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Abstract—Ubiquitous deployment of low-cost smart devices
and widespread use of high-speed wireless networks have led
to the rapid development of the Internet of Things (IoT). IoT
embraces countless physical objects that have not been involved
in the traditional Internet and enables their interaction and
cooperation to provide a wide range of IoT applications. Many
services in the IoT may require a comprehensive understand-
ing and analysis of data collected through a large number
of physical devices that challenges both personal information
privacy and the development of IoT. Information privacy in
IoT is a broad and complex concept as its understanding
and perception differ among individuals and its enforcement
requires efforts from both legislation as well as technologies. In
this paper, we review the state-of-the-art principles of privacy
laws, the architectures for IoT and the representative privacy
enhancing technologies (PETs). We analyze how legal principles
can be supported through a careful implementation of privacy
enhancing technologies (PETs) at various layers of a layered
IoT architecture model to meet the privacy requirements of the
individuals interacting with IoT systems. We demonstrate how
privacy legislation maps to privacy principles which in turn drives
the design of necessary privacy enhancing technologies to be
employed in the IoT architecture stack.

Index Terms—Internet of Things, privacy, privacy by design,
privacy enhancing technologies, PET, privacy laws, GDPR

I. INTRODUCTION

UBIQUITOUS deployment of low-cost smart devices and
widespread use of high-speed wireless networks have led

to the rapid development of Internet of Things (IoT). IoT
embraces countless physical objects embedded with Radio
Frequency Identification (RFID) tags, sensors and actuators
that have not been involved in the traditional Internet and
enables their interaction and cooperation through both tradi-
tional as well as IoT-specific communication protocols [1],
[2]. Gartner [3] estimates that around 20.4 billion ‘things’
will be connected by the year 2020. These pervasive and
heterogeneous devices that interact with the physical and
digital worlds have the potential to significantly enhance the
quality of life for individuals interacting with the IoT. With
smart home and wearable devices, users obtain seamless and
customized services from digital housekeepers, doctors and fit-
ness instructors [4]. Smart building and smart city applications
provide an increased awareness of the surroundings and offer
greater convenience and benefits to the users [5], [6].

Many services offered by IoT may require a comprehen-
sive understanding of user interests and preferences, behavior
patterns and thinking models. For instance, in the Christmas
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special episode of the British series ‘Black Mirror’, the soul of
a woman is copied to serve as the controller of her smart home,
which can wake up the woman with her favorite music and
breakfast as the copy knows her as no one else can [7]. Such
a digital copy, which could be hard to create in the traditional
Internet, is relatively easier to be generated in the IoT era.
While some individuals prefer the convenience of the services,
some others may be concerned about their personal data being
shared [8]. In 2013, the IEEE Internet of Things survey
showed that 46% of respondents consider privacy concerns
as the biggest challenge for IoT adoption [9]. Large scale data
collection in the IoT poses significant privacy challenges and
may hamper the further development and adoption by privacy-
conscious individuals [10].

Information privacy is a broad and complex notion as its
understanding and perception differ among individuals and
its enforcement requires efforts from both legislation and
technologies [5], [11]. Privacy laws help to enforce compliance
and accountability of privacy protection and make privacy
protection a necessity for every service provider [11]. Privacy
enhancing technologies (PETs) on the other hand support
the underlying principles guided by privacy laws that enable
privacy protection strategies to be implemented in engineer-
ing [12], [13]. In this paper, we study the privacy protection
problem in IoT through a comprehensive review by jointly
considering three key dimensions, namely the state-of-the-art
principles of privacy laws, architectures for the IoT system and
representative privacy enhancing technologies (PETs). Based
on an extensive analysis along these three dimensions, we
show that IoT privacy protection requires significant support
from both privacy enhancing technologies (PETs) and their
enforcement through privacy legislation. We analyze how legal
principles can be supported through a careful implementation
of various privacy enhancing technologies (PETs) at various
layers of a layered IoT architecture model to meet the privacy
requirements of the individuals interacting with IoT systems.
Our study is focused on providing a broader understanding of
the state-of-the-art principles in privacy legislation associated
with the design of relevant privacy enhancing technologies
(PETs) and on demonstrating how privacy legislation maps to
privacy principles which in turn drives the design of necessary
privacy enhancing technologies to be employed in the IoT
architecture stack.

We organize the paper in the following manner. In Sec-
tion II, we analyze the principles of privacy laws and present
the privacy-by-design strategies that can adopt the general
principles to engineering practice. In Section III, we introduce
the IoT system using a layered reference architecture and
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describe the functionalities and enabling technologies of each
layer. We discuss how privacy-by-design strategies can be
integrated into the reference architecture. In Section IV to
Section VI, we introduce the state-of-the-art privacy enhancing
technologies (PETs), analyze their suitability for privacy-by-
design strategies and discuss the pros and cons of their use
and implementation in each IoT layer. In Section VII, we
discuss privacy issues in IoT applications. Finally, we present
the related work in Section VIII and conclude in Section IX.

II. PRIVACY

Privacy is a complex and a subjective notion as its un-
derstanding and perception differ among individuals. In this
section, we review the definitions of privacy in the past,
introduce the privacy laws and analyze the state-of-the-art
privacy legislation. We then introduce the privacy-by-design
(PbD) strategies that facilitate the design of privacy-preserving
systems satisfying the legal principles.

A. Definition

As far back as the thirteenth century, when the eavesdrop-
pers were claimed to be guilty, the notion of media privacy
had come into being [14]. Then, with the technical and social
development, the notion of privacy successively shifted to
territorial (eighteenth century), communication (1930s), and
bodily privacy (1940s) [11]. Finally, in the 1960s, it was
the rise of electronic data processing that brought into being
the notion of information privacy (or data privacy) that has
achieved lasting prominence until now. In 1890, Warren and
Brandeis defined privacy as ‘the right to be let alone’ in
their famous article ‘The Right to Privacy’ [15]. After that,
many privacy definitions have been emerging unceasingly,
but the one proposed by Alan Westin in his book ‘Privacy
and Freedom’ has become the base of several modern data
privacy principles and law [11]. Westin defined privacy as
‘the claim of individuals, groups, or institutions to determine
for themselves when, how, and to what extent information
about them is communicated to others’ [16], which mainly
emphasized the control of the data subjects over their data.
The authors in [10] argued that Westin’s definition was too
general for the IoT area and they proposed a more focused
one that defines the IoT privacy as the threefold guarantee
including ‘awareness of privacy risks imposed by smart things
and services surrounding the data subject; individual control
over the collection and processing of personal information
by the surrounding smart things; awareness and control of
subsequent use and dissemination of personal information by
those entities to any entity outside the subjects personal control
sphere’.

B. Legislation

Privacy laws form a critical foundation in the design of any
privacy-preserving system. As the cornerstone of most modern
privacy laws and policies, the Fair Information Practices (FIPs)
are a set of internationally recognized practices to protect
individual information privacy [17]. The code of FIPs was

born out of a report from the Department of Health, Education
& Welfare (HEW) [18] in 1973 and then adopted by the US
Privacy Act of 1974, the most famous privacy legislation in the
early stage. The original HEW FIPs consist of five principles
that can be summarized as [18]:

1. No secret systems of personal data.
2. Ability for individuals to find out what is in the record,

and how it is used.
3. Ability for individuals to prevent secondary use.
4. Ability to correct or amend records.
5. Data must be secure from misuse.

However, as a federal law, the US Privacy Act of 1974 only
works with the federal government. There is no general infor-
mation privacy legislation that covers all states and areas [19].
As a result, the FIPs always act as the guideline of the
various privacy laws and regulations ranging from different
organizations (e.g., Stanford University [20], Department of
Homeland Security [21]) to different areas (e.g., HIPAA [22],
COPPA [23]).

In 1980, based on the core HEW FIPs, the Organization
for Economic Cooperation and Development (OECD) adopted
the Guidelines on the Protection of Personal Privacy and
Transborder Flows of Personal Data [24]. It is considered a
historical milestone as it represented the first internationally-
agreed upon privacy protection [19]. The eight principles
extended from the five basic FIPs have been the foundation of
most EU privacy laws later. They can be summarized as:

1. Collection Limitation: Collection should be lawful,
fair and with knowledge or consent of the data subject.

2. Data Quality: Personal data should be purpose-
relevant, accurate, complete and kept up-to-date.

3. Purpose Specification: Purposes should be specified
earlier than collection and complied with.

4. Use Limitation: Personal data should not be dis-
closed, made available or used for non-specified pur-
poses.

5. Security Safeguards: Personal data should be pro-
tected by reasonable security safeguards.

6. Openness: There should be a general policy of open-
ness about developments, practices and policies with
respect to personal data.

7. Individual Participation: An individual should have
the right to access his data, be timely informed on
data collection, be given disputable reason for denied
lawful request and challenge his data to have the data
erased, rectified, completed or amended.

8. Accountability: A data controller should be account-
able for complying with measures which give effect
to the principles stated above.

Although the OECD guidelines achieved worldwide recogni-
tion, it was nonbinding. It was not until 1995 that the EU
passed Directive 95/46/EC [25] and the OECD guidelines were
incorporated into an influential privacy law for the first time.
Unlike the US, the EU dedicated to enforcing the omnibus
privacy laws to comprehensively protect individual data in its
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member countries through not only the principles, but the
restriction on the data transference with non-EU countries,
which in turn has influenced the development of the privacy
laws in the non-EU countries and the appearance of the data
exchange regulations such as the Safe Harbor [26] and its
later replacement, the EU-US Privacy Shield framework [27].
Recently, as the successor of Directive 95/46/EC, the General
Data Protection Regulation (GDPR) [28] was adopted by the
EU in 2016 and it has come into force in 2018. In the
GDPR, most principles are covered by the Article 5, including
‘lawfulness, fairness and transparency’, ‘purpose limitation’,
‘data minimization’, ‘accuracy’, ‘storage limitation’, ‘integrity
and confidentiality’ and ‘accountability’. Its key changes in
terms of the principles, compared with the Directive 95/46/EC,
include six aspects [28], [29]:
• Consent: The GDPR is more strict with consents. A con-

sent should be graspable, distinguishable and easy to be
withdrawn.

• Breach Notification: The GDPR makes the breach notifi-
cation mandatory. The notification should be sent within 72
hours after being aware of the breach.

• Right to Access: The first right mentioned in the OECD
‘individual participation’ principle is strengthened in the
GDPR.

• Right to be Forgotten: In the Article 17, data is required
to be erased when the personal data are no longer necessary
in relation to the purposes or the consent is withdrawn.

• Data Portability: In the Article 20, a data subject has the
right to receive his uploaded data in a machine-readable
format and transmit it to another data controller.

• Privacy by Design: The privacy by design is finally in-
tegrated into the privacy legal framework. As claimed in
the Article 25, ‘the controller shall, both at the time of the
determination of the means for processing and at the time
of the processing itself, implement appropriate technical and
organizational measures’, which asks the privacy to be taken
into account at the design stage, rather than as an add-on
function.

C. Privacy by design

The notion of privacy by design (PbD) [5], [13], [14],
namely embedding the privacy measures and privacy enhanc-
ing technologies (PETs) directly into the design of software
or system, is not new. As early as 2001, Langheinrich [14]
proposed six principles to guide the PbD in the ubiquitous
systems, including notice, choice and consent, proximity and
locality, anonymity and pseudonymity, security, and access
and recourse. However, the PbD has never been extensively
used in engineering. The main reason for its rare adoption is
that most engineers either neglect the importance of privacy
or refuse their responsibility on it [34], [35].

A privacy law may also need support from technologies. In
IoT, the enforcement of each principle in a privacy law may
need to be supported by a set of technologies (e.g., PETs) in
one or multiple layers. Here, the principles in the laws are
usually described with very general and broad terms [5] that
makes it hard for engineers to properly implement them in the

system design. Also, the availability of so many technologies
makes the engineers’ job of mapping technologies to principles
difficult. Therefore, we need the PbD to take the role as an
adaptation layer between laws and technologies to translate
legal principles to more engineer-friendly principles that can
facilitate the system design.

In [34], Spiekermann and Cranor divided the technologies
into two types of approaches to enable privacy in engineering,
namely ‘privacy-by-architecture’ and ‘privacy-by-policy’. The
privacy-by-architecture approaches can protect higher-level
privacy through technologies enabling data minimization and
local processing but is rarely adopted because of the lack of
legal enforcement at that time and its conflict with the business
interests. In contrast, the privacy-by-policy approaches protect
only the bottom-line privacy through technologies support-
ing the notice and choice principles when the privacy-by-
architecture technologies are not implemented. The authors
argued that the privacy-by-policy technologies become less
important when rigorous minimization has been guaranteed
by the privacy-by-architecture technologies. Based on the two
approaches, in 2014, Hoepman [13] proposed eight privacy
design strategies, including four data-oriented strategies and
four process-oriented strategies that roughly match the privacy-
by-architecture and privacy-by-policy classification [12], [13]:

Data-oriented strategies:
1. Minimize: The amount of processed personal data

should be restricted to the minimal amount possible.
2. Hide: Any personal data, and their interrelationships,

should be hidden from plain view.
3. Separate: Personal data should be processed in a dis-

tributed fashion, in separate compartments whenever
possible.

4. Aggregate: Personal data should be processed at the
highest level of aggregation and with the least possible
detail in which it is (still) useful.

Process-oriented strategies:
1. Inform: Data subjects should be adequately informed

whenever personal data is processed.
2. Control: Data subjects should be provided agency

over the processing of their personal data.
3. Enforce: A privacy policy compatible with legal re-

quirements should be in place and should be enforced.
4. Demonstrate: Be able to demonstrate compliance

with the privacy policy and any applicable legal re-
quirements.

These strategies proposed by Hoepman not only inherit and
develop the two engineering privacy approaches proposed by
Spiekermann and Cranor, but also support the legal principles
and PbD enforcement of the GDPR [13]. As a good combi-
nation point between legal principles and privacy enhancing
technologies(PETs), these privacy design strategies have been
widely accepted by recent work on privacy to fill the gap
between legislation and engineering [5], [12], [36]. Therefore,
we also adopt the eight privacy design strategies in this paper
and study their relevant IoT layers (Section III-B) and enabling
PETs (Section IV to Section VI) in the context of IoT privacy.
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Fig. 1: IoT architecture and data flow [30], [31], [32], [33]

III. PRIVACY PROTECTION IN A LAYERED IOT
ARCHITECTURE

Several existing Internet-of-Things systems are designed
using a layered architecture [30], [31], [32], [33]. In an IoT
system, data is usually collected by end devices, transmitted
through communication networks, processed by local/remote
servers and finally provided to various applications. Thus, pri-
vate data as it flows through multiple layers of the architecture
stack, needs privacy protection at all layers. Here, implement-
ing proper privacy design strategies based on the roles of the
layers in the lifecycle of the data is important. Otherwise,
techniques implemented at a specific layer may become either
insufficient (privacy is breached at other layers) or redundant
(privacy has been protected by techniques implemented at
other layers). In this section, we introduce the reference IoT
architecture adopted in this study and present the IoT privacy
protection framework that shows how to integrate the privacy
design strategies in the layered IoT architecture.

A. Reference IoT architecture

In general, the number of layers proposed for the architec-
ture of IoT varies considerably. After reviewing a number of
existing IoT architectures, we adopt a four-layer architecture
as the reference IoT architecture in this paper, which consists
of perception layer, networking layer, middleware layer and
application layer. The adoption of the four-layer reference
architecture in our study has two key benefits. First, the
importance of each layer in the four-layer architecture has
been recognized by most existing architectures as the four-
layer architecture allows a comprehensive view of privacy in
IoT. As shown in Table I, several existing architectures [33],
[32], [31], [41], [42], [43] include all the four layers, either
as separate layers or integrated layers. Second, as the four-
layer architecture is the most fine-grained model among all the
candidate architectures, it allows a detailed and fine-grained
analysis of privacy protection at different layers and avoids
possible lack of differentiation when the layers are not distinct
as in [33], [32], [31], [41], [42].

TABLE I: IoT architecture comparison (
√

contained as a
separate layer, # merged with other layers, × not contained)

Source Perception Networking Middleware Application

IEEE [37]
√ √

×
√

M2M [33]
√

# # #

oneM2M [30] ×
√ √ √

CASAGRAS [32]
√ √

# #

Cisco [31]
√ √

# #

Soma et cl. [38]
√

×
√ √

Addo et cl. [39]
√ √ √

×
Funke et cl. [40]

√ √ √
×

Sun et cl. [41]
√ √

# #

Perera et cl. [42]
√ √

# #

Dabbagh et cl. [43]
√ √ √ √

Botta et cl. [44]
√

×
√ √

As the lowest layer of the architecture (Fig. 1), perception
layer works as the base of entire Internet of Things. It bridges
the gap between physical world and digital world by making
innumerable physical entities identifiable (e.g., RFIDs [46]),
perceptible (e.g., sensors [1]) and controllable (e.g., actua-
tors [47]) to enable deep interaction between physical and
digital worlds [37], [48]. The networking layer plays a pivotal
role to link the perception layer and middleware layer so that
sensed data and corresponding commands can be seamlessly
transmitted between the two layers. Unlike the traditional
Internet, the vast number of heterogeneous power-limited
devices in the perception layer and the various application
scenarios in the application layer create a vital need for com-
munication technologies that support low energy consumption,
low latency, high data rate and high capacity. Main techniques
supporting IoT networking layer include ZigBee [49], Blue-
tooth 5 [50], Wi-Fi HaLow [51] and 5th generation mobile
networks [52]. The middleware layer works as the ‘brain’
of IoT to process the numerous data received from lower
layers. To cope with the interoperability of the heterogeneous
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(a) Active collection (b) Passive collection

Fig. 2: IoT privacy protection framework [10], [13], [34], [45]

physical devices [53], [54], the device abstraction compo-
nent semantically describes the resources with a consistent
language such as the eXtensible Markup Language (XML),
Resource Description Framework (RDF) or Web Ontology
Language (OWL) [55], [56], [57]. Based on that, resources are
made discoverable through the resource discovery component
by using Semantic Annotations for WSDL and XML Schema
(SAWSDL) [56] or simply key words [58]. Then, if needed,
multiple resources can be composed through the composition
component [1], [59] to enhance their functionality. After
that, received data could be stored (storage component) in
either cloud or databases and kept available to be queried.
Different computational and analytical units can be combined
to form the processing component. Here, security of data,
namely their confidentiality, integrity, availability, and non-
repudiation [60] need to be well protected. If data can make
its owner either identified or identifiable, privacy enhancement
technologies (PETs) are necessary to protect privacy so that
privacy principles required by the laws can be satisfied. As the
highest layer of the architecture, the application layer contains
various IoT applications that have been widely studied in past
literature [1], [4]. Depending on the scenarios that the private
data is collected, different applications may encounter different
privacy issues.

B. IoT privacy protection framework

In this section, we study the integration of privacy design
strategies in the layered architecture by introducing an IoT
privacy protection framework. From the viewpoint of the
IoT architecture, data is collected by devices at perception
layer and transmitted to middleware layer through networking
layer, which makes data move away from the control of
data subjects [8], [10]. We can apply the notion of personal
sphere [10], [45] to assist interpretation. A personal sphere
consists of a set of personal devices and a gateway, both
trusted by data subjects. In some cases, gateway can be assisted
by a more powerful trusted third party (TTP). Data collected
by these personal devices has to be passed to the gateway
and/or the TTP to be processed before being transmitted to
the data controllers that data subjects distrust. Such a personal
sphere is quite important to implement the four data-oriented
privacy design strategies because it offers a reliable platform
to make the raw data minimized, hidden, separated and aggre-
gated. As pointed out by Spiekermann and Cranor [34], once

sensitive information in data has been adequately constrained
through PETs such as homomorphic encryption [61] and k-
anonymization [62], the privacy-by-policy approaches, namely
the four process-oriented strategies become less important.
In IoT, such a personal sphere can be created when data is
actively collected, as shown in Fig. 2(a). For example, smart
appliances and home router form an indoor personal sphere
while wearable devices and smartphones compose an outdoor
personal sphere. The trusted local gateway and/or remote TTP
is a critical element in the system, which allows data subjects
to launch proper PETs to process data with the four data-
oriented strategies.

Due to the invisibility of numerous IoT devices at perception
layer, personal data may be sensed by untrusted devices
outside the personal sphere and the data subjects may be
completely unaware of the collection [37], [39], [63]. Such a
passive collection makes data subjects lose control over their
personal data at the earliest stage and provides no trusted
platform to implement the four data-oriented privacy design
strategies, as shown in Fig. 2(b). It is therefore the four
process-oriented strategies that can play a more important role
by promoting the power of data subjects when raw data is
obtained by data controllers [13], [34]. Specifically, the inform
strategy and control strategy enhance the interaction between
data subjects and their data while the enforce strategy and
demonstrate strategy force data controllers to comply with pri-
vacy policy and further require the compliance to be verifiable.
As it is the remote data controllers that should offer proper
PETs to support the four process-oriented strategies, these
system-level strategies are primarily implemented at middle-
ware layer, with the assistance of other layers. It is worth
mentioning that we do not mean active collection only needs
data-oriented strategies and passive collection only requires
process-oriented strategies. In both cases, all the strategies are
required to jointly work to support the legal principles. For
example, although the single minimize strategy is hard to be
fulfilled in the passive collection, its implementation can be
enforced and verified by process-oriented strategies.

In the next three sections, we present and evaluate PETs
implemented at the perception layer, networking layer and
middleware layer respectively.

IV. PRIVACY AT PERCEPTION LAYER

We evaluate and compare the anonymization-based PETs
and perturbation-based PETs that help to implement the Min-
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imize and Aggregate strategies and present the encryption-
based PETs that implements the Hide strategy. These PETs
are primarily implemented at the perception layer (e.g., local
personal gateway, trusted edge server), but they can also be
implemented at the middleware layer using a trusted third party
(TTP). It is worth noting that the Separate strategy is naturally
achieved by local processing in the perception layer.

A. Anonymization and perturbation
Both anonymization [64] and perturbation [65] techniques

can fulfill the Minimize and Aggregate strategies by reduc-
ing the released information and increasing the granularity.
The main difference between them is that the results of
the anonymization are generalized while the results of the
perturbation are with noises. In this section, we evaluate
the representative anonymization and perturbation privacy
paradigms, namely the k-anonymity [62] and differential pri-
vacy [66] respectively, in terms of their practicability in IoT by
analyzing their performance under the following IoT specific
challenges [5]:
• Large data volume: The gateways may control thousands of

sensors that collect massive data.
• Streaming data processing: In some real-time IoT applica-

tions (e.g., traffic control), data may be seamlessly collected
to form streams.

• Lightweight computation: Since the gateways (e.g., router
and phone) are still resource-constrained devices, algorithms
are expected to have low complexity.

• Decentralized computation: In the IoT applications such as
smart grid, the personal data may be collected by untrusted
entities. Decentralization data aggregation may be employed
under such scenarios.

• Composability: The privacy should still be guaranteed after
the data uploaded to the middleware layer is combined with
other data.

• Personalization: For most personal service IoT applications,
each customer has different privacy understanding and re-
quirements and there is a natural need for personalized
solutions.
1) Anonymization: The traditional privacy-persevering data

publication (PPDP) schemes typically involve four entities,
namely data subject, data curator, data user and data at-
tacker [67]. The data curator collects data from data sub-
jects, processes the collected data and releases the privacy-
preserving dataset to the data users. Usually, the collected
data related to a data subject can be classified into four cat-
egories, namely explicit identifiers (e.g., names, SSN), quasi-
identifiers (e.g., age, gender), sensitive attributes and non-
sensitive attributes [62]. In IoT, unlike the traditional Internet
that requires all the records to be typed in, the identifiers are
usually input through RFID tags and cameras. For example,
vehicles can be identified by E-ZPass [68] through RFID
and individuals can be identified through RFID-enabled smart
cards in shopping malls [69]. The sensitive and non-sensitive
attributes are usually collected by sensors.

As a candidate PPDP approach, anonymization aims to
cut off the connection between each record and its corre-
sponding data subject so that the sensitive attributes cannot

be linked with specific individuals [70]. Obviously, the ex-
plicit identifiers should be removed before publication for
the privacy purpose. However, in 2000, Sweeney found that
87% of US citizens can be uniquely re-identified by com-
bining three quasi-identifiers, namely [ZIP, gender, date of
birth] [64]. This linking attack has motivated the researchers
to devise stronger anonymization paradigms including k-
anonymity [62], l-diversity [71] and t-closeness [72], where k-
anonymity [62] requires each quasi-identifier group to appear
at least k times in the dataset. We next discuss the use of
anonymization in the context of IoT:
Large volume: The performance of anonymization algorithms
may be affected by the dimensions of both rows and columns
in the table, so the anonymization scheme is expected to
be scalable for datasets with millions of records and multi-
dimensional attributes. For the former, spatial indexing has
been proved to be a good solution to handle numerous
records in a dataset [73], [74]. One attribute can be efficiently
k-anonymized through B+ tree indexing and the R+ tree
indexing can be implemented to effectively generate non-
overlapping partitions for tables with 100 million records and
nine attributes [74]. However, as analyzed by [75], the k-
anonymity algorithms may work well for tables with a small
number of attributes (e.g., 10) but not the ones with a large
number of attributes (e.g., 50). The increasing number of at-
tributes makes the number of combinations of dimensions ex-
ponentially increased and results in unacceptable information
loss. Therefore, how to enhance the utility of k-anonymized
datasets with a large number of attributes is still an open issue
for future research. An anonymization method for the sparse
high-dimensional binary dataset with low information loss was
proposed in [76], but there were no effective schemes for non-
binary datasets.
Streaming data: There have been several strategies to
anonymize data streams [77], [78]. In CASTLE [77], a set
of clusters of tuples are maintained and each incoming tuple
in a stream is grouped into a cluster and generalized to the
same level of other tuples in the cluster. Each tuple maintains
a delay constraint δ and must be sent out before the deadline
to make the processing real-time. At the end of δ, if the
cluster containing that tuple has at least k members, all the
tuples within it can be released. Otherwise, a cluster satisfying
the k requirement can be generated through a merge and
split technique for the tuple and the information loss during
the process can be minimized. In SKY [78], a top-down
specialization tree is maintained and each incoming tuple is
mapped to one node in the tree based on its attributes. Each
node can be a work node or a candidate node depending on
whether there have been at least k tuples generalized and
output from it. If the incoming node is mapped to a work
node, it can be directly generalized and released. Otherwise,
it has to wait for other arriving tuples at the node during the
time δ or be generalized and released through the parent node
at the end of δ.
Lightweight: It has been proved that the optimal k-anonymity
aiming to anonymize a table with minimum suppressed cells
is NP-hard even when the attribute values are ternary [79],
[80], [81]. The complexity of approximate algorithms for
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k-Anonymity has been reduced from O(k log k) [79] to
O(k) [80] and later to O(log k) [81].
Collaboration: Anonymization techniques can be imple-
mented in a distributed manner. That is, multiple entities
can locally anonymize their own table to make the inte-
grated table k-anonymous without revealing any additional
information during the process. Several SMC protocols have
been proposed to solve this problem [82], [83]. In [82],
a top-down specialization scheme was proposed to support
joint anonymization between two parties. Specifically, the two
parties first generalize their local table to the root. Then, in
each iteration, they find the local specialization maximizing the
ratio between information gain and privacy loss (IGPL) over
the local table. The party with a higher IGPL wins the game
in this iteration, applies its local specialization over its local
table and then instructs the grouping in the table of the other
party. For the same objective, a scheme based on cryptography
was proposed in [83]. Each party locally generalizes the local
table and then jointly determines whether the integrated table
is k-anonymous. If not, each party then generalizes its local
table to the next layer and repeats the two steps.
Composability: As shown in [5], the k-anonymity does not
offer composability. That is, two k-anonymous datasets cannot
guarantee their joint dataset is k′-anonymous (k′ > 1). Be-
cause of this, the integration of multiple k-anonymous datasets
in the middleware layer can be a significant challenge.
Personalization: Most anonymization algorithms assume that
all the record owners have same privacy preference. There-
fore, less-anonymization can put privacy in risk but over-
anonymization increases the information loss. To solve this,
Xiao et al. [84] organize the sensitive attributes in a top-
down taxonomy tree and allow each record owner to indicate
a guarding node. That is, the sensitive attribute of a specific
record owner should be generalized to at least the guarding
node in the taxonomy tree and the adversary has little op-
portunity to link the record owner with the child nodes of
the guarding node that carry fine-grained information. Their
algorithm first runs common k-anonymity algorithms over the
quasi-identifiers and then generalizes the sensitive attribute
through the taxonomy tree based on the claimed guarding
nodes. Recently, Xu et al. [85] argued that the generalization
of sensitive attributes results in information loss and they
allow the record owners to claim the expected value of k.
Their algorithm first achieves kmin-anonymity over the entire
dataset, where kmin is the minimum expected k value, namely
the most strict privacy requirement. Then, based on the data
structure called d-dimensional quasi-attribute generalization
lattice, some quasi-attributes can be merged to match the lower
values of k expected by some record owners.

2) Differential privacy: Differential privacy is a classical
privacy definition [66] that makes very conservative assump-
tions about the adversary’s background knowledge and bounds
the allowable error in a quantified manner. In general, differen-
tial privacy is designed to protect a single individual’s privacy
by considering adjacent data sets which differ only in one
record. Before presenting the formal definition of ε-differential
privacy, we first define the notion of adjacent datasets in the
context of differential privacy. A data set D can be considered

as a subset of records from the universe U , represented by
D ∈ N|U |, where N stands for the non-negative set and Di is
the number of element i in N. For example, if U = {a, b, c},
D = {a, b, c} can be represented as {1, 1, 1} as it contains
each element of U once. Similarly, D′ = {a, c} can be
represented as {1, 0, 1} as it does not contain b. Based on this
representation, it is appropriate to use l1 distance (Manhattan
distance) to measure the distance between data sets.

DEFINITION 1 (DATA SET DISTANCE). The l1 distance
between two data sets D1 and D2 is defined as ||D1−D2||1,
which is calculated by:

||D1 −D2||1 =

|U |∑
i=1

|D1i −D2i |

The manhattan distance between the datasets leads us the
notion of adjacent data sets as follows.

DEFINITION 2 (ADJACENT DATA SET). Two data sets D1,
D2 are adjacent data sets of each other if ||D1 −D2||1 = 1.

Based on the notion of adjacent datasets defined above,
differential privacy can be defined formally as follows. In
general, ε-differential privacy is designed to protect the privacy
between adjacent data sets which differ only in one record.

DEFINITION 3 (DIFFERENTIAL PRIVACY [66]). A random-
ized algorithm A guarantees ε-differential privacy if for all
adjacent datasets D1 and D2 differing by at most one record,
and for all possible results S ⊆ Range(A),

Pr[A(D1) = S] ≤ eε × Pr[A(D2) = S]

where the probability space is over the randomness of A.

Many randomized algorithms have been proposed
to guarantee differential privacy, such as the Laplace
Mechanism[66], the Gaussian Mechanism[86] and the
Exponential Mechanism[87]. Given a data set D, a function f
and the budget ε, the Laplace Mechanism first calculates the
actual f(D) and then perturbs this true answer by adding a
noise[66]. The noise is calculated based on a Laplace random
variable, with the variance λ = 4f/ε, where 4f is the l1
sensitivity. We next analyze differential privacy in terms of
the challenges in the context of IoT:
Large volume: The large volume of data is naturally not a
problem for differential privacy as the perturbation is usually
implemented over the statistical value of the collected data.
Streaming data: There have been many works on applying
differential privacy over streaming data since 2010 [88], [89].
The data stream was assumed to be a bitstream, where each
bit can be either 1 or 0 representing if an event was happening
or not at each timestamp. Mechanisms were proposed to
protect either the event-level or user-level differential privacy,
depending on whether a single event or all the events related
to a single user can be hidden by the injected noise. The early
works focused on event-level privacy. In [88], a counter was
set to report the accumulated 1s in the data stream at each
timestamp and each update value can be added with a Lap( 1ε )
noise to guarantee the differential privacy. Furthermore, for a
sparse stream with few 1s, an update can be set to happen
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TABLE II: Evaluation of k-anonymization and differential privacy (# Good G# Not enough  Poor)

PET Large volume Streaming data Lightweight Collaboration Composability Personalization

k-anonymization G# # # #  G#

Differential privacy # # G# # # G#

only after the number of 1s has been accumulated over a
threshold. Later in [90], the noise error was reduced through
using a binary tree data structure. Specifically, the nodes in
the binary tree, except the leaf nodes, represent the sums of
sections of consecutive bits in the stream and the Laplace
noises were added to these nodes, instead of the leaf nodes.
This scheme can effectively reduce the noise error from O(T )
to O((log T )1.5), where T denotes the number of timestamps,
namely the length of the stream. In [91], the user-level privacy
was supported and the noise error in this work was suppressed
through sampling.
Lightweight: The complexity of differential privacy algo-
rithms is quite variable on a case-by-case manner. If both the
sensitivity and budget allocation are fixed, the complexity can
be very low, as only one value is required to be sampled from a
random distribution with fixed variance. However, in the cases
that the sensitivity or budget allocation has to be calculated
on the fly, the complexity will increase.
Collaboration: Differential privacy for data aggregation is
usually guaranteed by noises added through Laplace mech-
anism [66]. A simple solution for this is to make the data
aggregator directly aggregate the raw data received from data
subjects and then add noise to it. However, in some scenarios
such as smart metering, the aggregator (electricity supplier)
may be untrusted [92] and may require the data subjects
(smart meters) to locally add noise to perturb its raw data
and then send the perturbed data to the aggregator so that the
raw data is protected from the aggregator and the aggregated
noise automatically satisfies the Laplace Mechanism. This
distributed implementation of Laplace Mechanism, also known
as Distributed Perturbation Laplace Algorithm (DLPA), has
recently received attention from privacy researchers. The base
of DLPA is the infinite divisibility feature of Laplace distribu-
tion [93] that allows the noise sampled from Laplace distribu-
tion (central noise) to be the sum of n other random variables
(local noises). The local noise can still follow the Laplace
distribution [94]. However, since a Laplace distributed random
variable can be simulated by two gamma distributed random
variables and four normal distributed random variables, the
local noise can also follow the gamma distribution [92] or
Gaussian distribution [95]. In [94], the three schemes were
compared and the Laplace distributed local noise was shown
to be more efficient in terms of local noise generation.
Composability: Differential privacy offers strong composabil-
ity:

Theorem 1 (COMPOSITION THEOREM [86]). Let Ai be εi-
differential private algorithms applied to independent datasets
Di for i ∈ [1, k]. Then their combination A∑k

i=1
is max(εi)-

differential private.

In the middleware layer, multiple independent differentially

private outputs can be combined and their integration still sat-
isfies differential privacy. Differential privacy also satisfies the
post-processing theorem, which further enhances its flexibility
in the middleware layer.

Theorem 2 (POST-PROCESSING [86]). Let A be a ε-
differentially private algorithm and g be an arbitrary function.
Then g(A) is also ε-differentially private.

Personalization: In traditional differential privacy, the pa-
rameter ε is usually set globally for all the record owners.
Recently, several works try to make it personalized. In [96],
two solutions were proposed, based on sampling and Exponen-
tial Mechanism respectively. The first approach non-uniformly
samples the records from the dataset with the inclusion prob-
abilities related to the preferred privacy preferences (values
of ε). For each record, if the expected ε is smaller than a
threshold t, it may only be selected with a probability related
to the ε. Otherwise, the record will be selected. Then, any t-
differentially private mechanism can be applied to the sampled
dataset. Their second approach is inspired by the Exponential
Mechanism. Unlike the traditional Exponential Mechanism,
to take personalization into account, the probability of each
possible output values is computed based on the personalized
privacy preferences (values of ε).

3) Anonymization vs. Differential privacy: To sum up, as
shown in Table II, both the techniques have similar features
in terms of their support for streaming data, collaboration
and personalization. Anonymization techniques are difficult to
scale for datasets with many attributes while the complexity
of differential privacy algorithms varies case by case. It is
the composability feature that makes differential privacy a
clear winner. Due to lack of composability, the operability and
utility of the data protected by the k-anonymization paradigm
are significantly constrained in the middleware layer.

B. Encryption

Encryption techniques are not only the fundamental building
block of security, but also the foundation of a large number
of PETs in privacy. With respect to the eight privacy design
strategies, encryption is the most direct supporter of the Hide
strategy, which also satisfies the ‘security safeguards’ require-
ment of privacy laws. Therefore, in terms of IoT privacy, the
role of encryption is twofold. On one hand, the commonly used
cryptographic primitives, such as AES [97] and RSA [98],
protect the security of every IoT layer so that the adversaries
are prevented from easily compromising the confidentiality
and integrity of data in IoT devices. From this perspective,
the personal data is confined to a safe zone without being
disclosed to unknown parties, thus also protecting the privacy
of the data subject as the control over the data is enhanced.
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On the other hand, in IoT, the middleware may not be
trusted or trustworthy but it is an indispensable stakeholder
in most IoT applications. Hence, PETs such as homomorphic
encryption [61], searchable encryption [99] and SMC [100] are
required to make the middleware work without accessing the
private information. Here, lightweight cryptography that can
support encryption over devices with low capacity becomes a
critical element in protecting IoT privacy. In this section, to
comprehensively review the current state of work in this area,
we first go through the real capacity of various types of IoT
devices in the perception layer and evaluate the implemen-
tation of commonly used cryptographic primitives over them
to see when and where lightweight cryptography is required.
Then, we review the candidate lightweight solutions in each
area of cryptography and present the NIST General Design
Considerations [101]. Finally, we discuss the PETs aiming to
blind the middleware and their performance over IoT devices.
The capacity of IoT devices: The types of IoT edge de-
vices in the perception layer range from resource-rich devices
such as computers and smartphones to resource-constrained
devices such as embedded systems, RFID and sensors. For the
resource-rich devices, the traditional cryptographic primitives
work well for the encryption tasks. Thus, the lightweight
cryptography techniques are mainly required by the resource-
constrained devices that can not support traditional crypto-
graphic primitives. This also requires the resource-rich devices
in the middleware layer to adopt them in order to decrypt
the data encrypted using lightweight cryptography techniques.
Most IoT embedded systems and intelligent systems are en-
abled by the 8-bit, 16-bit or 32-bit microcontrollers (MCUs)
with highly restricted random-access memory (RAM) as low
as 64 bytes RAM (e.g., NXP RS08KA, $0.399) [102]. The
RFID and sensor devices are usually more cost-sensitive and
they employ the use of application specific integrated circuit
(ASIC) [103]. Therefore, in hardware, the price of these
devices is proportional to the area of ASIC in silicon, measured
by the gate equivalents (GE), namely the ratio between the
area of ASIC and the area of a two-input NAND gate [104].
The implementation of lightweight cryptography techniques
over such devices has to meet several stringent conditions,
including under 2000 GE to achieve low-cost, under 50 cycles
for obtaining low-latency and less than 10 µW

MHz average power
usage for meeting low-energy requirements [103].
Traditional cryptographic primitives over constrained de-
vices: Most traditional commonly-used cryptographic prim-
itives face severe challenges in the constrained environment.
The AES-128 [97] may be the most suitable lightweight block
cipher because of its low number of rounds and small key
size. In [2], AES-128 was tested over several MCUs and
smart cards and achieved 1.58ms execution time and 0.6kB
RAM consumption over the MSP microcontrollers. The results
show that AES works well for most MCUs, but not the
ones with ultra-low RAM (e.g., NXP RS08KA). In terms of
hash functions, the SHA-2 is acceptable to implement the
cryptographic schemes requiring a few hash functions over the
MSP microcontrollers with tens to hundreds of milliseconds
execution time and 0.1kB RAM. However, as illustrated by
Ideguchi et al. [105], the SHA-3 candidates cannot be sup-

ported by the low-cost 8-bit microcontrollers with 64 byte
RAM. In the NIST competition, the lowest number of GE
required by the SHA-3 is still 9200 [106]. Also, both the
RSA [98] for asymmetric encryption and elliptic curve point
multiplication for ECDH and ECDSA schemes were found to
be too high-cost for even the MSP microcontrollers [2].
Attribute-Based Encryption in IoT: Attribute-Based Encryp-
tion (ABE) [107] is a promising mechanism to implement
fine-grained access control over encrypted data. With ABE, an
access policy can be enforced during data encryption, which
only allows authorized users with the desired attributes (e.g.,
age, gender) to decrypt the data. Depending on whether the
access policy is associated with the key or ciphertext, Key-
Policy ABE (KP-ABE) [108] and Ciphertext-Policy ABE (CP-
ABE) [109] were proposed, respectively. Although ABE looks
like the desired approach to secure data communication and
storage in IoT with flexible access control, its implementation
in IoT may encounter three main challenges. First, current
IoT applications only need IoT devices to encrypt data us-
ing public keys and hence, key management may not be a
significant issue. However, future autonomous IoT devices
would require direct device-to-device communication with
each other requiring different secret keys from the attribute
authority (AA) based on their attributes to decrypt data. In
such cases, the AA may become a bottleneck for issuing secret
keys and we will need techniques to distribute secret keys in
a scalable and efficient manner. Potential solutions for this
include Hierarchical ABE (HABE) [110] and decentralizing
multi-authority ABE (DMA-ABE) [111]. In short, the HABE
scheme manages the workflow in a hierarchical structure with
each domain authority serving a set of domain users, whereas
the DMA-ABE scheme decentralizes the single centralized AA
to multiple AAs. Second, when an access policy needs to be
updated, due to the limited storage space of IoT devices, the
re-encryption of the data based on the new policy is hard to
be operated locally. A solution for this has been proposed by
Huang et al. [112], which designs a set of policy updating
algorithms that allow the re-encryption to be operated at
untrusted remote servers without breaching the privacy of the
encrypted data. The third and perhaps the greatest challenge
is the issue of limited resources in IoT devices. It has been
demonstrated that most classical CP-ABE schemes can hardly
fit the smartphone devices and IoT devices such as Intel Edison
board and Raspberry Pi [113], [114], [115]. To solve this, the
most common approach is to outsource the most consuming
operations of ABE to powerful nodes in the network [116],
[117]. In case that such powerful nodes are not available, Yao
et al. [118] proposed a lightweight no-pairing ECC-based ABE
scheme to reduce the power consumption.
Lightweight cryptographic candidates: As can be seen, most
traditional cryptographic primitives are not applicable over
resource-constrained devices. Hence, IoT privacy creates a
critical need for lightweight cryptographic solutions. A non-
exhaustive list of lightweight cryptographic candidates can be
found in [119]. The design of lightweight block ciphers, based
on the classification in [119], consists of the Substitution-
Permutation Networks (SPN) family and Feistel Networks
family. The SPN-based schemes usually apply the S-boxes
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and P-boxes to perform confusion and diffusion respectively
and can be roughly divided into three categories, namely the
AES-like schemes (e.g., KLEIN [120]), schemes with Bit-
Sliced S-Boxes (e.g., PRIDE [121]) and other schemes (e.g.,
PRESENT [122]). The schemes based on the Feistel Networks
split the input block into two sides, permute one with the
other and then swap them. They can be designed to only use
modular Addition, Rotation and XOR (e.g., RC5 [123]) or not
(e.g., DESLX [124]). These lightweight schemes usually apply
smaller block sizes lower than 128 bits as AES or simpler
rounds without S-boxes or with smaller S-boxes to reduce the
resource requirements [101]. The lightweight hash functions
are designed based on either the Merkle-Damgård or P-Sponge
and T-Sponge. The existing lightweight hash functions such
as PHOTON [125] and SPONGENT [126] have already been
able to achieve under 2000 GE with 0.18µm technology for
128 digest size. In terms of lightweight stream ciphers, the
Grain [127], MICKEY [128] and Trivium [129] have stood
out since 2008. In addition, recently, the NIST published its
report on lightweight cryptography [101] and recommended
the General Design Considerations for the future design:

1. Security strength: The security strength should be at
least 112 bits.

2. Flexibility: Algorithms should be executable over an
assortment of platforms and should be configurable on
a single platform.

3. Low overhead for multiple functions: Multiple func-
tions (such as encryption and decryption) should share
the same logic.

4. Ciphertext expansion: The size of the ciphertext
should not be significantly longer than the plaintext.

5. Side channel and fault attacks: Algorithms should
be resilient to the side channel and fault attacks.

6. Limits on the number of plaintext-ciphertext pairs:
The number of plaintext/ciphertext pairs processed
should be limited by an upper bound.

7. Related-key attacks: Algorithms should be resilient
to the related-key attacks, where the relationship be-
tween multiple unknown keys is used by the adversary.

Middleware-blinding PETs in IoT: The homomorphic en-
cryption [61], as the most fundamental building block of
the Middleware-blinding PETs, is a suite of cryptographic
techniques that enable the decrypted results of computations
over the ciphertext to match the results of computation over
the plaintext. Its characteristics make it the best solution for
outsourcing private data to untrusted parties to get their service
without compromising privacy, which refers to blinding the
middleware in IoT domain. Homomorphic encryption was
proposed as early as 1978 but it was not until the year 2009
that the first plausible solution of the fully homomorphic
encryption was proposed by Craig Gentry [61]. Unlike the
partially homomorphic cryptosystems such as the ones based
on Paillier cryptosystem [130] that support a small number
of operations, the fully homomorphic encryption can enable
both addition and multiplication operations over ciphertexts
and therefore arbitrary computations. However, although the

efficiency of the fully homomorphic encryption has been
significantly improved, it is still too time-consuming for most
applications. Therefore, in many cases, the partially homomor-
phic cryptosystems are still the preferred solution. IoT can
benefit a lot from the homomorphic encryption [131] as well
as the secure multi-party computation (SMC) schemes in the
context of service discovery, data retrieval, data sharing and
data outsourcing. Although most of the applications interact
closely with the middleware layer, the encryption of private
data is usually implemented in the perception layer. In [2],
the Paillier’s partially homomorphic scheme was tested and the
results showed that the scheme is still heavy for the resource-
constrained devices.

V. PRIVACY AT NETWORKING LAYER

In this section, we discuss the secure communication and
anonymous communication in the networking layer that sup-
port the Hide and Minimize strategies respectively.

A. Secure communication

In the traditional Internet with TCP/IP stack, the communi-
cation is usually secured by either IPsec [132] in the network
layer or TLS [133] in the transport layer. In the context of IoT,
due to numerous devices with constrained power, the protocol
stack has to be adapted to support the transmission of IPv6
over IEEE 802.15.4 PHY and MAC, which is enabled by the
adoption of 6LoWPAN [134] as an adaptation layer between
them. A reference IoT protocol stack is shown in Fig. 3,
which is mainly based on the IETF LLN protocol stack [135].
Above the network layer, TCP and UDP in the transport
layer support different IoT application layer protocols, such
as Message Queue Telemetry Transport (MQTT) [136] and
Constrained Application Protocol (CoAP) [137], respectively.
In terms of security, as pointed out by RFC 4944 [138] and
other literature [139], [140], the AES-based security modes
provided by the IEEE 802.15.4 that can support confidentiality,
data authenticity and integrity, have some shortcomings. That
is, the IEEE 802.15.4 only provides hop-by-hop security that
requires all nodes in the path to be trusted without host
authentication and key management. It may be acceptable for
isolated WSNs, but not for the Internet-integrated WSNs when
the messages have to travel over an IP network. Therefore,
security mechanisms are required to be implemented in the
higher layers to provide end-to-end security. Like the tra-
ditional Internet, the potential options include the IPsec in
the network layer and the TLS/DTLS in the transport layer,
where TLS and Datagram TLS (DTLS) [141] support TCP
and UDP, respectively. The TLS/DTLS solution is the default
security option of most common IoT application protocols.
For example, the MQTT Version 3.1.1 [136] claimed that it
should be the implementer’s responsibility to handle security
issues and then recommended the TLS and registered TSP
port 8883 for MQTT TLS communication. In contrast, the
CoAP is secured by DTLS as it transmits messages over
the unreliable but simpler UDP [137]. The various security
modes allow the devices to have either a list of pre-shared
symmetric keys or a pair of asymmetric keys with or without
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Fig. 3: Reference IoT protocol stack [132], [134], [133], [135]

an X.509 certificate. In addition to DTLS, the CoRE working
group also proposed a draft for using CoAP with IPsec [142].
The adoption of IPsec can make use of the built-in link-layer
encryption hardware and perform transparently towards the
application layer. However, due to its well-known issues with
using the firewalls and Network Address Translation (NAT),
the IPsec is not always available. In addition, the configuration
and management of IPsec in IoT is very difficult due to the
huge number of heterogeneous devices [143].

Based on the IETF protocol stack, there are some other
IoT protocol stacks proposed by other standardization bodies
and industry alliances. We briefly review some representatives
among them. The Thread stack [144] adopts 6LoWPAN to
support IPv6 and leverages DTLS to secure UDP. The Thread
stack has been widely adopted for connecting home devices
and applications. The IPSO Alliance [145] argued that using
standardized protocols (e.g., IETF stack) may fail to ensure
interoperability at the application layer. They proposed the
IPSO Smart Objects, an object model that provides high-level
interoperability between applications and devices. The core
idea is to leverage the open Mobile Alliance Lightweight Spec-
ification (OMA LWM2M) on top of CoAP to enable device
management operations such as bootstrapping and firmware
updates. Again, DTLS is in charge of security. The Industrial
Internet of Things (IIoT) was proposed by the Industrial
Internet Consortium (IIC), with the aim to connect industrial
objects to enterprise systems and business processes [146].
Its reference architecture adopts DDSI-RTPS [147]/CoAP for
UDP and MQTT/HTTP for TCP, respectively. Therefore, its
security requires both TLS and DTLS.

B. Anonymous communication

The end-to-end security provided by either IPsec or
TLS/DTLS can only hide the content of the messages, but not
the meta-data, such as the identity (e.g., IP) of the two sides
or the time, frequency and amount of the communications.
Therefore, PETs enabling anonymous communication are re-
quired to handle the privacy problem due to the disclosure
of meta-data, especially the identity of the initiator of the
communication. For example, when health data or smart home
data has to be sent to the middleware layer to get some
service, it is better to make the data subject anonymous so
that the personal health condition or living habits cannot be
easily linked to the data subject. Such an objective can be
achieved through the implementation of the anonymization

Fig. 4: Tor over IoT [12], [148]

and perturbation mechanisms in the perception layer, but the
anonymous communication makes it also possible to handle
in the networking layer.

The communication can be anonymized through the Proxy,
the Virtual Private Network (VPN) and the onion router
(Tor) [12], [148]. Among them, Tor is considered an important
anonymous communication PET because of its strong attack
resilience [149]. We show a potential Tor-based anonymous
communication framework in Fig. 4. An IoT node, either a
device or a gateway, wants to communicate with the mid-
dleware to get service without revealing its identity (e.g., IP
address). For this purpose, instead of directly communicating
with the middleware, the IoT node can first connect with
the Tor network to anonymize itself. The Tor network is a
distributed network with thousands of volunteers all around
the world performing as the onion routers [150]. Its scale,
as monitored by the torstatus website, is around 7000-8000
nodes in 2018 [151]. To process the request of the IoT node,
Tor will build a path (circuit) formed by one entry node, one
or multiple intermediate nodes and one exit node. The raw
package sent by the IoT node is then encrypted by the public
keys of the nodes on the path one by one, from the entry
node to the exit node, forming a layered structure, just like an
onion. Each node on the path, on receiving a package from
its predecessor, should decrypt one layer of the package with
its private key, learn the IP of its successor and transmit the
decrypted package to the successor. Each node on the path
only knows the IP of its predecessor and successor and hence,
the IP address of the IoT node is only revealed to the entry
node and the middleware only knows the IP address of the
exit node.

The implementation of Tor over smart home was evaluated
in [149] in which, Tail, a subproject of Tor, was set up to be the
central smart home gateway passed by all the outgoing data
packages generated by the appliances. The results showed that
Tor works well for multimedia transmission (smart TV) but not
the voice-over-Internet protocol application such as Skype, due
to the short time-to-live duration of UDP packets. This work
demonstrated the practicability of Tor in IoT. However, several
key challenges still need to be addressed. First, the access point
to the Tor network should be designed to make it available
to the capacity-constrained IoT devices. Second, as Tor does
not support UDP, for the devices unable to encapsulate the
UDP into TCP packets, mechanisms are required to enable
UDP transmission over Tor. Third, the affordability of the Tor
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Fig. 5: Notification in the WSN

network in terms of the massive data generated by the billions
of IoT nodes should be evaluated.

VI. PRIVACY AT MIDDLEWARE LAYER

In this section, we present the interaction-enhancing PETs
fulfilling Inform and Control strategies and discuss the
compliance-enhancing PETs enabling Enforce and Demon-
strate strategies. We evaluate existing middlewares on their
support for these four process-oriented strategies.

A. Interaction-enhancing techniques

The main objective of interaction-enhancing techniques is to
break the isolation between data subjects and their data so that
data subjects can track the status of their data (Inform strategy)
and also remotely control their data (Control strategy). The
GDPR [28] requires data subjects to get notification both
before and after the data collection. Before the data collection,
in addition to the data collection notification itself, data
subjects should also be notified more information such as
identity and contact details of data collector and purpose of
the processing (Article 13). After the data collection, Inform
strategy can be combined with Control strategy to assist data
subjects to safeguard their rights, such as the right of access
(Article 14), right to rectification or erasure of personal data
and restriction of processing (Article 15) and right to know
the personal data breach (Article 30).

In the traditional Internet, Inform strategy is easy to be
implemented because it is the data subjects who actively
determine whether to click the link to enter a website. The
PETs such as the P3P [152] aim to assist the end users
with little privacy knowledge or with no patience to quickly
understand the privacy condition of the visiting websites
in an automatic and usable manner [34]. Specifically, the
privacy policies provided by most websites are both long
and obscure with dense legalese, which makes the visitors
hard to understand how their private data such as browsing
history is handled. The P3P solved this problem by providing
both a computer-readable format for websites to standardize
the privacy policies and a protocol for the web browsers to
understand the privacy policies and automatically process them
based on the pre-determined privacy preference. Unfortunately,
things become harder in IoT. Unlike the traditional Internet
where the end users can easily interact with the websites
through static web browsers, it is essential to figure out how to
effectively build the communication between data subjects and
data controllers in dynamic IoT scenarios to enable Inform and

Fig. 6: Central control platform

Control strategies. To build such a communication for active
collection is not hard. An example is the privacy coach [153],
a phone application to help end users decide whether to buy
products with RFID tags by actively reading RFID tags to
learn corresponding privacy policies. However, to do the same
thing for passive collection is more challenging. Consider the
example in Fig. 5 where an individual quickly passes a WSN
area, the gateway has to quickly and actively get connected
with the personal phone to notify the data collection, get
the consent and leave information for future notifications. All
these should be completed within a short period of time before
the communication is disconnected.

For Control strategy, the main challenge is not how to
technically implement the actions such as revision and deletion
but how to design a centralized platform to simplify the control
of data subjects when there are multiple data controllers. In
active collection, each data subject can actively upload private
data for different data controllers to a common personal space
in cloud to simplify the tracking and control of their data [154],
[45]. In passive collection, as personal data of a data subject
may be passively uploaded by data controllers to different
storage places, a centralized user control platform is required,
such as the one in Fig. 6. A data subject, after login, should
be able to check the list of his/her personal data collected by
different data controllers. Each data controller, after collecting
the data, should report the collection to this central platform,
link its database to the platform and provide APIs to allow the
authorized data subjects to control their data. The format of a
report should contain identity of the data collector, description
of collection purpose, collected data and a list of possible
actions that can be made by data subjects. Then, data subjects
can remotely revise or delete their data.

B. Compliance-enhancing techniques

The goal of compliance-enhancing techniques is to enforce
and demonstrate compliance with the privacy policy. The
Enforce and Demonstrate strategies are highly related. First,
the Enforce strategy requires a privacy policy compatible with
laws to be in place and a set of proper PETs to technically
enforce it in engineering so that a data controller has the ability
to comply with privacy laws. We require the Demonstrate
strategy here to enforce it so that the data controllers can
technically prove their compliance.

As the first step, a privacy policy should be in place to guide
the processing of private data. By considering personalization,
this privacy policy can be replaced by a privacy preference in
many cases to also reflect personal privacy demands. Such
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a privacy preference should be in place during the entire
lifecycle of the personal data [155]. That is, even if the
personal data is disseminated from the initial data controller to
the others, the privacy preference of the original data subject
should be simultaneously transmitted along with the data. In
other words, the privacy preference should be stuck to the cor-
responding data in the complicated middleware layer, which
can be supported by the PET. Such a scheme was named sticky
policy [156]. The privacy model of sticky policy requires data
to be first encrypted by data subjects. Then, the encrypted
data and the sticky policy are sent to the data controller while
the decryption key is sent to a Trusted Third Party (TTP).
Any party who wants to decrypt the data, including the initial
data controller and later ones, should submit a request to the
TTP with the sticky policy and credentials. The TTP will
then check the integrity and trustworthiness of them to decide
whether the decrypted key can be given. During the whole
process, data subjects can join or check the decision making
through the TTP. To sum up, the privacy preference must also
flow along with the data and its existence should be enforced
and monitored by the TTP. A similar approach was proposed
in [45], where the data is encrypted by the data subjects at their
gateways and attached with semantic data handling annotations
as the privacy preference.

After the privacy preference is in place, the PETs that
can fulfill the privacy preference are required. To make it
automatic, the sticky policy is recommended to be used as
machine-readable semantic annotations that can be parsed by
the middleware to configure the corresponding PETs. The im-
plementation of the policy can be supported by access control
mechanisms [5]. In terms of purpose limitation, the mechanism
proposed in [157] require the data requesters to declare their
purpose of usage and the range of required data so that the
current data controller is able to compare the declaration with
the sticky annotations to make decisions. Another choice is the
Hippocratic database [158]. As a database designed to fulfill
the Fair Information Practices [17] and especially the purpose
limitation, the Hippocratic database requires the queries to be
tagged with a purpose and only access the columns and tuples
matching the purpose.

Finally, the most common solution to verify the compliance
is the audit mechanism. That is, any interaction with private
data should either be pre-checked or logged for later inspec-
tion. An example of pre-checking is the sticky policy [156],
where data requesters must first submit the sticky policy and
credentials to the TTP and accept the inspection of TTP
about their environment. An audit approach using the log was
proposed in [45], where personal data is encrypted in personal
sphere by a gateway and then stored in a cloud platform. The
cloud platform offers a database abstraction layer that can log
every access of a data controller to the data with detailed
information such as the access time and purpose. Next, the data
subject should verify that the usage of the data complies with
the privacy preference. However, even with the log information
and available source code of the service, data subjects may not
have the expertise to audit it. Therefore, a trusted auditor is
deployed to verify the data usage in the service implementation
by checking the source code.

TABLE III: Evaluation of middlewares (
√

supported with
PETs, # mentioned without details, × not mentioned)

Middleware year inform control enforce demonstrate

COUGAR [159] 2001 × × × ×
Impala [160] 2003 × × × ×
IrisNet [161] 2003 × × # ×

Adaptive [162] 2004 × × × ×
TinyLIME [163] 2005 × × × ×

Melete [164] 2006 × × × ×
SENSEI [165] 2010 × × × ×

UbiROAD [166] 2010 × × × ×

GSN [167] 2006 × × × ×
Xively [168] 2007 ×

√
# ×

Paraimpu [169] 2012 ×
√

# ×
Webinos [154] 2012

√ √ √
×

OpenIoT [170] 2013 × × × ×
Google Fit [171] 2014

√
× × ×

Calvin [172] 2015 × × × ×
Node-RED [58] 2015 × × × ×

OpenHAB [173] 2010
√ √ √ √

AllJoyn [174] 2013 # # # #

NOS [175] 2016
√ √ √

×

C. Evaluation of existing middlewares

Currently, only a few middlewares support privacy pro-
tection. Among 61 middlewares reviewed by a recent sur-
vey [176], only eight of them were labeled to support privacy.
We evaluate their performance over the inform, control, en-
force and demonstrate strategies. As can be seen in the first
part of Table III, among the eight middlewares, only the IrisNet
mentioned the importance of the enforcement of privacy poli-
cies. In the second part of Table III, we present middlewares
reviewed by another recent survey [59]. In Xively, permission
is not required for data collection and sharing, but users are
allowed to review, update or change their data in the account,
which satisfies the control strategy. Similar to Xively, the
Paraimpu middleware tries to support user privacy according
to the privacy laws. Both Xively and Paraimpu have the
privacy policy, but the details on the enforcement are not
clearly presented. The Webinos middleware can meet the three
strategies in terms of protecting user privacy. In Webinos,
applications require permission to access the private data.
The private data is processed and stored in a local Personal
Zone Proxy (PZP) and a remote Personal Zone Hub (PZH)
so the users can fully control their data. Besides, through the
eXtensible Access Control Markup Language (XACML) and
the Webinos policy enforcement framework, users can define
fine-grained access control policies that will be enforced by
the PZP and PZH to mediate every access to a Webinos API.

Additionally, we have reviewed some other IoT middlewares
and software frameworks regarding their adoption of the
inform, control, enforce and demonstrate strategies. The results
are shown as the third part of Table III. The OpenHAB [173] is



14

a software framework designed for managing home automa-
tion systems. It makes all the devices and data stay in the
local network and provides a single channel to enter the local
network. It allows users to decide automation rules and has the
ability to enforce the rules. It provides logging information for
user-defined rules. Therefore, it satisfies all the four strategies.
The AllJoyn [174] is a software framework aimed to create
dynamic proximal networks by enhancing interoperability
among devices and applications across manufacturers. Such
proximal networks can make private data stay inside the local
network and therefore has the potential to satisfy all the four
strategies. The middleware based on NetwOrked Smart objects
(NOS) [175] extracts privacy information from incoming data
as part of security metadata at the Analysis layer, which is
then used to annotate the data at the Data Annotation layer. It
requires users to actively register and input private information
to annotate their data. Further, the privacy protection can be
enforced by the Integration layer and thus, the NOS-based
middleware satisfies the three strategies.

In summary, we found that not all middlewares emphasize
privacy protection. Although the recent middlewares have
better protection than the previous ones, there are still privacy
requirements that may be implemented at the middleware layer
through PbD privacy strategies.

VII. PRIVACY AT APPLICATION LAYER

The unprecedented proximity between physical and digital
worlds facilitated by IoT creates a huge number of applica-
tions [1], [4]. Different IoT applications may face different
kinds of privacy risks as data collected in IoT applications
may contain sensitive information related to the users. For
instance, in smart home applications, religious beliefs of users
may be inferred from smart refrigerators and similarly, daily
schedules of users may be inferred from smart lamps. In
automobile driving applications, dozens of internal sensors
monitor data related to vehicle speed and seatbelt usage that
can be used by insurance companies to determine insurance
premium for the users. In healthcare and fitness applications,
wearable devices may collect data that may reflect users’
health information [177]. Similarly in smart meters, by apply-
ing energy disaggregation over the power usage data, it may be
possible to learn when and how a home appliance was used by
the residents [178]. In general, many of the application-level
privacy risks can be handled at lower layers of the IoT archi-
tecture stack using PETs presented in Section IV to Section VI.
For example, software frameworks such as OpenHAB [173]
can make smart home a personal sphere so that data can
be securely stored locally and any interaction with the data
can be examined and logged. As another example, differential
privacy mechanisms [65], [87] can be applied to perturb the
smart meter data [179], [180], where the injected noises can be
added by an in-home device. However, it is important to ensure
that the PETs employed to achieve the privacy goals does
not adversely affect the utility of the target IoT application.
For example, perturbation PETs such as differential privacy
when applied to healthcare data that require high accuracy
to be retained, the resulting perturbed data may not retain

the desirable clinical efficacy and as a result, it may lead to
lower application utility [181]. In such cases, a cross-layer
understanding of the impact of the employed PETs on the
application-level utility is critical in determining the privacy-
utility tradeoffs while designing the applications.

VIII. RELATED WORK

Research on privacy in IoT has become an important topic
in the recent years. A number of surveys have summarized
various challenges and potential solutions for privacy in IoT.
Roman et al. [182] analyzed the features and challenges of
security and privacy in distributed Internet of Things. The
authors mentioned that data management and privacy can get
immediate benefit from distributed IoTs as every entity in
distributed IoTs has more control over the data it generates
and processes. In [183], the authors discussed several types
of PETs and focused on building a heterogeneous and differ-
entiated legal framework that can handle the features of IoT
including globality, verticality, ubiquity and technicity. Fink et
al. [184] reviewed the challenges of privacy in IoT from both
technical and legal standpoints. Ziegeldorf et al. [10] discussed
the threats and challenges of privacy in IoT by first introducing
the privacy definitions, reference models and legislation and
reviewed the evolution of techniques and features for IoT. In
both [185] and [186], security risks, challenges and promising
techniques were presented in a layered IoT architecture but the
discussion on privacy protection is limited to the techniques
related to security problems.

Although most of the existing surveys review privacy in IoT
from either a technical standpoint or a legal standpoint, to the
best of our knowledge, none of the existing surveys analyzed
the IoT privacy problem through a systematic fine-grained
analysis of the privacy principles and techniques implemented
at different layers of the IoT architecture stack. In this paper,
we study the privacy protection problem in IoT through a com-
prehensive review of the state-of-the-art by jointly considering
three key dimensions, namely the state-of-the-art principles of
privacy laws, architecture of the IoT system and representative
privacy enhancing technologies (PETs). Our work differenti-
ates itself by its unique analysis of how legal principles can be
supported through a careful implementation of various privacy
enhancing technologies (PETs) at various layers of a layered
IoT architecture model to meet the privacy requirements of
the individuals interacting with the IoT systems.

IX. CONCLUSION

The fast proliferation of low-cost smart sensing devices and
the widespread deployment of high-speed wireless networks
have resulted in the rapid emergence of the Internet-of-
things. In this paper, we study the privacy protection problem
in IoT through a comprehensive review of the state-of-the-
art by jointly considering three key dimensions, namely the
architecture of the IoT system, state-of-the-art principles of
privacy laws and representative privacy enhancing technolo-
gies (PETs). We analyze, evaluate and compare various PETs
that can be deployed at different layers of a layered IoT
architecture to meet the privacy requirements of the individuals
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interacting with the IoT systems. Our analysis has shown
that while many existing PETs (e.g., differential privacy, Tor)
demonstrate a great potential for use in the IoT, the adoption
of these techniques requires a careful consideration of the
unique features associated with the IoT, including the use of
heterogeneous power-limited devices and the massive need
for streaming data flow. We expect this study to provide a
broader understanding of the state-of-the-art principles in pri-
vacy legislation associated with the design of relevant privacy
enhancing technologies (PETs) and how privacy legislation
maps to privacy principles which in turn drives the design of
necessary privacy enhancing technologies to be employed in
the IoT architecture stack.
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