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a b s t r a c t

The fundamental problem of non-singular dislocations in the framework of the theory of gradient elas-
ticity is presented in this work. Gradient elasticity of Helmholtz type and bi-Helmholtz type are used.
A general theory of non-singular dislocations is developed for linearly elastic, infinitely extended, homo-
geneous, and isotropic media. Dislocation loops and straight dislocations are investigated. Using the the-
ory of gradient elasticity, the non-singular fields which are produced by arbitrary dislocation loops are
given. ‘Modified’ Mura, Peach–Koehler, and Burgers formulae are presented in the framework of gradient
elasticity theory. These formulae are given in terms of an elementary function, which regularizes the clas-
sical expressions, obtained from the Green tensor of the Helmholtz–Navier equation and bi-Helmholtz–
Navier equation. Using the mathematical method of Green’s functions and the Fourier transform, exact,
analytical, and non-singular solutions were found. The obtained dislocation fields are non-singular due to
the regularization of the classical singular fields.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Dislocations play an important role in the understanding of
many phenomena in solid state physics, materials science, and
engineering. They are the primary carriers of crystal plasticity. Dis-
locations are line defects which can be straight or curved lines. The
internal geometry of generally curved dislocations, in deformed
crystals is very complex. In the classical theory of dislocation loops
in isotropic materials (DeWit, 1960; Lardner, 1974; Hirth and
Lothe, 1982) two key equations are the Burgers formula (Burgers,
1939) for the displacement, and the Peach–Koehler formula (Peach
and Koehler, 1950) for the stress. These equations are very impor-
tant for the interaction between complex arrays of dislocations.
The classical description of the elastic fields produced by disloca-
tions is based on the theory of linear elasticity. There is the prob-
lem of mathematical singularities at the dislocation core, and an
arbitrary core-cutoff radius which must be introduced to avoid
divergence. In the classical continuum theory of dislocations
(Kröner, 1958; DeWit, 1960; Nabarro, 1967; Lardner, 1974; Mura,
1987; Teodosiu, 1982; Li and Wang, 2008) the concept of Volterra
dislocations is used, and the dislocation core is described by a Dirac
delta function. This unsatisfactory situation can only be remedied,
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when the fact that physical dislocations have a finite core region
and no singularities exist are taken into account.

As already pointed out by Kröner (1958) and Lothe (1992) the
divergence can be avoided when dislocation distributions other
than the delta function are used. Lothe (1992) considered a stan-
dard core model with constant density of dislocations in a planar
strip with width d. However, the value of d remains undetermined
and the expressions for the elastic fields are more complicated
than their singular counterparts and difficult to use for generally
curved dislocations. Moreover, for non-planar configurations the
theory becomes much more complex.

In order to remove the singularities of dislocations and to model
the dislocation core more realistically, continuum theories of gen-
eralized elasticity may be used. A very promising candidate of such
a theory is the so-called gradient elasticity theory. The theory of
gradient elasticity was originally proposed by Mindlin (1964);
Mindlin (1965); and Mindlin and Eshel (1968) (see also Eshel
and Rosenfeld, 1970). The correspondence between the strain gra-
dient theory and the atomic structure of materials with the nearest
and next nearest interatomic interactions was exhibited by Toupin
and Grazis (1964). The original Mindlin theory possesses too many
new material parameters. For isotropic materials, Mindlin’s theory
of first strain gradient elasticity (Mindlin, 1964; Mindlin and Eshel,
1968) involves two characteristic lengths, and Mindlin’s theory of
second strain gradient elasticity (Mindlin, 1965) possesses four
characteristic lengths. The discrete nature of materials is inher-
ently incorporated in the formulations through the characteristic
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lengths. The capability of strain gradient theories in capturing size
effects is a direct manifestation of the involvement of characteristic
lengths. Simplified versions, which are particular cases of Mindlin’s
theories, were proposed and used for dislocation modelling. Such
simplified gradient elasticity theories are known as gradient elas-
ticity of Helmholtz type (Lazar and Maugin, 2005), with only one
material length scale parameter and gradient elasticity of bi-
Helmholtz type (Lazar and Maugin, 2006a; Lazar et al., 2006a)
which involves two material length scale parameters as new
material coefficients. Gradient elasticity is a continuum model of
dislocations with core spreading. Non-singular fields of straight
dislocations were obtained in the framework of gradient elasticity
of Helmholtz type by Gutkin and Aifantis (1999); Lazar and Maugin
(2005); Lazar and Maugin (2006a); Lazar et al. (2005) and Gutkin
(2000); Gutkin (2006) (see also, Gutkin and Ovid’ko, 2004).
Surprisingly enough up until now, not a single work has been done
in the direction of non-singular dislocation loops using strain gra-
dient elasticity theory. The reason may be in the expected mathe-
matical complexity of the problem. Such non-singular solutions of
arbitrary dislocation loops could be very useful for the so-called
discrete dislocation dynamics (e.g. Li and Wang, 2008; Ghoniem
et al., 1999).

The aim of this paper is to present non-singular solutions of
arbitrary dislocation loops, by using simplified gradient elasticity
theories. We present the key-formulae of dislocations loops valid
in the framework of gradient elasticity, and also reemphasize
straight dislocations in gradient elasticity. The technique of Green
functions for the key-formulae is used, and analytical closed-form
solutions for the dislocation fields are derived.

The paper is organized as follows. In Section 2, the fundamen-
tals of gradient elasticity of Helmholtz type are given. Dislocation
loops and straight dislocations are investigated. In Section 3, the
theory of gradient elasticity of bi-Helmholtz type is considered.
Dislocation loops and straight dislocations will be examined in this
framework. In Section 4, the conclusions are given. All the mathe-
matical and technical details are given in the Appendices.

2. Gradient elasticity of Helmholtz type

A straightforward framework to obtain non-singular fields of
dislocations is the so-called theory of gradient elasticity. A simpli-
fied theory of strain gradient elasticity is called gradient elasticity
of Helmholtz type (Lazar and Maugin, 2005; Lazar and Maugin,
2006a). This gradient elasticity of Helmholtz type is a particular
gradient elasticity theory evolving from Mindlin’s general gradient
elasticity theory (Mindlin, 1964; Mindlin and Eshel, 1968). This
theory is also known as dipolar gradient elasticity theory (Georgi-
adis, 2003), simplified strain gradient elasticity theory (Gao and
Ma, 2010a; Gao and Ma, 2010b) and special gradient elasticity the-
ory (Altan and Aifantis, 1997). The theory of gradient elasticity of
Helmholtz type is the gradient version of Eringen’s theory of non-
local elasticity of Helmholtz type (Eringen, 1983; Eringen, 2002)
which is well-established.

The strain energy density of such a simplified gradient elasticity
theory for an isotropic, linearly elastic material has the form (Lazar
and Maugin, 2005; Gao and Ma, 2010a)

W ¼ 1
2

Cijklbijbkl þ
1
2
‘2Cijkl@mbij@mbkl; ð1Þ

where Cijkl is the tensor of elastic moduli with the symmetry
properties

Cijkl ¼ Cklij ¼ Cjikl ¼ Cijlk ð2Þ

and it reads for an isotropic material

Cijkl ¼ l dikdjl þ dildjk
� �

þ kdijdkl; ð3Þ
where l and k are the Lamé moduli. bij denotes the elastic distortion
tensor. If the elastic distortion tensor is incompatible, it can be
decomposed as follows

bij ¼ @ jui � bP
ij; ð4Þ

where ui and bP
ij denote the displacement vector and the plastic dis-

tortion tensor, respectively. In addition, ‘ is the material length
scale parameter of gradient elasticity of Helmholtz type. For dislo-
cations, ‘ is related to the dislocation core radius and is proportional
to a lattice parameter. Due to the symmetry of Cijkl, Eq. (1) is equiv-
alent to

W ¼ 1
2

Cijkleijekl þ
1
2
‘2Cijkl@meij@mekl; ð5Þ

where eij ¼ 1=2ðbij þ bjiÞ is the elastic strain tensor. The condition
for non-negative strain energy density, W P 0, gives

ð2lþ 3kÞP 0; l P 0; ‘2 P 0: ð6Þ

The reason that the elastic and plastic distortion tensors are incom-
patible can be the presence of dislocations. Dislocations cause self-
stresses that means stresses caused without the presence of body
forces. The dislocation density tensor is defined in terms of the elas-
tic and plastic distortion tensors as follows (e.g. Kröner, 1958)

aij ¼ �jkl@kbil ð7Þ
aij ¼ ��jkl@kb

P
il ð8Þ

and it fulfills the Bianchi identity of dislocations

@jaij ¼ 0; ð9Þ

which means that dislocations do not end inside the body. Eq. (9) is
a ‘conservation’ law and shows that dislocations are source-free
fields.

From Eq. (1) it follows that the constitutive equations are

rij ¼
@W
@bij
¼ @W
@eij
¼ Cijklbkl ¼ Cijklekl; ð10Þ

sijk ¼
@W
@@kbij

¼ @W
@@keij

¼ ‘2Cijmn@kbmn ¼ ‘2@krij; ð11Þ

were rij are the components of the Cauchy stress tensor, sijk are the
components of the so-called double stress tensor. It can be seen that
‘ is the characteristic length scale for double stresses. Using Eqs.
(10) and (11), Eq. (5) can also be written as (Lazar and Maugin,
2005)

W ¼ 1
2
rijeij þ

1
2
‘2@krij@keij: ð12Þ

The strain energy density (12) exhibits the symmetry both in rij and
eij and in @krij and @keij.

The total stress tensor is given as a combination of the Cauchy
stress tensor and the divergence of the double stress tensor

r0
ij ¼ rij � @ksijk ¼ ð1� ‘2DÞrij ð13Þ

and it fulfills the equilibrium condition for vanishing body forces

@jr0
ij ¼ @jðrij � @ksijkÞ ¼ 0: ð14Þ

The stress tensor r0
ij is called in the notation of Jaunzemis (1967) the

polarization of the Cauchy stress rij. Due to gradient elasticity of
Helmholtz type, Eq. (13) reduces to an inhomogeneous Helmholtz
equation where the total stress tensor is the inhomogeneous piece.
As pointed out by Lazar and Maugin (2005); Lazar and Maugin
(2006a), the total stress tensor may be identified with the singular
classical stress tensor. This identifies that the inhomogeneous
Helmholtz equation (13) is in full agreement with the equation
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for the stress proposed by Eringen (1983); Eringen (2002) in his
theory of nonlocal elasticity of Helmholtz type.

As shown by Lazar and Maugin (2005); Lazar and Maugin
(2006a) the following governing equations for the displacement
vector, the elastic distortion tensor, the dislocation density tensor,
and the plastic distortion tensor can be derived in the framework
of gradient elasticity of Helmholtz type

Lui ¼ u0
i ; ð15Þ

Lbij ¼ b0
ij; ð16Þ

Laij ¼ a0
ij; ð17Þ

LbP
ij ¼ bP;0

ij ; ð18Þ

where

L ¼ 1� ‘2D ð19Þ

is the Helmholtz operator. The singular fields u0
i ;b

0
ij, a0

ij and bP;0
ij are

the sources of the inhomogeneous Helmholtz Equation (15)–(18).
The Helmholtz Equation (15) and (16) can be further reduced to
Helmholtz–Navier equations

LLikuk ¼ Cijkl@jb
P;0
kl ; ð20Þ

LLikbkm ¼ �Cijkl�mlr@ja0
kr; ð21Þ

where Lik ¼ Cijkl@j@ l is the differential operator of the Navier equa-
tion. For an isotropic material, it reads

Lik ¼ ldikDþ ðlþ kÞ@i@k: ð22Þ

In Eqs. (20) and (21) the sources are now the plastic distortion bP;0
kl

and the dislocation density a0
kr known from classical elasticity.

The corresponding three-dimensional Green tensor of the
Helmholtz–Navier equation is defined by

LLikGkj ¼ �dijdðx� x0Þ ð23Þ

and is calculated as (see Eq. (B.14))

GijðRÞ ¼
1

16plð1� mÞ 2ð1� mÞdijD� @i@ j
� �

AðRÞ; ð24Þ

with

AðRÞ ¼ Rþ 2‘2

R
1� e�R=‘
� �

ð25Þ

and R ¼ jx� x0j. In the limit ‘! 0, the three-dimensional Green ten-
sor of classical elasticity (Mura, 1987; Li and Wang, 2008) is recov-
ered from Eqs. (24) and (25). It is important to note that AðRÞ can be
written as the convolution of R and GðRÞ:

AðRÞ ¼ R � GðRÞ; ð26Þ

where � denotes the spatial convolution and G is the three-dimen-
sional Green function of the Helmholtz equation

LG ¼ dðx� x0Þ: ð27Þ

It reads (Wladimirow, 1971)

GðRÞ ¼ 1
4p‘2R

e�R=‘: ð28Þ

In addition, it holds

DDR ¼ �8pdðx� x0Þ: ð29Þ

The function (25) fulfills the relations

LDD AðRÞ ¼ �8pdðx� x0Þ; ð30Þ

DD AðRÞ ¼ �8pGðRÞ; ð31Þ

L AðRÞ ¼ R: ð32Þ
Thus, AðRÞ is the Green function of Eq. (30) which is a Helmholtz-
bi-Laplace equation.

Using Eqs. (A.3) and (A.4) for the differentiation of Eq. (24),
the explicit form of the three-dimensional Green tensor of the
Helmholtz–Navier equation is obtained

GijðRÞ ¼
1

16plð1� mÞ

"
dij

R

 
ð3� 4mÞ 1� e�R=‘

� �
þ 1

R2 2‘2 � R2 þ 2‘Rþ 2‘2
� �

e�R=‘
� ��

þRiRj

R3

 
1� 6‘2

R2 þ
 

2þ 6‘
R
þ 6‘2

R2

!
e�R=‘

!#
; ð33Þ

which is non-singular. It is worth noting as a check, that Eq. (33) is
in agreement with the corresponding expressions derived by
Polyzos et al. (2003) and Gao and Ma (2009) using slightly different
approaches.

Note, that the Green tensor (33) gives the non-singular dis-
placement field, ui ¼ Gijfj (fj is the constant value of the magnitude
of the point force acting at the arbitrary position x0 in an infinite
body), of the Kelvin point force problem (e.g. Gurtin, 1972; Mura,
1987; Hetnarski and Ignaczyk, 2004) in the framework of gradient
elasticity of Helmholtz type. The original solution of a concentrated
force in an infinite body in the context of the classical continuum
theory of elasticity was given by Kelvin (1882).

2.1. Dislocation loops

In this subsection, the characteristic fields of dislocation loops
in the framework of gradient elasticity theory of Helmholtz type
are calculated.

For a general (non-planar or planar) dislocation loop L, the clas-
sical dislocation density and the plastic distortion tensors are (e.g.
DeWit, 1973a; Kossecka, 1974)

a0
ij ¼ bidjðLÞ ¼ bi

I
L

dðx� x0ÞdL0j; ð34Þ

bP;0
ij ¼ �bidjðSÞ ¼ �bi

Z
S

dðx� x0ÞdS0j; ð35Þ

where bi is the Burgers vector of the dislocation line element dL0j at
x0 and dS0j is the dislocation loop area. The surface S is the dislocation
surface, which is a cap of the dislocation line L. djðLÞ is the Dirac del-
ta function for a closed curve L and djðSÞ is the Dirac delta function
for a surface S with boundary L.

The solution of Eq. (17) can be written as the following convo-
lution integral

aij ¼ G � a0
ij ¼ bi

I
L

GðRÞdL0j; ð36Þ

where GðRÞ denotes the three-dimensional Green function of the
Helmholtz equation given by Eq. (28). The explicit solution of the
dislocation density tensor for a dislocation loop in gradient elastic-
ity is calculated as

aijðxÞ ¼
bi

4p‘2

I
L

e�R=‘

R
dL0j; ð37Þ

describing a spreading dislocation core distribution. The plastic dis-
tortion tensor of a dislocation loop, which is the solution of Eq. (18),
is given by the convolution integral

bP
ij ¼ G � bP;0

ij ¼ �bi

Z
S

GðRÞdS0j: ð38Þ

It reads as
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bP
ijðxÞ ¼ �

bi

4p‘2

Z
S

e�R=‘

R
dS0j: ð39Þ

Substituting Eq. (39) in Eq. (8) and using the Stokes theorem, we
obtain formula (37).

Using the Green tensor (24), and after a straightforward calcu-
lation all the generalizations of the Mura, Peach–Koehler, and
Burgers formulae towards gradient elasticity can be obtained.
Starting with the elastic distortion tensor of a dislocation loop,
the solution of Eq. (21) gives the representation as the following
convolution integral

bimðxÞ ¼
Z 1

�1
�mnrCjklnGij;kðRÞa0

lrðx0ÞdV 0; ð40Þ

where Gij;k ¼ @kGij. Substituting the classical dislocation density ten-
sor of a dislocation loop (34) and carrying out the integration of the
delta function, we find the modified Mura formula valid in gradient
elasticity

bimðxÞ ¼
I

L
�mnrblCjklnGij;kðRÞdL0r : ð41Þ

Substitute Eqs. (3) and (24) into Eq. (41) and obtain after rearrang-
ing terms

bijðxÞ ¼
1

8p

I
L
�jnr

	
bi@n � bn@i þ bldin@ lð ÞD

þ 1
1� m

bn@iD� bl@i@n@lð Þ



AðRÞdL0r: ð42Þ

Using the identity

�rjn bi@n � bn@ið Þ ¼ �rjn�kin�kstbs@t ¼ ðdrkdji � dridjkÞ�kstbs@t

¼ ð�rstdij � �jstdirÞbs@t ¼ ð�rkldij � �jkldirÞbk@l ð43Þ

and the relationI
L
�rjnðbn@ l � bl@nÞ@l@iAðRÞdL0r

¼
I

L
bsð�jst@r � �rst@jÞ@t@iAðRÞdL0r

¼
I

L
d bs�jst@t@iAðRÞ
� �

�
I

L
bs�rst@t@j@iAðRÞdL0r

¼ �
I

L
bs�rst@t@ j@iAðRÞdL0r ¼ �

I
L

bk�rkl@l@ j@iAðRÞdL0r ; ð44Þ

the non-singular elastic distortion (42) of a dislocation loop
becomes

bijðxÞ ¼ �
bk

8p

I
L

	
�jkldir � �rkldij þ �rijdkl
� �

@lD

þ 1
1� m

�rkl@l@i@j



AðRÞdL0r : ð45Þ

This is the ‘Mura formula’ for a dislocation loop in gradient elastic-
ity. It is important to note that if Eq. (45) is substituted into (7) and
the relation (31) is used, the dislocation density of a dislocation loop
(37) is recovered.

The symmetric part of the elastic distortion tensor (45) gives
the elastic strain tensor of a dislocation loop

eijðxÞ ¼ �
bk

8p

I
L

1
2
�jkldir þ

1
2
�ikldjr � �rkldij

� �
@lD

	
þ 1

1� m
�rkl@l@i@j



AðRÞdL0r : ð46Þ

The elastic dilatation of a dislocation loop is nothing but the trace of
the elastic strain (46)

eiiðxÞ ¼
ð1� 2mÞbk

8pð1� mÞ

I
L
�rkl@lDAðRÞdL0r : ð47Þ
The elastic rotation vector is defined as the skewsymmetric part of
the elastic distortion tensor xl ¼ 1

2 �ijlbij and reads

xlðxÞ ¼ �
bk

8p

I
L

dlr@k �
1
2

dkr@l

� �
DAðRÞdL0r : ð48Þ

Using the constitutive relation (10) with Eq. (3), the non-singular
stress field produced by a dislocation loop is found

rijðxÞ ¼ �
lbk

8p

I
L

	
�jkldir þ �ikldjr
� �

@lD

þ 2
1� m

�rkl @i@j � dijD
� �

@l



AðRÞdL0r ; ð49Þ

which can be interpreted as the Peach–Koehler formula within the
framework of gradient elasticity. One may verify that the stress is
divergence-less, @jrij ¼ 0. The double stress tensor of a dislocation
loop is easily obtained if Eq. (49) is substituted into Eq. (11).

The solution of Eq. (20) is the following convolution integral

uiðxÞ ¼ �
Z 1

�1
CjklnGij;kðRÞbP;0

ln ðx
0ÞdV 0: ð50Þ

Substituting the classical plastic distortion of a dislocation loop (35)
into Eq. (50) gives the modified Volterra formula valid in gradient
elasticity

uiðxÞ ¼
Z

S
blCjklnGij;kðRÞdS0n: ð51Þ

Substituting Eqs. (3) and (24) into Eq. (51) and rearranging terms
yield

uiðxÞ¼
bl

8p

Z
S

dil@nþdin@l�dln@ið ÞDþ 1
1�m

dlnD�@l@nð Þ@i

	 

AðRÞdS0n:

ð52Þ

Except the first term of Eq. (52), we apply the Stokes theorem in or-
der to obtain line integrals withZ

S
ðdin@ l � dln@iÞDAðRÞdS0n ¼ �

I
L
�rilDAðRÞdL0r ð53Þ

andZ
S
ðdnlD� @l@nÞ@iAðRÞdS0n ¼ �

I
L
�rlj@j@ iAðRÞdL0r: ð54Þ

In this way, the key-formula for the non-singular displacement vec-
tor in gradient elasticity is found

uiðxÞ ¼
bi

8p

Z
S

D@jAðRÞdS0j þ
bl�rlj

8p

I
L

dijD�
1

1� m
@ i@j

� 

AðRÞdL0r;

ð55Þ

which is the Burgers formula in the framework of gradient elasticity
of Helmholtz type. Eq. (55) determines the displacement field of a
single dislocation loop. The Eqs. (45)–(55) are straightforward, sim-
ple, and closely resemble the singular solutions of classical elasticity
theory. In the limit ‘! 0, the classical expressions are recovered in
Eqs. (45)–(55). The expressions (45), (49), and (55) retain most of
the analytic structure of the classical Mura, Peach–Koehler, and Bur-
gers formulae. The expressions (45)–(55) are given in terms of the
elementary function AðRÞ given in Eq. (25), instead of the classical
expression R. The explicit expressions can be obtained by simple
substitution of the formulae for the derivatives of A given in Eqs.
(A.2)–(A.6). It is important to note that Eqs. (45)–(55) are non-
singular due to the regularization of the classical singular expres-
sions (see Appendix A). As an example, we substitute Eqs. (A.5)
and (A.6) into Eq. (49) and obtain the explicit expression for the
stress tensor
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rijðxÞ¼�
lbl

8p

I
L

"
�jkldirþ�ikldjr�

2
1�m

�rkldij

� �
2Rk

R3 1� 1þR
‘

� �
e�R=‘

	 


þ 2
1�m

�rkl
dijRkþdikRjþdjkRi

R3 1�6‘2

R2 1�e�R=‘
� �

þ 2þ6‘
R

� �
e�R=‘

" # 

�3RiRjRk

R5 1�10‘2

R2 1�e�R=‘
� �

þ 4þ10‘
R
þ2R

3‘

� �
e�R=‘

" #!#
dL0r : ð56Þ

To give the expression (55) more explicitly. Using Eq. (A.6) we
introduce a generalized solid angle valid in gradient elasticity of
Helmholtz type

Xðx; ‘Þ ¼ �1
2

Z
S

D@jAðRÞdS0j ¼
Z

S

Rj

R3 1� 1þ R
‘

� �
e�R=‘

� �
dS0j: ð57Þ

Eq. (57) is non-singular and depends on the length scale ‘. In the
limit ‘! 0, the usual solid angle (e.g. Li and Wang, 2008) is recov-
ered. Thus, using Eq. (57) and carrying out some differentiations
with Eqs. (A.2) and (A.4), we obtain from Eq. (55) the explicit gradi-
ent elasticity version of the Burgers formula

uiðxÞ ¼ �
bi

4p
Xðx; ‘Þ � bl

4p

I
L
�ilr

1
R

1� e�R=‘
� �

dL0r �
bl

8pð1� mÞ

�
I

L
�ljr@i

Rj

R
1� 2‘2

R2 1� e�R=‘
� �

þ 2‘
R

e�R=‘

 !
dL0r: ð58Þ

The simplicity of our results is based on the use of gradient elastic-
ity theory of Helmholtz type. Our results can be used in computer
simulations of dislocation cores at nano-scale and in numerics as
fast numerical sums of the relevant elastic fields as it is used for
the classical equations (e.g. Ghoniem et al., 1999).

2.2. Straight dislocations

In this subsection, using the modified Mura equation of gradient
elasticity of Helmholtz type (40), the non-singular elastic
distortion fields of straight dislocations as a check of our general
approach are calculated.

2.2.1. Screw dislocation
A screw dislocation corresponds to the anti-plane strain prob-

lem. The Green function of the anti-plane strain problem in
gradient elasticity of Helmholtz type is nothing but the Green
function of the two-dimensional Helmholtz–Laplace equation
and it reads (see Eq. (B.21))

GzzðRÞ ¼ �
1

2pl
cE þ ln Rþ K0 R=‘ð Þf g; ð59Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
, cE is the Euler constant and Kn is

the modified Bessel function of order n. The Green function (59) is
non-singular. The gradient of the Green function (59) is obtained as

Gzz;kðRÞ ¼ �
1

2pl
Rk

R2 1� R
‘

K1 R=‘ð Þ
� 


: ð60Þ

Next, substituting Eq. (60) and the dislocation density of a screw
dislocation a0

zz ¼ bzdðxÞdðyÞ into Eq. (40), the elastic distortion pro-
duced by a screw dislocation is obtained. For an infinite screw dis-
location along the z-axis with Burgers vector bz, the non-singular
components for the elastic distortion are calculated as

bzx ¼ �
bz

2p
y
r2 1� r

‘
K1ðr=‘Þ

n o
; ð61Þ

bzy ¼
bz

2p
x
r2 1� r

‘
K1ðr=‘Þ

n o
; ð62Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The expressions obtained earlier by Lazar

(2003) and Lazar and Maugin (2006a) are recovered. In the limit
‘! 0, the classical expressions given by DeWit (1973b) are recov-
ered in Eqs. (61) and (62).

The Green function (59) gives the non-singular displacement
field uz ¼ �Gzzfz of a line force with the magnitude fz calculated
by Lazar and Maugin (2006b) in the framework of gradient
elasticity.

2.2.2. Edge dislocation
Now the plane strain problem of an edge dislocation is investi-

gated. The Green tensor of the plane strain problem in gradient
elasticity of Helmholtz type is derived as (see Eq. (B.17))

GijðRÞ¼�
1

2pl
dij cEþ lnRþK0 R=‘ð Þf g

þ 1
16plð1�mÞ@i@j R2 cEþ lnRð Þþ4‘2 cEþ lnRþK0 R=‘ð Þð Þ

n o
:

ð63Þ
It is obvious that the terms proportional to the Euler constant do not
contribute to the elastic distortion fields. The two-dimensional
Green tensor (63) is non-singular. In the limit ‘! 0, the two-
dimensional Green tensor of classical elasticity (Mura, 1987; Li
and Wang, 2008) is recovered in Eq. (63). The gradient of the Green
tensor (63) is given by

Gij;kðRÞ ¼ �
1

8plð1� mÞ ð3� 4mÞdij
Rk

R2 � dik
Rj

R2 � djk
Ri

R2 þ 2
RiRjRk

R4

	
þ 2

R2 dijRk þ dikRj þ djkRi � 4
RiRjRk

R2

� �
2‘2

R2 � K2 R=‘ð Þ
 !

� 4ð1� mÞdij
Rk

‘R
� 2

RiRjRk

‘R3

� �
K1 R=‘ð Þ



: ð64Þ

Substituting Eq. (64) and the dislocation density of an edge
dislocation along z axis with Burgers vector bx, a0

xz ¼ bxdðxÞdðyÞ, into
Eq. (40), the elastic distortion of an edge dislocation is obtained.
Eventually, the non-vanishing components of the elastic distortion
of an edge dislocation are calculated as

bxx ¼ �
bx

4pð1� mÞ
y
r2

(
ð1� 2mÞ þ 2x2

r2 þ
4‘2

r4 ðy
2 � 3x2Þ

�2ðy2 � 3x2Þ
r2 K2ðr=‘Þ �

2ðy2 � mr2Þ
‘r

K1ðr=‘Þ
)
; ð65Þ

bxy ¼
bx

4pð1� mÞ
x
r2

(
ð3� 2mÞ � 2y2

r2 �
4‘2

r4 ðx
2 � 3y2Þ

þ2ðx2 � 3y2Þ
r2 K2ðr=‘Þ �

2 y2 þ ð1� mÞr2
� �

‘r
K1ðr=‘Þ

)
; ð66Þ

byx ¼ �
bx

4pð1� mÞ
x
r2

(
ð1� 2mÞ þ 2y2

r2 þ
4‘2

r4 ðx
2 � 3y2Þ

�2ðx2 � 3y2Þ
r2 K2ðr=‘Þ þ

2 y2 � ð1� mÞr2
� �

‘r
K1ðr=‘Þ

)
; ð67Þ

byy ¼ �
bx

4pð1� mÞ
y
r2

(
ð1� 2mÞ � 2x2

r2 �
4‘2

r4 ðy
2 � 3x2Þ

þ2ðy2 � 3x2Þ
r2 K2ðr=‘Þ �

2ðx2 � mr2Þ
‘r

K1ðr=‘Þ
)
; ð68Þ

which are non-singular and agree with the formulae given by Lazar
(2003) and Lazar and Maugin (2006a). In the limit ‘! 0, we obtain
in Eqs. (65)–(68) the classical expressions given by DeWit (1973b).
As discussed by Lazar et al. (2006a), the dislocation core radius can
be defined straightforwardly in the framework of gradient elasticity
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as Rc ’ 6‘. If ‘ ’ 0:4a, where a denotes the lattice parameter, is
adopted as proposed by Eringen (1983), the dislocation core radius
is Rc ’ 2:5a. Using ‘ ’ 0:4a, the internal length reduces to ‘ ’ 1:97 Å
for lead (Pb) with a ¼ 4:95 Å.

Note that the two-dimensional Green function (63) gives the
non-singular displacement field, ui ¼ �Gijfj, of a line force with
magnitude fj calculated by Lazar and Maugin (2006b) in the frame-
work of gradient elasticity.

3. Gradient elasticity of bi-Helmholtz type

In this section, gradient elasticity theory of higher order is con-
sidered. Gradient elasticity theory of higher order was originally
introduced by Mindlin (1965); Mindlin (1972) (see also, Jaunzemis,
1967; Wu, 1992; Agiasofitou and Lazar, 2009). Mindlin’s theory of
second strain gradient elasticity involves for isotropic materials, in
addition to the two Lamé constants, sixteen additional material
constants. These constants produce four characteristic length
scales.

A simple and robust gradient elasticity of higher order which is
called gradient elasticity theory of bi-Helmholtz type was intro-
duced by Lazar et al. (2006a) and Lazar and Maugin (2006a) and
successfully applied to the problems of straight dislocations (Lazar
et al., 2006a; Lazar and Maugin, 2006a), straight disclinations
(Deng et al., 2007) and point defects (Zhang et al., 2006). Lazar
et al., 2006a and Lazar and Maugin, 2006a have shown that all state
quantities are non-singular. By means of this second order gradient
theory it is possible to eliminate not only the singularities of the
strain and stress tensors, but also the singularities of the double
and triple stress tensors and of the dislocation density tensors of
straight dislocations at the dislocation line. In general, all fields cal-
culated in the theory of gradient elasticity of bi-Helmholtz type are
smoother than those calculated by gradient elasticity theory of
Helmholtz type. In general, there a two main motivations for the
use of gradient elasticity of bi-Helmholtz type: a consistent regu-
larization of all state quantities, and a more realistic modelling of
dispersion relations. A simple higher-order gradient theory in or-
der to investigate dislocation loops should be used. The theory of
gradient elasticity of bi-Helmholtz type is the gradient version of
nonlocal elasticity of bi-Helmholtz type (Lazar et al., 2006b).

The strain energy density of gradient elasticity theory of bi-
Helmholtz type for an isotropic, linearly elastic material has the
form (Lazar et al., 2006a)

W ¼ 1
2

Cijklbijbkl þ
1
2
‘2

1Cijkl@mbij@mbkl þ
1
2
‘4

2Cijkl@n@mbij@n@mbkl; ð69Þ

where ‘1 ¼ ‘; ‘2 is another characteristic length scale and Cijkl is
given in (3). Due to the symmetry of Cijkl, Eq. (69) is equivalent to

W ¼ 1
2

Cijkleijekl þ
1
2
‘2

1Cijkl@meij@mekl þ
1
2
‘4

2Cijkl@n@meij@n@mekl: ð70Þ

In addition to the constitutive Eqs. (10) and (11) another one is
present in such a higher-order gradient theory,

sijkl ¼
@W

@@ l@kbij
¼ @W
@@l@keij

¼ ‘4
2Cijmn@l@kbmn ¼ ‘4

2@l@krij; ð71Þ

where sijkl is called the triple stress tensor. It can be seen that ‘2 is
the characteristic length scale for triple stresses. On the other hand,
‘1 is the characteristic length scale for double stresses. Using Eqs.
(10), (11), and (71), Eq. (70) can also be written as (Lazar et al.,
2006a)

W ¼ 1
2
rijeij þ

1
2
‘2

1@krij@keij þ
1
2
‘4

2@l@krij@l@keij: ð72Þ

The strain energy density (72) exhibits the symmetry in rij and eij,
in @krij and @keij, and in @ l@krij and @l@keij. The condition for non-
negative strain energy density, W P 0, gives
‘2
1 P 0; ‘4

2 P 0; ð73Þ

in addition to ð3lþ 2kÞP 0 and l P 0.
The total stress tensor reads now

r0
ij ¼ rij � @ksijk þ @l@ksijkl: ð74Þ

In absence of body forces, the equation of equilibrium has the fol-
lowing form

@jr0
ij ¼ @jðrij � @ksijk þ @l@ksijklÞ ¼ 0: ð75Þ

Using Eqs. (11) and (71), the total stress tensor (74) can be written

r0
ij ¼ Lrij; ð76Þ

where the differential operator L is given by

L ¼ 1� ‘2
1Dþ ‘

4
2DD

� �
¼ 1� c2

1D
� �

1� c2
2D

� �
ð77Þ

with

c2
1 ¼

‘2
1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

‘4
2

‘4
1

s !
; ð78Þ

c2
2 ¼

‘2
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

‘4
2

‘4
1

s !
ð79Þ

and

‘2
1 ¼ c2

1 þ c2
2; ð80Þ

‘4
2 ¼ c2

1c2
2: ð81Þ

Due to its structure as a product of two Helmholtz operators, the
differential operator (77) is called bi-Helmholtz operator.

An important point, is the question concerning the mathemati-
cal character of the length scales c1 and c2. Mindlin, 1965 (see also,
Mindlin, 1972; Wu, 1992) pointed out that the conditions for non-
negative W supply no indications of the character, real or complex,
of the characteristic lengths. Mindlin (1965) and Wu (1992) have
treated the characteristic lengths as if they were real and positive.
They also pointed out that a complex character of the lengths is
equally admissible. The character, real or complex, of the lengths
dictates the behaviour of the field variables. In the theory of gradi-
ent elasticity of bi-Helmholtz type the condition for the character,
real or complex, of the length scales c1 and c2 can be obtained from
the condition if the argument of the square root in Eqs. (78) and
(79) is positive or negative. Thus, c1 and c2 are real if

‘4
1 � 4‘4

2 P 0; ð82Þ

and c1 and c2 are complex if

‘4
1 � 4‘4

2 < 0: ð83Þ

If the lengths c1 and c2 are complex, then the behaviour of the solu-
tions of the field quantities would be oscillatory. In this case, the
far-field behaviour of the strain and stress fields of dislocations
would not agree with the classical behaviour. The limit from gradi-
ent elasticity of bi-Helmholtz type to gradient elasticity of Helm-
holtz type is: c2 ! 0; ‘2 ! 0 and c1 ! ‘1. If c1 is complex, then
also ‘1 becomes complex what would be rather strange. Thus, a real
character of the length scales c1 and c2 seems to be more realistic
and more physical. In addition, Zhang et al., 2006 determined, in
an atomistic calculation, the length scales c1 and c2 as positive
and real for graphene. In what follows, the length scales c1 and c2

will be treated as if they are real and positive.
The Green tensor of the bi-Helmholtz–Navier equation is calcu-

lated as (see Eq. (B.27))

GijðRÞ ¼
1

16plð1� mÞ 2ð1� mÞdijD� @ i@j
� �

AðRÞ; ð84Þ
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where the elementary function (25) is changed to

AðRÞ ¼ Rþ 2ðc2
1 þ c2

2Þ
R

� 2
c2

1 � c2
2

1
R

c4
1e�R=c1 � c4

2e�R=c2
� �

: ð85Þ

Eq. (85) is the Green function of the three-dimensional
bi-Helmholtz-bi–Laplace equation. It is worth noting that the Green
tensor (84) with (85) is in agreement with the corresponding
expression derived by Zhang et al. (2006). On the other hand, the
Green function of the bi-Helmholtz equation is given by (e.g. Lazar
et al., 2006b)

GðRÞ ¼ 1
4pðc2

1 � c2
2ÞR

e�R=c1 � e�R=c2
� �

: ð86Þ

In the framework of gradient elasticity of bi-Helmholtz, the differ-
ential operator of bi-Helmholtz type (77) appears in Eqs. (15)–(18).

If we use Eqs. (A.9) and (A.10) for the differentiation of Eq. (84),
we obtain the explicit form of the three-dimensional Green tensor
of the bi-Helmholtz–Navier equation

GijðRÞ¼
1

16plð1�mÞ
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2
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� 1
c2
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2
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þRiRj
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1
R2 c4

1e�R=c1�c4
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:

ð87Þ

The Green tensor (87) gives the non-singular displacement field
ui ¼ Gijfj of the Kelvin point force problem, in the framework of gra-
dient elasticity of bi-Helmholtz type.

3.1. Dislocation loops

The calculation of the characteristic fields of a dislocation loop
in gradient elasticity of bi-Helmholtz type, is analogous to the
technique used in gradient elasticity of Helmholtz type. The only
difference in the results is that now the Green function (86) and
the elementary function (85) of bi-Helmholtz type enter the char-
acteristic fields of a dislocation loop. In gradient elasticity of bi-
Helmholtz type, the dislocation density tensor (36) and the plastic
distortion tensor (38) are given in terms of the Green function of
bi-Helmholtz type (86). Thus, they are calculated as

aijðxÞ ¼
bi

4pðc2
1 � c2

2Þ

I
L

e�R=c1 � e�R=c2

R
dL0j; ð88Þ

bP
ijðxÞ ¼ �

bi

4pðc2
1 � c2

2Þ

Z
S

e�R=c1 � e�R=c2

R
dS0j: ð89Þ

In the limit R! 0, the integrands of Eqs. (88) and (89) are non-sin-
gular at the dislocation line in contrast to the corresponding ones,
Eqs. (37) and (39), calculated in gradient elasticity of Helmholtz
type. On the other hand, the elastic distortion tensor (45), the elastic
strain tensor (46), the elastic dilatation (47), the elastic rotation
vector (48), the stress tensor (49), and the displacement vector
(55) are given in terms of the elementary function (85) and only
(85) has to be substituted in these formulae. The explicit formulae
are not reproduced. The only difference between the fields of a dis-
location loop in gradient elasticity of bi-Helmholtz type, and of
Helmholtz type is that the Green function of bi-Helmholtz type
(86) and the elementary function (85) have to be substituted in-
stead of the Green function of Helmholtz type (28) and the elemen-
tary function (17). For the derivatives of the function (85), Eqs.
(A.7)–(A.12) can be substituted into the corresponding formulae.
The characteristic fields of a dislocation loop in gradient elasticity
of bi-Helmholtz type retain all the analytical tensor structure of
the corresponding classical formulae.

The triple stress tensor of a dislocation loop is easily obtained if
the stress tensor rij is substituted into Eq. (71). In gradient elastic-
ity of bi-Helmholtz type the fields produced by a dislocation loop
are smoother that those predicted by gradient elasticity of Helm-
holtz type.
3.2. Straight dislocations

In this subsection, the modified Mura Equation (40) is used for
gradient elasticity of bi-Helmholtz type. The technique of Green
functions is used in order to determine the non-singular elastic dis-
tortion of straight dislocations.
3.2.1. Screw dislocation
The Green function of the anti-plane strain problem in gradient

elasticity of bi-Helmholtz type is the Green function of the two-
dimensional bi-Helmholtz–Laplace equation and is given by (see
Eq. (B.34))

GzzðRÞ ¼ �
1

2pl
cE þ ln Rþ 1

c2
1 � c2

2

c2
1K0 R=c1ð Þ � c2

2K0 R=c2ð Þ
� �� 


;

ð90Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
. The gradient of the Green function

(90) is calculated as

Gzz;kðRÞ ¼ �
1

2pl
Rk

R2 1� 1
c2

1 � c2
2

�
c1RK1 R=c1ð Þ � c2RK1ðR=c2

�� 

:

ð91Þ

If Eq. (91) and a0
zz ¼ bzdðxÞdðyÞ are substituted into Eq. (40), the elas-

tic distortion produced by a screw dislocation with Burgers vector
bz is obtained

bzx ¼ �
bz

2p
y
r2 1� 1

c2
1 � c2

2

c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �
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; ð92Þ

bzy ¼
bz

2p
x
r2 1� 1

c2
1 � c2

2

c1rK1ðr=c1Þ � c2rK1ðr=c2Þ½ �
� 


; ð93Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Eqs. (92) and (93) are in agreement with the

expressions obtained by Lazar and Maugin (2006a).
The Green function (90) gives the non-singular displacement

field uz ¼ �Gzzfz of a line force with the magnitude fz in the frame-
work of gradient elasticity of bi-Helmholtz type.
3.2.2. Edge dislocation
The plane strain problem of an edge dislocation is now investi-

gated. The Green tensor of the plane strain problem in gradient
elasticity of bi-Helmholtz type is found as (see Eq. (B.30))

GijðRÞ ¼ �
1

2pl
dij cE þ ln Rþ 1

c2
1 � c2

2

c2
1K0 R=c1ð Þ � c2

2K0 R=c2ð Þ
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2

c4
1K0 R=c1ð Þ � c4

2K0 R=c2ð Þ
� �


: ð94Þ

The gradient of the Green tensor Eq. (94) is calculated as



Table 1
Comparison of the basic quantities in different dislocation theories (classical
dislocation theory, Cai et al. and gradient theory of Helmholtz type).

Classical theory
(DeWit, 1960)

Cai et al., 2006 Lazar [this paper]

R Ra AðRÞ
DDR ¼ �8pdðxÞ DDRa ¼ �8pw DDAðRÞ ¼ �8pG

Ra ¼ R �w AðRÞ ¼ R � G
w chosen to obtain: LG ¼ dðxÞ, L ¼ 1� ‘2D

Ra ¼ ½R2 þ a2�1=2 AðRÞ ¼ Rþ 2‘2

R 1� e�R=‘
� �

a – arbitrary constant ‘ – characteristic length

w ¼ 15a4=½8pðr2 þ a2Þ7=2� G ¼ e�r=‘=½4p‘2r�
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If Eq. (95) and a0
xz ¼ bxdðxÞdðyÞ are substituted into Eq. (40), the

non-vanishing components of the elastic distortion of an edge
dislocation are found as
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which are in agreement with the formulae given by Lazar and
Maugin (2006a).

The two-dimensional Green function (94) gives the non-singu-
lar displacement field, ui ¼ �Gijfj, of a line force with magnitude fj

calculated in the framework of gradient elasticity of bi-Helmholtz
type.

4. Conclusions

Non-singular dislocation fields are presented in the framework
of gradient elasticity. The technique of Green functions is used. The
Green tensors of all relevant partial differential equations of gener-
alized Navier type were calculated. For the first time, the elastic
distortion, plastic distortion, stress, displacement, and dislocation
density of a closed dislocation loop, using the theories of gradient
elasticity of Helmholtz type and of bi-Helmholtz type were calcu-
lated. Straight dislocations using Green tensors were revisited.
Such generalized continuum theories allow dislocation core
spreading in a straightforward manner. In classical dislocation the-
ory the dislocation function is a Dirac delta function, dðxÞ, without
core spreading. In the non-singular approaches by Cai et al. (2006)
and Lazar, presented in the present paper, the dislocation spread-
ing functions are w and G, respectively (see Table 1). In the theory
of gradient elasticity all formulae are closed in contrast to the the-
ory of Cai et al. (2006) where the spreading function w is deter-
mined in a sophisticated way in order to obtain Ra ¼ ½R2 þ a2�1=2.
Due to the use of simplified theories of gradient elasticity, the dis-
location fields retain most of the analytical structure of the classi-
cal expressions for these quantities but remove the singularity at
the dislocation core due to the mathematical regularization of
the classical singular expressions. In gradient elasticity of
Helmholtz type, the characteristic length ‘ takes into account the
information from atomistic calculations as discussed in this paper.
In a straightforward manner, the length ‘ determines the
dislocation core radius. Therefore, in gradient elasticity it is not
necessary to introduce an artificial core-cutoff radius. It should
be mentioned that the characteristic lengths which arise in first
strain gradient elasticity (e.g. Maranganti and Sharma, 2007;
Shodja and Tehranchi, 2010) and in second strain gradient
elasticity (e.g. Zhang et al., 2006; Shodja et al., 2012) have been
recently computed using atomistic approaches.

The obtained results can be used in computer simulations and
numerics of dislocation cores, discrete dislocation dynamics, and
arbitrary 3D dislocation configurations. The results can be imple-
mented in dislocation dynamics codes (finite element implementa-
tion, technique of fast numerical sums), and compared to atomistic
models (e.g. Ghoniem et al., 1999; Li and Wang, 2008).
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Appendix A. Appendix: A and its derivatives

In gradient elasticity theory, the stress tensor, the elastic distor-
tion tensor, the elastic strain tensor, and the displacement vector of
a dislocation loop are given in terms of derivatives of the elemen-
tary function A.

A.1. Helmholtz type

For gradient elasticity of Helmholtz type, the elementary func-
tion A is given by

A ¼ Rþ 2‘2

R
1� e�R=‘
� �

: ðA:1Þ

Higher-order derivatives of A are given by the following set of
equations
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A;i ¼
Ri

R
1� 2‘2

R2 1� e�R=‘
� �

þ 2‘
R

e�R=‘

" #
; ðA:2Þ

where Ri ¼ xi � x0i,

A;ij ¼
dij

R
1� 2‘2

R2 1� e�R=‘
� �

þ 2‘
R

e�R=‘

" #

� RiRj

R3 1� 6‘2

R2 1� e�R=‘
� �

þ 2þ 6‘
R

� �
e�R=‘

" #
; ðA:3Þ

A;ii ¼
2
R

1� e�R=‘
� �

; ðA:4Þ

A;ijk ¼ �
dijRk þ dikRj þ djkRi

R3 1� 6‘2

R2 1� e�R=‘
� �

þ 2þ 6‘
R

� �
e�R=‘

" #

þ 3RiRjRk

R5 1� 10‘2

R2 1� e�R=‘
� �

þ 4þ 10‘
R
þ 2R

3‘

� �
e�R=‘

" #
ðA:5Þ

and

A;iik ¼ �
2Rk

R3 1� 1þ R
‘

� �
e�R=‘

� �
: ðA:6Þ

The expressions (A.1)–(A.6) are non-singular. For R! 0, they are
either zero or finite.

A.2. Bi-Helmholtz type

In gradient elasticity of bi-Helmholtz type, the elementary func-
tion A reads

A ¼ Rþ 2ðc2
1 þ c2

2Þ
R

� 2
c2

1 � c2
2

1
R

c4
1e�R=c1 � c4

2e�R=c2
� �

: ðA:7Þ

The higher-order derivatives of A are given by

A;i ¼
Ri

R
1� 2ðc2

1 þ c2
2Þ

R2 þ 2
c2

1 � c2
2

1
R2 c4

1e�R=c1 � c4
2e�R=c2

� �	
þ 2

c2
1 � c2

2

1
R

c3
1e�R=c1 � c3

2e�R=c2
� �


; ðA:8Þ

A;ij¼
dij

R
1�2ðc2

1þc2
2Þ

R2 þ 2
c2

1�c2
2

1
R2 c4

1e�R=c1 �c4
2e�R=c2

� �	
þ 2

c2
1�c2

2

1
R

c3
1e�R=c1 �c3

2e�R=c2
� �


�RiRj

R3 1�6ðc2
1þc2

2Þ
R2 þ 6

c2
1�c2

2

1
R2 c4

1e�R=c1 �c4
2e�R=c2
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c2
1�c2

2

1
R

c3
1e�R=c1 �c3

2e�R=c2
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þ 2
c2
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2

c2
1e�R=c1 �c2

2e�R=c2
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A;ii ¼
2
R

1� 1
c2

1 � c2
2

c2
1e�R=c1 � c2

2e�R=c2
� �	 


; ðA:10Þ

A;ijk¼�
dijRkþdikRjþdjkRi

R3 1�6ðc2
1þ c2

2Þ
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c2
1�c2

2

1
R2 c4

1e�R=c1 � c4
2e�R=c2
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1
R
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R
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and

A;iik ¼ �
2Rk

R3 1� 1
c2

1 � c2
2

c2
1e�R=c1 � c2

2e�R=c2
� �	

� R
c2
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2
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The expressions (A.7)–(A.12) are non-singular. In the limit c2 ! 0
and c1 ¼ ‘, Eqs. (A.7)–(A.12) reduce to Eqs. (A.1)–(A.6).
Appendix B. Green tensors of generalized Navier equations

The following notation is used for the n-dimensional Fourier
transform (Guelfand and Chilov, 1962)

ef ðkÞ � FðnÞ f ðrÞ½ � ¼
Z þ1

�1
f ðrÞeþik�rdr; ðB:1Þ

f ðrÞ � F�1
ðnÞ
ef ðkÞh i

¼ 1
ð2pÞn

Z þ1

�1

ef ðkÞe�ik�rdk: ðB:2Þ

We have (Wladimirow, 1971; Nowacki, 1986)

F�1
ð2Þ

1

k2

	 

¼ � 1

2p
cE þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
; ðB:3Þ

F�1
ð3Þ

1

k2

	 

¼ 1

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p ; ðB:4Þ

F�1
ð2Þ

1

k4

	 

¼ 1

8p
ðx2 þ y2Þ cE þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
; ðB:5Þ
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1

k4

	 

¼ � 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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F�1
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1
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" #
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K0
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F�1
ð3Þ

1
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" #
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p exp �
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p
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� �
: ðB:8Þ
B.1. Green tensor of the Helmholtz–Navier equation

The Green tensor of the Helmholtz–Navier equation is defined
by

ð1� ‘2DÞ ldilDþ ðkþ lÞ@ i@lð ÞGljðrÞ ¼ �dijdðxÞ: ðB:9Þ

The Fourier transform of Eq. (B.9) reads

ð1þ ‘2k2Þ ldilk
2 þ ðkþ lÞkikl

� �eGljðkÞ ¼ dij; ðB:10Þ

where k ¼ 2lm=ð1� 2mÞ and m is Poisson’s ratio. The Fourier trans-
formed Green tensor is found as

eGijðkÞ ¼
1
l

dij

k2 �
1

2ð1� mÞ
kikj

k4

	 

1

1þ ‘2k2 : ðB:11Þ

Using partial fractions and the inverse Fourier transform, we find
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r
e�r=‘
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ðB:12Þ

and
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;

ðB:13Þ

the three-dimensional Green tensor of the Helmholtz–Navier equa-
tion is calculated as

GijðrÞ ¼
1

16plð1� mÞ 2ð1� mÞdijD� @i@ j
� �

r þ 2‘2

r
1� e�r=‘
� �" #

;

ðB:14Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

On the other hand, using
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the two-dimensional Green tensor of the Helmholtz–Navier equa-
tion is obtained as

GijðrÞ ¼ �
1

2pldij cE þ ln r þ K0 r=‘ð Þf g

þ 1
16plð1� mÞ @ i@j r2 cE þ ln rð Þ þ 4‘2 cE þ ln r þ K0 r=‘ð Þð Þ

� �
;

ðB:17Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

B.2. Green function of the Helmholtz–Laplace equation

For the anti-plane strain problem, the Green tensor of the
Navier–Helmholtz equation reduces to the Green function of the
two-dimensional Helmholtz–Laplace equation which is defined by

ð1� ‘2DÞDGzzðrÞ ¼ �
1
l

dðxÞ: ðB:18Þ

The Fourier transform of Eq. (B.18) reads

ð1þ ‘2k2Þk2eGzzðkÞ ¼
1
l
: ðB:19Þ

The Fourier transformed Green function is

eGzzðkÞ ¼
1
l

1

k2ð1þ ‘2k2Þ
: ðB:20Þ

Using Eq. (B.16), the two-dimensional Green function is calculated
as

GzzðrÞ ¼ �
1

2pl
cE þ ln r þ K0 r=‘ð Þf g: ðB:21Þ
B.3. Green tensor of the bi-Helmholtz–Navier equation

The Green tensor of the bi-Helmholtz–Navier equation is
defined by
ð1� c2
1DÞð1� c2

2DÞ ldilDþ ðkþ lÞ@i@ lð ÞGljðrÞ ¼ �dijdðxÞ: ðB:22Þ

The Fourier transform of Eq. (B.22) reads
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1k2Þð1þ c2

2k2Þ ldilk
2 þ ðkþ lÞkikl
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The Fourier space Green tensor is

eGijðkÞ ¼
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the three-dimensional Green tensor of the bi-Helmholtz–Navier
equation is found as
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where r ¼
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p
.

In two dimensions, we use the formulae
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Eventually, the two-dimensional Green tensor of the bi-Helmholtz–
Navier equations is obtained as

GijðrÞ ¼ �
1

2pl
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B.4. Green function of the bi-Helmholtz-Laplace equation

For the anti-plane strain problem, the Green tensor of the
Navier–Helmholtz equation reduces to the Green function of the
two-dimensional bi-Helmholtz-Laplace equation which is defined
by

ð1� c2
1DÞð1� c2

2DÞDGzzðrÞ ¼ �
1
l

dðxÞ: ðB:31Þ

The Fourier transform of Eq. (B.31) reads
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The Fourier transformed Green function is
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Using Eq. (B.28), the two-dimensional Green function is obtained as
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1

2pl
cE þ ln r þ 1

c2
1 � c2

2

c2
1K0 r=c1ð Þ � c2

2K0 r=c2ð Þ
� �� 


:

ðB:34Þ
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