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I. I NTRODUCTION

Systems-on-Chip (SoCs) are considered an integral solu-
tion for designing embedded systems, for targeting complex
intensive parallel computation applications. As advancesin
SoC technology permit integration of increasing number of
hardware resources on a single chip, the targeted application
domains such as software-defined radio are become increas-
ingly sophisticated. The fallout of this complexity is thatthe
system design, particularly software design, does not evolve
at the same pace as that of hardware leading to a significant
productivity gap. Adaptivity and reconfigurability are also
critical issues for SoCs which must be able to cope with end
user environment and requirements.

An effective solution to SoC Co-design problem consists in
raising the design abstraction levels. The important require-
ment is to find efficient design methodologies that raise the
design abstraction levels to reduce overall SoC complexity.
A suitable control model is also required for managing the
system adaptivity; it should be generic enough to be applied
to both software and hardware design aspects. While several
control models exist, automata based control [1] are promising
as they incorporate aspects of modularity present in component
based approaches for describing SoC in an incremental fashion
to build these complex systems.

Once a suitable control model is chosen, implementation of
these adaptive SoC systems can be carried out via FPGAs.
These FPGAs are inherently reconfigurable in nature. State
of the art FPGAs can change their functionality atruntime,
known as Partial Dynamic Reconfiguration (PDR) [2]. These
FPGAs also support internal self dynamic reconfiguration, in
which an internal controller (ahardcore/softcore embedded
processor) manages the reconfiguration aspects.

Finally the usage ofconcurrent high level design approach
in development of real-time embedded systems is also in-
creasing to address the compatibility issues related to SoC
Co-design. High abstraction level SoC co-modeling design
approaches have been developed in this context, such as
Model-Driven Engineering (MDE) [3] that specify the system
using the UML graphical language. MDE enables high level
system modeling (of both software and hardware) with the
possibility of integrating heterogeneous components intothe
system. Usage of UML for system description increases the
system comprehensibility. This allows designers to provide
high-level descriptions of the system that easily illustrate

the internal concepts (task/data parallelism, data dependencies
and hierarchy). These specifications can be reused, modified
or extended due to their graphical nature. FinallyModel
transformations[4] can be carried out to generate executable
models or source code from high level models.

Gaspard [5] is an MDE-based SoC co-design framework
that uses the UML MARTE profile [6] to model real-time
and embedded systems; and allows to move from high level
MARTE specifications to different execution platforms such
as RTL synthesis in FPGAs [7]. It exploits the inherent
parallelism included in repetitive constructions of hardware
elements or regular constructions such as application loops.
The applications targeted by Gaspard also focus on a specific
application domain, that of data-parallel applications.

In this paper we present a generic control semantics for
expressing partial reconfigurability in SoCs. The introduced
control semantics are introduced in the MARTE standard
and subsequently in Gaspard; and are specified at an high
abstraction level. Integration of this control allows to focus
on FPGA synthesis and is specially oriented towards PDR.
The goal is to specify part of the reconfigurable system at a
high abstraction level: notably the reconfigurable region and
the reconfiguration controller in a dynamically reconfigurable
FPGA. Afterwards, using model transformations, the gap be-
tween high level specifications and low implementation details
can be bridged to automatically generate the code required for
the creation of bitstream(s) for final FPGA implementation.
Finally we present a case study illustrating the modeling
and final implementation of a dynamically reconfigurable key
integral part of an anti-collision radar detection system.This
part is based on delay estimation using a correlation algorithm.
This part is modeled at an high abstraction level using the
MARTE profile in the Gaspard framework. Afterwards using
the model transformations present in our design flow, we have
generated the necessary RTL level code for synthesis on a
target FPGA using commercial tools. It should be observed
that the final code generation from the high level models
usually is carried out in a few seconds resulting in a huge
save in the overall system conception development time.

The rest of this paper is organized as follows. Related
works are detailed in section II. An overview of the MDE-
based Gaspard framework is provided in section III. Section
IV describes the control model in Gaspard, while Section
V presents our case study. Finally section VIII gives the
conclusion of the paper.



II. RELATED WORKS

There are several works that use high abstraction level
methodologies for defining embedded systems and SoCs.
MoPCoM [8] targets modeling and code generation of embed-
ded systems using SysML block diagrams. In [9], a SynDEx
based design flow is presented to manage SoC reconfigura-
bility via implementation in FPGAs, with the application and
architecture parts modeled as components. Similarly in [10], a
UML profile is described along with a tool set for modeling,
verification and simulation of real-time embedded systems.
Reconfigurability in SoC can be related to available system
resources such as available memory, computation capacity
and power consumption. An example of a component based
approach with adaptation mechanisms is provided in [11]; e.g.
for switching between resources [12].

In [13],[14], the authors concentrate on verification of real-
time embedded systems in which the control is specified
at a high abstraction level via UML state machines and
collaborations; by using model checking. However, control
methodologies vary in nature as they can be expressed via
different forms such as Petri Nets [15], or other formalisms
such as mode automata [1].

Mode automata extend synchronous dataflow languages
with an imperative style, but without many modifications of
language style and structure [1]. They are mainly composed
of modesandtransitions. In an automaton, each mode has the
same interface. Equations are specified in modes. Transitions
are associated with conditions, which serve to act as triggers.
Mode automata can be composed together in parallel. They
enable formal validation by using the synchronous technology.
Among existing UML based approaches allowing for design
verification are the Omega project [10] and Diplodocus [16].
These approaches utilize model checking and theorem proving.

In domain of SoC adaptivity and especially partial dy-
namic reconfiguration in FPGAs, Xilinx initially proposed
two design flows, which were not very effective leading
to new alternatives. An effective modular approach for 2-D
shaped reconfigurable modules was presented in [17]. [18]
implemented modular reconfiguration using a horizontal slice
based bus macro in order to connect the static and partial
regions. They then placed arbitrary 2-dimensional rectangular
shaped modules using routing primitives [19]. This approach
has been further refined in [20]. In 2006, Xilinx introduced the
Early Access Partial Reconfiguration Design Flow[21] that
integrated concepts of [17] and [18]. Works such as [22],[23]
focus on implementing softcore internal configuration ports
on Xilinx FPGAs such as Spartan-3, that do not have the
hardware Internal Configuration Access Port (ICAP) reconfig-
urable core, for implementing PDR. Works such as [24] and
[25] illustrate usage of customized ICAPs. Finally in [26],the
ICAP reconfigurable core is connected with Networks-on-chip
(NoC) implemented on dynamically reconfigurable FPGAs.

In comparison to the above related works, our proposition
takes into account the following domains: SoC co-design,
control/data flow, MDE, UML MARTE profile, SoC recon-

figurability and PDR for FPGAs; which is the novelty of our
design framework.

III. G ASPARD: A SOC CO-DESIGN FRAMEWORK

Gaspard [5] is a MARTE [6] compliant SoC co-design
framework that enables to modelsoftware applications, hard-
ware architecturesand theirallocations in a concurrent man-
ner. Once models of software applications and hardware archi-
tectures are defined, the functional parts (such as application
tasks and data) can be mapped onto hardware resources (such
as processors and memories) viaallocation(s). Gaspard also
introduces adeploymentlevel that links hardware/software
components with intellectual properties (IPs). This section will
be elaborated in Section IV.

For the purpose of automatic code generation from high
level models, Gaspard adopts MDE model transformations
towards different execution platforms, such as targeted towards
FPGA synthesis [7], as shown in Figure.1. Model transforma-
tion chains allow moving from high abstraction levels to low
enriched levels. Usually, the initial high level models contain
only domain-specific concepts, while technological concepts
are introduced seamlessly in the intermediate levels.

Figure.1: A global view of the Gaspard framework

IV. A REACTIVE CONTROL MODEL

We first describe the generic control semantics which can
be integrated into the different levels (application, architecture
and allocation) in SoC co-design. Several basic control con-
cepts, such asMode Switch Component andState Graphs
are presented first. Then a basic composition of these concepts,
which builds the mode automata, is discussed. This modeling
derives from the mode conception in mode automata. The
notion of exclusion among modes helps to separate different
computations. As a result, programs are well structured and
fault risk is reduced. We then use the Gaspard SoC co-design
framework for utilization of these concepts.



A. Modes

A mode is a distinct method of operation that produces
different results depending upon the user inputs. A mode
switch component in Gaspard contains at least more than one
mode; and offers a switch functionality that chooses execution
of one mode, among several alternative present modes [27].
The mode switch component in Figure.2 illustrates such a
component having awindowwith multiple tabs and interfaces.
For instance, it has anm (mode value input) port as well as
severalid (data input) andod (data output) input and output
ports. The switch between the different modes is carried out
according to the mode value received throughm.

The modes,M1, ..., Mn, in the mode switch component
are identified by the mode values:m1, ..., mn. Each mode
can be hierarchical or elementary in nature; and transforms
the input dataid into the output dataod. All modes have the
same interface (i.e.id andod ports). The activation of a mode
relies on the reception of mode valuemk by the mode switch
component throughm. For any received mode valuemk, the
mode runs exclusively. It should be noted that only mode value
ports, i.e.,m; are compulsory for creation of a mode switch
component, as shown in Figure.2. Thus other type of ports are
represented with dashed lines.

B. State graphs

A state graph in Gaspard is similar to state charts [28],
which are used to model the system behavior using a state-
based approach. It can be expressed as a graphical representa-
tion of transition functions as discussed in [29]. A state graph
is composed of a set of vertices, which are calledstates. A
state connects with other states through directed edges. These
edges are calledtransitions. Transitions can be conditioned
by some events or Boolean expressions. A special labelall ,
on a transition outgoing from states, indicates any other
events that do not satisfy the conditions on other outgoing
transitions froms. Each state is associated with some mode
value specifications that provide mode values for the state.A
state graph in Gaspard is associated with aGaspard State
Graph as shown in Figure.2.

C. Combining modes and state graphs

Once mode switch components and state graphs are intro-
duced, aMACRO component can be used to compose them
together. The macro in Figure.2 illustrates one possible com-
position. In the macro, the Gaspard state graph produces a
mode value (or a set of mode values) and sends it (them) to
the mode switch component. The latter switches the modes ac-
cordingly. Some data dependencies (or connections) between
these components are not always necessary, for example, data
dependency betweenId and id. They are drawn with dashed
lines in Figure.2. The illustrated figure is used as a basic
composition, however, other compositions are also possible,
for instance, one Gaspard state graph can control several mode
switch components.

Figure.2: An abstract representation of a macro structure

V. CONTROL AT DEPLOYMENT LEVEL

In this section we explain control integration at another
abstraction level in SoC co-design. This level deals with
linking the modeled application and architecture components
to their respective IPs. We thus elaborate on the component
model of thisdeploymentlevel in the particular case of the
Gaspard SoC co-design framework.

A. Deployment in Gaspard

The Gaspard deployment level enables one to precise a
specific IP for each elementary component of application or
architecture, among several possibilities [30]. The reason is
that in SoC design, a functionality can be implemented in
different ways. For example, an application functionalitycan
either be optimized for a processor, thus written in C/C++,
or implemented as a hardware accelerator using Hardware
Description Languages (HDLs). Hence the deployment level
allows the designer to differentiate between the hardware and
software functionalities; and allows moving from platform-
independent high level models to platform-dependent models
for eventual implementation.

A VirtualIP expresses the functionality of an elementary
component, independently from the compilation target. Foran
elementary componentK, it associatesK with all its possible
IPs. The desired IP(s) is (are) then selected by the SoC
designer by linking it (them) toK via animplements depen-
dency. Finally, theCodeFile (not illustrated in the chapter)
determines the physical path related to the source/binary code
of an IP, along with required compilation options.

B. Multi-Configuration approach

Currently in deployment level, an elementary component
can be associated with only one IP among the different
available choices (if any). Thus the result of the application/ar-
chitecture (or the mapping of the two forming the overall
system) is a static one. This collective composition is termed
as aConfiguration. The current model transformations for RTL
level only allow to generate one hardware accelerator (hence
one configuration) for final FPGA effectuation.

Integrating control in deployment allows to create several
configurations for the final effectuation(s) in an FPGA. Each
configuration is viewed as a collection of different IPs, with
each IP associated with its respective elementary component.



We thus link the different modeled IPs with a modeling
concept calledConfiguration that links a particular con-
figuration with its respective associated IPs. This Configu-
ration concept is enriched with several attributes such as a
ConfigurationID, that assigns a unique integer value to
each configuration; and theInitialState attribute which is
a boolean value that determines the initial configuration.

Figure.3: Deployment of an elementary component

Figure.4: Key dynamically reconfigurable elementary compo-
nents of our FIR filter application

An elementary component can also be associated with the
same IP in different configurations. This point is very relevant
to the semantics of partial bitstreams (FPGA configuration files
for partial dynamic reconfiguration) which supportglitchless
dynamic reconfiguration. If a configuration bit holds the
same value before and after reconfiguration, the resource
controlled by that bit does not experience any discontinuity
in operation. If the same IP for an elementary component is
present in several configurations, that IP is not changed during
reconfiguration. It is thus possible to link several IPs witha
corresponding elementary component; and each link specifies
a unique configuration. We apply a condition that for any
n number of configurations with each havingm elementary
components, each elementary component of a configuration
must haveat leastone IP. This allows successful creation of a

complete configuration for eventual final implementation. This
information is then passed onto the control concept modeled
in the second phase of deployment level using the model to
model transformations.

Figure.3 represents the deployment for one of the ele-
mentary componentsCoeffGen present in our case study
application which will be elaborated later on. Finally Figure.4
represents an abstract global overview of the deployment
semantics related to three elementary components of our
application along with the required configurations. A change
in implementation of any of these elementary components
produces a different final result related to different QoS criteria
such as FPGA resources etc.

By modifying the model transformations related to the RTL
level, it is possible to generate different hardware accelerators,
hence different configurations. Once the configurations are
created, each is treated as a source for a partial bitstream.Each
partial bitstream signifies a unique implementation, related
to a reconfigurable hardware accelerator which is connected
to an embedded controller. While this extension allows to
create different configurations, the state machine part of the
controller is created manually. For automatic generation of this
functionality, the deployment extensions are not sufficient. We
then use the existing control concepts presented in SectionV
to solve these issues.

C. Control Model

We first present some concepts which are used in the mod-
eling of mode automata [31]. In Gaspard, data are manipulated
in the form of multidimensional arrays. Both data parallelism
and task parallelism can be expressed easily via MARTE
profile. A repetitive component expresses the data par-
allelism in an application: in the form of sets of input/output
patterns consumed and produced by the repetitions of the
interior part. A hierarchical component contains several
parts. Specifically, task parallelism can be described using a
hierarchical component in our framework. Atiler connector
describes the tiling of produced and consumed arrays and thus
defines the shape of a data pattern. Theinterrepetition
dependency is used to specify an acyclic dependency among
the repetitions of the same component. The interrepetition
dependency specification leads to the sequential execution
of repetitions. Adefaultlink provides a default value for
repetitions linked with an interrepetition dependency, with the
condition that the source of dependency is absent.

An interrepetition dependency allows the construction of
mode automata from Gaspard control model, which re-
quires two subsequent steps. First, the internal structure
of Repetitive Component is presented by theDeployed
MACRO component illustrated in Figure 5. The Gaspard state
graph in the macro acts as a state-based controller and the
mode switch component achieves the mode switch function.
A macro structure represents only a single transition between
states. In order to execute continuous transitions as present in
automata, the macro should be repeated to have multiple tran-
sitions. An interrepetition dependency forces the continuous



sequential execution. This allows the construction of mode
automata which can be then executed. Detailed information
related to the control model at the deployment level can be
found in [31].

Figure.5: The Deployment Level Mode Automata

VI. CASE STUDY: PARTIALLY RECONFIGURABLE DELAY

ESTIMATION CORRELATION MODULE

Correlation algorithms are among the type of digital pro-
cessing largely employed in DSP (digital signal processing)
based systems. They offer a large applicability range such as
linear phase and stability. A correlation algorithm normally
takes some input data values and computes an output which is
then multiplied by a set of coefficients. Afterwards the result
of this multiplication is added together to produce the final
output. While a software implementation can be utilized for
implementing this functionality, the correlation functionality
will be sequentially executed. Where as a hardware imple-
mentation allows the correlation functions to be executed in a
parallel manner and thus increases the processing speed.

We propose to study a case where our radar uses a PRBS
(Pseudorandom binary sequence) of length of 127 chips. To
produce a computation result, the algorithm requires 127 mul-
tiplications between 127 elements of the reference code and
the last 127 received samples. The result of this multiplication
produces 64 data elements. The sum of these 64 data elements
produces the final result. This result can be sent as input to
other parts of the anti-collision radar detection system.

By integrating a mode automata control model at the
deployment level [31], we are able to change the IPs related
to key elementary components in order to produce several
configurations that are treated as partial bitstreams related to
our case study. Switching the configurations and the associated
IPs is related to different QoS criteria such as consumed FPGA
resources and power consumption levels. We are also able to
automatically generate the code which can be implemented
on a hardcore/softcore embedded processor for managing the
dynamic reconfiguration.

Figure.6 shows the global overview of our design flow. The
figure only shows the top hierarchical level of our correlation
application. Once the application has been completely modeled
using the UML MARTE profile, the model transformations
allow to move from high level models to lower detailed models
which add detailed information and concepts related to RTL
semantics. Finally automatic code generation related to our
application and the reconfiguration controller is carried out.

Figure.6: An overviw of our complete design flow

The application contains temporal as well as spatial di-
mensions which can be easily expressed in our design flow.
Similarly, task parallelismand data parallelismcan be spec-
ified at the high abstraction levels, and the generated code
expresses the parallelism specified at the modeling level. The
partially reconfigurable system has been implemented on a
Xilinx XC2VP30 Virtex-II Pro FPGA with a PowerPC 405 as
a reconfiguration controller with a frequency of 100 MHz. We
implemented three configurations on the targeted architecture,
two with different IPs related to an multiplication elementary
component and a blank configuration. Figure.7 shows the im-
plementation of the first configuration with the multiplication
IP written as a DSP functionality. The complete results are
shown in Figure.8. The important point to remember is that
this methodology can be implemented on any Xilinx FPGA
supporting partial dynamic reconfiguration [2].

In conclusion, we have presented a novel design methodol-
ogy to model complex intensive data-parallel applications. The
modeling is carried out using the UML graphical language and
the MARTE standard. Afterwards, automatic code generation
can be carried out via MDE tools and technologies. Finally the
code can be synthesized and implemented on a target FPGA.



Figure.7: Configuration 1 on an Virtex II-Pro XC2VP30

Figure.8: An overview of the obtained results
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