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Abstract— System-on-Chip (SoC) architectures are becoming
the preferred solution for implementing modern embedded sys-
tems. However their design complexity continues to augment due
to the increase in integrated hardware resources requiring new
design methodologies and tools. In this paper we present a novel
SoC co-design methodology based on a Model Driven Engineering
framework while utilizing the MARTE (Modeling and Analysis of
Real-time and Embedded Systems) standard. This methodology
permits us to model fine grain reconfigurable architectures such
as FPGAs and allows to extend the standard for integrating new
features such as Partial Dynamic Reconfiguration supported by
modern FPGAs. The overall objective is to carry out modeling
at a high abstraction level expressed in a graphical language
like UML (Unified Modeling Language) and afterwards trans-
formations of these models, automatically generate the necessary
specifications required for FPGA implementation.

I. I NTRODUCTION

Modern System-on-chips (SoCs) have become essential
for designing embedded systems in order to target intensive
parallel computation applications. While current SoC tech-
nological advances permit a rapidly increasing number of
integrated transistors on a single chip in order to improve
computational power, embedded system applications have also
evolved becoming more sophisticated and resource demanding
leading to a significant gap between design productivity and
verification of these complex systems. An important challenge
is to find efficient design methodologies that address the
problems regarding these complex systems.

For the conception of a SoC, the behavioral description of
the system is refined into an accurate register-transfer level
(RTL) design usually by using High Level Synthesis (HLS)
approaches. While an effective HLS flow has to be adaptable
to rapidly evolving technologies and maintainable by the tool
designers, in reality the abstraction level of the user-side tools
is usually not elevated enough to be totally independent from
low level implementations. Specifications usually are written
in C/C++ or similar languages, leading to several disadvan-
tages. First, one cannot differentiate between concepts easily
as in a graphical representation. Second, system information
related to e.g. hierarchy or data parallelism is not immediately
visible and third, the modification process is complex and time
consuming.

Model Driven Engineering [1] (MDE) is an emerging do-
main and can be seen as aHigh Level Design Flowand an
effective solution for resolving the above mentioned problems.
The advantage of MDE is that the complete system (both
application and architecture) is modeled at a high specification

level allowing several abstraction levels. A designer thuscan
focus on a particular domain space related to an abstrac-
tion level. The UML (Unified Modeling Language) graphical
language allows to increase comprehensibility of the system
and permits relations between concepts defined at different
abstraction levels. High abstraction level descriptions of sys-
tems can be provided by the users and they can identify the
internal concepts (task/data parallelism, data dependencies and
hierarchy). The graphical nature of these specifications allows
for their reuse, modification, maintenance and extension.

Partial Dynamic Reconfiguration [2] (PDR) is an emerging
feature supported by modern FPGAs for reconfiguring specific
portions of FPGA at run-time with the intent of time-sharing
the available hardware resources for supporting multiple (mu-
tually exclusive) tasks. Moreover, PDR permits swapping of
tasks depending upon the application needs and Quality-Of-
Service (QoS) requirements (performance, execution time etc.)
and adds the possibility of developing future applicationsto
target these adaptive architectures. Xilinx proposed the initial
PDR methodology in [3] and currently only Xilinx FPGAs
fully support this feature.

MARTE [4] (Modeling and Analysis of Real-Time and Em-
bedded Systems) is an industry standard proposal of the Object
Management Group (OMG) for model-driven development of
embedded systems. It add capabilities to UML allowing to
model software, hardware and their relations, along with added
extensions (for e.g. performance and scheduling analysis). This
standard although while rich in concepts, unfortunately lacks
certain aspects for FPGA modeling.

GASPARD [5] is a MARTE compliant SoC co-design
environment dedicated specially towards parallel hardware
and software co-design allowing to move from high level
MARTE specifications to an executable platform. It exploits
the parallelism included in repetitive constructions of hardware
elements or regular constructions such as application loops.

The main contribution of this paper is to present part of a
novel design flow using an extended version of the MARTE
standard for general modeling of FPGAs. This methodology
also permits us to introduce PDR in MARTE for modeling
all types of FPGAs supporting PDR. Finally by utilizing the
MDE model transformations, the design flow can be used to
bridge the gap between high abstraction levels and low imple-
mentation details to automatically generate the code required
for the creation of bitstream(s) for FPGA implementation.

The rest of this paper is organized as follows. An overview
of MDE is provided in section 2 while section 3 summarizes



our MARTE compliant GASPARD environment. Section 4 de-
scribes PDR while section 5 gives a summary of related works.
Section 6 illustrates our methodology related to implementing
PDR supported FPGAs. This paper finishes with a case study
in section 7 followed by a conclusion.

II. M ODEL DRIVEN ENGINEERING

MDE is centered around three focal concepts.Models,
Metamodelsand Transformations. A model is an abstraction
of reality and composed of concepts and relations. Concepts
are “things” and relations are the “links” between these things
in reality. A model can be observed from different point of
views (views in MDE). A metamodel is in fact a collection of
concepts and relations for describing a model. It defines the
syntax of a model as a language defines its grammar. Each
model is then said toconformto its metamodel.

A model transformation is a compilation process that trans-
forms a source model into a target model and allows to
move from an abstract model to a more detailed model. The
source and target models each conform to their respective
metamodels. A model transformation is based on a set ofrules
that help to identify concepts in a source metamodel in order
to create enriched concepts in the target metamodel. This sep-
aration allows to easily extend and maintain the compilation
process. New rules extend the compilation process and each
rule can be independently modified. Model transformations
carry out refinements moving from high abstraction levels to
low levels for code generation. At each intermediate level,
implementation details are added to the compilation process.
The advantage of this approach is that it allows to define
several model transformations from the same abstraction level
but targeted to different lower levels, offering opportunities to
generate several implementations from a specification.

III. GASPARD CO-DESIGN ENVIRONMENT

The GASPARD Environment [5] is based on a MDE ap-
proach for SoC co-design and is a subset of the MARTE stan-
dard that is currently supported by the industry. In MARTE, a
clear separation exists between the hardware and the software
components which is of prime importance in SoC conception.
Our environment also uses the MARTE allocation mechanism
(Alloc package) that permits to link the independent hardware
and software models (for e.g. mapping of a task or data onto
a processor or a memory respectively). The concept used to
specify an allocation is called anAllocate. An allocation can
represent either aspatial or a temporal placement. Up till
now GASPARD only supported spatial placement but we have
also integrated the temporal placement allocation in orderto
implement systems supporting PDR.

The last part on which GASPARD relies upon is the
Repetitive Structure Modeling (RSM)annex. RSM has been
inspired by the domain specific language known as ArrayOL
[6] dedicated to intensive multidimensional signal processing.
This package allows to describe the regularity of a system’s
structure (composed of repetitions of structural components
interconnected in a regular connection pattern) and topology
in a compact manner. GASPARD uses this package to model

large regular hardware architectures (such as multiprocessor
architectures) and parallel applications. We do not use any
other MARTE packages due to the nature of the targeted
applications which arecontrol and data flow oriented intensive
signal processing (ISP) applications(that are in the form of
graph of tasks) within the broad domain of systems encom-
passed by MARTE. These applications are widely encountered
in SoC design and introduce a Model of Computation (MoC)
based on ArrayOL [6]. Although MARTE is generic enough
to accommodate a large set of needs, the provided concepts
lack information necessary for implementation purposes. Thus
GASPARD introduces additional concepts and semantics to fill
this requirement in the particular domain of SoC co-design.

The first addition relates to the semantics of modeled
applications. In MARTE, nearly all kinds of applications can
be specified but their behavior cannot be entirely defined. It
is up to the designer/programmer to determine the precise
behavior. As in GASPARD we deal with ISP applications
based on a specific MoC [6], we only use the UML concept
of Component(in order to define an application component)
and MARTE FlowPort type (to define all port types in both
the application and the architecture).

GASPARD also benefits from the notion of aDeploy-
ment model level [7] which is related to the specification
of elementary components (basic building blocks of all other
components). To transform the high abstraction levels to code,
detailed information must be provided. The Deployment level
links every elementary component to an existing code for both
the hardware and the application. This facilitates Intellectual
Property (IP) reuse. Each elementary component can have
several implementations: e.g. an application functionality can
either be optimized for a processor or written as an hardware
accelerator. Hence this level is able to differentiate between
hardware and software functionalities independent from the
compilation target. It provides IP information for model
transformations forming a compilation chain to transform
the high abstraction level models (application, architecture
and allocation) for different domains (formal verification,
simulation, high performance computing or synthesis). This
concept is currently not present in MARTE and is a potential
extension for allowing a complete flow from model conception
to automatic code generation. It should be noted that the
different transformation chains (simulation, synthesis etc.) are
currently unidirectional in nature.

IV. BASIC PDR RELATED CONCEPTS

Currently PDR is only supported by Xilinx FPGAs. Xilinx
initially proposed some methodologies [3],[8] followed bythe
Early Access Partial Reconfiguration (EAPR)[9] flow. The
basic idea is that a part of the FPGA remains static, while
another part is dynamically reconfigurable allowing the FPGA
to be reconfigured at run-time.Bus macrosare used to ensure
proper routing between the static and dynamic parts during
and after reconfiguration. Another important aspect is of the
Internal Reconfiguration Access Port (ICAP)[10] that permits
to read/write the FPGA configuration memory at run-time.
The ICAP is present in nearly all Xilinx FPGAs ranging from



the low cost Spartan-3A(N) to the high performance Virtex-
5 FPGAs [11]. For Virtex-II and Virtex-II Pro series, the
ICAP furnishes an 8 bit input data bus and an 8 bit output
data bus while with the Virtex-4 Series, the ICAP interface
has been updated with 32 bit input and output data buses
to increase its bandwidth. In combination with the ICAP, a
Reconfiguration controller(either a PowerPC or a Microblaze)
can be implemented inside the FPGA in order to build a self
controlling dynamically reconfigurable system [10].

Virtex devices also support a feature ofglitchless dynamic
reconfiguration: If a configuration bit holds the same value
before and after reconfiguration, the resource controlled by
that bit does not experience any discontinuity in operation,
with the exception of LUTRAMs and SRL16 primitives [2].
This limitation was removed in the Virtex-4 family. With the
introduction of EAPR flow tools, this problem has also been
resolved for Virtex-II/Pro FPGAs.

V. RELATED WORKS

ROSES [12] is an environment for Multiprocessor SoC
(MPSoC) design and specification but with a drawback as it
does not conform to MDE concepts and as compared to our
environment, starts from a low level description equivalent to
our deployment level. While [13] provides a simulink based
graphical HW/SW co-design approach for MPSoC, the MDE
concepts are absent. In contrast, [14] uses the MDE approach
for the design of a Software Defined Radio (SDR), but they
do not utilize the MARTE standard as proposed by OMG.
While works such as [15] and [16] are focused on generating
VHDL from UML state machines, they fail to integrate the
MDE concepts for HW/SW co-design and are not capable of
managing ISP applications. MILAN [17] is another project for
SoC co-design benefiting from the MDE concepts but is not
MARTE compliant. Only the approach defined in [18] and
[19] comes close to our intended methodology by using the
MDE concepts and the MARTE standard for SoC co-design.
Yet the disadvantage is that in reality it only generates theISP
application part to be implemented as a hardware accelerator in
an FPGA. Hence there is no hardware description of FPGA at
the high design level. MOPCOM [20] uses MDE and MARTE
but is not oriented towards PDR.

In the domain related to PDR, Xilinx initially proposed two
design flows in [3] and [8] termed as theModular basedand
Difference basedapproaches. The difference based approach is
suitable for small changes in a bitstream but is inappropriate
for a large dynamically reconfigurable module necessitating
the use of the modular approach. However, both approaches
were not very effective leading to new alternatives.

Sedcole et al [21] presented a modular approach that was
more effective than the initial Xilinx methodologies and were
able to carry out 2D reconfiguration by placing hardware
cores above each other. The layout (size and placement) of
these cores is predetermined. They made use of reserved
static routing in the reconfigurable modules which allowed the
signals from the base region to pass through the reconfigurable
modules allowing communication between modules by using
the principle of glitchless dynamic reconfiguration.

Huebner et al [22] implemented 1D modular reconfiguration
using a horizontal slice based bus macro. All the reconfig-
urable modules that stretched vertically to the height of the
device were connected with the bus macro for communication.
They followed by providing 2D placement of modules of
any rectangular size by using routing primitives that stretch
vertically throughout the device [23]. A module could be
attached to the primitive at any location, hence providing
arbitrary placement of modules. The routing primitives are
LUT based and need to be reconfigured at the region where
they connect to the modules. A drawback of this approach is
that the number of signals passing through the primitives are
limited due to the utilization of LUTs.

In 2006, Xilinx introduced theEarly Access Partial Recon-
figuration (EAPR)[9] flow along with the introduction of CLB
based bus macros which are pre-routed IP cores. The concepts
introduced in [21] and [22] were integrated in this flow. The
restriction of full column modular PDR was removed allowing
reconfigurable modules of any arbitrary rectangular size tobe
created. The EAPR flow also allows signals from the static
region(s) to cross through the partially reconfigurable region(s)
without the use of bus macros. Using the principle of glitchless
reconfiguration, no glitches will occur in signal routes as long
as they are implemented identically in every reconfigurable
module for a region. The only limitation of this approach is
that all the partial bitstreams for a module to be executed on
a reconfigurable region must be predetermined.

Works such as [11] and [24] focus on implementing softcore
internal configuration ports on Xilinx FPGAs such as the
pure Spartan-3 which do not have the hardware ICAP core
rendering dynamic reconfiguration impossible via traditional
means. In [24] a soft ICAP known as JCAP (based on the
serial JTAG interface) is introduced for realizing PDR while
[11] introduces the notion of a PCAP (based on the paral-
lel SelectMAP interface) providing improved reconfiguration
rates as compared to the JTAG approach.

In [25], a new framework is introduced for implementing
PDR by the utilization of a PLB ICAP. The ICAP is connected
to the PLB bus as a master peripheral as compared to the
traditional OPB based approach and provides an increased
throughput of about 20 percent. [26] provides another flavor
of a PDR architecture by attaching a Reconfigurable Hardware
accelerator to a Microblaze Reconfiguration controller via
a Fast Simplex Link (FSL) [27]. For our implementation
purposes, we have focused mainly on the Xilinx EAPR flow
methodology [2] as it is openly available and can be adapted
to other PDR architecture implementations.

While there are lots of related tools, works and projects;
we have only detailed some and have not given an exhaustive
summary. To the best of our knowledge, only our methodology
takes into account the four domain spaces: SoC HW/SW co-
design, MDE, MARTE standard and PDR which is the novelty
of our design flow.

VI. M ODELING OF PARTIALLY DYNAMICALLY

RECONFIGURABLEFPGAS

We first present our design flow to model and implement
PDR supported fine grain reconfigurable architectures (FP-



GAs) as shown in Figure.1 which is an extension of the
design flow present in [19]. In this paper we only present
the first model level of this flow (modeling of application,
architecture and the allocation). Using model transformations,
we will extend our work to link each modeled component
with an IP at the Deployment model level (level 2). Following
that, the RTL model level will provide detailed modeling
information for the abstract concepts modeled at level 1
such as the reconfiguration controller and the reconfigurable
hardware accelerator. Each of these model levels correspond
to their respective metamodels. Finally, from the RTL levelwe
will be able to automatically generate the specification forthe
Reconfiguration controller (for implementation in a processor)
and the reconfigurable portion (level 4) for implementationin
an FPGA using commercial tools. Our aim is not to replace
the commercial tools but to aid them in the conception of
a system. While tools like PlanAhead [28] are capable of
estimating the FPGA resources required for a reconfigurable
module, it is finally up to the user to decide the best placement
depending on QoS requirements. Also as our work deals with
dynamic partially reconfigurable FPGAs and currently only
Xilinx FPGAs support this feature, our modeling methodology
revolves around the Xilinx reconfiguration flow as it is openly
available and flexible enough to be modified. While this does
make the architectural aspects of our design flow restrictedto
Xilinx based technologies, it is an implementation choice as
currently no other FPGA vendor supports this feature.

Application, Architecture and Allocation Model

at High Abstraction Level

RTL Model

(Reconfigurable Hardware Accelerator, 
Controller etc.)

Model Transformation

Transformation for code

1

2

3

Deployment Model 

Model Transformation

4 Code Generation + Placement

Fig. 1. The complete design flow

A. Overview of MARTE Hardware concepts

In MARTE, The basic concepts of hardware are grouped in
a package calledHardware Resource Model (HRM). HRM is
composed of two views, either a functional view (HwLogical
sub-package), a physical view (HwPhysicalsub-package) or a
merge of the two. These two sub-packages derive from a root
package calledHwGeneral that revolves around the concept
of a HwResourcewhich defines a generic hardware entity. A
HwResource can be composed of other HwResource(s) (for
example a processor containing an ALU). This concept is
then further enriched according to the functional or physical
specifications. The functional view of HRM defines hardware
resources as eithercomputing, storage, communication, timing
or device resources. The physical view represents hardware
resources as physical components with details about their
shape, size and power consumption among many other at-
tributes. Until recently, our framework only supported the
logical view but we have integrated both the physical and

merged views in the framework for modeling PDR featured
architectures. The HRM also exploits the Non-Functional
Properties (NFP) package of MARTE. This package introduces
an accurate value specification language for supporting com-
plex expressions for specifying non-functional properties as
well as quantitative annotations with measurement units. The
NFP package provides a rich library of basic types likeData
size, Data Transmission RateandDuration.

B. MARTE modifications for PDR concepts

In order to model PDR supported FPGAs, we examined
the HRM package of MARTE and found it to be lacking in
certain aspects. TheHwComputingsub-package in the HRM
functional view defines a set of active processing resources
pivotal for an execution platform. AHwComputingResource
symbolizes an active processing resource that can be special-
ized as either a processor (HwProcessor), an ASIC (HwASIC)
or a PLD (HwPLD). An FPGA is represented by the HwPLD
stereotype, it can contain a RAM memory (HwRAM) (as well
as other HwResources) and is characterized by a technology
(SRAM, Antifuse etc.). The cell organization of the FPGA is
characterized by the number of rows and columns, but also by
the type of architecture (Symmetrical array, row based etc.).
These concepts are sufficient enough for FPGA description,
however the concepts related to representing a processor are
not sufficient for a complex SoC design in which a processor
can either be implemented as a softcore IP or integrated
as a hardcore IP. We thus add the attributeimtype (Imple-
mentationType) that is flexible enough to define a processor
implementation as eitherHardcore or Softcoreand adaptable
with future evolution using theOther and Undefined types.
Figure.2 shows only the simplified modeling description of the
modified HwComputing sub-package related to a processor
implementation.

Fig. 2. Modified version of the HwProcessor concept

Fig. 3. Modified version of the HwComponent concept

In Figure.3 the second modification is shown which relates
to the physicalHwLayoutsub-package that revolves around a
concept ofHwComponentwhich is an abstraction of any real



hardware entity based on its physical attributes. HwCompo-
nent can be specialized as eitherHwChip (e.g. a processor),
HwChannel(e.g a bus),HwPort (e.g. an interface),HwCard
(e.g. a motherboard) or aHwUnit (a hardware resource that
does not fall into the preceding four categories). In order to
specify the nature of the area for a PDR featured architec-
ture (either static or dynamically reconfigurable), we have
introduced the attributeareatype (Areatype) which can be
eitherStatic, DynamicReconfor typed asOther to adapt to
future evolution. Although this concept can be implemented
as a functional property, we have chosen to implement it in
the physical view. Figure.3 thus shows only the simplified
overview of our modified HwComponent concept.

These are the 2 general concepts that we have introduced at
the conceptual level of the MARTE standard. These concepts
are specifically added to the high level in order to generally
benefit other frameworks and system descriptions and they
could be easily extended. We now present the specific concepts
related to FPGA and PDR in our methodology.

PowerPC

(Reconfiguration

Controller)

PLB

To

OPB Bridge SystemACE

Controller

SDRAM

Controller

OPB

HwICAP

Partial

Reconfigurable

Region

(containing

a Hardware

Accelerator)

PLB

Bus

OPB

Bus

External

Compact

Flash Memory

SDRAM

Static AreaBus Macro(s)

Fig. 4. Block Diagram of the architecture of our reconfigurable system

In Figure.4 we present a classical example of a PDR
supported Xilinx FPGA. We have taken the Virtex-II Pro
XC2VP30 on a XUP Board [29] as a reference as it seems to
be a popular choice for implementing PDR. The architecture
consists of a Reconfiguration Controller (a PowerPC in this
case) connected to a 64-bit PLB bus and communicates with
the slower slave peripherals (connected to the 32-bit OPB
bus) via a PLB to OPB Bridge. The buses and the bridge
are a part of the IBM Coreconnect technology [30]. The
peripherals connected to the OPB bus are detailed as follows.
A SystemACE controller for accessing the partial bitstreams
placed in an external onboard Compact Flash (CF) card. A
SDRAM controller for a DDR SDRAM present onboard that
permits the partial bitstreams to be preloaded from the CF
during initialization in order to decrease the reconfiguration
time. An ICAP is present in the form of an OPB peripheral
(OPBHwICAP) that permits partial reconfiguration using the
read-modify-write mechanism [10]. The static portion of the
FPGA is connected to a Reconfigurable Hardware Accelerator
(RHA) via bus macros. Although we could have placed the
RHA with the fast PLB bus, it is an implementation choice to
connect it with the OPB bus. The concepts such as PowerPC,
PLB and OPB buses, PLB to OPB Bridge, CF and SDRAM
memories can be easily explained using the current MARTE
HRM concepts. However the peripherals, bus macros, ICAP
and RHA require an extended and more detailed conception.
An internal memory can also be used to store the partial

bitstreams depending upon the user requirements. For the
moment, we have used an external SDRAM.

The HwCommunicationsub-package in the HRM func-
tional view represents the basic concepts for all hardware
communications.HwMedia is the central concept defining
a communication resource capable of data transfer with a
theoretical bandwidth. It can be controlled byHwArbiter(s)
and connected to other HwMedia(s) by means of aHwBridge.
A HwEndpointdefines a connection point of a HwResource
and can be defined as an interface (e.g. pin or port).HwBus
illustrates a specific wired channel with particular functional
attributes. These concepts are sufficient and abstract enough
to define all kind of communication resources. Some of the
other common HRM concepts that we utilize areHwCom-
putingResource(to describe a general computing resource)
from theHwComputingpackage,HwRAM andHwROM from
the HwMemorypackage (for RAM and ROM concepts),Hw-
StorageManagerfrom theHwStorageManagerpackage (for a
memory controller),HwClockfrom theHwTimingpackage (to
specify a clock) andHwIO from the HwIO package (for an
I/O resource).

Xilinx provides the notion of an Intellectual Property Inter-
face (IPIF) which is a hardware bus wrapper specially designed
to ease IP core interfacing with the IBM Coreconnect buses.
It can also be used for other purposes such as to connect the
OPB bus to a DCR bus [30] (another bus of the Coreconnect
technology). As all peripherals in our architecture consist of
the IPIF wrapper and an IP core, this is a vital modeling
concept and has permitted us to model all peripherals which
are hierarchically composed. The IPIF has two basic attributes:
a mode which can be eitherMaster, Slaveor Master/Slave,
and type that determines the protocol of IPIF adapted for
a particular bus. It can be eitherPLB, OPB or extensible
usingOther or Undefined types. We avoided adding detailed
properties related to the protocols offered by IPIF to simplify
its definition at the high abstraction level. The IPIF itselfis
typed HwEndpoint to denote that it is a hardware wrapper
providing an interface to the IP core. This approach can be
adapted to model customized wrappers for customized user
IPs. Figure.5 shows the modeling of the IPIF.

Fig. 5. Modeling of the IPIF hardware wrapper

The second modeling concept is that of Bus macros (BMs).
Although the EAPR flow now allows signals in the base
design to pass through the reconfigurable region(s) withoutthe
use of bus macros, they are still essential in order to ensure
the correct routing between the static and dynamic regions.
They are CLB based in nature and provide a unidirectional
8-bit data transfer. Bus macros have been modeled having
four attributes. Thesigdir attribute determines the direction of
communication which can beLeft2Right or Right2Left (for
Virtex-II and Virtex-II Pro devices), as well asTop2Bottom,



Bottom2Top or Other for Virtex-IV and other future PDR
supported devices. Thewidth attribute determines the CLB
width of the bus macro (2CLBs or 4CLBs width making it
either a narrow or wide bus macro or use ofOther for a
user specified width). TheSynchronousattribute determines
if the bus macro is synchronous or not. We have assigned
a default value oftrue to this attribute (as recommended
by Xilinx). The final attributedevice determines the targeted
FPGA device family (eitherVirtex-II Pro , Virtex-II , Virtex-
4 or a newer device such as Virtex-5 using theOther type).
The Bus macro (Busmacro) as shown in Figure.6 is typed as
HwEndpoint in order to illustrate that it is a communication
medium between the static and dynamically reconfigurable
modules of the FPGA.

Fig. 6. Modeling of a Bus macro

Fig. 7. Modeling of the OPB HWICAP Peripheral

We then carry out modeling of the OPBHWICAP periph-
eral as shown in Figure.7. It consists of an IPIF (ic2opb)
connected to the HWICAP core (hwicap) (typed asHwCom-
putingResource) and is itself defined as aHwComputingRe-
source. The HWICAP core is itself composed of three sub
components: an ICAP controller (icapctrl ) and ICAP Primitive
(icap) both typed asHwComputingResource(s) and a Block-
RAM (bram) defined asHwRAM for stocking a configuration
frame of FPGA memory. The BlockRAM contains a port
having a multiplicity of 2 indicating that it is repeated two
times. We have used the notion of aReshapeconnector (as
defined in the MARTE RSM package) in order to link the sub
components of the HWICAP. The Reshape allows to represent
complex link topologies in a simplified manner. In Figure.7,
the Reshape connectors permits to specify accurately which
port (either the port of the ICAPController or the single port

of the HWICAP itself) is connected to which repetition of the
port of the BlockRAM. Also, the sub components of HWICAP
have specific attributes (such as BlockRAM having a memory
of 16Kbits) related to implementation details. We refer the
reader to [10] for a detailed description of the HWICAP core.

Figure.8 illustrates the modeling of the Reconfigurable
Hardware Accelerator (RHA). The PRR (Partial reconfigurable
region) consists of a RHA (HwAcc) typed asHwPLD having
ports AccessOutand AccessInand an IPIF (Acc2opb). The
PRR itself is of the genericHwResourcetype. The RHA is
typed asHwPLD as it is reconfigurable, as compared to a
typical hardware accelerator which can be seen as aHwASIC
depending upon the designer’s point of view.

Fig. 8. A Reconfigurable Hardware Accelerator

Fig. 9. Modeling of our PDR Architecture

Figure.9 finally illustrates our reconfigurable architecture
(An XC2VP30 Virtex-II Pro chip) utilizing our proposed
concepts in a merged functional/physical view. Each of the
hardware components has two type definitions (the first repre-
senting the functional and the second representing the physical
one). The XC2VP30 chip consists of a PowerPC PPC405
(ppc 0) connected via a PLB bus (plb) to the slave periph-
erals: the OPBHWICAP (opbhwicap), the OPBSysAceCtrl
(opbsysac ctr ), the OPBSDRAMCtrl (opbsdram ctr ) and
the PRR (prr ) via the OPB bus (opb). The PLB2OPBBridge
(plb2opb) connects the two buses, while Bus macro(s) (bm0
andbm1 having types Left2Right and Right2Left respectively)
connect the OPB bus to the PRR. Each of the bus macros is
instantiated two times as indicated by the multiplicity of 2
on both bm0 and bm1 respectively. Also the OPB bus has
a slavea port with a multiplicity of 3 which allows the bus



to connect to the peripherals (opbsysac ctr, opbsdramctr and
opbhwicap), we have used Reshape connectors to determine
which peripheral is connected to which repetition of the slave
port. Similarly we have used Reshape connectors to determine
the accurate connections between the bus macros and the ports
of OPB and PRR. Although we could have used a single slave
port on OPB with an appropriate multiplicity to include the
topology of bus macros, this is avoided in order to reduce
the design complexity. Finally, the XC2VP30 contains two
HwEndPoint(s) interfaces,toCompactFlash and toSDRAM
to connectopbsysac ctr and opbsdram ctr to the Compact
Flash and the SDRAM memories respectively. Also, the OPB
arbiter is not modeled as it is considered to be a part of the
OPB Bus. It should be noted that this is a top level view only
and nearly each component is itself hierarchically composed.
Also the attributes introduced by us and those by default in
the HRM package of MARTE allow the designer to specify
general attributes of each component at the highest abstraction
level (e.g. ppc0 having a frequency of 300 MHz).

VII. C ASE STUDY

Fig. 10. Model of an Image Filter task

We provide here an example of a complete SoC model to
validate our methodology and to give a concrete descriptionof
our usage of the MARTE standard. The modeled application
MainApplication is an academic grayscale 4x4 pixel image
filter application (producing 8-bit images). It consists ofthree
application components: An image sensor PictureGen (pg),
the main image filter task Flux (tasks) and finally an output
PictureRead (pr ). The Flux component is itself composed of a
Filter component (filter ) (repeated in an infinite dimension as
shown by the multiplicity of *). The Filter component itself
consists of an elementary application component Elementary-
Task (Task) that is repeated four times (having a multiplicity
of 2 by 2). The Tiler connectors are used to describe the tiling
of produced and consumed arrays by a pattern mechanism
[6]. The ElementaryTask can be associated with multiple
IPs having different functionalities at the deployment level
and the reconfiguration controller can choose several IPs
for implementing PDR. The application components are not
specifically typed as explained before in the paper. Figure.10
shows the image filter part of the application.

Fig. 11. Allocation Level 1

Fig. 12. Allocation Level 2

Figures.11 and 12 show the allocation of the application
on to the architecture. In Figure.11, we show the model of
the whole application with the image filter part allocated to
the XC2VP30 chip (XUPchip) on an XUPBoard using the
Allocate type allocation. Currently GASPARD only supports
spacial placement (static scheduling at compilation time due to
the nature of targeted applications), however due to the nature
of PDR and related applications; we integrate the temporal
placement:timeScheduling(dynamic scheduling of a set of
elements spatially allocated to the same platform resource)
nature of allocation as defined in MARTE. Figure.12 presents
a detailed view of the allocation illustrating the mapping of
the image filter task onto the PRR reconfigurable portion. Due
to space limitations we have not presented the last level of
allocation in which the image filter task is finally placed on a
hardware acceleratorHwAcc. The XUPBoard also contains a
Clock (clk) and the CompactFlash (cf) and DDR SDRAM
(ddr ) memories. The concepts introduced in our approach
can be modified and extended to manipulate other types
of PDR supported architectures such as introduced in [25],



[26] and can be adapted to serve new emerging technologies
such as explained in [11] and [24] validating our modeling
approach. In order to validate our design methodology, we
present another PDR architecture as shown in Figure.13. The
figure shows the merged functional/physical modeling of a
PLB ICAP based PDR architecture as defined in [25]. We
have omitted some high level attribute specifications and type
definitions in the figure in order to respect the space limitations
of the paper. However, the modeling clearly illustrates that
the PDR modeling methodology that we have proposed is
easily extensible to include other PDR architectures and thus
validates our claim.

Fig. 13. Modeling of a PLB ICAP based Reconfigurable Architecture

Our modeling methodology can also be extended by in-
tegrating theHwPhysicalarrangement notation that provides
rectangular grid based placement mechanisms to make the
UML diagrams appear closer to the real hardware topology.
Due to current limitation of the modeling tools, it is not
possible to model this view. However, this view could be a
potential additional aid to commercial tools such as PlanAhead
[28]. At the simulation level, designers can accurately estimate
the FPGA resources consumed by reconfigurable modules by
utilizing these tools and can modify their models at the high
level resulting in a Design Space Exploration Strategy (DSE).

VIII. C ONCLUSIONS

In this paper, we have provided a new methodology to
model PDR featured FPGAs based on a MDE approach
using the MARTE standard. Initially, the MARTE standard
has been modified to support general modeling of FPGAs
by introduction of notions such as of peripherals and hard-
ware wrappers. Afterwards, we have presented new concepts
specifically for modeling and implementing PDR supported
FPGAs. Our methodology is also extensible and can be
adapted to serve other existing or future PDR based fine grain
reconfigurable architectures. In future works, we will detail the
model transformations and the low level Deployment and the
enriched RTL models in order to automatically generate the
necessary specifications required for FPGA implementation.
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