955 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationInteractive editing and manipulation of digital media is a fundamental component in digital content creation. One media in particular, digital imagery, has seen a recent increase in popularity of its large or even massive image formats. Unfortunately, current systems and techniques are rarely concerned with scalability or usability with these large images. Moreover, processing massive (or even large) imagery is assumed to be an off-line, automatic process, although many problems associated with these datasets require human intervention for high quality results. This dissertation details how to design interactive image techniques that scale. In particular, massive imagery is typically constructed as a seamless mosaic of many smaller images. The focus of this work is the creation of new technologies to enable user interaction in the formation of these large mosaics. While an interactive system for all stages of the mosaic creation pipeline is a long-term research goal, this dissertation concentrates on the last phase of the mosaic creation pipeline - the composition of registered images into a seamless composite. The work detailed in this dissertation provides the technologies to fully realize interactive editing in mosaic composition on image collections ranging from the very small to massive in scale

    Progressive Refinement Imaging

    Get PDF
    This paper presents a novel technique for progressive online integration of uncalibrated image sequences with substantial geometric and/or photometric discrepancies into a single, geometrically and photometrically consistent image. Our approach can handle large sets of images, acquired from a nearly planar or infinitely distant scene at different resolutions in object domain and under variable local or global illumination conditions. It allows for efficient user guidance as its progressive nature provides a valid and consistent reconstruction at any moment during the online refinement process. // Our approach avoids global optimization techniques, as commonly used in the field of image refinement, and progressively incorporates new imagery into a dynamically extendable and memory‐efficient Laplacian pyramid. Our image registration process includes a coarse homography and a local refinement stage using optical flow. Photometric consistency is achieved by retaining the photometric intensities given in a reference image, while it is being refined. Globally blurred imagery and local geometric inconsistencies due to, e.g. motion are detected and removed prior to image fusion. // We demonstrate the quality and robustness of our approach using several image and video sequences, including handheld acquisition with mobile phones and zooming sequences with consumer cameras

    Advances in Cultural Heritage Studies : Year 2020 : Contributions of the European Students’ Association for Cultural Heritage

    Get PDF
    The announcement of the creation of a European Year of Cultural Heritage (year 2018) – by the Decision 2017/864 of the European Parliament – encouraged the creation, in 2017, of the European Students’ Association for Cultural Heritage (ESACH). ESACH has become the first still-growing interdisciplinary and cross- -generational network in the field. Currently brings together young researchers and researchers at early stages of their careers, in the fields of culture and heritage, from all kinds of academic disciplines and is made up of members from various European universities and research centres (see www.esach.org). Within the network, the main questions are: How do we engage with the past elements of our culture(s)? How and why do we protect culture as a genuine element of a contemporary cultural system? What do younger generations state as heritage and what ways do they see to safeguard and experience it? ESACH stands up for a participatory way of involvement and is eager to take part in the cultural discourse at European and national levels. Since ESACHS’ foundation, the Portuguese publisher Mazu Press (www.mazupress.com) has been associated with the initiatives of the Portuguese branch of ESACH based in Lisbon (Sharing Heritage Lisbon), firstly with the promotion actions and then with the publication of the book “New Perspectives in Interdisciplinary Cultural Heritage Studies. Contributions of the European Students’ Association for Cultural Heritage in the European Year of Cultural Heritage 2018”. In this atypical Covid-19 pandemic year, Mazu Press again invited ESACH to join the renewed idea of “unifying through Cultural Heritage”, creating the opportunity for all to associate their efforts to this volume of “Advances in Cultural Heritage Studies, Year 2020”. Until now, ESACH members have been given the opportunity to contribute their ideas in several European events organized by the respective stakeholders, such as the Genoa Meeting, in October 2019, which had the cultural, logistic and financial support of the University of Genoa and foremost the PhD Course in Study and Enhancement of the Historical, Artistic-Architectural and Environmental Heritage. This book brings together twenty chapters by twenty four authors from Canada, Greece, Ireland, Italy, Poland, Portugal, Slovakia, Spain and Turkey. This sharing of knowledge, culture and heritage studies, through various disciplines, shows the richness – advances and new perspectives – generated by the common passion for cultural heritage.Mazutech R&D; Università di Genova / Scuola di Scienze Umanistiche / Dottorato in Studio e Valorizzazione del Patrimonio Storico, Artistico-Architettonico e Ambientaleinfo:eu-repo/semantics/publishedVersio

    Seabed fluid flow-related processes: evidence and quantification based on high-resolution imaging techniques and GIS analyses

    Get PDF
    This work provides new insights on different aspects of seabed fluid flow processes based on seafloor observations. The methods used entirely rely on ROV-based high-resolution imaging and mapping techniques. Optical data are used to produce visual maps of the seafloor, in the form of geo-referenced video- and photo-mosaics, whereas acoustic techniques allow mapping the micro-bathymetry of the seabed, as well as the signal reflectivity of the sediment surface and of the water column. This work presents three case studies, about two sites of seabed fluid flow: the Menez Gwen hydrothermal vent on the MAR and the REGAB pockmark in the Lower Congo Basin. On the technical side, some of the high-resolution techniques used in this thesis are not commonly used by the marine scientific community. This is particularly the case for large-area photo-mosaics. Although the interest in mosaicking is growing, there are still no tools freely and readily available to scientists to routinely construct large-area photo-mosaics. Therefore, this work presents a MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox), which was developed as part of this thesis

    Data-driven 3D Reconstruction and View Synthesis of Dynamic Scene Elements

    Get PDF
    Our world is filled with living beings and other dynamic elements. It is important to record dynamic things and events for the sake of education, archeology, and culture inheritance. From vintage to modern times, people have recorded dynamic scene elements in different ways, from sequences of cave paintings to frames of motion pictures. This thesis focuses on two key computer vision techniques by which dynamic element representation moves beyond video capture: towards 3D reconstruction and view synthesis. Although previous methods on these two aspects have been adopted to model and represent static scene elements, dynamic scene elements present unique and difficult challenges for the tasks. This thesis focuses on three types of dynamic scene elements, namely 1) dynamic texture with static shape, 2) dynamic shapes with static texture, and 3) dynamic illumination of static scenes. Two research aspects will be explored to represent and visualize them: dynamic 3D reconstruction and dynamic view synthesis. Dynamic 3D reconstruction aims to recover the 3D geometry of dynamic objects and, by modeling the objects’ movements, bring 3D reconstructions to life. Dynamic view synthesis, on the other hand, summarizes or predicts the dynamic appearance change of dynamic objects – for example, the daytime-to-nighttime illumination of a building or the future movements of a rigid body. We first target the problem of reconstructing dynamic textures of objects that have (approximately) fixed 3D shape but time-varying appearance. Examples of such objects include waterfalls, fountains, and electronic billboards. Since the appearance of dynamic-textured objects can be random and complicated, estimating the 3D geometry of these objects from 2D images/video requires novel tools beyond the appearance-based point correspondence methods of traditional 3D computer vision. To perform this 3D reconstruction, we introduce a method that simultaneously 1) segments dynamically textured scene objects in the input images and 2) reconstructs the 3D geometry of the entire scene, assuming a static 3D shape for the dynamically textured objects. Compared to dynamic textures, the appearance change of dynamic shapes is due to physically defined motions like rigid body movements. In these cases, assumptions can be made about the object’s motion constraints in order to identify corresponding points on the object at different timepoints. For example, two points on a rigid object have constant distance between them in the 3D space, no matter how the object moves. Based on this assumption of local rigidity, we propose a robust method to correctly identify point correspondences of two images viewing the same moving object from different viewpoints and at different times. Dense 3D geometry could be obtained from the computed point correspondences. We apply this method on unsynchronized video streams, and observe that the number of inlier correspondences found by this method can be used as indicator for frame alignment among the different streams. To model dynamic scene appearance caused by illumination changes, we propose a framework to find a sequence of images that have similar geometric composition as a single reference image and also show a smooth transition in illumination throughout the day. These images could be registered to visualize patterns of illumination change from a single viewpoint. The final topic of this thesis involves predicting the movements of dynamic shapes in the image domain. Towards this end, we propose deep neural network architectures to predict future views of dynamic motions, such as rigid body movements and flowers blooming. Instead of predicting image pixels from the network, my methods predict pixel offsets and iteratively synthesize future views.Doctor of Philosoph

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd

    Semantic Segmentation for Real-World Applications

    Get PDF
    En visión por computador, la comprensión de escenas tiene como objetivo extraer información útil de una escena a partir de datos de sensores. Por ejemplo, puede clasificar toda la imagen en una categoría particular o identificar elementos importantes dentro de ella. En este contexto general, la segmentación semántica proporciona una etiqueta semántica a cada elemento de los datos sin procesar, por ejemplo, a todos los píxeles de la imagen o, a todos los puntos de la nube de puntos. Esta información es esencial para muchas aplicaciones de visión por computador, como conducción, aplicaciones médicas o robóticas. Proporciona a los ordenadores una comprensión sobre el entorno que es necesaria para tomar decisiones autónomas.El estado del arte actual de la segmentación semántica está liderado por métodos de aprendizaje profundo supervisados. Sin embargo, las condiciones del mundo real presentan varias restricciones para la aplicación de estos modelos de segmentación semántica. Esta tesis aborda varios de estos desafíos: 1) la cantidad limitada de datos etiquetados disponibles para entrenar modelos de aprendizaje profundo, 2) las restricciones de tiempo y computación presentes en aplicaciones en tiempo real y/o en sistemas con poder computacional limitado, y 3) la capacidad de realizar una segmentación semántica cuando se trata de sensores distintos de la cámara RGB estándar.Las aportaciones principales en esta tesis son las siguientes:1. Un método nuevo para abordar el problema de los datos anotados limitados para entrenar modelos de segmentación semántica a partir de anotaciones dispersas. Los modelos de aprendizaje profundo totalmente supervisados lideran el estado del arte, pero mostramos cómo entrenarlos usando solo unos pocos píxeles etiquetados. Nuestro enfoque obtiene un rendimiento similar al de los modelos entrenados con imágenescompletamente etiquetadas. Demostramos la relevancia de esta técnica en escenarios de monitorización ambiental y en dominios más generales.2. También tratando con datos de entrenamiento limitados, proponemos un método nuevo para segmentación semántica semi-supervisada, es decir, cuando solo hay una pequeña cantidad de imágenes completamente etiquetadas y un gran conjunto de datos sin etiquetar. La principal novedad de nuestro método se basa en el aprendizaje por contraste. Demostramos cómo el aprendizaje por contraste se puede aplicar a la tarea de segmentación semántica y mostramos sus ventajas, especialmente cuando la disponibilidad de datos etiquetados es limitada logrando un nuevo estado del arte.3. Nuevos modelos de segmentación semántica de imágenes eficientes. Desarrollamos modelos de segmentación semántica que son eficientes tanto en tiempo de ejecución, requisitos de memoria y requisitos de cálculo. Algunos de nuestros modelos pueden ejecutarse en CPU a altas velocidades con alta precisión. Esto es muy importante para configuraciones y aplicaciones reales, ya que las GPU de gama alta nosiempre están disponibles.4. Nuevos métodos de segmentación semántica con sensores no RGB. Proponemos un método para la segmentación de nubes de puntos LiDAR que combina operaciones de aprendizaje eficientes tanto en 2D como en 3D. Logra un rendimiento de segmentación excepcional a velocidades realmente rápidas. También mostramos cómo mejorar la robustez de estos modelos al abordar el problema de sobreajuste y adaptaciónde dominio. Además, mostramos el primer trabajo de segmentación semántica con cámaras de eventos, haciendo frente a la falta de datos etiquetados.Estas contribuciones aportan avances significativos en el campo de la segmentación semántica para aplicaciones del mundo real. Para una mayor contribución a la comunidad cientfíica, hemos liberado la implementación de todas las soluciones propuestas.----------------------------------------In computer vision, scene understanding aims at extracting useful information of a scene from raw sensor data. For instance, it can classify the whole image into a particular category (i.e. kitchen or living room) or identify important elements within it (i.e., bottles, cups on a table or surfaces). In this general context, semantic segmentation provides a semantic label to every single element of the raw data, e.g., to all image pixels or to all point cloud points.This information is essential for many applications relying on computer vision, such as AR, driving, medical or robotic applications. It provides computers with understanding about the environment needed to make autonomous decisions, or detailed information to people interacting with the intelligent systems. The current state of the art for semantic segmentation is led by supervised deep learning methods.However, real-world scenarios and conditions introduce several challenges and restrictions for the application of these semantic segmentation models. This thesis tackles several of these challenges, namely, 1) the limited amount of labeled data available for training deep learning models, 2) the time and computation restrictions present in real time applications and/or in systems with limited computational power, such as a mobile phone or an IoT node, and 3) the ability to perform semantic segmentation when dealing with sensors other than the standard RGB camera.The general contributions presented in this thesis are following:A novel approach to address the problem of limited annotated data to train semantic segmentation models from sparse annotations. Fully supervised deep learning models are leading the state-of-the-art, but we show how to train them by only using a few sparsely labeled pixels in the training images. Our approach obtains similar performance than models trained with fully-labeled images. We demonstrate the relevance of this technique in environmental monitoring scenarios, where it is very common to have sparse image labels provided by human experts, as well as in more general domains. Also dealing with limited training data, we propose a novel method for semi-supervised semantic segmentation, i.e., when there is only a small number of fully labeled images and a large set of unlabeled data. We demonstrate how contrastive learning can be applied to the semantic segmentation task and show its advantages, especially when the availability of labeled data is limited. Our approach improves state-of-the-art results, showing the potential of contrastive learning in this task. Learning from unlabeled data opens great opportunities for real-world scenarios since it is an economical solution. Novel efficient image semantic segmentation models. We develop semantic segmentation models that are efficient both in execution time, memory requirements, and computation requirements. Some of our models able to run in CPU at high speed rates with high accuracy. This is very important for real set-ups and applications since high-end GPUs are not always available. Building models that consume fewer resources, memory and time, would increase the range of applications that can benefit from them. Novel methods for semantic segmentation with non-RGB sensors.We propose a novel method for LiDAR point cloud segmentation that combines efficient learning operations both in 2D and 3D. It surpasses state-of-the-art segmentation performance at really fast rates. We also show how to improve the robustness of these models tackling the overfitting and domain adaptation problem. Besides, we show the first work for semantic segmentation with event-based cameras, coping with the lack of labeled data. To increase the impact of this contributions and ease their application in real-world settings, we have made available an open-source implementation of all proposed solutions to the scientific community.<br /
    corecore