 ·min

{
Cnv

i

Max_connect
,1

}

+

+k4 ·
r(v)

q
+k5 ·Pv

i +k6 ·min

{
PMi,v

Max_past_memb
,1

}

(5.18)



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 145

’’0.98’’

?v

Figure 5.25: Example of cluster that has a part being disconnected. Should nodev enter to the discon-
necting cluster?

WhereDv
i , Cnv

i , Max_dist andMax_connecthave been defined in Section 5.6.2.1, andPv
i is the

poorest link from the path with the better links betweenv and the clusterhead of the clusteri.
PMi,v is a counter of number of past membership of the nodev in the clusteri (i.e.,v∈ ci , where

ci is the set of nodes of clusteri). Each determined time period, this counter is decremented(in order
to forget very past events). This term makes that re-inclusion of previous members of the cluster are
discouraged in a short range of time, to avoid oscillations.

Returning to the poorest link from the better path betweenv and the clusterhead. We will now
define formallyPv

i .

Let PoorestLinkMetric(p(u,v)
h )returns the value of the poorest link in thehth path between nodesu

andv. This means that:

PoorestLinkMetric
(

p(u,v)
h

)

= max
(

w
(

{u,xh
1}

)

,w
(

{xh
1,x

h
2}

)

, ..,w
(

{xh
g−1,x

h
g}

)

,w
(

{xh
g,v}

))

Then,Pv
i is:

Pv
i = minh=1,2,..,m

(

PoorestLinkMetric
(

p(ui ,v)
h

))

Whereui is the clusterhead of the clusteri andm is the number of possible paths between the node
v and the clusterhead.

The stimulus of a node to belong to the clusteri is given by the difference between the force com-
ing from this cluster and a force coming from other neighboring clusters. If there is no neighboring
clusters,i is the only force acting upon nodev. Equation 5.19 defines the attraction stimulus of node
v to clusteri (with k1 +k2 = 1).

srecrv,i = k1 · (p(Ri) ·g(Ri))−k2 ·maxj∈IN|(cj∩Ngb(v)) 6= /0 (p(Rj) ·g(Rj)) (5.19)

5.7.3.5 Node Membership Withdrawal Response Function

The membership withdrawal can be done in two ways. Either a node has just died, and this will be
noticed by the clusterhead in a complete round (presented inthe next section), or it decided to leave
the cluster using the response functionTθleavev

.
Every time that the cluster round takes place (next section), the membership withdrawal response

function is used by the cluster’s members to test whether they should leave the current cluster. The
main reason for a node to leave its cluster (without being attracted by another one) is topology change
where the connection to the cluster gets lost.

The threshold of the response function is defined as:



146 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

θleavev,i =

{
k1 · (1−w(v, parentv)) if Childv 6= /0

k2 ·
(
1−θrecrv,i

)
if Childv = /0

(5.20)

Whereparentv is the current parent of the nodev in the forming spanning tree (the spanning tree
formation will be explained in the next section) andChildv is the set of children of the nodev in the
spanning tree. The parameters arek1 > 1,k2 > 1. This is because it must be rather difficult to a node
to exit an existing cluster, in order to avoid constant instabilities. When a node has a child in the
spanning tree, the only factor that should be considered in order to evaluate whether the node should
leave the cluster is the connection to the parent. This is because other nodes are lying behind this node
in the cluster, and if it becomes easily disconnected, the complete subtree can be disconnected from
the cluster.

The stimulus to leave the cluster is the conversely from entering into the cluster:

sleavev = (1−srecrv,i ) (5.21)

5.7.4 Cluster Construction Process

In this section, the basic skeleton of our heuristic is presented. Here we will just present the cluster
construction process. In the next section, the maintenanceof already existing clusters is described.

At the beginning, there is no cluster in the network. Every node tests periodically whether it
should become clusterhead (using the response functionTθchv

). Every node also calculates its own
threshold and stimulus to become clusterhead. This part of the algorithm is exactly the same as in the
“quasi-static” heuristic.

When the nodev decides to become clusterhead, a new cluster (we call it cluster i, i = clusterID)
comes to existence. Initially, this cluster has the resource Ri = r(v).

Now, it starts to broadcast to the neighborhood periodically its actual resource state (Ri). The
message is calledclusteringForward. The message is composed by the following fields:

clusterID: From which cluster the message belongs to.

clusterResource: Carries the actual resources (Ri) of the cluster.

mesID: An unique message ID.

parent: The parent of the sender in the spanning tree. During the cluster construction process, a
spanning tree inside the cluster is formed with the clusterhead as root. It is used in the exchange
of messages between the members and the clusterhead.

leaving: A boolean variable indicating whether the sender is leavingthe cluster. When true, it forces
the children to leave also the cluster.

generationLTime: The logical time of the original generation of the message.

requiredResource: The amount of resources that can be included in the cluster without consulting
the root node (clusterhead) of the tree.

acceptedNodes: Nodes that have already been accepted in the cluster by the clusterhead.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 147

completeRequest: This is a boolean field that is used to decide whether the request is a complete
request or a partial one. These concepts will be explained inthe next paragraphs.

clusterheadDistance: Gives the actual distance to the clusterhead.

As already said, there are two types of requests that can be issued by the clusterhead. Thepartial
or thecompleterequests. In thepartial requests, a messageclusteringBackward is generated just in
the parts of the cluster where some modification (nodes entering or leaving) is detected, whereas in the
completerequests, all nodes have to sendclusteringBackward messages either generating or forward-
ing messages coming from other nodes. The act of sending aclusteringForward message, waiting
for its (re-)propagation, and receiving the responses (clusteringBackward) is called here cluster con-
struction round. This round has the aim of propagating the actual resource availability of the cluster
and, based on this new availability, gather the new and leaving members information to update the
membership table.

Before describing in detail the cluster construction round, the format of theclusteringBackward

message will be explained.

clusterID: To which cluster the message belongs to.

collectedResources: Carry the total collected resources of this branch of the tree.

originalID: The message ID of theclusteringForward message.

mesID: The ID of the current message.

generationLTime: The logical time of the original generation of the message.

enteringNodes: List of nodes that are entering into the cluster.

leavingNodes: List of members leaving the cluster.

membershipIntention: List of nodes that are willing to be member in the next round.

5.7.4.1 Cluster Construction Round

As already stated, a cluster construction round comprises apropagation of theclusteringForward

started by the clusterhead and the return of the answers using theclusteringBackward message.
The whole process starts with the clusterhead sending theclusteringForward message to inform

about the actual availability of resources in the clusters.
When hearing this message, a nodeu stores it temporarily. It waits a small time interval to check

whether it will receive the same message coming from anotherpath in the network. The same message
can be heard multiple times due to different traveling paths. To check whether the same message have
been already received, it uses themesID field. From the received messages, it selects the one with the
smallestclusterheadDistance to process and, if possible, a message where theleaving field is false.
The smallest distance is selected in order to reduce the sizeof the generated spanning tree. If no
message with negativeleaving field is received, the node will be forced to leave the clusterbecause
the possible parents in the spanning tree are leaving, therefore, it should try to select a parent that
stays in the cluster. If after this selection, the same message is heard again, it just ignores it with one
exception: if the fieldparent has the node’s id, it stores the message in a table with the children (we



148 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

call this setChildu). This is because the message is coming from a node that is declaring itself as child
of u.

If the message is new, the node checks whether the current logical time is greater than the message
time. If yes, it ignores it. After checking these two fields, thecurrentTime of the node is upgraded by
generationLTime. The message ID (mesID) is stored together with the sender of the message (call it
nodeparentu, it is the parent of the nodeu in the spanning tree). This is done in order to generate a
spanning tree with the clusterhead as root.

The way of responding to the incoming message varies depending on the current status of the node
u:

Nodeu is not a member of clusteri: The first action of the node is to determine whether it should
enter in the clusteri. There are two ways of being able to enter clusteri. The first is if the
node is in theacceptedNodes field of the message. This field is used by the clusterhead to
respond to themembershipIntention request sent back to it in the previous round. If the node
u is in this list, it has been accepted to be member of the cluster i. The second is to use the
response functionTθrecrv,i

to evaluate whether the nodeu wishes to enter into the cluster. If the
test using the response function returns positive, the nodechecks whether it can enter into the
cluster without sending a request through themembershipIntention list. The test simply checks
whether its resourceRi(u) is less than therequiredResource resource. If positive, it can enter in
the cluster. In the negative case, the node ID will be added inthemembershipIntention field of
theclusteringBackward message. An important final observation is that if the parentis already
leaving the cluster (the fieldleaving is true in the received message), the node will automatically
avoid to enter into the cluster.

When a node is accepted to be a new member of the cluster, it changes its clusterID internal
variable to the ID of the forming cluster (i). The node is now member of the cluster. The
message is then changed and forwarded (broadcasted) further as described in the next section.
After repeating the message, the nodeu listens to the network in order to determine which
neighbors are reacting upon the received message. The neighbors repeating the message and
with the fieldparent filled with the ID of u are the children in the forming spanning tree. The
node from whom the original request came is the parent in the tree. A timer is set by nodeu
in order to wait forclusteringBackward messages coming from the child neighbors. The field
enteringNodes of theclusteringBackward message will be used to inform the clusterhead about
the existence of the new member.

Similarly, when a node wants to add in theclusteringBackward message its ID in themem-

bershipIntention field, it also forwards theclusteringForward message and sets a timer to wait
for the clusteringBackward messages. When this message is returning to the clusterhead, the
intention to be accepted in the cluster will be communicatedthrough themembershipIntention

field.

The forward process of the messageclusteringForward will be explained in the next section.

If the node is not aiming to become member of the cluster, the action to be taken is related with
the type of round: in acompleterequest, a messageclusteringBackward is generated by the
node and sent back to local parent in the tree. In the case of apartial request, the message is
just ignored.

Nodeu is a member of clusteri: The node will test whether it should leave the cluster using the
response functionTθleavev

. If the test returns negative, the node just retransmits (forward) the



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 149

messageclusteringForward using the procedure described below. In the opposite case, the
node deletes its internal variable clusterID, repeats theclusteringForward message (using the
procedure described below), collects its child information in the forming tree, and set a timer
to wait for theclusteringBackward message. In this message, the leaving node will inform its
state in theleavingNodes field.

Broadcasting the MessageclusteringForward As already explained, the nodes that are already
in the cluster or entering should repeat the messageclusteringForward (in the last case, just if the
field requiredResource is greater than a specified threshold). TherequiredResource field is updated
by requiredResource

|Ngb(u)| , whereNgb(u) is the set of neighbors ofu . This is to divide the request for re-
source equality among the neighbors, giving then a chance toenter without asking the clusterhead for
permission using themembershipIntentions message.

In addition, the fieldclusterheadDistance is also updated. In the case of a leaving node, this
field is updated to infinity (because there is no more pathway to the clusterhead through this node).
Moreover, the fieldleaving is set to true in this case.

The message is then broadcasted (repeated) to the neighbors.

Returning the clusteringBackward message There are two policies on when a node must respond
to theclusteringForward message. Which one should be chosen one depends whether the request was
a completeor apartial one. In the first case, all nodes that belong to the cluster must either generate
a clusteringBackward message or forward a message coming from its child. Then the node must
insert its ID and resource in the returning message. This is becausecompleterounds are used by the
clusterhead to re-check the complete membership of the cluster.

In the second case (partial requests), just nodes that posses some information for the clusterhead
are forced to generateclusteringBackward messages if a message of this type is not coming from the
children to be forwarded.

Before generating theclusteringBackward message by itself, a node has a timer in order to wait
for the corresponding message from the children. The node then makes a fusion of its own information
with the messages coming from the children nodes and sends toits parent the message forward.

An example of a cluster construction round is shown in Figure5.26. In (a), apartial round has
been initiated by the clusterhead (node 1). It sends theclusteringForward message to the nodes in the
vicinity. Upon receiving the message, the neighbors use theresponse functionTθleavev

to decide whether
they should leave the current cluster. In this case, all the neighbors decide to stay in the current cluster
and forward the message further updating therequiredResource field properly.

In figure 5.26 (b), nodes 4,5,11, and 14 received theclusteringForward message. Node 4 is already
member of the cluster, and its action is similar to the described in the previous paragraph. Nodes 5,11,
and 14 are not members of any cluster. Upon receiving the messageclusteringForward, the nodes
check whether their IDs are in theacceptedNodes list. Node 5 is already in this list, what means that
it may enter in the cluster immediately. It then forwards themessage further. The nodes 11 and 14
are not in theaccetpedNodes. They use then the response functionTθrecrv,i

to test whether they should
pursue cluster membership. Since this is true in the example, the nodes now test whether they can
be members without applying to the clusterhead, i.e., thereis enough budget in theclusteringForward

message. For nodes 11 and 14, this is the case in the presentedexample. They now change the internal
clusterID to i and forward the message. They also start a timer, looking fortheclusteringBackward

answering message. This message will be used to inform the clusterhead about the new members and
the success of the resource recruitment. The function of thetimer is to avoid that each node generates



150 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.26: Example of a clustering round



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 151

its ownclusteringBackward message, since the message should be generated just in the leaves of the
tree. Nevertheless, due to the fact that in apartial round just parts of the tree where modifications are
happening generateclusteringBackward messages, and also transmission errors can occur (even in a
completeround), a correspondingclusteringBackward message will eventually never be received by
a node. Therefore, the timer is important: whenever a node does not receive aclusteringBackward

message after the timer elapses, it can generate its own new message.
Now the nodes 6, 8, 12, 13, 15, and 16 receive the message (Figure 5.26(c)). Those nodes are

not yet members, and none of them is in theaccetpedNodes list. Therefore, they test whether they
should enter in the cluster using the response functionTθrecrv,i

. This test returns true for all of them.
For the nodes 6, 8, 12, 13, and 15 there is enough budget, and they can thus be included in the cluster
without sending a request. Node 16 must include in the message clusteringBackward a request to be
member of the cluster (fieldmembershipIntention). The nodes don’t have any children to forward the
messageclusteringForward. Hence, they generate now a response messageclusteringForward. In the
case of a node not changing its status or willing to request membership, this node would not generate
this response message in the case of apartial round.

Figure 5.26(d) shows the route of theclusteringBackward message. Due to the tree generation,
the messages make the reverse path from the leaf to the root ofthe tree incorporating information
that the intermediary nodes want to include to the clusterhead. During this phase, upon receiving a
clusteringBackward, a node deletes its timer before retransmitting the messageto its parent node.

In the previous example, the method to evaluate whether a node desires to enter in a clusteri was
not presented in order to avoid excess of of details in the text. Now we will show one more example
focusing on the influence of the attracting force that is controlled by a positive/negative feedback
mechanism.

Consider the example depicted in Figure 5.27. As in the previous example, the figure shows the
acquisition of members by a cluster under formation. In (a),the cluster possess resources of value 1
because just the clusterhead belongs to the cluster. The actual attracting force (stimulussrecrv,i ,given
by k1 · (p(1) ·g(1))) is 4.7 units (fork1 = 1). This is enough to attract vicinity nodes that have good
connection to the cluster (in the example, nodes 2, 3, and 4).

Now the cluster has 4 members andRi = 4. This brings to the cluster a higher potential to attract
new members, and in the next cluster construction round (b) the nodes 5, 6, and 7 will be attracted. In
(c), the actual situation of the cluster is shown. The stimulus to attract new members is considerably
reduced. No new members will be attracted in this situation.

A main purpose of the positive/negative feedback mechanismis to control the competition among
neighboring clusters. The feedback curves are designed in such a way that an already formed cluster
may just loose some members till theq limit is achieved, because when this limit is achieved, the desire
to attract new members is at maximum. In the same way, if thereare two clusters under formation this
method avoids that one cluster steals members of the other one, reaching the state where no cluster
has fulfilled its requirement on resource. Figure 5.28 illustrates these two situations.

Figures 5.28(a) and (b) show a cluster under formation stealing some members of a complete
one, but due to the positive/negative feedback, the clusterunder formation with high probability can’t
attract a number of nodes that will disrupt the complete cluster. In (c) an example of two clusters
under formation are shown. Due to the positive feedback, thecluster that has a small advantage due
to a marginal difference in the number of nodes can attract a node of the other cluster, resulting in an
even greater advantage. In the end of the process (d), instead of having two incomplete clusters, the
cluster with the marginal advantage won and a complete cluster is the result.

The example shows how the feedback mechanism drives the cluster construction in a way that
complete clusters are prioritized in detriment of incomplete ones.



152 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Figure 5.27: Example of cluster construction from the pointof view of the positive/negative feedback
mechanism.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 153

Figure 5.28: (a),(b): Example of a cluster under formation trying to steal nodes from a complete one.
(c),(d): Example of two clusters under formation without enough resources for both.

5.7.5 Clustering Maintenance

After (at most)ζ cluster construction rounds (roundi ≤ ζ ), either a complete cluster has been formed
or the cluster has been disrupted due to the lack of resourcesin the area. Successfully constructed
clusters enter in the clustering maintenance phase. It consists of detecting changes in the cluster and
react upon them. The reaction is also performed using the cluster construction round.

The detection of changes in the cluster topology is responsible of all members of the cluster. The
following mechanisms are used to detect changes:

Explicit Subscription/Unsubscription of members: Upon deciding to enter or leave an existing
cluster (by means of the response functions), a node must inform this to the clusterhead. During
the cluster construction round, this is done by theclusteringBackward message using the fields
enteringNodes and leavingNodes. If, for any reason, a node must enter or leave the cluster
when no cluster round is occurring, special messages are used to inform this to the clusterhead.

A reason for entering in the cluster by other means than the presented round appears when nodes
try to form a cluster, but due to the lack of resources, the cluster formation is not successful. In
this situation, the nodes use theenterCluster message to impose their entrance to any selected
neighboring cluster. Enforced members are not considered in theclusterResource field of the
clusteringForward message. Nevertheless, they should respond to this message.

When a node notices an abnormality, that can be some processing error or lack of energy, it can
spontaneously leave the cluster using the messageleaveCluster to inform the clusterhead about
its decision. Upon receivingleaveCluster, the clusterhead checks whether the cluster still has
enough resources (Ri ≥ q). If not, a bunch ofpartial cluster construction rounds are used to fill
the cluster again. Here just apartial request is necessary because only the replacement of the
leaving node is necessary, if no other modification of the cluster has been noticed.



154 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Perceived link metric (topology) changes:As already explained, each node of the network has a
table with link metrics to the neighboring nodes. All packages received by the radio are used to
update the link metric (even if the packet is not addressed tothe observing node). If a nodev
perceives significant changes (over a certain threshold) inits neighborhood on nodes belonging
to the same cluster, it informs the clusterhead with the messagetopologyChange. A significant
change means a large change in the link metric or even the disappearance of a node of the
neighborhood. Upon receiving the message, the clusterheadstarts a bunch ofcompletecluster
construction rounds in order to gather again the information about the membership of the cluster
and eventually replaces a disappearing node. In this case acompleterequest is necessary due
to the fact that links have changed and perhaps some nodes have lost a direct connection to the
cluster (or even have some failure), being impossible to inform the cluster about this situation
using theleavingNodes field of theclusteringBackward message.

5.7.6 Integrating Reference Point Group Mobility Model

Several mobility models have been developed in order to simulate dynamic topologies in ad hoc net-
works (for an in-depth survey, see [25] and [111, 142]). In order to develop a protocol for dynamic ad
hoc networks, the mobility model adopted heavily influencesthe results due to the different behavior
nature of the various models. There are two major types of mobility models: tracesandsynthetic
models.

Tracesuse specific topology patterns observed in real-life. Thesyntheticmodels aim at realisti-
cally representing the movements without the necessity of the costly tracing process. In this work, we
restrict our consideration tosyntheticmodels.

Syntheticmodels are divided into two categories:entity mobility modelsandgroup mobility mod-
els. In theentity mobility models, nodes have individual pathways without influence from other nodes.
The most common model in this category is therandom mobility model[143]. In this model, the speed
and direction of motion in a new time interval have no relation to their past values coming from the
previous period. Although very popular, therandom mobility modelis not a very realistic one. It
generates unrealistic mobile behavior such as sharp turning or sudden stopping. Several other variants
of this model have been developed (e.g.Random Waypointmobility model), random direction [109]
or city section mobility model [41].

In thegroup mobility models, groups of nodes are moved along individual pathways. Some move-
ment within the groups may exist. Thosegroup mobility modelsare based on the assumption that
for many applications the movement of a single node is correlated with the movement of some other
nodes. This is a realistic assumption.

For this reason, we consider in this thesis thereference point group mobility model(RPGM) [63].
In the RPGM, the set of nodes is partitioned in groups. Each group has a logical center. The center’s
motion defines the entire group’s motion behavior. Moreover, inside a group the nodes may have
independent random motion. This model captures several scenarios, from users moving around (in
groups) with mobile devices to groups of sensor nodes attached in vehicles. It can be likely assumed,
in our point of view, that nodes engaged in cooperative processing (like the system proposed in this
thesis), move along correlated paths.

In the next section we will present a small overview of the reference point group mobility model.
Afterwards, the seamless integration of this model in our dynamic clustering heuristic will be intro-
duced.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 155

Figure 5.29: Example of a new node position in the group mobility model

5.7.6.1 Reference Point Group Mobility Model

As already said, in thereference point group mobility model, each group has a logical center. The
movement of the center is controlled by the group motion vector called ~GM.

Each node in a group has a so called reference point (RP), which follows the movement of the
group. The reference point represents the center of the circular area where a specific node can be
encountered. A node is randomly placed in the neighborhood of its reference point at each step of the
group mobility model algorithm. Therefore, it allows independent random motion behavior for each
node, in addition to the group motion.

Figure 5.29 gives an example of how a node moves from time tickτ to τ +1. in Figure, the target
node is highlighted. The group has the motion vector~GM. In order to calculate the new position
of node 1, the reference point of this node is first moved fromRP(τ) to RP(τ + 1) with the group
motion vector ~GM. After this, the new node position is generated adding a random motion vector
~RM to this new reference point. The vector~RM has its length uniformly distributed within a certain

radio centered at the reference point, and its direction is also uniformly distributed between 0 and 2π
radians.

5.7.6.2 Group Detection Algorithm

In order to improve the performance of the clustering algorithm in environments where the movement
of the nodes happens in groups, the group information shouldbe added to the clustering heuristic. For
that, it is necessary that the nodes detect the current groupthey belong to. The following algorithm is
responsible for this task.

In order to identify the groups, each group has an integer group ID (gid ∈ IN). The set of nodes in
the group wheregid = i is given bygi .

The following data structures are used by the algorithm:

Current Identifiers ( current_ids): It is an array with two positions, the primary and the secondary
gid. Each one stores a group ID. When two nodes have at least one ofthis twogid in common,
they belong to the same group (the test to detect this condition we will call group match test).

Candidates (candidates): An array withn possible candidates to be included in the group. For each
candidate, the node id and the current identifiers are stored. Moreover, a counter of the number



156 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

of meetings and the time of the last contact are also stored, in order to make the detection of the
group possible.

The current ids are initiated with random values. At the beginning, with high probability, all
nodes are in different groups. A beacon messagecurrent_statuswith the current_idsis sent by the
nodes periodically.

Upon receiving a beacon from a node in the vicinity, the link quality of the received message is
tested against the thresholdθg. When the quality is higher than the threshold, the beacon isprocessed
by the node. The possible actions are:

The group match testreturns positive: This means that the beacon comes from a node that is in the
same group. If the primary id of the beacon is the same or smaller than the received primary id,
no further action is done. When not, upon receiving a higher id, the node updates its primary
identifier, copies the old primary to the secondary field, anddiscards the current secondary id.
This means that the group is changing its id. The rule used is that the higher id wins, i.e., higher
identifiers are dominant.

Negative result: The node isn’t yet in the same group. If the node is not in thecandidateslist, it is
inserted. Otherwise, the counter for this candidate is incremented. If no message is received
during a specified period of time (timeout), the node is deleted from the list.

When the counter in the candidate list reaches a predefined value m∈ IN, the node should be
considered in the same group. For that, its primarygid is compared with the node’s owngid.
If the candidate’sgid is greater, the node assumes this as new group identifier and updates the
secondary by the previous primary one.

After some time, the algorithm will converge, in a way that all nodes having periodic (or perma-
nent) good links among them will have the same identifiers. A problem occurs if for some reason two
groups achieve the same identifiers (due to a “contamination” effect or when a group is divided in
two, for example). In order to cope with this possibility, offering a consistent and robust functionality,
the following mechanism is introduced. Periodically, eachnode tests whether it should propose two
new group ids (they will be the primary and secondary ids). The probability of proposing the new ids
is given byρnew_gid. It should be very small in order to avoid cyclic id changes. When deciding to
update the current group id, a node calculates a new primary group id (gidt+1) by gidt+1 = gidt + r
wherer is a random integer variable distributed uniformly between[1,m]. It then upgrades its primary
gid to this new value and copies the actual primarygid to the secondary, overwriting it. Now, this
change will be propagated among the group members. After some time, the node generates again a
new primary group id. The process repeats. After these two rounds of new primary ids, two different
groups that originally have the samecurrent_idswill diverge.

In order to avoid periodic beaconing, this protocol can be optimized by embedding the necessary
information in messages from other protocols running in thesensor network.

A small example of functionality of the algorithm can be seenin Figure 5.30. In (a), the nodes
1,2,3,4, and 5 have already received one beacon from the neighboring nodes. Nevertheless, they have
the random initializedgid. The neighbors are in thecandidateslist. In (b), each node has already
received enough beacons and recognized the neighbors as belonging to the same group. As already
described, the higher primarygid replaces the currentgid when the neighbor is recognized to belong
to the same group.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 157

Figure 5.30: Example of a group detection. In (a) the processis beginning, the neighbors have already
received the first beacon. In (b) the nodes have already received m beacons, therefore the higher
primarygid’s overwrite the smaller ones.



158 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

5.7.6.3 Integrating Group Mobility in the Clustering Algor ithm

The integration of the group mobility in the dynamic clustering is based on the group detection algo-
rithm. The response functions will be altered in the clusterhead and membership selection in order to
take advantage of the group information gathered by the presented algorithm.

First, it is important to detect whether the groups have beenalready detected in the neighbor-
hood of a nodev. Let NG(v) be the set of the group identifiers of the neighbors of nodev (i.e.,
i ∈NG(v) iff ∃e∈V|e∈ (gi ∩Ngb(v))). Let Ngbgi (v) be the set of neighbors of nodev that are in the
group whosegid = i (i.e.,e∈ Ngbgi (v) iff e∈ (Ngb(v)∩gi)). The functiongr : V → [0,1], presented
in Equation 5.22 measures how much the neighborhood of the node v is in the same group and the
neighborhood’s heterogeneity. Higher values bring a higher confidentiality that the neighborhood has
already detected the group.

gr(v) = k1 ·
|Ngbgl |

(

∑i∈NG(v) |Ngbgi |
)
+ |Ngbgl |

+k2 ·
(

1− |NG(v)|
|Ngb(v)|

)

(5.22)

Wherev∈ gl . The first term measures the percentage of the neighborhood that is already inv’s
group. A node with the majority of neighbors in other groups can suppose, with high probability, that
its group has not been detected until now (or it is at the border of a group). The second term measures
how heterogeneous is the neighborhood, i.e., to how many different groups the neighbors belong to.
Higher numbers of groups indicate that the detection of the groups haven’t converged yet.

This group detection rating will influence how much the groupinformation will be used by the
clustering algorithm. Lower values of thegr(v) point out that the group information is not very trusty
and it does not have to influence heavily the clustering process. Conversely, highergr(v) values indi-
cate that the clustering process should use this information to avoid unstable clusters with members
in different groups.

Let’s now integrate it to the clustering heuristic. The function gr should influence both clusterhead
and membership selection.

Clusterhead Selection Thegr function is introduced in the already presented equation 5.9. This can
be seen in eq. 5.23 (for∑4

j=1k j = 1). It is possible to negatively influence the clusterhead emergence
in the network areas where the groups haven’t been already detected.

θgCHv = k1 ·
(

1− ∑u∈NgbNm(v) w(u,v)

|NgbNm(v)|

)

+k2 · (1−Ev)+k3 ·Wv +k4 · (1−gr(v)) (5.23)

Membership Recruitment As already presented, the membership recruitment is based on the equa-
tion 5.18. We define in Equation 5.24 a new threshold taking inaccount the group information. It is
based on the version of the threshold without group (θrecrv,i ).

θgrecrv,i = θrecrv,i · (1−gr(v))
︸ ︷︷ ︸

No detec.

+max
(

θrecrv,i ·gr(v)
︸ ︷︷ ︸

Detec. same group

,k · (1−|{Clusterheadi ∩gl}|) ·gr(v)
︸ ︷︷ ︸

Detec. diverse group

)
(5.24)

The first part of the equation has its contribution to the finalthreshold controlled by the actual
group detection rating of the nodev (gr(v)). If no group is detected, this will be the only term ofthe
expression, i.e., it will act exactly as the originalθrecrv,i . Nevertheless, as the neighborhood nodes are



5.8. RELATION TO SELF-ORGANIZATION PRINCIPLES 159

unifying their view about which group they belong to, the information about the group is receiving a
higher importance, as can be seen in the second and third parts of the equation. The second is active
when the v’s group is the same of the clusterhead. If not, the third part assigns a valuek≥ 1 to the
threshold, meaning that this node should not be preferred for inclusion into the cluster.

5.8 Relation to Self-Organization Principles

In this section, we will analyze the relation of the two presented cluster construction heuristics to the
self-organization design principles.

In the paper [101], four design paradigms for applying self-organization in networks are sug-
gested. The idea of the paper was to discuss which principlesfrom self-organized systems in nature
and other fields can be successfully transferred to communication systems.

The presented paradigms were:

Design local behavior rules that achieve global properties: Instead of introducing a central entity
responsible for coordinating the achievement of the desired property, the responsibility should
be divided among the individual entities, where each one contributes to a collective behavior.
Local behavior rules must be designed in such a manner that, when applied to the set of entities,
lead to the desired global property.

Do not aim for perfect coordination: exploit implicit coord ination: In conventional systems, it is
natural to avoid conflicting situations by means of usingexplicit coordination, i.e., signaling
messages are exchanged in a request-response manner to coordinate resources. The new idea
here is totolerateconflicts if they can be managed in a contained manner. Implicit coordination
means that coordination information is not communicated explicitly by messages, but inferred
from the local environment. For example, a node can observe other nodes in the neighborhood
and, based on that observations, draw conclusions about thestate of the network.

Minimize long-lived state information: In many approaches the nodes must maintain a (global)
long term state information about the network. To achieve a higher level of self-organization,
the amount of such long-term information should be minimized.

Design protocols that adapt to changes:The nodes should be capable to adapt to changes in the
network and their environment.

Now we analyze the two proposed clustering construction heuristics based on these basic paradigms
for self-organizing systems. We start analyzing the cluster selection method. Both heuristics have a
similar method for the clusterhead selection. Each node tests itself using a response threshold to decide
whether it should turn to a local clusterhead. This complieswith the first paradigm, i.e., each node
has strictly local behavior rules that just use local information about the neighborhood. Moreover,
the second paradigm is also included: we tolerate conflicts (e.g., neighboring clusterheads) and, as
described in the link metric, the nodes observe the neighborhood by listening to ongoing communica-
tions and, based on them, make conclusions about the currentlink status. This is implicit coordination.
The long-lived state information is also minimized: each node must just know its own and immediate
neighborhood states. There is no need for large state information. Moreover, information about the
neighborhood can be obtained partially using observationsof ongoing communications.

The last design paradigm is clearly encountered in the clusterhead selection of the dynamic algo-
rithm: when the situation changes and not enough nodes are available for forming a cluster with the



160 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

minimum resource requirement, the clusterhead withdraws its role and the cluster ceases its existence,
giving opportunity to the nodes to join an other (hopefully)complete cluster.

In the membership selection it is also possible to find the keyelements the self-organization. In
the quasi-static clustering, the membership selection is also based on a local behavior rule: each node
waits a determined time before answering for the membershiprequest message. This time is also
calculated using just local information, minimizing long-lived state information.

The positive and negative feedback used to evaluate the attraction force in the dynamic clustering
is based on local rules too. The attraction behavior is also alocal interaction among neighboring
nodes. Moreover, nodes in two extremes of the cluster are attracting new members independently,
what may generate temporarily inconsistencies (e.g. a cluster much larger than the desired size).
Nevertheless, after some interactions, the size adjusts itself to a reasonable number of nodes.

Although in the dynamic clustering the membership selection has several characteristics of a self-
organizing system (even using the two basic mechanism that are required for self-organization in a
more strict sense - positive and negative feedbacks), it also has an aspect that is not conform to the
self-organization design principles. The propagation mechanism of the actual amount of resources
in a cluster works in a wave-style broadcast (using theclusteringForwardandclusteringBackward
messages). Therefore, all nodes of the cluster receive thisinformation. This is necessary because the
nodes do not have the information about the actual resource state of the cluster without this exchange.

The design principles used in both heuristics make them robust against environment changes (in
particular topology changes in the dynamic version) and scalable (there is not a central commander,
i.e., no bottleneck) and save energy by means of localized communication and implicit coordination.
The price for those features is the possible existence of a temporarily inconsistent cluster state in some
parts of the network (specially in the dynamic heuristic). Moreover, for both heuristics, there is no
guarantee about the quality of the generated solutions.



Chapter 6

Simulation and Results

6.1 Simulation Environment

In order to simulate the heuristics presented in the previous chapter, we decided to use the Shox
network simulator. The Shox simulator has being developed in our working group and it targets
simulations of wireless ad hoc networks. Shox is a discrete-event simulator and assumes that an event
may occur at any point in a continuous time. Each event has atimestampthat indicates when it should
be processed.

This means that the lifetime of the network is discretized into events. The simulation generates
series of events that the network would have stepped throughwhen a specific input is given. The
execution of an event involves returning it from a sorted queue and feeding a component in the system
with it. This component will execute some logic and generatenew events. The time is not absolute
but a virtual quantity kept in a variable [121].

The algorithm being tested using the simulator is programmed as a set of event handlers inside the
selected network layer. The simulator sorts the events chronologically in a queue. An executive unit
takes the events one by one and calls the appropriate event handler in the network layers. New events
may be insert into the global queue by event handlers.

For better introducing the Shox simulator, we divide its architecture in two main parts. The first
is the event architecture, which shows which kind of events are processed by our simulator. The
structure of the nodes in the ad hoc simulation are presentedin the second part of this section.

The class diagram of the objects related with the events structure is shown in Figure 6.1. Besides
the event architecture, the figure also presents the centralclass of the whole simulation framework:
the SimulationManager. The SimulationManager knows all global objects of the simulation (e.g.
Topology) and controls the whole flow. The event handling is realized by this class, which contains a
reference to the global event queue (priority queue).

As already said, the priority queue is responsible for maintaining all events scheduled for execu-
tion in the system. Instead of directly putting the events into the global queue, an envelope object is
used (classEventEnvelope). It stores further information about the event and provides a method to
process the event encapsulated in the envelope. TheEvent class is an abstract superclass that repre-
sents all the events in the simulation. Events can be of the following types: simulation internal (like
movements), for a whole node (ToNode), and for a node and a specific layer (ToLayer).

Simulation events are used internally by the simulation andcannot be issued by the protocols being
simulated. Examples of such internal events are movement events that are responsible for changing
the physical position of a given node (and, as consequence, the network topology).

161



162 CHAPTER 6. SIMULATION AND RESULTS

Event
TrafficGenerationMovement

WakeUpCall
MACEvent

MoveManager
PacketContainer
LogLinkEvent
Transmission
NetworkEventLogLinkPacketNetworkPacketApplicationPacket

SimulationEvent

MACPacketPhysicalFrame
ToLayer

Link

EventEnvelopePriorityQueue
SimulationManager

ToNode
Packet

Figure 6.1: Simplified class diagram of the Shox simulator showing the event architecture.



6.1. SIMULATION ENVIRONMENT 163

LayerNetworkLayerApplicationLayer
NodeGenerator

EnergyManagement

SimplePhysicsPhysicalModel RandomWalkVariableDisc

MACLayerLogLinkLayerPhysicalLayer
Node

NoMovementGroupMobilityUnitDiscStartPositionGeneratorUniformStartPositions

Link

RandomStartPositions
MovementManagerConfiguration

SimulationManager

Figure 6.2: Simplified class diagram of the Shox simulator presenting the structure of the nodes.

ToNode events are directed to all layers of a node. An example of sucha kind of event isinitialize

that is responsible for the initialization of a given layer.When this event is launched, all layers of a
given node receive it.

ToLayer events are dispatched to a certain layer of a given node. The most important event of this
type is the packet: packets are addressed to a given layer of atarget node. Logically, every layer may
communicate with the same layer of another node. Nevertheless, physically, the packets must travel
through the lower layers before being sent through the physical network. As usual for a stack network
model, a given packet contains all packets of the upper layers. This is implemented in Shox by means
of an aggregation presented in the classPacket.

Another very importantToLayer event is theWakeUpCall. It is used to schedule future events in
the system. For example, after sending a packet, the logicallink layer, in some implementations, have
to wait for an acknowledgment. For this, a timeout is set, andaWakeUpCall event is issued when the
timeout expires.

The second part of the Shox architecture represents the structure of the nodes. The class diagram
can be seen in Figure 6.2. The central element is theNode. A node is specified via its layers in the
network stack. The concrete protocol layers are derived of this abstractLayer object. The simulation
manager has the complete collection of nodes of the system. Each node of the simulation corresponds
to one instance of the classNode and all its layers.

During the initialization phase, all necessary node instances of the system are generated by the
NodeGenerator. TheConfiguration class is responsible for readinf the configuration of the simulation
(an XML file) and for controlling, among other things, the generation of the right number of node



164 CHAPTER 6. SIMULATION AND RESULTS

instances with the selected layers.
The algorithms developed in the context of this thesis were implemented in selected layers of

this stack hierarchy. For example, for the implementation of the link metric, a class derived from the
LogLinkLayer was used.

Some advantages of the Shox simulator against other approaches (e.g. ns-2 [2]) are:

• Possibility of implementing new protocols in a very simple and fast way, due to the clean object-
oriented design principles. For implementing a new protocol, it is just necessary to derive the
new layer from an existing one and extend it. Differently from ns-2, it is not necessary to modify
any other source code in the simulator. This means that the new modules have low coupling
with the existing Shox code.

• Advantages of the Java language. With Shox, the protocols are implemented in a high-level
language. This makes them less error-prone. For example, packet memory deallocation is not
necessary due to the garbage collector present in the Java language.

• Comprehensible, flexible configuration. The simulator is configurable using human-readable
XML files. Moreover, configurations can be done using a GUI andsaved in the XML file. A
screenshot of the configuration screen is presented in Figure 6.3.

• Designed exclusively for wireless ad hoc networks simulations. Differently from other ap-
proaches (e.g. ns-2, OMNeT++), our simulation engine was developed to cope only with wire-
less ad hoc networks. This means that the complexity of configuring a general discrete event
simulator to target wireless ad hoc networks can be avoided.Moreover, the size and complexity
of the simulator can be kept inside manageable limits. In addition, the user is confronted just
with parameters and modules that are correlated with ad hoc networks simulations.

• Possibility of demanding visualizations. Our simulator has an integrated visualization tool that
enables efficient visualization of the state of the network as well as packet exchanges. When
implementing new protocols, the programmer may issue commands in order to attach an at-
tribute to a given node or link. This attribute is composed ofname and value. Values may be
a countable or non-countable element. All attributes are written in the log file. Before starting
the visualization, the user may map the attributes to visualelements. Sequential countable ele-
ments receive distinct visual representation (for example, different colors). The non-countable
attributes, when visualized, are represented by means of degrees (for example, a link attribute
may be represented by the line thickness). An example: in ourclustering algorithm, theclus-

terId is a countable attribute, nodes belonging to different clusters are represented with different
visual elements (color of the nodes). The link quality is a non-countable attribute in our simu-
lation: links vary from very good (near zero) to bad quality (near one) in a gradual way. The
mapping of a non-countable attribute to some visual elementrespects this scale.

6.2 Reference Methods for theMinimum Intracommunication-cost Clus-
tering

In this section, we will present the reference methods used to normalize the results of our experiments.



6.2. REFERENCE METHODS FOR THE MINIMUM INTRACOMMUNICATION-COSTCLUSTERING165

Figure 6.3: Screenshot of Shox configuration dialog.

6.2.1 Modeling as a Integer Linear Program

In order to calculate the optimal solution for eachminimum intracommunication-cost clusteringin-
stance and to compare it to our heuristic algorithms, the problem was modeled with Integer Program-
ming.

Given aminimum intracommunication-cost clusteringinstance(G,w, r,q), the problem is mod-
eled as:

minimize ∑
s,t∈V

∑
u,v|{v,u}∈E)

w({u,v}) · (α · r(s)+ (1−α)) ·xs→t
u→v (6.1)

wherexs→t
u→v is a binary variable andw : E→R+ return the weights of the links.xs→t

u→v is the binary
variable that indicates whether the edge{u,v} is being used in the direction fromu to v in the path
between nodess andt. r, q, andα are defined in section 5.3. Figure 6.4 shows an example of graph
modeled in this way. In the figure, just the possible links between nodesg and j are shown. It is
important to remark that the direction that the link is used is also contained in the binary variables.

It is important to highlight that, for each par of nodes, we are summing two times the cost (e.g.,
for s, t ∈V, we are adding the cost of the paths, t andt,s). This means that the cost equation (eq. 5.1)
is multiplied by two. This is considered in the complete chapter.

The idea behind this modeling is that, given a problem instance, the solution will be the selection
of the links that are connecting each two nodes inside a cluster with the shortest path. Other links
that are not used for this purpose are simple deleted from thegraph. The result is a graph where
intra-cluster communication links exists and inter-cluster ones are deleted.

The second binary variable of the problem ises→t . It has the meaning that there is a connection
between nodess andt and both nodes are in the same cluster.

Let u,v∈V|{u,v} ∈ E, v,o∈V|{v,o} ∈ E ands, t, j ∈V. The following constraints must hold:



166 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.4: Example of modeled graph with integer programming. In the example, just the variables
corresponding to the path between nodesg and j are shown.

∀s, t ∑
v

xs→t
s→v = es→t (6.2)

∀s, t ∑
u

xs→t
u→t = es→t (6.3)

∀s, t,v∑
u

xs→t
u→v−∑

o
xs→t

v→o = 0 (v 6= s, t) (6.4)

The first constraint (eq. 6.2) states that if the nodessandt are connected (i.e.,es→t = 1 ands and
t are in the same cluster), one and at most one link must exist from the nodes to a neighboring node
that is in the path connectings to t. In the same way, whereversandt are in the same cluster, an edge
belonging to the path connectings andt, starting from a neighboring node fromt and adjacent tot
must be present (eq. 6.3).

The equation 6.4 states that links belonging to the paths→ t must pass trough a node or avoid
it (if the node is neithers nor t). It is just possible to have an outgoing link in a node if you have an
incoming link.

The three constraints guarantee that the solution will encompass just a single path between any
two nodes in the cluster. Moreover, this path will be the shortest (due to the minimization objective).
The constraints 6.2 and 6.3 enforce that when two nodes are inthe same cluster (es→t ), there must
exist a path between them.

Let’s state the next constraints.

∀s, t,u,v xs→t
u→v ≤ ev→t (v 6= t) (6.5)

∀s, t, j es→t +et→ j ≤ 1+es→ j (6.6)

The eq. 6.5 certifies that all nodes inside the path between two nodes in a cluster (s,t) must be also
inside the cluster. This assures the connectivity of the cluster. The eq. 6.6 assures that if nodess and
t are in the same cluster and also nodest and j, the nodess and j must belong to the same cluster
(transitivity).

∀s, t,u,v xs→t
u→v = xt→s

v→u (6.7)



6.2. REFERENCE METHODS FOR THE MINIMUM INTRACOMMUNICATION-COSTCLUSTERING167

The eq. 6.7 states the symmetric relation among two connected vertexes. If vertexess andt are
connected through the edge{u,v}, the inverse path must be also connected through{v,u}.

Now the constraint that determines the minimum amount of resources per cluster:

∀s∑
t

r(t) ·es→t ≥ q− r(s) (6.8)

The eq. 6.8 expresses the requirement that a node in a clustermust have enough partners in the
cluster to cover the minimum required amount of resources per cluster.

6.2.2 Genetic Algorithm

Because we cannot calculate the reference cost of large instances of theMinimum intracommunication-
cost clusteringwith the linear integer program, we decide to construct additionally a genetic algorithm
(GA) for this purpose. Therefore, for small instances of theproblem, the reference solution is the
optimal one, calculated via integer linear programming. For large instances, we will compare our
distributed, low computational complexity heuristic withthe results obtained using this GA.

6.2.3 Basic Concepts

In this section, we will briefly review the basic concepts of agenetic algorithm.
A genetic algorithm is a search heuristic based on the principles of the evolution and natural

genetics [119]. They imitate the basic principles of life reproduction and evolution and can be advan-
tageously used for many combinatorial optimization problems. They have been introduced by Holland
([62]) and are based on the Darwin’s principle of the evolution of species [108]:

• The population of individuals of certain specie have different properties and abilities.

• Nature creates new individuals with similar properties to the existing individuals.

• Promising individuals are selected more often by the natural selection than the not so promising
ones.

The proprieties and abilities of an individual in a population is characterized by its phenotype, that
is encoded in the genotype. There is a function that maps the genotype in a corresponding phenotype.

The individuals of a population do not remain the same, they change over generations. New
offspring are created and they inherit some proprieties of the parents. The creation of the offspring is
based on the recombination and mutationoperatorsapplied to the genotype of the parents.

The natural selection acts upon the reproduction - promising individuals are more often selected
for the reproduction than low-quality solutions. Highly fitindividuals are allowed to create more
offspring than inferior individuals. With that, the average fitness of the population increases over
time.

In the next sections, we will describe the elements of a GA and, at the same time, will introduce
how those elements were designed for the purpose of solving our clustering problem.

6.2.4 Representation of the Problem (Coding)

Each possible solution of the optimization problem must be represented in form of a chromosome.
Each genotype (chromosome) corresponds to a phenotype, that is, a valid solution instance of our op-
timization problem. A transformation exists between the genotype and the phenotype, i.e. to construct
a valid problem solution based on the genetic information stored in the chromosome.



168 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.5: Overview of a genetic algorithm run. The valid solutions of the problems are encoded in
the chromosome.

A chromosome is formed by several genes. A gene is a sequence of alleles that code one phenotype
property of an individual. The alleles are the smallest information units in a chromosome. Often,
binary representation is used, i.e. an allele can have either the value 0 or 1. Figure 6.5 depicts
the difference between chromosomes, genes and alleles and also between genotype and phenotype.
Moreover, a schematic showing the steps of a GA is also illustrated.

In the case of our clustering problem, we decide to use an integer representation for the genotype.
Moreover, we are using a representation that is very straightforward. Due to this fact, similarly to
problems where the direct representation is used, we need special operators (crossover and mutation).
They are carefully designed to generate the desired phenotypes. The standard operators cannot be
applied due this near to phenotype representation (but still indirect representation).

Our solution space is encoded asn sequences of clustersc1,c2, ...,cn where
⋂n

i=1ci = /0 and
⋃n

i=1 ci = V. Moreover, we define for our tests that each node of the network has one unit of resource.
This means that the resource constraint is∑v∈ck

r(v)≥ q for k = 1,2..n, i.e. |ck| ≥ q.
This assumption simplifies the crossover and mutation operators, because they do not need to

check for the resource constraint as it will be clear in the following paragraph.
We decide to model the problem with a fixed number of clusters,i.e., we assume that the optimal

solution will haven =
⌊
|v|
q

⌋

clusters. Our representation of the problem instances is anarray ofm

integers; each integer represents a node (node ID), and thisarray is divided inn groups that correspond
to then clusters. Groups may have fromq to q+(⌈ |v| modq

n ⌉) integers.
Figure 6.6 presents an example of our representation of one instance of the problem. Moreover,

how this genotype is mapped to a problem instance is also shown.
The representation was selected having in mind that the crossover operator effectiveness is highly

correlated with the representation’s quality. Our representation has the characteristic of preserving
high performing partial arrangements (schemata, see [62]). This is because we decided to group
the information about one specific cluster into a sequentialpart of the chromosome. The crossover
operator will select two random points in a chromosome and exchange with the chromosome coming
from the other parent. Using such kind of crossover, the locality of the chromosome is preserved
with high probability, i.e., in our case, very good clusterswill form the so calledbuilding blocks
with fitness above the average, increasing their presence inthe population. The concept ofbulding
blockswas introduced by Goldberg (see [54]) and can be defined as “highly fit, short-defining-length



6.2. REFERENCE METHODS FOR THE MINIMUM INTRACOMMUNICATION-COSTCLUSTERING169

Figure 6.6: Example of the possible genotypes that maps to a given phenotype.

schemata” that “are propagated generation to generation bygiving exponentially increasing samples
to the observed best”. In [108], the building block is described as a solution to a sub-problem that can
be expressed as a schema.

Returning to our problem, clusters with high fitness, just with few wrong-selected members are
exactly such kind of sub-problem solution and are increasing their presence in the population as de-
scribed in the Goldberg work.

6.2.5 Crossover Operator

The crossover operator is responsible for recombining the selected highly fit individuals, creating new
offspring. The operator is critical to the success of the GA.It is responsible for the exploration of new
parts of the solution space and, at the same time, to guarantee the exploitation of the existing highly
fit sub-solutions.

Because we use a representation that is near the problem and the standard operators cannot be
used on it, we decide to use a modified version of the swap path crossover method presented in the
work [3]. It was developed originally to the quadratic assignment problem (QAP), being suitable to
other problems with chromosomes represented by permutations.

Our clustering problem has some similarities with the QAP. This happens if we consider thek
nodes as possible placement points (sites) and we have alsok facilities to be located in those points. If

we considern=
⌊
|v|
q

⌋

the number of desired clusters, we can createn groups of facilities, with unitary

communication between all elements of them. The distance between the sites (nodes) are measured
using our link metric.

If we find a solution to this QAP problem, we will find a good solution to our clustering problem.
Nevertheless, some constraints of theminimum intracommunication-cost clusteringare not present in
this instance of the QAP. We use it to illustrate how the crossover operator developed for the QAP can
present good results to our clustering problem. As already said, instead of using a standard, problem-
independent crossover operator, we are using the swap path crossover that has been developed to
problems where the chromosomes represent permutations.

We will now describe the swap path crossover. LetI1 andI2 denote two individuals representing
two selected solutions with a high fitness. The crossover operator produces two children from those
parents, we will denote themI3 andI4.

The first step of the swap crossover is two select two chromosome positions,pstart andpend. This
part of the chromosome will be analyzed by the crossover operation in a cyclic fashion, from left to
right. The first child,I3, is generated based on the chromosome of the parentI1, while I4 is based
on the parentI2. Let’s analyze the construction ofI3. As already said, it is based on the parentI1,



170 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.7: Example of the crossover operation, forq= 3 and nodes with unitary amount of resource.

and the alleles fromI2 inside the intervalpstart and pend will be copied toI3. At the same time, the
copies will cause swapping operations. Each position (allele) is analyzed. If the two alleles at the
inspected position are the same, we move to the next position. Otherwise, the allele fromI3 will be
swapped with another allele in the same chromosome that is identical with the inspected allele in the
other parent (I2). For generatingI4, the same mechanism is used (invertingI1 andI2). To clarify the
presented concept, Figure 6.7 shows an example.

In the figure, we can see that some child may be exactly like theparent, although in a problem
instance with bigger networks this is rare. Inserting nodes1 and 4 in the first cluster, coming fromI1
in I2 does not generate any change, i.e., the generated child is identical to one parent (I2).

We can highlight an important characteristic of our geneticalgorithm. We are allowing invalid
clusters to be present in the population. For example, we have in the figure clusters where the con-
nectivity propriety does not hold. Such invalid solutions are penalized by the fitness function and we
will discuss this issue later on. The crossover operator maygenerate, from valid solutions, invalid
ones and conversely. The results show, as expected, that thenumber of valid solutions increase in the
population at each new generation.

6.2.6 Mutation Operator

The mutation operator is important to bring diversity in theactual population. It enables the optimiza-
tion process to escape from local optima with respect to the crossover operation [65]. This is achieved
by the introduction of random variation in the population.

In our program, we are transversing all alleles of a chromosome and testing whether they should
be mutated. If the mutating test returns positive, a new random node is selected to substitute the actual
node (allele). Similarly to the crossover, the swap operation is done in the mutating allele in order to
keep the integrity of the chromosome.

In Figure 6.8, an example of our mutation operator is shown. In the example, each allele was se-
quentially tested whether it should mutate (given a mutation probability). When selected for mutation,
the allele is exchanged with a random selected node using theswap operation.



6.2. REFERENCE METHODS FOR THE MINIMUM INTRACOMMUNICATION-COSTCLUSTERING171

Figure 6.8: Example of the mutation operation, forq = 3 and nodes with unitary amount of resource.

6.2.7 Fitness Function

The fitness function estimates how good is a selected solution (chromosome) and it is used in the se-
lection operator in order to select the appropriate parent to apply the crossover operator. For example,
for a maximization problem the simplest way of developing a fitness function is to directly take the
cost function, i.e., for a feasible solutionα , the fitness is exactlycost(α).

It is important to remark again that we decide to allow invalid solutions in our population. But, as
we will describe in this section, we are penalizing them. At the end of the GA’s run, we ensure that
the best solution found is a valid one. The penalization of the invalid solutions helps the heuristic to
drive the population towards valid ones.

Let’s consider the clustering problem instance(G,w, r,q) (see section 5.3). Every chromosome
of the population has an equivalent cluster configurationCk = {ck1,ck2, ..ck(nk)}, wherecki) is the ith

cluster of thekth configuration. This mapping from chromosomes to configuration is straightforward
from the representation of the problem. Our fitness functionuses a modified version of the cost
function presented in the problem definition:

f itness= max_cost−costp(Ck,(G,w, r,q)) = max_cost−
nk

∑
i=1

∑
u,v∈cki

DPp,cki(u,v) (6.9)

Wheremax_cost is the highest possible cost of a solution,DPp,cki(u,v) is a modified distance
function that penalize links outside the clustercki. We will call p≥ 1 the penalization factor. The
definition of the distance is the same presented in the equation 5.2 of the section 5.3, but instead of
using the already presented link metric, the following modification is applied:

WPp,cki(u,v) =

{
w(u,v) if u,v∈ cki

w(u,v) · p otherwise
(6.10)

With this modification, when the cost of a given cluster is being evaluated, all links external to the
cluster are penalized. In order to better clarify, considerthe example of Figure 6.9. In the example,
the genotype describes the cluster configuration presentedin the phenotype. The fitness function is
composed by the cost of each of the two clusters. Like described in the figure, when calculating
the cost of one cluster, all links not belonging to this cluster are penalized by thep factor. When a
valid solution is presented, just links inside the cluster are used and no penalization takes place. The



172 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.9: Example of the fitness function.p≥ 1 describes the penalization factor for links external
to the cluster being analyzed.

first cluster of the figure is valid and the cost is not penalized. The second infringes the connectivity
constraint and has an increased cost.

The constantmax_cost is calculated using the complete graph as a cluster but also applying the
penalization factor to all links.

With this fitness function, the population is driven toward valid solutions.

6.2.8 Selection Operator

The selection is responsible for choosing two appropriate parents to apply the crossover operator.
There are several types of selection methods, e.g. roulettewheel selection, tournament selection, etc.
The individuals selected by the operator are those whose genes are inherited by the next generation.
Therefore, it is important to select highly fit individuals in order to increase the selection pressure
in the direction of good (optimal) solutions. The selectionpressure drives the GA to improve the
population fitness over succeeding generations [95].

The adjustment of selection pressure represents a trade-off: when the pressure is too low, the
convergence rate is slow, taking unnecessary long time to find a good (optimal) solution. On the other
hand, applying a too high pressure increases the chance of converging to an incorrect (sub-optimal)
solution.

Because of its efficiency and flexibility, we decided to use inour work the tournament selection
operator. The flexibility arises from the fact that adjusting the tournament size automatically changes
the selection pressure. Another advantage of the tournament selection is its independence with regard
to the absolute values of the fitness function - for the tournament selection, just a totally ordered set
of the current population is important, and this is obtainedeasily using the described fitness function.

In the tournament selection,scompetitors are randomly selected from the current population. s is
the tournament size. The winner is the individual with the highest fitness among the competitors. This
procedure is repeated in order to select all parents that will be matched by the crossover operation.



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 173

The average fitness calculated over the selected individuals is normally higher than the fitness of the
entire population.

Increasing the size ofs also increases the selection pressure, because the winner from a larger
group has, on average, higher fitness than the winner of a smaller tournament [95].

6.2.9 GA Behavior

We test ourGA in order to confirm its convergence and capability of escaping of local optimum.
For the test, we use randomly generated instances of the clustering problem with 13 nodes randomly
uniformly distributed in a 25m× 25m wide area. This scenario is explained in details in the next
section and it is calledsmall-sparse (see Table 6.1).

For each instance, the a integer linear program was solved inorder to find the optimal solution.
For that, we use thelp solve suite.

The following parameters were analyzed in the simulations:

Selection Pressure:We use three different tournament sizes for the purpose of experimenting with
different selection pressures.

Number of individuals: A trade-off between time complexity and the probability of finding a very
good solution is represented by the population size. A smallpopulation size increases the
chance of converging to a local optimum whose fitness is far from the global optimum. A large
population size increase the computational power necessary to execute the GA.

Mutation rate: A large mutation rate increases the diversity of the population. Nevertheless, a too
large mutation rate may destroy very good schemata, hindering the heuristic’s convergence.

Figures 6.10 and 6.11 depict the results of our experiments.The first figure presents the average
cost of all individuals of the population whereas in the second one the best cost is picket up.

For all used parameters, the meta-heuristic has shown a verygood and fast convergence. As
expected, a higher selection pressure brought faster convergence. However, fors= 3, the best cost
was achieved. It took a slightly larger time to converge, butit could better avoid local optimum.

The mutation rate had a similar impact on the convergence. A higher mutation rate (in our exper-
iment, 0.01 instead 0.005 used in the other cases) brought a faster convergence. The same configura-
tion with lower mutation at the end of 100 generations has almost the same fitness, but with slower
convergence.

Increasing the number of individuals has resulted in higherconvergence and very good final solu-
tion. But it increases the computation cost.

We conclude with our experiments that the reduction of the selection pressure up to acceptable
level has presented the better final solution. Nevertheless, as it can be seen in the figures, the vari-
ation of the different runs are not very high and good solutions could be found in every run. This
demonstrates the robustness and appropriateness of the design of our genetic algorithm.

6.3 “Quasi-Static” Clustering Heuristic Simulation

6.3.1 Assumptions

For our simulation, the following assumptions are used:

• Each node has a transmitter with fixed power. Therefore, the maximal reachability is fixed.



174 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.10: Average performance of the GA for different parameters. The normalized mean of the
cost over all individuals is used in this diagram.

Figure 6.11: Average performance of the GA for different parameters. The best normalized cost over
all individuals are presented.



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 175

• Links are bidirectional. In reality, this can be achieved just by ignoring unidirectional links.

• The Friis Free Space propagation model for isotropic point source in an ideal propagation
medium is used to calculate the received signal strength indication (RSSI).

• Every node has one unit of energy.

• Every node has also one unit of resource.

• The weights of the equation parameters (clusterhead and member selection) were experimen-
tally selected.

• We useα = 0 (see eq. 5.1, Section 5.3).

6.3.2 Simulation Scenarios

Simulation scenarios are intended to mimic the real-word conditions as much as the simulation allows.
In the same way, the network topology of the simulation scenarios should resemble real-work topolo-
gies. Unfortunately, the deployment topology is normally not known. For our simulation scenarios,
we decided to use randomly deployed nodes. The deployment isuniform. Such kind of deployment
can be statistically analyzed and the several characteristics inferred. In this section, we will present
our concrete simulation scenario and also infer some characteristics of these scenarios.

In order to evaluate our “quasi-static” clustering heuristic, we decided to use two different groups
of scenarios, each one with its own problem size. In the first group, we have a square field of 25m×
25m where 13 nodes are randomly deployed with independent uniform probability. Here the desired
cluster size isq = 3. The second group of scenarios has a square field size of 100m×100m with 120
nodes. The selected cluster size for the large scenarios was10. Each node in our simulations has a
unity of resource, thereforeq = mmeans that each cluster must have at leastmnodes.

The small size scenarios were selected in order to enable thecalculation of the optimal solution
using linear integer programming (see Section 6.2.1). Withthe optimal solution, we can measure how
good our heuristic is performing. In the large scenarios, weare using the described genetic algorithm
to perform the assessment.

In each scenario inside one group, we select different radioranges in order to vary the node
density (measured by the degree of the node). An overview of the selected scenarios with small and
large number of nodes are shown in Table 6.1.



176
C

H
A

P
T

E
R

6.
S

IM
U

LAT
IO

N
A

N
D

R
E

S
U

LT
S

Scenario Name Field Size
(m2)

Number
of
Nodes

Cluster
size (q)

Radio
Range

Connection
Probability

Node
density

Average
Degree
(Theo-
retic)

Average
Degree
(Measured)

Small Scenarios
small-sparse 25x25 13 3 10 0.98 0.02 6.5 5.06
small-dense 25x25 13 3 17 ∼ 1 0.02 18.89 10.4

Large Scenarios
large-sparse 100x100 120 10 15.24 0.98 0.012 8.76 8.59
large-medium 100x100 120 10 19.45 0.999 0.012 14.26 12.74
large-dense 100x100 120 10 23.66 ∼ 1 0.012 21.1 17.98
large-very-dense 100x100 120 10 27.87 ∼ 1 0.012 29.28 23.48

Table 6.1: Overview of the different simulation scenarios.



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 177

For the tests, it is important to have a connected graph, i.e., there exist a multi-hop path between
any pair of nodes in the formed graph. The connection probability was the parameter used to select
the test scenarios. In order to calculate the connection probability, two parameters are important. The
first one is thenode density. In an uniform random distribution with large number of nodes n, we can
define a node densityρ = n

A whereA is the deployment area. The second important parameter is the
radio range. As we are using omnidirectional antennas with free space attenuation model, it is possible
to calculate theradio rangebased on the transmitted power (P0) and the sensibility of the receiver.
The received power followsP(r) ∝ r−γP0 wherer is the distance to the transmitter andγ is the path
loss exponent, which depends on the environment. The transmission range can be mapped to the
equivalent transmission power using a threshold for the receiver sensitivity [15]. For our simulation,
the node density and the transmission range are shown in Table 6.1.

The connection probability of the resulting graph can be calculated by [15]:

P(dmin > 0) =
(

1−e−ρπr2
)n

(6.11)

for a homogeneous Poisson point process in two dimensions (the kind of graph formed by this
process is called geometrical random graph).P(dmin > 0) is the probability that the minimum degree
of the network is higher than zero.ρ is the node density,r is the radio range andn is the number of
nodes. The minimum degree of a networkdmin is the degree of the node with the smallest degree of
the complete graph.

It is important to remark that the equation 6.11 calculates the probability that no node will be iso-
lated. The fact that there isn’t any isolated node does not mean that the graph is connected. Therefore,
dmin > 0 is a necessary condition for the graph to be connected, but it is not sufficient. Nevertheless,
Penrose [99] has proved that for largen, the geometric random graph becomes connected at the mo-
ment that it achieves a minimum degreedmin > 0. This is valid for any graph generated in an euclidean
plane with dimension higher than one.

The probability of being connected changes very fast from 0 to 1 as the range of the radio in-
creases. This is called “phase transition” phenomenon in the random graph theory.

In Figure 6.12, the connectivity probability for a 25m×25m field is presented. The x axis repre-
sents the number of nodes and the z axis the radio range. For the small field, we select two radio ranges
based on the connectivity probability. The first is slightlycrossing the border from disconnected to
connected network (10m range, 13 nodes). For the second, we decide to select a higher range where
the connectivity probability is converging to one (17m range, 13 nodes). These two scenarios are
highlighted in the figure.

Based on the Poisson distribution, we can calculate the average degree of a node in the network
by davg = ρ · πr2, i.e., the average amount of nodes located in the radio area of a single node. For
example, for the scenariossmall-sparse andsmall-dense presented in Table 6.1, Figure 6.13 presents
the probability mass function for the degree of a node. It is important to say that those numbers are
expected whenn≫ 1 and very large areas are used (or when the toroidal distancemetric is used).
The so calledborder effectexplains the difference between the theoretic average nodedegree and the
measured one. Nodes near the border may only have links towards the middle of the areal. Their node
degree is, on average, lower than that of nodes in the middle.Therefore, the theoretical value ofr is a
lower bound for the range that is required in the simulation environment. The effect gets even worse
when the relation between size of the field and radio range decreases, that is the reason for bigger
errors in the experiments with larger ranges.

In the large scenarios, an analogous methodology was used tocalculate their connectivity prob-
ability and average degree. Thelarge-sparse scenario has the same connection probability of the



178 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.12: Connectivity probability for a 25m×25mfield.

Figure 6.13: Theoretical probability mass function of the number of neighbors of a node for the small
scenarios.



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 179

small-sparse. In the same way, thesmall-dense has the same probability of thelarge-dense. Two
additional scenarios were included in this group (large-medium andlarge-very-dense).

6.3.3 Algorithms under Evaluation

We evaluate the described scenario using different algorithms. For the small scenarios, the optimum
solution was calculated using the linear integer programming formulation presented in the section
6.2.1. For the small and big scenarios, the GA, our emergent clustering heuristic and an additional
standard heuristic were simulated.

There is no other heuristic that is able to solve the clustering problem formulated in this thesis.
Therefore, we had to adapt an existing one to do this task. We select the well-known expanding ring
heuristic and adapt it.

In the original expanding ring heuristic, the clusterhead request for members in rounds. The first
round collects members one hop away, the second two, and so successively until the cluster achieve
q elements. In the original heuristic, this bound should not be overcome, in our heuristic it must
be achieved and may be overcome. Moreover, instead of using just completely random clusterhead
selection as in the original heuristic, we decide to introduce our clusterhead selection based in the
division of labor in social insects in the expanding ring heuristic.

An additional important comment is that, in the results, we refer to our clustering heuristic as
emergent clustering.

6.3.4 Results

We realize 40 experiments for each scenario presented in thetable 6.1. The results presented further
in this section are based on these experiments.

6.3.4.1 Clustering Optimal Cost

We will start analyzing how the node density influence the clustering cost for the reference solutions.
As already said, the reference solutions are: optimal for small scenarios and GA for the large ones.
The Figure 6.14(a) presents the optimal cost for the clustering problems of the small scenarios. As we
can see, the sparse scenario has, in average, a much higher cost than the dense scenarios. This can be
attributed to the fact than with larger radio ranges, each node has a larger number of well connected
neighbors (with small link metric). The clustering possibilities are also much greater, which brings a
substantial reduction of the cost when compared to sparse scenarios. Furthermore, the average link
metric in the dense scenarios is smaller, fact that contributes to a smaller clustering cost.

Due to the lack of links between the nodes in the sparse scenario, a special situation that leads to
large optimum costs for the these instances is depicted in the Figure 6.15. The three adjacent nodes
with very good link metric must be split among two clusters, because the lack of links between the
nodes in the extreme left and right sides. This poses also a challenge to our emergent clustering
heuristic, as described later in this chapter.

The result for large scenarios is consistent with our argumentation for small ones. They are shown
in the Figure 6.14(b). It is important to remark that the results here were not the optimal ones, but
an approximation made using the described GA. As we have shown in the section 6.2.9 and will
emphasize in the next one, our genetic algorithm has been correctly designed and is able to return
very good solutions. Therefore, we can conclude that the described intrinsic characteristic of the
minimum intracommunication-cost clusteringis also found in scenarios with large number of nodes.



180 CHAPTER 6. SIMULATION AND RESULTS

(a) Optimal cost (small-sparse, small-dense). (b) GA cost (large-sparse, large-medium, large-dense,
large-very-dense).

Figure 6.14: The cost of theminimum intracommunication-cost clusteringfor different node densities.
For large scenarios, a genetic algorithm approximation is used.

Figure 6.15: Example of scenario with increased cost for sparse networks (q = 3).



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 181

Nevertheless, the difference between the clustering costsof different densities becomes smaller
when dense scenarios are analyzed. For example, the cost difference betweenlarge-sparse andlarge-

medium scenarios is much higher than betweenlarge-dense and large-very-dense. This can be ex-
plained by a saturation of good neighbors: with a fixedq (10) used in the experiments, after some
density, there are always enough good-quality neighbors that bring a small clustering cost.

6.3.4.2 Experiment Results

In this section, we present the outcome of our 40 experimentsand make a first analyze. In Figure
6.16, selected results are depicted. The executions of the GA, Emergent Clustering and Modified
Expanding Ring are normalized against the optimal cost in the small scenarios. In the large scenarios,
the results are normalized against the genetic algorithm.

We will start analyzing the small scenarios. Figure 6.16(a)shows the results for thesmall-sparse

scenario whereas Figure 6.16(b) shows thesmall-dense. For both scenarios, the GA could find, in
many cases, the optimal solution. In most cases, the GA couldfind better solutions than the other two
heuristics.

Nevertheless, in thesmall-sparse, the GA was overcome by our Emergent Clustering and the
Modified Expanding Ring in some experiments. In general, thesparse scenario has less possibilities
and the costs may change suddenly with very small modifications in the clusters. This affects the
behavior of the GA in a negative way, because an easy hill climbing is not aways possible.

Although in thesmall-sparse scenario our heuristic had in average a better performance than the
modified expanding ring in some experiments, the emergent clustering was defeated by the expanding
ring. In thesmall-large, this was not the case in the majority of the experiments. Such behavior can
be explained again by the degree of freedom in both node densities: sparse topologies do not leave
a large choice range for different membership after the clusterhead has been elected. Therefore, the
careful selection of members realized by the Emergent Clustering is restricted and the advantage of
other clustering algorithms like the expanding ring is reduced. This increases the role of the initial
selection of the clusterheads in the overall result of the heuristic. And the modified expanding ring
uses the same method to select the clusterheads as the emergent clustering. Nevertheless, even with
those restrictions, our heuristic in average beats the modified expanding ring. Average and standard
deviation analysis are presented later on.

Our heuristic has relatively better performance (in comparison to the modified expanding ring)
in the small-dense scenario. Here our membership selection mechanism could select suitable and
well-connected members among the several available neighbors.

We encountered very similar results in the large scenarios,depicted in Figures 6.16(c) and 6.16(d).
In the sparse scenario, the modified expanding ring could finda better solution for some test cases.
The reason is the same as for thesmall-sparse scenario. In fact, the results of thesmall-sparse and
large-sparse were very similar.

In the dense scenario, our emergent clustering algorithm beats the expanding ring in almost all
cases. However, the difference of performance is less than in the sparse scenario. A reason for that
will be presented later.

6.3.4.3 Heuristic’s Clustering Costs

In this subsection, the average of the achieved costs of eachheuristic for all scenarios will be pre-
sented. Figure 6.17 presents the achieved costs for all scenarios of Table 6.1. A confidence interval



182 CHAPTER 6. SIMULATION AND RESULTS

(a) small-sparse (b) small-dense

(c) large-sparse (d) large-dense

Figure 6.16: Normalized results of selected experiments.



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 183

of 95% is also presented. For the confidence interval, we suppose that our runs areX1, ...,X40 inde-
pendent samples from a normally distributed population with meanµ and varianceσ2. Further in
this work, the probability density function of the samples will be presented in order to confirm our
assumption of a normal distribution.

(a) Emergent Clustering, small (b) Modified Expanding Ring, small

(c) Emergent Clustering, large (d) Modified Expanding Ring, large

Figure 6.17: Clustering costs for the different heuristicswith small and large problem size.

As we had 40 samples, we assume that the sample mean has a a Student’s t distribution with 39

degrees of freedom. By standardizing we get a random variable T = X−µ
S/
√

n, with X = ∑40
i=1(Xi −X)2

andS2 = 1
n−1 ∑40

i=1(Xi −X)2. With these assumptions, the confidence interval was calculated. As it
can be seen in Figure 6.17, with increased density, the confidence interval is also reduced, because
the variance of the samples is also smaller. The standard deviation of the samples will be presented in
Section 6.3.4.4.

In the same way as the optimal solution, both algorithms (Emergent Clustering and Modified
Expanding Ring) deliver a better cost, in average, for denser networks. This could be verified in both
small and large scenarios. Moreover, the Emergent Clustering showed a better performance than the
Modified Expanding Ring in all simulated scenarios. Figure 6.18 presents a comparison of the costs



184 CHAPTER 6. SIMULATION AND RESULTS

(a) Small Scenarios (b) Large Scenarios

Figure 6.18: Overview of the costs for the optimum, GA, Emergent Clustering and Modified Expand-
ing Ring solutions for all scenarios.

for the different algorithms. For the small scenarios, the mean cost of the GA, Emergent Clustering,
Modified Expanding Ring and optimum are presented (Fig. 6.18(a)). Because the optimal result for
the large scenarios is not known, Figure 6.18(b) does not present it.

As it can be seen in Figure 6.18(a), the optimum and GA averagecosts are very close by, fact that
allows us to use the GA for comparisons in the large scenarios. The difference of costs for those two
approaches are slighter higher in the sparse network. The explanation for this is that small differences
may bring very big cost changes in sparse environments, which affect the performance of the GA.

In the same way, the performance of our emergent clustering is affected by the lack of neighboring
options in the sparse scenarios. Therefore, its performance has an improvement in comparison with
the Modified Expanding Ring for dense scenarios. Nevertheless, this is much more visible in the
small scenarios. In the large scenarios, our heuristic has still a better performance than the expanding
ring, however, there is no effective improvement in comparison to the expanding ring in the dense
scenarios. We will describe a possible reason for this below.

At this point we need to highlight again that the cost of the clustering reduces with the network
density, but not linearly for all approaches. The reasons for that were already discussed in Section
6.3.4.1.

The Figure 6.19 presents the same achieved costs, but normalized against the reference solution.
The average cost of our emergent clustering heuristic neverovercomes 1.44 times the reference solu-
tion (optimal for small and GA for large), for all experimented scenarios. Moreover, the variation of
the relative cost over different densities was not very high. There is a small tendency of increasing the
relative cost with larger densities. This can be explained by the fact that dense networks present much
more possibilities for the cluster construction, which areexplored by the linear integer programming
and GA, and, due the small computational cost requirement ofour distributed heuristic, cannot be
explored. In sparse scenarios, the solution space is smaller.

The modified expanding ring, for small scenarios, presents amuch higher difference of perfor-
mance when sparse and dense scenarios are compared. The factthat it does not rank appropriately
the links when selecting the members makes it slightly improper for small and dense scenarios. This
is especially important in the last round, and, in the dense scenarios, sometimes just one round is



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 185

(a) Emergent Clustering, small (b) Modified Expanding Ring, large

(c) Emergent Clustering, large (d) Modified Expanding Ring, large

Figure 6.19: Normalized clustering costs for the differentheuristics with small and large problem
size.



186 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.20: Example of situation where the selection of thebest members by the clusterhead yields
a bad global clustering solution (q = 4).

necessary to select all nodes, which makes this effect bigger. In sparse scenarios, there are fewer
possibilities for membership selection in each round, which reduces the penalty of not ranking the
candidates. Moreover, the effect of the last round is also smaller in small and sparse scenarios. One
possible explanation for the relatively good performance of the expanding ring in large and dense
scenarios is the fact that, without selecting the best candidates, some “bridge nodes” are left and can
be used by other isolated nodes in order to form clusters. In our heuristic, those isolate nodes would
not form any new cluster and will be integrated in the next cluster at the end of the heuristic.

Figure 6.20 exemplifies this situation. In (a), the clusterhead (node 1) selects the best possible
members (using its local information). Nevertheless, now nodes 2, 6, 7 and 8 are isolated (there is
no direct path that links node 2 with the others). Hence, theycannot build another cluster. They will
be integrated in the same cluster by the enforce phase of the clustering heuristic at the end of the
execution. In (b), the clusterhead in the expanding ring algorithm selects the new members of the
cluster without differentiating them. Therefore, some path is left that connects the other four nodes.
Now it is possible to form another cluster from nodes 3, 5, 7 and 8.

If we check the number of clusters generated by our heuristicand by the modified expanding ring
(Section 6.3.4.6), this expectation is confirmed. The expanding ring, in average, is able to build more
clusters than our heuristic in the big dense scenarios. For the small scenarios, due to the small cluster
size, this effect is not such important. Nevertheless, evenbeing able to construct more clusters than
our heuristic, the global cost of the expanding ring is larger than the cost of our emergent clustering
heuristic. This means that the clusters in the modified expanding ring are of very poor quality.

An additional point that must be highlighted is that not onlythe cluster cost is increased by the
modified expanding ring. Due to the larger number of clusterswhere members of different clusters
are geographically mixed (“blend effect”), a cluster-widecoordination of the MAC protocol in order
to avoid interference of transmissions is hindered. Such cross layer optimizations are more difficult.

In order to illustrate the “blend effect”, the output of an execution of our heuristic and the expand-
ing ring is shown in Figure 6.21. In this figure, just the best links among nodes inside one cluster are
shown. Links among different clusters are hidden. We can seevery clearly in this figure that the blend
effect is much stronger in the clusters found by the modified expanding ring. In sparse scenarios, this
is not so important.

Finally, in Figure 6.22, we summarize the normalized costs for all scenarios. Again, the effects
discussed in this section can be easily observed. An additional important remark is that in the emergent
clustering, in dense scenarios, the last cluster has the tendency of being very costly because all good
links have been already used by faster clusters. This increases the global cost a little bit.



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 187

(a) Emergent Clustering (b) Modified Expanding Ring

Figure 6.21: Example of cluster solution found by the Emergent Clustering and the Modified Expand-
ing Ring.

(a) Small Scenarios (b) Large Scenarios

Figure 6.22: Overview of the normalized costs from the GA, Emergent Clustering and Modified
Expanding Ring for all scenarios.



188 CHAPTER 6. SIMULATION AND RESULTS

(a) Standart Deviation, small (b) Standart Deviation of Normalized Results, small

(c) Standart Deviation, large (d) Standart Deviation of Normalized Results, large

Figure 6.23: Standard deviation for the different heuristics with small and large problem size.

6.3.4.4 Statistical Dispersion

In this section, we will present and analyse the estimated standard deviation (s) of the outcomes of
our experiments. In real sensor network deployment, if our result has a small statistical dispersion,
we could better anticipate the performance of the clustering algorithm. With the statistical dispersion
we can estimate how far from the average the result of a real deployment can be.

Figure 6.23 presents an overview of the estimated standard deviation from the mean of the absolute
and the normalized results. In Figures 6.23(a) and 6.23(c) we can notice that the intrinsic standard
deviation of the problem instances reduces with increasingdensity of nodes (looking at the optimal
and GA results). This is an expected result, due to the fact that the means also reduces. Moreover,
the Emerging Clustering and the Modified Expanding Ring demonstrate the same tendency of the
reference solution. In the small scenarios (Figure 6.23(a)), it is possible to see that the deviation of
the optimum solution and of the genetic algorithm are almostthe same, which again increases our
confidence of a very good GA design.

Figures 6.23(b) and 6.23(d) present the statistical dispersion when the results were normalized



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 189

against the reference solution. We can see that the emergentclustering yields, in average, a smaller
standard deviation than the expanding ring for the majorityof cases. It is interesting to notice that,
for large networks, a higher difference among sparse and dense scenarios has been encountered. This
can be also visualized in Figure 6.16. We conclude from this result that networks with large number
of very connected nodes present a larger number of possibilities for member selection, sometimes
with redundancy (several nodes with similar quality or several paths to catch the same node by the
clusterhead). This brings more homogeneous results, with aconstant divergence from the optimal
solution. Opposite to that, in sparse networks the quality of the result was very connected with the
position of the clusterhead, because it does not have a largepool of nodes for membership selection.
Therefore, for experiments where the clusterheads occasionally emerge in a not so optimal position,
the resulting cost has a large distance to the optimal. In other experiments, where the clusterheads are,
by random factor, better located, the cost is nearer to the optimal. In dense scenarios, an unfavorably
positioned clusterhead has the chance of building a good cluster due to the presence of plenty of links
and nodes.

The modified expanding ring has overcome the emergent clustering in the large-dense scenario.
We presume that this has been partially caused by the “bridge” nodes presented in the previous sec-
tion. Moreover, being indifferent to the fitness of a member candidate, the modified expanding ring
produces much of the same kind of cluster over the areal. Thisis different from building very good
clusters at the beginning and not so good at the end of the execution, as our approach. Therefore, a
higher regularity can be expected from the modified expanding ring, and this reduces the variance of
the normalized cost.

Summarizing, we conclude that for dense networks our algorithm presents a significantly lower
standard deviation of the normalized results than for sparse networks. Moreover, the expanding ring
and our emergent clustering have shown very low and similar standard deviations.

6.3.4.5 Distribution of Results

In this section, we will present the tabulated frequencies encountered in our experiments. The his-
tograms presented here represent density estimations. In each histogram, the theoretic normal curve
is also presented. It is calculated using the estimated parameters (estimated meanx and standard
deviations2)

We present here two hypotheses to be checked by our frequencyhistograms. We argue that:

1. The optimal solution of theminimum intracommunication-cost clusteringfor experiments re-
alized with constant parameters and different, randomly generated geometric random graphs as
network topology follows a normal distribution.

2. When normalized against the reference solution, our Emergent Clustering and the Expanding
Ring solution costs also follows a normal distribution.

The total cost of an instance of theminimum intracommunication-cost clusteringis composed
of the sum of the individual clusters’ cost. We can consider the cost of each cluster as a random
variable that shares the same probability distribution (because one part of the geometric random graph
is similar to other parts and in its complete area). The problem cost is given by the sum of those
random variables, which means that, when we approach an infinite number of clusters, the distribution
of the cost over several instances of the problem will converge towards a normal distribution. If the
cost of each single cluster has expected valueµ as well as standard deviationσ , and we haven
clusters in the optimal solution, our population of experiments should approach a normal distribution
N(nµ ,nσ) whenn goes to∞.



190 CHAPTER 6. SIMULATION AND RESULTS

(a) Optimum,small-sparse (b) Optimum,small-dense (c) GA, large-sparse

(d) GA, large-medium (e) GA, large-dense (f) GA, large-very-dense

Figure 6.24: Density estimation for the optimal (GA) solutions of instances of theminimum
intracommunication-cost clusteringwith geometric random graphs as input.

Figure 6.24 shows the resulting density histogram for our reference solutions with the theoretical
normal curve. As we can see, the optimum solutions (Figure 6.24(a) and 6.24(b)) agree very well with
the theoretically calculated normal curve, increasing ourconfidence in our first hypothesis. For the
large networks, a similar result has been found, although some outrunners in the frequency distribution
could be verified (Figures 6.24(c) to 6.24(f)). We guess thatthey could be some artifact introduced by
the genetic algorithm. Moreover, for large networks, a larger number of samples may be necessary to
improve the normal approximation.

At this point we need to concentrate on the results of the emergent clustering and modified ex-
panding ring heuristics. Figure 6.25 shows the distribution of the normalized results for all experi-
ment scenarios. The fact that the results approximate a normal distribution can be seen very clearly
in the large scenarios (Figure 6.25(c) to 6.25(f)). In the small ones, we suppose that the outrunners
are caused by the fact that there are fewer problems with overlapping, competing clusters than in
large ones, bringing a slightly higher frequency in good (small cost) results. The lack of nodes re-
duces sometimes the possibility for even more reduced cost,which brings a small dis-balance in the
frequencies encountered in the experiments (Figures 6.25(a) and 6.25(b)). Nevertheless, all results
resemble, with exception of a small number of outrunners, the normal curve.

For the modified expanding ring heuristic, similar results have been found. They are showed in
Figure 6.26. It is important to remark that the confidence interval presented in earlier sections was
based on the assumption of this section, i.e., our results converge to a normal distribution. This has
been shown here.

We will now analyze the cumulative histogram of our experiments to see how much of our out-
comes have lower cost. Figure 6.27 presents the cumulative density for the large scenarios. The
normalized results are used here. In the Figure 6.27(a), theresults for the emergent clustering are
depicted, and in Figure 6.27(b) the results of the modified expanding ring. For both heuristics, the



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 191

(a) Emergent Clustering, small-
sparse

(b) Emergent Clustering, small-
dense

(c) Emergent Clustering, large-
sparse

(d) Emergent Clustering, large-
medium

(e) Emergent Clustering, large-
dense

(f) Emergent Clustering,large-very-
dense

Figure 6.25: Density estimation for the emergent clustering solutions of instances of theminumum-
intracommunication clusteringnormalized against the reference solutions.

(a) Modified Expanding Ring,small-
sparse

(b) Modified Expanding Ring,
small-dense

(c) Modified Expanding Ring,large-
sparse

(d) Modified Expanding Ring,large-
medium

(e) Modified Expanding Ring,large-
dense

(f) Modified Expanding Ring,large-
very-dense

Figure 6.26: Density estimation for the modified expanding ring solutions of instances of the
minumum-intracommunication clusteringnormalized against the reference solutions.



192 CHAPTER 6. SIMULATION AND RESULTS

(a) Emergent Clustering, large (b) Modified Expanding Ring, large

Figure 6.27: Cumulative histogram of normalized results for large scenarios.

slope of the cumulative histogram increases with the density of nodes of the scenario. An exception
can be noticed for thelarge-dense andlarge-very-dense scenarios, where similar slopes are found.

The emergent clustering presents the majority of the results (90%) below 1.8 times the reference,
for any node density. Moreover, for medium and dense networks, the result is even better. For the
expanding ring, 90% of the results were below 2.1 times the reference solution. Although the average
normalized cost of the sparse scenarios was smaller than fordense scenarios, the smaller variance of
the latter one constraints the results in a narrower range. This brings about that, when we analyze
the majority of cases (90%) for the dense (and very dense) scenarios, they are below 1.63 times the
optimal solution, while for the sparse scenarios they are below 1.8 times the optimal solution.

From the exposed diagrams, we can conclude that our emergentclustering presents, for any den-
sity, a better cumulative histogram than the modified expanding ring. This means for a given cost limit
(e.g. 1.8 times the optimal), more outcomes of the emergent clustering lies below the limit than the
modified expanding ring. Moreover, almost all results of theemergent clustering were relatively near
the reference solution. This was achieved using a distributed heuristic without global information and
very low computational cost.

6.3.4.6 Number of Clusters

In this subsection, we analyze the number of clusters formedin the simulated heuristics for large
scenarios. Figure 6.28 presents the achieved results. The confidence interval is also presented.

For both heuristics, the number of clusters increases with the node density. This can be explained
by the fact that sparse scenarios present less connection possibilities than big ones. The situation
presented in Figure 6.15, which brings a higher optimal solution cost, acts also in both heuristics, but
here it reduces the number of clusters and increases the cost. As the figure shows, when nodes 1, 2 and
3 are included in a three-nodes cluster (supposeq = 3), the other nodes cannot build an autonomous
cluster. In the optimal solution, this would not happen, because the whole network would build a big
cluster. A one-cluster solution is more expensive than a two-clusters one (when nodes 4, 1, 2 form
one cluster whereas the rest forms another one). Nevertheless, our clusterhead selection method has
a greedy nature as well as the selection of members. This means that, with high probability, nodes 1,



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 193

(a) Emergent Clustering, large (b) Modified Expanding Ring, large

Figure 6.28: Number of clusters achieved for different nodedensities.

2 and 3 would form one cluster, and, at end of the heuristic, due to the fact that the remaining nodes
cannot form another cluster, they will be included in this one, yielding a high cost solution with less
number of clusters than desirable.

This effect has a higher probability to appear in sparse networks than in dense ones. “Islands”
consisting of nodes that are not able to form a cluster must beincluded in some existing one, which
leads to a smaller number of clusters in sparse networks, which results in increasing total costs. Both
algorithm are susceptible in the sparse scenario. Due to thesuperior membership selection of the
emergent clustering, it has a superior performance with respect to the number of clusters in such
scenarios.

It is important to state here that a higher number of clustersis a desirable property and means that
the clusters are nearer the given boundq. A higher number of clusters, in several cases, brings also
a smaller cost (as defined in our optimization problem). Nevertheless, it is also possible to have a
solution with higher number of clusters and, at the same time, higher cost than another. This happens
when we compare the emergent clustering with the modified expanding ring in dense scenarios.

For dense (and very dense) experiments, both algorithms present a much better performance con-
cerning the number of clusters. Nevertheless, the modified expanding ring presents a slightly higher
average of the number of clusters. The fact that the emergentclustering selects the better neighbors to
belong to the cluster increases the chance of appearance of such “islands” even in the dense scenarios.
The modified expanding ring produces more “mixed” clusters,where nodes enclosed by members of
a given cluster may be not included in it and can serve as “bridge” between such islands, increasing
the number of successfully formed clusters. This is also illustrated in Figure 6.20.

Nevertheless, it is important to state here, that even having a higher number of clusters, due to the
bad quality of such clusters, the expanding ring incurs a higher communication cost than the emergent
clustering solution with less clusters.

6.3.4.7 Number of Messages

In this section, we will analyze the necessary number of messages to decompose the given network in
a set of clusters. We assume that the energy spent by the algorithm to construct the clusters is mainly



194 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.29: Worst case clustering scenario when considering the number of messages (q = 4).

influenced by the number of messages used.
For q≪ n, wheren is the number of nodes of the network, the worst case message complexity of

constructing a single cluster happens when all nodes receive the call for members messages at the last
round: m= O(qn), all nodes of the network will respond to that message (contributes to then in the
complexity). Moreover, the messages must be routed throughtheq−1 members of the cluster until
arriving the clusterhead (contributes to theq factor in the complexity).

Figure 6.29 shows an example of scenario where the worst casemessage complexity is verified.
The node 1 emerges as clusterhead and starts the membership selection phase. In each round, just one
new member can be achieved by the call for members message, therefore a single node is incorporated
in the cluster. When the cluster hasq−1 nodes and it starts the last call for members message (node
3, in the example), all other nodes of the network are reachedand respond to that call. Naturally, one
node of the responding ones will be integrated in the clusterand the other ones will be refused.

The necessary number of messages in the worst case is:

m= 2·
q

∑
i=1

(q− i)+2· (n−q) · (q−1) = (q2−q)+2· (n−q) · (q−1) = O(nq) (6.12)

The worst case complexity for construction one cluster withthe expanding ring isO(n), because
when receiving all messages from all nodes of the network that aren’t in the cluster in the last round,
instead of routing individually each one to the clusterhead, they are summarized in one single (large)
message. Due to the waiting time principle of our heuristic,this is not possible. Nevertheless, we
discuss in the conclusion an alternative to reduce the worstcase complexity of the emergent clustering.
The proof of the worst case message complexity of the expanding ring is: in any round in which the
cluster size is less than q, the total number of messages exchanges is polynomial in q. In the worst
case, all nodes in the network may receive messages in the last round [77]. Therefore, the worst-case
message complexity isO(n) sinceq≪ n.

Now, we will consider the results of our experiments.
Figure 6.30 presents the total number of messages used, in average, for each large scenario simu-

lation. From the results, we can see that a similar number of messages was necessary in all scenarios.
Nevertheless, the sparse scenarios needs a slightly highernumber of messages than the other ones.
This can be explained by the fact that, in the sparse scenario, the degree of the nodes is below the min-
imum cluster size. This means that for the average case it would be necessary to search for members
within more hops than for the other cases. We can see in the equation 6.12 that a quadratic component
(q2) dominates when every round has few nodes reached. In sparsescenarios, the average cluster
diameter is larger and the quadratic exponent has a higher effect on the number of messages.

This fact is confirmed by Figure 6.31. In this experiment, we test how the cluster size influences
the necessary number of messages. For the same scenario, we make 20 simulations for each selected



6.3. “QUASI-STATIC” CLUSTERING HEURISTIC SIMULATION 195

Figure 6.30: Total number of messages for
large scenarios

Figure 6.31: Number of Messages with dif-
ferent cluster sizes.

cluster size. We select a range fromq = 6 to q = 52 for minimum cluster size. We simulate the
large-sparse andlarge-dense scenarios.

As can be seen in the figure, the difference between the necessary number of messages in the
sparse scenario and in the dense one increases with increasing cluster size. This happens because
in sparse scenarios more hops are necessary to catch the members of the cluster. More hops means
more messages per included node, this means, sparse scenarios has a higher quadratic component in
the number of messages than dense ones (more hops are necessary). More density means less hops,
therefore less messages per included member are necessary.

In Figure 6.30, we can see that after achieving the minimum amount of messages in thelarge-
medium scenario, the necessary amount of messages starts to increase for more dense ones. Since
in the medium, dense and very dense scenarios the average number of neighbors is higher than the
necessary number of members in the cluster, they have similar cluster diameters. However, in the
dense scenarios, an additional effect can be observed: eachcall for members arrives at much more
nodes than necessary for the cluster formation. This, in some way, resembles the valuen in the worst-
case complexity. As the necessary number of members has beencompleted, several unnecessary
replies will be sent to the clusterhead by the nodes that havebeen requested (call_members) but are
answering later than the selected members. This again increases the number of necessary messages.

In Figures 6.32 and 6.33, the cumulative histogram and the standard histogram of a single simula-
tion run are shown, respectively. The results show that a large exchange of messages happened in the
beginning of the simulation, when several clusterheads emerged from the transition functions. More-
over, at the beginning, more nodes are free and will respond to call for members messages. Another
small peak can be found in the end of the maximum clustering time 1. This peak is relative to the
enforce phase, at the end, to include nodes that were unable to build a cluster in the existing ones.

1The maximum clustering time is a parameter of the algorithm that has relation with the individual clustering timetc and
the collision probability described in the previous chapter.



196 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.32: Cumulative number of messages
for a single simulation run oflarge-sparse and
large-dense scenarios.

Figure 6.33: Distribution of the messages
through the simulation time for a single sim-
ulation run (large-sparse).

6.4 Service Distribution Simulation

In this section, we will present the simulation results of our basic and extended service distribution
heuristics.

6.4.1 Assumptions

For our simulation, the following assumptions are used:

• Each node has a transmitter with fixed power. Therefore, the maximal reachability is fixed.

• Links are bidirectional. In the reality, this can be achieved just by ignoring unidirectional links.

• The Friis Free Space propagation model for isotropic point source in an ideal propagation
medium is used to calculate the received signal strength indication (RSSI).

• RSSI was the only metric used in the virtual distance.

• Every node has a unit of energy.

• Each node has enough resources for a single service and a single task.

• Tasks request different, randomly selected services.

• The bandwidths needed in the different communications wererandomly selected.

6.4.2 Simulation Scenarios

For the evaluation of the service distribution, we also use different problem sizes. In the first group of
experiments, we have a field of 80m×60m where 10 nodes are randomly deployed with independent
uniform probability. We have 8 services, with 6 tasks requesting services. The small scenarios were
selected in order to enable the calculation of the optimal solution.



6.4. SERVICE DISTRIBUTION SIMULATION 197

Scenario Name Field
Size
(m2)

Number
of
Nodes

Radio
Range

Connection
Proba-
bility

Node
density

Average
Degree
(Theo-
retic)

Num.
Services,
Re-
questers

Small Scenarios
small-sparse-sd 80x60 10 28 0.002 0.9 5.13 8, 6
small-dense-sd 80x60 10 43 0.002 1 12.1 8, 6

Large Scenarios
large-sparse-sd 102x77 100 13 0.013 0.9 6.7 20, 40

Table 6.2: Overview of the different simulation scenarios.

For large scenarios, it is not possible to calculate the optimal (reference) solution of our discrete
optimization problem due to its computational complexity.Therefore, we cannot compare the results
with a reference solution. Nevertheless, we decided to makean example simulation of a large scenario
to show that its behavior is similar to small instances. We use an areal of 102m×77mwhere 100 nodes
were deployed. Moreover, 20 services are serving 40 different tasks.

The network graph was generated using the Friis free space propagation model with a fixed max-
imal reachability. We will call it “radio range”. Any two nodes inside this range are able to commu-
nicate. In this case, a link exists.

For the generation of the task/service graph for each task, arandom number of services was
selected. The tasks request those services with a random bandwidth requirement (normalized). More-
over, each node has the following memory restriction: just one task and one service can be hosted by
a node. This means that e.g. two services cannot be placed in the same node. The overview of all
simulated scenarios can be observed in Table 6.2.

An additional important point is that we are using the Dijkstra’s shortest path algorithm to find the
route between the requesters and the services of our network.

6.4.3 Algorithms under Evaluation

The presented scenarios were evaluated using different algorithms. For the small scenario, the opti-
mum solution was calculated using a branch-and-bound algorithm. For all scenarios, our basic and
the extended ant-based service distribution heuristic were simulated. We allow swap operations of
services when the settlement phase does not found a node withenough resources for the migration.

Moreover, we decided to calculate the cost of a completely random assignment, i.e., the tasks and
services are randomly distributed among the nodes of the network.

6.4.4 Results

We executed 40 experiments for each scenario presented in Table 6.2. In the next sections, we will
present and analyze the results of the experiments.



198 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.34: Optimal assignment cost of sparse and dense scenarios.

6.4.4.1 Optimal Assignment Cost

In this section, we will analyze the results achieved with the optimal cost assignment. Figure 6.34
presents the optimal service assignment cost for thesmall-sparse-sd andsmall-large-sd scenarios2. As
expected, denser scenarios present a smaller assignment cost. This can be explained by the fact that
better links (lower cost) are available for the communication between the tasks and services, reducing
the total cost. Moreover, due to the higher amount of neighbors (higher node degree), assignments that
yield a high amount of costs in sparse environments may be attractive in dense environments because
of the existence of several new links.

6.4.4.2 Experiment Results

This section presents the outcome of our 40 experiments for the presented scenarios. In Figure 6.35,
the results for our three scenarios are depicted. For the small scenarios, each result is normalized
against the optimal assignment. For the large scenario, we present the nominal result.

As we can see in Figures 6.35(a) and 6.35(b), our heuristic found the optimal solution in several
cases. Moreover, for the vast majority of cases, the heuristic has a much better performance than the
random initial assignment. The extended heuristic and the basic one have also a very similar behavior,
nevertheless, for some experiments, the extended one has a much better performance than the basic.
The reasons for these outcomes will be discussed further.

Figure 6.35(c) shows the results for a large scenario. Due tothe fact that we do not have, for large
scenarios, a reference approach, it is not possible to make statements about the absolute performance
of the algorithms. Nevertheless, it is possible to notice that the heuristics could find a much better cost
than the initial random assignment. Moreover, the behaviorof the extended and basic heuristics are
similar to the observed in the small experiments.

2For the service distributions, the terms total communication cost (presented in the figure) and assignment cost have the
same meaning.



6.4. SERVICE DISTRIBUTION SIMULATION 199

(a) small-sparse-sd, normalized (b) small-dense-sd, normalized

(c) large-sparse-sd

Figure 6.35: Results of the realized experiments.



200 CHAPTER 6. SIMULATION AND RESULTS

6.4.4.3 Heuristics’ Assignment Costs

In this section, the mean value of the achieved costs for eachheuristic for all scenarios will be pre-
sented. The cost for the absolute assignment of our test scenario is shown in the Figure 6.36. The
random assignments and basic and extended heuristic assignments have the same tendency of the opti-
mum: for sparse networks, they deliver always a assignment with higher cost. This is expected due to
the relation between the assignment cost and the link costs,and for sparse environments, the average
link cost increases.

In Figure 6.36(d), the different costs are shown together for the small scenarios. As it can be seen
in the picture, our basic and extended heuristics have a goodperformance, not far from the optimal
solution. The basic and extended heuristics have a very similar performance. We will discuss about
the reasons and the performance difference further.

In Figure 6.36(e), the results of our large scenario are depicted. It is possible to see that they
are very similar to the small scenario, improving our confidence that the heuristics could find good
solutions for small as well as large scenarios.

Figure 6.37 shows the normalized results for the small scenarios. The optimal assignment is used
as reference. It is possible to notice that, for all cases, a very small difference could be verified for
sparse and dense scenarios. The basic heuristic has an average cost of 1.44 times the optimal cost for
sparse environments and 1.5 for dense ones. The extended heuristic shows a small improvement: 1.41
for sparse and 1.43 for dense scenarios. This means that the cost of the basic heuristic was about 2%
higher in sparse scenarios and 5% in dense scenarios. Similar behavior has been found in the large
scenario.

As it could be seen in the Figures 6.35(a) and 6.35(b), the basic and extended heuristic, for several
experiments, could find solutions with very similar costs and for some experiments, the extended
overcame the basic one. For the experiments where the results were similar, we suppose that there
aren’t flow correlations that helps the heuristic behavior.For the experiments where the extended
heuristic has a much better performance, correlations could be found and a better service migration
was realized.

The question that arises from the results is why correlations were not so common? We guess
that the reason was the selected routing algorithm togetherwith the influence of the Friis Free Space
Model in our link metric. Because of the exponential path loss, nodes near to each other have a
greater advantage in the signal strength than others with a small higher physical distance. The link
metric reflects very much this exponential path loss due to the fact that we are, for our simulations of
service distribution, relying strongly on the signal strength to calculate the link metric. The Dijkstra’s
shortest path algorithm always selects the shortest path between any two nodes and does not try to
divide the load among the existing link channels. Further weare also not taking into account the link
utilization (and possible congestion). Together, such facts act in a way that effectively just a small
subset of links is used for all communications. A kind of backbone emerges in the network. This
leaves less space for our flow correlations.

We suppose that, in real scenarios, where the link metric hasa more irregular nature and routing
mechanisms that divide the transmission effort among different routes, the extended heuristic will
increase its performance in relation to the basic one.

6.4.4.4 Cumulative Distribution

Figure 6.38 shows the cumulative distribution of the normalized results for the small scenarios. Both
basic and extended heuristic have a similar behavior, and also sparse and dense scenarios brought



6.4. SERVICE DISTRIBUTION SIMULATION 201

(a) Random Assignment, small (b) Basic Heuristic, small

(c) Extended Heuristic, small (d) All, small

(e) All, large

Figure 6.36: Absolute assignment costs for the different heuristics with small and large problem size.



202 CHAPTER 6. SIMULATION AND RESULTS

(a) Random Assignment (b) Basic Heuristic

(c) Extended Heuristic (d) All

Figure 6.37: Normalized assignment costs for the differentheuristics for the small scenarios.



6.4. SERVICE DISTRIBUTION SIMULATION 203

Figure 6.38: Cumulative distribution of the cases for smallscenarios.

similar results. However, small differences can be noticed. It is possible to see that the extended
heuristic outstands the basic one for both sparse and dense scenarios. Moreover, it was possible to
notice that in sparse scenarios, more results were below 2.5 times the optimal value than for dense
scenarios.

From the figure it is possible to see that for a majority of cases (83%) the results were below 2
times the optimal results, for both heuristics in all scenarios.

6.4.4.5 Distance Between Requesters and Providers

In Figure 6.39, the total distance between the requesters and providers, measured in hop count, nor-
malized in relation to the optimal solution is plotted. It isimportant to highlight that we count the
hops over the path used by the communication between the requesters and providers (shortest path
calculated using the link metric).

The results are similar to the cost measured by means of traffic and link metric. Our heuristics
have a slightly higher cost than the optimal solution.

6.4.4.6 Number of Migrations

Figure 6.40 presents the number of migrations performed by the basic and extended heuristics, for
allowed h=1 and 2, i.e, when single and two-hops migrations are allowed. We notice that similar
numbers of migrations were necessary for the basic and extended heuristics. This reflects also the
similar performance of both methods. Moreover, if the services are allowed to jump a higher number
of hops in a single migration, as expected, less migrations are necessary. The experiments withal-

lowed h=1 have about 1.28 more migrations than whenallowed h=2 was used. This value is far less
then the maximum theoretical value of two because the potential pheromone (used in multi-hop mi-
grations) may lead, sometimes, to false decisions. Moreover, when the final destination of a migrating
service is an odd number of hops away, turningallowed h=2 does not half the necessary number of
migrations used to achieve the destination.

We suppose, for bigger networks, that the performance of thealgorithm will increase when larger
migrations are allowed. Nevertheless, in dynamic networksas well as in systems where services are
using other services, multi-hop migrations may bring an instability to the system.



204 CHAPTER 6. SIMULATION AND RESULTS

Figure 6.39: Normalized total distance measured in hops from requesters to services,small-sparse-sd

scenario.

Figure 6.40: Number of migrations for differentallowed h=k.



6.5. DISCUSSION 205

An additional comment is that due to the fact that the networkwas slighly loaded with services,
the swap operation was used with certain frequency. With less loaded networks, we expect a smaller
number of migrations.

6.5 Discussion

The simulation results presented in this chapter focus on key aspects of our emergent clustering and
service distribution heuristics. For the purpose of increasing the relevance of these results, we use
several scenarios with different node densities and also different parameters in the algorithm, as clus-
ter size and number of servers and requesters. Our statistical examinations were used to prove the
significance of the results.

The emergent clustering heuristic has shown a very good performance for scenarios with different
node densities. The average cost was at most 1.44 times the reference approach for all simulated
scenarios. In addition, small standard deviations could also be verified. Our emergent clustering
outperforms the modified expanding ring in almost all simulated scenarios. These are very good
results that were achieved by means of local iterations between the WSN nodes.

Nevertheless, there is a cost for our algorithm: in the worstcase, the necessary number of mes-
sages to build a single cluster isO(qn), wheren is the number of nodes in the network. The expanding
ring has a slightly smaller complexityO(n). Nevertheless, there are algorithms, like therapid, where
the message complexity to construct a single cluster isO(q). This low message complexity comes
with a drawback: therapid algorithm may produce clusters very far from the given boundq (smaller),
because members without free available neighbors to include in the cluster simply do not re-allocate
their residual budget. Thepersistentalgorithm does that and the worst case complexity isO(q2). The
expanding ring and our emergent clustering have a worst casecomplexity of forming one cluster de-
pending onn due to their broadcast nature: when searching for members, all neighboring nodes are
approached, fact that can lead to this high message complexity.

However, in more realistic scenarios, much lower message complexity can be expected. We accept
a relatively high message complexity during the cluster construction because it will lead to a smaller
communication cost during the operational phase of the NanoOS. The idea is that, after the cluster is
completed, services and requesters will communicate in an intensive way within a cluster. The initial
set-up cost will be amortized in the operational phase. Moreover, other algorithms likerapid and
persistentdo not guarantee that the bound (q) will be achieved, being not appropriate for our purpose.

Our service distribution heuristics have demonstrated a very good performance when compared to
the optimal one. In all tested scenarios, the average achieved cost was at most 1.5 times the optimal
one. This was achieved with a low computational cost. Nevertheless, the extended heuristic has shown
just a slightly better performance than the basic one.

We suppose that this occurs due to the small subset of links that are used to route almost all
packets in the network. Due to the fact that our heuristic is dependent on the underlying routing
protocol, and, as already said, we are using the optimal single-path routing Dijkstra algorithm, the
selection of the communication paths has a high correlationwith the exponent of the Friis free space
propagation model, since the link metric reflects it strongly in the service distribution experiments
(where the exponent two was used). The higher the exponent, the less diverse are the routing paths,
i.e., a “backbone” is formed in the network and all packets are routed through it. For the extended
heuristic, this is not very favorable, since then the chanceof the existence of correlated flows is
reduced.

Due to this fact, for a large number of real applications, thebasic heuristic yields adequate results



206 CHAPTER 6. SIMULATION AND RESULTS

and the extra computational effort necessary for the extended heuristic may not be compensated.
However, in real environments, where the link metric does not follow in a regular way the Friis path
loss, and different routing mechanisms can be used, the extended heuristic may bring better results
and it can be used with advantage.

Such a more realistic simulation where the environment is not so idealized is a point for further
work. More realistic physical models, wireless devices andnetwork stack should be used. Further,
dynamic topologies must be tested. We aim to use the reference point group mobility [63]. In addition,
how each parameter of the heuristics influences their behavior, for the emergent clustering and for the
service distribution, should be also studied. Tuning both heuristics may improve the good results
encountered in our simulations.

A further future work is to test our service distribution heuristics with different routing protocols.
Because our basic heuristic is sensible to instabilities inthe routing algorithm when selecting routes
at different points in time (with the same topology), we expect a better performance of our extended
heuristic compared to the basic one for certain routing protocols.

It is important to highlight that some aspects were not tested in the experiments. For example, in
the clustering heuristic, nodes with different energy levels may yield different clusterhead election,
which influence the behavior of our algorithm. Since the expanding ring (among others) does not
take in account the energy in the clusterhead election phase, we believe that we can achieve a longer
clusterhead longevity with our emergent clustering. Nevertheless, rotating clusterhead heuristics have
an advantage in this item when compared with our. We plan to introduce clusterheads rotation, similar
to the described in our clustering heuristic for dynamic networks. Moreover, nodes with different
amount of resources should be also introduced in our simulations.

An additional important further work is the complete simulation and analysis of our dynamic
clustering algorithm. We have implemented it using the Shoxnetwork simulator and a working proof
of concept already exists. It is able to decompose a dynamic network in a set of clusters which comply
with the minimum boundq. Moreover, it showed robustness against moderate topologychanges.
Nevertheless, numeric results to allow comparison with theemergent clustering for “quasi-static”
networks are missing and they present a further step in this work.



Chapter 7

Conclusion

Wireless sensor networks enable a wide range of new applications. The system software of a sensor
should be flexible and powerful to enable the easy development of different kinds of WSN applica-
tions.

This thesis presents the architecture of an innovative OS for sensor nodes, which integrates local
hardware management with abstractions for enabling cooperative processing among geographically
distributed nodes. NanoOS supports generic, complex distributed in-network processing. Due to the
resource constrained hardware, it is not possible to provide all necessary functionality at the node
level, therefore, the network as a whole should offer an aggregated capability and functionality.

Although several middleware approaches present differentkinds of distributed processing, they
lack flexibility, being adequate for a certain type of application. Normally, they envision typical WSN
applications like processing queries coming from a user, managing sensor events or coordinating
data fusion. Many of them are targeted towards data-centricapplications or in-network processing
related to such applications (e.g. data fusion). The database middleware hides from the programmer
the complications of distributed programming, enabling toprogram the sensor network as a whole.
Nevertheless, there are only pre-defined ways to process thedata. In our approach, a much more
flexible way of programming is offered.

The virtual machines try to remedy the limited flexibility atthe expense of increasing the program-
mer’s responsibility. But different from our approach, thedistribution of the distributed algorithm is
controlled also by the programmer, i.e., the replication ormigration of an executing segment must be
explicitly done. For several applications, this programming model pose a challenge to the developer.

Our OS offers support to the distributed processing in the conventional sense, i.e., distributed
algorithms can be implemented using a server-client paradigm with automatic service instantiation,
discovery and migration. Although we are providing a client-server paradigm, typical sensor applica-
tions like data fusion can also be easily implemented withinour OS. We want to achieve a localized
processing, in order to make the sensor network more autonomous, without relaying on an external
access point to gather all the data at all times. Moreover, the cooperation between nodes enables the
calculation of a more abstract system level decision from the raw sensor data. Instead of sending low-
level sensing information to the gateway (or an other interested entity), the high-level processed data
can be sent, reducing the amount of communication necessary. The distributed processing by means
of the application and OS services enables a higher functionality in the sensor network. Nevertheless,
the cost for this is the increased amount of interaction among modules residing at nearby nodes.

A central point of the OS is the automatic placement of the services in order to reduce the quantity
of communication of the system, saving the scarce energy resource. For that, we present in this thesis

207



208 CHAPTER 7. CONCLUSION

a basic and an extended heuristic for controlling the migration of the mobile services. Since the
processor assignment problem is NP-complete, our heuristics are best-effort. Nevertheless, they are
distributed and only using local interactions to achieve the global goal.

Both versions of the heuristic are based on stigmergetic communication: when requesters com-
municate with the services, they leave pheromone on the usednetwork path. When a service decides
to migrate, the pheromone trails guide the selection of the new service location. Therefore, just local
interaction and a very low amount of communication is necessary to choose a new service destina-
tion. This new placement aims to reduce the amount of communication between the communicating
modules.

Additionally, we are grouping the nodes in clusters in orderto reduce the organization overhead of
the network and allow centralized algorithms to be used inside a single cluster without compromising
the whole scalability. All services requested by processing threads inside one cluster must be placed
in the same cluster. Hence, each cluster must have enough resources for the service instances. We
present in our work two heuristics that enable this cluster formation: one targets stable topologies and
the other dynamic ones.

The clustering heuristics should decompose the network in well-connected clusters, because much
of the interaction between nodes will occur inside them. Thebase of our heuristics is the selection
of a subset of nodes – the clusterheads – that represent the clusters. Each clusterhead then starts to
allocate members. For the selection of clusterheads, we used a method derived from the division
of labor in social insects. The membership selection, for our first heuristic (capable of dealing with
quasi-static topology), is made based on the fitness of the different member’s candidates. Nodes
with higher fitness respond first and have higher priority to be incorporated into the cluster. In the
second clustering heuristic, a positive and negative feedback mechanisms, typical for self-organizing
systems, is used to construct the clusters. The positive feedback is responsible for the aggregation
of each cluster, i.e., for its capability of attracting new members. Due to the snow-ball effect of the
positive feedback, if not controlled, a network with one single cluster will be achieved. Therefore,
the creation of structure, i.e., a cluster with controlled size, is done by means of a negative feedback.
Each time that the cluster grows more than necessary, the negative feedback starts to play a larger
role and limits the attraction, constraining the cluster size. It shapes the emergent structure in our
self-organizing process.

The performance of our proposed algorithms was evaluated using the Shox wireless network sim-
ulator. We test the proposed heuristics with different scenarios where network size and node density
were adjusted. The results were normalized against a reference approach, which for small scenar-
ios provides the optimal solution and, for large ones, a centralized, computationally intensive genetic
algorithm.

The basic and extended service distribution heuristics have shown, in average, very good results
for all node densities and network size experimented. They were at most 1.5 times the optimal so-
lution. Both heuristics scale with node density. Nevertheless, although the higher complexity of the
extended heuristic, it has shown just a small advantage against the basic one. We suppose that this is
due to on the small subset of links used to route almost all packets in the network. For more realis-
tic simulations, where the link metric uses more parameters(not following so regularly the path loss
curve) and other factors like congestion and energy are included in the routing algorithm, we expect
than our extended heuristic performs much better in relation with to the basic one. Then, the extra
effort of the extended heuristic will be compensated.

We also simulated the network decomposition heuristic for “quasi-static” networks. Moreover,
an existing heuristic was modified and compared to our results. Our emergent clustering outperforms
the modified expanding ring in almost all simulated scenarios in terms of cost of the decomposed



209

network. Moreover, the average cost was at most 1.44 times the reference approach (optimum or GA
solutions) for all simulated scenario. Our clustering heuristic has demonstrated a higher predictability
with lower standard deviation. Moreover, a stronger geographic separation of the clusters could be
verified. This is important to support correlated in-network processing and helps to avoid disturbance
among clusters (using, for example, a MAC control inside each single cluster). For increasing node
density, the emergent clustering showed just a slightly higher normalized cost. This fact shows that
our approach scales with the node density. Further, the predictability of the results increases with node
density, i.e., lower variance was found in very dense scenarios.

Concluding, the proposed heuristics, for service distribution as well as for network decomposition
can be used successfully in our NanoOS because their small computational cost and local interaction
features. Even with those constraints, our simulations showed that very good results could be achieved
for all developed heuristics. Other applications of the WSNor wireless ad-hoc network areas may
profit from our heuristics too. Automatic distribution of communicating modules as well as cluster
formation can be used in several different applications.

Our work gave an additional evidence that emergent properties and self-organization existing
in nature can be successfully transferred to computer systems. The very nice properties of self-
organizing systems, e.g. emerging structures (global behavior) achieved solely using local iteration
(no central control), robustness and high scalability could be verified in the developed heuristics.

Several enhancements can be done in our heuristics. As already described, our clustering algo-
rithm for quasi-static topologies suffers from a worst casecluster complexity ofO(qn). A simple
procedure can improve this picture drastically: when the clusterhead has accepted enough members
in the cluster (the cluster is complete), every member of thecluster is informed about it and then
broadcast this information to all new possible candidates (nodes that are still waiting to respond).
Upon receiving this information, a candidate just cancels its timer and does not respond to the call for
members message.

In order to better distribute the burden imposed to the clusterhead, some mechanism to allow
clusterhead rotation should be implemented in the heuristic for “quasi-static” topologies. Such a
mechanism is included in our second clustering heuristic.

An additional drawback of our emergent clustering for networks with low topology changes is the
lack of a negotiation after the clustering completion. Withsuch negotiation, it could be avoided that
isolated nodes have to be simply inserted on existing clusters. This happens because nodes can be
exchanged among clusters in order to link isolated nodes andprovides the chance that an additional
cluster is formed using those isolated nodes.

Moreover, a detailed simulation of our clustering heuristic for networks with moderate topology
changes must be done. Further, the addition of the accuracy and realism of the existing simulations,
concerning modeling better the hardware and the wireless channels is a future task. How different
link metrics reflect in the form and cost of the clusters is an additional point to be verified. Because
flat clusters increase the spacial correlation among members, a modification of the clustering objetive
in order to improve the formation concerning this aspect should be studied.

The service distribution methods are also candidate for improvements. For example, we aim to
integrate our short-range migration method, which is targeted towards a better load balancing among
the same instance of a given service by means of migration of asingle context, with the service
distribution described here.

We are planning to integrate a Sensorware-like migrating control script that allows queries to be
easily inserted in the WSN. In the Sensorware, the scripts are used to tie the building blocks imple-
mented inside a service API in some useful application. Nevertheless, the amount of functionality
that those API can provide is restricted. We target to combine the idea of those migrating lightweight



210 CHAPTER 7. CONCLUSION

scripts with our distributed service architecture. Instead of accessing just a restricted local API, the
mobile services of NanoOS offer to the scripts larger functionality and distributed processing. The
scripts carry a high level query that is executed by our distributed service architecture. Scripts con-
trol their migration/replication by themselves (e.g. trying to match certain data in the sensor network)
whereas the service API migration is driven by the OS. This brings a better combination of data-centric
applications with our address-centric distributed service architecture.

An additional very important step into this work is the integration of the proposed heuristics in a
real implementation of the NanoOS. This will enable the development of a demonstrator where the
advantages of our approach can be tested in several real scenarios.



Bibliography

[1] 3d integrated micro/nano modules for easily adapted applications (e-cubes project). accessed
on november 23, 2007. http://ecubes.epfl.ch/public/.

[2] The ns-2 network simulator. accessed november 10, 2007.
http://nsnam.isi.edu/nsnam/index.php/User_Information.

[3] Ravindra K. Ahuja, James B. Orlin, and Ashish Tiwari. A greedy genetic algorithm for the
quadratic assignment problem.Comput. Oper. Res., 27(10):917–934, 2000.

[4] A. D. Amis, R. Prakash, T. H. P. Vuong, and D.T. Huynh. Max-min d-cluster formation in
wireless ad hoc networks. InINFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 1, pages 32–41vol.1,
26-30 March 2000.

[5] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and locality
in distributed computation. InIEEE 30th Annual Symposium on Foundations of Computer
Science, NV, USA, 1989.

[6] D. Baker and A. Ephremides. The architectural organization of a mobile radio network via a
distributed algorithm.IEEE Transactions on Communications, 29(11):1694–1701, Nov 1981.

[7] D. J. Baker, A. Ephremides, and J. A. Flynn. The design andsimulation of a mobile radio
network with distributed control.IEEE J. on Selected Areas in Communications, SAC2(1):226–
237, 1984.

[8] S. Bannerjee and S. Khuller. A clustering scheme for hierarchical control in wireless networks.
In Proceedings of the IEEE INFOCOM, Anchorage, AK, April 2001.

[9] Rimon Barr, John C. Bicket, Daniel S. Dantas, Bowei Du, T.W. Danny Kim, Bing Zhou, and
Emin Sirer. On the need for system-level support for ad hoc and sensor networks.SIGOPS
Oper. Syst. Rev., 36(2):1–5, 2002.

[10] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support in multi-hop
wireless networks. InVehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS
50th, volume 2, pages 889–893vol.2, 19-22 Sept. 1999.

[11] S. Basagni. Distributed clustering for ad hoc networks. In Parallel Architectures, Algorithms,
and Networks, 1999. (I-SPAN ’99) Proceedings. Fourth InternationalSymposium on, pages
310–315, 23-25 June 1999.

211



212 BIBLIOGRAPHY

[12] S. Basagni, I. Chlamtac, and A. Farago. A generalized clustering algorithm for peer-to-peer
networks. InProceedings of the Workshop on Algorithmic Aspects of Communication (Satelite
workshop of ICALP), Bologna, Italy, 1997.

[13] Stefano Basagni. Distributed and mobility-adaptive clustering for ad hoc networks. Technical
report, University of Texas, July 1998.

[14] P. Basu, N. Khan, and T. Little. A mobility based metric for clustering in mobile ad hoc
networks. In Proceedings of Distributed Computing SystemsWorkshop, 2001.

[15] Christian Bettstetter. On the minimum node degree and connectivity of a wireless multihop
network. InMobiHoc ’02: Proceedings of the 3rd ACM international symposium on Mobile
ad hoc networking & computing, pages 80–91, New York, NY, USA, 2002. ACM.

[16] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker,
Charles Gruenwald, Adam Torgerson, and Richard Han. Mantisos: An embedded multi-
threaded operating system for wireless micro sensor platforms. ACM/Kluwer Mobile Networks
and Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, 2005.

[17] S. H. Bokhari. On the mapping problem.IEEE Trans. Computer, C-30:207–214, 1981.

[18] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Quantitative study of the fixed threshould
model for the regultaion of division of labour in insect societies. InProceedings Roy. Soc.
London, number 263 in B, pages 1565–1569, 1196.

[19] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.Swarm Intelligence: From Natural to
Artificial Systems.Oxford University Press, New York, NY, 1999.

[20] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.Swarm Intelligence: From Natural to Artifi-
cial Systems.Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity,
New York, NY, 1999.

[21] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor database systems.
In Proceedings of the Second International Conference on Mobile Data Management, number
3-14, 2001.

[22] A. Boulis and M. B. Srivastava. Design and implementation of a framework for efficient and
programmable sensor networks. InProc. of the First International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys 2003), San Francisco, CA, USA, San Francisco, CA,
USA, May 2003.

[23] William Joseph Butera.Programming a paintable computer. PhD thesis, Massachusetts Insti-
tute of Technology, 2002.

[24] Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy Theraulaz, and
Eric Bonabeau.Self-Organization in Biological Systems. University Presses of CA, 2003.

[25] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network research.
Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications, 2(5):483–502, 2002.



BIBLIOGRAPHY 213

[26] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling ingeneral-purpose distributed com-
puting systems. InIEEE TOSE, pages 141–154, Feb. 1988.

[27] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, andJ. Zhao. Habitat monitoring: appli-
cation driver for wireless communication technology. InProceedings of the Workshop on Data
Communication in Latin America and the Caribbean, Costa Rica, April 2001.

[28] Alberto Cerpa, Naim Busek, and Deborah Estrin. Scale: Atool for simple connectivity as-
sessment in lossy environments. Technical report, Canter for Embedded Networked Sensing
(CENS), University of California, Los Angeles, September 2003.

[29] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha. GSD: A Novel Group-
based Service Discovery Protocol for MANETs. In4th IEEE Conference on Mobile and Wire-
less Communications Networks (MWCN), Stockholm. Sweden, September 2002.

[30] Steve J. Chapin. Distributed and multiprocessor scheduling. In Allen B. Tucker Jr., editor,Com-
puter Science and Engineering Handbook, chapter 87, pages 1870–1882. CRC Press, 1996.

[31] Harry Chen, Tim Finin, and Anupam Joshi. Service discovery in the future electronic market.
In Proceedings of the Workshop on Knowledge-based ElectronicMarkets, Austin, Texas, USA,
2000.

[32] Y. Chen, A. Liestman, and J. Liu. Clustering algorithmsfor ad hoc wireless networks. In Ad
Hoc and Sensor Networks, 2004.

[33] Y. P. Chen and A. L. Liestman. A zonal algorithm for clustering ad hoc networks.International
Journal of Foundations of Computer Science, 2003.

[34] Shyamal Chowdhury. The greedy load sharing algorithm.J. Parallel Distrib. Comput., 9(1):93–
99, 1990.

[35] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs, volume 86.
Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 1990.

[36] Microsoft Corp. Understanding universal plug and play. http://www.upnp.org, 2000.

[37] Douglas S. J. De Couto, Daniel Aguayo, John C. Bicket, and Robert Morris. A high-throughput
path metric for multi-hop wireless routing. InProceedings of the ACM International Confer-
ence on Mobile Computing and Networking (MobiCom), San Diego, CA, September 2003.

[38] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers, and Robert Morris. Effects
of loss rate on ad hoc wireless routing. Technical report, Massachusetts Institute of Technology
(MIT), Laboratory for Computer Science, March 2002.

[39] David E. Culler, Jason Hill, Philip Buonadonna, RobertSzewczyk, and Alec Woo. A network-
centric approach to embedded software for tiny devices. InEMSOFT 01: Proceedings of
the First International Workshop on Embedded Software, pages 114–130, London, UK, 2001.
Springer-Verlag.

[40] Eoin Curran. Swarm: Cooperative reinforcement learning for routing in ad-hoc networks.
Master’s thesis, University of Dublin, Trinity College, September 2003.



214 BIBLIOGRAPHY

[41] Vanessa Davies. Evaluating mobility models within an ad hoc network. Master’s thesis, Col-
orado School of Mines, 2000.

[42] Vinicius C. de Almeida, Luiz F. M. Vieira, Breno A. D. Vitorino amd Marcos A. M. Vieira,
Jose A. Nacif, Antonio O. Fernandes, Diogenes C. da Silva, and Claudionor N. Coelho Jr. Sis-
tema operacional yatos para redes de sensores sem fio. Technical report, Universidade Federal
de Minas Gerais, 2005.

[43] Marco Dorigo and Alberto Colorni. The ant system: Optimization by a colony of cooperating
agents.IEEE Transactions on Systems, Man, and Cybernetics, 26:1–13, 1996.

[44] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible op-
erating system for tiny networked sensors. InFirst IEEE Workshop on Embedded Networked
Sensors, Florida, USA, 2004.

[45] Prabal K. Dutta and David E. Culler. System software techniques for low-power operation in
wireless sensor networks. InICCAD ’05: Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design, pages 925–932, Washington, DC, USA, 2005. IEEE
Computer Society.

[46] e Cubes consortium. Report about appropriate real-time operating systems. Technical report,
EU Project e-Cubes, 2006.

[47] A. Ephremides, J. E. Wieselthier, and D. J. Baker. A design concept for reliable mobile radio
networks with frequency hopping signaling.Proceedings of the IEEE, 75:56–73, 1987.

[48] M. Eshaghian and Y. Wu. Mapping heterogeneous task graphs onto heterogeneous system
graphs. InProceedings of Heterogeneous Computing Workshop, 1997.

[49] David Fernandez-Baca. Allocating modules to processors in a distributed system.IEEE Trans-
actions on Software Engineering, 15(11):1427–1436, November 1989.

[50] Christian Frank, Vlado Handziski, and Holger Karl. Service discovery in wireless sensor net-
works. Technical report, Technical University of Berlin, 2004.

[51] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M.Halderman, D. Hensgen, E. Keith,
T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust,and H. J. Siegel. Scheduling
resources in multi-user, heterogeneous, computing environments with smartnet. InIn Proceed-
ings of Heterogeneous Computing Workshop, 1998.

[52] A. Fuggeta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Transactions on
Software Eng., 24(5):342–361, 1998.

[53] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster, mobile, multimedia radio network.Wirel.
Netw., 1(3):255–265, 1995.

[54] D. E. Goldberg.Genetic algorithms in search, optimization, and machine learning. Addision-
Wesley, 1989.

[55] Deepak Gupta and Pradip Bepari. Load sharing in distributed systems. InProceedings of the
National Workshop on Distributed Computing, 1999.



BIBLIOGRAPHY 215

[56] E. Guttman. Service location protocol: Automatic discovery of ip network services.IEEE
Internet Computing, vol. 3(no. 4):pp. 71–80, 1999.

[57] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan. An application-specific protocol
architecture for wireless microsensor networks.IEEE Transactions on Wireless Communica-
tions, 1(4):660–670, Oct. 2002.

[58] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A. Perillo. Middle-
ware to support sensor network applications. InIEEE Network, volume 18, pages 6–14, Jan/
Feb 2004.

[59] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-efficient
cammunication protocol for wireless microsensor networks. In Proceedings 33rd Hawaii In-
ternational Conference on System Sciences, Hawaii, Januar 2000.

[60] Hans-Ulrich Heiss and Michael Schmitz. Decentralizeddynamic load balancing: The particles
approach. InInformation Sciences, May 1995.

[61] F. Heylighen, C. Gershenson, S. Staab, G.W. Flake, D.M.Pennock, D.C. Fain, D. De Roure,
K. Aberer, Wei-Min Shen, O. Dousse, and P. Thiran. Neurons, viscose fluids, freshwater polyp
hydra-and self-organizing information systems.IEEE Intelligent Systems, 18(4):72–86, Jul-
Aug 2003.

[62] J.H. Holland.Adaptation in natural and artificial systems. University of Michigan Press, 1975.

[63] Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan Chiang. A group mobility model
for ad hocwireless networks. InProceedings of the 2nd ACM international workshop on Mod-
eling, analysis and simulation of wireless and mobile systems, 2000.

[64] Xiaoyan Hong, Mario Gerla, Hanbiao Wang, and Loren Clare. Load balanced energy aware
communications for mars sensor networks. InIEEE Aerospace Conference Proceedings, 2002.

[65] Juraj Hromkovic.Algorithmics for Hard Problems. Springer, Berlin, 2004.

[66] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, and R.E Stearns.
Nc-approximation schemes for np- and psapce-hard problemsfor geometric graphs.Journal of
Algorithms, 26(2), February 1998.

[67] Chaiporn Jaikaeo and Chien-Chung Shen. Adaptive backbone-based multicast for ad hoc net-
works. InProceedings of the IEEE International Conference on Communications, 2002.

[68] Peter Janacik. Service distribution in wireless sensor networks. Master’s thesis, University of
Paderborn, 2005.

[69] Holger Karl and Andreas Willing.Protocols and Architectures for Wireless Sensor Networks.
Wiley, 2005.

[70] Minkyong Kim and Brian Noble. Mobile network estimation. In Proceedings of the ACM
Conference on Mobile Computing and Networking, Rome, Italy, June 2001.

[71] Ulas C. Kozat and Leandros Tassiulas. Service discovery in mobile ad hoc networks: an over-
all perspective on architectural choices and network layersupport issues.Ad Hoc Networks,
2(1):23–44, 2004.



216 BIBLIOGRAPHY

[72] Nectarios Koziris, Michael Romesis, Panayiotis Tsanakas, and George Papakonstantinou. An
efficient algorithm for the physical mapping of clustered task graphs onto multiprocessor ar-
chitectures. InProc. of 8th Euromicro Workshop on Parallel and DistributedProcessing
(PDP2000), pages 406–413, Rhodes, Greece, 2000. IEEE Press.

[73] U. C. Kpzat, G. Kondylis, B. Ryu, and M. K. Marina. Virtual dynamic backbone for mobile ad
hoc networks. InIEEE International Conference on Communications (ICC), Helsinki, Finland,
June 2001.

[74] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-based approach for
routing in dynamic networks.Computer Communication Review, 49:49–64, 1997.

[75] R. Krishnan and D. Starobinski. Message-efficient self-organization of wireless sensor net-
works. In Proceedings of IEEE Wireless Communications and Networking Conference
(WCNC), New Orleans, USA, March 2003.

[76] Rajesh Krishnan.Efficient Self-Organization of Large Wireless Sensor Networks. PhD thesis,
Boston University, College of Engineering, 2004.

[77] Rajesh Krishnan and David Starobinski. Efficient clustering algorithms for self-organizing
wireless sensor networks. InAd Hoc Networks, volume 4, pages 36–59, January 2006.

[78] Rajinish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Philip Hutto, Arnab Paul,
and Umakishore Ramachandran. Dfuse: A framework for distributed data fusion. InPro-
ceedings of the 1st international conference on Embedded networked sensor systems, pages
114–125, 2003.

[79] Mauri Kuorilehto, Marko Hännikäinen, and Timo D. Hämäläinen. A survey of application
distribution in wireless sensor networks.EURASIP J. Wirel. Commun. Netw., 5(5):774–788,
2005.

[80] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. InACM Computing Surveys (CSUR), volume 31, pages 406–471,
December 1999.

[81] Christophe Lang, Michel Trehel, and Pierre Baptiste. Adistributed placement algorithm based
on process initiative and on a limited travel. InPDPTA, pages 2636–2641, 1999.

[82] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. InASPLOS X, 2002.

[83] Q. Li, J. Aslam, and D. Rus. Online power-aware routing in wireless ad-hoc networks. In
Proceedings of the 7th Annual International Conference on Mobile Computing and Networking
(ACM Mobicom ’01), 2001.

[84] Shuoqi Li, Ying Lin, Sang H. Son, John A. Stankovic, and Yuan Wei. Event detection services
using data service middleware in distributed sensor networks. In IPSN, 2003.

[85] J. Lian, G.B. Agnew, and S. Naik. A variable degree basedclustering algorithm for networks.
In Proceedings of the 12th International Conference on Computer Communications and Net-
works, 2003.



BIBLIOGRAPHY 217

[86] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso. Pushpin computing system overview: a
platform for distributed. InProceedings of the Pervasive Computing Conference, 2002.

[87] N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–454,
1993.

[88] Hongzhou Liu, Tom Roeder, Kevin Walsh, Rimon Barr, and Emin Gun Sirer. Design and
implementation of a single system image operating system for ad hoc networks. InProceedings
of the 3rd international conference on Mobile systems, applications, and services, pages 149–
162, 2005.

[89] Ting Liu and Margaret Martonosi. Impala: A middleware system for managing autonomic
parallel sensor systems. InProceeding of the ninth ACM SIGPLAN symposium on principles
and practice of parallel programming, 2003.

[90] V. M. Lo. Heuristic algorithms for task assignment in distributed systems.IEEE Trans. Com-
put., 37(11):1384–1397, 1988.

[91] Hong Luo, Jun Luo, Yonghe Liu, and Sajal K. Das. Energy efficient routing with adaptive data
fusion in sensor networks. InProceedings of the 2005 joint workshop on Foundations of mobile
computing, pages 80–88, 2005.

[92] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag: a tiny
agregation service for ad-hoc sensor networks. InSymposium on Operating Systems Design
and Implementation (OSDI), December 2002.

[93] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. Composing
adaptive software.Computer, 37(7):56–64, 2004.

[94] Sun Microsystems. Jini - technology core platform specification. accessed october 21, 2007.
http://www.sun.com/software/jini/specs/jini1.2html/discovery-spec.html.

[95] Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selection, and the
effects of noise.Complex Systems, 9:193–212, 1995.

[96] Thomas J. Mowbray and William A. Ruh.Inside Corba - Distributed Object Standards and
Applications. Addison Wesley Longman, Amsterdam, 1997.

[97] Job Mulder, Stefan Dulman, and Lodewijk van Hoeseland Paul Havinga. Peeros - system
software for wireless sensor networks. Technical report, Faculty of Electrical Engineering,
Mathematics and Computer Science, University of Twente Enschede, the Netherlands, 2004.

[98] Michael G. Norman and Peter Thanisch. Models of machines and computation for mapping in
multicomputers.ACM Comput. Surv., 25(3):263–302, 1993.

[99] M. D. Penrose. On k-connectivity for a geometric randomgraph. Wiley Random Structures
and Algorithms, 15(2):145–164, 1999.

[100] Raffaele Perego. A mapping heuristic for minimizing network contention.Journal of Systems
Architecture: the EUROMICRO Journal, 45:65–82, October 1998.

[101] Christian Prehofer and Christian Bettstetter. Self-organization in communication networks:
Principles and design paradigms.IEEE Communications Magazine, pages 79–85, July 2005.



218 BIBLIOGRAPHY

[102] Camille C. Price, Stephen F. Austin, and M. A. Salama. Scheduling of precedence-constrained
tasks on multiprocessors.Computer special issue on parallel computing, 33:219–229, 1990.

[103] S. Ramakrishnan, I. H. Cho, and L. Dunning. A close lookat task assignment in distributed
systems. InIEEE INFOCOM 91, pages 806 – 812, Miami, 1991.

[104] C. V. Ramamoorthy, A. Bhide, and J. Srivastava. Reliable clustering techniques for large,
mobile packet radio networks. InProceedings of the 6th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 87), San Francisco, USA, April 1987.

[105] G. E. Robinson. Regulation of division of labor in insect societies. Annual Rev. Entomol,
37:637–665, 1992.

[106] Kay Romer. Programming paradigms and middleware for sensor networks. InGI/ITG Fachge-
spraech Sensornetze, pages 26–27, Feb 2004.

[107] Kay Romer, Oliver Kasten, and Friedemann Mattern. Middleware challenges for wireless sen-
sor networks. InMobile Computing and Communications Review, volume 6, pages 59–61,
October 2002.

[108] Franz Rothlauf.Representations for Genetic and Evolutionary Algorithms. Springer, Berlin,
2006.

[109] E. Royer, P. M. Melliar-Smith, and L. Moser. An analysis of the optimum node density for ad
hoc mobile networks. InProc. of IEEE International Conference on Communications (ICC),
2001.

[110] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems.J. ACM, 23(3):555–
565, 1976.

[111] Mikko Sarela. Measuring the effects of mobility on reactive ad hoc routing protocols. Technical
report, Helsinki University of Technology Laboratory for Theoretical Computer Science, 2004.

[112] Vivek Sarkar and John L. Hennessy. Compile-time partitioning and scheduling of parallel
programs. InSIGPLAN Symposium on Compiler Construction, pages 17–26, 1986.

[113] Gregor Schiele, Christian Becker, and Kurt Rothermel. Energy-efficient cluster-based service
discovery for ubiquitous computing. InProceedings of the 11th workshop on ACM SIGOPS
European workshop: beyond the PC, page 14, New York, NY, USA, 2004. ACM Press.

[114] C. C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking architecture
and applications. InIEEE Personal Communucations, 2001.

[115] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson,editors. Scheduling and Load Bal-
ancing in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1995.

[116] Brian Shucker, Jeff Rose, Anmol Sheth, James Carlson,Shah Bhatti, Hui Dai, Jing Deng, and
Richard Han. Embedded operating systems for wireless microsensor nodes. In Ivan Stojmen-
ovic, editor,Handbook of Sensor Network: Algorithms and Architectures. Ivan Stojmenovic,
2005.



BIBLIOGRAPHY 219

[117] S. Singh and C.S. Raghavendra. Pamas: power aware multi-access protocol with signalling for
ad hoc networks.SIGCOMM Comput Communications, 28:5–26, 1998.

[118] Pradeep K. Sinha.Distributed Operating Systems. IEEE Computer Society Press, 1997.

[119] Oliver Sinnen.Task Scheduling for Parallel Systems. Wiley-Interscience, University of Auk-
land, New Zealand, 2007.

[120] Kazem Sohraby, Daniel Minoli, and Taieb Znati.Wireless Sensor Networks - Technology,
Protocols and Applications. Wiley-Interscience, 2007.

[121] Avinash Sridharan, Marco Zuniga, and Bhaskar Krishnamachari. Integrating environment sim-
ulators with network simulators. Technical Report 04-836,University of Southern, California,
Log Angeles, 2004.

[122] Ivan Stojmenovic, editor.Clustering in large-scale networks was proposed as a mean ofachiev-
ing scalability through a hierarchical approach [122]., chapter Chapter 4, pages 107–140. John
Wiley & Sons, 2005.

[123] Ivan Stojmenovic, editor.Handbook of Sensor Networks. John Wiley and Sons Inc, 2005.

[124] H. S. Stone. Multiprocessor scheduling with the aid ofnetwork flow algorithms.IEEE Trans.
Software Eng., SE-3:85 –93, 1977.

[125] Wind River Systems. Vxworks 5.4 - product overview, June 1999.

[126] Kenjiro Taura and Andrew A. Chien. A heuristic algorithm for mapping communicating tasks
on heterogeneous resources. InHeterogeneous Computing Workshop, pages 102–115, 2000.

[127] Hanbiao Wang, Deborah Estrin, and Lewis Girod. Prepocessing in a tiered sensor network for
habitat monitoring. InJornal on Applied Signal Processing, 2003.

[128] Hanbiao Wang, Deborah Estrin, and Lewis Girod. Preprocessing in a tiered sensor network for
habitat monitoring.EURASIP Jornal on Applied Signal Processing, 4:392–401, 2003.

[129] Alex Wild. Insect photography. accessed january 23, 2007.
http://www.myrmecos.net/myrmicinae/pheidole.html.

[130] E. O. Wilson. The relation between caste ratios and division of labour in the ant genus pheidole
(hymenoptera formicidae).Behav. Ecol. Sociobiology, 16:89–98, 1984.

[131] Alec Woo and David Culler. Evaluation of efficient linkreliability estimators for low-power.
Technical report, UC Berkeley, 2002.

[132] Alec Woo, Sam Madden, and Ramesh Govindan. Networkingsupport for query processing in
sensor networks.Communications of the ACM, 6:47–52, June 2004.

[133] Alen Woo, Terence Tong, and David Culler. Taming the underlaying challenges of reliable
multihop routing in sensor networks. InProceedings of the ACM Conference on E,bedded
Networked Sensor Systems (SenSys), Los Angeles, November 2003.

[134] Michael Wooldridge.An Introduction to Multiagent Systems. John Wiley and Sons, Chichster,
England, 2002.



220 BIBLIOGRAPHY

[135] John Yannakopoulos and Angelos Bilas. Cormos: A communication-oriented runtime system
for sensor networks.Wireless Sensor Networks, 2005. Proceeedings of the SecondEuropean
Workshop on, pages 342–353, 31 jan-2 feb 2005.

[136] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in sensor
networks.SIGMOD, 31(3), September 2002.

[137] Stephen S. Yau and Fariaz Karim. An energy-efficient object discovery protocol for context-
sensitive middleware for ubiquitous computing.IEEE Transactions on Parallel and Distributed
Systems, 14(11):1074–1085, 2003.

[138] W. Ye, J. Heidemann, and D. Estrin. An energy-efficiet mac protocol for wireless sensor net-
works. InProceedings of IEEE Infocom, 2002.

[139] Yasuhiko Yokote. The apertos reflextive operating system: The concept and its implementation.
In OOPSLA Proceedings, pages 414–434, 1992.

[140] Y. Yu, B. Krishnamachari, and V. Prasanna. Issues in designing middleware for wireless sensor
networks. InIEEE Network Magazine, 2003, 2003.

[141] Jerry Zhao and Ramesh Govindan. Understanding packetdelivery performance in dense wire-
less sensor networks. InProc. of ACM Conference on Embedded Networked Sensor Systems
(SenSys), Los Angeles, CA, November 2004.

[142] Biao Zhou, Kaixin Xu, and Mario Gerla. Group and swarm mobility models for ad hoc network
scenarios using virtual tracks. InProc. of Military Communications Conference (MILCOM),
Monterey, CA, October 2004.

[143] M. M. Zonoozi and P. Dassanayake. User mobility modeling and characterization of mobility
patterns.IEEE Journal on Selected Areas in Communications, September 1997.



Own Contributions

[144] Carsten Boeke, Marcelo Goetz, Tales Heimfarth, DaniaEl Kebbe, Franz J. Rammig, and Sabina
Rips. (re-)configurable real-time operating systems and their applications. InProceedings of
The Eighth IEEE International Workshop on Object-OrientedReal-Time Dependable Systems,
2003.

[145] Florian Dittmann and Tales Heimfarth. Clock frequency vatiation of partially reconfigurable
systems. InProceedings of the 19th International Conference on Architecture of Computing
Systems, Frankfurt, Germany, Mar. 2006.

[146] Tales Heimfarth, Klaus Danne, and Franz J. Rammig. An os for mobile ad hoc networks using
ant based hueristic to distribute mobile services. InProceedings of the Joint International Con-
ference on Autonomic and Autonomous Systems and International Conference on Networking
and Services (ICAS/ICNS 2005), page 77. IEEE Computer Society, 2005.

[147] Tales Heimfarth and Peter Janacik. Ant-based heuristic for os service distribution on ad hoc
networks. In1st IFIP International Conference on Biologically Inspired Cooperative Com-
puting (BICC 2006), volume 216 of IFIP International Federation for Information Processing,
pages 75–84, Boston, MA, USA, August 2006. Springer.

[148] Tales Heimfarth, Peter Janacik, and Franz J. Rammig. Self-organizing resource-aware cluster-
ing for ad hoc networks. InProceedings of the 5th IFIP Workshop on Software Technologies for
Future Embedded and Ubuquitous Systems (SEUS 2007), Santorini Island, Greece, Mai 2007.

[149] Tales Heimfarth and Achim Rettberg. Nanoos - reconfigurable operating system for embedded
mobile devices. InIn Proceedings of the International Workshop on DependableEmbedded
Systems (WDES), Florianopolis, Brazil, 2004.

[150] Peter Janacik and Tales Heimfarth. Cross-layer architecture of a distrubuted os for ad hoc net-
works. InProceedings of the International Conference on Autonomic an Autonomous Systems
(ICAS 2006), Silicon Valley, USA, January 2006.

[151] Peter Janacik and Tales Heimfarth. Emergent distribution of operating system services in wire-
less ad hoc networks. InProceedings of the IFIP Conference on Biologically Inspired Cooper-
ative Computing (BICC), Santiago, Chile, 2006.

[152] Peter Janacik, Tales Heimfarth, and Franz J. Rammig. Emergent topology control based on
division of labour in ants. InProceedings of the IEEE 20th International Conference on Ad-
vanced Information Networking And Applications (AINA 2006), Vienna, Austria, Apr. 2006.

221



222 OWN CONTRIBUTIONS

[153] Franz J. Rammig, Marcelo Goetz, Tales Heimfarth, Peter Janacik, and Simon Oberthuer. Real-
time operating systems for self-coordinating embedded systems. InProceedings of the 9th
IEEE International Symposium on Object and component-oriented Real-time distributed Com-
puting (ISORC 2006), Gyeongju, Korea, Apr. 2006.


	List of Figures
	List of Tables
	Introduction
	System Software for Wireless Sensor Networks
	Embedded System OS
	Configurable Operating Systems

	Sensor Network OS
	Single Node Concerns
	Group Concerns
	Examples of OS

	Middleware
	Requirements
	Relation to OS
	Examples of Middlewares

	Virtual Machine
	Examples of Virtual Machines

	Discussion

	NanoOS Architecture
	Motivation
	System Overview
	Applications Scenario

	Requirements
	NanoOS Approach
	Hardware Platform
	Software Components
	Application
	NanoOS Structure
	Dynamic Mobile Services
	Service Management
	Distribution Methods
	OS Network Organization
	Organizing the Network in Clusters

	Communication Link Model
	Links in a Wireless Network
	Link Quality Estimation
	The Combined Link Metric

	Discussion

	Service Distribution
	Introduction
	Related Work
	Global Distributed Scheduling
	Migration of Service in WSN
	Discussion

	Problem Definition
	Ant Based Service Distribution
	Basic Heuristic
	Extended Heuristic

	Discussion

	Self-Organizing Cluster Construction
	Introduction
	State of the Art - Clustering in Ad hoc Networks
	Maximum Independent Set Approaches
	Dominance Only Approaches
	Multihop Clustering
	Other Approaches
	Discussion

	Problem Definition
	Problem Properties

	Division of Labor and Task Allocation in Social Insects
	Heuristics Basic Concepts
	General Ideas

	Clustering ``Quasi-Static'' Ad hoc Networks
	Clusterhead Selection
	Member Selection
	Message Relay to Clusterhead
	Enforce Phase

	Clustering Dynamic Ad hoc Networks
	General View
	Clusterhead Management
	Member Selection
	Cluster Construction Process
	Clustering Maintenance
	Integrating Reference Point Group Mobility Model

	Relation to Self-Organization Principles

	Simulation and Results
	Simulation Environment
	Reference Methods for the Minimum Intracommunication-cost Clustering
	Modeling as a Integer Linear Program
	Genetic Algorithm
	Basic Concepts
	Representation of the Problem (Coding)
	Crossover Operator
	Mutation Operator
	Fitness Function
	Selection Operator
	GA Behavior

	``Quasi-Static'' Clustering Heuristic Simulation
	Assumptions
	Simulation Scenarios
	Algorithms under Evaluation
	Results

	Service Distribution Simulation
	Assumptions
	Simulation Scenarios
	Algorithms under Evaluation
	Results

	Discussion

	Conclusion

