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We present an exact Monte Carlo algorithm designed to sample theories where the energy is a sum of many
couplings of decreasing strength. Our algorithm, simplified from that of Lin, Liu, and Sloan, avoids the
computation of almost all nonleading terms. We illustrate its use by simulatirig) $itice gauge theory with
a five-loop action, and discuss further applications to full QCD.
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I. INTRODUCTION m
H= kZO Wi, @)

When sampling by Monte Carlo simulation the partition
functionZ= fTI1 dU e "D the most common algorithm is

that of Metropolig 1]. At each step, starting from the current i )
configuration{U}, a candidate configuratiofU’} is pro- where ak increases|c,| decreases and the successive terms

posed, and it is accepted with a probability, W, typically become less and less local. For instance, in a
spin modeK ;}, Wy would be the nearest-neighbor interac-
tion X ya;- g, Wy would represent next-nearest-neighbor

P occ= Min(1,e~ HAUH=HAU)) (1) interactions, etc. Here, we will illustrate our method for lat-
tice gauge theory. In that contexy, are the traces of Wil-
son loops of increasing siz&/,=2, , ,TrII,U around el-

This acceptance test is realized by comparing the right-haneimentary  plaquettes,W, , 3 correspond to different

side of (1) to a random number uniformly distributed [ifl, geometries of six-link loops, etc. It is often the case that one

1]. This seems like a waste of information. Why computewould like to study a Hamiltonian of typ€) resulting from

H({U’}) exactly then compare it with a random number? It an expansion, be it perturbatiy], nonperturbativg6], or

should be sufficient testimateit. Indeed, this logical propo- based on the fixed point of a renormalization group transfor-

sition has been studied several tifigs3,4]. Two difficulties ~ mation[7]. In all these situations, the expansion is truncated
have been identified, both caused by the nonlinear relatiorto a maximal ordem dictated by technical reasons. As
ship between the energyl and the probabilityxe™H: (i) increases in(2), the number of geometrically equivalent

What is needed is an unbiased estimate df, which must  terms grouped intdV, increases exponentially. In a spin

be obtained from unbiased estim@eof H; (i) To be inter-  model on a hypercubic lattice thdimensions, each spin has

preted as a probability, the noisy estimatorRyf,. must be  2d nearest-neighborsthese interactions are grouped into
bounded, and in particular stay positive. Difficulty was W), d(d—1)/2 next-nearest neighbotgrouped intoW,),
overcome in Ref[3], which however showed that violations d(d—1)(d—2)/6 3rd-neighbors, etc. This combinatoric ex-
of (ii) caused intolerable systematic errors unless the amouiplosion normally makes the simulation of extended Hamilto-
of noise in the estimate dfi was minuscule. Difficulty(ii) nians prohibitively expensive. This is the reason for a trun-
was overcome 4], which showed that exact results could cation to very lowm, often taken to be 1 or 2. However, in
be obtained even in the presence of a large amount of noigaost cases, the couplings, in (2) decrease exponentially

in the estimate of. Referencd 4], however, introduces an with k, so that the overall Hamiltonian is dominated W,

infinite number of auxiliary variables for each term in the with small corrections. In lattice field theory, this is actually

Hamiltonian, and tests of the method are performed on a toyequired if the Hamiltonian is to make sense and tend to a

model with five degrees of freedom only. Here, we simplify local operator as the continuum limit is approached. By mak-

the method of4] by introducing only one auxiliary variable ing use of stochastic methods to estimate the correction
per term inH. Moreover, we separaté into a leading partto  termsW,, k=1, we aim at postponing the combinatoric ex-
be calculated exactly, and a sum of small correction termglosion of the simulation costs incurred when including
which we treat stochastically. This separation is essentiahigher termsW, . This opens the possibility of studying nu-
because stochastic estimates are used for correction termeerically much more complicated Hamiltonians, including
only, large amounts of noise can be tolerated. As a consdiigher-order correction terms. In lattice field theory, these
guence, our algorithm is a very efficient approach to thecorrection terms are crucial to suppress discretization errors
simulation of complicated Hamiltonians. and form the building blocks of so-called “improvement”
Consider a generic Hamiltonian of the type strategies. Also, the inclusion of higher-order terms can be

0556-2821/2001/63)/05450%6)/$15.00 63 054505-1 ©2001 The American Physical Society


https://core.ac.uk/display/25291593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

T. BAKEYEV AND PH. de FORCRAND PHYSICAL REVIEW D63 054505

very useful in the approaches to the fermion determinant _ P,[U,,o] _ e SWk(Uz) _ 1

simulations involving the loop expansi8]. Pac= mm( 1,m> =min| 1, o WU 1 |-
We present our method in Sec. I, and illustrate it in Sec. =y kioy=1

[l with simulations of a five-loop perturbatively improved (8)

action for SU2) lattice theory. We conclude with prospec-

tive applications of our method, in particular for dynamical Since the terms,W,(U) contribute inP,cc only if =1,
fermion QCD simulations. the amount of computational work is greatly reduced if the

configurations witho,=0 are dominating. That is certainly
the case when the absolute values of the coupling coeffi-
cients|c,| are small. The probabilities for, to be unity,
Given the Hamiltoniar(2), let us suppose that the terms averaged ove{U} configurations, are negligible then. In-

II. NOISY MONTE CARLO ALGORITHM: THE METHOD

c Wy are nonpositive starting frork=1: deed, to leading order iny the average probabilitp,, —;
from Eq.(7) can be written as
k=1:. cW(U)<0 VU. (3
(Po=1)~—C{Wi(U))~0 if c,~0. 9

This can be easily arranged by adding to each term of the

Hamiltonian a nonessential constant. Herare the fields of Expression(9) also suggests that one should try to make
the model under consideration. The key idea of the method iR’Wk>| as small as possible, using the freedom one has to
to estimate the contribution of the terrig (U), k=1 sto-  ghjft W, by a constant. This goal should remain compatible,
chastically by introducing auxiliary fields. This will lead to a powever, with inequalitie$3); otherwise, probability bound
significant reduction of computational effort if the coeffi- \jolations will appear fop,, andP,..in Egs.(7) and(8)

ot : .

cientsc,, k=1 are small enough. In all cases, the algorithm Actually, the violation of conditiong3) is not completely

remains exact. forbidden. As it was pointed out in Rg#], one can address

We introduce auxiliary fieldsr,, k=1 (associated with o o
. ) . the problem of the lower probability-bound violations by re-
the termsW,), which can take two values: 0 and 1. Using thedefining the measure. If the distributiéh[U, o] in (5) can

identity be negative for some configuratiofild, o}, one can effec-

tively simulate with the probability distribution
atb= > [a* 80t b* 8, 4] (4)  Po[U]*|P,[U,0o]| instead and include the sign s@y) into
=01 the observable expectation value:
we represent the probabiligr " in the form (0) (OsgnPy)), (10
=B
e H=Py[UTP,[U, 0], ) (sortPL)

where by( ), we denote the averages with respect to distri-

where

butionPy[U]*|P,[U,c]|. Sometimes the admission of very
rare sign violations can substantially decrease the probability

o~ CgW(U). X . X
Po[U]=e =005 Ps,—1. However, one should be very careful in using this

m trick: As the volume of the system increases, one needs an
P.[U,o]= 5. S (e S 1)1, exponential growth of statistics to estimasgnP,)), within
il ! kll U;O,l[ 70 ”k'l( )] the same accuracy. In the following, we shall always assume

(6) fulfillment of the inequalitieg3).
After updating thel fields, one should also update the
The right-hand side of5) can be interpreted as the joint fields to preserve ergodicity. This requires the calculation of
probability distribution for the original fields of the model probabilities(7). At this point the reader might say: “Okay,
and the newo fields. Because of the inequaliti€8) this  one saves computational effort by not calculating some terms
distribution is well definedP,[U,0]=0 V{U,o}, and the W, in expression(8) while estimatingP,... Nevertheless,
probabilities foro to take value O or 1 when tHé fields are  one must calculate these terms when updatingottiields!

fixed lie in the interval0, 1. So does one gain anything in the end?” The answer is “yes”
WL (U) CWL(U) for the following two reasons.
Py —0= €W py o= 1S (7 First, the term3W,, for which it is reasonable to use the

stochastic estimation, usually couple many degrees of free-

This means that our algorithm has no probability bound vio-dom (this is due to the usual nonlocality of weakly coupled
lations, which plagued previous attempts to construct an efterms, which serve as corrections to more local leading terms
ficient stochastic algorithri2,3]. in the Hamiltonian. If one uses usual local algorithnwith-

One can easily see why the introduction of auxiliary out introducing stochastio variable$, one should estimate
o fields can be useful. Starting from the currditd;,0}  the termW, each time one updates a degree of freedom to
configuration, a candidate configuratidiy,} distributed  which it couples. Contrary to that, if one uses a noisy Monte
with the weight Po[U,] is proposed, and accepted with Carlo algorithm, the probabilitie§7) should be calculated
probability only once pefo update.
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Secondly, the variables, can be refreshed infrequently, TABLE I. Average value ofo; field for each loop of sori.
the more so as the associated couplipgyets smaller. This
will be demonstrated in the next section on a particular ex- Loop 1x2 1x3 2x2 3x3
ample. This slow dynamics of the auxiliaoyfields does not (o) 0.0753 0.0199 0.0202 0.0018
imply slow dynamics of the physically relevabtfields.

Up to now we were quite generic, showing that the noisy ) _ )

Monte Carlo(NMC) method can be potentially very effec- L€t us describe the updating procedure in beo} con-
tive for the variety of theories, where the enef@yis a sum f|gurat|o_n space. ConS|der_f|rst the Ipcal updating of the
of couplings of decreasing strength. In the next section w&auge fieldsU when theo fields are fixed. The proposal
illustrate these ideas on a particular example: a five-loop penalue Ug%" at a given link{x,x} is generated by heatbath

turbatively improved S(2) Yang-Mills model. with respect to the measure
lll. FIVE-LOOP SU (2) GAUGE THEORY po[u]mex% - gclsm[u]), (16)
We consider a five-loop S@) gauge action in four di-
mension (4): where S, ; is the plaquette actiofisee(12)], and then ac-
5 cepted with probability
1
5= 2, G2 Sm (9 [P U o]
Pacc=min 1’—'H_P1[U° =ik a7
where the indicesrfy ,n;)=(1,1),(2,2),(1,2),(1,3),(3,3) for o
i=1,...,5denote the planar, fundamental loops of size where
Xn
P.U,cl= [] (e @SilVl_1),
Tr 1 ‘
e g (w3 ([ ]) a2 B
(18)

The Gibbs factor is exp((58/2)S). Note that in Eq(12) we ~ Only active loops that contain the given liftk .} contribute
have arranged the constant terrR+*sgng,) to ensure the !0 the expression in the right-hand side(&).

condition (3) for elementary action terms corresponding to  After eachN; updates of field&J on the entire lattice we
each loop: update theo fields of sorti. For each lood we assign the

values 0, 1 to the variable; (1) with the following probabili-

) 1 T ties:
Vi, vz, Ul Sipe = oy (—sgn (o) ~ ?r (N ) <0 .
(] x

g B B
(13 Pai(|>=o:exf<§5i,|[u]); pgi(|)=1=1—exy{ESi'|[U]>.
Using the results of9], one can construct a one-parameter (19

set of actions that have n®(a?) and O(a*) corrections:
Due to the absence of interaction between differ@mntari-

c1=(19—-55c5)/9, c,=(1—64cs)/9, ables, the probabilitie§19) depend only on the gauge con-
(14) figuration, so thatr variables can be updated independently.
C3=(—64+640c5)/45, c,=1/5—-2cCs. In our simulations, we have measured the average values

of oy, 2<i<5 that are listed in Table I. They are quite
Here we takecs=1/20 (the same action was used in the small, and very close to the perturbative estim@e This
context of improved cooling in Refl10]) and 3=2.4. shows that one can avoid the computation of almost all of the

Following the ideas of Sec. Il, we estimate the contribu-extended “staples” in th&J update.
tion of all loops except the plaquette stochastically. For each Performing numerical simulations for the five-loop model
loop I={u,v,x} of sort 2<i=<5 we introduce the auxiliary (11,14 with auxiliary o fields, we were mainly interested in
variableo;(1)=0,1, and rewrite the contribution of this loop the efficiency of our new NMC algorithm. One can estimate
to Gibbs factor in the form the efficiency of the NMC method by comparing it with the
updating procedures which are commonly used now for the
simulation of multiloop actions lik€11). In the following we
label these usually applied techniques with the collective
(15) name ‘“usual Monte Carlo”(UMC) method, to contrast it

with the NMC method.
The resulting distribution ofU,o} fields is used for the We compare the computer times needed to get the same
generation of independefi} configurations. We shall say results with NMC and UMC algorithms as follows. First, we
that for a given{c} configuration the loofl,i} is “active” if make an analytic estimation of the total computational cost
o(l)=1. of one update of th& fields for both algorithms in units of

e~ (BI2S 4y x= (;O ) [8.1).0F 50i(|)’1(e—<ﬁ/z>sﬁ,ﬂ,p,x_ 1)].
(Ti =V,
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TABLE II. Integrated autocorrelation times for average loop traces in units wbdates for UMC algorithn(first column and for NMC
algorithm with different frequencies of updates for X 2, 1X 3, 2X 2 and 3x 3 loops(other columng The last row presents the naive gain
for the NMC algorithm(26).

Number of umcC 1 5 5 for 1xX2 10 10 for 1x2 20 30 40 50

U updates per no for for 15 for 1X 3, 2% 2 for 30 for 1X3, 2X2 for for for for
1 o update o all all 105 for 3x 3 all 210 for 3x3 all all all all
Tind(1X 1) 0.711) 192 232 2.52) 3.12) 3.22) 434 454 382 514
Tinl(1X 2) 0.81) 263 282 3.22) 4.34) 3.93) 5.24) 5.65 574 7.708)
Tind( 1 X 3) 0.81) 273 2.802) 3.22) 4.34) 3.93) 5.14) 5.45 544 7.498)
Tinl(2X 2) 1.01) 345 3.393 3.73) 4.7(4) 4.7(3) 5.34) 5.86) 574 7.598)
Tinl(2X 3) 143) 4.27) 3.89 4.23) 5.55) 5.7(4) 575 6.26) 6.35 7.78)
Tinl( 3% 3) 1.84) 5.08) 4.55) 5.005) 5.8(6) 6.4(5) 595 6.36) 6.35 7.598)

pnave 1 7.2 14.8 18.3 17.9 20.6 18.3 20.8 21.1 21.4

gain

matrix (link) multiplications. Second, we extract from nu- 5 t, 5
merical simulations the integrated autocorrelation times for tNVC=tNMC1 > — =tPl1gv> P;s;
different observables, in units df update. The computer =2 Ni =2
time needed to estimate any given observable is proportional (24)
to the product of the computational cost per update and the
autocorrelation time.

For NMC, the average computational cost of one updat

Ni+P‘<U‘>)'

Let us note that the computational co$}'“ for UMC of
©oneU update is approximately equal to the right-hand side of

of the U fields on the entire lattice is equal to expression(24) in the limit N;—c and(c;)—1:
5 5
V=t AV Nl D* N D)* (o), (20) tot =156V, Pfs;. (25
= <

wheret? is the cost for generating the proposal configurationindeed, in the limit when alb are set equal to 1 and not
with measure(16) (i.e., the update cost for the elementary updated, we recover the usual algorithfoertainly one
plaquette actiop 4V is the number of links on the lattice, should correct the expressiofi7) and (18) for P, in this
Nstapid i) is the number of “staples” which the loops of sort casq.

i form for each link,n,,(i) is the number of matrix multi- Now we can compare the performance of our NMC algo-
plications needed to estimate the contribution of one staplgthm with that of UMC. The naive gain in efficiency from

of sorti, and the factofo;) accounts for the fact that one using NMC does not depend on the observable measured,
needs to calculate the contribution of active loops only. Onénd is equal to the ratio between the computational ¢@8)s

can easily check that and (24):
3 I v tPl+6VI>_ P2
Netapid 1) = 5*Pi*Si5  Npu(i)=P;, 21 naive_ ot Y =2 17 26
staplé ) 2 (] mult( ) i ( ) I‘gam t{\é’;ﬂc tEJI-i-GVEIs:ZPISI(l/NI n P|<0'I>) . ( )

whereP;=2(m;+n;) is the perimeter of loop ands; is a
symmetry factors;=1 for square loops ang =2 for rect-
angular loops. Then we have

Now, one should also take into account the increase of auto-
correlation times coming from the introduction of auxiliary
variableso in the NMC algorithm, so that the real gain is

5

umC
tMC=tP+6VY, P?s(a;). 22 ive, Tint
eV, Pisda) 2 e s S @
int
On the other hand, the computational cost of one update of . , .
: - o e i where 72MC and 7M€ are integrated autocorrelation times
the o fields on the entire lattice is given by Tint Tint 'teg e
for UMC and NMC, respectively. Note th&ﬁ‘1t is a func-
ty,=6VsP;. (23)  tion of the updating frequenciesNy/ of the o fields. Like

Tint» the ratio(27) will also depend on the observable.
Here 6Vs is the number of loops of a given sort on the In Table I, we present the autocorrelation times for aver-
lattice, and the perimetd?; of the loop appears again as the aged traces of six different loops in unitsfupdates. In the
number of matrix multiplications,, (i) needed to calculate first column we show the results for the Usual Monte Carlo,
the probabilities(19). Since we update the; fields only  and in other columns for the NMC algorithm with different
once per eaclN; updates of theJ fields, the total computa- frequencies obr updates for X2, 1X 3, 2X2, 3X 3 loops.
tional cost peiJ update for the NMC method is In the last row we present the naive g&#26).
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Let us make one useful remark. It is not necessary to keep The essential advantage of our algorithm appears in step
the same updating frequenciedN1for all sortsi of loops. (e): only the termsW, whose associated is equal to 1
Actually it is even impractical. The computational costlbf need to be computed. Since on averdgg) goes to zero
update coming from the loop of saris proportional to the with c,, the computation of almost all correction terms can
average value ofr;, which is, in turn, proportional to the be avoided.
coupling(9). As the coupling decreases, we should expect a To avoid simply shifting the cost of the algorithm to step
reduction of the computational effort for the corresponding(d), we propose to refresh the variableg infrequently,
terms in the action. That is not the case for the cost-of more so as the associated couplimg| gets smaller. We
update: it does not depend on the coupling and even inkave pointed out that this introduction of slow dynamics for
creases with the nonlocality of the action teffactor P; in  the o, doesnot enforce slow dynamics for the system, since
expressior(23)]. In order for the work in ther and in theU W, (l) will fluctuate regardless of the value ofi(l). Our
updates coming from loops of sdrto remain comparable, numerical study of Sec. Ill confirms this statement.
one should keep the updating frequencids; Jgroportional Let us now speculate on possibilities to use our algorithm
to (a): to simulate a Hamiltonian with a very large number of terms.

A specific example we have in mind is the case of full QCD,

1 where the measure is, for two flavors of Wilson quarks,
|

1
Z e SV —
Due to the small influence of weakly coupled terms on the Ze 5 def(1-kM(U)), 29

dynamics of the system, one can expect only insignificant

changes in the autocorrelation behavior Ids increases. where$; is the local gauge actioM (U) is a hopping ma-
These considerations are distinctly demonstrated in Table Ikix connecting nearest neighbors on d Bypercubic grid,
where in two columns we present the results for updatingind z normalizes the distribution. The determinant can be
frequencies otr fields varying in accordance witt28). turned into exp(Tr(Log(+ «M(U)))), then the logarithm

Table Il gives an impressive demonstration of the benefitgypanded around 1, giving the loop expansion of the mea-
which come from using the NMC algorithm. The naive gaingyre above

increases substantially as we decrease the frequencies of
updates, while the autocorrelation times grow rather slowly. 1
That is particularly visible for the runs where the updating Z e S5 KMTeMU) (30)
frequencies fowr fields are adjusted as per Eg8). For such z
runs we can infer that the “real gain® (4-6) in computer
time (27) for the observables measured is large enough for IrM(U)' can be represented as a sum over all closed non-
convincing demonstration of the possible advantages comingacktracking loops of lengthon the 4l hypercubic lattice.
from using the NMC algorithm. The number of types of contributing loops is bounded by

Let us make a conclusion for this section. We have ap{2d—1)'=7', because of the branching factor at each hop.
plied our NMC algorithm for the five-loop modél1), (14).  Although this upper bound is not saturated, it is clear that the
We have shown that with this algorithm a significant gain inmultiplicity of terms of a given lengthgrows exponentially:
efficiency is obtained in comparison with usual updating
techniques. Finally, we note that the actitil) is a rela- n~F.(ha'; a<7, (32)
tively simple one, and one can expect a much greater gain
for more complicated highly-improved actions with many e
nonlocal weakly coupled terms.

1(1) is a rational function of and«' is the leading

exponential ascend of the number of loops of lergtinthe
limit of large I. For this reason, it seems that sampling nu-
IV. DISCUSSION merically the distributior{30) is a disastrous idea. The action

. . . contains an infinite number of terms, of exponentially grow-
Let us summarize our algorithnta) Separate the Hamil- ing multiplicity. Instead, other strategies are being used,

tonian (or action into a dominant tert,Wo, to be calcu-  aqeq on the transformation of the determin@® into a
lated exactly, and correction tern¥_,c,W,, to be esti- Gaussian integral.

mated stochastically(b) Shift the correction terms t0  Neyertheless, the coupling/| decreases exponentially as
guaranteec,W,<0. (c) Introduce auxiliary local variables | increases. Therefore, the auxiliary variablesssociated in
oi(l), through identity(6) (herel runs through all the el- o, approach with various loops of lengtiill take value 0
ementary “bonds” which formW,, e.g., loops in gauge 5imost always. Fronf9) one gets

theory). (d) Update the auxiliary variables, by heat bath.

(e) To update the original variabldd, propose a new value
U’, sampled from the distributiorre™ %o, and accept it
with the Metropolis probability

(a)~c~Fa(DHK'y, (32

where the exponentially growing factg comes from the
. _ , _ average trace of Dirac matrices along the loops of lethgth
min(1 e 1;0,-1(€ s = 1)/ (em oD — 1)), F,(l) is again a rational function.
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If one arranges the updating frequencies for each layp that the cost of our algorithm grows linearly with the volume
per Eq.(28), one can expect that the average computer timé&/ of the system. This is better than alternative approaches to
needed for estimation of contribution of all loops of length the simulation of full QCD: Hybrid Monte Carlo (cost

behaves at largeas « V%% and MultiBoson (costV(LogV)?) [11]. In addition,
) | the stepsize, or typical change at each update of a gauge link
ti=nml“(o)~F()*(ayx)" 33 U, does not seem restricted priori for small quark mass,

(It was pointed out above that one should not expect a SigL_ml|ke in the two alternative approaches above. Unfortu-

nificant growth of autocorrelation coming from slow dynam- '?eartvsg, mg dpgssilttél(ae)t];rgjer;neefflcrlgngmo;?nur Sggrgr'fgﬁ IS coun-
ics for oy.) For k<kg=1lay, the computational co 9 y prog 9 piexty.

) . : A less speculative use of our algorithm for full QCD con-
decreases exponentially withand the total computational sists of truncating the loop expansion E80) to some order
cost of the algorithnt=X,t; converges to some finite value. 9 P €xp

Our rough estimation from fittingy, and average trace of I max, @nd to represent the higher orders with the MultiBoson

) . . : . approach[12]. This strategy, called “UV-filtered MultiBo-
Dirac matrices in the interval 41<12 gives a~5.4, vy " .
~1.4, and thereforar,~0.13. son,” has already been used successfily However, in

: : . . .. .. Ref.[8] the loop expansion is truncated to its lowest tdrm
In the regimex<k.,, We are in an interesting situation

; . L =4, because the exact evaluation of larger loops is too time
where the influence of very large loops is negligible becaus%onsuming. With our stochastic approach, these larger loops

their associated coupllng in the effective actl'on is extremelyCan be estimated at low cost. We expect this composite strat-
small. Therefore, truncating the loop expansion above a cer=

tain order will introduce a statistically unobservable bias.c9Y to be particularly efficient.

[Note that a similar truncation strategy in the number of aux-
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