16,157 research outputs found

    Elementary transformation analysis for Array-OL

    Get PDF
    Array-OL is a high-level specification language dedicated to the definition of intensive signal processing applications. Several tools exist for implementing an Array-OL specification as a data parallel program. While Array-OL can be used directly, it is often convenient to be able to deduce part of the specification from a sequential version of the application. This paper proposes such an analysis and examines its feasibility and its limits

    Center Vortex Model for the Infrared Sector of SU(3) Yang-Mills Theory - Confinement and Deconfinement

    Full text link
    The center vortex model for the infrared sector of Yang-Mills theory, previously studied for the SU(2) gauge group, is extended to SU(3). This model is based on the assumption that vortex world-surfaces can be viewed as random surfaces in Euclidean space-time. The confining properties are investigated, with a particular emphasis on the finite-temperature deconfining phase transition. The model predicts a very weak first order transition, in agreement with SU(3) lattice Yang-Mills theory, and also reproduces a consistent behavior of the spatial string tension in the deconfined phase. The geometrical structure of the center vortices is studied, including vortex branchings, which are a new property of the SU(3) case.Comment: 22 pages, 12 figures (30 eps-files), uses LaTeX package "psfrag

    The fundamentals of non-singular dislocations in the theory of gradient elasticity: dislocation loops and straight dislocations

    Get PDF
    The fundamental problem of non-singular dislocations in the framework of the theory of gradient elasticity is presented in this work. Gradient elasticity of Helmholtz type and bi-Helmholtz type are used. A general theory of non-singular dislocations is developed for linearly elastic, infinitely extended, homogeneous, and isotropic media. Dislocation loops and straight dislocations are investigated. Using the theory of gradient elasticity, the non-singular fields which are produced by arbitrary dislocation loops are given. `Modified' Mura, Peach-Koehler, and Burgers formulae are presented in the framework of gradient elasticity theory. These formulae are given in terms of an elementary function, which regularizes the classical expressions, obtained from the Green tensor of the Helmholtz-Navier equation and bi-Helmholtz-Navier equation. Using the mathematical method of Green's functions and the Fourier transform, exact, analytical, and non-singular solutions were found. The obtained dislocation fields are non-singular due to the regularization of the classical singular fields.Comment: 29 pages, to appear in: International Journal of Solids and Structure

    Statistical Properties of Strings

    Get PDF
    We investigate numerically the configurational statistics of strings. The algorithm models an ensemble of global U(1)U(1) cosmic strings, or equivalently vortices in superfluid 4^4He. We use a new method which avoids the specification of boundary conditions on the lattice. We therefore do not have the artificial distinction between short and long string loops or a `second phase' in the string network statistics associated with strings winding around a toroidal lattice. Our lattice is also tetrahedral, which avoids ambiguities associated with the cubic lattices of previous work. We find that the percentage of infinite string is somewhat lower than on cubic lattices, 63\% instead of 80\%. We also investigate the Hagedorn transition, at which infinite strings percolate, controlling the string density by rendering one of the equilibrium states more probable. We measure the percolation threshold, the critical exponent associated with the divergence of a suitably defined susceptibility of the string loops, and that associated with the divergence of the correlation length.Comment: 20 pages, 8 figures (uuencoded) appended, DAMTP-94-56, SUSX-TP-94-7

    Extended matter coupled to BF theory

    Get PDF
    Recently, a topological field theory of membrane-matter coupled to BF theory in arbitrary spacetime dimensions was proposed [1]. In this paper, we discuss various aspects of the four-dimensional theory. Firstly, we study classical solutions leading to an interpretation of the theory in terms of strings propagating on a flat spacetime. We also show that the general classical solutions of the theory are in one-to-one correspondence with solutions of Einstein's equations in the presence of distributional matter (cosmic strings). Secondly, we quantize the theory and present, in particular, a prescription to regularize the physical inner product of the canonical theory. We show how the resulting transition amplitudes are dual to evaluations of Feynman diagrams coupled to three-dimensional quantum gravity. Finally, we remove the regulator by proving the topological invariance of the transition amplitudes.Comment: 27 pages, 7 figure

    Noisy Monte Carlo revisited

    Get PDF
    We present an exact Monte Carlo algorithm designed to sample theories where the energy is a sum of many couplings of decreasing strength. Our algorithm, simplified from that of L. Lin et al. hep-lat/9905033, avoids the computation of almost all non-leading terms. We illustrate its use by simulating SU(2) lattice gauge theory with a 5-loop action, and discuss further applications to full QCD.Comment: latex, 8 page

    Pseudo-Cartesian coordinates in a model of Causal Dynamical Triangulations

    Get PDF
    Causal Dynamical Triangulations is a non-perturbative quantum gravity model, defined with a lattice cut-off. The model can be viewed as defined with a proper time but with no reference to any three-dimensional spatial background geometry. It has four phases, depending on the parameters (the coupling constants) of the model. The particularly interesting behavior is observed in the so-called de Sitter phase, where the spatial three-volume distribution as a function of proper time has a semi-classical behavior which can be obtained from an effective mini-superspace action. In the case of the three-sphere spatial topology, it has been difficult to extend the effective semi-classical description in terms of proper time and spatial three-volume to include genuine spatial coordinates, partially because of the background independence inherent in the model. However, if the spatial topology is that of a three-torus, it is possible to define a number of new observables that might serve as spatial coordinates as well as new observables related to the winding numbers of the three-dimensional torus. The present paper outlines how to define the observables, and how they can be used in numerical simulations of the model.Comment: 26 pages, 15 figure
    corecore