144 research outputs found

    Optimising and evaluating designs for reconfigurable hardware

    No full text
    Growing demand for computational performance, and the rising cost for chip design and manufacturing make reconfigurable hardware increasingly attractive for digital system implementation. Reconfigurable hardware, such as field-programmable gate arrays (FPGAs), can deliver performance through parallelism while also providing flexibility to enable application builders to reconfigure them. However, reconfigurable systems, particularly those involving run-time reconfiguration, are often developed in an ad-hoc manner. Such an approach usually results in low designer productivity and can lead to inefficient designs. This thesis covers three main achievements that address this situation. The first achievement is a model that captures design parameters of reconfigurable hardware and performance parameters of a given application domain. This model supports optimisations for several design metrics such as performance, area, and power consumption. The second achievement is a technique that enhances the relocatability of bitstreams for reconfigurable devices, taking into account heterogeneous resources. This method increases the flexibility of modules represented by these bitstreams while reducing configuration storage size and design compilation time. The third achievement is a technique to characterise the power consumption of FPGAs in different activity modes. This technique includes the evaluation of standby power and dedicated low-power modes, which are crucial in meeting the requirements for battery-based mobile devices

    Physical 2D Morphware and Power Reduction Methods for Everyone

    Get PDF
    Dynamic and partial reconfiguration discovers more and more the focus in academic and industrial research. Modern systems in e.g. avionic and automotive applications exploit the parallelism of hardware in order to reduce power consumption and to increase performance. State of the art reconfigurable FPGA devices allows reconfiguring parts of their architecture while the other configured architecture stays undisturbed in operation. This dynamic and partial reconfiguration allows therefore adapting the architecture to the requirements of the application while run-time. The difference to the traditional term of software and its related sequential architecture is the possibility to change the paradigm of brining the data to the respective processing elements. Dynamic and partial reconfiguration enables to bring the processing elements to the data and is therefore a new paradigm. The shift from the traditional microprocessor approaches with sequential processing of data to parallel processing reconfigurable architectures forces to introduce new paradigms with the focus on computing in time and space

    High level modeling of Partially Dynamically Reconfigurable FPGAs based on MDE and MARTE

    Get PDF
    International audienceSystem-on-Chip (SoC) architectures are becoming the preferred solution for implementing modern embedded systems. However their design complexity continues to augment due to the increase in integrated hardware resources requiring new design methodologies and tools. In this paper we present a novel SoC co-design methodology based on aModel Driven Engineering framework while utilizing the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology permits us to model fine grain reconfigurable architectures such as FPGAs and allows to extend the standard for integrating new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The overall objective is to carry out modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformations of these models, automatically generate the necessary specifications required for FPGA implementation

    MARTE based design flow for Partially Reconfigurable Systems-on-Chips

    Get PDF
    International audienceSystems-on-Chip (SoCs) are considered an integral solution for designing embedded systems, for targeting complex intensive parallel computation applications. As advances in SoC technology permit integration of increasing number of hardware resources on a single chip, the targeted application domains such as software-defined radio are become increasingly sophisticated. The fallout of this complexity is that the system design, particularly software design, does not evolve at the same pace as that of hardware leading to a significant productivity gap. Adaptivity and reconfigurability are also critical issues for SoCs which must be able to cope with end user environment and requirements

    A Multi-layer Fpga Framework Supporting Autonomous Runtime Partial Reconfiguration

    Get PDF
    Partial reconfiguration is a unique capability provided by several Field Programmable Gate Array (FPGA) vendors recently, which involves altering part of the programmed design within an SRAM-based FPGA at run-time. In this dissertation, a Multilayer Runtime Reconfiguration Architecture (MRRA) is developed, evaluated, and refined for Autonomous Runtime Partial Reconfiguration of FPGA devices. Under the proposed MRRA paradigm, FPGA configurations can be manipulated at runtime using on-chip resources. Operations are partitioned into Logic, Translation, and Reconfiguration layers along with a standardized set of Application Programming Interfaces (APIs). At each level, resource details are encapsulated and managed for efficiency and portability during operation. An MRRA mapping theory is developed to link the general logic function and area allocation information to the device related physical configuration level data by using mathematical data structure and physical constraints. In certain scenarios, configuration bit stream data can be read and modified directly for fast operations, relying on the use of similar logic functions and common interconnection resources for communication. A corresponding logic control flow is also developed to make the entire process autonomous. Several prototype MRRA systems are developed on a Xilinx Virtex II Pro platform. The Virtex II Pro on-chip PowerPC core and block RAM are employed to manage control operations while multiple physical interfaces establish and supplement autonomous reconfiguration capabilities. Area, speed and power optimization techniques are developed based on the developed Xilinx prototype. Evaluations and analysis of these prototype and techniques are performed on a number of benchmark and hashing algorithm case studies. The results indicate that based on a variety of test benches, up to 70% reduction in the resource utilization, up to 50% improvement in power consumption, and up to 10 times increase in run-time performance are achieved using the developed architecture and approaches compared with Xilinx baseline reconfiguration flow. Finally, a Genetic Algorithm (GA) for a FPGA fault tolerance case study is evaluated as a ultimate high-level application running on this architecture. It demonstrated that this is a hardware and software infrastructure that enables an FPGA to dynamically reconfigure itself efficiently under the control of a soft microprocessor core that is instantiated within the FPGA fabric. Such a system contributes to the observed benefits of intelligent control, fast reconfiguration, and low overhead

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Targeting Reconfigurable FPGA based SoCs using the MARTE UML profile: from high abstraction levels to code generation

    Get PDF
    International audienceAs SoC design complexity is escalating to new heights, there is a critical need to find adequate approaches and tools to handle SoC co-design aspects. Additionally, modern reconfigurable SoCs offer advantages over classical SoCs as they integrate adaptivity features to cope with mutable design requirements and environment needs. This paper presents a novel approach to address system adaptivity and reconfigurability. A generic model of reactive control is presented in a SoC codesign framework: Gaspard. Afterwards, control integration at different levels of the framework is illustrated for both functional specification and FPGA synthesis. The presented work is based on Model-Driven Engineering and the UML MARTE profile proposed by Object Management Group, for modeling and analysis of real-time embedded systems. The paper thus presents a complete design flow to move from high level MARTE models to code generation, for implementation of dynamically reconfigurable SoCs

    A Field Programmable Gate Array Architecture for Two-Dimensional Partial Reconfiguration

    Get PDF
    Reconfigurable machines can accelerate many applications by adapting to their needs through hardware reconfiguration. Partial reconfiguration allows the reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. Operating system models have been proposed for partially reconfigurable machines to handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. The main goal of this research is to address some problems that come from the gap between OS4RC and existing chip architectures and the gap between OS4RC models and practical applications. Some existing OS4RC models are based on an impractical assumption that there is no data exchange channel between IP (Intellectual Property) circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP communication channels have severe drawbacks. Those channels do not work well with 2-D partial reconfiguration. They are not suitable for intensive data stream processing. And frequently they are very complicated to design and very expensive. To address these problems, a new chip architecture that can better support inter-IP and IP-I/O communication is proposed and a corresponding OS4RC kernel is then specified. The proposed FPGA architecture is based on an array of clusters of configurable logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of segmented buses that provides inter-IP and IP-I/O communication channels. The proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits under the constraints of the proposed architecture. Features of the new architecture in turns reduce the kernel execution times and enable the runtime scheduling, placement and routing. The area cost and the configuration memory size of the new chip architecture are calculated and analyzed. And the efficiency of the OS4RC kernel is evaluated via simulation using three different task models
    • …
    corecore