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We present an exact Monte Carlo algorithm designed to sample theories where the energy is a sum of many
couplings of decreasing strength. Our algorithm, simplified from that of Lin, Liu, and Sloan, avoids the
computation of almost all nonleading terms. We illustrate its use by simulating SU~2! lattice gauge theory with
a five-loop action, and discuss further applications to full QCD.
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I. INTRODUCTION

When sampling by Monte Carlo simulation the partitio
functionZ5*P dU e2H($U%), the most common algorithm i
that of Metropolis@1#. At each step, starting from the curre
configuration $U%, a candidate configuration$U8% is pro-
posed, and it is accepted with a probability,

Pacc5min~1,e2~H~$U8%!2H~$U%!!!. ~1!

This acceptance test is realized by comparing the right-h
side of ~1! to a random number uniformly distributed in@0,
1#. This seems like a waste of information. Why compu
H($U8%) exactly, then compare it with a random number?
should be sufficient toestimateit. Indeed, this logical propo-
sition has been studied several times@2,3,4#. Two difficulties
have been identified, both caused by the nonlinear relat
ship between the energyH and the probability}e2H: ~i!
What is needed is an unbiased estimate ofe2H, which must
be obtained from unbiased estimate~s! of H; ~ii ! To be inter-
preted as a probability, the noisy estimator ofPacc must be
bounded, and in particular stay positive. Difficulty~i! was
overcome in Ref.@3#, which however showed that violation
of ~ii ! caused intolerable systematic errors unless the am
of noise in the estimate ofH was minuscule. Difficulty~ii !
was overcome in@4#, which showed that exact results cou
be obtained even in the presence of a large amount of n
in the estimate ofH. Reference@4#, however, introduces an
infinite number of auxiliary variables for each term in th
Hamiltonian, and tests of the method are performed on a
model with five degrees of freedom only. Here, we simpl
the method of@4# by introducing only one auxiliary variable
per term inH. Moreover, we separateH into a leading part to
be calculated exactly, and a sum of small correction te
which we treat stochastically. This separation is essen
because stochastic estimates are used for correction t
only, large amounts of noise can be tolerated. As a con
quence, our algorithm is a very efficient approach to
simulation of complicated Hamiltonians.

Consider a generic Hamiltonian of the type
0556-2821/2001/63~5!/054505~6!/$15.00 63 0545
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ckWk , ~2!

where ask increases,ucku decreases and the successive ter
Wk typically become less and less local. For instance, i
spin model$sW i%, W0 would be the nearest-neighbor intera
tion S^ i j &sW i•sW j , W1 would represent next-nearest-neighb
interactions, etc. Here, we will illustrate our method for la
tice gauge theory. In that context,Wk are the traces of Wil-
son loops of increasing size:W05Sx,m,nTr P4U around el-
ementary plaquettes,W1,2,3 correspond to different
geometries of six-link loops, etc. It is often the case that o
would like to study a Hamiltonian of type~2! resulting from
an expansion, be it perturbative@5#, nonperturbative@6#, or
based on the fixed point of a renormalization group trans
mation@7#. In all these situations, the expansion is trunca
to a maximal orderm dictated by technical reasons. Ask
increases in~2!, the number of geometrically equivalen
terms grouped intoWk increases exponentially. In a spi
model on a hypercubic lattice ind dimensions, each spin ha
2d nearest-neighbors~these interactions are grouped in
W0!, d(d21)/2 next-nearest neighbors~grouped intoW1!,
d(d21)(d22)/6 3rd-neighbors, etc. This combinatoric e
plosion normally makes the simulation of extended Hamil
nians prohibitively expensive. This is the reason for a tru
cation to very lowm, often taken to be 1 or 2. However, i
most cases, the couplingsck in ~2! decrease exponentiall
with k, so that the overall Hamiltonian is dominated byW0 ,
with small corrections. In lattice field theory, this is actua
required if the Hamiltonian is to make sense and tend t
local operator as the continuum limit is approached. By m
ing use of stochastic methods to estimate the correc
termsWk , k>1, we aim at postponing the combinatoric e
plosion of the simulation costs incurred when includi
higher termsWk . This opens the possibility of studying nu
merically much more complicated Hamiltonians, includin
higher-order correction terms. In lattice field theory, the
correction terms are crucial to suppress discretization er
and form the building blocks of so-called ‘‘improvement
strategies. Also, the inclusion of higher-order terms can
©2001 The American Physical Society05-1
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very useful in the approaches to the fermion determin
simulations involving the loop expansion@8#.

We present our method in Sec. II, and illustrate it in S
III with simulations of a five-loop perturbatively improve
action for SU~2! lattice theory. We conclude with prospe
tive applications of our method, in particular for dynamic
fermion QCD simulations.

II. NOISY MONTE CARLO ALGORITHM: THE METHOD

Given the Hamiltonian~2!, let us suppose that the term
ckWk are nonpositive starting fromk51:

k>1: ckWk~U !<0 ;U. ~3!

This can be easily arranged by adding to each term of
Hamiltonian a nonessential constant. HereU are the fields of
the model under consideration. The key idea of the metho
to estimate the contribution of the termsWk(U), k>1 sto-
chastically by introducing auxiliary fields. This will lead to
significant reduction of computational effort if the coef
cientsck , k>1 are small enough. In all cases, the algorith
remains exact.

We introduce auxiliary fieldssk , k>1 ~associated with
the termsWk!, which can take two values: 0 and 1. Using t
identity

a1b5 (
s50,1

@a* ds,01b* ds,1# ~4!

we represent the probabilitye2H in the form

e2H5P0@U#* P1@U,s#, ~5!

where

P0@U#5e2c0W0~U !;

P1@U,s#5)
k51

m

(
sk50,1

@dsk,01dsk,1~e2ckWk~U !21!#.

~6!

The right-hand side of~5! can be interpreted as the join
probability distribution for the original fields of the mode
and the news fields. Because of the inequalities~3! this
distribution is well defined:P1@U,s#>0 ;$U,s%, and the
probabilities forsk to take value 0 or 1 when theU fields are
fixed lie in the interval@0, 1#:

psk505eckWk~U !; psk51512eckWk~U !. ~7!

This means that our algorithm has no probability bound v
lations, which plagued previous attempts to construct an
ficient stochastic algorithm@2,3#.

One can easily see why the introduction of auxilia
s fields can be useful. Starting from the current$U1 ,s%
configuration, a candidate configuration$U2% distributed
with the weight P0@U2# is proposed, and accepted wi
probability
05450
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Pacc5minS 1,
P1@U2 ,s#

P1@U1 ,s# D5minS 1, )
k:sk51

e2ckWk~U2!21

e2ckWk~U1!21 D .

~8!

Since the termsckWk(U) contribute inPacc only if sk51,
the amount of computational work is greatly reduced if t
configurations withsk50 are dominating. That is certainl
the case when the absolute values of the coupling co
cients ucku are small. The probabilities forsk to be unity,
averaged over$U% configurations, are negligible then. In
deed, to leading order inck the average probabilitypsk51

from Eq. ~7! can be written as

^psk51&'2ck^Wk~U !&'0 if ck'0. ~9!

Expression~9! also suggests that one should try to ma
u^Wk&u as small as possible, using the freedom one ha
shift Wk by a constant. This goal should remain compatib
however, with inequalities~3!; otherwise, probability bound
violations will appear forpsk

andPacc in Eqs.~7! and ~8!.
Actually, the violation of conditions~3! is not completely

forbidden. As it was pointed out in Ref.@4#, one can address
the problem of the lower probability-bound violations by r
defining the measure. If the distributionP1@U,s# in ~5! can
be negative for some configurations$U,s%, one can effec-
tively simulate with the probability distribution
P0@U#* uP1@U,s#u instead and include the sign sgn(P1) into
the observable expectation value:

^O&5
^O sgn~P1!& i

^sgn~P1!& i
, ~10!

where by^ & i we denote the averages with respect to dis
butionP0@U#* uP1@U,s#u. Sometimes the admission of ver
rare sign violations can substantially decrease the probab
psk51 . However, one should be very careful in using th
trick: As the volume of the system increases, one needs
exponential growth of statistics to estimate^sgn(P1)&i within
the same accuracy. In the following, we shall always assu
fulfillment of the inequalities~3!.

After updating theU fields, one should also update thes
fields to preserve ergodicity. This requires the calculation
probabilities~7!. At this point the reader might say: ‘‘Okay
one saves computational effort by not calculating some te
Wk in expression~8! while estimatingPacc. Nevertheless,
one must calculate these terms when updating thes fields!
So does one gain anything in the end?’’ The answer is ‘‘ye
for the following two reasons.

First, the termsWk , for which it is reasonable to use th
stochastic estimation, usually couple many degrees of f
dom ~this is due to the usual nonlocality of weakly couple
terms, which serve as corrections to more local leading te
in the Hamiltonian!. If one uses usual local algorithms~with-
out introducing stochastics variables!, one should estimate
the termWk each time one updates a degree of freedom
which it couples. Contrary to that, if one uses a noisy Mo
Carlo algorithm, the probabilities~7! should be calculated
only once pers update.
5-2
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Secondly, the variablessk can be refreshed infrequently
the more so as the associated couplingck gets smaller. This
will be demonstrated in the next section on a particular
ample. This slow dynamics of the auxiliarys fields does not
imply slow dynamics of the physically relevantU fields.

Up to now we were quite generic, showing that the no
Monte Carlo~NMC! method can be potentially very effec
tive for the variety of theories, where the energy~2! is a sum
of couplings of decreasing strength. In the next section
illustrate these ideas on a particular example: a five-loop
turbatively improved SU~2! Yang-Mills model.

III. FIVE-LOOP SU „2… GAUGE THEORY

We consider a five-loop SU~2! gauge action in four di-
mension (4d):

s5(
i 51

5

ci

1

mi
2mi

2 Smi ,ni
, ~11!

where the indices (mi ,ni)5(1,1),(2,2),(1,2),(1,3),(3,3) for
i 51, . . . ,5 denote the planar, fundamental loops of sizem
3n

~12!

The Gibbs factor is exp(2(b/2)S). Note that in Eq.~12! we
have arranged the constant term22* sgn(ci) to ensure the
condition ~3! for elementary action terms corresponding
each loop:

~13!

Using the results of@9#, one can construct a one-parame
set of actions that have noO(a2) andO(a4) corrections:

c15~19255c5!/9, c25~1264c5!/9,
~14!

c35~2641640c5!/45, c451/522c5 .

Here we takec551/20 ~the same action was used in th
context of improved cooling in Ref.@10#! andb52.4.

Following the ideas of Sec. II, we estimate the contrib
tion of all loops except the plaquette stochastically. For e
loop l[$m,n,x% of sort 2< i<5 we introduce the auxiliary
variables i( l )50,1, and rewrite the contribution of this loo
to Gibbs factor in the form

e2~b/2!Si ,m,n,x5 (
s i ~ l !50,1

@ds i ~ l !,01ds i ~ l !,1~e2~b/2!Si ,m,n,x21!#.

~15!

The resulting distribution of$U,s% fields is used for the
generation of independent$U% configurations. We shall sa
that for a given$s% configuration the loop$l,i% is ‘‘active’’ if
s i( l )51.
05450
-

y

e
r-

r

-
h

Let us describe the updating procedure in the$U,s% con-
figuration space. Consider first the local updating of t
gauge fieldsU when thes fields are fixed. The proposa
value Ux,m

new at a given link$x,m% is generated by heatbat
with respect to the measure

P0@U#}expS 2
b

2
c1S1,1@U# D , ~16!

where S1,1 is the plaquette action@see ~12!#, and then ac-
cepted with probability

Pacc5minS 1,
P1@Ux,m

new,s#

P1@Ux,m
old ,s#

D , ~17!

where

P1@U,s#5 )
~ l ,i !{$x,m%

s i ~ l !51

~e2~b/2!Si ,l @U#21! .

~18!
Only active loops that contain the given link$x,m% contribute
to the expression in the right-hand side of~17!.

After eachNi updates of fieldsU on the entire lattice we
update thes fields of sorti. For each loopl we assign the
values 0, 1 to the variables i( l ) with the following probabili-
ties:

ps i ~ l !505expS b

2
Si ,l@U# D ; ps i ~ l !51512expS b

2
Si ,l@U# D .

~19!

Due to the absence of interaction between differents vari-
ables, the probabilities~19! depend only on the gauge con
figuration, so thats variables can be updated independent

In our simulations, we have measured the average va
of s i , 2< i<5 that are listed in Table I. They are quit
small, and very close to the perturbative estimate~9!. This
shows that one can avoid the computation of almost all of
extended ‘‘staples’’ in theU update.

Performing numerical simulations for the five-loop mod
~11,14! with auxiliary s fields, we were mainly interested i
the efficiency of our new NMC algorithm. One can estima
the efficiency of the NMC method by comparing it with th
updating procedures which are commonly used now for
simulation of multiloop actions like~11!. In the following we
label these usually applied techniques with the collect
name ‘‘usual Monte Carlo’’~UMC! method, to contrast it
with the NMC method.

We compare the computer times needed to get the s
results with NMC and UMC algorithms as follows. First, w
make an analytic estimation of the total computational c
of one update of theU fields for both algorithms in units o

TABLE I. Average value ofs i field for each loop of sorti.

Loop 132 133 232 333
^s& 0.0753 0.0199 0.0202 0.0018
5-3
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TABLE II. Integrated autocorrelation times for average loop traces in units ofU updates for UMC algorithm~first column! and for NMC
algorithm with different frequencies ofs updates for 132, 133, 232 and 333 loops~other columns!. The last row presents the naive ga
for the NMC algorithm~26!.

Number of
U updates per

1 s update

UMC
no
s

1
for
all

5
for
all

5 for 132
15 for 133, 232

105 for 333

10
for
all

10 for 132
30 for 133, 232

210 for 333

20
for
all

30
for
all

40
for
all

50
for
all

t int(131) 0.7~1! 1.9~2! 2.3~1! 2.5~2! 3.1~2! 3.2~2! 4.3~4! 4.5~4! 3.8~2! 5.1~4!

t int(132) 0.8~1! 2.6~3! 2.8~2! 3.2~2! 4.3~4! 3.9~3! 5.2~4! 5.6~5! 5.7~4! 7.7~8!

t int(133) 0.8~1! 2.7~3! 2.8~2! 3.2~2! 4.3~4! 3.9~3! 5.1~4! 5.4~5! 5.4~4! 7.4~8!

t int(232) 1.0~1! 3.4~5! 3.3~3! 3.7~3! 4.7~4! 4.7~3! 5.3~4! 5.8~6! 5.7~4! 7.5~8!

t int(233) 1.4~3! 4.2~7! 3.8~3! 4.2~3! 5.5~5! 5.7~4! 5.7~5! 6.2~6! 6.3~5! 7.7~8!

t int(333) 1.8~4! 5.0~8! 4.5~5! 5.0~5! 5.8~6! 6.4~5! 5.9~5! 6.3~6! 6.3~5! 7.5~8!

r gain
naive 1 7.2 14.8 18.3 17.9 20.6 18.3 20.8 21.1 21.4
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matrix ~link! multiplications. Second, we extract from nu
merical simulations the integrated autocorrelation times
different observables, in units ofU update. The compute
time needed to estimate any given observable is proporti
to the product of the computational cost per update and
autocorrelation time.

For NMC, the average computational cost of one upd
of the U fields on the entire lattice is equal to

tU
NMC5tU

pl14V(
i 52

5

nstaple~ i !* nmult~ i !* ^s i&, ~20!

wheretU
pl is the cost for generating the proposal configurat

with measure~16! ~i.e., the update cost for the elementa
plaquette action!, 4V is the number of links on the lattice
nstaple( i ) is the number of ‘‘staples’’ which the loops of so
i form for each link,nmult( i ) is the number of matrix multi-
plications needed to estimate the contribution of one sta
of sort i, and the factor̂ s i& accounts for the fact that on
needs to calculate the contribution of active loops only. O
can easily check that

nstaple~ i !5
3

2* Pi* si ; nmult~ i !5Pi , ~21!

wherePi[2(mi1ni) is the perimeter of loopi and si is a
symmetry factor:si51 for square loops andsi52 for rect-
angular loops. Then we have

tU
NMC5tU

pl16V(
i 52

5

Pi
2si^s i&. ~22!

On the other hand, the computational cost of one updat
the s i fields on the entire lattice is given by

ts i
56Vsi Pi . ~23!

Here 6Vsi is the number of loops of a given sort on th
lattice, and the perimeterPi of the loop appears again as th
number of matrix multiplicationsnmult( i ) needed to calculate
the probabilities~19!. Since we update thes i fields only
once per eachNi updates of theU fields, the total computa
tional cost perU update for the NMC method is
05450
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t tot
NMC5tU

NMC1(
i 52

5 ts i

Ni
5tU

pl16V(
i 52

5

Pisi S 1

Ni
1Pi^s i& D .

~24!

Let us note that the computational costt tot
UMC for UMC of

oneU update is approximately equal to the right-hand side
expression~24! in the limit Ni→` and ^s i&→1:

t tot
UMC5tU

pl16V(
i 52

5

Pi
2si . ~25!

Indeed, in the limit when alls are set equal to 1 and no
updated, we recover the usual algorithm@certainly one
should correct the expressions~17! and ~18! for Pacc in this
case#.

Now we can compare the performance of our NMC alg
rithm with that of UMC. The naive gain in efficiency from
using NMC does not depend on the observable measu
and is equal to the ratio between the computational costs~25!
and ~24!:

r gain
naive[

t tot
UMC

t tot
NMC 5

tU
pl16V( i 52

5 Pi
2si

tU
pl16V( i 52

5 Pisi~1/Ni1Pi^s i&!
. ~26!

Now, one should also take into account the increase of a
correlation times coming from the introduction of auxilia
variabless in the NMC algorithm, so that the real gain is

r gain
real[r gain

naive
*

t int
UMC

t int
NMC , ~27!

where t int
UMC and t int

NMC are integrated autocorrelation time
for UMC and NMC, respectively. Note thatt int

NMC is a func-
tion of the updating frequencies 1/Ni of the s i fields. Like
t int , the ratio~27! will also depend on the observable.

In Table II, we present the autocorrelation times for av
aged traces of six different loops in units ofU updates. In the
first column we show the results for the Usual Monte Car
and in other columns for the NMC algorithm with differen
frequencies ofs updates for 132, 133, 232, 333 loops.
In the last row we present the naive gain~26!.
5-4
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Let us make one useful remark. It is not necessary to k
the same updating frequencies 1/Ni for all sorts i of loops.
Actually it is even impractical. The computational cost ofU
update coming from the loop of sorti is proportional to the
average value ofs i , which is, in turn, proportional to the
coupling~9!. As the coupling decreases, we should expec
reduction of the computational effort for the correspond
terms in the action. That is not the case for the cost ofs i
update: it does not depend on the coupling and even
creases with the nonlocality of the action term@factor Pi in
expression~23!#. In order for the work in thes and in theU
updates coming from loops of sorti to remain comparable
one should keep the updating frequencies 1/Ni proportional
to ^s i&:

1

Ni
;Pi^s i&. ~28!

Due to the small influence of weakly coupled terms on
dynamics of the system, one can expect only insignific
changes in the autocorrelation behavior asNi increases.
These considerations are distinctly demonstrated in Tabl
where in two columns we present the results for updat
frequencies ofs fields varying in accordance with~28!.

Table II gives an impressive demonstration of the bene
which come from using the NMC algorithm. The naive ga
increases substantially as we decrease the frequenciess
updates, while the autocorrelation times grow rather slow
That is particularly visible for the runs where the updati
frequencies fors fields are adjusted as per Eq.~28!. For such
runs we can infer that the ‘‘real gain’’O ~4–6! in computer
time ~27! for the observables measured is large enough fo
convincing demonstration of the possible advantages com
from using the NMC algorithm.

Let us make a conclusion for this section. We have
plied our NMC algorithm for the five-loop model~11!, ~14!.
We have shown that with this algorithm a significant gain
efficiency is obtained in comparison with usual updati
techniques. Finally, we note that the action~11! is a rela-
tively simple one, and one can expect a much greater g
for more complicated highly-improved actions with ma
nonlocal weakly coupled terms.

IV. DISCUSSION

Let us summarize our algorithm:~a! Separate the Hamil
tonian ~or action! into a dominant termc0W0 , to be calcu-
lated exactly, and correction terms(k51

m ckWk , to be esti-
mated stochastically.~b! Shift the correction terms to
guaranteeckWk<0. ~c! Introduce auxiliary local variables
sk( l ), through identity~6! ~here l runs through all the el-
ementary ‘‘bonds’’ which formWk , e.g., loops in gauge
theory!. ~d! Update the auxiliary variablessk by heat bath.
~e! To update the original variablesU, propose a new value
U8, sampled from the distribution}e2c0W0, and accept it
with the Metropolis probability

min~1,Pk>1;sk51~e2ckWk~U8!21!/~e2ckWk~U !21!!.
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The essential advantage of our algorithm appears in
~e!: only the termsWk whose associatedsk is equal to 1
need to be computed. Since on average^sk& goes to zero
with ck , the computation of almost all correction terms c
be avoided.

To avoid simply shifting the cost of the algorithm to ste
~d!, we propose to refresh the variablessk infrequently,
more so as the associated couplingucku gets smaller. We
have pointed out that this introduction of slow dynamics
thesk doesnot enforce slow dynamics for the system, sin
Wk( l ) will fluctuate regardless of the value ofsk( l ). Our
numerical study of Sec. III confirms this statement.

Let us now speculate on possibilities to use our algorit
to simulate a Hamiltonian with a very large number of term
A specific example we have in mind is the case of full QC
where the measure is, for two flavors of Wilson quarks,

1

Z
e2Sg~U ! det2~12kM ~U !!, ~29!

whereSg is the local gauge action,M (U) is a hopping ma-
trix connecting nearest neighbors on a 4d hypercubic grid,
and Z normalizes the distribution. The determinant can
turned into exp(Tr(Log(12kM (U)))), then the logarithm
expanded around 1, giving the loop expansion of the m
sure above

1

Z
e2Sg~U !22( l 54

`
~kl / l !Tr M ~U ! l

. ~30!

Tr M (U) l can be represented as a sum over all closed n
backtracking loops of lengthl on the 4d hypercubic lattice.
The number of types of contributing loopsnl is bounded by
(2d21)l57l , because of the branching factor at each h
Although this upper bound is not saturated, it is clear that
multiplicity of terms of a given lengthl grows exponentially:

nl;F1~ l !a l ; a,7, ~31!

whereF1( l ) is a rational function ofl anda l is the leading
exponential ascend of the number of loops of lengthl in the
limit of large l. For this reason, it seems that sampling n
merically the distribution~30! is a disastrous idea. The actio
contains an infinite number of terms, of exponentially gro
ing multiplicity. Instead, other strategies are being us
based on the transformation of the determinant~29! into a
Gaussian integral.

Nevertheless, the couplingk l / l decreases exponentially a
l increases. Therefore, the auxiliary variabless l associated in
our approach with various loops of lengthl will take value 0
almost always. From~9! one gets

^s l&;cl;F2~ l !klg l , ~32!

where the exponentially growing factorg l comes from the
average trace of Dirac matrices along the loops of lengtl;
F2( l ) is again a rational function.
5-5
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If one arranges the updating frequencies for each loopi as
per Eq.~28!, one can expect that the average computer t
needed for estimation of contribution of all loops of lengthl
behaves at largel as

t l;nl l
2^s l&;F~ l !* ~agk! l . ~33!

~It was pointed out above that one should not expect a
nificant growth of autocorrelation coming from slow dynam
ics for s l .! For k,kca51/ag, the computational costt l
decreases exponentially withl and the total computationa
cost of the algorithmt5( l t l converges to some finite value
Our rough estimation from fittingnl and average trace o
Dirac matrices in the interval 4< l<12 gives a'5.4, g
'1.4, and thereforekca'0.13.

In the regimek,kca, we are in an interesting situatio
where the influence of very large loops is negligible beca
their associated coupling in the effective action is extrem
small. Therefore, truncating the loop expansion above a
tain order will introduce a statistically unobservable bia
@Note that a similar truncation strategy in the number of a
iliary variables could also be adopted in the approach of R
@4# to the estimation of the fermionic determinant.# Equiva-
lently, one can freeze the associateds variables at the value
zero or update them with arbitrarily low frequency. In sp
of this extremely~or infinitely! slow dynamic mode of the
s’s, the dynamics of the gauge fields are not affected. N
.
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te

that the cost of our algorithm grows linearly with the volum
V of the system. This is better than alternative approache
the simulation of full QCD: Hybrid Monte Carlo (cos
}V5/4) and MultiBoson (cost}V(LogV)2) @11#. In addition,
the stepsize, or typical change at each update of a gauge
U, does not seem restricteda priori for small quark mass,
unlike in the two alternative approaches above. Unfor
nately, the possible high efficiency of our algorithm is cou
terweighted by its extreme programming complexity.

A less speculative use of our algorithm for full QCD co
sists of truncating the loop expansion Eq.~30! to some order
l max, and to represent the higher orders with the MultiBos
approach@12#. This strategy, called ‘‘UV-filtered MultiBo-
son,’’ has already been used successfully@8#. However, in
Ref. @8# the loop expansion is truncated to its lowest terml
54, because the exact evaluation of larger loops is too t
consuming. With our stochastic approach, these larger lo
can be estimated at low cost. We expect this composite s
egy to be particularly efficient.
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