
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 27

Services Everywhere: an Object-Oriented Distributed Platform to Support
Pervasive Access to HW and SW Objects in Ambient Intelligence
Environments

Jesús Barba, Félix Jesús Villanueva, David Villa, Francisco Moya, Fernando Rincón, Maria
José Santoimia and Juan Carlos López

X

Services Everywhere: an Object-Oriented
Distributed Platform to Support Pervasive
Access to HW and SW Objects in Ambient

Intelligence Environments1

Jesús Barba, Félix Jesús Villanueva, David Villa, Francisco Moya,
Fernando Rincón, Maria José Santofimia and Juan Carlos López

University of Castilla-La Mancha
Spain

1. Introduction

The Ubiquitous Computing concept was first defined by Mark Weiser (Weiser, 1995) and it
refers to a new computing era where electronic devices merge with the background. People
make use of those electronic devices unconsciously, focusing just on their needs and not in
how to accomplish them.
The concept of Ambient Intelligence (Ducatel et al., 2001), lying on the ubiquitous
computing paradigm, refers to those environments where people are surrounded by all kind
of intelligent intuitive devices, capable of recognising and responding to their changing
needs. People perceive the surroundings as a service provider that satisfies their needs or
inquiries in a seamless, unobstrusive and invisible way.
It is generally agreed that AmI (Ambient Intelligence) will have a great impact in economy
and society. The potential of AmI technologies in various application areas has been object
of numerous studies. For example, the IPTS/ESTO Ambient Intelligence in Everyday Life
Roadmap (Friedewald & Da Costa, 2003) report analyzes key application areas in order to
find out which are the technological requirements that must support the functions that will
make the difference in each of those application areas (housing, mobility and transport,
shopping and commerce, education and learning, health, culture, leisure and
entertainment).
But AmI is not only its technological facet. There is also a social and a politics dimension
besides the devices and software upon which the intelligent environments are built.
Technology must be helpfull, work with users and not against them trying to pull down the
wall of the natual resistance of the human being to revolutionary changes.

1 This work has been partially funded by the Spanish Ministry of Science and Innovation
under the project DAMA (TEC2008-06553/TEC), the Regional Government of Castilla-La
Mancha under project RGRID (PAI08-0234-8083) and the Spanish Ministry of Industry
under project CENIT Hesperia.

2

www.intechopen.com

Ambient Intelligence28

Putting the focus on the technological dimmension, the requirements for AmI to become
real are varied and can be classified in two domains or computational areas (ISTAG, 2003):
technologies for ambience and intelligence. An intensive reasearch in each one of them, by its
own, is not a guarantee of success but an additional effort in finding the mechanisms to
ensure the integration of components and devices in AmI systems must be done. Moreover,
such integration must be perfomed in a seamless way.
Therefore, the importance that the technologies for integration play in AmI is out of any doubt.
We strongly believe that the different research challenges in this area are in the core of the
success of AmI. However, currently, many of the AmI demands for a hardware platform
and software architecture, suitable for its needs, have not got a satisfactory response yet. The
ISTAG in 2003 identified the following features that a platform for AmI must include:
abstraction, automatic composition, interaction management, computational efficiency, creativity,
scalability and evolution and dependability.
It can be easily checked that we are sill far from such vision since AmI environments are
currently limited to a few demonstrators in the research centres, and the incorporation of the
AmI technology to real scenarios and applications is taking place extremely slowly. Next,
we try to be more precise and analyze in deep, from our point of view, the main reasons of
such delay in the realization of AmI.
Within the layered vision of an AmI system, the lowest level is in charge of collecting data
that will be translated into contextual information by upper levels. This layer is mainly
composed by sensors, small devices with limited capabilities (memory and computational
power). At this level, it can also be found a set of actuators that execute the commands
coming from the layers that generate decisions from the data gathered by the sensors. On
top of the sensors & actuators layer, a set of nodes with sufficient computing capabilities
interpret the raw data, extracting the knowledge contained in them (in an automatic way).
Moreover, the nodes of the upper levels may provide value-added services like the
collection of statistical data or the integration with business processes.
So, in the basis of any AmI application there is a complex, extremely large distributed system
containing not only nodes with uneven features regarding execution speed, battery life or
interfaces but also a communication infrastructure that surrounds them and probably
combines several communication protocols (i.e. RFID, Wi-Fi, WiMax, Bluetooh, etc). Such
mixture of properties conform a heterogeneous platform that is intended to support the
delivery of value added services to software components that are built on top of it.
It is difficult to tackle with heterogeneity since it poses additional difficulties to the
development of AmI platforms and applications with the characteristics previously
mentioned. First of all, programmers should be aware of such heterogeneity, inherent in
AmI systems, and deal with several languages, programming interfaces, network protocols,
etc. The time invested by the developers in these affairs is time they are not using to
implement the intelligence of the nodes that, in any case, is what makes the difference. Also,
the productivity of programmers will increase since they do not have to worry about the
implementation details of the integration and communication layers.
To sum up, it is mandatory in AmI environments a tailored middleware platform to help
the application and service developers with the integration of components in a simplified
and seamless way. Such middleware platform must not only provide the necessary
semantic to connect and make the different elements in the system interoperable (acting as
the glue between them) but also must offer a set of tools, methods and even embedded

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 29

services (i.e. composition and reconfiguration services) to enable the rapid exploration and
prototyping of new systems or more complex services.
Although AmI environments have much in common with distributed objects platforms
developed in the nineties (i.e. CORBA, EJB, DCOM …), and also with current grid
computing platforms (i.e. Globus, gLite …), such distributed platforms where not originally
conceived thinking of the special needs of AmI. Therefore any attempt to extend standard
middlewares and apply them to specific AmI applications or scenarios must be carried out
carefully, trying not to inherit the deficiencies of the original middleware concerning AmI.
On the other hand, such adaptation process represents an extra effort in order to make the
former middleware converge with the unforeseen requirements imposed by the new
scenario. Also, the development of new services and communication means for the standard
middleware is not for free and, probably, their reuse in other AmI applications can be hard
to accomplish.
To overcome the limitations of current approaches, the ARCO research group at the
University of Castilla-La Mancha2 started to work on a global solution, specifically
conceived for AmI environments, based on its wide experience in distributed object
platforms and application oriented middlewares3.
Our proposal leverages the achievements of standard middlewares in regular networking
distributed platforms and comprises:

 A standard communication platform which allows developers to integrate
heterogeneous devices and networks.

 A common development framework to build new services or easily integrate
legacy ones.

 A set of services that provide the developers with advanced features such as
service discovery, positioning, management of reconfigurable hardware, migration,
event channels, etc.

Throughout the rest of this section we sketch the main features and advantages of our work
and how it effectively answers many of the major challenges in platform and software
design for AmI as stated by the ISTAG.

1.1 A holistic approach to the major AmI challenges
The main objective of the Object-Oriented distributed Platform for AmI (from now on
OOPAmI) is to address the demands of the emerging AmI technologies from an integrated
point of view, based on the Object-Oriented distributed paradigm. Next, we detail how this
primary goal is achieved:

 Abstraction. Both services and devices are modelled as objects. The concept of object
effectively abstracts the hardware and network technology used to deployed the
services in AmI applications. This allows service developers to concentrate their
effort in achieving better and more intelligent algorithms instead of worrying about
communication and platform dependent problems.

2 http://arco.esi.uclm.es
3 Among the projects handled by the ARCO research group covering these topics it is
worthy mentioning those regarding domotic, homeland security and ubiquitous &
pervasive computing.

www.intechopen.com

Ambient Intelligence30

 Automatic composition. On top of the object communication engine, a set of
Intelligent Agents implement a reasoning engine which main responsability consists
in responding to incomming events, needs or requirements by means of service
composition. The so called, Multi-Agent Service Composer System is implemented
using the Jadex platform.

 Computational Efficiency. OOPAmI is able to integrate in the platform architecture:
(1) low footprint devices such as eight bit microcontrollers (micro-components); (2)
full servers or mobile devices (i.e. PDAs, SmartPhones) with enough power of
computation to run complex tasks or algorithms; and (3) application specific
hardware in form of reconfigurable logic or Systems-on-Chip. The variety of the
devices that OOPAmI can handle makes our platform flexible and easy to adapt,
depending on the level of performance demanded by the target application. The
transparent integration of fully customized hardware devices allows OOPAmI to
cope with the most complex tasks. Besides this, the use of low cost, small
computing devices for the simplest services (i.e. retrieving data from sensors or the
control of the actuators) helps to achieve the maximum resource usage efficiency,
lowering the final cost of the system.

 Scalability and Evolution. OOPAmI defines and implements a migration service.
Such migration can take place from: (1) software nodes to software nodes (with
different computing capabilities); (2) software nodes to hardware nodes and vice
versa. The migration service facilitates the management of a punctual increment of
the work load in the system, enabling the use of the whole available resources in
the system. Once again, a set of Intelligent Agents are in charge of reasoning the
better action in each scenario in order to provide the desired degree of quality of
service. The Multi-Agent Migration Service uses the above mentioned migration
service and a reconfiguration service to deploy the bitstreams on the
reconfigurable logic devices where necessary. New hardware designs and
algorithms can be incorporate to the system anytime.

 Dependability. Run-time failure management and security are also considered in
OOPAmI. Transient and permanent errors in electronic devices are handled using
different approaches: (1) utilization of replicas; (2) replacement of the affected node
(i.e. downloading a new bitstream that fixes the malfunction); and (3) movement
of the objects that run on the broken node. In OOPAmI these three scenarios are
transparent to the developers due to: (a) a special distributed location service with
extended capabilities; (b) a failure detection and notification service; and (c) a
persistence service which is used by the objects to periodically save its internal
state in order to be retrieved latter in case of failure.

 Software and Service Architecture. OOPAmI makes it use of the Distributed Object
Based Services (DOBS)4 that comprises several research projects within the ARCO
group. The first implementation of DOBS targeted home services and, after several
iterations it has evolved into a development and integration framework for AmI
services. The Multi-Agent Service Composer System relies on DOBS and a OWL
ontology to perform automatic composition of services.

4 http://arco.esi.uclm.es/dobs

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 31

 Design. A unified design flow for DOBS objects is proposed. DOBS objects can be
implemented on Wireless Sensor Network devices, mobile devices, computers or
hardware.

 Integration. From an integration point of view, objects unify the way services are
accessed which leads to better and low effort integration mechanisms.

 Business model. Nowadays, the role of different companies in the digital home
market (the prelude of real AmI environments) is reduced to the engineering of
costly projects regarding the control of smart building. Such projects are mainly
based on the concept of residential gateway which is totally opposite to the openness
principle demanded by AmI. It is important for AmI projection to open the market
to new actors establishing open architectures and protocols. Roles as “service
providers” or “resource providers” may then be possible so that a competitive
market can be established. In this line, OOPAmI is a unified middleware able to
interact with standard middlewares (i.e. CORBA, Internet Communication Engine)
which facilitates the integration of new services or devices from any vendor.

To help the reader to visualize and understand the numerous contributions of OOPAmI,
Table 1 summarizes its most relevant features and their relation with the requirements for
the best AmI platform.

OOPAmI platform features and
components

Application to AmI environments

 “Object” as the modelling
concept

 Abstracts the platform
 System-level focus
 Helps to cope with heterogeneity
 Offers the necessary semantics to

integrate services and devices
 Reusability and interoperability

 Multi-Agent Service Composer
System

 Automatic composition of
services

 Reconfigurable nodes Easy management of adaptive
systems

 Migration
 Performance and flexibility

 Event channels Platform-independent data
communication and acquisition

 Distributed Object Oriented
programming model

 Single programming model
 Easy development of algorithms

and applications
 Homogeneous view of the

system
 Automatic generation of

embedded code

www.intechopen.com

Ambient Intelligence32

OOPAmI platform features and
components

Application to AmI environments

 Low cost nodes
(microcontrollers)

 Flexibility
 Maximum resource usage

efficency
 Computational efficiency

 Multi-Agent Migration Service Scalability, evolution and
dependability

 Distributed Object Based
Services

 Automatic composition of
services

 Easy devlopment of services
 Unified design flow Design of services, hardware and

embedded software
 Interaction with standard

middlewares
 Openness

Table 1. Main OOPAmI features and their application to AmI platforms.

2. Previous work in middlewares for AmI

Due to the huge number of knowledge fields that AmI includes, there are many previous
works related with AmI hot topics (integrated circuits, artificial intelligence, etc.). However,
in this section we will only focus on those works regarding the middleware technology used
to overcome some of the problems in AmI environments.
The middleware has an increasing number of tasks associated in AmI environment, and its
design has to be carefully delimited to cope with all of them. Between these tasks we can
mention homogeneous access to AmI devices and resources, with independence of the
location, operating system, technology used, language used in the implementation, etc. of
the services.
Maybe one of the key points of the approach is the interoperability between different
technologies and services. This problem is not resolved yet. In the meanwhile some
technologies are called to play an important role in the AmI environments, and therefore
their integration must be considered:

 Radio Frequency Identification (RFID) starts to be a predominant technology on
the identification field and all related applications (e.g. vehicles fleet control, goods
tracing). RFID is also associated with applications that require basic information
storage (i.e. identification cards). RFID is becoming indispensable in applications
for user interaction. Usually, the RFID tag has scarce resources and existing
middlewares can only be supported by the reader (generally attached to a desktop
computer).

 Wireless Sensor/Actuator Networking (WSANS) is also another key technology in
the future of AmI environments. AmI requirements of monitorization and control
of the real environment makes use of WSANs as the interface to the real world.

 Body embedded devices. Currently, there is significant research in devices
attached to clothes, or even directly to the human body. Going beyond of body area
network, these devices supply data to the environment such as people health

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 33

indicators, preferences, and even emotional state that could hardly be extracted
with any other technologies (for example, video analysis).

 Vehicular Ad-hoc Networks (VANET) is another emerging field to integrate in the
AmI environment since the car constitutes our main mean of transport work and it
is part of our daily live.

Some approaches that try to solve the problem of heterogeneity have chosen the java
language (for being a multiplatform language) (Sacchetti et al, 2005) or XML and Web
Services for the same reason (Issarny et al, 2005), (Perumal et al, 2008), etc. However, web
services impose stronger requirements to the devices because they need to support a set of
protocols that some of the previously mentioned technologies are unable to support. In the
same way, Java requires its java virtual machine that, even in its more reduced version, is
too big for devices like wireless sensor networks devices, body embedded devices, etc.
Once again, we must highlight that all the technologies mentioned before (but VANET)
encompass devices with scare resources. This is why seamless integration of these
technologies requires a light middleware (see section 3.1).
On the other hand, a middleware for AmI environments must be enhanced with extra
responsibilities. It must provide advanced services and features to the developers, such as
the ones listed below:

 People and resource positioning services: several AmI scenarios require knowing
people location, in order to adapt its functionality.

 Automatic service composition: in a real AmI environment, the middleware should
compose services that are hard to predict.

 Dynamic discovery of new devices and services: An AmI environment should be
dynamically built upon the spontaneous appearance of devices and services., in
order to put them all to work together.

 Developer assistance. For a better acceptance of any middleware technology, a
simplified design flow based on a complete toolchain is recommended. One
example of a very important facility a middleware should provide is a simulation
platform. This simulation platform should emulate the devices, services, people
and the information flow of a real AmI environment. There are some works with
this idea in its aim, like for example (Maly et al., 2008), but usually they are not
associated to any middleware so the developers can only emulate standalone
algorithm with no interaction with emulated devices and services.

Most of the middlewares developed for AmI environments have not considered these and
other aspects (as those enumerated in section 1.1).
The IST Amigo (Sacchetti et al., 2005) project has developed a Java middleware based on the
OSGi platform (OSGi Alliance, 2006), extending the concept of residential gateway5. IST
Amigo middleware also supports the development of services using HTTP/SOAP remote
procedure calls. In our opinion, the role of a residential gateway has been encouraged by
telecommunication companies with the intention of promoting the client loyalty and
extending the service offer. The residential gateway approach has been shifted due the
success of other devices that can also play the role of residential gateway (i.e. mobile
phones, TV, etc.). The vision of a centralized point for service has definitely changed.

5A residential gateway is a single device that interconnects all networks (external and
internal) and devices in the environment.

www.intechopen.com

Ambient Intelligence34

As we argued before, supporting the Java Virtual Machine associated to JAVA, or the
protocol stack for HTTP/SOAP, imposes strong requirements to the devices that can be
integrated using a middleware. The middleware developed in the IST Ozone project
(Gelissen, 2005) is also based on web services developed in JAVA, sharing the same
problems than Amigo Middleware.
These web services-based middlewares use WSDL (Web Service Description Language), an
XML based language for service description. Nevertheless, although XML was designed
with human readability in mind, a non trivial service description is hard to understand and
use from a developer point of view. Service descriptions should be a natural action for
service developers, not a maze of syntactical artifacts (as it happens with WSDL). With this
principle in mind, our vision about service description simplifies WSDL based approaches
because: (1) we use a simpler language (IDL) for service description; (2) we decouple the
description of the interface from its attributes, simplifying the definition of complex devices;
(3) we provide tools for attribute modelling.
Agent oriented middlewares constitute another approach for AmI. The works presented in
(Wu, 2008) and (Marsa, 2006) are an exponent of this approach. In this type of works, the
authors generally try to model human behaviour, or apply artificial intelligence techniques
to AmI environments (Ramos et al, 2008) by means of software components called agents
(they are typically programmed using the Java language for agent implementation due its
possibility of serialization).
We have performed a short travel around what is done in the state-of the art in middlewares
for AmI. Many of them only propose partial solutions to some facets of the problem as
service composition, network interoperability or service discovery. Others do not even
consider important features demanded in AmI middlewares (integration of small devices).
We are looking for an integral approach for AmI development as we will describe in the
following sections.

3. Integration of heterogeneous devices in OOPAmI

In this section we are going to describe how OOPAmI addresses the heterogeneity problem
in AmI environments. One of the most remarkable features of our platform is the capability
of integrating devices of different nature based on the distribute object paradigm. As justified
in the introduction of this chapter, the concept of object provides the necessary semantic in
AmI environments to get interoperable heterogeneous nodes due to its capability to abstract
the implementation details of the network.
This approach is already present in many standard distributed object middlewares and it
has been proved to be useful in the design of new and challenging applications for
ubiquitous computing and ambient intelligence environments.
Nonetheless, embedding standard object middlewares require too much computing
resources in the target devices in order to implement the whole middleware protocol
features. The strict requirements imposed by this approach limit the kind of devices that can
be incorporated to the AmI network. For example, the facto obligation of an operating
system (i.e. to provide the access to the network interface) knocks out small devices with
enough capabilities to implement the object or service functionality. Current solutions do
not concern this matter and propose the utilization of oversized devices for the

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 35

implementation of simple nodes where most of the resources are assigned to the execution
of OS routines or unnecessary middleware services.
Conversely, OOPAmI allows the incorporation of low cost devices to the platform6,
removing the need of the OS and the middleware burden in the nodes without sacrificing
interoperability.
The principle behind this revolutionary approach can be summarized in the following
sentence: “Although it is important that each device looks like a distributed object, it is not essential
that they are actual distributed objects. If devices are able to generate coherent replies when they
receive redefined request messages then the system will work as expected”. (Villanueva et al. 2007).
Such principle is also applied in OOPAmI to another special kind of nodes called hardware
objects. A hardware object (HwO) is a custom integrated circuit that will perform a complex
task or implement a service.
The shift in the utilization paradigm of dedicated hardware in OOPAmI, is considering such
custom devices as autonomous entities in the network. Traditional approaches, view
dedicated hardware as slave accelerator units under the supervision of a master controller
(typically a microprocessor). Once again, the complexity of the infrastructure surrounding
the special hardware unit is almost entirely given to run the OS and middleware services to
provide interoperability. Thus, the cost of the supporting platform rises and so does the cost
of programming the embedded software.
To avoid the dependence of custom hardware in a processor-based computation node, we
have ported the kernel of a communication middleware onto a pure hardware
implementation. The resulting communication infrastructure eases the integration of HwOs
within the AmI network since they are able to understand the protocol messages of the
underlying middleware.
The remainder of this section is dedicated to explain the architecture, tools and methods that
enable small devices and custom hardware nodes to be incorporated in AmI application in a
seamless way. Thus, the resulting middleware platform that sustains the services above the
integration level is endowed with unforeseen features and devices in other commercial
solutions. To exemplify the concepts, methods, tools and prototypes developed to this end
we have chosen ZeroC ICE (Henning & Spruiell, 2008), an excellent CORBA like
middleware, but the same approach is also applicable to other middlewares.

3.1 Ultra low-cost nodes in AmI platforms
When a node in the AmI network just holds an application-specific server (i.e. read a
magnitude value from a sensor), the service, the whole communication engine and its API
can be handled by a special object implementation called picoObject. A picoObject lacks in a
local communication engine and it does not need of object adapters, marshalling routines,
etc. We just need to implement the message handling code for the middleware protocol
messages whose destination is an object placed at the device.
Nonetheless, for the rest of the network a picoObject behaves as a usual object. It provides a
network level interface without significant differences with respect to a standard object. In
our case, picoObjects are fully compliant with ICE protocol, the network level contract in
ZeroC ICE.

6 Since miniaturisation is a must to accomplish with the very unobtrusive hardware principle,
is mandatory to offer an integration means for low cost devices with a minimal footprint.

www.intechopen.com

Ambient Intelligence36

PicoObjects can also handle client-side communications using similar techniques. Client-
side messages are composed as a set of templates with just the bare minimum configurable
fields.
We have identified a minimum set of rules that must be followed in the development of
picoObjects in any target platform:

 Always be compliant with the standard message format for the communication
protocol.

 Only offer support to the simplest protocol version whenever interoperability is
not compromised.

 Do not offer support for common middleware services (e.g. Naming and Event
services), delegate such responsibilities to other nodes in the network.

 Always use a fully static implementation.
 Resident objects are always on. There is no way to activate or deactivate objects.

The simplest way to achieve a coherent behaviour for each picoObject is by means of a
message matching automata. In this context, the allowed set of messages that a certain object
understand constitute a BNF grammar defined by the following elements: (1) the message
format for the middleware communication protocol; (2) the identity of the object (a unique
identifier which is unique in the network); (3) the interfaces exported by the object. It
includes the signatures of the provided methods (name, arguments and return); (4) the
interfaces that must be inherited from the communication engine and implemented (i.e.
Ice::Object is case of ICE); (5) the data serialization rules; and (6) the constraints for the target
platform.
Using this information, we are able to automatically generate a fully functional parser
whose mission is to identify a whole request message. The corresponding user procedure is
automatically invoked and a reply message is generated when a matching happens. If the
parser fails to identify a valid method request, then the message is discarded.
Input and output messages are handled on-the-fly using a generated byte-stream processor
which saves memory since the incoming message has not even need cached by the device.
The request message is processed as the bytes arrive and the reply message is also generated
partially from replication of the incoming data. The last part of the reply message (the return
value) is generated by the user procedure for each method.
As a proof of the feasibility of our approach, we have developed several prototypes of the
picoObjects for two existing middlewares: the already mentioned ZeroC ICE and CORBA.
The collection of target platforms and languages used is varied and ranges from assembler
for Microchip PICs, Java on a standard embedded PC, Java on an embedded Dallas
Semiconductors TINI device, C on a standard embedded PC, C for a Zigbee CC2420
platform, etc.
Table 2 shows an extensive comparative between our picoObjects with equivalent
implementations in several commercial platforms. It is important to highlight that our
picoObject approach results into solutions that are two orders of magnitude (considering the
OS and libraries even more) smaller than their counterparts using commercial solutions.

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 37

Middleware Client Server (node) Other Platform
 nORB - 509000 Libs + OS PC / Linux
 UIC 29000 35000 Libs + OS WinCE / SH3
 UIC 16000 - Libs + OS Palm
 LegORB 6000 - Libs + OS Palm
 MQC 14590 22110 JVM + OS TINI
 UORB 45000 45000 JVM + OS Unknown
 Maté - 16044 OS MICA / TinyOS
 TinyDB - 58000 OS MICA / TinyOS
 TinyLime - 16000 OS MICA / TinyOS
 SensorWare - 237000 OS IPAQ / Linux
 Impala - ≈ 18000 - Zebranet
 WSP - 27278 - Unknown

picoObjects
 ICE 2 914 3092 - PIC16F690 / asm
 CORBA 2 640 2962 - PIC16F690 / asm
 ICE - ≈ 6000 OS PC / Linux / C
CORBA - ≈ 5000 OS PC /Linux / Java
CORBA - ≈ 4096 JVM + OS TINI /Java
CORBA - ≈ 5500 OS PC / Linux / C

Table 2. Minimum server and client sizes on embedded middlewares (the values are
expressed in bytes).

Fig. 1. PicoObject development flow.

www.intechopen.com

Ambient Intelligence38

The development of picoObjects is supported on OOPAmI by a set of tools and languages
that can be used as facilitators by the application developers and embedded code
programmers. Figure 1 depicts the whole development flow of picoObjects and the
dependencies between the different actors in this process.
First, the distributed application architect must specify the objects present in the system and
their relations. Such specification does not only refer to the objects that are going to be
implemented as picoObjects in the device but also to those objects that have any relation
with them. An interface description language such as IDL or SLICE is used to this end.
Along with the operations supported by the objects, it is necessary to provide the object
identifiers and the type of relation existent between the picoObject and other objects. For
example, a relation cause-effect (i.e. when a picoObject receive a message of type T from X,
then reply with a message of type M) or temporal relations (i.e. timers, send periodically a
message of type T which is useful for announcement purposes). The IcePick language has
been specifically defined for this purpose.
Then, the lpkc compiler collects all this information and produces a platform independent
definition of the automata (FSM bytecode) that is able to interpret the middleware messages
relevant to a picoObject. The automaton, the device restrictions and the implementation of
the objet behaviour (provided by the firmware developer) are the inputs for a compiler
written in C which produces the final implementation of the picoObject.

3.2 Custom hardware nodes in AmI platform
As we introduced in the beginning of this section, we have versioned an implementation of
the system-level middleware entirely in VHDL (Barba et al., 2007). The very first
consequence of this fact is that the integration of pure hardware actors7 in AmI
environments is performed in a seamless way.
In the various demonstrators we have built to prove the transparent communication
between our hardware nodes and external components, we take as the reference the ZeroC
ICE object-oriented commercial middleware widely used in the industry.
The base architecture of a hardware node in OOPAmI is shown in Figure X and comprises:

 The objects, implemented as hardware units. A single node can group several of
this HwOs, enabling resource sharing and thus, reducing the cost of the final
implementation. HwOs can be implemented as static objects or dynamic objects
using reconfigurable logic. Dynamic objects can be instantiate and evicted into the
reconfigurable area at run time. All the tasks concerning the management of the
reconfiguration process are performed by the Reconfiguration of the middleware.

 The External Object Adapter (EOA). It provides connectivity with external objects
and/or systems. One side of the EOA depends on the component that acts as the
bridge with the external network (Remote Network Interface) so it has to be hand
made. However, on the side interacting with the local on-chip network (if it is
present), the control logic is fully customizable and generated in an automatic way.

 The interconnection fabric. When there is more than one HwO embedded in the
node, the in-chip communication infrastructure allows the connection of the HwOs

7 The presence of a processor, running the operating system or a software controller routine
is optional.

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 39

with the EOA (if not, such connection is done through a point to point link). Also,
the HwOs may use the bus, Network-on-Chip or any communication architecture
present inside the chip to interact.

In other approaches, since a common communication infrastructure is missing, on-chip
functionality may only be accessed from off-chip components using an ad-hoc interface that
exists only if it has been predicted by the designer.

The External Object Adapter
The EOA has mainly two duties, namely: 1) translates the ICE object identifiers and
operations (strings) into internal local addresses; and 2) adapts the ICEP (ICE protocol)
message format to the in-chip message format. Figure 2 represents the place that the EOA
occupies in the hardware node architecture. Next, we detail the role of each functional unit
using the two possible communication scenarios:

 Incoming message treatment. The packet analyzer examines the incoming frames
and throws away those that are not valid ICEP messages. The UDP/TCP
listening ports and the allowed sources (Internet Protocol addresses) can be
configured in the EOA. The packet sequencer module internally caches some parts
of the ICEP message using the in-progress request info memory in order to build a
later response message. Finally, the packet sequencer injects the message body
“as is” without pre-processing the data because the total compatibility of the
coding rules (as we detail below). The target HwO is addresses using the
information maintained by the external routing table (ERT), the packet analyzer
uses it to translate the ICE identifiers.

Fig. 2. OOPAmI hardware node architecture.

 Outgoing message treatment. When a in-chip transaction is addressed to an

object that is not implemented in the hardware node (i.e. “Object2” in figure 2)
the EOA routes the traffic to the external network. The sequencer fills a frame

www.intechopen.com

Ambient Intelligence40

header template (it depends on the external network packet format) with the
valid ICE identifiers, external network address, etc. The needed information can
be retrieve from the ERT (for a request) or the data previously cached (for a
response). Finally, the frame is sent throw the remote network interface.

Hardware Objects (HwOs)
A HwO is the logic that implements the functionality of the equivalent software object plus
the logic of the wrappers (the hardware version of classic proxies and skeletons) that are in
charge of translating in-chip transactions in local invocations to the HwO. We intentionally
decoupled communication from behaviour (following the Remote Method Invocation
semantics) to make HwO modules reusable in future designs. By isolating HwOs from
communication implementation details we make them immune to unforeseen changes in
the communication infrastructure.
Both proxies and skeletons agree in how method invocations translate in a sequence of low
level actions (write and read primitives8) over the interconnection architecture to activate
the execution of the operation. Actually, at the logical level a method call results into an
exchange of message between the initiator and the target (HwOs can be either initiators or
targets of a method invocation).
The RMI protocol for hardware implementations defines the format of the message to be
sent and how to code the arguments of both invocations and results. For example, the
header fields of a message are combined to form the address of the destination of a
transaction.

Fig. 3. Hardware and software node integration in OOPAmI.

8 They are basic services offered by most of the buses so that we do not limit the platform
implementation to a concrete technology.

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 41

But what really provides the inter-component communication semantics with standard ICE
software clients or server as well as with other hardware nodes is the use of the same data
type system and coding rules. HwOs support all basic types (bool, short, int, float, etc.) plus
structures, sequences (vectors) of a fixed size and any combination of them. This makes our
hardware implementation of the middleware 100% compatible with a well known subset of
ICE features. The encoding rules defined by ICE are quite simple in order to propagate such
simplicity to the architecture elements that will manage the marshalling and unmarshalling
processes (proxies and skeletons). This simplicity allows reaching an efficient component
design with the minimum overhead.
Thus, the format of the body messages remains unchanged, no matter the nature of the
communicating objects, which means that a target HwO is not able to distinguish whether
the source of the invocation is a SW or another HwO.
In Figure 3, four interaction scenarios are depicted involving hardware software nodes. It is
shown how existing on-chip objects can communicate with SW servers (blue line) and server
objects implemented (black and purple lines) as HwOs. Also, HwOs can be accessible from
outside (yellow and red lines).

Development flow
Along with the definition of an ICE compatible hardware platform architecture, we have
developed a design flow to easily create and integrate HwOs. Figure 4 shows the workflow
of the proposed HwO generation process. The input to this process is an object interface
description, written in an interface description language (SLICE in the case of ICE), just like
the other objects will see the hardware component in the system. This information is used to
generate: (1) the on-chip communication infrastructure and (2) the final hardware object
implementation.

Fig. 4. Design flow of HwOs in OOPAmI

www.intechopen.com

Ambient Intelligence42

This HwO implementation can be the result of an integration process, reusing existing
designs implementing the required functionality. A new, hand coded chip implementation
is needed when no reuse opportunities are present for the current application.
Since we have standardized the way the functionality of a HwO is invoked (HAP, the HwO
Access Protocol9), we are able to automatize the generation of the proxies and the skeletons (a
critical step in the hardware design flow). The final implementation is highly optimized to
fit the low-cost requirements while keeping the process automatic to save design time.

4. Middleware Services and advanced features

In this section, we briefly describe those services and advanced features that differentiate
OOPAmI from other middlewares. The AmI service developer point of view drives the
middleware design process. We use the desirable characteristics that a global service
development process should have as the guidelines for middleware design (with
independence of software engineering methodology applied).

4.1 Information model
Firstly, the developer needs to know what services from the middleware can use in order to
retrieve the information is going to be consumed by a new service. In the same way, only in
the case the new service generates information, the developer has to know how this
information must be generated (e.g. the format of the data and how the data is exported to
the rest of services). Also the developer should know the interface to access other services
and their attributes (including, valid values and format for these attributes).
Our information model includes the items listed above It is basically a taxonomy of services
(specialization of generic services) that includes attributes for each service. This taxonomy is
like our yellow pages of services and permits developers to lookup for service classes and its
attributes. Each service instance running in an AmI environment belongs to a class
expressed in the taxonomy and instantiates the attributes of this class. We consider this
taxonomy as a mean to establish a common nomenclature for AmI service developers
(aiming the same goal POSIX interfaces play in operating systems).
If we want to develop a new service (for example, modelling a new type of camera, light,
virtual glasses, etc.), we should look up in the taxonomy, find the class that better fits such
new service and follow the nomenclature throughout the rest of the service development
process.
Ontologies are used to express the taxonomy because it is a powerful tool to visually
organize information and the existent relations between the entities in the information
model. Along with our ontology we define a core of basic interfaces that are used to model
any service in the ontology. By aggregation, we are able to generate more complex interfaces
that offer read and write operations for each attribute. The Interface Definition Language
(IDL) allows us to express interfaces in a clear language (from the developers point of view)
avoiding the complexity of other languages (for example WSDL for web services).
Some services need more advanced interfaces than read/write primitives. In many cases,
they follow standards adopted by the industry as in the case of AVStreams from Object

9 This also includes the physical interface of the hardware module (Jesús B. et al. IPSOC
2006).

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 43

Management Group (OMG, 2000a) for multimedia stream configuration, Mobile Location
Protocol (Open Mobile Alliance, 2001) for spatial coordinate information and property
services (OMG,2000b) for attribute management (used when low cost devices has to
delegate its management to more powerful devices).
A set of basic events is also specified in the information model. With the classification of the
events that can be generated in an AmI environment, the service developers have a common
reference that can be use to orchestrate common behaviours. Of course, not all services will
consume or generate all events. The purpose of this definition is to let the designer know a
list of common events that a service could receive or generate.
The next step is to know how a service can be accessed from other services. Since we use an
object model, each service has a reference which is actually a pointer to the object that
implements such service. This mechanism does not differ from traditional object oriented
languages but the need to get the service reference before use it.

4.2 Abstract Service Discovery Protocol (ASDF)
To allow developers to find any reference to any service in the AmI environment (note that
the services are deployed in a highly distributed environment) we have defined an interface
for service announcement and discovery. This ASDF interface is the result of thorough
study of the service discovery protocols (SDP) most widely used in the industry and looks
as follows:

module ASD {

dictionary<string , Object> PropDict;
interface iListener {

void adv(Object_ prx , iProperties : : R_ prop) ;
void bye(Ice : : Identity oid) ;

} ;
interface iSearch {

void lookup(Object_ cb , PropDict query) ;
} ;

} ;

As the reader can see the interface is clear and simple to understand (the same interface in
WSDL would take almost one page in XML with multiple references).
There are two interfaces that conforms the ASDF definition: iListener for announcements
and iSearch to lookup new devices supporting specific services. It is not mandatory for a
device to implement the two interfaces (for example a basic sensor probably only sends
announces to the environment and it does not need to lookup for nothing).
Those services which send an advertisement about its presence (invoking the adv operation)
attach to this invocation their references (prx) and a reference to the service that manages its
properties. In the case of services conceived to run in powerful devices, the interface
iProperties can be instantiated. The properties interface defines the capability of a device to
manage its own attributes. If this interface is not present (i.e. in the case of less powerful
devices) such responsibility is delegated to other object in the system so a reference to it
must be provided (the process is transparent to the clients). The later scenario is very
common since it is highly flexible.
When a service invokes an adv operation, it propagates an event to a well known event
channel (labelled as “ASDA”) where other services in the AmI environment have previously

www.intechopen.com

Ambient Intelligence44

subscribed. The management of this event channel is provided by the middleware and can
be configured with replication (for fault tolerance), with QoS parameters and federated
associations for scalability purposes.
In the case of a lookup operation, the service interested in finding other services creates a
temporal event channel. Then, the services that fit the properties included in the query
parameter send an advertisement. We offer the option of a repository of services that
receives all adv announcements and answers to lookup operations.
With ASDF, the developer does not need to configure any fixed reference to other services and
only needs to lookup for the desired services. Sending advertisements to well event channels is
the mechanism implemented to offer the functionality of a service to the rest of environment.

4.3 AmI simulator
Testing non trivial AmI services can be difficult due to the heterogeneity of possible AmI
environments and situations that can take place in this environment. One of our actual
ongoing works is the creation of an integrated simulation environment including:

 A set of dummy services that implement real interfaces.
 An AmI Specification Language (AmISL) to model:

o The physical environment with the device placement.
o Human entities and their behaviour inside the virtual environment

(movements, actions and interactions activities).
o The state of the environment (temperature, light, state of doors, etc.)

 A simulation engine that interprets the actions expressed in AmISL. For example,
the synthetic data generation simulating sensor activity.

 A log tool that records the information of the service that is being tested, focusing
on its interaction with the dummies services.

Fig. 5. AmI simulation engine data flow

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 45

In figure 5 we can see the information flow involved in the simulation process.
Once the service has been simulated and tested, the developer needs to deal with problems
like how do I deploy/stop/play/actualize my service in the environment or what do I have to do to
obtain the initial references to the basic middleware services (i.e. event channel service).

4.4 BootStrap service
The bootstrap service has been developed for easy integration of services and devices. When
a device is begin deployed in any environment, it is necessary to do some tasks before
offering the functionality to the rest of services in the AmI environment. With independence
of the procedure used by the device to get network connectivity, the bootstrap service starts
automatically a broadcast query looking for an entity called environment manager, this
environment manager maintains the references to basic services. Each device runs a service
manager, a directory of the services that run in this device.
The environment manager runs in a node labelled as the coordinator. The bootstrap service is
a distributed algorithm for choosing the coordinator and its replicas. Each candidate replica
can promote to the coordinator role when the coordinator fails.
When the bootstrap service of a new device starts to run, the bootstrap service tries to identify
the coordinator of the environment and gets the reference to the environment manager.
With this reference the service manager is then set up, the references to the basic middleware
services are retrieved and the local services start to run.
As in the ASDF service, the bootstrap service tries to minimize configurations procedures for
service and device integration using a Place&Play philosophy, similar to the successfully
Plug&Play followed by the hardware industry.

4.5 Transparent dynamic reconfiguration
The reconfiguration service in our middleware has the capability of instantiating new
hardware services in a transparent manner (Rincón et al., 2009).
A reconfiguration procedure implies the modification of the physical interface of the
module to be reconfigured, so we need isolate the reconfigured area. Following the
distributed object oriented paradigm, the hardware version of proxies and skeletons enable
us to have a fixed interface (the one with the bus or network interface) so we can instantiate
into any reconfigurable area.
Other problem related with reconfiguration is state persistence. Due that we know the
variables that have all information related with the state of the object and its size (at design
time) we know the information that we have to save and restore.
We extend the hardware adapters that translates bus read and write operations into object
invocations with the following operations: stop, start, getState, setState and initState which are
used for start, stop, get and set the state and reset a hardware object respectively.
Inside of a hardware node with reconfiguration capability (for example, an FPGA) we define
a set of entities and services for a transparent reconfiguration procedure:

 Memory Allocation Service: this service is a centralized memory management entity
for the whole system that presents a well known interface, completely independent
from a concrete implementation technology or memory hierarchy.

 Object Location Service: the location service contains a table of references where
hardware object identities are linked with valid endpoints.

www.intechopen.com

Ambient Intelligence46

 Object Factory: the factory service physically instantiates an object into a
reconfigurable area. We can create objects of any type at run time providing its
class type and a reference to the memory location of the partial bitstream (the
binary image of the code).

 Reconfiguration controller: this entity has the responsibility of run-time creation and
destruction, including object state persistence management. This service is built
upon the three basic ones described before (memory allocation, location and
factory).

Each of these services are objects themselves. This means that they can be implemented as
HwOs or software entities. Even due to the external communication capabilities of a
hardware node the reconfiguration process can be initiated and monitored from outside the
chip. A possible organization will leave the reconfiguration controller and location service
outside the hardware node whereas the factory and memory allocator services are attached
to the hardware implementation for the best performance.
The reconfiguration process can take place explicitly or implicitly. The former is the case of
an implementation of a migration service (or a application) that schedules the instantiation
of HwOs and their movement across different hardware nodes. The later happens when a
method of a dynamic HwO is invoked and it is not loaded in any reconfigurable area. In this
case, the reconfiguration controller takes the control and instantiate the HwO without the
intervention of the application that generated the invocation.

4.6 Location service
There are several position systems based in different technologies (Wifi and Bluetooth cells,
RFID technology, etc.) for indoor scenarios. These systems can be combined to potentially
improve the accuracy of positions of people present in the environment. Our location
service combines all these systems (and the outdoor facto standard, the Global Position
System) with the Mobile Location Protocol (Open Mobile Alliance, 2001) in order to provide a
service for people location and identification. We define a set of interfaces to add new
positioning systems and a set of rules to combine the information coming from such
systems.
For example, the Bluetooth interface present in mobile phones can give us a clue about the
area where the owner of the mobile phone is present. We can also combine the Bluetooth
information with movement sensors, spread in the environment, in order to improve the
accuracy of our location service. The defined interfaces enable us to use events from the
environment as triggers to notify variations in the scene. For example when a door is
opened or closed, a desktop session in a computer begins, the turning on or turning off of
devices, detection of faces, etc.
In the location service design, we emphasize the modularity of the system in such a way
that we use plug-ins to provided new functionality and “inference” rules about location
coordinates.

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 47

4.7 Service Composition
Providing service composition in an autonomous manner is not trivial, and it is not achieved
yet without involving users, at some level. The approach integrated in OOPAmI proposes a
multidisciplinary approach, in the shape of a layered architecture. Founded on the
aforementioned middleware platform, a multi-agent system is deployed on top of it. These
intelligent agents retrieve information from the context, in order to provide the reasoning
engine with the context information required to provide an adequate response to the current
situation. This response will be provided in terms of the basic services, that when combined
in a plan, will outcome the composite service.
The combination of these different technologies is successfully achieved by counting on a
unique semantic model, implemented by the middleware framework, the multi-agent
system and the reasoning engine. This semantic model, or ontology for a service-oriented
architecture, basically considers the following entities: device, service, action, object, and
property. Devices provide services, and are described in terms of properties, such as their
location, or provided features. Services are described in terms of actions performed over
objects, and also hold properties.
An OWL description of this semantic model is translated into ICE interfaces, so that all
services provide a common access method. The same OWL description is used by the multi-
agent system, not only for message exchange, but for interacting with the middleware
services. Finally, the reasoning engine resorts to the same semantic model to describe the
domain knowledge for the deployed context. Therefore, the results of the inference and
search processes can be carried out by the multi-agent system.

5. Conclusions

In this chapter we have shown our middleware guidelines for a holistic approach to AmI
environment development. The object oriented paradigm drives the development of the
middleware services making it easier their utilization and modelling. Besides, the
integration of heterogeneous devices is performed in a seamless way.
The completeness of our approach includes service development support, service discovery
facilities, a tool-chain for the most complicate tasks in the case of HwOs and embedded
software generation, a simulation framework and more.
Current work is focused on the extension of the pool of services that can be offered to the
industry and service developer’s community in order to increase the capabilities of the
middleware.

www.intechopen.com

Ambient Intelligence48

6. References

Barba J.; Rincón, F.; Moya, F.; Dondo J.; Villanueva, F.J.; Villa D. & López J.C, (2007). OOCE:
Object-Oriented Communication Engine for SoC Design. Proccedings of 10th
EUROMICRO Conference on digital System Design, pages 296-302, ISBN: 978-0-7695-
2978-3, August 2008.

Friedewald, M. & Da Costa, O., (2003). Science and Technology Roadmapping: Ambient
Intelligence in Everyday Life, technical report, JRC/IPTS European Science and
Technology Observatory. Available online at:: http://www.cybertherapy.
info/pages/AmIReportFinal.pdf (last visit Sept. 15th 2009)

Gelissen, J. (205). IST-Ozone Project Final Report, technical report, Available at :
http://www.hitech-projects.com/euprojects/ozone/public_docs/ozone-phr-
19Jan05-final-report-jg.pdf (last visit Sept. . 15th 2009).

Henning, M. & Spruiell, M., (2008). Distributed Programming with ICE, version 3.3. At
http://www.zeroc.com (last visit Sept. 15th 2009).

Issarny, V. ; Sacchetti, D. ; Tartanoglu, F. ; Sailhan, F. ; Chibout, R. ; Levy, N. & A. Talamona
(2005). Developing Ambient Intelligence Systems: A Solution based on Web
Services. Journal of Automated Software Engineering, Vol. 12, Issue 1, pages 101-137,
January 2005, ISSN : 0928-8910.

IST Advisory Group (2003). Ambient Intelligence: from vision to reality, technical report. At:
http://www.cordis.lu/ist/istag-reports.htm (last visit Sept. 15th 2009).

Maly, I. ; Curin, J. ; Kleindienst, J. & P. Slavik. Creation and Visualization of User Behavior
in Ambient Intelligent Environment. Proccedings of 12th International Conference
Information Visualization, pages 497-502, ISBN: 978-0-7695-3268-4, July 2008, IEEE
Computer Socity, Whashington DC.

Marsa, I. ; López-Carmona M.A & Velasco, J. R. (2007). A hierarchical, agent based service
oriented architecture for smart environments in Service Oriented Computing and
Applications, Springer, ISSN : 1863-2386, London.

Object Management Group (2000). Audio/Video Stream Service. OMG Document formal/00-
01-03.pdf, 2000a.

Object Management Group (2000). Property Service Specification. OMG Document formal/00-
06-22.pdf, 2000b.

Open Mobile Alliance (2001). Mobile Location Protocol Specification. Document Location
Interoperability Forum TS 101 Specification, version 3.0.0. Available online at:
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html (last visit
Sept. 15th 2009).

OSGi Alliance (2006). OSGi Service Platform: Core Specification, edition 4.0.1 Release 4, July
2006. At : http://www.osgi.org/Release4/Download (last visit Sept. 15th 2009).

Perumal, T. ; Ramli, A.R. & Yew Leong, C. (2008). Design and Implementation of SOAP-
Based Residential Management for Smart Home Systems. IEEE Transactions on
Consumer Electronics, Vol. 54, Issue 2, pages 453-459, ISSN : 0098-3063.

Ramos, C ; Augusto, J.C. & D. Shapiro (2008). Ambient Intelligence- the next step for
Artificial Intelligence. IEEE Intelligent Systems, Vol. 23, Issue 2, pages 15-18, March-
April 2008, ISSN : 1541-1672.

 Rincón, F.; Barba J.; Moya, F.; López J.C & Dondo J. (2009). Transparent Dynamic
Reconfiguration as a Service of a System-Level Middleware, in Lecture Notes in
Computer Science, Springer, ISSN: 0302-9743, Berlin.

www.intechopen.com

Services Everywhere: an Object-Oriented Distributed Platform
to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments 49

Sacchetti, D. ; Bromberg, Y.-D. ; Georgantas, N. ; Issarny, V. ; Parra, J. & R. Poortinga (2005).
The Amigo Interoperable Middleware for the Networked Home Environment. At :
http://middleware05.objectweb.org/WSProceedings/demos/d4_Parra.pdf (last
visit Sept. 15th 2009).

Villanueva, F.J.; Moya, F.; Santofimia M.J.; Rincón, F.; Villa D.; Barba J. & López J.C, (2009).
Towards a Unified Middleware for Ubiquitous nad Pervasive Computing,
Inernational Journal of Ambient Computing and Intelligence, Vol. 1, Issue 1, pages 53-63,
ISSN: 1941-8647.

Wu C. & Fu, L. (2008). A Human-System Interaction Framework and Algorithm for
UbiComp-Based Smart Home. Proceeding of 2008 Conference on Human System
Interaction, pages 257-262, ISBN: 978-1-4244-1542-7, May 2008.

www.intechopen.com

Ambient Intelligence50

www.intechopen.com

Ambient Intelligence

Edited by Felix Jesus Villanueva Molina

ISBN 978-953-307-078-0

Hard cover, 144 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

It can no longer be ignored that Ambient Intelligence concepts are moving away from research labs

demonstrators into our daily lives in a slow but continuous manner. However, we are still far from concluding

that our living spaces are intelligent and are enhancing our living style. Ambient Intelligence has attracted

much attention from multidisciplinary research areas and there are still open issues in most of them. In this

book a selection of unsolved problems which are considered key for ambient intelligence to become a reality,

is analyzed and studied in depth. Hopefully this book will provide the reader with a good idea about the current

research lines in ambient intelligence, a good overview of existing works and identify potential solutions for

each one of these problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jesus Barba, Felix Jesus Villanueva, David Villa, Francisco Moya, Fernando Rincon, Maria Jose Santofimia

and Juan Carlos Lopez (2010). Services Everywhere: an Object-Oriented Distributed Platform to Support

Pervasive Access to HW and SW Objects in Ambient Intelligence Environments, Ambient Intelligence, Felix

Jesus Villanueva Molina (Ed.), ISBN: 978-953-307-078-0, InTech, Available from:

http://www.intechopen.com/books/ambient-intelligence/services-everywhere-an-object-oriented-distributed-

platform-to-support-pervasive-access-to-hw-and-sw

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

