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                                                                  Abstract 

Wang, Fei.  Ph.D., Department of Computer Science and Engineering, Wright State 
University, 2006.  A Field Programmable Gate Array Architecture for Two-Dimensional 
Partial Reconfiguration 

 
Reconfigurable machines can accelerate many applications by adapting to their 

needs through hardware reconfiguration. Partial reconfiguration allows the 

reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. 

Operating system models have been proposed for partially reconfigurable machines to 

handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. 

The main goal of this research is to address some problems that come from the 

gap between OS4RC and existing chip architectures and the gap between OS4RC models 

and practical applications. Some existing OS4RC models are based on an impractical 

assumption that there is no data exchange channel between IP (Intellectual Property) 

circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP 

circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP 

communication channels have severe drawbacks. Those channels do not work well with 

2-D partial reconfiguration. They are not suitable for intensive data stream processing. 

And frequently they are very complicated to design and very expensive. To address these 

problems, a new chip architecture that can better support inter-IP and IP-I/O 

communication is proposed and a corresponding OS4RC kernel is then specified. 

The proposed FPGA architecture is based on an array of clusters of configurable 

logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of 

segmented buses that provides inter-IP and IP-I/O communication channels.  The 
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proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits 

under the constraints of the proposed architecture.  Features of the new architecture in 

turns reduce the kernel execution times and enable the runtime scheduling, placement and 

routing.  The area cost and the configuration memory size of the new chip architecture 

are calculated and analyzed.  And the efficiency of the OS4RC kernel is evaluated via 

simulation using three different task models. 
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1 Introduction 

For the past 20 years, Reconfigurable Computing has attracted huge amount of 

research interest due to its ability to accelerate a wide variety of demanding computations.  

A. J. Elbirt et al. showed that an FPGA (Field Programmable Gate Array) implementation 

of Serpent Block Cipher had a speedup of 18 compared with a software version running 

on a Pentium PC [Elbirt00]. Michael Rencher et al. demonstrated a 100 times speedup of 

FPGA over an HP workstation in an automatic target recognition application [Rencher97]. 

Other applications included: video processing [Haynes00], template matching [Jean03], 

Boolean satisfiability [Skliarova03], string matching [Weinhardt99] and so on. 

This chapter gives a brief introduction of this dissertation. In Section 1.1, the 

history of reconfigurable machines is introduced. In Section 1.2, some important 

terminologies are explained, and problems with partial reconfiguration are presented. In 

Section 1.3, a new FPGA architecture and a corresponding operating system are 

introduced. In Section 1.4, original contributions of this research are summarized. In 

Section 1.5, the organization of this dissertation is listed. 

 

1.1 Reconfigurable Machine and FPGA  

Reconfigurable computing model was initially discussed by Estrin et al. in 1963 

[Estrin63]. G. Estrin proposed a model called “Fixed plus Variable”. This model 

combined a traditional processor with a fine-grained reconfigurable engine. Today, many 
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reconfigurable machines still follow this “fixed plus variable” model, even though the 

relative sizes of the two parts may be varied on different machines.  

The reconfigurable engine is generally in charge of those tasks that are 

computation intensive and with some regular computing pattern.  One typical example is 

DSP applications. The configuration of the reconfigurable engine can be varied from task 

to task. While the fixed part, frequently a CPU, is in charge of those tasks which are not 

suitable for reconfigurable engine and management tasks of the reconfigurable engine.  

FPGA was invented in the mid 1980s. It is generally composed of two layers. One 

layer is an array of CLBs (configurable logic blocks) and pre-fabricated routing segments 

between CLBs. The other layer is composed of configuration memory cells. A CLB can 

be configured as one or more multi-input combinatorial logic functions and/or flip-flops. 

Different routing segments can be connected when programmable transistors between 

them are turned on. Data stored in the configuration memory cells specify the internal 

configuration of every CLB and the on/off status of transistors between those routing 

segments.  

Reconfigurable Computing received renewed attention when the first FPGA chip 

was created in 1984 at Xilinx. Even though FPGA was initially invented as a substitute to 

expensive ASICs (Application Specific Circuits), it is considered to be a good incarnation 

of reconfigurable engine because of its capability of fast reconfiguration.  

1.2 Some Terminologies about FPGA Chip Architectures 

Before further discussion of chip architectures, some important terminologies are 

explained first. 
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1.2.1 Single Context and Multi-context Reconfiguration  

In early days, because of FPGA structure constraints, only full-chip single context 

configuration was allowed. Once reconfiguration is initiated, the configuration bit stream 

for a full chip is downloaded. The information stored in a configuration memory is 

entirely overwritten, even if only a portion of the configuration memory is to be updated. 

During the configuration period, FPGA cannot work. Many commercial FPGA chips 

work in this style, such as Xilinx XC4000 and Altera Flex10K. 

As the capacity of FPGA increases, the configuration time cost also increases. The 

benefit from hardware acceleration may be overshadowed by this configuration time, 

which can take up to hundreds of milliseconds.  Multi-context configuration and partial 

configuration are two effective technologies used to overcome this problem. 

 Unlike single context FPGA, a multi-context FPGA can have more than one set 

of configuration memory. At one moment, only one set is active, while the other sets are 

inactive. The behavior of the chip is determined by configuration data inside the active 

set. Because the configuration of inactive memory sets can be loaded in the background, 

also because the switch from one context to another takes only a few clock cycles, the 

configuration time cost can be drastically reduced. 

On FPGA chips which support partial reconfiguration, the underlying 

configuration memory is divided into many pieces, each can be accessed independently. 

Configuration can be based on updating only a few pieces of configuration memory at a 

time. When those pieces are being updated, the rest of the chip may still be working 

without being disturbed. Most existing FPGAs that support partial reconfiguration are 
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still single context chips. The reconfiguration model discussed in this thesis is based on 

single context partially reconfigurable FPGAs.  

1.2.2 Partial Reconfiguration and Flexible IP Placement 

Let’s illustrate IP (Intellectual Property) circuit or hardware task relocation using 

the following example. Suppose initially there are two active circuits working inside the 

chip: circuits A and B, as shown in Figure 1.1 (a). Operating system then decides to 

replace circuit B with circuit C, while circuit A is still working (see Figure 1.1 (b)).  

Suppose a moment later, circuit A’s task is completed and circuit B is to be swapped in. 

If circuit B can be placed away from its initial position, as shown in Figure 1.1 (c), it is a 

circuit that can be relocated; otherwise, it is not.  

Figure 1.1  IP Relocation 

From the above example, IP relocation has to be supported by partial 

reconfiguration, while partial reconfiguration does not imply IP relocation.  Obviously, IP 

relocation can provide users more flexibility. In the above scenario, circuit B and circuit 

C may run in parallel if relocation is allowed; otherwise, circuit B has to wait until circuit 

AB 
 C 

A B 
 

C 

A

B 
 C 

(a) (b) (c) 

? 
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C is swapped out. Unfortunately, almost no existing FPGA chip can support IP circuit 

relocation directly.   

There are two cases of IP relocation: IP translation (if IP can only have fixed 

orientation) and IP rotation (if IP do not have to keep fixed orientation). Obviously, IP 

rotation can provide additional flexibility, as an IP may not fit into a chip where its 

orientation is changed [Compton00]. 

To support IP relocation on a chip, some requirements have to be satisfied: 

(1) Sub-area of FPGA (a CLB or a chunk of CLBs) can be accessed separately.    

(2) Partial configuration bit stream has to be address-independent. It should be 

possible to use configuration data for CLB at one specific position to configure CLB at 

another position. Only when address information can be separated from logic information, 

it is possible to effectively translate hardware circuit from one location to another 

location. Xilinx Virtex chips are partially reconfigurable, but they do not support circuit 

relocation directly. But after some modification on bit streams, they can support circuit 

relocation under some conditions [Horta02]. 

(3) FPGA chip internal resources have to be homogenously distributed. On Xilinx 

Virtex chips, block RAMs are located only at some limited locations. For IP circuits that 

have to work with block RAMs, the locations they can be relocated to are quite limited.   

 (4) Symmetrical architecture is required to support IP rotation only. A CLB 

output /input pin at one side needs a substitute pin at each of the three other sides except 

some specific pins. These specific pins may include clock pins, global set/reset pins, as 

they are hooked on dedicated routing wires. And programmable connection points 
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between individual CLB and nearby routing channels also have to be symmetrical. 

Otherwise an IP may have difficulty in connecting with routing resources after rotation.  

 

1.2.3 Problems with IP Relocation 

Even above requirements are satisfied, there are still limitations to IP relocation: 

(1) Inter IP communication problem 

For a long time, it has been assumed that no communication exists between IP 

circuits residing on an FPGA chip. So their swap in (out) of FPGA has no impact on each 

other. But in many cases, such communications do exist. Recently researchers start to pay 

attention to this problem.  

(2) IO problem 

Sometimes an IP circuit has to be connected to fixed IO pads on the FPGA 

peripheral. For example, a USB interface chip may be mounted at a fixed position nearby 

an FPGA chip. Whenever an IP circuit inside an FPGA chip communicates with this 

USB chip, it has to connect to those IO pads.  

(3) IP circuit relocation with block RAMs: 

In FPGA chips, block RAMs are dedicated resources. But in most cases, they are 

available at only a few fixed locations. If an IP circuit has to work with block RAMs, 

then its placement options are limited.  To address this problem, block RAMs should be 

uniformly distributed.  
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1.3 Proposed Architecture and Operating System  

To address above problems, a new chip architecture is proposed, which has two 

distinct properties: 

 

 

 

 

 

 

 

Figure 1.2 Cluster-Segmented Bus Structure of the New Chip 

(1) 2D partial reconfiguration is supported, and the minimum partial 

reconfiguration unit is a square cluster of CLBs. Compared with 1D and non-square 

partial reconfiguration architecture (e.g., Xilinx Virtex-II chips [Xilinx03] [Xilinx04]), 

the square cluster unit improves chip utilization [Wang05][Keating02]. 

(2) Segmented buses are introduced around clusters so as to support inter-IP and 

IP-IO communications.  These buses are used solely for runtime support.  They are not 

used for intra-IP connections, which are still supported by traditional FPGA routing 

resources. At each intersection of bus segments, there is a switch block to relay bus 

connections, which is different from traditional switch blocks inside clusters. Different IP 

circuits can be connected together via bus segments and bus switch blocks. 

cluster bus IO pad group 
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(3) An operating system kernel working along with the new architecture is 

proposed. For each newly arrived IP circuits, the operating system schedules and 

allocates a spatial slot on the chip, which does not have to be available right away. The 

slots may be occupied by one or more running circuits at the moment. Necessary physical 

connections are built up among on-chip circuits that need to communicate with each 

other. 

1.4 Original Contributions  

 The original contributions of this dissertation can be listed as follows: 

(1) With the proposed architecture, an FPGA chip is partitioned into many square clusters, 

with each cluster being the minimum partial reconfiguration unit. This structure is 

new, although 2D partial reconfiguration is not new. (On XC6000, partial 

reconfiguration is practiced on the CLB level). 

(2) Segmented buses are proposed to be used for runtime inter-IP or IP-IO connections.  

They are faster and less complicated than using packet switching, as some researchers 

proposed previously.  

(3) Based on the new chip architecture, an operating system kernel is designed and 

implemented. Compared with many existing operating system prototypes, this kernel 

has an on-line router that is dedicated to interconnections between on-chip IP circuits. 

This is different from previous routers that are used for CLB level routings. The 

efficiency of this on-line router is demonstrated in Chapter 6. 

(4) More realistic task models are proposed to evaluate the performance of the operating 

system. For task models used in many previous works, a computing task is carried 

out by only one IP circuit whose execution time is assumed to be known in advance. 
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Those assumptions are relaxed so that a task may be carried out by more than one 

circuit, with interconnections among them, and the execution time of some circuits 

may be unknown when they are scheduled.  

1.5 Dissertation Outlines 

This thesis is organized as follows. 

In Chapter 2, a literature survey on reconfigurable computing is given. The survey 

covers chip structure, reconfigurable machine architecture, runtime operating systems 

and programming of reconfigurable machines.  

In Chapter 3, aspect ratio issues of circuits are discussed. Simulation results with 

MCNC benchmark circuits indicate that partial reconfiguration based on square clusters 

is more efficient than current approaches based on CLBs or based on columns of CLBs.  

In Chapter 4, the proposed new chip architecture is described, which can support 

inter-IP and IP-IO communications. The extra area cost associated with the 

communication infrastructure is estimated.  

In Chapter 5, an operating system kernel targeting the new chip architecture is 

presented. Algorithms corresponding to different components of the operating system 

kernel are specified.  

In Chapter 6, under different parameter settings and task models, the performance 

of the operating system kernel is evaluated via simulations.  

In Chapter 7, the thesis is concluded, and future works are considered. In 

Chapter7, as future works, a 3D FPGA architecture is briefly introduced which may be 
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used to incorporate block memories in the proposed architecture. Block memories are not 

considered in this dissertation. 
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2 Literature Survey 

This chapter gives a summary to reconfigurable machines. In Section 2.1, FPGA 

chip architectures are discussed. In Section 2.2, some works on runtime operating 

systems are summarized. In Section 2.3, the programmability of reconfigurable machines 

is discussed. Even though Section 2.3 is not closely related to this dissertation, it is 

included to make a more complete overview of reconfigurable machines. 

2.1 FPGA Chip Architectures 

Many FPGA chip architectures were created in the past twenty years. This section 

summarizes the architecture of XC4000, XC6200, DPGA and AT6000/AT40k. They 

were selected because of their unique features. Although XC6200 was not a success 

commercially and DPGA has never been commercialized, their partial reconfiguration 

supports are innovative in their days. 

2.1.1 XC4000 

Xilinx XC4000 chips are a classic device family. Many other products, such as 

Xilinx’s Virtex and Spatan, Altera’s Stratix and Flex, and Lucent’s ORCA FPGA, have 

similar architectures. So XC4000  is briefly reviewed here. 

Generally, an FPGA chip is composed of two layers: the upper logic layer and 

lower configuration memory layer. The logic layer can be represented as an array of 

programmable cells. Between these cells, there are routing channels. Functions of every 
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cell can be configured, and cells can be connected in different ways if appropriate 

programmable transistor switches along the connection route are turned on. Those 

configuration data for every cell and every switch are stored in the configuration memory 

layer. Different manufacturers have their own terminologies on those cells. Xilinx uses 

CLB (configurable logic block), while Altera uses LAB (logic array block).  

Cells of different products can have different granularities in terms of number of 

BLE (Basic logic element) inside the cell. A BLE (Basic logic element) is defined as a 

lookup table (commonly with four inputs), plus a register, as shown in Figure 2.1.  

 

Figure 2.1 A BLE [Betz99] 

In XC4000, every CLB is composed of two BLEs. While in Virtex chips, every 

CLB is composed of 4 BLEs, each Altera Stratix LAB consists of 10 BLEs [Stratix03].  

Figure 2.2 shows a CLB with multiple BLEs locally interconnected. As shown in Figure 

2.3, a XC4000 CLB is composed of two 4-input look-up tables (F and G), two flip-flops 

and some multiplexers. Connections between CLBs have to go through dedicated routing 

channels outside CLBs. 

LUT Reg. 
M
U
X 
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Figure  2.2 A CLB [Betz99] 

 

 

 

 

Figure 2.3 Detail of a XC4000/XL Block [Xilinx94]   
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2.1.2 XC6200 

An XC6200 cell is shown in Figure 2.4 [Xilinx96]. Inside each cell, there is a 

function unit, i.e., a flip-flop and a look-up table. The look-up table has three input-

signals, 1X , 2X  and 3X , coming from three input-multiplexers. Each multiplexer has 

eight possible inputs: N, S, E, W, N4, S4, E4, and W4. One of them is selected to be 

connected to the function unit input. Each cell has four outputs: outoutoutout WESN ,,, .  Any of 

them can take the output of the function unit or input signals from neighbor cells. For 

example, outN  may be one out of the values from FWEN ,,, . So an XC6200 has some 

routing capability to directly connect with nearby cells. This is a big difference from an 

XC4000 cell. When all the four output multiplexers are used for routing signals, then the 

internal function unit is wasted.  
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Figure 2.4 Detail of a XC6200 Cell [Xilinx96]   

Routing resources of XC6000 (including XC6200) chips are organized in a 

hierarchical manner [Xilinx96]. Here an XC6216 chip as shown in Figure 2.5 is used as 

an example to illustrate this organization. At the bottom of the hierarchy, every CLB has 

direct interconnections with immediate neighbors.  

The next level of hierarchy is composed of (4*4) CLB blocks. At the boundary of 

such a (4*4) CLB block, there are routing switches. The length-4 wires are driven by 

special routing multiplexers within those routing switches at the boundary of (4*4) blocks. 

Those length-4 wires, running across CLBs inside the (4*4) blocks, supply those N4, S4, 
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E4 and W4 inputs to every CLB input multiplexers. At the third level, (4*4) blocks can 

be used as elements to build a (16*16) cell block. At boundaries of each (16*16) cell 

block array, length-16 wires are provided to run across the (16*16) cell block. Similarly 

(64* 64) cell array can be built, and chip-length wires are constructed. 

 

Figure 2.5 Hierarchical Organization of XC6200 [Xilinx96]   

XC6200 has certain number of control registers, which can be accessed by an 

external processor via CPU Interface. By writing different control words to those 

registers, some special operations can be applied to XC6200: 

(1) The output of any cell's functional unit can be read out, and the flip-flop 

within any cell can be written. The accesses are managed by the built-in control store 

interface. Through the Map Register, the XC6200 provides a mechanism for selecting 

some cell outputs from a column and mapping them onto the 8, 16 or 32-bit external data 

bus. 
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 (2) XC6200 has a full CPU interface, referred to as FastMapTM, which makes  

configuration SRAMs and logic cells appear as conventional memory. Via appropriate 

register (WildCard registers) operations, configuration memory data for all those CLBs 

within the same row/column can be written simultaneously. 

Because of its hierarchical routing structure, when two 4*4 (16*16) blocks are not 

close to each other, longer wires (length 4 or length 16) are used to connect them if 

needed. When similar communications are competing for longer wires, these long wires 

may become hot spots.   

Even though XC6000 chips support partial reconfiguration, the cell-by-cell 

reconfiguration granularity is too fine. At times of mapping IPs onto chips, users focus 

more on inter-IP connections rather than details of each cell. Cell-level rerouting is 

frequently very time-consuming if quite a lot of cells are reconfigured; reconfigurable 

computing is not attractive when the time to place and route an IP core is longer than its 

execution time. Changing inter-cell connections is not an automatic placement and 

routing procedure and is frequently a dangerous operation. This situation can be found 

later in the JBits (not targeted to XC6000) toolkit. 

With routing capability combined into the logic cell, many derived structures were 

proposed. Similar structure can also be found in Atmel’s AT40K, AT6000 and other 

structures [Atmel99] [Compton00][Silviu01a]. Some of them have symmetric structures, 

and may be able to support IP circuit rotation. 
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2.1.3 DPGA 

DPGA was fabricated at MIT in 1995. It is the first chip to implement a multi-

context switching. Unlike common single context FPGAs, DPGA can have four different 

context configuration memories. Every time only one out of the four contexts is active, 

while the other three are idle.  Current FPGA chip functions are determined by the active 

context.  Switching between different contexts is controlled by a 2-bit context identifier. 

While the active context is working, idle contexts can be loaded with new configuration 

bit streams. The reconfiguration time cost can be reduced. 

DPGA uses a “Delta architecture”, “which is designed to fully exploit the high 

level of symmetry in each of its sub-component hierarchies, by replicating to form larger 

homogeneous logic blocks” [Dehon96]. It has totally three levels of component 

hierarchies: 

(1) The leaf level node is a 4-input lookup table (LUT) with an optional flip-flop, 

or a BLE, which is defined as an array element. 

(2) Sixteen (4*4) array elements are combined into a sub-array with dense 

programmable local interconnection resources. 

(3)At the chip level, nine (3*3) sub-arrays are connected by crossbars. 

Communication at the edge of the sub-arrays goes off chip via programmable I/O pins. 

Figure 2.6 shows the three top-level hierarchies of DPGA's architecture. 
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Figure 2.6 High Level Architecture of DPGA [Dehon96] 

2.1.4 Atmel AT6000/AT40K 

 

Figure 2.7 Detail of an AT6000 Cell [Atmel99] 

Figure 2.7 shows a cell of AT6000. It has two sets of inputs from its immediate 

NEWS neighbors (AN, AE, AW, AS and BN, BE, BW, BS) and four outputs (As and Bs ) to its 
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four immediate neighbors. As shown in Figure 2.8, every (8*8) array of cells composes a 

sector, which is enclosed by connection units called repeaters. Inside each routing 

channel, there is a local bus and an express bus. Cells are hooked on local bus.  

 

Figure 2.8 Bus Network of AT6000 [Atmel99] 

The cell structure of AT40K (shown in Figure 2.9) is similar to that of AT6000. 

But each AT40K cell has direct outputs and inputs with its 8 immediate neighbors, and is 

hooked on 5 horizontal local bus wires and 5 vertical local bus wires. A sector of AT40K 

is composed of (4*4) cells [Atmel99]. 

 

Figure 2.9 Detail of AT40K Cell [Atmel02] 
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Both AT40K and AT6000 are claimed to support dynamic partial reconfiguration. 

Like XC6200, they support cell level partial reconfiguration. The problems of cell-level 

partial reconfiguration have been discussed earlier in Section 2.1.2. Because of the fully 

symmetric structure of AT6000, IP cores can be put into an array with a rotated 

orientation. But this feature does not guarantee correct connections between IP cores after 

some of them are rotated. 

2.1.5 Three-Dimensional FPGAs 

Most existing FPGAs are called 2-D FPGAs, because their configuration logic 

blocks and routing resource are arranged on a 2-D plane. Generally they are composed of 

two layers: the configurable resources layer (CLBs and routing resources) and 

configuration memory layer. If an FPGA chip has more than one layer of configurable 

resources, it is called a 3-D FPGA chip.  

 

Figure 2.10 Cross Section of a 3-D FPGA Based on Wafer Bounding 

[Rahman03] 
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3-D FPGAs benefit from recent semiconductor technology achievements. 

Different technologies such as wafer transfer, wafer bonding, selective epitaxial growth 

or re-crystallization are used to build 3-D FPGA chips [Silviu01a] [Ramm97] [Sailer97] 

[Pae99] [Fan01]. The cross section of a 3-D IC based on wafer bonding is shown in 

Figure 2.10, where the interconnections between layers are formed by vias etched 

through the thinned silicon layer [Ramm97] [Fan01] [Silviu01a]. With epitaxial growth 

or recrystallization technology, the back end of the line (BEOL) processing can be used 

to construct inter-layer interconnects. 

Advantages of 3D-FPGAs over traditional 2-D FPGAs are as follows [Ramm97]: 

(1) Reduced propagation delay. With the help of routing resources on the 3rd 

dimension, it is much easier to connect two points. It is estimated that routing 

track lengths can be reduced 45%~60%, compared with 2D FPGAs. 

(2) Reduced Power Dissipation. This benefit comes along with the shortened 

routing track lengths. Estimation based on a chip with 20K cells indicates 

that power dissipation can be reduced 35%~55% over 2D chips. 

(3) 3D routing reduced the need of routing channels on each 2D larger chip. 

Routing channels are expected to be narrower, and logic cell density is 

increased 25%~60% over 2D chips. 

No commercial 3D chip has been reported.  Silviu Chiricescu et al. fabricated a 

3D chip, which we call NE3D FPGA [Silviu01b], as shown in Figure 2.11. NE3D FPGA 

is composed of 3 layers: the Routing Logic layer (RLB layer), Routing Layer and 

Memory Layer. The RLB layer is composed of routing resources and logic cells; the 
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Routing Layer is just composed of routing resources; and the Memory Layer is just 

composed of configuration memory.  

NE3D takes a XC6200 like but a fully symmetric cell structure, as shown in 

Figure 2.12. Input signals to a cell not only come from neighboring cells but also from 

the lower routing layer. Similarly, its output signal goes both to neighboring cells and the 

routing layer. The routing layer of NE3D FPGA is composed of an array of switch boxes. 

Every (4*4) logic blocks on the RLB layer form a cluster. Under each cluster at the 

routing layer, there is a corresponding switch box. The switch box connects not only with 

the cluster but also with four nearby switch boxes. Each cell has a connection of width 

1=Ro  to the switch box below it, while accepts 3~2=Rin  incoming wires from the 

switch box. On each side of the switch box, there are 6~4=W  outgoing wires plus W 

incoming wires, connecting with neighboring switch boxes.  

 

Figure 2.11 The Internal Structure of the Switch Box [Silviu01b] 
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Figure 2.12 Cell Structure of the 3-D FPGA [Silviu01b] 

2.2 Coupling between the Fixed and Variable Part 

As discussed in Section 1.1, a reconfigurable machine is composed of a fixed part 

and a variable part. In terms of the connections between them, there are different methods: 

(1) FPGAs are loosely coupled with a host machine. The fixed part is frequently a 

front-end host computer (a PC or workstation). The variable part is frequently an FPGA 

engine. The two parts exchange data via a general-purpose I/O interface bus. A typical 

example is the WildForce board by Annapolis [Annapolis98]. On the board more than 

one FPGA chip is connected by a crossbar and memories. The board can be inserted in a 
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PCI bus slot in a PC case. Data to be processed by FPGAs are downloaded to the on-

board memory via the PCI interface, and the configuration bit stream can be downloaded 

to FPGAs via the same interface. Processed data from FPGAs are stored in on-board 

memories, and then read back by PC via PCI interface.  

(2) FPGA works as a node on a network. This is the most loosely coupled method. 

This method is suitable for those situations where data exchanges between FPGAs and 

fixed machines are not frequent. S. Guccione et al. built such a prototype called Cam-E-

leon [Guccione02]. In that system, users, web camera and IP servers are different nodes 

on a network. Users may operate a camera via the network, and IP cores associated the 

web camera can be updated (reconfigured) with new service uploaded by the IP server.  

(3) On a traditional processor, its data path, control path and instruction set are 

totally fixed. But on a reconfigurable processor, these elements can be adjusted to satisfy 

specific applications’ needs. Tensilica’s Xtensa LX is such a reconfigurable processor. It 

has a basic IP core with an integer pipelined data path. Extra registers, execution units, 

and user-defined circuits can be added to the data path for specific applications. When a 

new execution unit is added to the data path, the original instruction set is changed, and 

the finite state machine corresponding to the control path is also re-configured. More 

about Xtensa LX’s develop environment will be discussed later. 

(4) FPGAs work as a co-processor of a CPU. The FPGA chip can exchange data 

with the CPU directly. An example of this type of coupling is the work by Ralph D. 

Wittig et al. [Wittig 96]. On the basic five-stage MIPS processor pipeline, reconfigurable 

logics were inserted on the EX (execution) stage, running in parallel with the basic 

functional unit (BFU) in the form of programmable functional units (PFU). BFU is 
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responsible for some elementary, arithmetic and logical operations required by many 

programs. The PFU can implement many application specific functions. Extra logics 

were required between the instruction fetch (IF) – execution (EX), execution (EX) – 

memory access (MEM) stages to orchestra data or control information. 

2.3 Interconnection between On-chip Hardware Tasks 

When partial reconfiguration is practiced, on-chip IP circuits should be connected 

to either other on-chip circuits or IO pads. Such connections are discussed in this section. 

Cases of 1D and 2D partial reconfiguration are discussed separately. 

2.3.1 Connection Strategies for 1D Partial Reconfiguration  

When partial reconfiguration is only allowed along one dimension, to solve the 

connection problem seems not difficult. On Xilinx Virtex FPGA chips, a method 

frequently adopted is to use tri-state buffers and long lines inside. With these resources, 

interface with IP circuits or “sockets” can be built. Different IP circuits may talk to each 

other via these interfaces.  

N.P. Sedcole et al. used such a strategy and built a system for video image 

processing [Sedcole03]. As shown in Figure 2.13, processing elements (PEs) are attached 

to a global bus for communication. Every PE can convey data flow to the next nearby PE 

via unidirectional “chain bus”. Both “global bus” and “chain bus” are 32 bits wide. This 

architecture is suitable to video processing. Data flows go through cascaded processing 

modules along the pipeline. Due to the constraint of Xilinx Virtex FPGA, modules on the 
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system have to be column shaped, and this is likely to cause low CLB utilization. A 

similar method can also be found in the DHP project [Horta02]. 

 

 

Figure 2.13 Partial Reconfiguration with Connections along One-dimension 

[Sedcole03] 

Katherine Compton et al. suggested an architecture model to support 1D IP 

relocation [Compton00] [Li00]. To accommodate new IP circuits, IP circuits can be 

relocated vertically. Two long wires in each routing channel are assumed to connect 

circuits to IO pads at top/bottom side of the chip. After relocation, circuits can still be 

connected to original IO pads using the same two long wires. For this reason, IP circuits 

are not allowed to translate horizontally. No inter-IP connection is considered.  
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Figure 2.14 Folded Torus NoC [Marescaux02] 

2.3.2 Connection Strategies for 2D Partial Reconfiguration 

Compared with 1D partial reconfiguration, 2D partial reconfiguration can 

decrease fragmentation on the chip estate and therefore improve the chip utilization. 

However 2D partial reconfiguration makes the connection problem more difficult, as the 

circuit size and its location on the chip are quite flexible. How to support inter-IP 

connections on a 2D partially reconfigurable chip is still not resolved. There are two 

possible methods to build connections between IP circuits: packet switching and circuit 

switching.  

Recently, NOC (network on chip) becomes a hot topic in the field of SOC (system 

on chip). On NOC, every module is hooked on the network via a standardized network 

interface, and follows the same network protocol [Sonics] [Dally01]. “Sonic” is a 



 29

centralized “Octagon” network, where eight processors in charge of packet forwarding 

and differentiation are hooked on [Sonics] [Karim01]. To address the problem of ad-hoc 

wiring strategy in chip design activities, William J. Dally and Brain Towels suggested a 

torus as the communication backbone network among 4*4 tile arrays. Each tile can 

exchange data with four nearby neighbors via input/output ports. Each port is composed 

of a 256-bit data field and a 38-bit control field [Dally01]. In that torus network virtual 

channels can be reserved for timing-critical communications. These two networks are 

based on ASICs, on which IP circuit relocations are not allowed. 

Theodore Marescaux suggested a folded 2-D torus network, and prototyped it on 

Xilinx Virtex chips [Marescaux02], as shown in Figure 2.14. An operating system 

working along with such a network was also built [Marescaux04]. A hardware circuit has 

to be fit into a tile. All tiles have the same size. Physical connections between tiles are 

pre-defined at compile time rather than runtime, although packet routing paths can be 

changed. Christophe Bobda et al. suggested a dynamic NoC model [Bobda04] that 

assigns circuits (with varied size) at runtime with necessary connections. Routers on the 

net can be activated or disconnected to satisfy the communication needs. The area cost to 

build such a network was estimated on Xilinx Virtex chips, which allows only 1D partial 

reconfiguration.  

A big advantage of packet switching is its scalability. Any two nodes on the net 

can communicate with each other. For the time being, only simple packet switching 

mechanisms such as wormhole routing have been built on FPGA chips. Packets (or flits) 

have to go through intermediate routers to reach a target node. Buffers of finite sizes at 

routers have impacts on the network performance. When a buffer capacity is reached, the 
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router stops forwarding packets. Hand-shaking on each link segment also reduces 

network throughputs.  

Packet switching is not cheap in terms of the chip area. On a 3*3~4*4 mesh 

network, routers alone are reported to consume 6%~9% of total chip area. But for each 

circuit hooked on the net, it also needs a network interface circuit (NIC) that contains 

many components: packet-processing unit, synchronization unit, buffers for 

outgoing/incoming data, network busy/free detection unit and so on. For example, on a 

3*3 mesh, routers consumed 8.3% of the chip area, and at each tile NIC consumed 1.8% 

of the chip area [Marescaux04]. Therefore totally 24.5% ( %8.1*9%3.8 += ) of the chip 

area was taken up by the routers and NICs. Other problems for packet switching includes: 

low bandwidth, extra packet processing time and complicated synchronization 

mechanisms between two communicating modules. 

As a competing technology, on-line circuit switching can partially address those 

problems. It has higher bandwidth and less area cost. It is therefore more suitable for low 

granularity data exchange as is normally used in inter-IP communication. Some 

drawbacks of circuit switching are that its scalability may not be as good as that of packet 

switching, and extra on-line routing time is incurred.  

On a reconfigurable machine, the routing overhead at runtime needs to be much 

lower than that in the traditional design flow. By separating the communication and 

computation part in the proposed architecture, this routing cost is greatly reduced. In later 

part, it can be seen that the routing cost is frequently around 10 ms and no more than 20 

ms. For large Xilinx Virtex2 chips (with more than 8000 CLBs, comparable to our 
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assumed chip size used later), partially configuring only one unit costs more than 10 ms 

via  JTAG [Xilinx04, page 309] as shown in Table 2.1. 

 

Device 
CLBs 

Row * Col

Partial 

Configuration

Units 

JTAG download

Time (33MHz) 

ms 

Download 

Time per Unit

ms 

XC2V6000 96*88 44 598.27 13.6 

XC2V8000 112*104 52 793.17 15.25 

Table 2.1 Configuration Cost of Two Xilinx FPGA Chips 

Overlapping on-line placement and routing with circuit running or configuration 

can hide this cost. Routing time cost can be compensated by sophisticated algorithms, 

architectures and high-speed computing machines. 

When a routing try is not successful, rip-up and rerouting are used which may 

interfere with existing running tasks. This is not the unique problem of circuit switching. 

For example, whether based on circuit switching or packet switching, tasks are 

interrupted by on-line compaction or de-fragmentation [Diessel98][Li00]. In the case of 

packet switching, even without on-line compaction, updating routing table on routers 

when the network topology is changed (dynamic NoC) may also interfere with running 

tasks.    

2.4 Operating Systems for Reconfigurable Machines 

In order to explore the capabilities of reconfigurable machines, runtime resource 

management may be handled by operating systems. Based on different models, 

researches around the word have spent quite some efforts in studying such kind of 
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operating systems. Because of the lack of chip architecture support, most such operating 

systems are not based on real chips. Performances of these systems are evaluated using 

theoretical calculation or numerical simulation rather than through on-chip testing. 

In recent years, many operating systems targeting to 2-D partial reconfiguration 

were presented. Most of those works are concentrated on the runtime task placement and 

task scheduling. Connections between hardware tasks are frequently omitted. This 

omission partly comes from the lack of physical infrastructures to support necessary 

connections, and partly comes from the difficulty of the problem itself. Several such 

operating systems are summarized as follows. 

2.4.1 ReconfigME 

ReconfigME is an operating system developed by Grant Brian Wigley at 

University of South Australia [Wigley05]. 

When an application is submitted to ReconfigME, the application is broken into 

multiple small tasks (or processes).  Partition is a very important component in this 

system. A big task may be broken into small subtasks to fit into available vacant slots 

available on the chip. The finer a task is broken into, the more time-consuming the 

partition is. Partition is more a compile-time work than an operating system work. This 

dissertation assumes that all tasks have been partitioned at compile time. 

In ReconfigME, different tasks on chip are assumed to be hooked on a network 

controlled mainly by a memory controller. Communications between tasks are assumed 

by sharing data stored in the off-chip memories. The memory controller may become the 

bottleneck if many tasks compete for the memory controller. There was no discussion 
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about converting these infrastructures into real designs. The omission was probably due 

to the difficulty of runtime routing of such a communication network and the lack of 

practical toolkits [Wigley05, pp129]. 

 As applications submitted to ReconfigME have to be characterized in a dataflow 

graph, dependencies between them should be known before runtime.  This constraint 

limits its applicability. 

In this work on-line routing between on-chip tasks was not discussed [Wigley05], 

but discussed in an earlier work, where pre-routed IPs were assumed [Wigley00]. Because 

intra-IP and inter-IP routing recourses were not separated, it is hard to reserve or 

differentiate those detail routing recourses in large quantity.  

2.4.2 ETHOS 

This operating system prototype was proposed at Swiss Federal Institute of 

Technology (ETH) [Steiger04]. Here it is named as ETHOS for short. ETHOS was 

targeted to a chip that supports 2-D partial reconfiguration. In ETHOS, a chip is assumed 

to be composed of many reconfigurable units (RCUs), each an atomic unit of partial 

reconfiguration. On-chip task preemption is not allowed. Each task/circuit is composed of 

many small RCUs enclosed in a rectangle. 

The granularity and internal structure of RCU are not described [Steiger04]. But 

from the setup of simulation parameters, a RCU can be deduced as a CLB like structure. 

In this sense, ETHOS’s targeting architecture is quite different from the cluster-based 

architecture proposed in this dissertation. 
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The beauty of ETHOS is its scheduling algorithm. If a new arrival task cannot be 

scheduled immediately, the operating system does not simply reject this task. Instead the 

operating system predicts the space available in the most recent future, and reserves this 

space for the task. 

Even though the needs of inter-task or task-IO communication are noticed, it is 

still assumed that no such communication occurs in ETHOS. Based on this assumption, 

placement of tasks is bottom-left oriented. Vacant spatial slot searching is based on non-

overlapped rectangles. 

ETHOS assumed a one task–one circuit model, and there is no dependency among 

tasks. There was much discussion about the targeted chip. All those works reported were 

based on simulation.    

2.4.3 RLCOS 

It was proposed by Oliver Frank Diessel [Diessel98]. This operating system 

model is based on a 2-D partially reconfigurable chip.  

In this work, an FPGA chip was modeled to be configured cell by cell. On-chip 

hardware tasks can be relocated or compacted to accommodate a waiting task. One 

interesting feature is that compaction is not based on re-loading of a configuration bit 

stream. Instead configuration bit information can be copied from cell to cell via dedicated 

channels. More than one of these dedicated channels can be run in parallel. Two different 

kinds of channels were suggested, i.e., mesh model and segmented bus. Here the 

mesh/segmented bus is different from that described in this dissertation. In Diessel’s 

work, the segmented bus was used only for on-line task relocation rather than inter-IP 
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communications. Compared with the architecture of traditional FPGA chips, the time cost 

of task relocation can be reduced greatly. No commercial chip is reported to have such an 

infrastructure. The author proposed this conceptual infrastructure, without giving any 

circuit level information. Inter-IP or IP-IO connections are not considered in this work. 

More than one on-chip hardware task may have to be relocated to reduce the 

fragmentation so that the waiting task can be swapped in. A promising position for the 

waiting task is such a position that the relocation cost is minimal. Two relocation 

strategies were suggested. i.e., local compaction and ordered compaction. The local 

compaction is based on two-dimensional bin packing, so the original relative positions of 

those hardware tasks are ignored. The ordered compaction can guarantee those relative 

positions based on shifting those relocated tasks along a 1-D direction to one end of the 

chip. If a hardware task was relocated, there was a time delay between it was removed 

and it was placed on the chip again. Among all those relocated tasks, the problem of 

minimizing the maximal delay was explored. This problem was defined as the scheduling 

problem of relocation. This problem was proved to be completeNP − , and a heuristic 

search algorithm was constructed.   

2.4.4 IMEC OS4RC 

Corresponding to the fixed torus NOC, an OS4RC was built with RTAI 

[Marescaux04] [Nollet03]. This operating system is targeted to a heterogeneous system, 

on which, traditional instruction set processors and reconfigurable processors (FPGA) co-

exist. Communications among different types of processors are allowed. A two-level task 

scheduling strategy was proposed. The top-level scheduler resides on a central instruction 



 36

set processor. It performs the task of processor assignment. The lower-level schedulers 

reside on their local processors, performing temporal ordering of the tasks that have been 

assigned to them. But for the lower-level schedulers on the FPGA part, no-detail 

architecture was reported. As tasks have to fit into tiles of the same size, the OS4RC can 

do placement with minimal overhead at the cost of higher fragmentation. Task relocation 

was supported subject to the bottleneck of downloading streams into FPGAs. Some 

simple tasks were tested with this operating system. 

2.5 Reconfigurable Machine Programmability 

This section describes the programmability problem of reconfigurable machines 

and summarizes some solutions proposed by the community. The following comments by 

Wim Roelandts show that industries are striving to improve the programmability of 

reconfigurable machines.  

‘The next step is really to make FPGAs disappear.  Today our 

customers are hardware engineers.  But FPGAs are programmable 

devices.  If we can create a level of abstraction that appeals to software 

engineers, we can increase our customer base by at least 10x.  That's 

really where our future is.  As long as you have a set of interfaces that 

you can program to, you don't have to know what the hardware looks 

like.’  

 Wim Roelandts, Xilinx CEO, June 2005  
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2.5.1 Why Reconfigurable Machines Are Not Popular 

For a long time, the poor programmability of a reconfigurable machine made it 

hard to be widely accepted. For an application that is partitioned into a software part and 

a hardware part, two different kinds of languages are frequently used to program on 

reconfigurable machines. Codes for the software part are frequently written in high-level 

languages (e.g. C/C++), while codes for the hardware part are written in hardware 

description languages (e.g., Verilog / VHDL). The two parts are compiled separately. 

To most software programmers, circuit design is beyond their interest or 

knowledge. Even when they design circuits in HDLs, they prefer behavior descriptions 

(C/C++ style), rather than structural descriptions. Compared with programmers on 

traditional machines, reconfigurable machine programmers are overburdened. On the 

other hand, if the HDL compiler is not smart enough, circuits synthesized from behavior 

descriptions frequently are clumsy both in terms of area and speed, compared with 

circuits from structural descriptions. 

Recently, software begins to run on CPU IP cores in an FPGA chip. For an 

application, there is a need to decide which part runs on software, and which part runs in 

hardware. There are many different possible options, depending on available resources 

and performance requirements. If both the hardware and software parts can be written in 

a uniform language, debugged and simulated within a uniform environment, the system 

design process will be much more efficient. 
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2.5.2 Reconfigurable Machine Programming: C/C++ vs. HDL  

HDLs are designed for hardware engineers who want to create sophisticated 

circuits whereas high level languages (HLLs) are developed for programmers who do not 

need to have any hardware knowledge at all. Many algorithms have been implemented in 

C/C++ languages. If these algorithms can be transplanted to reconfigurable machines 

without translating into HDLs, the code development period can be largely shortened.  

HDLs have been proven successful for RTL (register-transistor-level) abstraction. 

During an RTL simulation, state changes of each gate/register are tracked for many clock 

cycles. At this time of deep sub-microns, multi-million gates are integrated on one chip 

and it is hard for simulators to track every states. System simulation and verification 

become very slow. New methods which can characterize systems in higher level 

abstractions are needed to shorten the simulation time.  

Furthermore, at this time of system on chip (SOC), IPs from different sources are 

integrated together to shorten the design cycle. System design focuses more on inter-IP 

connections rather than IP internal structures. It is not necessary (or sometimes 

impossible) to access the internal information of IPs, especially when IPs come from a 

third party. High level abstraction is again required. 

The emerging methodology is called ESL (Electronic System Level) design 

methodology. Such a method focuses on behavior descriptions rather than structural 

descriptions of IPs. Most importantly, C/C++ are languages with higher level of 
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abstractions over HDLs. Coding in C/C++ can enhance design productivity and speed up 

system verification or simulation for very complex systems.  

2.5.3 C-like Hardware Synthesis Languages   

Standard C/C++ cannot be used to implement an ESL design directly. C-like 

hardware synthesis languages are frequently subsets or supersets of standard C/C++ with 

extended libraries. The reasons are as follows. 

(1) Concurrency is a fundamental characteristic of hardware. Traditional 

C/C++ code for sequential algorithms does not support this concurrency. A good 

hardware compiler can extract this concurrency automatically. 

(2) As semantics of C/C++ have intrinsic sequential characteristic, 

synchronization between different concurrent hardware processes is another 

problem. Because standard C/C++ does not have a time model to characterize 

causality, this makes achieving timing constraints difficult. 

(3) C/C++ does not support variable bit resolution. 

In the past ten years, many C-like hardware synthesis languages have been 

proposed by industries and academic institutes [Edwards 05], such as Cones [Stroud88], 

HardwareC [Ku90], Transmogrifier C [Galloway95], SystemC [Gr¨otker02], Ocapi 

[Schaumont98], C2Verilog [Soderman98], Cyber [Wakabayashi99], Handel-C 

[Celoxica03], SpecC [Gajski00], Bach C [Kambe01] and CASH [Budiu02]. 
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Out of so many C-like languages, System C and Handel C are distinguished over 

others. Both of them support hardware/software co-design, and they are two leading 

candidates to be accepted by the EDA industry. 

2.5.3.1 Handel C  

Handel C was initially created by the Hardware Compilation Group at Oxford 

University [Oxford 97]. It is a subset of ANSI C. Only limited data types of ANSI C are 

inherited: integer, unsigned, char, long and short, while other data types, such as float, 

double, enum and so on, are removed. Extra data types, such as channel, RAM and 

interface are added. Other additional features are parallel expression of communications 

between parallel processes and operators for detail control of hardware. As Handel C 

supports a large set of ANSI C constructs, porting between the two languages is possible. 

This is the basis for Hardware/Software Co-design.  

2.5.3.2 System C 

System C is based on standard C++, but extended with new class libraries. Many 

software features, such as concurrency, events and data types, are included. In System C, 

interfaces between circuit blocks are defined as communication methods and protocols 

rather than signals. This is a big difference from common HDL descriptions. Design 

abstractions and therefore design efficiency are drastically increased. This increase comes 

from the extended class libraries, which provide new mechanisms to model system 

architectures with hardware elements, concurrency and reactive behavior. System C 2.0 

introduced a feature called TLM (transaction level modeling). Communications are 
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modeled as channels and transaction requests use interface method calls of these channel 

models. Unnecessary details of communications are hidden (but can be worked out later 

on). System C supports both ESL and RTL simulations.  

2.5.3.4 Emerging Reconfigurable Machine Environment 

For an application written in a C/C++ derived language, some but not necessarily 

all for-loops are likely to be accelerated on FPGAs. Applications have to be partitioned to 

decide which part is mapped to general purpose CPUs (or host computers) and which part 

is mapped onto FPGAs. This problem is generally N-P hard, and subject to different 

constraints, such as FPGA resources, real-time deadlines, and even energy consumptions. 

Compilers for these C/C++ derived languages are expected to partition an application 

automatically using some optimization criteria. These works are called 

Hardware/Software Co-design. Although manual adjustments and human directions are 

often demanded, easy-to-use reconfigurable machine environments are emerging. They 

are summarized as follows.  

(1). Tensilica’ Xppres is a compiler that works with its reconfigurable processor 

Xtensa LX. When an application written in C/C++ is submitted to Xppres, the complier 

evaluates it based on a basic processor configuration as the starting point of exploring 

different possible configurations. Then the speed gains and area costs for different 

configurations are presented to the user so that the person can select one. Xpress then 

automatically produces all solutions to data path and control path. The instruction set 

used reflects the new processor architecture, and execution codes of the application are 
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optimized based on the new instruction set. It is claimed that the speedup of the re-

configured processor is comparable to that of RTL circuits 

Unlike most other HW/SW co-design situations, the processor is synthesized from 

an available working processor rather than from scratch. Another feature of this system is 

that the application is submitted in standard C/C++, and no modification is needed.   

(2) During the ERSA 2005 conference, Stretch Inc. demonstrated an integrated 

development environment called Stretch IDE. On that platform, application codes are 

written in C/C++ (with Stretch C extension). It is claimed that circuits synthesized by 

Stretch C Complier are comparable to those from HDL structural descriptions.   

(3) Celoxia’s DK is a hardware design and synthesis environment that supports 

Handel-C. Cray Inc. is collaborating with Celoxica to make DK Design Suite available to 

customers of its reconfigurable machine, the Cray XD1™ supercomputer [Celoxica05]. 

Using a high level language software design flow, programmers can accelerate their 

applications with FPGAs on Cray XD1. 

(4) Commercial tools such as Cadence’s NC-System C/Incisive and CoWares’ 

Convergence SC System Design support mixed-language integrations. ESL design can be 

started in System C and end up with gate-level representations for fabrication.   

In summary, the semiconductor industry has produced FPGA chips with 

increasingly higher capacity and faster speed, and this trend will continue. 

Compiling/synthesis technology is becoming more and more sophisticated, and circuits 

based on behavior descriptions are getting better and better. The industry has 

demonstrated some successful products to overcome the programming bottleneck, and 
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more effort is still undergoing. More powerful and easy-to-use reconfigurable machines 

are emerging and wining over more audience. 
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3 Aspect Ratio Effects 

This chapter presents the effects of different aspect ratios on chip area, 

performance and CLB utilization. The proposed architecture in this dissertation uses 

square clusters because of these results. In Section 3.1, the definition of aspect ratio is 

given, and some background information is supplied. In Section 3.2, effects of reshaping 

a circuit by changing its aspect ratio are shown. Results indicate that reshaping might 

cause chip area inflation as well as performance degradation, which can not be ignored in 

practice. In Section 3.3, the square cluster structure suggested is shown to be close to 

optimal in terms of chip utilization. Section 3.4 concludes this chapter. 

3.1 Introduction 

The adoption of IP cores can speed up FPGA design and testing, and therefore 

shorten the time-to-market. Partial reconfiguration allows the loading of a new IP core 

without interfering with the working of other circuits on the FPGA chip.  

Generally, there are two different kinds of IP cores, i.e., hard IP cores and soft 

ones. Hard IP cores have already been placed and routed in advance. Even though a hard 

IP core may be put at different locations inside the chip, relative positions of all its 

building logic blocks and connections between those blocks are fixed. Soft IP cores have 

not been placed and routed. To simplify discussion, the shapes of both hard and soft IP 

cores are approximated as rectangles.  
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Definition:  Aspect ratio, r , is defined as the ratio of a circuit’s height to width.  

A hard IP core has a fixed aspect ratio (shape) once it is created, even though at 

design time its aspect ratio may be adjusted to achieve some trade-offs. While the aspect 

ratio of a soft IP core can be adjusted at placement or compile time. A soft IP core can be 

reshaped before being loaded to a partially reconfigurable FPGA chip. That is, its 

placement and routing can be adaptive to current space or routing constraints. Consider a 

runtime reconfigurable machine that allows the dynamic swap in and out of hardware 

tasks (or IP circuits). The shape and size of available space may be such that a hard IP 

cannot fit while a soft IP of the same functionality can. But in both cases, reshaping is not 

free, and consequential impacts have to be considered.  

3.2 Impacts of Reshaping an IP Core 

Previously the reshaping of a soft IP is based on the assumption that the logic area 

of a soft IP core remains the same [Tessier02] [Kalte04]. A similar assumption was also 

previously used in ASIC floor planning [Sait95]. Because of the large area used for 

routing, adopting such an assumption without accounting for the routing area may lead to 

overly optimistic expectation. In this section the effects of soft IP reshaping are studied. It 

will show that inappropriate reshaping leads to area inflation as well as performance 

degradation. Before reshaping is implemented, proper evaluation of these negative effects 

is necessary. 
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Figure 3.1 An Example of Reshaping 

3.2.1 Example 

Here an example is used to illustrate the negative effects of inappropriate 

reshaping.  Suppose an IP circuit is composed of 33× CLBs (Configurable Logic Blocks), 

as shown in Figure 3.1 (a). When it is reshaped into a 26 ×  rectangle as in Figure 3.1 (b), 

CLBs 3, 6 and 9 have to be relocated to new positions. Connections associated with them 

become longer than before, and the time delays along these stretched connections also 

increase. Chip utilization may also deteriorate, as those CLBs in dashed lines are wasted 

because of fragmentation.   

3.2.2 Simulation Results 

Simulations were performed to determine the effects of reshaping on area cost and 

critical path delay. Our experiment is based on running of VPR on 20 MCNC benchmark 
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circuits with various aspect ratios [Betz99] [VPR00]. After those benchmark circuits are 

completely placed and routed, the area cost (in a unit of 610 minimum transistors) and 

critical path delays (in a unit of  10  nanoseconds) are measured. Their averages are 

summarized in Figure 3.2. The following virtual chip architecture is assumed:  every 

CLB is composed of four look-up tables and flip-flops, and all routing tracks inside 

channels have unit length. 
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Figure 3.2 Area Cost and Critical Path Delay 

From Figure 3.2, it can be observed that the case of   r = 1:1  has the smallest area 

and the lowest delay. The average critical path delay at r = 1:1  is only %73 of the 

maximum value.  Two different kinds of routing segment structure are considered, i.e., 
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routing segments share buffers or not [Betz99].  For the cases of with (without) buffer 

sharing, the area costs at r = 1:1  is just %69  ( %67 ) of the maximum value. 
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Figure 3.3 Area-delay Product and Channel Width 

Area and delay are trade-offs in VLSI design; so area-critical path delay product 

is frequently used to evaluate this trade-off. Figure 3.3 summarizes the simulation results 

in terms of area-delay product (measured in 107 minimum transistors * nanoseconds) and 

channel width. Channel width is the minimum number of tracks needed per channel to 

route those benchmark circuits successfully. 
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In Figure 3.3, for the case with (without) buffer sharing on routing segments, the 

area- delay product at r = 1:1  is 23 (30), while at r = 10:1 , the corresponding value is 44 

(62). Area-delay products at r = 1:1  are almost %50  of corresponding values at r = 10:1 . 

As the aspect ratio gradually decreases, the channel width monotonically increases. At 

r = 1:1 , an average channel width of 38 is enough, while at r  = 10:1 , an average channel 

width of 56 is required. Since the channel width of a commercial FPGA chip is fixed, the 

case that requires the least number of channel widths has the best chance of being 

routable. Note that simulation results are based on the averages on 20 circuits. There is no 

reason to require every IP be of a square shape. In fact, using a column of CLBs may be 

perfect for some circuits [Kalte04]. 

Curves in Figure 3.2 and 3.3 can be similarly obtained for individual IP cores. 

They can be used as follows. Before a possible reshaping is really taken, its effects can be 

estimated by looking up corresponding curves and applying interpolation or extrapolation. 

With those estimates, the on-line compile time for the soft IP circuit can be shortened by 

pruning off those infeasible shapes, and avoiding unnecessary placement and routing time. 

Note that it is impractical to try to pre-place-and-route an IP core on all possible shapes. 

3.3 Aspect Ratio Consideration on the Design of Partial Reconfiguration 

Structure 

3.3.1 A Cluster Based Partial Reconfiguration Unit 

Partial reconfiguration capability is supported by a chip’s physical infrastructure, 

at two different levels: CLB level and Cluster level.  
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On Xilinx’s XC6200 FPGA chip, every cell of an array can be individually 

reconfigured [Xililinx96]. Partial reconfiguration targeted to this kind of chip 

infrastructure is called CLB level partial reconfiguration. This level of partial 

reconfiguration may be too fine grained than necessary. At runtime, users concern more 

about whether a hardware task with certain functions has been swapped into an FPGA 

chip. Those functions normally require many CLBs. Users seldom worry about changing 

the internal structure of a hardware task. To users, the CLB level manipulation is 

complicated and time consuming. When using IP circuits from 3rd party vendors, users 

may even have no chance to manipulate those single CLBs or interconnections between 

them.  

Partially reconfiguring a batch of CLBs at a time is called cluster level partial 

reconfiguration, which seems more practical. Xilinx Virtex chips support cluster level 

partial reconfiguration where the minimum partial reconfiguration unit is a frame, 

containing four columns of CLBs. A chip is partitioned into a number of columns, each 

of them spanning from chip top to bottom. In this case the height of every hardware task 

is fixed, while the width is variable. Partial reconfiguration based on this architecture is in 

fact one dimensional. Compared with a CLB level partial reconfiguration structure, 

Virtex is an improvement. However, there is no reason to require hardware tasks to be 

shaped into columns.  For example, a carry-ripple adder can fit into a column easily, but 

it is hard to fit a carry-prediction adder. Squeezing a hardware task into columns by brute 

force may incur not only low utilization but also performance degradation as indicated in 

the previous section. 
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An ideal structure will support 2-D partial reconfiguration at cluster level. On 

such a 2-D architecture, the fixed height constraint for hardware tasks is removed. 

Theoretical works have shown 2-D partially reconfigurable architectures have advantages 

over 1-D architectures. On a 2-D architecture, the percentage of rejected tasks by 

operating system is far lower than that based on a 1-D architecture [Steiger04], although 

no 2-D cluster level partial reconfiguration structure has been adopted in commercial 

FPGAs.  

3.3.2 Utilization and Cluster Aspect Ratio 

This section examines the relationship between utilization and cluster aspect ratio 

based on a statistical approach. 

Definition: CLB utilization is the ratio of the number of CLBs actually used for a 

circuit to the total number of CLBs in those clusters allocated for the circuit. CLB 

utilization is less than or equal to one.  

Let w and h denote the width and the height of a cluster respectively. Suppose 

shw =⋅  is a constant. Let X andY be respectively the width and the height of a circuit to 

be loaded into the FPGA chip. X and Y  are random variables of positive integer values.  

For a specific circuit iCKT ,   ixX =  and iyY = .  The area of a circuit is generally bigger 

than that of a cluster, i.e., hwYX ⋅⋅ ff .  If }{⋅E represents expectation, and ⎡ ⎤⋅  

represents the ceiling operation, then the utilization,U , can be expressed as: 
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 is the number of clusters needed for the circuit and therefore the 

denominator is the cluster area for the circuit.  Our interest is in finding a good cluster 

size that leads to high utilization for various circuit sizes.  Depending on the distribution 

of circuit sizes, the optimal cluster size may be different. That is why there is an 

expectation term in Eq. 3.1. 

If the cluster aspect ratio is defined as rw
h = ,  then an interesting problem is to 

find an r  such that: 
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In order to identify the impact of the cluster aspect ratio on the CLB utilization, 

Eq. 3.1 was computed based on three different distributions for the widths and heights.  

They are uniform, Poisson, and normal distributions.   

3.3.3 Simulation Results  

Some Monte-Carlo simulations were performed to provide a different perspective 

on the relationship between CLB utilization and cluster ratio.  The idea is to compute Eq. 

3.1 based on various (rectangular) circuit sizes and cluster sizes.  For each cluster size, 
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10,000 circuits were randomly generated.  The widths and heights follow three different 

distributions, i.e., normal, Poisson and uniform.  Results for five different 

“approximated” cluster sizes are summarized in Figure 3.4 and 3.5.  In each diagram, 

there are five curves, one for each approximated cluster size.  They are arranged from top 

to bottom, corresponding to approximated cluster sizes of 1, 4, 12, 16, and 25, 

respectively.      Here a cluster size is approximated because points on the same curve do 

not have exactly the same cluster size.  For example, the curve whose approximated 

cluster size is 12, corresponding to clusters of dimension (h x w) 1x12, 2x6, 3x4, 4x3, 

5x2, 6x2, 7x2, 8x1, 9x1, 10x1, 11x1 and 12x1. Six out of them have an exact area of 12 

as marked on the curve. To show those results clearly, horizontal axes (i.e., aspect 

ratio, rw
h = ) in Figures 3.5 and 3.6 are given in logarithm scale.  

Observations from Figure 3.4 and 3.5 are as follows: 

(1) The smaller the cluster is, the higher the utilization is. This is intuitive because, 

as the cluster size decreases, the fragmentation effect is alleviated. When the cluster size 

is equal to one, curves regress into one point at 100% utilization. 

(2) For every curve, the maximum point occurs on/near the point where the cluster 

height is equal to its width (i.e., r = 1).  

(3) For Poisson and normal distributions, their results are quite close to each other.  

This is because the distributions are very similar to each other when their average values 

are bigger than 10. 

(4) Even though the results from uniform distribution are not close to results from 

the other distributions, the trend of changes are the same irrespective of distributions. In 
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other words, the utilization depends more on cluster shape ( rw
h = ) than on the exact 

statistical distribution.  

(5) In Figure 3.4, those curves are almost symmetric.  For example, for shw =⋅  = 

16, the utilizations for 2x8 and 8x2 are very close. In Figure 3.5, there is no such 

symmetry, because { }XE  is not equal to { }YE . 
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Figure 3.4 Utilization When E{x}=16 and E{y}=16 
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Figure 3.5 Utilization When E{x}=50 and E{y}=35 

The analysis and simulation in this section are based on a statistical method to 

determine the aspect ratio of a partial reconfiguration unit.  Even though the effects of a 

circuit aspect ratio on area and path delay are not included here, Section 3.2 can be used 

as a guide to shape the partial reconfiguration unit when hardware tasks need to be 

accommodated into partial reconfiguration units. 

3.3.4 Verification with Benchmark Circuits  

In another experiment, the 20 MCNC benchmark circuits mentioned in Section 

3.2 were used.  They were first placed and routed using VPR under various shape 
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constraints (with aspect ratios ranging from 1:1 to 10:1).  For each circuit, the one shape 

with the lowest area-delay product was included in a set of (X, Y) pairs.    The result was 

a set of 20 pairs.  Figure 3.6 shows the CLB utilizations computed using this data set for 

various aspect ratios.  It shows that for this set of circuits, a square cluster leads to the 

highest CLB utilization. 
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Figure 3.6 Utilization for MCNC Circuits (20-pair data set) 

For each MCNC circuit, if two shapes corresponding to the two lowest area-delay 

products are considered, then the data set contains 40 pairs.  In this case the utilization is 

as shown in Figure 3.7.  Because aspect ratios in the VPR simulations range from 1:1 to 

10:1, this case artificially adopts more (X, Y) pairs with greater than one aspect ratio.  

Therefore it is biased toward non-square shapes. 
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Figure 3.7 Utilization for MSNC Circuits (40-pair data set) 

3.4 Conclusions   

Effects of aspect ratio on soft IP reshaping as well as partial reconfiguration 

structure design have been discussed. Results indicate that the previous assumption of 

having a fixed area of soft IP should be removed, and a square-cluster based partial 

reconfiguration seems to be a good choice over the column based partial reconfiguration.  
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4 A New FPGA Architecture 

In this chapter, a new FPGA chip architecture is proposed. The architecture 

supports cluster-based partial reconfiguration and uses a segmented bus structure to 

provide interconnections between on-chip hardware tasks or between hardware tasks and 

chip IOs during partial reconfiguration at runtime. Section 1 provides an overview of the 

architecture. The chip area consumed by such a segmented bus structure is evaluated in 

Section 2. The number of configuration bits needed to configure the segmented bus is 

also calculated. The area cost and the configuration cost are illustrated in Section 3 using 

some chip examples. 

4.1 Overview of Chip Architecture 

 

 

 

 

 

 

 

Figure 4.1 Cluster-Segmented Bus Structure of the New Chip 

The proposed chip contains many square clusters. Between two nearby clusters, 

there are segmented buses. At each intersection of bus segments, there is a bus switch 

cluster bus IO pad group 
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block to relay bus connections. Different hardware tasks can be connected together via 

bus segments and bus switch blocks. 

The chip has two distinct features: 

(1) Partial reconfiguration is supported. The minimum partial reconfiguration unit 

is a square cluster. As described in Chapter 3, such an arrangement improves chip 

utilization [Wang05]. 

(2) Segmented buses are used solely for runtime support.  They are not used for 

intra-IP routing, which is still supported by traditional FPGA routing resources. Bus 

segments and clusters can be configured separately. When bus segments are reconfigured, 

clusters and their internal connections are not perturbed.  

Figure 4.1 shows an example with four hardware tasks mapped onto clusters.  In 

that figure, each small square represents a cluster of NxN CLBs. A big hardware task or 

IP circuit can be mapped on more than one cluster. Clusters used for the same hardware 

task are identified with the same patterns. Just like CLBs are packed into clusters, nearby 

IO pads on the chip boundary are packed into groups. Each cluster or IO pad group is a 

network node when runtime routing is applied. More details are in Chapters 5 and 6. 

 The proposed architecture uses separate routing resources for inter-IP and intra-

IP communications.  At runtime only the segmented buses are to be routed for inter-IP 

communications while the intra-IP communications using the traditional FPGA routing 

resources are not disturbed.  This arrangement is to shorten the runtime routing time.  In 

[Marescaux02], packet switching based on a static torus network was proposed for 

dynamic multi-tasking.  The segmented bus is a dynamic network that uses circuit 

switching. 
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Details of the architecture in terms of the CLB model and cluster blocks are 

described as follows. 

4.1.1 CLB Model 

The CLB model as suggested by Betz is used in this architecture [Betz99]. Each 

CLB is composed of four BLEs. Each BLE is composed of one flip-flop and a four-input 

look-up table. Each CLB has four output signals, 10 external input signals, plus clock, 

set/reset signals. The four output signals are fed back into the CLB itself. Each BLE is 

associated with four 14:1 full mutiplexers, which convey the 10 external input signals 

plus the four output signals. Output signals from multiplexers are used as input signals of 

each look-up table.  Totally 16 such multiplexers are included. In terms of area, such a 

CLB is equivalent to 1678 minimum width transistors. Such a CLB model is close to that 

of Xilinx Virtex chips, where each CLB is composed of two slices, and each slice has two 

BLEs.  

A CLB block is defined as a CLB plus routing resources associated with it 

[Betz99]. Generally these routing resources include that CLB’s input connection block, 

output connection block and a switch block. The area of a CLB block depends on the 

CLB itself and routing architectures of the chip.  

Betz did not suggest any determined routing architecture, but gave out some 

optimum parameters, such as lengths of routing segments. So the area of a CLB block 

was not defined. But according to the simulation results, it is reasonable to assume that 

the area of a CLB block is at least five times as big as that of a CLB itself. 

For traditional FPGA chips, structures of different components, such as CLBs, 

routing segments and so on, have been intensively investigated previously. In the 
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following analysis, those traditional architectures are treated as an abstract models. The 

proposed segmented bus and its accessories are extra sources superimposed on traditional 

FPGA chips. Routing resources may compose 90% of chip area [Dehon96]. 

4.1.2 Cluster Block 

As an extension to the concept of CLB block, the concept of cluster block is 

suggested. As shown in Figure 4.2, a cluster block is composed of the cluster itself, the 

two crossbars on its bottom and right side, and the bus switch block at its lower and right 

corner. Crossbars at its top and left, and the bus switch block at other three corners are 

considered to be associated with other cluster blocks. 

 

 

 

 

 

 

 

 

Figure 4.2 A Cluster Block 

On boundaries of each cluster, there are tri-state buffers. These tri-state buffers 

can be used to insulate the cluster from the bus during the time of partial reconfiguration 

or when circuits at other clusters get the control privilege of the buses. The bus switch 

block is dedicated to relaying bus segments and changing bus routing directions. 

Crossbars and bus switch blocks are called the backbone network. 

crossbar 
bus switch block 

W 

 W 
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4.2 Segmented Bus Area Cost and Configuration Bits Formulation 

This section presents the calculation of various components of the segmented bus 

structure in terms of area cost and configuration cost. The area model used is introduced 

first. 

4.2.1 Area Model  

Area estimation is more accurate after physical layout is completed, which 

depends on the specific semiconductor process. Before physical layout, an FPGA area 

can be estimated via counting the number of transistors.  This method is independent of a 

specific semiconductor process, and is widely used [Betz99] [Silviu01b]. According to 

Betz et al., the area of an FPGA chip is dominated by the number of transistors rather 

than interconnections. This point was claimed to be supported by Xilinx and Altera 

architects [Betz99, page 132].  Transistors on the chip may have different sizes. This size 

variance generally comes from driving capability considerations, i.e., big transistors can 

drive heavy load with higher speed. Areas of big transistors can be scaled with transistors 

with the minimum channel width. Let the NMOS transistor with the minimum channel 

width have a unit driving capability. A transistor with twice as much driving capacity 

does not have to have twice as much area, (e.g., when parallel diffusion technique is 

used). The space distance between different transistors also does not increase with the 

transistor size. Betz gave out a formulation to calculate the area of a transistor after sizing, 

and used the summation of sized transistors to evaluate the area of an FPGA chip. The 

area of a transistor after sizing can be calculated as [Betz99, page 133]: 

r  transistominimum  theofstrength  drive
r  transistosized  theofstrength  drive*5.05.0 +  



 63

Betz’s model is used in this dissertation. In later parts of this section, detailed 

structures of each bus component are described, and the corresponding areas are 

calculated. Some notations (and their values) used often are listed here for later reference 

[Betz99].  Appendix A derives the areas of some primitive components, including some 

listed in Table 3.1. 

Notation Primitive Component Size 

Amcel one-bit memory cell 6 

Amux(F) F:1 mutiplexer  

Amux(2) 2:1 mutiplexer 11 

Amux(3) 3:1 mutiplexer 21 

Amux(4) 4:1 mutiplexer 23 

A3st tri-state buffer 20 

A3st_bnd 

tri-state buffer pair at cluster bound

(two-bit memory cells included) 35 
 

• Size is scaled in the number of minimum NMOS transistors. 
• Areas for multiplexers and tri-state buffers include memory cells 

associated with selection lines and control lines. 

Table 3.1 Area Cost of Some Primitive Components 

4.2.2 Connections between CLBs and Buses 

As described in the previous section, a cluster is connected to the backbone 

network via W wires going through tri-state buffers. At the crossbar side, these W wires 

are bi-directional. At the cluster side, each wire bifurcates into separated 

incoming/outgoing bus wires (see Figure 4.3) and they are all unidirectional. 

Incoming/outgoing bus wires as an extended part of the segmented bus are called the 

local network. CLBs are connected with the local network directly. 
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With k denoting the bus wire density, there are k incoming bus wires and k 

outgoing bus wires in each routing channel on average. If a cluster has N*N CLBs, then 

W = k*N. Here it is assumed that there are only 0.5*k incoming (outgoing) bus wires at 

boundaries of each cluster, while there are k incoming (outgoing) wires at internal 

channels. As a contrast, Xilinx Virtex chips have only two long wires along each 

horizontal channel. 

Outgoing bus wires at north, east, north and south side of a CLB are marked as 

N[0..k-1], E[0..k-1], W[0..k-1] and S[0..k-1], respectively. Similarly, incoming bus wires 

are marked as N[0..k-1], E[0..k-1], W[0..k-1] and  S[0..k-1], respectively. 

incoming bus wire 

W 

backbone network 

W 

outgoing bus wire 
 

Figure 4.3 Segmented Bus Wires Bifurcate at Tri-state Buffers 

For the crossbar, the popularity, PCRS_BAR, is defined as the ratio of the number of 

intersection points that have NMOS switch transistors deployed over the total number of 

intersection points. It is used to characterize the crossbar connection flexibility. If on each 

intersection point of the crossbar, there is a NMOS switch transistor deployed, i.e. 

PCRS_BAR =1, then this crossbar is called a crossbar with full connectivity. Otherwise,  
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PCRS_BAR <1, and this crossbar is just a partial crossbar, as only PCRS_BAR  of  intersection 

points can conduct. 

 

4.2.2.1 Output Connection Block 

Figure 4.4 indicates how CLB output signals are connected to the local network. 

One specific path is used to illustrate such connections. Each CLB has four BLE output 

signals, i.e., f, g, h and i. One of them first goes through a sequence of primitive 

components, the top multiplexer, a turned-on tri-state buffer (marked with a square), and 

a turned-on switch transistor (marked in square). It then reaches one of the outgoing bus 

wires at the south side, i.e., S[0] (in bold dash line). At each end of S[0], there is a 

bifurcating tri-state buffer pair, which can carry signals to the backbone network.  

Similarly, the same signal can reach outgoing bus wires at the north, east, west 

and south (NEWS) directions. They are labeled as N[0..k-1], E[0..k-1], W[0..k-1] and 

S[0..k-1], respectively. Which direction to take depends on the routing solutions decided 

by the operating system at run time.  

Each tri-state buffer drives k NMOS switch transistors. Only one of them is 

allowed to conduct at one time. The tri-state buffer at the other end of the wire in bold 

line is associated with another CLB. Only one tri-state buffer is allowed to drive those k 

NMOS transistors at a time. 

Suppose that there are F signals out of (f, g, h, i ) outgoing  to bus (F = 1~4), and 

suppose that each cluster has N*N CLBs, then on each outgoing bus wire, e.g., S[0], 

there are at most N*F switch transistors hooked on. At one time, only one of them 

conducts, and the others are turned off.  
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Outgoing bus wires and wires driven by tri-state buffers compose crossbars. At 

intersection points of crossbars, NMOS switch transistors with the minimum channel 

width are deployed. 
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Figure 4.4 Connections between CLB Output Signals and Local Network 

Suppose that the popularity of the crossbar is POUT. The area of the crossbar part 

can be expressed as: 

(k*4* F + k*4* F *Amcel)*POUT 

The constant of four represents four directions, NEWS. The first item corresponds 

to those switch transistors, while the second item represents the associated configuration 

memories. This crossbar part is the common estate with nearby CLBs. For each CLB, it 

just owns one half, i.e., 

0.5*(k*4* F + k*4* F *Amcel)*POUT 

 If F = 1, there should be one 4:1 multiplexer to decide which one out of the four 

BLEs has connections with buses. If F = 4, each BLE drives signal to buses. There is no 
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need to differentiate them and no multiplexer is needed. If F = 2 or 3, smart decisions 

have to be made to save area.  

Any two out of (f,g,h,i) combinations can be created with two 3:1 mutiplexers. 

Inputs corresponding to the two multiplexers can be (f,h,i) and (g,h,i), respectively. 

Similarly, any three out of (f,g,h,i) combinations can be created with three 2:1 

mutiplexers. Inputs corresponding to the three multiplexers can be (f,i), (g,i) and (h,i), 

respectively. Therefore the area of multiplexers can be expressed as F*Amux(5-F). 

Amux(5-F) = Amux(4), if F = 1. 

Amux(5-F) = Amux(3), if F = 2. 

Amux(5-F) = Amux(2), if F = 3. 
Amux(5-F) = Amux(1), if F = 4 and Amux(1) = 0 

The area of tri-state buffers and associated control memory cells can be expressed 

as: 

F*4*A3st 

In summary, the additional area to each CLB is therefore equal to:  

0.5*(k*4* F + k*4* F *Amcel)*POUT + F*4*A3st+ F*Amux(5-F)  (Eq.4.1) 

If the function bmux(5-F) is used to represent the number of configuration bits 

associated with multiplexer  Amux(5-F), the function values are listed as follows. 

bmux(5-F) = bmux(4)=2, if F = 1. 

bmux(5-F) = bmux(3)=2, if F = 2. 

bmux(5-F) = bmux(2)=1, if F = 3. 

bmux(5-F) = bmux(1)=0, if F = 4. 

 

As each switch transistor on the crossbar or tri-state buffer needs only one 

configuration bit, the number of configuration bits associated with output connection 

block is therefore equal to 
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0.5* k*4* F* POUT + F*4*1+ F*bmux(5-F) 

4.2.2.2 Input Connection Block 

Connections between CLBs and incoming bus wires are shown in Figure 4.5. 

According to Betz’s CLB model, each CLB has four BLEs, and each BLE is associated 

with four 14:1 full multiplexers. It is not difficult to expand a 14:1 full multiplexer into a 

16:1 full multiplexer. Only another two input pins are needed, shown in bold lines in 

Figure 4.5. Corresponding to the two inputs, another two NOMS transistors with the 

minimum channel width are added to the original 14:1 multiplexer. Signals from 

incoming bus wires are fed into CLBs with these two additional pins. For each CLB, 

extra 32 transistors are needed to extend mutiplexers inside the CLB. 

Each CLB is associated with four groups of incoming bus wires at different 

directions. Each group has k wires. They are N[0..k-1], E[0..k-1], W[0..k-1] and  S[0..k-

1]. At one time only one out of the k signals is selected via a 4:1 multiplexer. Hence at 

most two out of k signals can be selected to feed into the CLB. Incoming bus wires and 

wires associated with those 4:1 multiplexers compose crossbars again. At intersection 

points of this crossbar, NMOS switch transistors with minimum channel width are 

deployed again.  

Figure 4.5 illustrates how an incoming signal reaches a CLB. A signal from the 

backbone network first goes through the tri-state buffer in square, then an incoming bus 

wire N[0] (in bold dash line), followed by the  4:1 mutiplexer at upper right, and finally 

reaches those extended 16:1 multiplexers in the CLB.   

For a cluster with N*N CLBs, along each incoming bus wire, e.g., N[0], there are 

at most 2*N switch transistors hooked on. But only very few of them will conduct, 
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because for a well designed IP circuit, signal delivery relies more on its internal routing 

rather than the local bus network. 

 

 

Figure 4.5 Connections between CLB Inputs and Local Network 

If the popularity of the crossbar is PIN, then the area cost of the crossbar is equal to 

k*4*PIN + k*4*Amcel*PIN 

The constant four represents bus wires at four sides of a CLB. Each NMOS switch 

transistor is controlled by a one-bit memory cell. That is why the second item. 

The area of the two 4:1 multiplexers associated with the CLB can be expressed as 

2*Amux(4)- 2*Amcel. 

As the area of one multiplexer Am4 includes memory cells associated with selection lines 

already, the negative part comes from the sharing of memory cells between the two 4:1 

multiplexers. 

In summary, the additional area associated with one CLB is therefore equal to 

0.5*(k*4 + k*4*Amcel)*PIN + 2*Amux(4)- 2*Amcel.+2*16 (Eq. 4.2) 
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The coefficient 0.5 again comes from the sharing of crossbars between nearby CLBs. The 

last item is because of the extended multiplexers inside the CLB.  

As each switch transistor on the crossbar needs only one configuration bit, and the 

two 4:1 multiplexers need only two configuration bits, the number of configuration bits 

associated with the input connection block is therefore  

B=0.5* k*4 * PIN + 2 

4.2.3 Bus Switch Block 

If a chip has m*m clusters, then there are totally (m+1)*(m+1) bus switch blocks. 

It is assumed that the disjoint switch block architecture is used. On a normal bus switch 

block, as shown in Figure 4.6, six tri-state buffer pairs are needed to switch an incoming 

signal on one side to any of the other three sides. 

0  1  2  3 4 

0  1  2  3 4 

 

0  1  2  3 4 

0  1  2  3 4 

 

Figure 4.6 Bus Switch Block 
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The number of wires on each side of the switch block is W, the same as the 

number of wires going through a cluster. Totally W*6 tri-state buffer pairs are needed. 

That is, totally  

W *6*2 

bi-directional tri-state buffers are needed. Each switch point is associated with two one-

bit SRAM cells. Therefore the area of a bus switch block is: 

ASW_BLK  = W *6*A3st*2 (Eq. 4.3) 

At boundaries, the structure of bus switch blocks becomes simpler because of 

reduced routing flexibility. For example a bus switch block at the left boundary can be 

shown like Figure 4.7 (a). Hence its area is just half of that of an internal bus switch 

block. Figure 4.7 (b) represents a bus switch block element of a bus switch block on the 

right boundary. 

Two such bus switch blocks can be combined into one normal switch block when 

their areas are calculated. Switch blocks at corners have even simpler structures. One 

such switch block has only 1/6 of tri-state buffers compared with a normal bus switch 

block.   

 

 

 

 

 

 

Figure 4.7  Bus Switch Blocks at Chip Boundaries 

(a) (b) 
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Because of the above reasons, the area of (m+1)*(m+1) bus switch blocks is 

equivalent to that of (m*m) –1/3 normal bus switch blocks, or roughly (m*m) bus switch 

blocks. 

Because each tri-state buffer pair needs two bits, the configuration cost can easily 

be decided as: 

BSW_BLK  = W*6*2 

4.2.4 Crossbar between Clusters 

Clusters are connected to the segmented bus via crossbars. Totally there are 

W*W*PCRS_BAR 

switch transistors on each crossbar, and the same amount of associated configuration 

memory cells. Here it is assumed that the minimum width NMOS transistors are used as 

switches. The area of such a crossbar is: 

ACRS_BAR = W*W*PCRS_BAR + W*W* Amcel *PCRS_BAR = 7*W*W*PCRS_BAR (Eq.4.4) 

Its configuration cost is  

BCRS_BAR = W*W*PCRS_BAR 

4.2.5 Connection between IOBs and Segmented Bus 

On boundaries of the chip, IOBs are supposed to be hooked on backbone 

crossbars directly.  Hence it is assumed that IOBs do not incur additional area or 

configuration cost to the crossbar.  This assumption is made because IOBs exist 

independent of whether segmented buses are used or not.  On the boundaries of real 

FPGA chips, frequently there are commonly two (usually no more than four) IOBs that 

fit into one row (column). 
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4.2.6 Tri-state Buffers at Cluster Boundaries 

0 
 1 
 circuit  

 
 

Figure 4.8 Tri-state Buffer at Cluster Boundary 

Figure 4.8 shows a tri-state buffer at a cluster boundary.  The enable pin of the 

buffer can be driven by a circuit inside the cluster, e.g., a finite state machine or fixed 

voltage levels.  This can be achieved by controlling the multiplexer through varying the 

contents in the two bit memory cells. During the time of partial reconfiguration, such tri-

state buffers that are next to the bus being configured are disabled by the operating 

system. After configuration, they may be controlled by a circuit inside a cluster. 

On each side of a cluster, there are W bi-directional tri-state buffer pairs 

associated with the cluster.  Each tri-state buffer in the pair is controlled by two-bit 

memory cells. The area of these tri-state buffers and associated memory cells is: 

ABND_BUF = 4* W * A3st_bnd*2   (Eq.4.5) 

Its configuration cost is:  

BBND_BUF = 4* W * 2*2 

4.2.7 Total Segmented Bus Area and Configuration Bits 

The extra area per CLB comes from the local network, or Eq. 4.1 and Eq. 4.2.  

Therefore 
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ACLB = 0.5*(k*4*F+k*4*F*Amcel)*POUT + F*4*A3st+F*Amux(5-F) + 

0.5*(k*4+k*4*Amcel) *PIN + 2*Amux(4) - 2*Amcel +32         (Eq.4.6) 

The extra area per cluster block is due to the extra area for N*N CLBs, one bus 

switch block and two crossbars.  That is, 

ACLUST = N*N*ACLB+2*ACRS_BAR+ASW_BLK  +ABND_BUF. (Eq. 4.7) 

Suppose the chip has totally m*m clusters. There are 2*m backbone network 

crossbars at the top and left boundary that are not associated with any cluster block.  The 

total segmented bus area is as follows. 

ACHIP = m*m* ACLUST + 2*m*ACRS_BAR           (Eq. 4.8) 

This area is expressed in the number of transistors. It can be converted into the equivalent 

number of CLB blocks since a CLB block contains 8,390 (=1,678*5) transistors. 

Following a similar procedure, it can be decided that the configuration cost 

associated with a CLB is: 

BCLB =0.5* k*4* F* POUT + F*4*1+ F*Bmux(5-F) + 0.5*k*4 *PIN + 2 

The configuration cost associated with a cluster is:               

BCLUST = N*N*BCLB+2*BCRS_BAR+BSW_BLK  +BBND_BUF. 

The total configuration cost for the chip is therefore: 

BCHIP = m*m* BCLUST + 2*m*BCRS_BAR           (Eq. 4.9) 
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4.3 Area Cost and Configuration Cost Computation Results 

In this section some chip examples are used to illustrate the equations derived in the 
previous section. 

4.3.1 Area Cost 

The area cost of segmented bus structure is evaluated based on Equation 4.8 in 

Section 4.2.7.  

Here an imaginary FPGA chip with a traditional architecture is chosen as a 

reference. This chip has 120*120 CLBs. In terms CLB numbers, it is close to a high-end 

Xilinx Virtex chip.  For a specific bus wire density k  and a fixed cluster size N, the 

number of clusters a chip has ( 2m ) may be varied. Let m  fall in the range of ⎥⎦
⎥

⎢⎣
⎢

+1
120
N

 

~ ⎥⎥
⎤

⎢⎢
⎡

N
120 . Among all these possible value, m is chosen so that the chip has an area closest 

to 120*120 CLB blocks.  It means that the imaginary chip with a traditional architecture 

and the chip with square clusters have similar numbers of CLBs. 

From equations Eq. 4.1 ~ Eq. 4.9, it is clear that many factors may influence the 

chip area. To have a more practical architecture design space, the following assumptions 

are made. 

1. The maximum cluster size is set as 14*14, and the maximum k is set as eight. 

Bus widths may vary a lot, but have to be practical. A UART has only a few 

wires. A PCI bus is composed of around 100 wires after discounting those 

redundant VCC pins, GND pins and reserved pins. Buses too wide are not 
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considered in the following computations. For embedded systems, a bus width 

of a few dozens of wires should be enough in most cases.  

2. The number of signals from  CLB outputs going to buses, F, is set as two. In 

Xilinx Virtex chips, next to each CLB there are only two tri-state buffers, 

which can be used to hook the CLB on long wires. It is not difficult to calculate 

for other F values. 

3. Initially PCRS_BAR, POUT  and PIN  are set as one, i.e., all crossbars are fully 

populated.  

Computation results are plotted in Figures 4.9, 4.10 and 4.11. The horizontal 

coordinates represent the cluster size along one dimension. From these figures, it can be 

found that  

(1) The smaller the cluster size is, the bigger the segmented bus overhead is. 

When the chip is partitioned into finer clusters, more bus segments, 

especially those on the backbone network, are needed.  

(2) The higher the number of bus wires inside each rouging channel is, the 

higher the segmented bus overhead is. The addition of two wires in each 

channel incurs around 5% area increase.  

(3) The proposed segmented bus is not very expensive. For cases of k =2 or 

k=4, the bus overhead is mostly less than 10%. With k =6, the bus 

overhead in most situations occupies 11%~ 15% of the total chip area.  

With k=8, bus overhead falls in the range of 16%~21%. 

(4) The minimum number of CLB occurs at (k=2, N=14).  There are still 

12500 CLB (blocks) for circuit placement, and the segmented bus 
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structures consume almost 500 CLB blocks. Compared with the original 

120*120 CLB (blocks), around 1400 CLB blocks are removed.  The 

biggest chip area happens at (k=8, and N= 13). At this point, there are 

13689 CLB blocks for circuit placement, and the bus overhead is 2625 

CLB blocks. Compared with the original chip with 120*120 CLB blocks, 

another 1914 CLB blocks are added.  

(5) On Figure 4.11, it can be found that chip areas vary more when the cluster 

size increases. At the point (k=2, N=11), the chip area decreases 

dramatically, compared with (k=2, N=10) and (k=2, N=12). In the range 

of ⎥⎦
⎥

⎢⎣
⎢

+111
120  ~ ⎥⎥

⎤
⎢⎢
⎡

11
120 , when m takes the value of 10, the chip area is 13067 

CLB blocks; when m takes the value of 11, the chip area is 15808. The 

former is closer to 120*120. That is why the “V” shape on the curve. 
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Figure 4.9 Bus Area Overheads Over Total Chip Areas (P =1.0) 
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Figure 4.10 Bus Areas In Terms of CLB Blocks (P =1.0) 
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Figure 4.11 Chip Areas in Terms of CLB Blocks (P=1.0) 

Note that some of the above parameter settings may not be realistic. For example, 

in the case of (N=4, k=8 and F=2), a 4*4 cluster may be connected to the segmented bus 

through 32 wires. That means each CLB can send two signals to the segmented bus at the 

same time. This setting may have too high a connection flexibility. 
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In the suggested architecture, three different kinds of crossbars are used. They are 

associated with local incoming buses, local outgoing buses and the backbone network, 

respectively. They are all fully populated crossbars, i.e., on each intersection point there 

is a switch transistor.  

A fully populated crossbar is expensive in terms of area cost due to the large 

amount of switches and associated tri-state buffers that may need higher driving 

capability. Another drawback is the degrading of speed performance. When too many 

switch transistors are hooked on a wire, they cause heavy capacitance load even if only a 

portion of them conducts. On the other hand, bus protocols are explicitly defined, and a 

well-designed IP circuit has clear interface to bus. Bus signal distribution should rely 

more on routing resources inside IP circuits rather than high connection flexibility to bus 

wires. Limited connection flexibility may still be needed, which can give IP circuit 

designers certain space to trade off.  

In summary, the area cost of the segmented bus can be further reduced if 

crossbars of smaller popularities are considered. In Figures 4.12, 4.13 and 4.14, it is 

assumed that all those crossbars are only 50% populated. From these figures, it is found 

that the area costs are further reduced, and chips can therefore have more space to 

accommodate IP circuits. 
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Figure 4.12 Bus Area Overheads Over Total Chip Areas (P =0.5) 
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Figure 4.13   Bus Areas in Terms of CLB Blocks (P =0.5) 
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Figure 4.14 Chip Areas in Terms of CLB Blocks (P=0.5) 

When Figure 4.12 is compared with Figure 4.9, it can be found that for k=2, there 

is only around 0.4%~0.5% percent area reduction; for the k=4 case, the area reduction is 

around 1.4%~1.5%; for the k=6 case, the reduction is 2.6%~2.9%; and for k=8, 4%~5%. 

4.3.1.1 Comparison with Wormhole Routing 

Here the segmented bus is compared with the wormhole packet-switching 

network in terms of area overhead. 

T. Marescaux et al. built such a wormhole network on XC2V6000 [Marescaux04]. 

Routers on a 3*3 mesh network consumed 2800 Virtex2 slices, or 8.3% out of all 

resources. In each reconfiguration tile, the NIC (network interface component) part 

consumed 361 slices, or 1.81% of all resources. Therefore totally routers and NICs 

consumed 

24.5% 1.81%*3*3  8.3% =+  



 82

of all resources, i.e., around 2070 CLBs (each CLB has four slices). In Section 4.3.1, 

chips which have 9*9 clusters are used. Each cluster has 13*13 CLBs, or 13*13*4 slices. 

The calculation area results are listed in Table 4.1. From the table, it can be found that 

except for the ( 8=K  and 1=P ) situation, the segmented bus structure generally uses 

fewer CLB blocks. As the segmented bus structure has wider data width, it can have 

higher bandwidth. It should be noted, however, that the segmented bus data are not 

obtained from implementation on real FPGA chips. 

  K=2 K=4 K=6 K=8 
Data width (bits)  26 52 78 104 

Chip Area 14188 14511 14945 15492 
Bus Area 499 822 1256 1803 

Bus Weight 

P=0.5

3.5% 5.7% 8.4% 11.6% 
Chip Area 14256 14739 15425 16314 
Bus Area 567 1050 1736 2625 

Segmented 
Bus 
9*9 mesh 

Bus Weight 

P=1.0

4.0 % 7.1% 11.3% 16.1% 
Data width (bits) 16 

Chip Area 96*88 
Bus Area 2070 

Wormhole 
Net 
3*3 mesh 

Bus Weight 24.5% 
* Area is scaled in CLBs (blocks) 

Table 4.1 Area Cost Comparison between Circuit Switching and Packet Switching 

4.3.1.2 Comments on Area Cost    

From the previous analysis, the proposed segmented bus structure is quite 

practical in terms of area overhead. It provides an in-expensive mechanism to support on-

chip inter-IP or IP-IO connections under a dynamically partial reconfiguration 

environment. 
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4.3.2 Configuration Cost 

Using Eq. 4.9, configuration costs corresponding to each case in Section 4.2.7 can 

be calculated. Results are depicted in Figure 4.15 and Figure 4.16.  It can be seen that 

about 0.5 M ~3 M bits are needed to configure the segmented bus structure. For a Xilinx 

XC2V8000 chip, which has 112*104 CLBs, it needs totally 26M (26,174,720) bits 

(header bits not included) to configure. For all cases in Figure 4.15 and 4.16, the 

minimum number of CLBs is 11664 (N=12, k=8, m =9), and the maximum number of 

CLBs is 13689 ( N=13, k=8, m=9).  Therefore FPGA chips used in these calculations are 

a bit larger than XC2V8000. Assume a little more than 26M bits are needed to configure 

the non-segmented-bus part. An additional 2% ~ 12% ( 26/3~26/5.0 ) increase in 

configuration bits is needed to support the segmented bus.  Note that k=6 and k =8 cases 

are not very likely to happen, because bus wires are too densely populated (considering 

each CLB has only four BLEs). Nevertheless, even a 12% additional configuration bits 

are not too heavy an overhead. 
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Figure 4.15 Configuration Cost (P =1.0) 
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Figure 4.16 Configuration Cost (P =0.5) 
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5 The Operating System Kernel 

Just like a traditional computer, a reconfigurable machine can use an operating 

system to manage its resources, to schedule tasks and to dispatch tasks. Operating system 

for reconfigurable computer is called OS4RC in short. In this research, a computational 

task can be carried out by more than one IP circuits. In this chapter, the three basic 

components of an OS4RC are described:   

(1) Placer:  it searches for a suitable spatial slot to accommodate each circuit (an 

IP, Intellectual Property).  

(2) Router:  it builds inter-IP or IP-IO communication channels, which are 

necessary for computing.  

(3) Scheduler: it decides the order in which the submitted circuits are executed so 

as to optimize some optimal criteria, such as the maximization of the 

utilization of the reconfigurable machine, or to guarantee the task fairness. In 

this research, the shortest total execution time is emphasized.  

Routing on the segmented bus is a special feature of the OS4RC kernel in this 

chapter. As described in Chapter 2, placement and scheduling problems have been 

researched quite a lot in many existing OS4RC works [Bazargan00] [Steiger04] 

[Diessel98], while inter-IP or IP-IO interconnection problems were rarely considered. In 

some works, connections were based on packet switching. To the best knowledge of the 

author, no similar circuit switching work has been proposed. 
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This chapter is organized as follows. Section 5.1 provides an overview of the 

kernel structure. Section 5.2 introduces an important data structure staircase. All those 

tasks closely related to the placer, such as vacant slot searching, and vacant or occupied 

cluster maintenance, are based on such a data structure. Section 5.3 outlines algorithms 

that are built in the placer. Section 5.4 describes the algorithm built into the router. 

Section 5.5 shows how the task scheduler works.  

5.1 OS4RC Overview 

 

Figure 5.1 Overview of the Proposed OS4RC Kernel Structure 

The structure of the OS4RC kernel can be illustrated in Figure 5.1. Circuits 

submitted to the reconfigurable machine go through different stages before their exiting 

from the system. The task flow is indicated by those dashed arrow lines. Each stage is 

characterized by a different queue. There are three queues: waiting queue, reservation 

queue and execution queue. The exact meaning of each queue is described later. The 

Placer & Router 

Scheduler 

OS4RC 

Queues: 
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circuits 
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scheduler monitors those queues, and moves those circuits from one queue to another, 

depending on the availability of resources. Circuits cannot move from the waiting queue 

to the reservation queue unless the corresponding placement and routing have completed.   

Placement and routing in OS4RC at run time are quite different from 

corresponding problems at compile time. At compile time, a circuit well documented in a 

hierarchical and modular HDL description is first flattened. A placement algorithm, 

normally based on simulated annealing is then applied to a set of flattened CLBs, and 

then a routing algorithm builds connections between those CLBs. At run time an OS4RC 

cannot afford such an expensive placement and routing. For an IP circuit at run time, 

connections and the relative positions of its internal building blocks (CLBs) should be 

preserved. Routing between circuits can only be based on very simple and regular 

architectures.  

As described in Chapter 4, with a mesh like segmented bus, the new chip 

architecture can support more flexible IP-IO or inter-IP connections. Communication 

channels are configured on the fly, depending on circuit locations and available routing 

resources at that moment. At run time, every circuit has communication channels by 

attaching to nearby bus segments. Just like the circuit switch mode in telecommunication, 

after a circuit is swapped out of the chip, resources occupied by its communication 

channels are released for use by later circuits. 



 88

5.2 Representation and Management of the 2-D FPGA Real Estate 

As the prerequisite work of placement, all resources on an FPGA chip have to be 

expressed in a well designed data structure. This is so that when circuits are added to or 

removed from the FPGA chip, the corresponding data structure maintenance and 

therefore resource management can be manipulated efficiently.    

Due to the dynamic swapping in and out of circuits, after some time the 

distribution of empty clusters and occupied clusters will be very irregular. To simplify the 

discussion, circuits are assumed to be a series of rectangles. For example, in Figure 5.2, 

an FPGA chip has totally 6488 =×  clusters. Every occupied cluster is represented as a 

“1” (identified with different patterns for different circuits), while every empty cluster is 

represented as a “0”.  

 

Figure 5.2 An Example of Dynamic Hardware Circuit Swapping 

Because of the 2-D organization, the space management task in an OS4RC is far 

more complex than the page management work in traditional operating systems. How to 

manage the 2-D space real estate efficiently has long been a topic in OS4RC. Different 
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authors gave out different real estate representations, such as quad tree, approximated 

maximal rectangle, real maximal rectangle and so on [Bazargan00] [Steiger04] 

[Diessel98]. The quad tree method and approximated maximal rectangle method are 

shown in Figure 5.4 and Figure 5.4, respectively. In the case of the quad tree expression, 

when a vacant rectangle straddles over boundaries of different quadrants, the job of 

searching and data structure maintenance become very complicated. Those occupied 

quadrants may not be at the same level of the tree, as indicted in Figure 5.3. In Figure 5.4, 

the vacant area can be approximated with rectangle ABDC plus FGHD , or 

ABFE plus EGHC . Different criteria were given by Kiarash Bazargan [Bazargan00]. 

Due to the approximation of rectangles, whether a new circuit with the size of JGHK can 

fit into a vacant slot depends on how the vacant area is represented. In Figure 5.4, the 

new circuit can fit if the vacant area is split as ABFE plus EGHC . However it cannot fit 

if the vacant area is split as ABDC plus FGHD . In terms of search quality, the 

approximated rectangle method is not very good, especially when there is not much real 

estate. 

 

Figure 5.3 An Example of Quad Tree Expression 

1 2

3 4
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Figure 5.4 An Example of Approximated Rectangles 

To address the constraint of approximated rectangle expression, the data structure 

suggested by Jeff Edmonds is adopted [Edmonds03] to characterize those vacant chip 

areas, even though this method was originally designed for the purpose of data mining 

rather than for OS4RC.  Manish Handa was the first researcher to adopt this data 

structure for OS4RC [Handa04a]. Based on Jeff Edmonds’ data structure, it is possible to 

develop an efficient vacant area search engine, which can greatly reduce the search time. 

And this search engine can be one of the hardware tasks on the chip.  

Jeff Edmonds’ Method  

Jeff Edmonds suggested a data structure called staircase to characterize those “0” 

elements in an array.  A ),( yxstaircase is in fact a stack of partially overlapping 

rectangles with ),( ii yx as their upper-left corners and with the same point ),( yx as their 

lower-right corners. 

For example, in Figure 5.5, >=< ),(),,(),,(),( 33221100 yxyxyxyxstaircase is 

defined, where the lower-right point ),( 00 yx is the common lower-right corner of 
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rectangles >< ),(),,( 0011 yxyx , >< ),(),,( 0022 yxyx  and >< ),(),,( 0033 yxyx . That 

staircase is stored as a list of integer pairs, i.e., ),( 00 yx , ),( 11 yx , ),( 22 yx and ),( 33 yx . 

 

Figure 5.5 The Definition of Staircase 

Among all these rectangles composing of elements of “0”, some of them may be 

maximal as defined below.   

 

Figure 5.6 An Example of Maximal Rectangles and Corresponding Staircases 
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Definition:  an empty rectangle is maximal if it cannot be extended along either the X- or 

Y- axis because there is at least one “1” entry on each of the borders of the rectangle to 

block its extending further [Edmonds03].  

In Figure 5.6, maximal rectangles are >< )3,6(),4,1( , >< )3,6(),6,3( , 

>< )3,6(),7,5( , >< )3,5(),8,5( , >< )4,8(),4,1( , >< )4,8(),6,3(  and >< )4,8(),7,5( . They 

are included in )3,5(staircase , )3,6(staircase and )4,8(staircase , which together are used 

to request the current vacant spaces. Intermediate )3,4(staircase  will be replaced with 

)3,5(staircase as the staircases are being constructed. This will be seen later.  

All those empty maximal rectangles not only cover all empty resources inside the 

array, but also sharply reduce the number of rectangles to maintain. It has been proved 

that any maximal rectangle will be contained in one and only one staircase [Handa04a]. 

But not every rectangle contained in ),( yxstaircase is maximal.  

Obviously, if a waiting circuit cannot fit in any empty maximal rectangle, then 

there is no vacant space available for the circuit at this time.  Otherwise, it is better to 

pick the smallest empty maximal rectangle it can fit so as to reduce the fragmentation. 

After a circuit is swapped in (out), corresponding array elements are marked as “1”s (or 

“0”s). These operations are not complex, but many existing maximal rectangles will be 

disrupted. Manish Handa has shown that not all maximal rectangles have to be updated. 

Suppose the top left corner of the newly added (removed) circuit is ),( nm , only those 

covered by the area below and to the right of )1,1( +− nm  have to be updated as Figure 

5.7 indicated [Handa04b]. 
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Figure 5.7 Those Disturbed Staircases 

Jeff Edmonds suggested an efficient method to construct all staircases contained 

in the array:  scanning the matrix from left to right and from top to bottom row by row, 

all staircases can be constructed in one pass. It is summarized as follows: 

Let ry be the Y coordinate of the top most (with the biggest Y coordinate) “0” 

element in ),( yxstaircase ; while let '
ry  be the similar value extending 

from ),1( yxstaircase − . The contents of ),( yxstaircase can be constructed from 

),1( yxstaircase − easily. If the entry at ),( yx is a “1” element, then ),( yxstaircase does 

not exist, or nullyxstaircase =),( . Otherwise, three different cases may happen as in 

Figure 5.8. 
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Figure 5.8 Three Possibilities When ),( yxstaircase is Derived 

from ),1( yxstaircase −  

(a) '
rr yy > . This means ),( yxstaircase  can be constructed from 

),1( yxstaircase − by adding another stair step ),( ryx  to ),1( yxstaircase − . 

(b) '
rr yy = . This means ),( yxstaircase  is exactly equal to ),1( yxstaircase − , 

except the lower right corner is shifted one step to the right. 

(c) '
rr yy < .This means ),( yxstaircase  can be constructed from 

),1( yxstaircase − by cutting off all those steps in ),1( yxstaircase − which are 

higher than ry .  A new step with a height of ry  may be added as the last entry 

of ),( yxstaircase  if there is no step with this height in the 

original ),1( yxstaircase − . 

Fortunately, it is not necessary to calculate ),( yxyr by counting the number of 

“0” elements extending up from the lower right corner ),( yx . The relationship 

)1,(),( += yxyyxy rr holds if both the entries at ),( yx and )1,( +yx are “0”s. Otherwise 

0 0 0 

ry 'rr yy = 'ry

(a) (b) (c) 
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yyxyr =),(  if the entry at ),( yx is “0” and the entry at )1,( +yx is not. If the entry at 

),( yx is not “0”, then nullyxyr =),( , corresponding to nullyxstaircase =),( . 

For a block of “0” entries that starts from )1,( −yx  and extends to the left, let 

),(* yxx  denote the X coordinate of the left most “0”entry. Similarly, for a block of “0” 

entries that starts from ),1( yx + and extends up, let ),(* yxy  denote the Y coordinate of 

the up most “0”entry. Jeff Edmonds gave the necessary and sufficient condition to decide 

whether a rectangle >< ),(),,( yxyx ii  is maximal:  

Consider a step in ),( yxstaircase with a top-left corner ),( ii yx . The 

rectangle >< ),(),,( yxyx ii  is maximal if and only if 

),(* yxxxi < and ),(* yxyyi > .  

According to this necessary and sufficient condition, maximal rectangles can be 

extracted from ),( yxstaircase  by throwing away those non-maximal rectangles. In this 

way redundancy of data is removed, and the search can be accelerated. Finally all those 

maximal rectangles can be put into a list, and this list is organized in an ascending order 

of maximal rectangle size. 

5.3 Placement 

Placement is to pick up an appropriate empty spot for an arriving circuit according 

to certain criteria. Frequently higher utilization of FPGA chip area is emphasized.  

Whenever the candidate maximal rectangle is found, decisions have to be made 

on how to fit the circuit into this maximal rectangle. In previous works where the inter-IP 

or IP-IO connection problem is not considered, a bottom left corner biased placement is 

often used, just like Figure 5.9(a).  
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Figure 5.9 Two Possible Circuit Fit-in Strategies 

Steiger et al. suggested a placement method based on the prediction of the most 

recently available rectangle [Steiger04]. If a new circuit arrives, a vacant spot is searched 

based on the currently available resources. If such a spot is not available right away, the 

search is then based on the expected resources after a circuit exits in the most recent 

future. This procedure continues with more circuits exiting until a suitable vacant spot is 

available. The worst case happens when all current on-chip circuits need to exit from the 

chip. 

A similar strategy is used here, but the vacant spot search is based on true 

maximal rectangles rather than Steiger’s “non-overlapping free rectangles”. Empty 

maximal rectangles may overlap with each other. But for a given allocation, the set of 

empty maximal rectangles is unique, while the set of “non-overlapping free rectangles” is 

not. The search and management of empty maximal rectangles is very time-consuming, 

compared with those of non-overlapping free rectangles. In our situation, the minimum 

rectangle is a cluster rather than a CLB. Using approximated maximal rectangles will 

cause too much waste. When a chip has only a few hundreds of clusters, an exhaustive 

search over such a chip is not time consuming. 
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For the reason of providing contrast, situations with and without segmented bus 

are both discussed in later sections. For the situation without bus, communications 

between two circuits are still possible when two circuits are close to each other. Similarly, 

a circuit can talk with external world when it is on the chip boundary. But abutment is not 

enough; alignment is still necessary to make sure correct relative positions between two 

components communicating with each other. Therefore the abutment-and-alignment 

(AAA) strategy is applied. 

One connection point can be a cluster or an IO pad group. If a connection point on 

one circuit is aligned with another connection point on another circuit (or chip 

boundaries), then the two circuits are said aligned and they satisfy the AAA requirements. 

In Figure 5.10, circuits 0ic - 2ic , 0ic - 3ic , 3ic -P satisfy the AAA requirements at different 

directions. P is an IO pad group on the chip boundary. 

 

Figure 5.10 Abutment and Aligned Placement 

Because of constraints of AAA requirements, if dedicated communication channel 

is not available, vacant rectangle size is not the only consideration when a circuit is 

placed. On the contrary, with segmented bus, two circuits can exchange data even when 

they are not close to each other. Vacant rectangle size is almost the only consideration. 
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For the later situation, circuits are said to be placed with the most recently available 

minimum maximal rectangle (M3R) method. Both methods will be used in the following 

sections.  When a circuit is placed with the M3R method, it will be put into the up-left 

corner of maximal rectangle.   

5.4 Routing  

Once a waiting circuit is assigned a vacant spot, connections associated with this 

circuit need to be built. This is the OS4RC routing problem. In this section, the 

Pathfinder algorithm and its core elementary algorithm, the Maze algorithm, are 

described. A complete procedure combining both algorithms is introduced later on as in 

Figure 5.10. 

5.4.1 Maze Routing Algorithm 

The maze router, developed by Lee [Lee61], is the basis for many existing FPGA 

routing algorithms, such as Tracer, Pathfinder, Srouter and VPR [Lee95] [Ebeling95] 

[Wilton97] [Betz99].  

Using a breadth-first search strategy, the maze routing algorithm was designed to 

find the shortest path between two points on rectangular grids. Starting from the source 

node of a net, the maze algorithm tries to expand each neighboring node. All those 

neighboring nodes of each expanded node are then expanded further. After a series of 

wave propagation expanding operations, finally the sink node of the net is reached. In this 

wave propagation phase, more than one possible connection can be built.  Among all 

these candidate connections, one is selected as the final connection during the back trace 
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phase. If the sink node cannot be reached during the wave propagation phase, then no 

possible route is claimed. To reduce the computation time, improved maze algorithms, 

such as Hadlock’s algorithm and Soukup’s algorithm, were suggested 

[Soukup78][Hadlock77]. 

A circuit generally has many multi-terminal nets, but the core idea of maze 

algorithms is to build a connection between two points. In practice, a multi-terminal net is 

decomposed into many two-point connections and every time only one two-terminal 

subnet is routed. Gradually such a complete net is routed. Another problem is the 

congestion, i.e., more than one net may compete for the same routing resource (such as a 

metal segment). Two strategies are frequently used to resolve this competition: rip-up and 

multi-iteration. In the first strategy, those competing networks are ripped-up and then re-

routed. While in the second strategy, only one net is ripped up and re-routed, and this net 

does not have to be a congested net. In both cases, the final success of the routing may 

depend on the selection of the net to rip up or the order.     

5.4.2 Pathfinder 

The Pathfinder algorithm, developed by Ebeling et al. [Ebeling95], is a routing 

algorithm that tries to optimize the number of tracks and circuit delay simultaneously. It 

is used as a framework of the router in this chapter for three reasons: 

(1) Effectiveness. It is adopted by many existing routers, such as VPR and 

other toolkits. Its effectiveness has been proved. 
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(2)  Availability of the open source code. Many data structures and code 

organizations can be extracted from VPR [VPR00], which is available 

with source code on line. 

(3) Scalability. As Pathfinder is a detail router, where more complex routing 

architectures are considered. Compared with those architectures, the 

mesh-cluster architecture is quite simple. This research begins with the 

case of one task one IO connection and expands to more general 

situations, such as one task multiple connections and multiple 

connections between tasks. See Chapter 6 for more task model details. 

A pseudo code of the Pathfinder algorithm is explained later and is shown in 

Figure 5.11. During each iteration, each net is ripped-up and re-routed in the same order. 

Different nets are allowed to share common routing resources with each other. As 

iterations proceed, the sharing of routing resources is penalized with a cost function 

which increases gradually with each iteration. After a large number of iterations, 

congested routing resources are allocated to those nets which need those resources most, 

while nets that do not absolutely require those congested routing resources can be 

relocated to other places. This is called the process of negotiation, a distinguished feature 

of Pathfinder. When all congestions are resolved, the routing process is terminated. 

It should be noted that ripping-up a net requires an assumption about IP cores.  

The OS needs to be able to stop them for reconfiguration of the segmented bus and then 

to resume their computations afterwards.  In order for this assumption to work, IP cores 

need to be designed with this in mind.  This assumption can be removed by using only 
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the maze algorithm for routing and using no ripping-up.  In that case, the routing 

becomes much more difficult.   

Before the algorithm of Pathfinder is examined, some terminologies are explained first: 

),( jisink :   The jth  terminal on the multi-terminal network i . 

:),( jislack  For ),( jisink , the amount of delay that can be added before it 

influences the circuit’s critical path. 

:maxD  Delay of the critical path. 

:),( jicritical It is defined as 
max

),(1
D

jislack
−  

node n : As a portion of the connection of the jth  sink of net i ,  it may 

correspond to a wire segment in a routing channel. 

:)(nb  base cost of node n . 

:)(nh  historical congestion cost of node n . 

:)(np  present congestion cost of node n . 

:)(ncost     it can be expressed as : 

)()]()([)],(1[)(),()( npnhnbjicriticalndelayjicriticalncost ⋅+⋅−+⋅=  

According to this expression, the Pathfinder algorithm is designed to 

make trade-off between the routability and timing delay. 

:)(iRT  The routing tree of net i . Net i  is just a set of logical connections, while 

all physical routing resources that are used to build this net compose the 

corresponding routing tree. 

PQ : priority queue 
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[1]         1),( =jislack  for all net sources i and sinks j   // initialize 

[2]         For  try = 1; try <=max_try;  try++ 

       If ( try ==max_try){ // after max_try times effort, assume no feasible routing solution 

Routing_success = False; 

Break;}  

[3]         For all net i 

[4]   Rip up the routing tree )(iRT   

[5]   )(iRT = source of net i                                        // start with source    

[6]   For all ),(sin jik s in the decreasing order of ),( jicritical  

[7]                         PQ  = )(iRT at the cost )(),( ndelayjicritical ⋅  for each node n in )(iRT  

            //resource in )(iRT are used as starting points of the wave propagation 

[8]    While ),( jisink  is not reached         // wave propagation  

[9]     Get the lowest cost node m from PQ  

[10]     Add all neighboring nodes n  of node m to PQ   with 

[11]     tcos  = )(cos nt  + path cost from the source to m  

[12]    End 

[13]    For all nodes n  in path ),( jit to source  //back trace 

[14]     Update )(cos nt  

[15]     Add n to )(iRT  

[16]    End 

[17]       End // end of ),(sin jik  for loop 

[18]         End  // end of net for loop 

         If ( Congestion_ flag  = ()_ checkcongestion ){ 

   Calculate the path delay and ),( jicritical ; 

   } 

         Else {  

   Record this routing solution; 

      Routing_success = True; 

   Break;  

} 

[19]   End   // end of try loop 

Figure 5.10 Pseudo code of the Pathfinder 
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5.4.3 Routing Resource Graph 

The routing architecture of a FPGA chip can be described as a routing graph, and 

an appropriate routing algorithm is then applied on this routing graph. Routing a net 

corresponds to finding a path on the routing graph. When every net find its own path with 

no resource conflict between any two nets, the routing process is done. In the routing 

graph, every vertex represents a routing resource. It may be an input or output pin on a 

CLB, or a track in the routing channel. An edge of the graph represents a possible 

connection between the two vertices.  As on a FPGA chip, signal transmission on some 

resources (such as a tri-state buffer) is unidirectional, a directed routing graph is quite 

popular.  All output pins (or input pins) of a CLB are equivalent in function, and they are 

exchangeable with each other.  

The cluster-mesh architecture can be represented with a routing resource graph as 

shown in Figure 5.12, on which appropriate routing algorithms are applied.  To make it 

clear, only a portion of routing resource graph is drawn.  

When Pathfinder is used in VPR, all routing resources are represented with a 

routing resource graph. It is assumed that each CLB has a source/sink node on the routing 

resource graph, and each routing segment corresponds to one node on the graph. A 

routing resource graph for the proposed architecture is used by the router in the suggested 

OS kernel. Each cluster has one source/sink node, and all bus segments between two 

clusters correspond to only one node. That is another reason why routing is not time 

consuming with the proposed architecture and the routing algorithm. 
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Figure 5.11 A Portion of Routing Resource Graph 

5.5 Scheduler 

If a circuit can be placed and connected appropriately, Scheduler will decide the 

order in which all submitted circuits run, so as to achieve optimal performance. In terms 
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of the performance metric, different criteria may be applied, such as the shortest running 

time of all submitted circuits, lowest ratio of rejected circuits and so on. 

5.5.1 Assumptions  

- Each time only one circuit arrives.  

- Only limited connections exist between circuits, generally no more than five. 

- Routing is only limited to inter-IP or IP-IO connections. Internal connections of 

IP circuits are pre-determined. Routing re-configuration or re-routing is 

assumed to be far faster than cluster configuration. 

The above assumptions are considered practical at this point. They were made to 

reduce placement and routing time. No on-line circuit compaction is expected, as the time 

cost of compactions based on bit stream re-loading and context information storing is 

very expensive.  

5.5.2 Framework of Scheduling Algorithm 

There are three queues as follows:  

eQ : executing queue, keeps trace of all currently executing circuits. 

rQ : reservation queue, keeps trace of those currently not executing but 

scheduled circuits. 

wQ : waiting queue, keeps trace of those newly arrived but not yet 

scheduled circuits. 

The execution time of a circuit is the time that this circuit runs on the chip 

[Steiger04]. In previous works, circuit execution times are assumed to be known in 
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advance. This type circuits are called K-type circuits [Bazargan00] [Steiger04] 

[Diessel98]. But in practice, there is another type of circuits, whose execution time is 

unknown in advance, but determined by external events. They are called U-type circuits. 

For example, a reconfigurable machine is sending a compressed file over an Ethernet. A 

network interface IP circuit is needed before any packet is sent out. Once the file is sent 

out completely, the encoder circuit and the network interface circuit can be swapped out 

of the FPGA chip. Because the traffic on the networks varies a lot, it is hard to know how 

much time it takes to send the complete file. The network interface module is such a U-

type circuit. Similar situations can be found when a reconfigurable machine is receiving a 

file. In the later example, the network interface circuit may be swapped out of the chip 

while some K-type circuits are still processing the last packet received. K-type and U-

type circuits are dealt with separately.   

Every K-type circuit iC  has a width iw  and height ih , and has an arrival time iα , a 

starting time is  once scheduled and an executing time ie . It will finish at iii esf += . No 

deadline is used. For K-type circuits, as their resource release times are deterministic, the 

information can be used by the scheduler to reserve those resources for circuits arrived 

later. 

The scheduler cannot consider resources released by U-type circuits in advance. 

But the operating system can be made aware of the termination of a U-type circuit (via a 

mechanism such as interrupt), and recycle its resources released. The operating system 

now has two options: (1) schedule a circuit in the waiting queue and (2) re-schedule those 

circuits in the reservation queue. 



 107

The trade-off of these two options is as follows. The scheduling effort of option (1) 

is    minimal. However, it may miss some opportunities because some earlier circuits 

currently in the reservation queue may be rescheduled when a U-type circuit terminates. 

So all possible events include: 

 (1) A circuit iC  arrives at iα . Its arrival time iα  is used for scheduling by using 

policies, such as FCFS (first come first serve).  

 (2) A reserved circuit iC  in rQ  is dispatched when the system clock reaches is . 

(3) An executing K-type circuit will terminate at iii esf += , when the system 

clock reaches if . The record of the executing circuit is erased, and 

corresponding resources used, mainly logic clusters and bus wire segments, are 

released for later use. 

The starting time is  can be equal to iα  if the circuit can be dispatched right away;  

or it can be equal to )( ikf k ≠ if dispatching of iC  depends on the resources released by 

kC  at time .kf  Without any lose generality, we say that a circuit’s dispatching depends 

on the most recently available resources in either case.  

All is ’ s and if  s (if known for U-type circuits at any moment) are sorted in an 

increasing order, and stored as check points in a queue TQ in time domain. The operating 

system checks this queue frequently. When the system clock reaches a checkpoint, the 

operating system processes corresponding tasks appropriately. When such a scheduler is 

evaluated by simulation, this checkpoint queue can also be used to control the 

corresponding event-driven simulation [Law00].   
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Figures 5.13 and 5.14 show the pseudo codes of the scheduler and the spatial slot 

searching procedure used in the scheduler. Note that the last line of the code in Figure 

5.13 involves the search for a routing solution which is detailed in Figure 5.15. 

(The Scheduler is always trying to schedule the first circuit wC1 in the waiting queue. It 

can be triggered by the system clock or an interrupt mechanism) 

While (any queue not empty) 

{ 

if ( any circuit in eQ  terminating at the current system time t ){ 

  release its resources, remove this circuit from eQ , 

and update related data structures.} 

 

if ( any reserved circuit  in rQ to dispatch at the current system time t ){ 

download the corresponding configuration bit stream, configure the 

corresponding inter-IP/IP-IO connections,  and activate this circuit.   

It is removed from rQ , and added to eQ .  

Related data structures are updated.} 

 

//Try to locate the most recently available spatial slot for the first circuit in wQ under 

//the condition of resource at current system time t . The worst case is that this  

// circuit will wait until all executing circuits exit. 

 if ( any circuit in WQ to schedule at current system time t ){ 

kf  = current system time t ; // temporarily assume a virtual circuit e
k QC ∈     

// terminating at the current system time t ;   

 Search for the most recently available spatial slot ( kf , kC  ); 

  Search for the most recently feasible routing solution;} 

} 

Figure 5.13 Pseudo Code of Scheduler
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placement_success  = False; //initialization 

while ( placement_success  = =False){   

  try to locate an empty spatial slot at kf ; 

  if (  such an empty spatial slot is found){ 

select the minimum empty spatial slot; 

    break;} 

} 

  else{ 

1+= kk  , 1+= kk ff  

// with kf  as the next most recent finish time of a circuit in eQ ; 

 //defer all circuits in the waiting list until the next executing circuit exits 

} 

 

Figure 5.14 Procedure of Searching for a Most Recently Available Spatial Slot 
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route_success  = False; //initialization 

while (route_success  = = False){ 

route_success  = Routing( wC1 , kf );  

//routing for the waiting circuit under consideration  

// under the assumption of kf . 

   if  (route_success  = = true){ 

put this circuit into rQ  

update related data structures 

    adjust wQ  head pointer to the next circuit if any. 

    route_success  = True; 

    break;     

} 

   else { 

1+= kk , and 1+= kk ff  

// with kf  as the next most recent finish time of a circuit  

// in eQ ; 
//defer all circuits in the waiting list until the next executing 
//circuit exits 

} 

} 

 

Figure 5.15  Search for the Most Recently Feasible Routing Solution 
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After the simulation is terminated, the total time to finish all circuits can be 

calculated, the average waiting time can be extracted, and the efficiency of the placement 

and routing strategy can then be evaluated. 
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6 Simulation Results 

In this chapter, simulations are performed to evaluate the performance of the 

OS4RC implemented and the impacts of varying architecture parameters on runtime 

circuits. Simulation results based on three different task models are discussed. Each 

model has different parameter settings. These parameters cover different chip sizes, 

different circuit arrival interval times, and cases with/without bus support options. 

Operating system performance for each parameter setting is evaluated via simulations. 

Performance metrics include the average waiting time (or response time) of a new arrival 

circuit, the average execution time for each circuit, the average length of the reservation 

queue and so on. 

6.1 Simulation Framework 

Task 
Generator 

Operating 
System 

Monitor 

 

Figure 6.1  Simulator Internal 
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The simulator includes three parts: the task generator, the operating system kernel 

and the monitor, as shown in Figure 6.1. The monitor controls the start/stop of the 

simulation, keeps track of the running of the operating system, evaluates the performance 

of the operating system, and supplies information to the task generator. The task 

generator produces randomly generated circuits to feed into the operating system.  It has 

built-in random data generators for different parameters of each circuit. It also accepts 

information from the monitor to make necessary adjustments.  

The circuit arrival interval time is assumed to follow an exponential distribution, 

i.e., the number of circuits arrived during certain time follows a Poisson distribution. The 

execution time of each circuit is also assumed to follow an exponential distribution. 

Circuit sizes are assumed to follow a uniform distribution.  

As the operating system kernel is based on queues, the average arrival interval 

time has impacts on the operating system performance, especially the waiting time. 

Different situations may occur: 

(1) When the arrival interval is long enough, for example, many times longer than 

the average execution time, the average waiting time is close to zero. That is, new arrivals 

do not have to wait. This situation is called lightly-loaded. Obviously, working in this 

situation, the chip utilization is low, and there may be very few tasks running in parallel.  

(2) When the arrival interval time is very short, the average waiting time increases 

dramatically. When a circuit arrives, too many circuits are backlogged ahead of it. As 

time goes, more and more circuits have accumulated at the waiting queue or the 

reservation queue. Such a system is said unstable, and the operating system is heavily-

loaded. Users will not be patient to work with a heavily loaded machine, even though the 
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machine is highly utilized. The processing capability of the machine under this situation 

can be thought as the maximum capacity. 

(3) When the arrival interval time is chosen appropriately, each new arrival circuit 

does not wait for too long, and the chip utilization is not too low. This is called normally-

loaded. Our research is focused on this situation. 

The critical point of the arrival interval is the interval time that separates Case (2) 

and Case (3). When the average arrival interval is smaller than this value, the average 

waiting time increases dramatically, and the system becomes unstable. A bigger chip has 

a smaller critical arrival interval compared with that of a smaller chip. 

Each measurement summarized in this chapter is an averaged result from 25 

Monte-Carlo simulations and each Mote-Carlo simulation uses 10000 randomly 

generated circuits. In other words, each measurement result is based on the results of 

running 250,000 circuits through the OS.  

6.2 Different Task Models 

In previous works, each task is assumed to be carried out by one circuit, and the 

execution time of each circuit is known [Bazargan00][Diessel98][Steiger04] [Tatineni02]. 

In this section three different task models in increasing complexity are used in the 

simulations. 
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6.2.1 Mode 1: Single Net – Single Circuit Model 

 

Figure 6.2 Single Net – Single Circuit 

 

 

Figure 6.3 Arrival of Circuits for Model 1 

In Model 1, each task iT  needs only one K-type circuit ic . Recall that the 

execution time of a K-type circuit is known at its arrival time. Each circuit needs a 

connection with an IO pad group on the boundary. In Figure 6.2, three such tasks are 

depicted. Only IP-IO communications are considered, without any inter-IP 

communications. Each connection itself composes an independent net, and only one 

circuit is hooked on each net. Figure 6.3 shows the arrival times of four circuits. 

c1 c2 c4 c3 

time 

circuits 

IO pad group 

a connection point  
on circuit
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When segmented bus is available, finding a vacant spot is almost the only 

determining factor for the scheduling of a circuit. Given this point, this model is quite 

close to models used in many previous works, even though communication was not 

considered in those works. Performance claimed in those previous works is overly 

optimistic as the impact of communication requirements on scheduling, or at least the 

time cost to build communications, is not considered.   

A circuit may contain more than one cluster. One of its composing clusters is 

selected as a connection point on the circuit. Correspondingly one IO pad group on the 

boundary is randomly selected (uniform distribution assumed) as another connection 

point. When this circuit is loaded, a physical path is built between the two connection 

points, depending on available resources. 

In later parts of this chapter, the OS4RC performance corresponding to both 

with/without bus cases is evaluated. Different placement algorithms are applied to the 

two situations, and advantages of segmented-bus will be quantified.  

6.2.2 Model 2: Single Net–Multi Circuit Model 

 

Figure 6.4 Single Net-Multi Circuit Model 
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Figure 6.5  Arrival of Model 2 Tasks 

Generally a task is composed of several components, and each component is 

implemented by an independent IP circuit. To maximize chip utilization, multiple tasks 

are processed at the same time. 

In Model 2, each task is carried out by a U-type circuit plus several K-type 

circuits, but each circuit just serves one task. For a specific task, there is a net that 

connects all its circuits together, and each circuit is only associated with one net.  At a 

specific time, the number of nodes on the net and the physical path this net takes are quite 

random, depending on available resources. In Figure 6.4, two separated nets are 

represented. They have black and white nodes respectively. There may be more than one 

task iT , jT ,…  running in parallel.   

Both inter-IP and IP-IO communications are allowed. Each circuit has one and 

only one random cluster to hook on its net. Whether a circuit has an IO connection 

follows a uniform distribution. If any circuit has an IO connection, it can only have one. 

c1 c1 c1 c1

c2 c2 c2

c3

time 

Task1 

Task2 
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If more than one circuit has IO connections, then all associated IO pad groups will be 

hooked on the same net.  

Arrivals of circuits interleave with each other randomly, as shown in Figure 6.5. 

Suppose that Task iT  needs circuits 0ic , 1ic  … )(iikc , and they are ordered in their arrival 

time. The total number of circuits required by iT  is random. Among them, the first circuit 

0ic  is U-type, and all other circuits are K-type. Circuit 0ic  has to be the first one to be 

scheduled. Among all those K-type circuits associated with iT , )(iikc  is the one that arrives 

the latest, and exitlastic __ is the one that exits the last. The circuit that exits the last does not 

have to be the same as the circuit that arrives the latest. The circuit exitlastic __  cannot even 

be decided before )(iikc  is scheduled.  

Corresponding to 1ic , 2ic  … )(iikc , their starting times are 1is , 2is  … )(iiks , respectively,  

and their execution times are 1ie , 2ie  … )(iike , respectively. The exiting time of exitlastic __  

can be decided as: 

}max{__ ijijexitlasti esf += ,  )(...,2,1 ikj = .  (Eq. 6.1) 

Before exitlastif __  is decided, the execution time of 0ic  is assumed to be infinity. 

Circuit 0ic will exit from the chip immediately after exitlastic __ . This assumption is used to 

simplify the simulation coding. The scheduling of a K-type circuit depends on a U-type 

circuit, and finding a vacant spot is no longer the only consideration in this model. This is 

another difference from Model 1. 
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6.2.3 Model 3: Multi Net-Multi Circuit Model 

 

Figure 6.6 Multi Net -Multi Circuit Model 

For complex computation, there exist connections between tasks, and an IP circuit 

may be utilized by more than one task. For example, an UART interface may be shared 

by different tasks at different time. Therefore this UART IP core can be attached to more 

than one task. As another example, two tasks may exchange information via a dual port 

memory. 

 Model 3 is a further extension of Model 2. Each task still needs one U-type 

circuit plus some K-type circuits. In Model 3, a U-type circuit can only be associated 

with one task (net), but a K-type circuit can be associated with more than one task (net) at 

a time. How many tasks (nets) a K-type circuit is associated with is random. Figure 6.6 

shows a typical example. Two separated nets are represented, and they have black and 

white nodes respectively. For a specific circuit, different nets connect to points at 

different clusters, and each net connects at only one cluster. For a small circuit (say, less 
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than five clusters), no more than half of its composing clusters are allowed to be 

connected to nets.  

For each task more than one circuit may have IO connections. Whether a circuit 

has an IO connection has a fixed probability, following a uniform distribution. A circuit 

cannot have more than one IO connection. If the circuit that has an IO connection is K-

type, its IO connection is randomly assigned to one of associated nets; if it is a U-type, 

this IO connection is assigned to the same net as this U-type circuit is associated with. 

Because of the difference between Model 3 and Model 2, some modifications are 

made to the task generator when Model 3 is simulated. When a K-type circuit is created, 

all those U-type circuits, either already on the chip or in the reservation queue, are 

checked. Tasks that still need K-type circuits are identified, and this newly created K-

type circuit is randomly associated with some of them.  

6.3 Deadlock Issues 

Previous works did not consider the deadlock problem [Bazargan00] [Steiger04] 

[Wigley05]. In this section, the deadlock phenomena are analyzed, and the corresponding 

detection and resolution methods are proposed.  

6.3.1 Deadlock 

In Model 2 and Model 3, because of those U-type circuits, deadlock may happen. 

Consider the following Model 2 case depicted in Figure 6.7: 
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Figure 6.7 An Example of Deadlock 

Task iT and jT  are running in parallel. Task iT  needs four IP circuits: 0ic , 1ic , 

2ic 3ic ; and jT  need three IP circuits: 0jc , 1jc , 2jc . Suppose that 0ic  and 0jc  have co-

existed on the chip already. Then 2jc  arrives, followed by 3ic . Assume 2jc  is too big to fit 

into any vacant slot.  Although it is possible for 3ic to fit into the chip (as the space 

framed with dash lines), because of the first-come-first-serve scheduling policy, 

3ic cannot be scheduled until 2jc  is scheduled. Before 3ic and 2jc  are scheduled, 0ic  and 

0jc  cannot exit from the chip as their exit times are at infinity. So the processes 

corresponding to iT  and jT  cannot finish, and all those circuits in the reservation queue 

are blocked. Deadlock happens. 

6.3.2 Deadlock Detection and Resolution 

If a circuit ijc cannot be loaded into the FPGA chip right away, it has to wait until 

some circuits exit from the chip. The circuits that need to exit may be on the chip or still 

in the reservation queue. If a circuit ijc cannot be scheduled even when all K-type circuits 
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are assumed to have exited the system, the load-in time of ijc  depends on a U-type circuit 

whose exit time is infinity. Then a deadlock happens. 

In previous operating system prototypes, if circuits submitted to the machine 

cannot be processed before a deadline, they are simply rejected [Bazargan00] [Steiger04]. 

Even though simple rejection is not a perfect approach, such idea is followed in the 

proposed OS kernel to resolve deadlocks in a partial reconfiguration based environment.  

If a deadlock is detected when ijc is scheduled, and ijc ’s start time depends on 0kc , 

two possible situations may occur. Corresponding to the two situations, different 

strategies are conducted:  

(1) Circuit ijc  is not associated with task kT  (or 0kc ), i.e., ki ≠ . If 

this happens, let 0kc  exit after all its scheduled K-type circuits have 

exited. Task kT  is therefore only partially finished without 

completing some unscheduled K-type circuits, while iT  still has a 

chance to finish. 

(2) Circuit ijc  is associated with kT  (or 0kc ), i.e., ki = . If this 

happens,  ijc  is rejected as an impractical circuit for the simulation 

and a circuit of different resource requirement is generated at a 

later time to replace ijc . 

In Case (1), kT  is preempted. When 0kc  was created, kT  was originally expected 

to have a certain number, say m, circuits. Because of preemption, not all of them were 

simulated, and m-n circuits are cut off (or rejected). In Case (2), the execution time of 0kc  

is therefore delayed further. 



 123

6.4 Guidelines to Task Generator 

For Model 1, the design of the random circuit generator is simple. According to 

certain probability distribution function on various parameters, the task generator 

automatically produces only K-type circuits, one for each task. The monitor starts the 

task generator at the beginning of each simulation, and stops it when 10000 circuits have 

been created. 

For Model 2 and Model 3, some specific strategies are applied to the task 

generator to control simulations: 

(a) In each Mote-Carlo simulation, before the total number of circuits 

simulated exceeds 10000, whether a circuit to be generated is of U-

type or K-type is based on a probability distribution. If a U-type 

circuit is created, then a new task is created, and a random number is 

assigned to indicating the number of K-type circuits to be associated 

with this U-type circuit. The execution time of this U-type circuit is 

set as infinity. 

(b) When a K-type circuit is created, all those U-type circuits that 

have been scheduled are checked to see if they have enough K-type 

circuits already.  If they all have enough already, this newly created 

K-type is converted into a U-type circuit, indicating a new task is 

initiated. If  ψ out of those U-type circuits still do not have enough 

K-type circuits, the newly created K-type circuit is randomly 

associated with ε out of those ψ tasks. For Model 2, ε is always equal 
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to one. For Model 3, ε is a random integer in the range of 1~ψ.  A K-

type circuit is assigned with a random execution time. 

(c) If a task is preempted because of deadlock resolution, no new 

circuit is created for that task any more.  

(d)  Corresponding to the second case of deadlock resolution, if a 

circuit ijc is rejected, the number of circuits required by its task iT  is 

not affected. The task generator will produce the remaining random 

circuits at some future time. The ijc  produced the next time most 

probably will not have exactly the same parameters as those when ijc  

is rejected. 

(e) When the total number of circuits reaches 10000, no new U-type 

circuit is created afterwards, and only K-type circuits are created for 

those tasks that are still running. Generally, a bit more than 10000 

circuits are simulated. 

6.5 Different Placement Methods Applied to Different Models 

For Model 1 and Model 2, different placement algorithms are applied, depending 

on whether the segmented bus is used. 

For Model 1, only IP-IO connections are allowed. When there is no segmented 

bus, there is no dedicated communication infrastructure, and circuits are placed with the 

AAA method only (see Section 5.3). When the segmented bus is available, circuits are 

placed with the M3R method. 
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For Model 2, things are a little bit more complicated. Connection point locations, 

either on circuits or chip boundaries, are quite random. When the segmented bus is not 

available, it is hard to guarantee a K-type circuit can abut and align with both the chip 

boundary and its associated U-type circuit at the same time. Therefore it is hard for 

Model 2 to allow more than one circuit to have IO connections. In simulations, only U-

type circuits are allowed to have IO communications, as they stay in the chip for the 

longest time compared with their associated K -type circuits.  

For similar reasons, when the segmented bus is not available, inter-IP connections 

are only limited to K -type circuits and their associated U-type circuit. There is not direct 

communication between K-type circuits. If there is any communication between K-type 

circuits, the dynamic coming and going of circuits may cause some circuits to be isolated 

from other circuits associated with the same task. 

For Model 2 while without segmented-bus support, placement strategies can be 

summarized as the following: For a U-type circuit with an IO connection, the AAA 

placement strategy is used; otherwise it is placed with the M3R method, which can allow 

it to be placed as soon as possible. All K-type circuits are placed with the AAA method 

only. 

For Model 2 while with segmented bus support, all circuits are placed with M3R 

method. More than one task can have IO connections at the same time. It is not necessary 

to worry about whether a circuit is U-type or K-type. 

 If a chip has no dedicated infrastructure for inter-IP or IP-IO communications, it 

has no way to support the flexibility of Model 3. That is why Model 3 is simulated only 

with the segmented bus. 
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6.6 Simulation Results 

Model cases Array size 
(clusters) U-type rate Bus 

Case 1 20*20=400 0% Yes 
Case 2 16*16=256 0% Yes 
Case 3 20*20=400 0% No 1 

Case 4 22*22=484 0% No 
Case 1 20*20=400 30% Yes 
Case 2 16*16=256 30% Yes 2 
Case 3 22*22=484 30% No 
Case 1 20*20=400 30% Yes 3 Case 2 16*16=256 30% Yes 

Table 6.1 Different Simulation Cases 

 

Chips with different numbers of clusters under different situations are listed in 

Table 6.1. In the following simulations, the average execution time of K-type circuits is 

assumed to be 200 time units. The area of each circuit falls in the range of 0.04*16*16 ~ 

0.08*16*16 clusters. For Model 2 and Model 3, each task needs one U-type circuit plus 

1~5 K-type circuits, and 20% of circuits have IO connections. For Model 3, a K-type 

circuit is associated with 1~5 tasks/nets. 

 6.6.1 Average Waiting Time 

The simulation results of average waiting times for different models are 

summarized in Figures 6.8, 6.9 and 6.10. Irrespective of whether there are segmented 

buses, the average waiting times decrease when the chip area increases. This is because a 

bigger chip can accommodate more circuits at a time, which results in a quicker circuit 

dispatch. In Figures 6.8 and 6.9, compared with chips with segmented buses, chips 

without segmented bus have bigger area but get longer waiting times. That demonstrates 
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one benefit of the segmented bus. With the segmented bus, increased chip area can 

greatly reduce the average waiting time when the arrival interval time is small. Therefore 

the chip processing capacity is obviously enhanced.  

In Model 2 and Model 3, the placement of a K-type circuit depends on a U-type 

circuit. As a result, the average waiting time is longer than that of Model 1. In Model 3, 

because a K-type circuit may be associated with more than one task at the same time, 

those U-type circuits stay shorter time compared with the Model 2 situation. Therefore 

Model 3 has shorter average waiting times.  

 

 

 

 

 

 

 

 

 

Figure 6.8 Average Waiting Time for Model 1 
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Figure 6.9 Average Waiting Time for Model 2 
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Figure 6.10 Average Wait Time for Model 3 
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6.6.2 Average Placement and Routing Time 

The average placement and routing times for these three models during 

simulations are summarized in Figure 6.11, Figure 6.12 and Figure 6.12. Routing time 

cost is notoriously expensive in traditional FPGA design flow, frequently taking tens of 

minutes. With the separation of inter-IP connections and intra-IP connections using 

segmented buses, the routing is expected to be much faster, as required for on-line 

routing. From Model 1 to Model 3, as routing complexity increases, the average 

placement and routing times also increase. In most situations, for each circuit, the average 

placement and routing time is less than 10 ms. For every situation in those three figures, 

the average placement and routing time is less than 20 ms. 

The placement and routing time usually increases with the chip area increase, 

because routing on a bigger chip means higher routing complexity. On each curve of 

those figures, when the arrival interval time decreases and passes a certain point, the 

placement and routing time increases dramatically. This point is called the critical point. 

When the arrival interval time is bigger than the critical point value, it is found that more 

than 90% of the P&R time is due to the routing (the Monitor records the placement and 

routing time costs separately). When the arrival interval is smaller than the critical point 

value, it is found that the P&R time increase almost totally comes from the placement. 

The placement component begins to dominate the P&R time. This is due to the 

characteristic of the placer, which exhausts all efforts trying to place a circuit.     
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Figure 6.11  Average Placement and Routing Time for Model 1 
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Figure 6.12  Average Placement and Routing Time for Model 2 
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place and routing time (model3)
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Figure 6.13  Average Placement and Routing Time for Model 3 

6.6.3 Reservation Queue 

Average lengths of reservation queues corresponding to different models are 

depicted in Figure 6.14, 6.15 and 6.16.  When the arrival interval is small, many pre-

placed and pre-routed circuits are in the reservation queue. The curves of these figures 

are similar to those in Section 6.6.1. This makes sense, as the more circuits stay in the 

reservation queue, the longer a new circuit has to wait. One problem for too many 

scheduled circuits staying in the reservation queue is its consumption of memory storage. 

When the memory capacity is limited, this may cause problems.  
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Figure 6.14  Reservation Queue Lengths for Model 1 
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Figure 6.15 Reservation Queue Lengths for Model 2 
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reservation queue (model 3)
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Figure 6.16 Reservation Queue Lengths for Model 3 

6.6.4 Average Execution Time 

For Model 1, execution times for different cases are fixed, i.e. 200 time units. For 

Model 2 and Model 3, their execution times are depicted in Figure 6.17 and Figure 6.18, 

respectively. Because of those U-type circuits, average execution times are all longer than 

200 time units. In most situations, the larger the average arrival interval time, the longer 

the average execution time.  In Model 3, each K-type circuit contributes to different tasks 

at the same time and U-type circuits stay shorter amount of time on the chip. So 

execution times are shorter than cases in Model 2. 

In Figure 6.17, the average execution time for Case 3, i.e. the case without bus, is 

shorter than with-bus cases. This comes from our simulation methodology, and has 

nothing to do with the efficiency of the without-bus case. When a K-type circuit is 

produced by the task generator, it is to be assigned to an available net, which is associated 

with a U-type circuit. When segmented buses are not available, less number of tasks/nets 
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is running in parallel because of those strict placement constraints as depicted in Section 

6.5. Hence possibilities to assign a newly arrived K-type circuit are very limited. In other 

words, all circuits associated with the same net arrive in a short time period. Therefore 

the associated U-type circuit does not stay on the chip for long. On the other hand, when 

bus is available, possibilities to assign a newly arrived K-type circuit are much higher 

because of higher parallelism due to relaxed placement constraints. As a result, the 

average execution time for Case 3 in Figure 6.17 is shorter than those for Cases 1 and 2. 
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Figure 6.17  Average Execution Time for Model 2 
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execution time (model 3)
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Figure 6.18  Average Execution Time for Model 3 

6.6.5 Deadlock Resolution  

Deadlocks do happen. Figures 6.19 and 6.20 record the ratio of circuits that are 

rejected or cut off due to deadlock. Even with segmented-bus support, deadlocks happen 

more often on small chips. The reason is quite straightforward. Deadlock happens when 

the scheduling of a circuit depends on a U-type circuit whose exit time is still undefined. 

Higher throughput can reduce the chance.  Deadlocks happen more often with Mode 2 

when compared with Model 3, because of its lower throughput. On each curve of Figures 

6.19 and 6.20, no clear relationship between arrival time interval and rejection/cut-off 

ratio was observed. Perhaps deadlocks are small probability events, and longer simulation 

series are needed. 
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Figure 6.19 Rejected and Cut-off Circuits Ratio, Model 2 
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Figure 6.20 Rejected and Cut-off Circuits Ratio, Model 3 
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6.6.6 Best Cluster Size 

One important parameter of the proposed architecture is the cluster size. If the 

cluster is too small, the segmented bus part is going to consume too much chip area. That 

leads to smaller area to accommodate circuits and longer average waiting time. If the 

cluster is too big, there are fewer bus segments which lead to limited routing flexibility. 

Other factors that may influence the selection of a cluster size include the total chip area, 

the statistical distribution of circuit size and so on.  

Simulations can be used to determine an optimal cluster size, which apparently 

depends on the specific cost function used. Here one possible cost function is given based 

on waiting time, area penalty and timing delay. It is as follows. 

mTSSt waitavgdifchip **)(cos _+=              (Eq. 6.2) 

where chipS : Chip area scaled in CLBs. It includes both the cluster part and the segmented 

bus part. 

difS : Difference chip area between chipS  and the original 120*120 CLBs. 

:_ waitavgT  Average waiting time, in time units.  

m : The number of clusters on the chip along one dimension.  

In the above cost function, the )( difchip SS + part represents a penalty if difS  is 

positive, or a reward if negative. The parameter m  is introduced to characterize the 

propagation delay form one corner of the square chip along the diagonal direction to 

another corner. That path is m⋅2  long scaled in Manhattan distance. Along this path, 

m⋅4  tri-state buffers are inserted. 
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Different waitavgT _  corresponding to different partitions of a chip can be obtained 

from simulations. Using Eq. 6.2, costs corresponding to different cluster sizes are 

illustrated in Figure 6.21 and 6.22. Figure 6.21 corresponds to situations where all 

crossbars are fully populated, and Figure 6.22 corresponds to situations where all 

crossbars are half populated. At the minimum point of cost, a cluster with “optimum” size 

is thought located. 

From Figure 6.21 and 6.22, almost all minimum occur when the cluster size, N , is 

four or eight. The only exception is the point ( 4,7 == kN ) on Figure 6.22 where cost is 

very close to the cost at ( 4,8 == kN ).  

In Section 3.4, to evaluate the bus overhead, a chip with 120*120 CLBs is 

partitioned into clusters with different sizes. The operating system is evaluated for those 

different partitions. A medium arrival interval, 35 time units, is chosen. In those 

simulations, circuits are in the range of 0.04*16*16~0.08*16*16 clusters. No internal 

fragmentation is considered. For simulation summarized in this section, circuits are in the 

range of 0.02*120*120~0.05*120*120 CLBs. If a circuit has a width w and a height h  

(both scaled in CLBs), it needs ⎥⎥
⎤

⎢⎢
⎡×⎥⎥

⎤
⎢⎢
⎡

N
h

N
w  clusters because of internal fragmentation. 

Since internal fragmentation is considered, smaller circuit size ratios (0.02~0.05) are used 

for simulation in this section.  
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Figure 6.21 Cost Function (P =1.0) 
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Figure 6.22 Cost Function (P =0.5) 
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6.7 Conclusions 

(1) Model 3 is more efficient compared with Model 2. Model 3 has more flexibility, 

and is closer to practical situations. Model 1 is too constrained. It is used to show 

inflated performance when effects of IO connections are not considered. 

(2) Increase chip area without segmented buses is not very helpful. The proposed 

segmented bus is very effective in reducing the circuit waiting time. The increase 

of chip area can show more gain when the arrival interval is smaller. 

(3) The placement and routing cost has been evaluated. This is different from those 

operating system prototypes where only placement is considered [Bazargan00] 

[Steiger04] [Diessel98]. With the proposed FPGA chip architecture, the 

placement and routing cost is mostly around 10 ms. This is mainly due to the 

usage of dedicated routing structures for IP-IO and inter-IP connections. The 

proposed architecture and placement/routing algorithms are therefore suitable for 

on-line systems.  

It is noticed that when the arrival interval is small, the average waiting time and 

placement time increase dramatically. More sophisticated scheduling algorithms may be 

necessary in those cases.  
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7 Conclusions and Future Works 

7.1 Conclusions 

Reconfigurable machines can accelerate many applications by adapting to their 

needs through hardware reconfiguration. OS4RC stands for Operating System for 

Reconfigurable Computing.  The OS4RC in this dissertation focuses on runtime partial 

reconfiguration which allows the swapping in and out of IP circuits at run time. 

The main goal of this research is to address some problems that come from the 

gap between OS4RC and existing chip architectures and the gap between OS4RC models 

and practical applications. Those problems include (1) for some OS4RC models, there is 

no data exchange channel between tasks residing on a Field Programmable Gate Array 

(FPGA) chip and between a circuit and FPGA I/O pins or (2) for other models, their 

inter-IP communication channels do not work well with 2-D partial reconfiguration. To 

address these problems, a new FPGA chip architecture has been proposed and a 

corresponding OS4RC kernel is then specified. 

Based on an array of clusters of configurable logic blocks, with each cluster 

serving as a partial reconfiguration unit, and a mesh of segmented buses, the new 

architecture provides inter-IP and IP-I/O communication channels.  The proposed 

OS4RC kernel has been developed with the new architecture in mind. 

The area cost and the configuration memory size of the new chip architecture 

have been calculated and analyzed.  They are judged to be relatively low compared to 
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commercial FPGA chips.  The efficiency of the OS4RC kernel has been evaluated via 

simulation using three different task models.  It is determined that the OS4RC is quite 

efficient in terms of runtime placement and routing time.  Some other performance 

metrics have also been used to evaluate the performance of the implemented OS4RC. 

For further improvements of this work, there are two directions: (1) the routing 

algorithm can be relaxed so that no ripping-off is used which would require some more 

routing resources/performance tradeoff study, and (2) the incorporation of block RAMs, 

which are quite common on modern FPGA chips, can be incorporated in the new 

architecture.  The latter one is described in more details in the rest of the chapter by 

considering its impacts on architectures and operating systems separately.  

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Block Memories on a 3D FPGA 
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7.2 Future Works on Architecture 

One possible solution is to take advantage of modern 3D FPGA technology and to 

add an extra memory layer to our proposed architecture. Therefore under each cluster 

there is a memory block, as shown in Figure 7.1. Block RAMs at the bottom layer have 

their own dedicated data and address buses. Buses associated with block RAMs are 

independent from those general-purpose routing wires and segmented buses. They are 

used to connect to memory blocks. 

7.2.1 Why 3D Architecture? 

There are several reasons. 

(1) A dedicated memory layer can support high memory capacity. Most current 

commercial FPGAs have only limited capacity of on-chip memories, and off-chip 

memories still play an important role. As there are only limited data buffered on chip, 

data exchange between FPGA and off-chip memory becomes intensive and an I/O 

bottleneck problem occurs. For applications which have continuous data flow, such as 

DSP applications, the possible acceleration capability of FPGA chips is largely 

compromised. 

For example, a black and white image with a size of 768*512 *8 bits needs a 

frame buffer of 384K bytes. Most existing FPGA chips cannot support such a 

requirement except some very large ones. Virtex II Pro 1002VPXC is such a chip. It has 

7992k bits (or 999k bytes) block RAMs. But for )(αRGB color image processing, the 

memory capacity needs to be as high as 3843×  K or 3844 ×  K bytes. For MPEG  

applications, M , P  and I  frames may reside on chip at the same time. This means extra 
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memory requirement again!  In a practical hardware image processing system, more than 

one stage of image buffers (frequently dual port memories) is normally required in a 

processing pipeline.  

(2) On most commercial chips like Xilinx Virtex, block RAMs are only available 

at some specific locations. If an IP circuit has to work along with block memories, then 

its possible location inside the chip is largely constrained by connections with block 

RAMs. With a dedicated layer, memory blocks can be arranged uniformly, as shown in 

Figure 7.1.  

(3) If a large amount of memory blocks are uniformly put on the same layer as 

clusters stay on, the performance of the FPGA chip will degrade. As the capacity of on-

chip memory increases, the associated cost on more input/output pins, buses and memory 

configuration mapping blocks will also increase. Memory configuration mapping block is 

some kind of crossbar mechanism, which can map a block memory into different width 

/depth combinations to satisfy different application requirements [Wilton97]. FPGA 

routing channels will be further widened to accommodate these extra facilities. Such 

overcrowded facilities may cause big capacitance between wire segments, and chip speed 

performance will be impaired. A 3-D FPGA architecture has been proved to be a good 

solution to build fast chips with a small area [Rahman03]. 

7.2.2 Scalability of Block RAMs 

Inspired by Atmel AT40K/AT40KLV architectures, dual port block memories can 

be scaled into different depth / width to satisfy different requirements. Suppose each 

block RAM has a width W and depth D . In Figure 7.2, an example is shown how to build 
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a RAM with W2 width and D2  depth. The two block RAMs in dashed lines are not used. 

Each of the two rows contributes to half of the W2 width, while each of the two columns 

contributes to half of the D2 depth. A decoder can be built with logic at the top layer.  

  

 

Figure 7.2 Scalability of Block RAMs 
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7.2.3 Connections between Clusters and Memory Blocks 

Using a 3D architecture, Silviu Chiricescu et al. designed connections between 

CLBs and a switch box below them [Silviu01b]. Dedicated connections between a cluster 

and an underlying memory block can be built up using similar approaches. Outside 

clusters, connections can be built with 3D switch boxes. In Figure 7.3, a possible routing 

path is depicted with segments that have arrows. 

 

Figure7.3  Switch Box with 3D Structure 

7.3 Future Works on Operating System 

The capacity of a memory block underlying a cluster may be decided by letting its 

area (with the area of associated routing resources included) match that of the cluster 

above, although a cluster does not have to be associated with only one memory block, 

and vice versa. The area of the logic part ( at the top layer) and the memory part (at the 

lower layer) may be quite different. As a result fragmentations on the top layer and 

bottom layer are also different. When a new IP circuit arrives, how to place it, route it and 
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schedule it with the consideration of a new dimension?  This is a question that remains 

for future research. 
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Appendix: Area Cost of Some Primitive 

Components 

 

In this appendix, some primitive components are listed, and their areas are 

calculated. These components are used in the proposed segmented bus network. 

A.1 One-bit SRAM Memory Cell 

 

 

 

 

 

 

 

 

 

Figure A-1 One-Bit Memory Cell 

Such a memory cell is composed of six transistors, even though five transistors 

are possible. In an FPGA chip, each programmable point is controlled by a memory cell 

on which both the stored data and its complementary are available. Polarity of the final 

output signal may be different from that of the very initial input signal if odd number of 

one bit single port memory 
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inverters is cascaded. If this happens, the complementary version of the stored data 

should be used initially.   

A.2 Inverter with the Minimum Driving Strength 

The minimum inverter is composed with a NMOS transistor and a PMOS 

transistor. The NMOS transistor has the minimum channel width, while the PMOS 

transistor has twice of the minimum channel width. The area of a NMOS minimum 

transistor is used as the unit to evaluate a circuit design. The area of a transistor after 

sizing can be calculated as [Betz99, page 133]: 

r transistominimum  theofstrength  drive
r transistosized  theofstrength  drive*5.05.0 +  

The area of the PMOS transistor with a channel width of two is therefore 

0.5 + 0.5*2/1 = 1.5 

Hence the area of such an inverter has an equivalent area of 2.5 minimum 

transistors. 
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Figure A-2 Inverter with Unit Driving Capability 

Inverters with higher driving capability can be built with cascaded inverters with 

gradually increasing sizes. In the following figure, it is a buffer with four times driving 
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capability of a minimum inverter. Numbers in the figure represent channel widths of 

corresponding transistors.  
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Figure A-3 Buffer with Four Times Driving Capability 

A.3 Tri-state Buffers 

As discussed before, a segmented bus wire going through a cluster has one bi-

directional tri-state buffer at each end. The tri-state buffer has an architecture as in Figure 

A-4. According to Betz, a tri-state buffer with five times driving capability has an area of 

13.7(≈14) minimum width transistors. 
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Figure A-4 Tri-State Buffer with Five Times Driving Capability 

If such a tri-state buffer is associated with a one-bit memory cell, then its area is 

equivalent to 14+6 =20 minimum NMOS transistors. 
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 In switch blocks, bi-directional tri-state buffers are used with an architecture as in 

Figure A-5. Such a buffer has an area of 40 minimum NMOS transistors. It is assumed 

that a one-bit memory cell is associated with each of its two control signals. 

 

Figure A-5 Tri-state Buffer inside Switch Box 

If there is any need for buffers or switch transistors with higher driving capability, 

sizing technique can be applied to build bigger components. In this dissertation the area 

of such a bi-directional tri-state buffer is denoted as A3st after sizing. 

A.4 Tri-state Buffer at Cluster Boundary 

At the boundary of a cluster, output bus wires and input bus wires are separate, as 

shown in Figure A-6.  

from clb outputs 

to clb inputs 

 

Figure A-6 Tri-State Buffer at Cluster Boundary 

Two one-bit memory cells control a bi-directional tri-state buffer along each 

direction. The two bits decide the behavior of a buffer.  
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two control bits tri-state buffer behavior 
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01 unidirectional 
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Figure A-7 Tri-state Buffer at Cluster Boundary 

In Figure A-7, the area of the tri-state buffer itself is 14, and that of the 3:1 

multiplexer part is 21. Therefore the total area is 35.  

A.5 Multiplexers or De-multiplexers 

A 4:1 multiplexer can be built as in Figure A-8. If each NMOS transistor is a 

minimum one, then totally six NMOS transistors are needed. Each inverter after sizing is 

equivalent to three minimum transistors, as the width of its PMOS transistor is twice as 

wide as the width of its NMOS transistor. Each one-bit memory cell is composed of six 

minimum transistors. Therefore such a multiplexer is equivalent to 23 minimum 

transistors in terms of area.   
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Figure A-8 4:1 Multiplexer 

As NMOS transistors are bi-directional, a 4:1 multiplexer can be converted into a 

1:4 de-multiplexer, if signals are transmitted in the opposite direction. Hence a 1:4 de-

multiplexer has the same area as that of a 4:1 multiplexer. 

 

Figure A-9 1:4 De-multiplexer 
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Figure A-10  3:1 Multiplexer or De-multiplexer 

From Figure A-10, the area of a 3:1 multiplexer (or 1:3 de-multiplexer) is 21. 

 

 

Figure A-11  2:1 Multiplexer or De-multiplexer 

As shown in Figure A-11, the area of a 1:2 multiplexer (or de-multiplexer) is 

therefore equivalent to 10.5 (≈11) minimum transistors. 
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