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ABSTRACT

Multimodal Indexing of Presentation Videos

Michele Merler

This thesis presents four novel methods to help users efficiently and effectively retrieve information

from unstructured and unsourced multimedia sources, in particular the increasing amount and vari-

ety of presentation videos such as those in e-learning, conference recordings, corporate talks, and

student presentations.

We demonstrate a system to summarize, index and cross-reference such videos, and measure the

quality of the produced indexes as perceived by the end users. We introduce four major semantic

indexing cues: text, speaker faces, graphics, and mosaics, going beyond standard tag based searches

and simple video playbacks. This work aims at recognizing visual content “in the wild”, where the

system cannot rely on any additional information besides the video itself.

For text, within a scene text detection and recognition framework, we present a novel locally

optimal adaptive binarization algorithm, implemented with integral histograms. It determines of an

optimal threshold that maximizes the between-classes variance within a subwindow, with computa-

tional complexity independent from the size of the window itself. We obtain character recognition

rates of 74%, as validated against ground truth of 8 presentation videos spanning over 1 hour and

45 minutes, which almost doubles the baseline performance of an open source OCR engine.

For speaker faces, we detect, track, match, and finally select a humanly preferred face icon

per speaker, based on three quality measures: resolution, amount of skin, and pose. We register

a 87% accordance (51 out of 58 speakers) between the face indexes automatically generated from

three unstructured presentation videos of approximately 45 minutes each, and human preferences

recorded through Mechanical Turk experiments.

For diagrams, we locate graphics inside frames showing a projected slide, cluster them accord-

ing to an on-line algorithm based on a combination of visual and temporal information, and select

and color-correct their representatives to match human preferences recorded through Mechanical



Turk experiments. We register 71% accuracy (57 out of 81 unique diagrams properly identified,

selected and color-corrected) on three hours of videos containing five different presentations.

For mosaics, we combine two existing suturing measures, to extend video images into in-the-

world coordinate system. A set of frames to be registered into a mosaic are sampled according

to the PTZ camera movement, which is computed through least square estimation starting from

the luminance constancy assumption. A local features based stitching algorithm is then applied to

estimate the homography among a set of video frames and median blending is used to render pixels

in overlapping regions of the mosaic.

For two of these indexes, namely faces and diagrams, we present two novel MTurk-derived user

data collections to determine viewer preferences, and show that they are matched in selection by

our methods.

The net result work of this thesis allows users to search, inside a video collection as well as

within a single video clip, for a segment of presentation by professor X on topic Y , containing

graph Z.
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Chapter 1

Introduction

1.1 Motivation and Domain Description

The exponential diffusion of unstructured multimedia content on sites such as Youtube (48 hours

of video is uploaded every minute1) and Flikr2 has lately fostered a rapid growth of interest in the

multimedia and vision community toward a new line of systems to recognize people and activities

“in the wild” [Huang et al., 2007; Liu et al., 2009], that is, in less structured, unconstrained and more

realistic domains. Due to the lack of structure and to the low quality of the data, algorithms and

paradigms designed for professional content often cannot directly be applied to the aforementioned

domains, thus presenting a new challenge.

The work of this thesis is motivated by the need of an analysis paradigm for a particular instance

of such “wild videos”: unstructured presentation videos. Videos in this category have also been

wide spreading on the web, besides the already existing large archives of universities and private

companies. For example the portal Videolectures.net3 has reported 700 events, 10K authors, over

12K lectures, and 15K videos of approximately 50 minutes each, while TalkMiner4 has already

harvested from the web more than 24K video lectures and talks.

The focus of this thesis lies in finding effective and efficient methods to index and such videos

1http://www.youtube.com/t/press statistics

2www.flickr.com

3http://www.videolectures.net/

4http://talkminer.com/
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based on four major cues: text, speaker faces, graphics and mosaics. Our system is intended to

work in an unsourced framework, that is, without relying on any additional information besides the

video itself. While many new recording systems are explicitly designed to synchronously capture

all contents of presentations (including audio, video, and presentation material) [Zhang et al., 2008],

there already exist many large scale archives of raw videos, such as University lectures recordings,

for which no other information, including electronic copy of the slides, is available.

The “wild” presentation videos that we analyze present a challenge for standard processing

techniques, starting from the low quality. Unlike broadcast news, sports and music videos, TV

series episodes or movies, they were not captured by professionals or through an ad-hoc capture

systems, but with camcorders, personal video cameras or even smartphones. Besides the recording

process, resolution constitutes an issue also because of the compression coding applied when these

videos are uploaded to the web, due to bandwidth and storage constraints. Furthermore, they were

not edited in any way. Therefore they completely lack a structure, which is usually exploited by

content based video indexing and retrieval systems.

Figure 1.1 showcases some of the challenges involving the analysis of the content in this domain.

From the text and graphics recognition point of view, they present a challenge in that the camera

is rarely steady and its movement is unconstrained, the projected slides are often truncated out from

the field of view or occluded by the speakers. For what concerns face matching and recognition, the

system needs to take advantage of the segments in which the recording person focused his attention

on the speaker, zooming in on his or her face, as the regular full view recordings present faces with

a resolution too limited to properly extract rich descriptors.

The result work of this thesis allows users to search, inside a video collection as well as within

a single video clip, for a segment of presentation by professor X on topic Y , containing graph Z.

1.2 Thesis Contributions

This thesis introduces four novel semantic cues to index and cross-reference presentation videos:

text, speaker faces, graphics, and mosaics. These semantic indexing tools go beyond standard tag

based searches and simple video playbacks.

Most of the existing methods to summarize presentation videos rely on the availability of elec-
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Figure 1.1: Examples of some of the challenges introduced by the presentation videos domain.

The frames are sampled from an 11 seconds sequence from a video of students presentations, com-

pressed as 432x240 MPEG-1 at 30fps. Note the rapidly changing camera movement, represented by

gray arrows (right pan and zoom-in/zoom-out), which affects the resolution of the slide content as

well as the speaker face. Slides are truncated in almost all the frames and the compression artefacts

are evident at frame n+160.

tronic copies of the slides, which is not always realistic. Our work, on the other hand, focuses on the

particularly challenging “unsourced” domain, in which no other source of information is available

besides the video itself. Hence we propose a fully automatic method for summarizing and indexing

unstructured presentation videos based on the four semantic cues.

The contributions of this thesis can be summarized as follows:

1. Within the the text indexing module, we introduce a novel binarization algorithm, Local

Adaptive Otsu (LAO), to explicitly deal with the low quality of the video and the detected

scene text regions. Using the LAO algorithm we obtain character recognition rates of 74%, as

validated against ground truth of 8 presentation videos spanning over 1 hour and 45 minutes,

almost doubling the baseline performance of the Tesseract5 open source OCR engine.

2. We introduce a combination of a keyframe sampling method, which is proportional to esti-

mated PTZ camera motion, and of a local-features based image stitching algorithm, in order

to build video shots mosaics.

5http://code.google.com/p/tesseract-ocr/
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3. The visual indexing algorithms proposed in this thesis were explicitly designed to match

human preferences. When building the speaker faces and diagrams indexes, we adopt a user

centric perspective, using the results of two Amazon Mechanical Turk surveys to gauge user

preferences in terms of the visual appearance of the index icons. The results suggest that for

a face index, users prefer to see a three-quarter, head and shoulder view of a person. For a

diagram index, users prefer a white-balanced, color corrected image that covers as much as

possible the whole area of the diagram.

4. For speaker faces, we detect, track, match, and finally select a humanly preferred face icon per

speaker. The tracking algorithm integrates a generic object/face tracker as a noisy prediction

in a simplified version of a Kalman filter named K-Track, which uses object/face detections

as noisy observations. K-Track is used to mitigate the drifting effect, which typically affects

appearance based tracking algorithms. We registered up to 5.7% relative improvement in

tracking precision with respect to a state of the art multiple instance learning tracker on 3

unstructured presentation videos with a total of more than a quarter million frames.

5. We introduce the use of three quality measures, namely resolution, amount of skin, and pose,

in order to simultaneously perform two selection tasks needed within the face indexing frame-

work. The first selection process is necessary for tracks matching, in order to avoid the com-

putational burden of comparing every pair of faces in each track. The second selection is

needed for choosing a unique speaker face icon to be used in the final index. We register a

87% accordance (51 out of 58 speakers) between the face indexes automatically generated

from three unstructured presentation videos of approximately 45 minutes each, and human

preferences recorded through Mechanical Turk experiments.

6. We introduce, to the best of our knowledge, the first video index based on diagrams. We

employ the average amount of color shift in a frame, either toward a high or low color tem-

perature, to detect frames showing a projected slide. We cluster detected diagram regions

according to an on-line algorithm based on a combination of visual and temporal informa-

tion, and select and color-correct a representative per unique diagram. We register 71% ac-

curacy (57 out of 81 unique diagrams properly identified, selected and color-corrected) on

approximately three hours of videos containing five presentations.
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1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2 we provide a survey of related

work in automatic summarization and visualization of presentation videos, focusing in particular on

text and visual (faces and diagrams) based indexing.

We then proceed to presents the contributions of the thesis, articulated as parts of a system

that generates the semantic indexes, as outlined in Figure 1.2. In Chapter 3 we introduce the text

indexing component, focusing on the contribution of the new Local Adaptive Otsu binarization al-

gorithm in a standard scene text detection and recognition pipeline. This work has been introduced

in [Merler and Kender, 2009]. Chapter 3.5 describes the generation of video shots mosaics. Chap-

ter 4 presents the building blocks of the speaker face index, which rely on a steady-state Kalman

Filter for tracking (Chapter 4.2.2), and on quality measures for matching human preferences on the

appearance of the index icons (Chapter 4.3). Part of this work has been discussed in [Merler and

Kender, 2011]. In Chapter 5 the diagram index construction process, which is also designed to

match human preferences, is described in its parts: slide detection, graphics regions detection and

clustering, followed by icon selection and color-correction. Finally we draw some conclusions and

indicate directions of future work in Chapter 6

Some mathematical details of the derivation of the simplified Kalman filter used to track faces in

the speaker face indexing module are provided in Appendix A. Given the extensive use of Amazon

Mechanical Turk surveys and experiments to collect human preferences, we provide details and

lessons learned in Appendix B.
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Figure 1.2: Overview of the presentation videos indexing system proposed in this thesis. Each

video is processed to generate multi-modal semantic indexes, originated to satisfy user preferences

collected thriugh Amazon Mechanical Turk surveys (Appendix B and Chapters 4.1 and 5.2): text

and mosaics, discussed in Chapter 3, speaker faces, introduced in Chapter 4, and diagrams, outline

in Chapter 5. In future work we plan to integrate the resulting indexes in the VAST-MM browser,

as explained in Chapter 6.2. The original contributions of this thesis are highlighted in cyan.
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Chapter 2

Related Work

The most common methods employed to index videos are based on keyframes and user-assigned

tags. However, presentation videos offer richer semantic cues that can be exploited to perform

indexing. In the following we review the state of the art in terms of presentation videos indexing

based on slides, text, faces and mosaics.

2.1 Automatic Summarization and Visualization of Presentation Videos

Many systems proposed in the literature to summarize presentation videos use the slides as a ref-

erence to segment the videos into semantic shots, following studies which assess the reliability of

slides as a summarization tool [He et al., 2000]. Such systems generally perform synchronization

by matching the content of the video stream to electronic copies of the slides.

[Fan et al., 2006] propose a template matching approach, where the slides are treated as objects

to be found in the videos. Alignment is performed by matching SIFT keypoints extracted from both

the image of the slides and frames from the video, also estimating the projective transformations

in the video. In a similar fashion, [Gigonzac et al., 2007] detect the slide area within video frames

with a color segmentation scheme, model the slide transitions with a Hidden Markov Model, and

recover the slides sequence in the video with the Viterbi algorithm. A probabilistic model of slides

transitions is also employed by [Liu et al., 2002]. [Chen and Heng, 2003] instead synchronize

electronic copy of the slides and speech transcripts obtained through a commercial software.

[Wang et al., 2008] use the textual content of the slides to perform the matching. Text regions
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are first automatically located within extracted keyframes, then enhanced through a superresolution

technique before being binarized and finally fed to a commercial OCR engine. Using automatically

extracted text from the video for the sole scope of synchronization with already available electronic

copies of the slides offers limited performances compared to template matching approaches. In-

stead, in the (not uncommon) case where the slides are not available, we propose to use extracted

text to automatically summarize and index the video, without any external reference.

Besides synchronizing slides and video or audio stream, other systems have been developed

to index and summarize presentation videos, with particular attention to the structure of the final

summaries and how they are exposed to users. Also, a general trend consists in integrating infor-

mation from multiple information channels. [Amir et al., 2004] introduced a system to almost fully

automatically generate video proceedings of conference presentation videos recorded with an ad-

hoc system with 4 cameras, a projector recording high quality images of the slides, and an audio

recorder. The videos are indexed by the speech transcripts and made available for retrieval and

browsing in a web page, together with other metadata information obtained from the conference

website. The results of a user study show that, when only a representative keyframe per shot is pre-

sented and the audio track is played up to 1.7x faster, no noticeable difference in users understanding

of the material is registered.

[Haubold and Kender, 2005; Haubold and Kender, 2007] propose a system to segment, summa-

rize and browse presentation videos. Segmentation is performed both on audio (through the results

of an automatic speech recognizer) and video (based on histograms of visual dissimilarity patterns)

cues, which are integrated into the final result. A list of words extracted from external sources (elec-

tronic copies of slides or course website, if available) and the audio stream is automatically aligned

with the video. The interface, named VASTMM browser, presents a temporal timeline of keyframes,

audio and video activity, and words, which granularity can be adjusted by the user. User studies ac-

cessing the performances in terms of retrieval of useful information from the videos were conducted

with 176 students on 32 presentations. Also [He et al., 2000] conducted a user study to evaluate

four different types of presentation video summarization: slides only, slides with text transcripts of

the presenter’s speech, slides with text in which keypoints have been highlighted, and audio/video

summary. The evaluation is twofold. On one hand the effectiveness of the summarizations is ana-

lyzed based on how well users perform on tests concerning the subjects of the presentations when
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using one or another summarization as a reference. Furthermore, a survey collects the impressions

of the users in terms of efficiency, enjoyability, coherency and so forth. The results were favorable

to the audio/video summarization.

[Friedland and Rojas, 2008] investigated the enhancement through contextualized content of

presentation video summaries. They propose a lecture recording system in which the silhouette of

the presenter, segmented from the background in the video stream, is superimposed to chalkboard or

slides content, which was electronically recorded. This reproduction overcomes the split of attention

effect [Friedland and Rojas, 2008], being able to convey the useful information included in gestures

and facial expressions of the presenter and the text content of the board (or slides) in the same visual

window.

[Anderson et al., 2004] conducted an empirical study the results of which proved the existence

of a relationship linking digital ink to spoken words in terms of co-expression, and to the text in the

slides in terms of stressing of certain semantic concepts already present in the slides.

Most of the existing systems provide good performances in terms of video segmentation and

indexing. However, most of them still present a heavy dependence from additional sources of

information besides the videos, or an ad hoc hardware recording equipment. In many cases, a

”human in the loop” is still needed. In this framework, we propose unsourced, fully automatic

methods to bridge the gap between existing systems and archived presentation videos which do not

have additional references and were not recorded professionally.

2.2 Presentation Video Indexing and Retrieval

Presentation videos offer rich semantic cues that can be exploited to perform indexing, starting

from the text projected in the video. [Vinciarelli and Odobez, Oct 2006] introduced a system to

automatically index and retrieve presentation videos based on the semantic content of their slides.

Each slide is obtained during the presentation through a frame grabber and then processed before

automatically extracting its text with an OCR engine. Standard information retrieval techniques are

then used to index words and documents and to perform queries based on terms. Also [Misra and

Sural, 2006] extract and recognize scene text from videos to the end of indexing them based on text

keywords. Tang and Kender [Tang and Kender, 2005] use automatically recognized handwritten
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text to index and retrieve presentation videos. Candidate text regions are recognized and segmented

in an integrated framework, using a neural network trained on different stroke representing features

and dynamic programming to match segmented strokes to candidate vocabulary words, taken from

a set of available course documents (textbook, online syllabus, electronic copies of the slides).

Recently researchers at FXPAL have introduced Talkminer [Adcock et al., 2010], which is

the first large scale fully automatic presentation video indexing system. The key component of the

system is the full screen slide detector, which is based on frame differencing (color histogram based)

augmented with spatial cues, speaker appearance modeling (Viola Jones face detection) and a text

detector. An SVM is trained online to distinguish slide vs. speaker or background frames. Once a

slide-frame is found, standard OCR is applied to it to generate an index of keywords, so that a user

can perform a text search on the lecture videos corpus.

Besides text, many multimodal systems for video indexing have been proposed. One example

in the presentation videos domain is the method proposed by [Martin et al., 2007], who segment the

videos into semantically meaningful shots according to two criteria: slides transitions and speaker

detection and tracking. The presenter’s gestures are also recognized.Content indexing is based on

text recognition from the detected slides, which is further used to improve the language model of an

automatic speech recognizer which analyzes the audio track of the video.

[Liew and Kan, 2008] propose a method to retrieve synthetic images in slides given textual

queries. Features used are textual (directly from PPT + OCR), image (images size, number of

colors, image type) and presentation (slide number, image location within slide, # images in slides).

Slide segmentation is employed to to obtain slide images, and a two level hierarchy of image types

(from [Wang and Kan, 2006]) is used to classify each image.

Also the use of camera motion cues to index videos has been investigated. In the system pro-

posed by [Hirakawa et al., 2002], queries can be performed based on pan and tilt motions, object

motion within a shot, background color matching and moving object color matching. Each shot in

the database to be queried is represented as a mosaic built from its frames, on which the moving

object is superimposed. The camera motion parameters used to build the mosaic are also stored, and

used to estimate the trajectory of a moving object in the scene. The background is then represented

as a color histogram, while the object is represented with a chain code corresponding to its moving

pattern and its dominant hue color. The system provides a visual interface where to input graphical
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queries such as drawn camera or object motion pattern, and background and object color. [Aner-

Wolf and Kender, 2004] also use mosaic shot representation to index and cross-reference shots from

sit-coms. Following this line of work, we propose to apply a mosaic based shot representation to

presentation videos.

The literature suggests that the interaction of different information channels (slides text, white-

board text, audio, video) is beneficial in terms of indexing and retrieval. Therefore, we propose to

build semantic indexes based on text, graphics, speaker face and mosaics, which could be integrated

into the unified framework such as the VASTMM browser [Haubold and Kender, 2007].

2.3 Automatic Text Detection and Recognition

Most of the existing video text detection and recognition systems are composed of 3 modules:

a text regions detector, an enhancement module, and an OCR engine to perform recognition. The

enhancement block is needed because directly applying an OCR engine to the color or grayscale text

regions extracted from video frames usually yields not reliable results, because of the low quality

and low resolution of such regions. A common solution in literature consists then in somehow

enhancing and binarizing the text before feeding it to the OCR engine [Wang et al., 2008; Jung et

al., 2004]. Most of the proposed methods focus on recognizing artificial text which is superimposed

to the video in a post processing step[Lienhart and Wernicke, 2002; Lyu et al., 2005]. The text

of the slides we focus on belongs instead to the category of scene text, which is embedded in

the scene and captured with the rest of the data. In this domain, [Chen et al., 2002] propose an

affine rectification of detected scene text regions in order to improve text recognition performance.

[Chen and Yuille, 2004] introduced a method to detect and recognize text from signs embedded in

natural scenes. They train a text region detector by combining features based on intensity mean

and standard deviation, xy derivatives, histograms and edge linking into a cascaded classifier using

Adaboost. The text detector is used in combination with an adaptive binarization algorithm and

a commercial OCR system to automatically extract the text in the scene. Recently, [Wang et al.,

2011] have introduced a framework where both text detection and recognition are based on learned

appearance based models of characters and words, thus assimilating the problem to a standard object

recognition one.
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In the specific domain of presentation videos, [Chong-wah Ngo and Huang, 2002; Wang et

al., 2003; Wang et al., 2008] use a fixed camera and model the presenter as foreground, while the

projected slide and the lecture hall are considered as background. Text regions are detected and slide

changes are determined by finding local peaks of energy change in text regions and background

regions in temporal windows. In [Wang et al., 2003; Wang et al., 2008; Wang et al., 2007] the

recognized text (in particular the title text) is used to perform a match and synchronize the projected

slides and their electronic copies. Finally the electronic copies are superimposed to enhance the

video, by registration, with the homography estimated from points in the matching text.

Binarization plays a major role in the enhancement module, and can be implemented both in

color [Badekas et al., 2007; Saidane and Garcia, 2008] and grayscale domain. Most of the methods

applied to video focus on the grayscale channel for efficiency reasons. Recently, [Shafait et al.,

2008] have proposed a fast version of the Sauvola’s binarization algorithm which, thanks to the use

of integral images, has a computational time independent from the local window size. The Adaptive

Local Otsu binarization we propose in Chapter 3.2 follows this direction.

For what concerns text recognition, Tesseract1 [Smith, 2007] is the de-facto state of the art open

source Optical Character Recognition Engine. Originally developed by HP from 1985 to 1996, in

2005 its code was released as open source and is currently developed by Google. The system takes

a binary image as input, applies a connected component analysis, a least square fit of parallel lines

and candidate character regions are found using A* search on the segmentation graph. Classification

of characters is based on two classifiers: a static classifier trained on features based on polygonal

approximation of character contours and a font-adaptive classifier trained on the most confident

outputs of the static classifier. Linguistic analysis consists in finding the best match among frequent,

dictionary, numeric, lower and upper case datasets and the choice of the classifier. We propose to

use Tesseract as part of our slides text recognition pipeline.

2.4 Camera Motion and Mosaics

Image based approaches to build mosaics are generally divided into direct [Baker and Matthews,

2002; Irani et al., 1996] and feature based [Brown and Lowe, 2003; Szeliski, 2006]. The latter gen-

1http://code.google.com/p/tesseract-ocr/
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erally allow greater flexibility in terms of selecting the images (or frames) to be used to build them,

and are not limited by temoporal constraints. Brown and Lowe [Brown and Lowe, 2003] for exam-

ple created a system to perform fully automated panorama stitching. Starting from an unordered set

of images, they extract multi-scale oriented patches (MOPS [Brown et al., 20 25 June 2005]) or SIFT

features (which ensure invariability to scale, rotation and affine distortions) and match them across

images using a k-d tree structure. Once a subset of candidate image matches is found, RANSAC

is used to estimate the homography between image pairs and a probabilistic scheme based on the

number of inliers and outliers in the matching regions is employed to verify actual image matches

and group images belonging to the same panorama. Then bundle adjustment is used to estimate

the camera parameters and register the images together. A sum of squared projection errors over

all keypoints in all images is optimized to solve for all of the camera parameters contemporarily,

therefore avoiding the accumulated errors introduced by concatenations of pair wise homographies.

Finally, two bands blending is used to render the panorama.

While highly accurate, this framework is computational quite expensive. In order to apply it to

the video domain, some efficiency enhancements are required. To this end, [Steedly et al., 2005]

introduced a selection of keyframes and frames pairs to be matched, which assumes that temporally

near frames have a consistent overlap. Regular frames are then matched only to the frames included

in the range between closest keyframes. They also use a match compression algorithm, where

spatially near matching features are averaged into a single one. Hence the number of points used in

the final bundle adjustment is reduced.

[Bevilacqua and Azzari, 2007] devised a method to build video mosaics in real time. Instead

of SIFT they employ the KLT tracker, supported by an initial phase correlation estimate, to match

features across frames. Frame to mosaic homographies are computed besides the consecutive frame

pairs ones, in order to reduce global registration errors. The technique employed allows to register

all the n frames by estimating O(n) homographies, rather then the O(n2) ones usually required

to perform bundle adjustment. The authors then use a color intensity mapping function based on

cumulative histograms to perform photometric registration.

We also propose to use efficient ways of extracting mosaics from video shots implementing

some heuristic approximation of standard feature based algorithms, based on the limited changes of

camera parameters available in this domain.
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A critical but difficult to evaluate aspect in mosaic generation is the estimation of the quality

of the mosaic. One option presented by [Boutellier et al., 2008] consists in quantitatively evaluate

the performance of image mosaics which were automatically generated from a ground truth image.

The authors simulate the generation of input images for a stitching algorithm by applying a series

of distortions (motion blur, vignetting, radial distortion and exposure time) to subwindows of the

image. They then compare the mosaic generated by any stitching algorithm to the original image,

using a method which takes into account the distortions visible from the human vision system.

[Paalanen et al., 2007] use instead a sequence of real images taken of a scene where markers are

embedded to the end of determining the correct registration among images.

Instead of using synthetic or labor consuming quantitative methods to assess mosaics quality,

in the future we plan to resort to user studies to verify the usefulness and likability of the mosaics

we build as video shot representations and enhance by highlighting semantic content (e.g. slides,

graphics).

2.5 Speaker Face Based Video Indexing

Previous work on automatic indexing of videos based on faces has mainly focused on controlled

scenarios found in professional content[Everingham et al., 2009; Krüger and Zhou, 2002; Li and

Wang, 2008; Yang et al., 2005], or surveillance footage[Feris et al., 2007]. For example, [Yang et

al., 2005] employ a multiple instance learning framework to label faces in news videos. [Evering-

ham et al., 2009] combine aligned transcripts with visual features to automatically name characters

in TV video. This approach follows in a significant line of work has been devoted to automatically

detecting and recognizing characters in movies and TV series [Arandjelovic and Zisserman, 2005;

Everingham et al., 2006; Sivic et al., 2009]. Those approaches rely on the structure and editing of

the content to extract shots, within which faces are located and tracked. Each face in a track is then

represented with local descriptors extracted on facial salient points located on the corner of the eyes,

mouth and nose. Finally either clustering or matching techniques are employed to group, retrieve

or recognize people in tracks.

Not much attention has been given instead to unstructured videos shot in uncontrolled environ-

ments. In this domain, [Haubold and Kender, 2007] have introduced a presentation videos browsing
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interface where shots can be queried via a visual index of presenters faces. To the best of our knowl-

egde, that is the only work trying to assess the quality of speakers video indexes for unstructured

presentation videos. They conducted user studies comparing head vs. head and shoulders person

representation indexes. However, such indexes were created manually and not automatically.

The determination of the “best” faces for recognition purposes (especially in terms of pose) has

been studied both from a psychological [Burke et al., 2007] and computational point of view [Li

et al., 2007; Liu et al., 2006]. Psychological studies have been conducted to analyze the viewpoint

generalization ability of the human vision system, that is, the ability to recognize a face in different

poses, given a single pose example as reference. The results suggest that the generalization ability is

maximized when the reference pose is a three-quarters view of a face, not only for face recognition

[Burke et al., 2007; Longmore et al., 2008], but also for face detection [Burton and Bindemann,

2009]. This confirms that humans are able to infer fuller 3D information about the head of a person

when seeing a 3/4 view of their face. Liu et al. [Liu et al., 2006] analyzed the same problem

from the computer vision point of view and verified that a 32◦ pose provides the best generalization

performance for face matching algorithms.

Some works build visual summaries of scenes based on “canonical views” extracted from photo

collections[Simon et al., 2007].

The selection of faces, based on quality measures, to be presented to human users has been

studied in the context of surveillance video logs construction and biometrics [Del Bimbo et al.,

2009; Fourney and Laganiere, 2007; Nasrollahi and Moeslund, 2009; Nasrollahi and Moeslund,

2008]. A face log is a collection of time stamped image samples representing faces collected from a

surveillance video. For example [Fourney and Laganiere, 2007] present a series of quality measures

(based on pose, illumination, sharpness, resolution and skin) that allow them to reduce face tracks

into face logs containing as low as 5% of the original tracks frames, while still retaining the full

information about the people in the video.

[Chen et al., 2007] also used similar quality measures (skin ratio, symmetry, etc.) to train a

neural network to validate detected faces in surveillance sequences. Typically, those systems focus

on discriminating between faces and not-faces, not among faces. The final ranking is given by

the amount of “faceness” of each candidate, with little correlation between the individual quality

measures and the actual quality of the selected face with respect to other faces in the track.
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Object tracking, and face tracking in particular, is one of the most studied problems of computer

vision. Many different methods have been proposed, from global template-based trackers, shape-

based methods, probabilistic models using mean-shift or particle filtering to flow-based trackers

[Everingham et al., 2009].

In face detection, the Viola Jones [Viola and Jones, 2002] detector, which uses a cascaded

classifier of boosted Haar-like features, is considered the baseline state of the art for non-commercial

systems, giving reliable performances both on terms on accuracy and efficiency. It belongs to the

family of frequency based face detection algorithms. Other methods make use of skin color filters,

such as the one introduced by [Gomez and Morales, 2002]. Frequency and color based methods

have also been used in combination [Ramanan et al., 2007].

In the popular tracking-by-detection framework[Breitenstein et al., 2010; Godec et al., 2010],

the tracker is built to fill the gaps between successive detections according to some optimization

criterion. Particle filtering is commonly used to perform such task, which has been extended also to

multiple objects [Duffner and Odobez, 2011].

Recently, general purpose appearance based trackers[Saffari et al., 2010; Kalal et al., 2010]

have been gaining attention. They train a classifier on the appearance of the object and convert the

tracking problem into a classification one, where the goal is to discriminate the target object from its

surrounding background. Some of these methods train the model on the first instance of the object,

and use it in subsequent frames. While this approach is relatively robust to occlusions, it does not

perform well when an object undergoes appearance or viewpoint changes, since it is not adaptive.

Systems have been proposed to employ online adaptive learning of the appearance model of

the object, updating the model in each frame using the current object region as a positive instance

and the surrounding regions as negative examples. However, such systems often suffer from drift,

which consists in a gradual adaptation of the tracker to non-object, background regions. [Babenko

et al., 2009] use a multiple instance learning framework to alleviate the problem. [Kim et al., 2008]

incorporate additional visual constraints (in terms of pose and alignment) in an appearance model.

While such solutions produce better tracking performances, there is still room for improvement,

especially for videos where the tracked object does not occupy a significantly large region of the

frame.

One possible solution consists in combining template matching and generic object trackers. For
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example [Santner et al., 2010] propose the PROST framework to combine three different trackers:

an adaptive appearance one that uses on-line random forests, a mean-shift one based on optical flow,

and a correlation template matching one.

In the domain of face tracking in professional content such as movies and TV series, [Evering-

ham et al., 2009] use a combination of the Viola Jones face detector [Viola and Jones, 2002] with

KLT tracker [Shi and Tomasi, 1994] to extend face tracks within shots. When two faces are de-

tected in two different frames, KLT features falling inside the bounding boxes of the detected faces

are tracked in both temporal directions and a face track is established based on how many of those

features match. If the number of feature tracks which intersect the bounding boxes of both faces is

greater than half of the the number of feature tracks which pass through either but not both faces,

the face pair is considered to belong to the same face track.

2.6 Diagram/Graphics Spotting and Recognition

Diagram and graphics detection and recognition is an area of research of particular interest for the

document analysis community. There are two typical approaches to find graphics in a document.

The first consists in segmentation from the textual content, while the second method is called spot-

ting, in which there is a reference symbol or graphical element and detection basically relies on

matching, as recognition and localization are integrated in the same framework.

The closest existing works to our proposed slides graphics detection and matching method,

are applied to logos and trademarks. [Wang and Chen, 2009] segment logos in documents by

iteratively expanding seeds regions obtained after binarization. Such expansion is performed until

the region fails to retain geometrical statistics (position, size, aspect ration) learned from a training

set and used as prior knowledge. [Zhu and Doermann, 2007] trained a multiscale Fisher classifier

based on geometrical and edge density features to detect logos image documents. [Patricio and

Gómez-Allende, 2000] segment documents images by learning discriminative components of the

magnitude of the Fourier transform of the grayscale histogram. They train a multilayer perceptron

on top of such features and perform binary classification (text vs. graphics/images) on sliding

windows over the document image. [Chowdhury et al., 2003] propose to refine the segmentation

of documents by taking into consideration an additional category to be distinguished from regular
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text and graphics: mathematical formulas. They do so by exploiting the layout characteristics of

formulas, which present a large amount of small font subscripts and superscripts, and generally are

separated from the regular text by larger spacing. [Morris and Kender, 2009] introduce yet another

segmentation category, as they use sort-merge selection and fusion of frequency based features

to classify individual frames from presentation videos as displaying or not programming code in

projected slides.

Once a diagram region has been localized, an appropriate descriptor must be employed to rep-

resent it. Many color, shape and texture descriptors have been proposed in the literature, a survey

of which is beyond the scope of this thesis. In the following we will review those employed in the

context of presentation diagrams classification and matching.

Diagram classification has been recently explored, although no consensus has been achieved on

a unified taxonomy of diagram categories, nor any principled method has been investigated to gen-

erate them. In fact, most systems employ ad-hoc categories. For example, NPIC [Wang and Kan,

2006] proposes a web images taxonomy, which includes a Figure tree with different graphs subcat-

egories. [Djordjevic and Ghani, 2010] extract graphical entries related to the corporate enterprise

domain (Accenture) from MS Office documents (using some heuristics on size, distance between

objects and arrows to groups graphical entities in a single unified graph) and define a taxonomy

of graphical elements (Fact Box, Graph, Process flow, Table, Architecture Diagram, Logo, Pho-

tograph, Work Team, Organizational Chart, Plan). Features used to describe the graphical objects

are: textual (both from slide text and OCR), structural (size of components, type of components,

relative size and coordinates), visual (color layout, edge histogram, texture). [Prasad et al., 2007]

use standard local descriptors (HOG, SIFT and Distance Map histograms) to represent graphs, and

adopt the pyramid match kernel to match them. This representation is used to train a classifier for

five ad-hoc diagram categories: bar, lines, pie, scatter, surface. [Savva et al., 2011] represent a graph

using two complementary descriptors: the first is a histogram of normalized 6x6 patches extracxted

uniformly in the image and associated with a codebook of size 200 according to the bag of visual

words principle, the second is based on text regions detection, with a histogram containing the dis-

tribution of position, size and relative orientations of text regions over a uniform spatial grid in the

image. A multiclass SVM is trained based on this representation to classify diagram images into

ten categories: AreaGraph, BarGraph, LineGraph, Map, ParetoChart, PieChart, RadarPlot, Scatter-
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Graph, Table.

We utilize texture and color descriptors to represent diagrams and match them across presenta-

tions. To the best of our knowledge, no other system has elevated graphics in slides to the semantic

level, where to perform either presentation video indexing or matching across presentations.
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Chapter 3

Text Indexing

Most of the methods proposed to summarize presentation videos with shots segmentations based

on slides rely on the availability of electronic copies of the slides themselves, which is not always

realistic. The solution we propose, on the other hand, works without any slide template to be

compared, hence the definition ”unsourced”. We propose to distinguish between different slides

based on their textual content (see Figure 3.1), by automatically recognizing the text in the video

stream using an Optical Character Recognition (OCR) Engine. Once a semantic shot has been

identified, that is, a shot containing text from a unique slide, we proceed to build a mosaic of it

using a standard local feature based registration algorithm.

Directly applying an OCR engine to the text regions extracted from video yields not reliable

results, because of the low quality and low resolution of such regions. A common solution consists

Figure 3.1: Semantic shot segmentation based on unique slides recognized text.
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in somehow enhancing and binarizing the text before feeding it to the OCR engine [Wang et al.,

2008; Jung et al., 2004].

We propose a new Local Adaptive version (LAO) of the Otsu binarization algorithm [Otsu,

1979], which is implemented with integral histograms. The method is robust to illumination changes

and background variations within the text areas, while still efficient thanks to the use of integral

histograms. In particular, it allows the determination of an optimal threshold that maximizes the

between-classes variance within a subwindow, with computational complexity independent from

the size of the window itself.

The presentation video text-based indexing pipeline we propos consists in four modules: candi-

date text regions detection, binarization, recognition and index construction. Figure 3.2 presents an

example of the full pipeline applied to a frame. In the following we will describe each component

in detail.

Figure 3.2: Text recognition pipeline. (a) Original frame. (b) LoG edge detection. (c) Edge con-

nected components. (d) Results of region pruning based on geometric and edge density based

constraints. (e) LAO binarization results. (f) Output of the Tesseract OCR engine. The final result,

after text post-processing, is the following correctly recognized text: Completed Tasks, Research,

Interview, Client, Project Space, House Resident, Association Meeting.
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3.1 Text Regions Detection

Usually presentation slides do not present text overlaid to particularly challenging backgrounds,

therefore we apply a simple and fast text detection approach. Initially a Laplacian of Gaussian

operator is applied to a frame in order to extract edges. Subsequently connected components are

located within the edge map and textural and geometrical properties of the regions enclosing such

connected components are extracted. The inspected properties are: coordinates of the center, area,

width, height, width/height ratio, density of edges, vertical and horizontal alignment. Empirically

validated thresholds are applied to each feature in order to prune non-text regions. The candidate

text regions R within a frame F must satisfy:

FArea/1000 ≤ Rarea ≤ FArea/10 (3.1)

2 ≤ Rwidth ≤ Fwidth/3 (3.2)

6 ≤ Rheight ≤ Fheight/5 (3.3)

Edensity ≥ 0.2 (3.4)

Then, partially overlapping and edge map similar regions Ri and Rj are merged if:

0.5 <
Riheight

Rjheight
< 1.5 (3.5)

0.5 <
RiEdgeDensity

RjEdgeDensity
< 1.5 (3.6)

HO
(
Ri, Rj

)
≥ min

(
Riwidth, R

j
width

)
+ 10 (3.7)

V O
(
Ri, Rj

)
≥ min

(
Riheight, R

j
height

)
/2 (3.8)

where HO and VO represent the horizontal and vertical overlap, respectively.

The candidate text regions are then passed to the recognition block to be finally confirmed, in

the case one or more characters are recognized, or discarded when no character is recognized.

3.2 Local Adaptive Otsu (LAO) Binarization Algorithm

Binarization techniques are usually split into two categories: global and local. The Otsu [Otsu,

1979] global thresholding method assumes a bimodal distribution within the gray scale histogram
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of an image, and aims at automatically selecting an optimal threshold T to minimize the within-

class variance of the two modes, or equivalently to maximize their between-class variance. Given

an image with pixel values ranging in an interval of intensity levels [0, L− 1], the optimal T is

computed as the one maximizing the between-class variance σ2
between (T ), computed as

σ2
between (T ) = nB (T )nF (T ) (µB (T )− µF (T ))2 (3.9)

where µB (T ) and µB (T ) are the means of the background (below the threshold T ) and fore-

ground (above T ) pixels clusters, while nB (T ) and nF (T ) represent the number of pixels belonging

to each cluster.

Despite being parameter free, the classical Otsu method presents a main limitation in its glob-

ality. Computing an optimal threshold for the whole image makes it sensitive to shading and local

noise, as shown in Figure 3.4. In order to overcome such limitation, local methods have been in-

troduced. Those methods work by sliding a W ×W window and select a threshold for the pixel

where it is centered based on the statistics of its neighbors. One of the most popular among such

algorithms is Sauvola’s, in which the threshold t (x, y) is computed as

t (x, y) = µ (x, y,W )

[
1 + k

(
σ (x, y,W )

R
− 1

)]
(3.10)

where R is the maximum value of the standard deviation within the window, and k is a parameter

which takes positive values in the range [0.2, 0.5]. Despite the improvement offered with respect to

global solutions, this algorithm is limited by the dependence of t (x, y) from two parameters: the

window size W , which also determines efficiency, and the value k. The computational complexity

has been recently made independent from W thanks to the introduction of integral images [Shafait

et al., 2008]. However, the method is still chained to an ad hoc selection of k. Hence, the choice of

t (x, y) is not related to any optimization process, and remains quite arbitrary.

We propose to eliminate the dependency of t (x, y) from k by computing it as the threshold that

optimizes the between-class variance within the window. In other words, our solution consists in

a localized version of the Otsu algorithm, or an optimal version of Sauvola’s one, which can com-

bine the strengths of the two methods: locality and optimality. The Local Adaptive Otsu algorithm

(LAO) slides a window of size W across the image and computes the threshold with the optimal

Otsu criterion in each position. At each position one can choose whether to apply the threshold

directly to the whole window (used in the rest of this manuscript) or simply to the pixel at which the
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window is centered (as in Sauvola’s approach). In order to limit the computational complexity de-

rived from the application of the window, we use the integral histogram [Porikli, 2005], a structure

consisting in L integral images, one per bin. Once paid the initial cost of building the integral his-

togram for the whole image, such structure allows to compute the values of nB (T,W ), nF (T,W ),

µB (T,W ) and µF (T,W ) for Equation 3.9 in any subwindow with a constant number of opera-

tions, independently from the window size. In Figure 3.4 is reported the experimental gain in time

achieved by introducing the integral histogram over a baseline implementation of the algorithm.

3.3 Text Recognition

Word recognition is implemented by the Tesseract [Smith, 2007] OCR engine. We trained Tesseract

with 15 character sets, using the most commmon fonts for PowerPoint presentations [Mackiewicz,

August 2007], with a text reflecting the frequencies of English letters1. Each font was represented

in its regular, italic and bold version during training, with characters of height equal to 30pt. A

post-processing method is applied to the output of the OCR engine to discard text containing non-

alphanumeric symbols. Porter stemming [Porter, 1980] is also applied to each word, which is then

passed through a list of English stop words2.

3.4 Index Construction

Once the text for a frame has been recognized, it is stored to be compared to the text extracted

from neighboring frames for indexing. The comparison is performed according to the edit distance

between the strings of extracted text, normalized by the length of the strings themselves.

d (s1, s2) =
ED (s1, s2)

|s1| |s2|
(3.11)

If such distance is lower than a predefined threshold τ , the frames are considered as belonging to

the same slide and grouped together. The longest string and the frame from which it was extracted

is kept as reference for the slide. Retrieval of a certain concept can be performed, as exemplified

1http://en.wikipedia.org/wiki/Letter frequencies

2http://www.textfixer.com/resources/common-english-words.txt
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in Figure 3.6, by looking for a query word among the strings chosen to be representative of their

slides.

3.5 Camera Motion Estimation and Video Mosaic Construction

Given a semantic shot, we have implemented a simple video mosaicking algorithm.

The first step in the construction of the video shots mosaics consists in a pan, tilt and zoom

camera movement estimator. We evenly split each frame into 45 regions, 9 horizontally and 5 ver-

tically, compute the average grayscale value of each region and perform a least square estimation

of the camera parameters based on the luminance constancy assumption, as proposed by Kender

et al. [Kender, 2000]. The preprocessing step is quite fast, yet accurate enough to disambiguate

static shots (i.e., shots without movement) from shots that can be actively used to build a mosaic.

Temporal sampling proportional to the amount of camera movement is employed to select a group

of keyframes, which will be the input to the mosaicking algorithm. In the future, we also plan to

use quality measures to select the best keyframes to build the mosaic (one possibility could be com-

puting the amount of blur as in [Boutellier and Silvn, 2006] to retain only the sharpest frames). The

temporally central frame of each sequence of keyframes is used to provide the reference coordinate

system.

We build mosaics following the feature based approach of Brown and Lowe [Brown and Lowe,

2003], but in a simpler framework. We extract SIFT features, match them and estimate homography

transforms between keyframes using RANSAC. Our code is built on top of the SIFT and RANSAC

implementation of Robin Hess3. Finally, blending is simply performed by keeping the median value

among the corresponding pixels of keyframes overlapping at a given location in the mosaic. The

various steps of the mosics construction are presented in Figure 3.3.

3http://web.engr.oregonstate.edu/∼hess/index.html
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(a)

(b)

(c)

(d)

Figure 3.3: Mosaic example. (a) SIFT features extracted from two frames in the set. (b) Local fea-

tures matching. (c) Remaining matches after RANSAC based homography constraints enforcement.

(d) Final mosaic obtained by registration of the set of selected keyframes.
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3.6 Experiments

We analysed videos containing 8 student presentations, for a total of 1 hour and 45 minutes of

video. Each presentation has on average 13 slides, for a total of 2276 words and 13804 characters.

In this Section we present the performances of our system in terms of localization of text regions,

binarization quality and semantic concepts recognition (in particular, the text extracted from the

slides). All the experiments were carried on a Pentium 4 2.33 GHz machine.

3.6.1 Text Detection

Text localization performances were tested on a set of 500 frames randomly selected (100 of which

did not contain text). For each frame, Precision and Recall are defined as the intersection between

the ground truth text area TAGT and the text area estimated by the system TAE , divided respec-

tively by TAE and TAGT .

Precision =
TAGT ∩ TAE

TAE
, Recall =

TAGT ∩ TAE
TAGT

(3.12)

Table 3.1 presents how the average Precision and Recall rates obtained by the system change with

the application of the character and word recognition step. The simple performances refer to the

regions found by the simple text detector and successively passed to the word recognition block. The

refined precision and recall rates are calculated after the recognition block has either rejected or

confirmed such regions as text (containing at least one recognized character). Following intuition,

at the refined stage Precision increases and Recall diminishes, as some candidate text regions

(including some relevant ones) are rejected by the recognition step.

Precisionsimple Recallsimple Precisionrefined Recallrefined

0.71213 0.85914 0.88584 0.68046

Table 3.1: Text Precision and Recall localization rates.

3.6.2 Binarization

We now present a quantitative comparison of the three binarization algorithms mentioned in Section

3.2. The evaluation was performed on a subset of 54 regions localized by the text detection block
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Figure 3.4: Binarization performance comparison. Example of the compared binarization methods. Original

image (a) and its versions binarized with (b) original Otsu, (c) Sauvola and (d) adaptive Otsu. Under each

image is reported the text recognized by the system. In this case adaptive Otsu outperformes the other methods

in dealing with the shaded area around the word General. In fact, it manages to identify 4 of its characters,

against none of the original Otsu and 1 of Sauvola.

Ngtc Ncorc Precc Recc TCED Ngtw Ncorw Precw Recw

13804 7376 0.5343 0.7446 6428 2276 1126 0.4947 0.6651

Table 3.2: Character and Word Recognition rates. Number of ground truth (Ngtc) and correctly recognized

characters (Ncorc) characters. Total Characters Edit Distance (TCED). Number of ground truth (Ngtw ) and

correctly recognized (Ncorw) words. Precc, Recc, Precw, Recw refer respectively to Precision and Recall

measures at character and word level.

and manually segmented with the aid of a heuristic visualization tool, in order to generate ground

truth, for a total of over 2 million pixels. Precision and Recall metrics are defined similarly to

what was described earlier, by re-defining TAGT to be the set of ground truth pixels representing

a character (foreground of the region) and TAE as the set of pixels labeled as foreground by the

algorithm. F1 measures the combination of precision and recall. From the results in Figure 3.4,

we notice that the performances of the different algorithms are comparable. The original Otsu

algorithm is the fastest but has the lowest Recall and Precision, because it looks at every region

globally and works well only up to a limited detail. The others provide higher precision, thanks

to their focus on locality. It must be noted that our algorithm’s results are the best in terms of F1,

and are comparable to the precision of Sauvola’s method, which is known to be one of the best

performing binarizations methods, but without the need for a predetermined threshold. We show

two versions of the Local Adaptive Otsu algorithm (LAO): one with and one without the use of the

integral histogram. The Time results demonstrate the utility of integral histogram, which allows us
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Figure 3.5: Character recognition comparison between Tesseract alone and Tesseract after the application

of the Local Adaptive Otsu (LAO) binarizatiion.

to compute the optimal thresholds in a time which is independent from the window size. For all the

local adaptive algorithms used in the experiments, we used a window of size 25x25.

3.6.3 Text Recognition

As explained in Section 3.3 the Tesseract OCR engine was used as a tool to recognize characters

and words. We analyzed the performance of the system both at the word and character level. We

defined the following metrics:

Precisionc =
Ncorc

Ngtc
, Recallc =

Ncorc

Nrc
(3.13)

with Ncorc = Ngtc − ED (sg, sr), Ncorc is the number of correctly recognized characters, that is,

the number Ngtc of ground truth characters minus the edit distance ED (sg, sr) between the ground

truth text sg and the text output from the system sr. Nrc is the number of recognized characters.

Substituting the subscript c with w we obtain the same type of statistics at the word level, instead of

character level (Precisionw and Recallw). Ncorw is simply defined as the number of ground truth

words correctly recognized by the system.

We compared the character and word recognition rates with and without our binarization prepro-

cessing step. From Figure 3.5 can be appreciated how our binarization process allows to basically
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Figure 3.6: Image text recognition. The word Energy is localized in different slides across 4 different

presentations(top left, top center and right, bottom left, bottom center and right) and also within the same (top

center and right, bottom center and right). In each frame are highlighted the localized text regions. Under

every image the binarized version of the text region containing the word ?Energy? (correctly recognized by

the system) is presented.

double the number of characters correctly recognized by Tesseract, which internally uses by default

the Otsu algorithm instead.

Finally, Table 3.2 reports the best performances obtained with the parameters set to the values

reported in the previous Sections. It is interesting to notice that the word recognition rates are lower

than their character equivalents. In fact, even if all its characters but one are correctly matched, a

word is considered wrongly recognized. This suggests the use of ranking measures, such as the

edit distance, which take into account also partial word matches in order to improve the quality of

indexing and retrieval of semantic segments extracted from such videos. A system would then be

more robust to single or limited character recognition errors.
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Chapter 4

Face Indexing

Face detection and recognition in digital multimedia collections has been an active area of research

for the past three decades. Recently the use of faces to index videos has seen a growth in interest

in the multimedia community. In fact, various systems have been proposed to automatically index

professional videos such as movies, TV shows and news based on characters appearing in them

[Arandjelovic and Zisserman, 2005; Everingham et al., 2006; Everingham et al., 2009; Yang et al.,

2005; Sivic et al., 2009]. However, one aspect which has not been fully explored so far by the

multimedia community is the quality of the generated indexes in terms of end users experience.

The exponential diffusion of unstructured multimedia content on sites such as Youtube1 and

Flikr2 has lately fostered a rapid growth of interest in the multimedia and vision community toward

a new line of systems to recognize people and activities ”in the wild”, that is, in less structured,

unconstrained and more realistic domains. Due to the lack of structure and to the low quality of the

data, algorithms and paradigms designed for professional content often cannot directly be applied

to the aforementioned domains, thus presenting a new challenge.

Our work lies at the convergence of these two trends, as it aims at indexing unstructured pre-

sentation videos based on speaker appearances, and uses quality measures to select representative

face images. We propose a system to select the best faces in unstructured presentation videos with

respect to two criteria: the first is to optimize matching accuracy between pairs of face tracks, the

1www.youtube.com

2www.flickr.com
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second one is for indexing purposes.

Our system extracts candidate faces from where to start tracking (face tracks “seeds”), with a

combination of the Viola Jones face detector [Viola and Jones, 2002] and pixel based skin color

filtering. It then integrates an online multiple instance learning tracker [Babenko et al., 2009] with

Viola Jones face detections within a simplified steady state Kalman filter framework, in order to

mitigate the drifting effect which typically affects appearance based tracking algorithms.

Subsequently, the system selects samples within tracks based on quality measures related to

resolution, skin color area and pose , and uses them both for matching and indexing. Finally,

it selects one head and shoulder image per track to be its representative index. The last step was

suggested by a user study which partially confirmed the results of a consistent line of psychological

literature, which asserts that the human vision system prefers to see a 3/4 view of a face in a visual

index, because it helps to better generalize to the other possible poses of the head [Burke et al.,

2007; Burton and Bindemann, 2009; Longmore et al., 2008]. Providing a head and shoulder view

introduces useful contextual information.

To the best of our knowledge, the only work trying to assess the quality of speakers video

indexes for unstructured presentation videos is the one by [Haubold and Kender, 2007], who have

conducted user studies comparing head vs. head and shoulders person representation indexes. How-

ever, such indexes were created manually and not automatically.

4.1 Human Preference Assessment for Visual Face Indexes

The final goal of this processing unit of our system is to generate a visual index of speakers that

satisfies human users. To that end, we conducted Amazon Mechanical Turk3 experiment to evaluate

the preferences of people in terms of how the face of a speaker should be presented in the visual

index, with respect to two criteria: head pose and context. The two criteria were selected based on

previous results in related contexts in psychology [Burke et al., 2007; Burton and Bindemann, 2009;

Longmore et al., 2008] and multimedia [Haubold and Kender, 2007], which suggested a human

preference for a head and shoulders, 3/4 view of a face.

The experimental setup was the following. Each Human “Intelligence Task” (HIT) presented

3https://www.mturk.com
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Figure 4.1: Face Quality Selection views example: 5 poses, from left profile to right profile, and

two view types, face only or head and shoulders.

the user with two type of face views of a speaker from our presentation videos: one type showing

only the face, the other with a head and shoulder view. For each type, 5 poses at equal intervals

from -90 to +90 degrees were shown. An example of the choices is shown in Figure 4.1

In order to avoid preferences based on a specific speaker or a specific ordering in which the views

were shown, we conducted experiments with 15 different speakers and 3 random views orderings.

Furthermore, we requested 35 different workers to complete each combination of speaker and views

order, therefore amounting a total of 1575 unique HITs.

All HITs were completed within two and a half hours, with an average time per assignment

of 19 seconds. 69 unique workers participated to the experiment. Out of the possible 1575 votes,

11 were invalid, leaving a total of 1564 valid entries. The results, reported in Figure 4.2 showed a

strong preference for a head and shoulder rather than face only view (76% versus 24%). The single

most selected pose was the frontal one (45%). However, the combination of the left and right 3/4

poses amounted to 47% of the votes. The detail of the HIT setup, as well as the distributions of

votes per speaker, motivations, etc. are reported in Appendix B.1.

These results, together with the evidence from the literature, motivated us to choose a head and

shoulder, 3/4 pose as the canonical view for the speaker face index generated by our system.

4.2 Face Tracks Generation

4.2.1 Face Detection

Face tracks are sequences of consecutive frames in which a face is tracked. Since the videos we

investigate are unedited and unstructured, we cannot rely on standard shot detection algorithms to

segment the video into shots. We therefore implemented a simple loose shot boundaries detector,

which works by splitting each frame into 9x5 regions, and then thresholding mean gray scale differ-
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Figure 4.2: Face Quality Selection overall results.

ences between corresponding regions in frames separated by a step of 3 frames. While simple, this

loose shot boundaries detection algorithm is 98% accurate and prevents inconvenient behaviors of

the tracker.

In order to find “seed” faces (where to initialize the tracker), we use the Viola Jones face detector.

To alleviate the significant amount of false detections originating from the noisy videos, we applied

the skin color filter introduced by [Gomez and Morales, 2002] to each pixel in the candidate face

regions. The resulting skin model in the RGB colorspace is the following:

Pixel = skin ⇐⇒


R/G > 1.185 and

R∗B
(R+G+B)2

> 0.107 and

R∗G
(R+G+B)2

> 0.112

(4.1)

We then empirically evaluated that restricting a face track seed to require that more than 20%

of the pixels in a candidate region had skin tone, resulted in doubling face track detection precision

performances with respect to the default Viola Jones face detector, while maintaining the same level
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Figure 4.3: Example of benefit of the skin filter on top of the Viola Jones face detector.

of recall (see details in Figure 4.6). We refer to this skin area filter as skinRatio. Increasing

the level of precision is of fundamental importance in this stage, since it influences the number of

instances of tracker that will be generated and consequently the number of tracks that will be further

processed for matching and indexing purposes. Figure 4.3 illustrates an example of the benefit of

using the filter over relying on the Viola Jones detector by itself.

4.2.2 Steady-State Kalman Filter Tracking Approach

Once the seed has been established for a track, we track the face in both temporal directions, until

the track exits the frame borders or one of the detected shot boundaries is encountered.

We propose a system that integrates an online multiple instance learning tracker as a noisy

prediction in a simplified version of a Kalman filter, named K − Filter, which uses Viola Jones

detections as noisy observations. K − Filter is used in order to mitigate the drifting effect, which

typically affects appearance based tracking algorithms.

We consider a framework in which each face is tracked individually and independently from the

others. While we are aware of works which solve multiple object tracking in a single optimization
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Figure 4.4: Example of the benefit of the proposed Kalman filter framework in dealing with the

drifting effect. The first row shows the position of the prediction x̃t (dashed yellow), the observation

xOt (magenta) and the final output x̂t (green) of K-Track for the frames in the sequence. The second

row highlights the difference in behavior between the MILTrack tracker (red) and K-Track. The

noisy observation xOt allows K-Track not to keep on drifting and therefore reduce the error (bottom

graph, L2 distance between centers of the system region and the ground truth face(cyan dot)).

framework such as [Breitenstein et al., 2010], the nature of the videos we investigate (mainly pre-

sentation videos showing one single person at a time) suggest no need for multi-target optimization

frameworks.

The algorithm we propose is not a traditional track-by-detection one. We correct the drift effect

of a general purpose tracker with class-specific detection, in order to perform long sustained track-

ing. Our detector corrects the tracker; in standard track-by-detection the tracker corrects (the gaps

of) the detector. Therefore the prospective of the optimization framework is reversed with respect

to traditional tracking-by-detection systems.

Figure 4.4 shows an example sequence from video highlighting the benefit of using the proposed

K-Track framework to augment the performances of a state of the art appearance based tracker, and

alleviate drift. In the example, as in most of the remaining of the paper, the MILTrack system
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proposed by [Babenko et al., 2009] is used as the predictor and Viola Jones face detections are

regarded as observations in the K-Track framework. However, we stress that our framework is

general and can use any generic object tracker or detector. Both K-Track (second row, in green)

and MILTrack (in red) are initially drifted away from the true face center (in cyan). However, the

observations of the Viola Jones detector help K-Track to quickly recover to the proper position, thus

reducing the distance from the face center within a few frames (green curve in bottom graph). On

the other hand MILTrack alone, not relying on such additional information, is unable to recover and

its error remains approximately constant (red curve).

It seems intuitive that enhancing a general purpose tracker with a class specific detector should

improve tracking performances. However, it is not clear how to achieve such a combination. In

this Section we present our solution in the form of a steady state Kalman filter framework, which

provides a principled and (under certain assumptions) optimal solution to the combination problem.

The full mathematical derivation of the filter is described in detail in Appendix A.

We regard the general object tracking problem in the framework of a Kalman filter which has

reached the equilibrium stage of its prediction/observation recurrence, following the framework pro-

posed by [Friedland, 1973] and revised by [Ramachandra, 2000]. The approximation of a Kalman

filter to steady-state form has been successfully adopted in various domains, including recent works

in neural interfaces [Malik et al., 2011] and channel estimation [Liyanage and Sasase, 2009], pro-

viding more efficient yet accurate estimations. In the object tracking domain we explore, the con-

vergence patterns of the Kalman gain for five Standard sequences (see details in Figure 4.7) show a

quick convergence rate to a constant value for both position and velocity gains on both vertical and

horizontal directions, thus suggesting that substituting the regular Kalman filter with its steady-state

counterpart does not significantly alter tracking performances, while providing an easier and more

efficient working framework.

A generic appearance-based tracker represents the prediction of the process, and a generic object

detector represents the measurement. We will now see how these assumptions affect the Kalman

filter equations.

The model proposed by [Friedland, 1973] assumes that the object moves freely in space with a

constant velocity which is perturbed by a zero mean random acceleration. The position of the object

is assumed to be measured by a detector at uniform sampling intervals of time, and all measurements
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are noisy. The problem is to obtain the optimum estimates of position and velocity of the object at

each interval. Each component of the object position is considered to be independently measured by

the detector in the Cartesian coordinate system with constant accuracy, and the observation errors

have zero mean and are uncorrelated.

We associate the a priori estimate x̃t with the object tracker. This intuitively makes sense, since

the tracker represents a prediction based on the past state of the object. In this framework, the a

priori estimator tries to predict at each step t the position of the tracked object and also its velocity.

We associate the measurement xOt of the filter with an object detector. This intuitively also

makes sense, since the detector, just like a measurement, is based solely on an observation at the

current step, and does not have any relationship with past states. In this case m = n.

In the described framework, x = (x, ẋ, y, ẏ)T ∈ R4, where ẋ and ẏ represent the velocity of the

object in the x and y direction, respectively. We consider the x and y coordinates to be independent,

therefore the following analysis will be done on a single dimension, with x = (x, ẋ)T ∈ R2. The

accuracy of position and velocity estimates at each moment t depends not only upon the sensor ac-

curacy, but also upon the perturbing acceleration a, which is a random constant between successive

observations. This random constant is assumed to have zero mean and to be uncorrelated with the

acceleration at other intervals, therefore the only relevant statistic that we need to estimate about it

is its constant variance σ2
a. The motion of the tracked object in a time interval T is then described

by the following Equations

xt = xt−1 + ẋt−1T + 0.5at−1T
2 (4.2)

ẋt = ẋt−1 + at−1T (4.3)

since we consider unit time intervals (T=1), we can write

xt =

 1 1

0 1

 xt−1 +

 0.5

1

 at−1 = Axt−1 +Gat−1 (4.4)

Equation 4.4 represent the mapping of a standard Kalman Equation to this specific framework. The

measurement noise w = Ga is assumed to be white and have normal probability distribution

p(w) ∼ N (0, Q) = N
(
0, GGTσ2

a

)
(4.5)
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The measurement xOt of the state of a single coordinate is represented as

xOt = Hxt + vt (4.6)

where H = [1, 0], since at each observation only the position of the tracked object is measured, not

its velocity. Hence m = 1 and xOt ∈ R1. The random variable v represents measurement noise.

Like w, v is assumed to be white, independent from w, and to have normal probability distribution

p(v) ∼ N (0, R). R = σ2
o represents the variance of the observation error, and is a scalar. The

a priori and a posteriori covariance matrices P̃t and P̂t are then [2x2] symmetric matrices, and in

the steady state P̃t = P̃ and P̂t = P̂ . The Kalman filter time and measurement update Equations

become

x̃t = Ax̂t−1 = MILTrack(x̂t−1) (4.7)

P̃ = AP̂AT +Gσ2
aG

T (4.8)

and

K = P̃HT
(
HP̃HT +R

)−1
(4.9)

x̂t = x̃t +K
(
xOt −H x̃t

)
(4.10)

P̂ = (I −KH) P̃ (4.11)

where now K = (K1,K2)T has dimension [2x1]. Note that in our model according to Equation

4.7 , we are assuming that the MIL tracker is simply predicting following a linear model in position

and velocity. This approximation is shown in the following Equation

x̃t =

 x̃t

x̃t − x̂t−1

 = MILTrack (x̂t−1) ≈ Ax̂t−1 (4.12)

Combining Equations 4.8 and 4.11 we can solve and obtain the following notations of P̂ , P̃ and

K (details are provided in Appendix A)

P̃ =

 σ2
od(d+1)2

r2
σoσa(d+1)2

2r

σoσa(d+1)2

2r
σ2
a(d+1)

2

 , P̂ =

 σ2
od(d−1)2

r2
σoσa(d−1)2

2r

σoσa(d−1)2

2r
σ2
a(d−1)

2


K =

 d(d−1)2

r2

2(d−1)2

r2

 (4.13)
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with r = 4σo
σa

and d =
√

1 + 2r. We have now reached a closed form solution for K in terms of the

constant error variances σa, on the prediction of the object’s acceleration, and σo, on the position

measured by the detector. We can therefore predict the position and velocity of the object at time t

with Equation 4.10, which we rewrite separately for position and velocity (along one dimension):

x̂t = K1x
O
t + (1−K1)x̃t (4.14)

ˆ̇xt = ˜̇xt +K2(xOt − x̃t) (4.15)

where K1 and K2 are the elements of the matrix K, representing the filter gain with respect to

position and velocity. Note that while K1 is a scalar, the unit of K2 is one over time.Therefore the

unit metrics are preserved in Equation 4.15, since K2(xOt − x̃t) is a velocity.

The Kalman filter framework provides a disciplined way of combining prediction and measure-

ment for our problem, and in a way that is in fact optimal under fairly general assumptions.

We applied a class specific framework to initialize and bound in time the object tracker. How-

ever, we stress that the proposed K-Track framework is not restricted to work solely on faces, but

can operate on any object as long as there exists a detector to build upon, as confirmed by the results

on the standard Liquor sequence in Chapter 4.4.2.

Once the seed has been established for a face track, we start tracking the face in both tem-

poral directions, until the track exits the frame borders or one of the detected shots boundaries is

encountered, as explained in Algorithm 1.

The base of our tracking method is the online multiple instance learning tracker (MILTrack)

recently introduced by [Babenko et al., 2009] At each frame t, the tracker extracts two sets of

image patches around the tracked face location from the previous frame xt−1 = (x, y, w): Xr

and Xr|β . Patches in Xr are taken in any direction such that their Euclidean distance from xt−1

is smaller than a radius r, and are inserted into one positive bag. Multiple negative bags for the

MILTrack appearance model are filled with patches Xr|β from an annular region of radius rn such

that r ≤ rn ≤ β. The motion model of the tracker assumes that any position within a radius s from

the location of the previous frame is equally likely.

Then the estimated position of the tracker xt is chosen such that it maximizes the log-likelihood

of bags in the appearance model. While better than other adaptive appearance tracking systems,

MILTrack is still affected by the drifting effect, as shown in Figure 4.4.Therefore we integrate
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Algorithm 1 K-Track
1. Input:

(a) Face track seed St = (x, y, w) at frame t

(b) Frame Borders FB = (0, 0, imageW, imageH)

(c) Object Tracker Tr(x), Object Detector De(x)

(d) Weight parameter K (estimated from Eq. 4.13)

2. Initialize:

x̂t, x̃t and Estimated Position EP (x̂t)← St

3. Forward:

While (EP (x̂t) ⊂ FB) and (t 6= shotBound)

(a) if (∃ seed St)

(b) x̂t ← St

(c) else

(d) compute prediction x̃t ← Tr(x̂t−1)

(e) if (∃ observation from De : xO
t ∩ x̃t)

(f) x̂t ← x̃t +K
(
xOt −H x̃t

)
(Eq. 4.10)

(g) EP (x̂t+1)← x̂t + ˆ̇xt

(h) tEnd = t← t+ 1

4. Backward: Repeat Step 3 beginning at St, but decrementing t at each iteration to find tStart

Result: track Tm = [xtStart, ..., xtEnd]

the tracker into the proposed K-Track framework, expressed in Algorithm 1, which we previously

showed to be a simplified version of the Kalman filter. We begin at a track seed, and initialize

MILTrack with it. At each frame t, if we are still within the loose shot boundaries determined

as described above and the predicted position of the tracked region (computed using its estimated

velocity at frame t) is not outside the frame, we proceed with the tracking step.

In case the Viola Jones detector finds a region xOt overlapping the output of the MILTrack

x̃t = (x, y, w), we then consider x̃t to be the noisy prediction part of our filter, while the noisy

observation xOt is provided by the Viola Jones detection. We then update the general K-tracker

position according to Equation 4.10 (Step 3.(f)). It must be noted that the tracking process is re-

initialized in case a face track seed St is encountered while tracking, since the confidence of being
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correctly on target in a track seed is extremely high.

The tracking process is re-initialized in case another face track seed St is encountered while

tracking, since the confidence of being correctly on target in a track seed is extremely high.

4.3 Optimal Face Selection

We propose to process face tracks to select the most useful faces for both track matching and index-

ing purposes. We perform such selection based on the following three quality measures, which are

specifically designed to extract good candidates to create an index to be presented to humans, but

resulted to be useful also for face track matching.

Pose. We select faces presenting a 3/4 view, following the literature [Burke et al., 2007;

Liu et al., 2006] and the results of an informal user study in which we asked people which pose

representation of a face they preferred to be shown to them as part of a visual face index. They

confirmed the conclusions of psychological and computational tests, suggesting that humans prefer

(or are able to infer most of the 3D information about the head of a person) seeing a 3/4 view of a

face. In order to do so, we trained a left 3/4 and right 3/4 pose detector using 1200 images from the

FaceTracer4 dataset. Each classifier is an SVM with RBF kernel based on edge histogram extracted

in 5x5 uniformly split regions in an image.

SkinRatio. We select faces with a high fraction of the image occupied by skin pixels, using

the filter introduced in Equation 4.1. This measure is useful to exclude samples where the tracker

drifted away from the face of a speaker.

Resolution. We select faces that are large. The low resolution of the videos in our dataset

(in particular video 3, 432x240) demands that the index must contain face images with as much

close-up as possible, so that compression artifacts be mitigated and details in the face be clearer.

Figure 4.5(a) and (b) show examples of how the quality measures affect the selection of a rep-

resentative face for a sequence. Part(a) shows a face rotating from a left 3/4 to a right 3/4 view. The

pose classifiers (in light and dark blue) follow the transition smoothly. The sequence starts with a

close-in on the face, which cuts part of the forehead and of the chin, and then expands to a larger,

zoomed out view (see the green resolution line). The combination is obtained as a weighted sum of

4http://www.cs.columbia.edu/CAVE/projects/face search
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(a) (b)

Figure 4.5: Quality measures example sequences from Video 2. (a) Detail of the performance of

the left/right three quarter view classifier. (b) Detail of the benefit of the skinRatio classifier. Note

how in both sequences the combination of the quality measures ensures that a close-up, 3/4 centered

view of the face is selected from the sequence (circled in the magenta combined plot, frame 5710

for sequence (a), frame 6299 for sequence (b)).

the quality measures according to Equation 4.16, and leads to the selection of frame 5710.

The benefit of the skinRatio quality measures is exemplified in the details of Figure 4.5(b). Since

the tracker is drifted at the beginning of the shown sequence, the scores of the pose classifiers are

erroneously high. However, the skinRatio score for drifted regions is low and increases as the face

of the person becomes more central to the region of interest (as more of his skin becomes visible).

Therefore the skinRatio filter drives the combined sore to select a much better face (6299) in the

sequence.

To determine whether two faces match, a suitable representation to describe each face must be

adopted. Our approach for face selection within a track is independent from the matching descriptor

choice across tracks. In order to perform across tracks matches, we chose to represent each face with

the Local Binary Pattern (LBP) descriptor [Ahonen et al., 2004]. We split each face into a 7x7 grid

and concatenate LBP histograms computed from all the regions into a 2891 dimensional feature

vector v. Finally, we use the square root of the Euclidean distance between feature vectors as a

metric to evaluate the similarity between two feature vectors v1 and v2.

In order to select faces for the final speakers visual index, we took into account another result
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of our informal user study: people preferred to be shown a head-and-shoulder representation of a

speaker, rather than simply the face by itself. Therefore, while the quality analysis was conducted

on the face region, when producing the visual indexes reported in Figure 4.16 we enlarged the face

bounding box by 20% horizontally and vertically, and further duplicated its height to include a head

and shoulder view.

4.4 Experiments

We ran experiments on 3 different MPEG videos containing student presentations. Each video is

approximately 45 minutes long, for a total of more than 2 hours of footage and one quarter of a

million frames. The videos were recorded by non-professionals and are unedited. They also present

challenges in that the camera is rarely steady, there are no clean cuts to identify shots, resolution

is low, and they lack structure. Table 4.1 presents the information about number of speakers and

tracks of the inspected videos.

4.4.1 Face Detection

We tested on our corpus of videos the tracks seeds detection method. Figure 4.6 illustrates the

performances of our skin filter, in comparison to the raw Viola Jones [Viola and Jones, 2002] face

detector (applied with the default parameters of the OpenCV implementation). Each curve is ob-

tained by calculating the values of precision and recall, with respect to ground truth face tracks, as

the parameter skinRatio of our filter varies:

DetPrec =
#PDTracks

#TotDetTracks
, DetRecall =

#PDTracks

#TotTracks

where #PDTracks represents the number of positively detected tracks, that is, the number

of tracks for which at least one of the faces belonging to it has been detected by the system.

#TotTracks indicates the total number of (manually verified) tracks present in the video, while

#TotDetTracks represents the total number of candidate tracks detected by the algorithm. The

benefit of the proposed filter appears clearly in terms of recall. In fact, filtering doubles precision

performances with respect to the default Viola Jones face detector from 0.407 to 0.8 in video 2,

while keeping the same level of recall (0.935). Increasing the level of precision is of fundamental
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(a) (b)

(c)

Figure 4.6: Precision-recall curves representing performance of the tracks seeds detection method,

as function of the skinRatio filter parameter. Results for videos 1 (a), 2 (b) and 3 (c) show that

applying the skin color filter improves the performance of the Viola Jones face detector (dashed

blue line). The green diamond represents the performance of the default OpenCV implementation

of the Viola Jones detector.

importance in this stage, since it influences the number of instances of tracker that will be generated

and consequently the number of tracks that will be further processed for matching and indexing

purposes. If the tracks seeds detector produces a large quantity of false candidate seeds, the rest of

the processing pipeline will be heavily affected in a negative way.

Given the reported results, we set the parameter skinRatio = 0.2 for track seeds detection.
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Video # Frames # Speakers # GTracks GTATL

1 85K 19 77 1718

2 103K 19 77 2249

3 65K 20 72 1367

Total 253K 58 226 1787

Table 4.1: Experiments videos ground truth information: number of frames, number of speakers,

number of ground truth tracks and Average Track Length (ATL, in frames).

4.4.2 Tracking

In order to test the performances of the proposed tracking framework, we employed a second set be-

sides the Presentations one. We denominate it Standard, and consists in five publicly available short

video sequences which have been extensively used to evaluate state of the art tracking algorithms.

In all experiments we use MILTrack as our predictor Tr(x). We used the MILTrack algorithm in

its default implementation, with r = 5 and β = 50, which is publicly available5. In face sequences

we adopt the Viola Jones face detector (applied with the default parameters of the OpenCV imple-

mentation6) to be De(x). For the Liquor sequence, we detect the object by matching SIFT features

from a reference image (downloaded from the web) in each frame, and estimating its bounding box

by computing the affine transformation between the matching points. Such approach (shown in

Figure 4.11(a)) has been employed before for object detection, for example by [Merler et al., 2007].

In all experiments we compare against two baselines. The first baseline is formed by the state

of the art general purpose trackers MILTrack and PROST, which provide top performances on the

Standard sequences. This comparison has the goal to quantify the boost in performance obtained by

exploiting class specific information (namely the detections) to improve generic appearance based

trackers. This is particularly relevant as MILTrack is used as the predictor in our framework. The

comparison in our experiments confirm and quantify the (considerable) performance improvement,

which is intuitively expected.

The second baseline we compare against is the track-by-detection algorithm proposed by [Ever-

5http://vision.ucsd.edu/∼bbabenko/data/MilTracker-V1.0.zip

6http://opencv.willowgarage.com
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ingham et al., 2009] which, like ours, is class-specific. In the experiments, particularly for the long,

unstructured Presentations videos, the limitation of track-by-detection systems emerges in scenar-

ios where the gaps to fill between consecutive detections are too extended in time. Our algorithm

provides instead better performances by exploiting its adaptive, self-updating predictor part. We

will now describe in detail the experimental results on each set separately.

Standard sequences.

The five sequences we used for this set of experiments are David Indoor[Lin et al., 2004] (462

frames), Occluded Face[Adam et al., 2006] (886 frames), Occluded Face 2[Babenko et al., 2009]

(812 frames), Girl[Birchfield, 1998] (502 frames) and Liquor[Santner et al., 2010] (1741 frames).

Each sequence presents a number of challenges for tracking algorithms in terms of illumination

changes, 3D motion, occlusions, moving camera and scale.

All video frames in the five sequences are grayscale and were resized to 320x240 pixels. For all

the sequences,we used the ground truth object center and bounding box every 5 frames which are

publicly available78, the estimation process operated only on the (x, y) coordinates of the center of

the region of interest, and size of the object bounding box was fixed.

Since the ground truth of the inspected standard sequences is offered only as fixed bounding

boxes, we had to keep the scale fixed in order to produce the results reported in Table 4.2. However,

our algorithm is easily extendable to include scale estimations using the same Kalman framework

(both MILTrack and VJ offer multiple scale outputs). In fact, we tested this approach(named K-

TrackProp and K-TrackPropBin, respectively) obtaining comparable results to the other methods in

terms of center location errors (Table 4.2). As reported in Table 4.3, proportional scaling is signif-

icantly worse than its single scale counterparts in terms of overlap with the ground truth regions.

This is due to the nature of the ground truth annotations, which are provided all at a single fixed

scale, even when the size object shrinks or grows given different distances from the camera.

According to the model described in Section 4.2.2, the coordinates are considered to be indepen-

dent from each other, and variances σo and σa of the measurement and prediction errors respectively

were independently estimated for x and y. For each of the four face tracking sequences, we com-

7http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml

8http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php
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puted K from the σo and σa estimated on the other three sequences, while for the Liquor sequence

we used the estimates from all four other clips. According to the integration of the tracker (predic-

tor) in the Kalman framework, σa refers to the acceleration of the ground truth object across frames,

while σo refers to the variance of the detection error. From the sequences we estimated values of

σa ranging from 1 to 2.48 pixels/frame2 in the x direction and from 0.36 to 1.7 pixels/frame2 in the

y direction, since people tend to move more horizontally than vertically. The range of σo is wider,

from 7.72 to 26.72 pixels along x and from 4 to 7 pixels along y. These estimations were then used

to compute the steady-state values for the Kalman gain K.

From the graphs in Figure 4.7 emerges that when adopting the regular Kalman framework,

as introduced in Section A.1, the steady-state and therefore a constant value for the K is quickly

reached in all the sequences, thus justifying the use of this simplified assumption from the start in

our framework. The solid lines were obtained by applying a regular Kalman filter, using the ground

truth Q and R values for each sequence. On the other hand, for each sequence, the dashed lines

represent the values of K estimated by adopting the steady-state assumption and the ground truth

values of σo and σa computed from other, independent sequences, therefore we did not exploit any

a priori information about each specific clip, but about object tracking behavior in general. The

substantial equivalence of the constant gains estimated with the two methods confirms the benefit of

adopting our framework, since it allows to estimate valid values from K without any assumption

about the measurement and prediction noise for the specific sequence to be analysed.

For these Standard clips we simply initialized the tracker at the beginning of the sequence and

let it progress in an online fashion, without relying on the shot boundaries and track seeds detection

framework described in Chapter 4.2.2.

In the following, our algorithm is denoted as K-Track and K-TrackBin. Those indicate two

different strategies that we adopted in the case of multiple detections in the same frame to re-

evaluate the value of K1. In fact, as mentioned in the previous Sections, the values of K were

estimated based on the assumption of single measurements, since in the investigated videos there

is only one object present for most of the time. In case of multiple detections, K-Track selects the

detection closest to the prediction x̃t to be the observation xOt to be combined according to Equation

4.14. We consider that the probability that detections not related to the object of interest (either false

detections or detections associated with other objects of the same class) could mislead the overall
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Figure 4.7: Kalman gain estimate on the Standard sequences. In all cases, the estimate of a regular

Kalman filter which uses the ground truth Q and R values evaluated from each sequence (solid

line) quickly converges to a steady-state value in both x and y directions for the position as well as

the velocity components. The steady state estimates reached after convergence are equivalent to the

gains directly estimated from the other sequences (dashed lines), therefore justifying the simplifying

assumption of a steady-state Kalman framework.

tracker is (to a first approximation) inversely proportional to the distance between the “correct”

detection xOt and second closest (to the predictor output) detection xO2
t . In fact, xO2

t is basically

a distractor from the point of view of the tracker, and the closer it is to the output of the predictor

(and the proper detection candidate), the higher the chances that it could be chosen by the tracker

and could lead it away from its proper target. Taking into account that K1 fundamentally measures

the trust of the overall tracker in its detector, we compute the value of K1 to be proportional to the

distance between xOt and the second closest detection xO2
t . The further the second and potentially

confusing detection xO2
t , the higher the confidence assigned to the measurement xOt , according to

the following formula, where W and H are the frame width and height: K1 =
2|xOt −xO2

t |
WH

On the other hand, K-TrackBin simply considers multiple detections as an enormous increase

in the measurement error variance, so therefore sets K1 to zero, trusting only the prediction x̃t

according to Equation 4.14.
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Video MILTrack PROST Everingham K-Track K-TrackBin K-TrackProp K-TrackPropBin

David 22.98 15.25 5.95 4.66 4.98 4.66 4.16

Occluded Face 27.23 6.98 10.95 10.08 10.18 10.64 10.12

Occluded Face 2 20.19 17.18 14.18 11.38 11.17 8.66 9.81

Girl 31.99 18.99 9.86 20.05 21.69 19.22 15.81

Liquor 153.31 21.6 67.37 43.37

Table 4.2: Tracking performances in terms of average Euclidean distance between ground truth and

tracked box centers. Lower values represent better performances. Best performance is highlighted

in bold and italic, second best performance in bold. In the Liquor sequence, since the detector is

engineered to find only one or zeros occurrences of the object and the bounding box is determined

through an affine transform, the performances of the K-Track methods coincide.

In Table 4.2 are reported the tracking results in terms of Euclidean Distance in pixels between

ground truth and predicted face center, averaged over all frames in the sequence. The performances

for our algorithm are the result of an average over 5 runs. It can be seen that K-Track offers the best

or second best performances on most sequences.

In Figure 4.8 we report the pixel errors on each frame of the four face video sequences. The plots

compare K-Track with MILTrack, PROST and Everingham. Again, in most sequences our approach

outperforms the others. It is interesting to observe the improvement with respect to MILTrack, since

it is integrated as the predictor in our framework.

In the Girl sequence, we notice that there are two intervals (frames 200 to 250 and 430 to 470)

in which our approach drives significantly away from the ground truth. The details of such intervals

are reported in Figures 4.9 and 4.10. In the first case the head of the person is rotating, therefore

preventingDe(x) from correctly finding a proper face. In the second case, another person enters the

scene and multiple face detections are reported. The detail of Figure 3 reports how K-Track is able

to deal with the problem more gracefully than K-TrackBin. It is interesting to notice that in both

cases our approach is able to quickly recover the correct position once a proper face is detected.

Of particular interest is also the comparison with Everingham’s class specific tracking mech-

anism, which is well known to perform close to perfection on short shots in professional videos.

The length and challenging conditions of the investigated clips made it impossible to generate a

single track lasting for the whole clip using their method. When two detections were separated in
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Figure 4.8: Tracking Precision as function of the Euclidean distance between the center of ground

truth and tracked regions. Comparison of K-Track and K-TrackBinwith MILTrack, PROST and

Everingham et al.

time by a long interval, not enough KLT tracked features where found within both detections, and

that part of the track was missed. We had to fill those gaps by interpolating the object coordinates.

This problem was particularly evident in the Liquor sequence, where the object is smaller and the

number of KLT features to track is limited. Furthermore, being based on optical flow, this method

suffers occlusions by other moving objects (i.e. the book in the sequence Occluded Face).

The experiments on the Liquor sequence confirm the generality of the proposed framework, as

it can be extended to integrate any object tracker and detector. The particular in Figure 4.11 (b)

shows a large improvement with respect to MILTrack and Everingham’s method, and the results are

comparable to the state of the art PROST algorithm for such sequence.

Recently [Santner et al., 2010] noted that the mean center location error may be a limited per-

formance measure due to scale changes and suggest instead to use the following score from the

PASCAL challenge9, which measures the area overlap between system predicted region SR and

9http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Figure 4.9: Detail of interval 150-300 in the sequence Girl. When the person turns her head,

K − TrackBin (in green) does not have any face detection to rely on.
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Figure 4.10: Detail of interval 400-502 of sequence Girl. When there are multiple detections (yellow

dashed lines), K-Track (in green) uses the closest one to the prediction and recomputes K based

on the position of the closest distractor. K-TrackBin (in magenta) simply sets K to zero. Between

frames 460 and 480 the latter strategy leads momentarily the tracker to follow the wrong person. As

soon as the distractor face disappears, K-Track recovers the correct position faster than MILTrack

(in red) (error graph detail after frame 476)

ground truth region GT

score =
area(GT ∩ SR)

area(GT ∪ SR)

We compare the performances of our algorithm using the above measure with respect to MIL-
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Figure 4.11: Analysis on the standard liquor sequence. (a) Example of the liquor detector, with

highlights of the SIFT matches between the reference web image (top left) and the video bottle,

and of the estimated object bounding box. (b) Tracking Precision as function of the Euclidean

distance between the center of ground truth and tracked regions. Comparison of K-Track and K-

TrackBinwith MILTrack, PROST and Everingham et al. Note that since there is always only one

single detection (or none) in each frame, K-Track and K-TrackBin coincide.

Track, PROST and Everingham in Table 4.3. From the Table results that K-Track performs com-

parably or better than the other methods, with the proportional way (K-Track) to deal with multiple

detections offering better results than the binary strategy (K-TrackBin).

Presentation videos.

For each of the three MPEG-1 videos in this set, we manually labeled the ground truth center

coordinates for all the face tracks in the videos. Table 4.1 presents the information about number of

speakers, number of ground truth tracks and tracks length of the inspected videos.

For these videos we adopted the shot boundary and track seeds detection framework described in

Chapter 4.2.1. Once the seed has been established for a face track, we start tracking the face in both

temporal directions, until the track exits the frame borders or one of the detected shots boundaries

is encountered as explained in Algorithm 1.

Since there are multiple speakers in each video and cases similar to the ones outlined in Figure

3 are quite common, for this dataset we track each face individually and adopt the K-Track strategy

in its K-TrackPropBin form. We evaluate face tracking following the frameworks introduced by

[Yin et al., 2007]. We analyzed performances at the face regions level for all the frames, comparing
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Video MILTrack PROST Everingham K-Track K-TrackBin K-TrackProp K-TrackPropBin

David 0.56 0.71 0.85 0.88 0.87 0.53 0.53

Occluded Face 0.65 0.88 0.81 0.83 0.82 0.56 0.56

Occluded Face 2 0.63 0.75 0.76 0.79 0.78 0.69 0.69

Girl 0.50 0.72 0.83 0.73 0.71 0.37 0.39

Liquor 0.22 0.77 0.49 0.56

Table 4.3: Tracking performances in terms of area overlap between ground truth and tracked box.

Higher values represent better performances. Best performance is highlighted in bold and italic,

second best performance in bold. In the Liquor sequence, since the detector is engineered to find

only one or zeros occurrences of the object and the bounding box is determined through an affine

transform, the performances of the K-Track methods coincide.

our algorithm (using K estimated from the Standard sequences) against MILTrack and the Ever-

ingham’s. We define a match between a system region SRj and a ground truth face region GTi

when SRj contains the center of a GTi. We can then calculate precision, recall and F1 measures as

follows:

TrackPrec =
#(SR ∩GT )

#SR
, TrackRecall =

#(GT ∩ SR)

#GT

TrackF1 = 2 ∗ TrackPrec ∗ TrackRecall
T rackPrec+ TrackRecall

note that there is a difference between SR∩GT andGT ∩SR: SR∩GT expresses the total number

of system regions matching at least one ground truth region, while GT ∩ SR refers to the number

of ground truth regions having at least one match with a system region. In Table 4.4 are reported

precision, recall and F1 performances for each of the three videos we investigated. For videos 1

and 2, the F1 performance of K-Track is significantly superior to the one of the original MILTrack

algorithm. In video 3 they are essentially equal.

The method of Everingham et al. suffers from the lack of editing in the videos, which results in

an extensive length of the shots. Such length, and the reduced size of the faces in the videos, make

it hard for their system to track a large number of KLT features from one detected face to another.

As a result, the tracks produced by their system are quite short and localized around temporally near

face detections.

Therefore the recall rate is quite low. On the other hand, the precision rate and the radius are

much better than other methods, since they are heavily influenced by the detections. Looking at
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Video Measure MILTrack Everingham K-Track

1

TrackRecall 0.891 0.238 0.899

TrackPrec 0.608 0.878 0.640

TrackF1 0.723 0.374 0.747

radius 6.76 4.698 7.09

2

TrackRecall 0.912 0.231 0.919

TrackPrec 0.535 0.877 0.591

TrackF1 0.674 0.366 0.719

radius 6.74 3.91 6.14

3

TrackRecall 0.921 0.292 0.920

TrackPrec 0.580 0.970 0.574

TrackF1 0.712 0.449 0.707

radius 6.29 3.31 6.04

Table 4.4: Tracking performances in terms of Precision, Recall, F1 and average Euclidean

distance(radius) between ground truth region and system region on Presentation videos. Compari-

son between MILTrack, Everingham et al. and K-TrackPropBin. Best performances are highlighted

in bold.

the F1 statistic, our proposed framework clearly outperforms their method. Such poor performance

rates for a method which behaves almost perfectly on professional content is due to the lack of

editing, the low quality and the unstructured nature of the investigated videos, and shows how new

methods such as our proposed framework are needed to deal with this ”wild” content.

As pointed out by [Yin et al., 2007], the above definition of match between ground truth and

system face region tend to advantage larger regions returned by the system, which are not necessarily

accurate. In order to provide a more complete analysis of the tracking performances, we provide

another definition of a match between ground truth region and system region: a match is determined

if the Eucidean distance between the centers of the two regions is smaller than a threshold radius.

In Figure 4.12 is reported the variation of tracking recall as the value of radius is incremented.

Note the limited but consistent improvement in performance with respect to MILTrack in all videos,

in particular for smaller values of radius.

As stated in Section 4.2.2, we use the Kalman framework to determine a principled and optimal
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Figure 4.12: Tracking Recall as function of the radius on Presentation videos 1 (a), 2 (b) and 3 (c).

The benefit of K-Track is particularly evident for small values of radius. A limited but consistent

improvement is registered when using K-Track (green line) with respect to the MILTrack algorithm

(red line) in all videos. Everingham’s method is unable to produce long tracks due to the reduced

size of the faces in the videos, and therefore its recall rate is much lower than other methods.

(under certain assumptions) way to combine the predictor and the detector at each instant. One

simple alternative could be to pick arbitrary values for K to combine the two components. The

tracking performances on the Presentation videos reported in Figure 4.13 confirm the benefit of

adopting the proposed Kalman framework to pick “optimal” values instead. In the Figure, tracking

precision, recall, F1 and radius are presented as functions of the combination parameter K1 (fixed

at the same value for x and y). We remark that the selected values The values of K1 selected by
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K−Track are highlighted with diamond markers and were estimated from the Standard sequences,

therefore no parameter tuning was performed with respect to the investigated Presentation videos.

Our Kalman framework choice of K1 produces the best or close to best results in almost all cases

for all performance measures. We registered suboptimal results for radius, particularly in Video 1.

Looking at the range of values for radius we realize however that the difference in performances

between different choices is minimal (subpixel).

4.4.3 Face Tracks Matching

In order to perform matching between tracks, a standard approach used among others by [Evering-

ham et al., 2009] consists in computing the min-min distance between tracks T1 and T2, that is,

compute the distance between each possible pair of elements t1 ∈ T1 and t2 ∈ T2.

We tested two methods to selection subsets of elements to match in each track: the first one

involves a simple temporal sampling of the faces in the track, while the second consists in an un-

supervised method based on image quality measures. For temporal sampling, we simply selected n

uniformly distributed example faces per track, and we tried values of n = 1, 3, 10, 100.

We evaluated track matching accuracy for each video, using the extracted tracks with best track-

ing precision in each video. Matching is performed in a Nearest Neighbor classification framework:

given a reference track Tr, we compute the distance between the reference and all the tracks Ti in

the video which do not temporally overlap with it (we consider that if two tracks overlap temporally,

they must belong to different individuals). We retain the track Ti which has the smallest distance

d(r, i) to Tr to be a candidate match, and if d(r, i) is smaller than a matching threshold, we consider

that Tr and Ti are a match. We compared four different modalities to compute the distance between

two tracks.

The first modality (min-min) is to compute the distance between all pairs of images d(vmr , vni ),

where vmr ∈ Tr and vni ∈ Ti, and keep the minimum distance to represent the distance between

the tracks. This method presents two limitations in our unconstrained domain. The first one is

efficiency, given the large amount of redundancy present in each track due to the temporal domain

of a video, using all the faces in a track is an unmotivated cost. The second is accuracy, since the

face tracks generation module returns a set of tracks which can be considered noisy, containing false

positives from the seeds detection stage, and drifts in tracking caused cutting of face regions.
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The second modality involves using a temporal sampling of n faces in each track, computing

the distances between these reduced sets and retain the minimum one.

The third modality employs K-means clustering in the LBP feature space, as suggested by [Mau

et al., 2010]. The K = n cluster centers are used to compute the distances between tracks, and

the minimum distance is kept. We tested with the same values of n as for the temporal sampling

approach.

The last modality consists in computing the distances only between the n top track faces which

are selected based on the response to our quality measure filters (see Section 4.3).

For temporal, K-means, and selection matching we retain n = 100 samples from each track

(or the whole track in case its length is smaller than 100). Experiments with n = 1, 3, 10 provided

worse matching accuracy results.

Figure 4.14 reports track matching accuracy as a threshold on the maximum distance between

tracks to consider them a match varies (expressed in percentage of the range of values of the track

distances). It must be noted that random guessing would provide a 0.5 matching accuracy, but given

the high imbalance between the number of matching and non-matching track pairs, in the Figure

we report a baseline which predicts all pairs to be non-matches. For all videos, all selection-based

matching methods present a global maximum in the accuracy with respect to the chosen threshold.

The optimal threshold seems to be consistently located between 60% and 70% of the range of

distances between tracks. Such observation could be generalized to fix a threshold for processing

new videos. From the results shown in Figure 4.14, not only the computational cost of computing

the distances between tracks is reduced when using filtering techniques to reduce the number of

image pairs to match, but matching accuracy increases in two out of three videos. This is due to the

reduction or removal of noisy, drifted, or partially cut images from the tracks which is accomplished

through sampling. It is also interesting to notice that the best filter results in such videos is the skin

color-based one. In fact, proper face matching requires a full face occupying most of the image,

which is best guaranteed by the skin color filter.

Figure 4.14(d) shows the computational gain of using the proposed face selection method within

tracks before matching. Notwithstanding the overhead introduced by feature extraction and face

selection before matching, the proposed approach achieves a higher level of track matching accuracy

while needing approximately 6% the running time of min-min matching. This is due to the greatly
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reduced computational complexity of matching each pair of tracks: O(k2) (with k = 100 in our

experiments) versus O(n2) for min-min, where n is the number of frames in a track. According to

Table 4.1 the relationship between k and n is on average of 1 to 6.7, which is quite significant when

squared.

We tested a series of possible combinations of the three quality measures according to the fol-

lowing formula (each quality measure is normalized between 0 and 1):

Q = w1 · pose+ w2 · resolution+ w3 · skinRatio (4.16)

with pose being either left34 or right34. We empirically found that the best combinations of

w = (w1, w2, w3)T were (0.0, 0.3, 0.7)T , (0.3, 0.1, 0.6)T and (0.0, 0.7, 0.3)T for video 1, 2 and

3 respectively, and pose = right34 for all videos. It is interesting to notice how resolution is

much more important for the low resolution video 3, while pose does not seem to be fundamental,

probably because faces with different poses were matched against each other.

We also note that the performance of our selection method is comparable with K-means cluster-

ing both in terms of accuracy and efficiency. However, our selection method provides us also with

the candidate faces for the speakers visual index, whereas the average faces returned by K-means

do not hold any meaning to a human.

4.4.4 Representative Index Extraction

In order to obtain the faces to build the speakers visual index, we took the results of the 3 filters

presented in Section 4.3 to all the images in each track and retained the ones returning the best com-

bined scores, following Equation 4.16 (with the modification that pose = max |left34, right34|,

since differently from matching we do not care which direction the face is facing, as long as it is a

3/4 view). The best face among all those in the tracks representing the same speaker (resulting from

track matching) is expanded to include a head and shoulder view of the person.

In Figure 4.15 is reported the accuracy of the indexes obtained with different combinations

of the three quality measures, as well as their individual performances. Accuracy is measured

as the fraction (out of the possible 58 speakers) of selected images representing a 3/4, head and

shoulder view of a speaker. In this framework, differently from matching, the pose measure is the

predominant factor in performance. This is because from the perspective of the visual index, a full
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frontal or full profile view of a person is considered an error. It is also interesting to notice that

while in video 1 and 2 resolution seems to hurt in combination with the other two measures, on

the lowest resolution video 3 this effect is not registered (lower triangle of the heat map).

Figure 4.16 shows the head and shoulders views of speakers selected for the visual index. The

system is able to automatically generate a qualitatively pleasing index consisting of 51 out of the

58 speakers present in the videos. One speaker was never detected, and in some cases the wrong

person or view were selected since tracks were not matched properly or resolution and skinRatio

prevailed over pose.

We have presented a system to select the most representative faces in unstructured presentation

videos with respect to two criteria: to optimize matching accuracy between pairs of face tracks, and

for indexing purposes.

Experiments on 3 unstructured presentation videos demonstrate the benefit of our contributions

in terms of tracks matching, while reducing the average running time with respect to min-min match-

ing. We were able, by using quality metrics, to build face indexes of 51 out of of 58 speakers with

a head and shoulders, 3/4 view, which is the pose preferred by humans.

In the continuation of this work, we plan to conduct user studies to assess the usefulness and

likability of our speaker indexes, integrated into a multimodal presentations search engine including

also textual and graphical cues.
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Figure 4.13: Tracking performances on Presentation videos as a function of parameter K1: (a)

precision, (b) recall, (c) F1 and (d) radius. Video 1, 2 and 3 are represented with blue, red and

green curves respectively. The Kalman framework of K-Track allows to pick an “optimal” value

for the parameter K1 (points with diamond markers). In fact, performances at the selected values

of K1 are the best or close to the best. Note that for radius (d), the lower the value the better.



CHAPTER 4. FACE INDEXING 62

10 20 30 40 50 60 70 80
0.92

0.925

0.93

0.935

0.94

0.945

Threshold

M
at

ch
in

g 
A

cc
ur

ac
y

 

 

left34
right34
resolution
skinRatio
combined
min min
temporal
K−Means
baseline

10 20 30 40 50 60 70 80
0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

Threshold

M
at

ch
in

g 
A

cc
ur

ac
y

 

 

left34
right34
resolution
skinRatio
combined
min min
temporal
K−Means
baseline

(a) (b)

10 20 30 40 50 60 70 80
0.92

0.921

0.922

0.923

0.924

0.925

0.926

0.927

0.928

0.929

0.93

Threshold

M
at

ch
in

g 
A

cc
ur

ac
y

 

 

left34
right34
resolution
skinRatio
combined
min min
temporal
K−Means
baseline

(c) (d)

Figure 4.14: Matching accuracy performance for the investigated videos as a function of threshold

equal to the maximum distance at which two tracks are considered a match (expressed in percentage

of the dynamic range of distances between tracks). Random guess produces 0.5 accuracy. Given

the imbalance between matching and non-matching track pairs, a more suitable baseline consists in

predicting no matches between any pair of tracks produces the baseline (red dashed line). Results

reported for videos 1(a), 2(b) and 3(c). (d) Average processing time (in seconds) for track matching.

Comparison between the min-min standard approach, K-means clustering (in dark blue) and the

proposed selection method, which is based of 4 steps: skinRatio and image resolution extraction

( 2.46 seconds, in red), pose classifier evaluation ( 9.08 seconds, in violet), face selection ( 0.02

seconds, in green) and track matching ( 8.18 seconds when the top 100 faces for each track are

retained, in light blue). Note that, unlike our proposed method, K-means does not provide face

indexes.
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Figure 4.15: Selection accuracy for index building on the three investigated videos. Heat map of

the accuracy given combinations of quality measures in Equation 4.16. The white squares represent

the optimal combination, which is w = (0.8, 0.1, 0.1)T , interestingly shared across all three videos.

Bottom left: accuracy of face felection for indexing methods, alone or in combination.
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Figure 4.16: Generated visual speaker index. Most of the images show the desired 3/4 head and

shoulder view of the speaker. Some fail, either by portraying the wrong person (in red) with respect

to the ground truth or by presenting a full profile (in magenta), from which is hard to identify the

person.
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Chapter 5

Diagram Indexing

We propose a system to index presentation videos based on a new semantic cue: diagrams.

The proposed system first detects diagram regions from frames where a slide occupies the ma-

jority of the camera field of view, using standard region detection methods. An online clustering

algorithm which combines visual and temporal similarity is employed to group together regions

representing the same diagram.

One image is then selected to represent the diagram cluster based on resolution, and finally color

corrected with the automatic white balancing Grey-world algorithm [G. and Buchsbaum, 1980].

This is done to generate a visual index of diagram icons which reflect human users preferences

collected through Amazon Mechanical Turk experiments, that is, large regions which show as much

of the diagram as possible and are white balanced.

5.1 Diagram Extraction System

In order to index all the graphics/diagrams from the video, we need to localize them first, both spa-

tially and temporally. In the following we describe the processing pipeline adopted to first detect

frames where a projected slide occupies most of the camera field of view, then localize the graph-

ics regions within the frame and finally cluster together regions detected in different frames but

representing the same diagram.
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5.1.1 Slide Detection

Since slides provide a natural way to semantically segment a presentation video [He et al., 2000],

methods to detect them within frames and to model their transitions become quite important. In

our framework we are interested in finding in each video the frames where the focus of the cam-

era is a projected slide. Once a slide frame is found, we can then proceed to extract the infor-

mation we seek from it (in the context of this work, graphic elements). Many algorithms have

been proposed for slide detection. Most of them rely on electronic copies of the slides and align

them with video frames using local or global features matching [Fan et al., 2011; Fan et al., 2006;

Gigonzac et al., 2007]. Since references or resources besides the recorded video are not always

available, we adopt a reference-free method, similarly to [Adcock et al., 2010], who augment a

standard keyframe extraction method with face and text detection filters to obtain keyframes where

a slide is predominant.

We employ a similar but simpler method, which stems from the observation that in a presentation

video recording setting, slides are projected onto a screen thus generating a washed out illumination

field for which the camera recording system cannot adapt, unlike from the human vision system.

Therefore we compute the average amount of color shift in the frame, either toward a high or low

color temperature, as an estimator of the light produced by the projected slide. We compute such

shift following the color temperature estimation framework of [Huo et al., 2006], in which a color

temperature shift toward low or high temperatures is estimated as the average amount of saturation

RSAT and BSAT of the red or blue channels, respectively:

RSAT =

(∑
x,y

R(x, y)− Y (x, y)

N

)
= R− Y

BSAT =

(∑
x,y

B(x, y)− Y (x, y)

N

)
= B − Y (5.1)

where C is the average intensity in channel C of an image, N is the total number of pixels and

x,y are the pixel coordinates. Y is computed as the average of the RGB channels, and in the model

is it represents an approximation to the scene illuminated by white light source (which by definition

has equal contribution by all color channels).

The average amount of color shift CS in the frame is then computed as the maximum tempera-
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ture shift, as follows:

CS = max
(
|RSAT |, |BSAT |

)
(5.2)

Finally, a frame is considered to contain a sufficiently large slide if the average amount of color

shift is greater than a threshold θs which was estimated on a training set of 20 videos. Details of the

training process and the performance of slide frames detection are reported in Section 5.3.1.

5.1.2 Diagram Regions Detection

Slides may contain text and graphical elements such as diagrams, individually or in any combina-

tion. Therefore our approach to detect diagrams and images is based on a process of elimination,

meaning that we consider a diagram anything that is not labelled as text or background.

The steps of our approach are the following:

• Extract an edge map from the input image using a Laplacian of Gaussian filter

• Group edge connected components into rectangular regions

• Extract geometrical and texture properties from each region, namely coordinates of the cen-

ter, area, width, height, width/height ratio, density of edges, edge histogram, vertical and

horizontal alignment, LBP histogram.

• Separate regions into noise, text-regions, and diagram-regions

In order to perform the last step, we adapt the text detection algorithm presented in Chapter 3.1

based on edge density and geometric constraints. It applies empirically validated thresholds to the

extracted features in order to determine which ones are text regions.

Once the text regions are established, diagrams are determined based on a process of elimination

(a diagram regions is basically a regions which is not text, and not noise). The procedure is the

following.

• Remove text rectangle regions from the list of candidate regions

• Eliminate rectangles that are too large and with more than 30% area of texts, and also small

rectangles contained in others
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• Expand each rectangle by 5% in both width and height

• Combine partially overlapping rectangles Ri and Rj if:

0.5 <
Riheight

Rjheight
< 1.5 (5.3)

0.5 <
RiEdgeDensity

RjEdgeDensity
< 1.5 (5.4)

HO
(
Ri, Rj

)
≥ min

(
Riwidth, R

j
width

)
+ 10 (5.5)

V O
(
Ri, Rj

)
≥ min

(
Riheight, R

j
height

)
/2 (5.6)

where HO and VO represent the horizontal and vertical overlap between regions.

• Eliminate rectangles whose area is less than 0.5% of the image and with aspect ratio larger

than 5 or smaller than 0.5.

• Return the remaining rectangle regions as diagrams candidates

5.1.3 Diagram Regions Clustering

Once the candidate graphic regions have been detected, we need to group regions representing

the same diagram or graph together. In order to do so we employ an online clustering algorithm

based both on visual and temporal similarity, as proposed by [Papka and Allan, 2002]. Using that

terminology, we consider each detected graphic region in the slides to represent a story regarding

a particular topic, that is, a unique diagram. Like a topic, a diagram can appear (or be repeated) in

multiple separated time intervals. For example one figure can be presented at a certain point of a

talk, and then be brought back during the Q&A session. Each occurrence of such figure is then a

story regarding the same topic.

Our online clustering approach is presented in Algorithm 2. We represent each detected region

xi using a normalized concatenation of two global descriptors: one focusing on color and the other

on texture:

• Color histogram: representing the global color distribution of the region as a 166-dimensional

histogram in HSV color space
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• LBP histogram[Ahonen et al., 2004]: extracted from the greyscale version of the image

as a histogram of 8-bits local binary patterns, each of which is generated by comparing the

grayscale value of a pixel with those of its 8 neighbors in circular order, and setting the

corresponding bit to 0 or 1 accordingly. A pattern is called uniform if it contains at most two

bitwise transitions from 0 to 1. The final histogram contains 59 bins, 58 for uniform patterns

and 1 for all the non-uniform ones.

Given this representation, when a new graphics region xi is detected at time t, we calculate the

visual similarity between the region and a cluster Cj ∈ Ψ (from the initially empty set of existing

clusters Ψ) , 1 ≤ j ≤ |Ψ| as the inverse of the χ2 distance, adopting average linkage (which we

found to produce better results than single and complete linkage in our experiments), as follows

S(xi, Cj) =
1

|Cj |

|Cj |∑
k=1

1

χ2(xi, cjk)
(5.7)

where cjk ∈ Cj , ∀k = 1, ..., |Cj |. We also define the average cluster self-similarity as the

average similarity among all regions in the cluster:

S(Cj) =
2

|Cj |(|Cj | − 1)

|Cj |−1∑
k=1

|Cj |∑
q=k+1

1

χ2(cjk, cjq)
(5.8)

Therefore, the difference in visual similarity becomes

∆vis(xi, Cj) = |S(xi, Cj)− S(Cj)| (5.9)

The temporal difference is computed as the difference between the timestamp of the detected

region and the time of the last region added to the cluster Cj :

∆time(xi, Cj) = t(xi)− t(Cj) (5.10)

A weighted combination of the visual and temporal differences is computed to obtain a unique

difference score d(xi, Cj) ∀j = 1, .., |Ψ| and then the minimum score is retained.
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d(xi, Cj) = α∆vis(xi, Cj) + β∆time(xi, Cj) (5.11)

The values of α and β were determined empirically through cross-validation, as discussed in

Section 5.3.

Finally, a candidate cluster C∗ to incorporate the new region is selected as the one with the

minimum difference from it

C∗ = argmin
j

(d(xi, Cj)) (5.12)

and the minimum difference is compared against a threshold θc, in order to determine if region

xi should actually be merged with the selected existing cluster C∗, or if a new cluster should be

generated

d(xi, C∗) ≷ θc (5.13)

5.2 Visual Index User Preference Experiments

After we have clustered graphics as described in the previous Section, we need to select one iconic

image per cluster to be the representative in the visual index of the video. As a guiding line, we

want to select the image that most closely reflects the preferences of human users. To this end,

we conducted two experiments to estimate the preference of users with respect to the appearance

of the icons used in the visual index of the diagrams found in each video. The first experiment

concerns the need and type of color correction/automatic white balancing to apply to the icon, the

second to determine what type of view of a diagram (full diagram or detailed blow up of part of

it) the users deem more representative/useful. As with the face indexes, for both experiments we

employed Amazon Mechanical Turk.

5.2.1 White Balance

The human eye possesses the color constancy ability to cope with different lighting conditions and

adjust for different colors of the light source [Gijsenij et al., 2011]. Camera sensors, on the other
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Algorithm 2 Online Graphics Regions Clustering

1. Initialize: Empty set of clusters Ψ← ∅

2. for t=1,...,T do

find graphics regions in frame t

for all detected regions xi, ∀Cj ⊂ Ψ do

∆vis(xi, Cj) = |S(xi, Cj)− S(Cj)|

∆time(xi, Cj) = t(xi)− t(Cj)

d(xi, Cj) = α∆vis(xi, Cj) + β∆time(xi, Cj)

end for

C∗ = argmin
j

(d(xi, Cj))

if d(xi, C∗) < θc then

C∗ ← C∗ ∪ xi

else

Create new cluster Cnew ≡ xi

Ψ← Ψ ∪ Cnew

end if

end for

3. Result: |Ψ| distinct clusters representing unique graphics

hand, do not have such property and since the graphics regions are extracted from videos record-

ing projected slides, the illumination tends to shift toward high temperatures. Therefore a white

balancing algorithm should be used to restore color constancy and remove the artefacts introduced

by the recording process. The goal of this user study is to capture user preferences in terms of the

type/amount of white balancing to adopt.

HIT Design

There exist a large number of algorithms to perform automatic white balancing and computa-

tional color constancy (for a survey, see [Gijsenij et al., 2011]). We chose a few simple and well

known ones to test and present to the users (for details, see Appendix B): original (no correction),
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.1: Example of Automatic White Balance Methods on one diagram, sorted according to the

AMT experiment user preferences: (a) Grey-world, (b) Original Extracted Diagram, (c) maxRGB,

(d) Retinex 10 iterations, (e) Retinex 100 iterations, (f) Grey-world Single Channel, (g) maxRGB

Single Channel, (h) Retinex 1 iteration.

Grey-world [G. and Buchsbaum, 1980] with one or two channels corrections, maxRGB [Funt and

Shi, 2010] with one or two channels corrections, Retinex [Land and McCann, 1971] with 1, 10 or

100 iterations.

Hence we have a total of 8 possible versions of the same diagram region from which a user

can select a favourite. Figure 5.1 shows the effect of the various methods applied to an example

diagram region. In order not to bias the results to a specific worker or image ordering, we presented

the regions in 3 different random orders and required at least 30 different workers per HIT. Further-

more, we did not provide the workers with any information about the processing that each image

underwent, asking them to focus only on their preference for the general appearance of the image.

We conducted tests on 40 diagrams coming from different videos, for a total of 3600 HITs.

Results

Of the 3600 HITs, only 20 were not completed successfully, either because the worker did not

select any image (in 20 cases) or because he did not provide any explanation of his choice (10 cases).

Despite the distribution of preferences reported in Figure 5.2(a) being more uniform than ex-

pected, the simple Grey-world algorithm emerges as the most preferred choice. It is also worth

noting that the preferences for the Retinex algorithm peak at 10 iterations, finding a compromise

between too localized and too global restoration ranges. The choices made by the users were mo-

tivated mainly by the appearance of the colors (see distribution of reasons in Figure 5.2(b)). Since

we did not reveal how the images were obtained or how the original diagram in the slide looked

like, it becomes clearer that some users found the lighting distortion in the Original version of the

diagram to be visually appealing and considered it to be a pleasant part of the diagram rather than
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a noisy artefact introduced by the recording process. Nonetheless, following the results of the user

study we apply the Grey-world white balancing correction to the selected diagram index icons, as

explained in Section 5.2.3.

Figure 5.2: Results of user preferences for automatic white balance/color correction algorithms,

sorted by preference. The most popular selection was the Grey-world with corrections on both the

R and B channels.

5.2.2 Resolution

HIT Design

We found that after the diagram detection and clustering processes described in the previous

Sections, mainly two types of diagram regions were recurring in each cluster: one containing the

full view of the diagram (referred to as Full View), the other a zoomed in view of a detail/part of the

diagram itself (referred to as Detail). The second view is due mostly to camera motion (in particular

zoom in) or diagram detection errors. Even if one intuitively would think that a full view of a

diagram would provide a better index icon, that might not always be the case. In fact, due to the low

quality of the recorded videos and the distance from the recording camera to the screen where the

slides are projected, sometimes the detected full view of a diagram does not have enough resolution

to fully discern the meaning of the diagram which is included in some of its details. The zoomed
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in version, on the other hand, can provide a clear vision of such details. It must be considered that

in the final visual index, we will have to . For example in Figure 5.3 the text in the graph is not

readable in its Full View version, but part of it is readable in the zoomed in one.

In order to determine which view is preferred by the users, we ran a test in which workers had

to choose between the two views for 32 diagrams. We resized both views to a canonical size (the

average of their dimensions), since for practical reasons the final visual index for the video will have

only fixed size for every item, in the same fashion as standard image search engines show results in

canonical fixed size thumbnails. We showed each image pair in both orders and required 50 unique

workers per HIT, thus amounting to a total of 3200 HITs.

Results.

Of the 3200 HITs, 91 were not completed successfully. From the results presented in Figure 5.3

clearly emerges that the users prefer the Full View of a diagram which was chosen 75% of the time.

We asked the users to also specify the reason behind each choice. The motivations follow intuition:

Full View was mostly chosen because it provides more information, Detail was picked because the

users could see the details better in it.

5.2.3 Diagram Index Selection

The results of our user studies have evidenced that users prefer a white-balanced, color corrected

image that covers as much as possible the whole diagram.

In order to generate on iconic representation from the diagram image clusters detected in the

videos, which reflects the user preferences emerged from the experiments, we adopt a two step pro-

cess. First, we select the region with the highest resolution, that is, the one of largest size. This

selection is based on the assumption that for the vast majority of the clusters the regions within a

cluster are captured by the camera at approximately the same resolution, therefore larger regions

represent larger portions of a given diagram. This in intuition was confirmed through visual inspec-

tion of the 20 training videos, and resulted to hold true for the five test sequences as well.

Once the candidate icon has been selected, we proceed to apply color correction by means of

the Grey-World algorithm [G. and Buchsbaum, 1980]. We adopt the diagonal transform model [von

Kries, 1970], which achieves the color correction from the pixels in the image with unknown light
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Figure 5.3: Results of user preferences for the resolution of the presented diagrams. The users

clearly prefer a full view of the diagram (75% of the selections), even if some details might be too

small or blurred to discern. The distribution of motivations for the given choices demonstrates how

the workers picked a full view representation to see more information, and a blow up of a part of

the diagram when interested in more details.

source Iu to the color corrected image Ic through a multiplication with a diagonal matrix D. The

white balancing equation to recover a given pixel Pu = (Ru, Gu, Bu)T becomes then
Rc

Gc

Bc

 =


d1 0 0

0 d2 0

0 0 d3




Ru

Gu

Bu

 (5.14)

Grey-world it assumes that the average intensities of the red, green and blue channels should be

equal. Therefore the resulting values of D become

d1 = Gu/Ru, d2 = 1, d3 = Gu/Bu (5.15)

where Cu is the average intensity in channel C of Iu.

Figure 5.4 shows an example of the selection process for one cluster in video 3:



CHAPTER 5. DIAGRAM INDEXING 76

Figure 5.4: Selection process from a given diagram region cluster. (a) The region with the highest

resolution (in red) is picked to be the icon representing the diagram. (b) The white balance of the

selected region is restored using the Grey-world algorithm.

5.3 Experiments

We tested our proposed approach on five presentation videos retrieved from the Videolectures web-

site1, for a total of approximately three hours of video and over 10K frames extracted at a rate of on

per second. Details on the properties of the individual videos are presented in Table 5.2. Each video

was parsed at one frame per second and further processing was conducted on the frame images.

Together with each video we also obtained an electronic copy of the slides and the timestamps

which locate each of them temporally in the video. Such resources were used, together with some

annotations either generated manually or through AMT, to produce the ground truth against which

we evaluated the fully automatic processing blocks of our system. All the experiments were carried

on a Pentium 4, 2.33GHz machine.

5.3.1 Slide Detection

We used 20 videos to train a slide frames detection model based on the color saturation score intro-

duced in Section 5.1.1. We extracted one frame per second from each video and manually provided

ground truth for each frame, for a total of 48K examples. We computed a ROC curve (see Figure 5.5,

in blue) from the true positive and false positive rates on the training data, which produces an area

under the curve of 0.9. We selected a threshold θs corresponding to the point of maximum combined

TP and FP rates. Using θs we were able to achieve rates of TP = 0.78 and FP = 0.21 on the 5 test

sequences. The good generalization performance of the selected threshold is demonstrated by the

location of the achieved rates (red diamond in the Figure) on the ROC curve for the test sequences

(red dotted line), which is almost optimal, although not as good as the training performance.

1www.videolectures.net
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Figure 5.5: Slide detection performances. ROC of the 20 training videos performance (AUC = 0.9),

with markers for the training and test TP and FP rates at the threshold θs on the color saturation

selected during training. Test performance rates (on 5 videos): TP = 0.78, FP = 0.21.

5.3.2 Diagram Detection

In order to evaluate the accuracy of the diagram regions localization algorithm presented in Section

5.1.2, we gathered ground truth locations of all the diagrams appearing in frames where a slide is

the focus, by gathering AMT annotations in the form of polygonal regions. Details of the AMT task

design and annotations validation are provided in Appendix B.3.

Diagram detection is evaluated to estimate the number of ground truth diagram regions DRGT

found by the algorithm, which outputs candidate boxes DRD. Precision and recall of diagram

detection are computed respectively as

detPrecision =
#DRGT ∩DRD

#DRD
, detRecall =

#DAD ∩DAGT
#DAGT

(5.16)

where one intersection between two regions DRi ∩DRj is counted if DRi overlaps with DRj

by at least half of its size. For each frame, localization performances are based on the overlap

between the ground truth diagram area DAGT and the diagram area detected by our algorithm
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DAD. Localization Overlap, Precision and Recall are then defined as follows:

Overlap =
DAGT ∩DAD
DAGT ∪DAD

, P recision =
DAGT ∩DAD

DAD
, Recall =

DAGT ∩DAD
DAGT

(5.17)

Diagram detection and localization performances are reported in Table 5.1 for all the test videos.

The dataset proves to be challenging for the detection algorithm. Localization presents particularly

limited Overlap and Recall rates (0.27 and 0.31 on average, respectively). Region detection results

are better, as one would expect, given the different amounts of overlap between two regions trig-

gering a true positive. Nevertheless the performances are quite limited in absolute value. Upon

inspection of the results, there seem to be two main reasons for such limitations, especially from the

localization point of view. The first is inherently structural, since the ground truth is provided under

the form of polygons and the algorithm’s output is a set of rectangles. The second reason is that the

algorithm tends to detect subparts of any given diagram, rather than its full extension. This effect

could be mitigated by adjusting some thresholds in merging procedure in Equations 5.3 to 5.6, but

this would result in a trade-off between detecting only parts of a diagram versus returning very large

regions which enclose the full diagram but also large sections of noise, with the first option being

preferable for building the diagram index.

In fact, although the system does not appear to perform extremely well, it must be noted that the

final goal is to find all the appearances of unique diagrams in a video, not to spatially locate them

in every frame. Consider the extreme case in which our algorithm detects only a very small portion

of a unique diagram region in all the frames but one, where it locates the full region correctly.

This would result in very poor spatial detection and localization performances. However, given the

clustering and selection steps described in Sections 5.1.3 and 5.2.3 respectively, the final goal of

temporally identifying a unique diagram and represent it with a full size icon would still be fully

achieved.

Therefore, while in the future we plan to adopt more complex and robust algorithms to improve

the localization performance, even the current results are acceptable for our purposes.
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Video Overlap Precision Recall detPrecision detRecall

1 0.37 0.81 0.41 0.58 0.85

2 0.32 0.50 0.36 0.39 0.39

3 0.25 0.49 0.28 0.34 0.44

4 0.17 0.33 0.22 0.23 0.42

5 0.24 0.42 0.27 0.78 0.48

Avg. 0.27 0.51 0.31 0.46 0.52

Table 5.1: Diagram regions detection performance.

5.3.3 Diagram Clustering and Index Construction

Given the sets of detected diagram regions in various frames in the video, our goal is to cluster

together regions representing the same diagram, and finally select one representative icon from

each cluster to be in the final visual index. We can compare the clusters generated by our system to

ground truth clusters, given that we have information where each slide is temporally located in each

video and we manually annotated the diagrams within each slide.

Given N regions with C = {c1, c2, ..., cJ} ground truth clusters cj and Ω = {ω1, ω2, ..., ωK}

clusters created by the algorithm ωk, we evaluate clustering performance using two standard mea-

sures [Manning et al., 2008], Purity and Normalized Mutual Information (NMI), computed as as

follows:

• Purity(Ω,C) = 1
N

∑
k

max
j
|ωk ∩ cj |

• NMI(Ω,C) =
2 ·MI(Ω,C)

[H(Ω) +H(C)]

where MI and H are the mutual information and entropy measures, respectively computed as

MI(Ω,C) =
∑
k

∑
j

P (ωk ∩ cj)log
P (ωk ∩ cj)
P (ωk)P (cj)

(5.18)

=
∑
k

∑
j

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj |

H(Ω) = −
∑
k

P (ωk)logP (ωk) = −
∑
k

|ωk|
N

log
|ωk|
N

(5.19)
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Figure 5.6: Results of the clustering algorithm 2 on the five test videos in terms of Purity (left) and

Normalized Mutual Information (right). For both measures the results obtained by selecting the

parameters α, β and θc from the training set of 20 videos (in red) closely match the best possible

performances for the test videos (in blue). On average (dashed lines), Purity is 0.58 versus the

optimal 0.61, while NMI is 0.65 versus the optimal 0.66.

Figure 5.6 shows the performances of the online clustering algorithm 2 on the five test videos.

The algorithm depends on three parameters, α, β and θc, which were set via simple grid search from

a separate training set of 20 videos to take the values 0.1, 1 and 0.05, respectively.

We compared the Purity and NMI results obtained by using the parameters α, β and θc selected

from the training set (in red) to the best possible clustering performances for each the test videos (in

blue), given the regions detected by the previous processing steps. On average (dashed lines), Purity

is 0.58 versus the optimal 0.61, while NMI is 0.65 versus the optimal 0.66. These results confirm

that the three parameters values chosen from the training set generalize well.

Table 5.2 quantitatively summarizes the quality of the diagram indexes for the five test videos

in terms of Precision and Recall, while Figure 5.7 provides a more qualitative view of the clustering

results as well as the created indexes.

We evaluate the net performance of our full diagram index generation pipeline in terms by com-

paring the ground truth unique diagrams present in a video (manually extracted from the electronic

copies of the slides, presented in the central column of Figure 5.7) with the diagram index of icons

automatically generated from the regions detected by our system, clustered, selected based on size
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Video
Duration

#frames
# Ground Truth # Detected

Precision Recall
Processing

(minutes) Diagrams Diagrams Time (sec)

1 18 1078 4 9 0.44 1 123

2 77 4670 33 84 0.33 0.73 576

3 24 1469 12 15 0.67 0.67 187

4 37 2177 25 15 0.73 0.44 210

5 16 975 7 11 0.45 0.71 120

Total 172 10369 81 134 0.52 0.71 1216

Table 5.2: Experiments Videos details and accuracy of the automatically generated diagram index.

and finally automatically white balanced (right column of Figure 5.7)). The left column of the Fig-

ure shows the ground truth (in blue) and detected (in red) clusters along the temporal scale. Each

row represents a different cluster, which results in one unique entry in the final diagram index. In

this representation, optimal clustering would be perfect overlap between blue and red strings, as

happens for example in clusters 2, 7 and 10 in the graph for video 3.

From Table 5.2 emerges that our system in general tends to generate more entries in the diagram

index than there actually exist in the ground truth. This is due to over-clustering and results in a

Precision rate of 0.52. The phenomenon appears clearly in the right column of Figure 5.7, which

represents the automatically generated index. In every video, there are icons from a same ground

truth diagram are repeated multiple times. The magenta dotted lines group together those icons that

were selected from different clusters, but should be merged into a single one, thus are considered

false positives. In the same column, in red are highlighted another source of false positives, namely

regions that do not represent a diagram, but the system erroneously considers to do.

On the other hand, the number of false negatives, that is, ground truth diagrams which are not

represented in our final index, is limited. They are highlighted in magenta in the central column of

Figure 5.7. Hence the Recall rate is much better than the Precision one and achieves a level of 0.71.

The false negatives rate is problematic only for video 4, which in fact has a Recall of only 0.44. In

this case, the failure is due mostly to the low region detection rate, rather than the clustering. In fact,

looking at the temporal layout of the clusters for this specific video in the left column of Figure 5.7,

we notice that there are multiple ground truth diagrams, temporally located toward the end of the
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video, which are never detected by the algorithm (top right corner). This is the only case where the

suboptimal performance of the detection algorithm heavily conditions the final index result.

A peculiar case is registered in video 3, in which one of the diagrams found in the electronic

copies of the slides (highlighted in blue in the appropriate row of the central column in Figure 5.7)

never actually appears in the video footage of the recorded lecture. On the other hand, a diagram

which is not part of the deck of slides is duly registered by our system (highlighted in green in the

appropriate row of the right column of the Figure). This happened because during the presentation

an extra slide, not part of the original deck and containing the mentioned diagram, was shown and

hence video-recorded.

Overall, 57 out of 81 unique diagrams were properly identified, selected and color-corrected

(even if with some redundancies) from the three hours of videos containing five different presenta-

tions.

Finally, it must be noted that the computational complexity of our diagram generation algorithm

is very low. On average, the system processes one hour of video in little over 7 minutes on a single

core 2.33GHz machine, which is several times faster than real time. Therefore the system can be

easily employed to process large scale collections.
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Figure 5.7: Results of the clustering and automatically generated visual indexes on the five test videos (one

video per row). Left: temporal scale with ground truth (in blue) and detected (in red) diagrams clusters. Mid-

dle: visual index of ground truth clusters. False negatives are highlighted in magenta. Right: automatically

generated visual index, after color correction. False positives are highlighted in red.
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Chapter 6

Conclusions

Presentation videos represent an interesting and challenging class of unstructured, “wild” videos.

Since presentations are by definition a way of conveying an intelligible message, this class of videos

represent the ideal setting to develop indexes which are semantically richer than standard keyframe

or tag based ones.

6.1 Contributions

In this thesis we have introduced four novel semantic cues to index and cross-reference presentation

videos in a multi-modal manner: text, speaker faces, graphics, and mosaics. We have presented

algorithms to generate these indexes in the particularly challenging “unsourced” domain, in which

no other source of information is available besides the video itself. Our indexes allow to perform

search not only inside video collection, but also within individual clips. Furthermore, they provide

a multi-modal summary of a video.

We have developed a textual index of words recognized from the slides projected in the video.

We have introduced a novel binarization algorithm, Local Adaptive Otsu (LAO), to explicitly deal

with the low quality of the video and detected scene text regions. We demonstrated the usefulness of

the LAO algorithm by almost doubling the character recognition rate (up to 74%) of the Tesseract

open source OCR engine on 8 presentations spanning over 1 hour and 45 minutes of video. We

could then use the recognized words from the projected slides not only to build the textual index of

the videos, but also to semantically segment them into shots.



CHAPTER 6. CONCLUSIONS 85

We have presented a combination of a keyframe sampling method, proportional to estimated

PTZ camera motion, and of a local-features based image stitching algorithm, in order to build an

index of mosaics for the semantic video shots.

In order to establish the criteria for building of the visual indexes, in particular the face and

diagram-based ones, we have adopted a user centric perspective. To this end, we have employed

Amazon Mechanical Turk HITs as surveys to gauge user preferences in terms of the visual appear-

ance of the icons in each of the two indexes. The results have suggested that icons in a speaker

face index should present a three-quarter, head and shoulder view of a person. For a diagram index,

users have shown to prefer a white-balanced, color corrected image that covers as much as possible

the whole area of the diagram, even if its details are not as clear as one of its sub-parts.

Within a standard processing pipeline to extract faces of speakers in videos, we have intro-

duced a tracking algorithm which integrates a generic object/face tracker as a noisy prediction in

a simplified version of a Kalman filter named K-Track, which uses object/face detections as noisy

observations. K-Track is used to mitigate the drifting effect, which typically affects appearance

based tracking algorithms. Using our tracking framework we have registered up to 5.7% relative

improvement in tracking precision with respect to a state of the art multiple instance learning tracker

[Babenko et al., 2009] on 3 unstructured presentation videos with a total of more than a quarter mil-

lion frames.

We have presented the use of three quality measures, namely resolution, amount of skin, and

pose, in order to simultaneously perform two selection tasks needed within the face indexing frame-

work. The first selection process is necessary for tracks matching, in order to avoid the computa-

tional burden of comparing every pair of faces in each track. The second selection is needed for

choosing a unique speaker face icon to be used in the final index, with the goal of closely matching

the human preferences recorded through the Mechanical Turk surveys. We were able to automat-

ically build a face index from three unstructured presentation videos of approximately 45 minutes

each, which showed 87% accordance (51 out of 58 speakers) with such human preferences.

Finally, we have introduced the first presentation video index based on diagrams. In order

to generate such index, we have described a processing pipeline consisting of four blocks: slide

detection, diagram region localization, diagram clustering and diagram icon selection. Diagram

regions are localized using standard region detection methods, based on edge density and geometric
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constraints, within preselected frames. Such frames are identified as showing a projected slide

that occupies the majority of the camera field of view, by estimating the amount of color shift

toward a high or low temperature. An online clustering algorithm, which combines visual and

temporal similarity, is employed to group together regions representing the same diagram. Finally,

one image is selected to represent the diagram cluster based on resolution, and then color corrected

with the automatic white balancing Grey-world algorithm [G. and Buchsbaum, 1980]. We have

demonstrated that our system is capable, completely in automatic and without any reference source

besides the video itself, of generating indexes of high resolution, white balanced diagrams from five

videos of approximately three hours, with 71% accuracy (57 out of 81 diagrams).

6.2 Future Work

We plan to further extend the work of this thesis in two main directions. The first consists in inte-

grating our indexes into an augmented video browser. This will give us the platform to perform user

studies to assess the usability and importance of the indexes for end users, as well as determining

which type of visualization is most suitable for a specific task. The second directions regards a

further semantic analysis of the visual indexes, in particular the diagram and face ones.

In the following we discuss in detail the possible extensions to our work.

• Integration with Video Browser We plan to integrate our indexes into an augmented video

browser. In this context, the VastMM [Haubold and Kender, 2007] consists in a natural choice

for our semantic indexes, especially if extended to be a web application. This will give us the

platform to perform user studies to assess the usability and importance of the indexes for end

users, by comparing their performance to other standard indexes (for example, playback) in

terms of time and accuracy for search and retrieval of useful segments within the videos.

One type of user study we could consist in providing the system as an assistive tool for

students to review class material and prepare for exams. We could study the use of the browser

by regular students during the week before finals, assessing how much the given indexes

are employed. It would be interesting to compare the grades of students who used our tool

to the ones of those who had only access to the streaming video and/or the regular class

material (electronic copies of the slides, web pages) to verify its usefulness. We also plan
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to record which type of index (or combination of indexes) were used the most, so to verify

which controls are actually more useful. Finally, we also plan to collect feedback from users

regarding their subjective experience in using the tool, to verify the likeability of the various

indexes and controls.

A second batch of user studies will be performed to evaluate speed and accuracy of retrieval

of semantic concepts given the built indexes. We will ask users to retrieve segments in which

a particular concept is explained or slide is presented, possibly by a specific presenter, and

measure the duration and completion rate of the task given different configurations of indexes

available: pure video stream, keyframe based representation, mosaic representation, textual

index, graphics indexes. This type of user studies could be conducted on large scale using

Amazon Mechanical Turk.

• Diagram Classification We plan to provide a semantically richer representation of the di-

agrams found in presentation videos by classifying them into diagram categories, i.e. line

plots, bar charts, tables, etc. Existing work on diagram classification [Prasad et al., 2007;

Savva et al., 2011] is limited to had hoc, small scale datasets. By leveraging the growing quan-

tity of presentation videos available on the web and our diagram region extraction pipeline,

we could discover diagram categories through unsupervised clustering. We could then apply

category labels to diagrams detected in new videos.

• Speaker Identification Our proposed speaker face indexing process is completely anony-

mous, since it simply retrieves the faces of the people presenting in a video, without any

information about their identity. It could be interesting to associate faces to their names. This

could be done for example by matching the faces detected in the video to images of professors

takes from department websites of universities or researchers from a company website. Once

a speaker has been identified, we could provide a richer information in the visual index, for

example the link to a professor’s webpage.

• Enhancement of Semantic Elements in Mosaics Mosaics are a meaningful representation

of semantic content that situates it into its video context and therefore goes beyond the usual

keyframe or video playback based displays. Some systems try to offer a clearer visualiza-

tion by simply presenting a copy of the electronic slides besides the window with the video
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playback or directly enhance the video by superimposing the slides on the proper regions.

Such systems introduce a split-attention effect [Friedland and Rojas, 2008], where two areas

of the screen (one with the slides, another with a small video of the presenter) are competing

for the viewers attention. Our mosaic index overcomes such limitation, since all the infor-

mation is integrated in a single representation. Furthermore, we plan to enhance the mosaics

by highlighting, enlarging, crispening and superimposing meaningful text and diagrams on

them. For example, when the user will hover over the slide portion of a mosaic, a window

appears showing the slide with the recognized text overlaid and clearly printed, as well as the

diagrams sharpened and enlarged for better visualization. By clicking on different locations

on the mosaic, the user will also be able to control the video playback, as the portion of the

shot containing the corresponding keyframe will be played.

• Extension to other domains. While the work presented in this thesis is mostly focused on

the specific domain of presentation videos, it would be interesting to apply these semantic

indexing capabilities to other domains, for example generic consumer videos. In particular

the face and text indexes could be employed directly or as features for video classification or

retrieval systems. The words recovered by the text indexing module from scene or overlaid

text could be collected into a bag of words histogram representation of a given video. The

face index construction model could be instead exploited to extract face trajectories, or simple

representations describing the number of people present in a clip and their co-occurrence in

different segments of a video.
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Appendix A

Steady State Kalman Filter Derivation

Details

In this Appendix we provide some details of the mathematical formulation of the proposed steady

state Kalman filter framework. First, we provide the standard Kalman Filter Equations to be used as

reference to their counterparts presented in Chapter 4.2.2. Then we describe in detail the derivation

of Equation 4.13 from the same Chapter.

A.1 General Kalman Filter Framework

The Kalman filter tries to estimate the state x ∈ Rn of a process governed by the differential equation

xt = Axt−1 +But−1 + wt−1 (A.1)

where the random variable u ∈ Rl represents an optional control input, the random variable w

represents the process noise, and the matrix A relates the state at the current time xt to the previous

time step xt−1 in the absence of a driving function or process noise. The measurement xOt ∈ Rm of

the state is represented as

xOt = Hxt + vt (A.2)
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The random variable v represents measurement noise. Both wt and vt are assumed to be white,

independent of each other, and have normal probability distributions

p(w) ∼ N (0, Q) , p(v) ∼ N (0, R) (A.3)

Q and R represent the process noise and the measurement noise covariance matrices, respectively.

The Kalman filter state estimation at step t is based on two estimates: the a priori state estimate,

given knowledge of the process prior to step t, defined as x̃t ∈ Rn, and the a posteriori state

estimate, given the measurement xOt , defined as x̂t ∈ Rn. The a priori and a posteriori estimate

errors and their covariances at step t can be defined as

ẽt = xt − x̃t , êt = xt − x̂t (A.4)

P̃t = E
[
ẽtẽTt

]
, P̂t = E

[
êtêTt

]
(A.5)

Under these assumptions, it can be shown that the discrete Kalman filter time update equations

result in

x̃t = Ax̂t−1 +But−1 (A.6)

P̃t = AP̂t−1A
T +Q (A.7)

and the measurement update equations result in

Kt = P̃tH
T
(
HP̃tH

T +R
)−1

(A.8)

x̂t = x̃t +Kt

(
xOt −H x̃t

)
(A.9)

P̂t = (I −KtH) P̃t (A.10)

where Kt is referred to as the Kalman gain.

A.2 Derivation of Equation 4.13

We start from Equations

P̃ = AP̂AT +Gσ2
aG

T (A.11)

P̂ = (I −KH) P̃ (A.12)
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Following [Ramachandra, 2000], we can combine Equations A.11 and A.12, and obtain notations

for P̂ , P̃ and K, as follows. Equation A.12 can be rewritten as

P̂−1 = P̃−1 +HTR−1H (A.13)

Combining Equations A.11 and A.13 we obtain

P̂ −Gσ2
aG

T = A(P̂−1 +HTR−1H)−1AT (A.14)

If we define P̂ =

 p1 p2

p2 p3

, we can rewrite Equation A.14 as

 p1 − σ2
a
4 p2 − σ2

a
2

p2 − σ2
a
2 p3 − σ2

a

 =
1

1 + p1
σ2
o

 p1 + 2p2 + p3 + ∆
σ2
o

p2 + p3 + ∆
σ2
o

p2 + p3 + ∆
σ2
o

p3 + ∆
σ2
o

 (A.15)

with ∆ = p1p3 − p2
2 being the determinant of P̃ . From Equation A.15 we obtain the following

system of Equations: 

(
p1 − σ2

a
4

)(
1 + p1

σ2
o

)
= p1 + 2p2 + p3 + ∆

σ2
o(

p2 − σ2
a
2

)(
1 + p1

σ2
o

)
= p2 + p3 + ∆

σ2
o(

p3 − σ2
a

) (
1 + p1

σ2
o

)
= p3 + ∆

σ2
o

(A.16)

which, solving and substituting, produce the following notations of P̂ , P̃ and K

P̃ =

 σ2
od(d+1)2

r2
σoσa(d+1)2

2r

σoσa(d+1)2

2r
σ2
a(d+1)

2

 , P̂ =

 σ2
od(d−1)2

r2
σoσa(d−1)2

2r

σoσa(d−1)2

2r
σ2
a(d−1)

2


K =

 d(d−1)2

r2

2(d−1)2

r2

 (A.17)

with r = 4σo
σa

and d =
√

1 + 2r.
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Appendix B

Mechanical Turk Experiments Details

In this Appendix we discuss in detail the setup and results of the Amazon Mechanical Turk ex-

periments that we conducted for two reasons. The first was to obtain human preferences for the

appearance of the icons to be employed in our visual indexes, fro both the faces and diagrams. The

second was to annotate the locations of diagrams inside video frames, so to obtain ground truth

against which to evaluated our algorithms.

B.1 Faces Index Preferences

This AMT experiment was designed as a user study to evaluate the preferences of people in terms

of how the face of a speaker should be presented in the visual index of a video, with respect to two

criteria: head pose and context.

The experimental setup was the following. Each HIT presented the user with two type of face

views of a speaker from our presentation videos: one type showing only the face, the other with

a head and shoulder view. For each type, we presented 5 poses: −90o, −45o, 0o (frontal), +45o,

+90o. Figure B.1 shows the appearance of the HIT, in which the views of a person’s face are

randomized. The full set of images and speakers used in the experiment is reported in Figure B.2.

In order to avoid preferences based on a specific speaker or a specific ordering in which the views

were shown, we conducted experiments with 15 different speakers and 3 random views orderings.

Furthermore, we requested 35 different workers to complete each combination of speaker and views

order, therefore amounting a total of 1575 unique HITs.
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Figure B.1: Face Quality Selection HIT Example.

We also requested the workers to provide a motivation for their choices, giving the following set

of predefined choices (lower part of Figure B.1), with the possibility to leave personal comments.

1. It has better illumination

2. It has better resolution

3. I can see/tell more about the whole appearance of the person

4. I can see better the eyes and expression of the person

5. I prefer this pose of a person in general

6. I picked the best out of a bunch of bad pictures

7. None of the above
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Figure B.2: Full dataset of 15 speakers used in the experiment. For each speaker the workers had to

select one out of ten different views.
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(a) (b)

Figure B.3: Face Quality Selection overall results (left) and motivations (right).

All HITs were completed within two and a half hours, with an average time per assignment of

19 seconds. 69 unique workers participated to the experiment. Out of the possible 1575 votes, 11

were invalid, leaving a total of 1564 valid entries. The results, reported in Figure B.3 (a) showed a

strong preference for a head and shoulder rather than face only view (76% versus 24%). The single

most selected pose was the frontal one (45%). However, the combination of the left and right 3/4

poses amounted to 47% of the votes.

Looking at the distribution of choices for the individual speakers in Figure B.4, we notice that

only for one out of 15 speakers the preference was given to a face only view (circle in red). For two

out of 15 speakers the preference was given directly to a three quarter view, while if we combine

Left and Right three quarters view, this optin was chosen for five out of 15 speakers (circles in blue).

Some considerations can be made about the motivations behind the choice of a particular view,

which are detailed in Figures B.3 (b) and B.5. First, the reason behind most of the choices was a

general preference for the particular view of a person (reason 5), which reflects exactly the goal of

the user study. Second, as expected, the choice of a face-only view was mostly motivated by reason

4, for which it is possible to better discern the eyes and expression of a person. It interesting to

notice that

The workers left a total of 48 comments, 36 of which expanding on the “None of the above”

reason for a particular selection. Some comments were repeated, and it is interesting to see how

most of the comments express remarks on the physical appearance or attractiveness of the person,
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rather than its view angle or pose. The full list is the following: looks smart, his smile is good, he

is expressing some expression, his reaction is nice, it is the most attractive picture and takes in the

person’s whole face, it looks good, nice hair style.

Figure B.4: Face Quality Selection results, per individual.

Figure B.5: Face Quality Selection motivations.
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B.2 Diagrams Index Preferences

B.2.1 White Balance

The human eye possesses the color constancy ability to cope with different lighting conditions and

adjust for different colors of the light source [Gijsenij et al., 2011]. Camera sensors, on the other

hand, do not have such property and since the graphics regions are extracted from videos record-

ing projected slides, the illumination tends to shift toward high temperatures. Therefore a white

balancing algorithm should be used to restore color constancy and remove the artefacts introduced

by the recording process. The goal of this user study is to capture user preferences in terms of the

type/amount of white balancing to adopt.

HIT Design

There exist a large number of algorithms to perform automatic white balancing and computa-

tional color constancy (for a survey, see [Gijsenij et al., 2011]). We chose a few simple and well

known ones to test and present to the users. For all methods but Original and Retinex we adopt the

diagonal transform model [von Kries, 1970], which achieves the color correction from the pixels in

the image with unknown light source Iu to the color corrected image Ic through a multiplication with

a diagonal matrix D. The white balancing equation to recover a given pixel Pu = (Ru, Gu, Bu)T

becomes then 
Rc

Gc

Bc

 =


d1 0 0

0 d2 0

0 0 d3




Ru

Gu

Bu

 (B.1)

Different methods employ different assumptions to derive the values of the diagonal elements

of D. The following is a list of the methods that we tested, which are mostly standard.

• Original: the graphic region as detected in the video, without any post-processing/color cor-

rection. In this case D = I , I being the identity matrix.

• Grey-world [G. and Buchsbaum, 1980]: it assumes that the average intensities of the red,

green and blue channels should be equal. Therefore the resulting values of D become

d1 = Gu/Ru, d2 = 1, d3 = Gu/Bu

where Cu is the average intensity in channel C of Iu.
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Figure B.6: Layout of the Amazon Mechanical Turk HIT used to estimate user preferences for the

graphics visual index in terms of White Balance. The HIT consists of two parts: one to select the

preferred representation of a same diagram (top) and the other to motivate a given choice (bottom).

• maxRGB[Funt and Shi, 2010]: it follows the white-patch assumption, which states that the

maximum response in the RGB channels is caused by perfect reflectance. Under such as-

sumption, the values of D can be computed as follows:

d1 = max(Gu)/max(Ru), d2 = 1, d3 = max(Gu)/max(Bu)

• Single Channel Adjustments: from the slide detection algorithm used in Section 5.1.1 we

estimated which color channel (between red and blue) was saturated due to the light shift

generated by the slide projection and camera recording system. We tried to employ that

information to color correct only the saturated channel instead both red and blue like in the

previous approaches. Therefore, according to Equation 5.1, we set only one between d1 or

d3 depending on which is maximum between RSAT and BSAT . To set the value in D we
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used either the Grey-world or the maxRGB equations, thus obtaining the Grey-world Single

Channel and maxRGB Single Channel white balancing algorithms. For Grey-world Single

Channel, D is computed as follows

d1 =

 Gu/Ru ifRSAT > BSAT

1 otherwhise

d2 =1

d3 =

 1 ifRSAT > BSAT

Gu/Bu otherwhise

The values for maxRGB Single Channel are computed similarly.

• Retinex [Land and McCann, 1971]: we used the McCann99 Retinex [Funt et al., 2000]

implementation. We tested the algorithm with N = 1, 10 and 100 iterations. [Funt and Shi,

2010] noted that maxRGB is a special and extremely limited case of Retinex. In particular, it

corresponds to McCann99 Retinex when the number of iterations is infinite.

Once the workers selected a preferred icon, we also asked them to specify the reason behind

each choice, giving the following pre-specified options or allowing them to explain their motivation

in their own words:

1. It has better illumination

2. The colors look better

3. The details of the graphic are clearer

4. It looks more natural

5. I chose randomly, they look all the same

6. None of the above (please explain your reason with a few words in the box below)

Results

Of the 3600 HITs, only 20 were not completed successfully, either because the worker did not

select any image (in 20 cases) or because he did not provide any explanation of his choice (10 cases),

as reported in Table B.1.
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Experiment #Diag. #Choices #Perms
#Assign. Total Avg HIT #Unique #Missing #Missing

per HIT #HITs Time(secs.) Workers Votes Reason

AWB 40 8 3 30 3600 18.7 84 20 10

Resolution 32 2 2 50 3200 15.8 101 91 43

Table B.1: Summary of AMT Experiments on user preferences for diagram index icons in terms of

white balance correction and resolution.

Despite the distribution of preferences reported in Figure B.7(a) being more uniform than ex-

pected, the simple Grey-world algorithm emerges as the most preferred choice. It is also worth

noting that the preferences for the Retinex algorithm peak at 10 iterations, finding a compromise

between too localized and too global restoration ranges. The choices made by the users were mo-

tivated mainly by the appearance of the colors (see distribution of reasons in Figure B.7(b)). Since

we did not reveal how the images were obtained or how the original diagram in the slide looked

like, it becomes clearer that some users found the lighting distortion in the Original version of the

diagram to be visually appealing and considered it to be a pleasant part of the diagram rather than

a noisy artefact introduced by the recording process. Nonetheless, following the results of the user

study we apply the Grey-world white balancing correction to the selected diagram index icons, as

explained in Section 5.2.3.

(a) (b)

Figure B.7: Results of user preferences for automatic white balance/color correction algorithms,

sorted by preference. (a) The most popular selection was the Grey-world with corrections on both

the R and B channels. (b) Distribution of motivations for the given choices. The workers chose

predominantly based on the appearance of the colors.
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B.2.2 Resolution

HIT Design

We found that after the diagram detection and clustering processes described in the previous

Sections, mainly two types of diagram regions were recurring in each cluster: one containing the

full view of the diagram (referred to as Full View), the other a zoomed in view of a detail/part of the

diagram itself (referred to as Detail). The second view is due mostly to camera motion (in particular

zoom in) or diagram detection errors. Even if one intuitively would think that a full view of a

diagram would provide a better index icon, that might not always be the case. In fact, due to the low

quality of the recorded videos and the distance from the recording camera to the screen where the

slides are projected, sometimes the detected full view of a diagram does not have enough resolution

to fully discern the meaning of the diagram which is included in some of its details. The zoomed

in version, on the other hand, can provide a clear vision of such details. It must be considered that

in the final visual index, we will have to . For example in Figure 5.3 the text in the graph is not

readable in its Full View version, but part of it is readable in the zoomed in one.

In order to determine which view is preferred by the users, we ran a test in which workers had

to choose between the two views for 32 diagrams. We resized both views to a canonical size (the

average of their dimensions), since for practical reasons the final visual index for the video will have

only fixed size for every item, in the same fashion as standard image search engines show results in

canonical fixed size thumbnails. We showed each image pair in both orders and required 50 unique

workers per HIT, thus amounting to a total of 3200 HITs.

We asked the users to also specify the reason behind each choice, giving the following 4 options

or specifying their reasoning in case none of the offered options matched their choice motivation:

1. It provides more information

2. I can see the details better

3. It is more complete

4. I chose randomly, they look all the same

5. None of the above (please explain your reason with a few words in the box below)
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Figure B.8: Layout of the Amazon Mechanical Turk HIT used to estimate user preferences for

the graphics visual index in terms of Resolution. The HIT consists of two parts: one to select the

preferred representation of a same diagram (top) and the other to motivate a given choice (bottom).

Results

Of the 3200 HITs, 91 were not completed successfully, and in 43 of those the user did not

provide any explanation of his choice (or lack of it, see Table B.1). From the results presented in

Figure B.9 clearly emerges that the users prefer the Full View of a diagram which was chosen 75%

of the time. The motivations for the choices follow intuition: Full View was mostly chosen because

it provides more information, Detail was picked because the users could see the details better in it.

B.3 Diagrams Regions Localization

In order to evaluate the diagram region detection and localization performances of our algorithms

we needed ground truth annotations from the frames in the five test videos. Therefore we prepared

an Amazon Mechanical Turk region annotation task.
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Figure B.9: Results of user preferences for the resolution of the presented diagrams. The users

clearly prefer a full view of the diagram (75% of the selections), even if some details might be too

small or blurred to discern. The distribution of motivations for the given choices demonstrates how

the workers picked a full view representation to see more information, and a blow up of a part of

the diagram when interested in more details.

We created HITs for every valid diagram-frame pair in the the five test videos. All the 81

diagrams were considered, while a preprocessing stage was employed to select a subset of frames

to annotate. First, we selected only frames where the slide containing the diagram of interest them

appeared, according to the VideoLecture.net temporal synchronization information. We further

selected from that pool only those frames where the slide occupied the majority of the camera field

of view, using the manual annotation employed to evaluate slide detection in Chapter 5.3.1. The

selection left 2953 frames, from the overall 10K of the videos. We required three separate workers

to annotate the location of the diagram in a frame by drawing a polygonal region around it. The

total number of HITs amounted to 15798.

The interface of the HIT is shown in Figure B.10. It is didvided into two parts: the top one

contains instructions and a reference image showing the diagram to annotate, to bottom one with
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the annotation interface, which we was the flash application developed by Alexander Sorokin1,

adapted for our purposes. To perform the annotation, a worker could click on multiple points in the

frame, as the interface drew lines connecting the dots and tracing the contour of the polygon. The

annotation was editable at any point, before submission. The worker had also the option of labeling

the frame as not containing the given diagram. This option was used because in certain cases the

temporal alignment provided by Videolectures.net was not always perfect.

Figure B.10: Layout of the two Amazon Mechanical Turk HIT used to gather ground truth locations

of diagrams in video frames. Top: instructions and reference image of the diagram to be annotated.

Bottom: annotation interface showing the frame to be annotated.

1http://vision.cs.uiuc.edu/annotation/tools/annotation instructions.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.11: Annotations for a given diagram/frame pair. (a) Diagram to locate. (b) Frame to

be annotated. (c)-(e) Annotations from workers 1, 2 and 3, respectively. (f) Overlap of the three

annotations. (g) Matching annotations. (h) Final result retained as ground truth RGT .

A separate page was also prepared to provide detailed instructions to the workers, directions on

how to use the commands in the labeling interface, and most importantly showing showing examples

of good and bad annotations (see details in Figure B.12).

The annotation process was much longer in comparision with the previous AMT tasks, as it took

four days to be fully completed. The average HIT completion time was 36 seconds.

Once all the annotations were gathered, we performed a manual verification for 1% of the HITs,

which showed an overall good quality of the annotations for at least 2 out 3 workers in each frame.

We then converted the annotations in each frame to the final ground truth regions in the following

way. Each diagram-frame pair had three polygonal regions Ri, i = 1, 2, 3 annotated by different

workers, as shown in Figure B.11 (c), (d) and (e). We compute the overlap between each pair of

annotated regions Ri and Rj , and consider the pair to match if the intersection and the union of the

regions respect the following constraint:

|Ri ∩Rj | > 0.7 ∗ |Ri ∪Rj |

We then selected the final ground truth region RGT based on the number of matching pairs:

• 0 matching pairs: wrong annotation. In this case, we proceeded to manually annotate the
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frames. Only 165 HITs presented this result.

• 1 matching pair (i, j): RGT = |Ri ∪Rj |

• 2 matching pairs (i, j) and (i, k) : RGT = Ri

• 3 matching pairs: RGT = |R1 ∪R2 ∪R3|

Figure B.12: Instructions for the diagram region localization task. Left: general instructions and

interface commands explanation. Right: good and bad annotations examples.
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B.4 Lessons Learned

In the following we present a short list of lessons that we have learned from our experience with

Amazon Mechanical Turk experiments, which we hope can be useful for researchers interested in

running similar sets of experiments:

• Clarity of the task is fundamental. Showing examples of correct and incorrect selections

clearly augments the proper completion rate. This was particularly relevant for the diagram

region localization task.

• When conducting users studies, it is useful to run a small mock test, maybe with approxi-

mately 50 HITs, and gather comments from the workers. This can be fundamental to ensure

that the choices are conditioned only by the factors that one wants to estimate with the user

study, and not some external factors. This process was fundamental for the speaker face ap-

pearance experiment. After running the mock test, most of the workers commented that the

images were overall too dark and many of them picked a view simply because it had a better

illumination. This allowed us to correct the illumination of the images before submitting the

real run, thus.

• The monetary reward is directly related to the completion time of the experiment. The higher

the reward, the faster all HITs will be completed. However, it does not provide a guarantee

of the quality of the work. We found that clarity of instructions and most interestingly the

overall quality of the images presented in the HITs was more important to obtain good results.

A higher reward incentives more workers to complete the jobs maximum amount of jobs in

the shortest amount of time. However, most workers concentrate on the quality of their job

if they find the work to be pleasant. Some workers even explicitly requested new jobs of the

same type after they completed the assigned tasks.

• A degree of manual verification is still needed after the work is completed. While individual

workers which consistently perform bad tasks are relatively easy to detect, it is still important

to look at a subset of randomly selected HITs to make sure they comply with the expectations

of the task.
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