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Preface 

This work was conducted within the Geosciences department at the University of Bremen and 

the MARUM institute, from January 2010 until December 2012. It was supported by the 

European Commission under the EU Framework 7 funded Marie Curie Initial Training 

Network (ITN) SENSEnet (contract nº237868), and funded through DFG Research Center / 

Excellence Cluster "The Ocean in the Earth System". 

The data used in this thesis were acquired during the RV MARIA S. MERIAN cruise MSM15/2 

(2010) to Black Sea mud volcanoes, the RV METEOR cruise M82/3 (2010) to the Menez 

Gwen hydrothermal volcano on the Mid-Atlantic Ridge, and the RV POURQUOI PAS? cruise 

WACS (2011) to cold seeps in the deep-sea Congo fan. 

This thesis comprises seven chapters, including one technical and three scientific 

manuscripts, and is aimed at improving the current knowledge of deep-sea seabed fluid flow 

processes using state-of-the-art high-resolution imaging techniques. The first chapter 

provides an introduction to seabed fluid flow features in general, with a focus on hydrothermal 

vent and cold seep systems, and presents the motivation and objectives of this study. The 

second chapter presents the main imaging techniques used in this thesis, as well as the main 

technical achievement of this project; it corresponds to the first manuscript, which describes a 

new mosaicking tool (LAPM Toolbox) that was developed in (and for) this project. The third 

chapter gives an overview of the two main study areas of this work. The fourth, fifth, and sixth 

chapters correspond to the three main scientific manuscripts produced during this thesis; 

these chapters present the main scientific part of the work. The seventh chapter closes the 

thesis by summarizing the main results and highlights the importance of high-resolution 

imaging techniques for future deep-sea studies. 
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Abstract 

The overall aim of this thesis is to provide better insights on different aspects of seabed fluid 

flow processes based on seafloor observations. The methods used in this work entirely rely 

on high-resolution imaging and mapping techniques, either optical, acoustic or both. All high-

resolution data were acquired during seafloor surveys with remotely operated vehicles. 

Optical data were used to produce visual maps of the seafloor, in the form of geo-referenced 

video- and photo-mosaics, whereas acoustic techniques allowed mapping the detailed 

topography of the seabed, i.e. the micro-bathymetry, as well as the signal reflectivity of the 

sediment surface and of the water column. Therefore, this work also highlights how valuable 

high-resolution mapping techniques are, and to what extent they can contribute to increasing 

our knowledge of deep-sea environments. 

Some of the high-resolution techniques used in this thesis are not commonly used by the 

marine scientific community. This is particularly the case for large-area photo-mosaics. 

Although the interest in mosaicking is growing, there are still no tools freely and readily 

available to scientists to routinely construct accurate and large-area photo-mosaics. 

Manuscript 1 presents a MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox), 

which was developed as part of this thesis. The toolbox allows constructing photo-mosaics of 

any size, on any recent computer, and from any set of images. Images can be registered 

either with feature-matching methods, navigation data, or both. Final mosaics are geo-

referenced and can be imported directly into geographic information systems. The LAPM 

toolbox will ultimately be available for download on the internet. 

The first case study (manuscript 2) was conducted at the Menez Gwen hydrothermal vent 

volcano, located at about 800 m water depth on the Mid-Atlantic Ridge. The overall aim of this 

study was to assess how significant methane and sulfide consumption by the fauna is in 

comparison to natural release of gas from the system. Several sites of venting activity were 

intensively surveyed and four were fully imaged with geo-referenced photo-mosaics. Based 

on spatial analyses, total biomasses and abundances of the dominant megafaunal 

chemosynthetic species were assessed at all imaged sites. These calculations served as 

bases for quantifying the total annual consumption of methane and sulfide by the dominant 

species at the scale of the sites. Results were then compared to natural methane and sulfide 

fluxes from the system, which were estimated from the imagery data. This study concluded 

that the faunal consumption of dissolved gases at hydrothermal vents is low in comparison to 

natural release from the system, both focused and diffuse. This is unlike in cold seep 

environments where chemosynthetic fauna has been shown to act as a benthic filter for 

dissolved methane release to the hydrosphere. 

The second case study (manuscript 3) focused on the giant Regab pockmark, located at 

3160 m water depth in the Lower Congo basin. This study investigated the distribution of the 

chemosynthetic fauna and its 10-year temporal evolution, based on spatial analyses of large 
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video-mosaics of the most populated area of the pockmark. Discrete patterns in the faunal 

distribution were observed that indicated that the intensity of seepage is very heterogeneous 

across the pockmark, and a model was proposed, in which the dominant megafaunal species 

are structured around zones of intense fluid advection. Furthermore, results revealed very 

little changes in the fauna distribution, suggesting that the seepage activity at Regab has 

been stable over the past ten years. 

In the third case study (manuscript 4), the Regab pockmark was entirely mapped with ROV-

based micro-bathymetry and backscatter data, which gives an unprecedented detailed view of 

the entire structure. Furthermore, this dataset is completed by a 105,000 m
2
-large photo-

mosaic of the most active area in terms of seepage activity, and by a sidescan mapping of the 

gas emissions over the whole pockmark. This is the most detailed and comprehensive 

imaging dataset ever published for a giant methane pockmark. This data was used to better 

understand the mechanisms of formation and evolution of giant pockmarks. In particular, 

results revealed that the pockmark is constituted of more than a thousand sub-pockmarks of 

very various sizes and shapes. The distribution of these sub-pockmarks allowed identifying 

two distinct areas, representative of two very different fluid flow regimes. The first area is 

characterized by discrete and focused seepage activity, associated to the presence of 

preferential pathways in the subsurface, such as fractures. The second area is related to 

diffuse flow within porous and non-fractured sediments. 
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Kurzfassung 

Das übergeordnete Ziel dieser Arbeit ist es, basierend auf Meeresbodenbeobachtungen, 

bessere Einblicke in verschiedene Aspekte der Fluidzirkulation zu gewinnen. Die in dieser 

Arbeit verwendeten Methoden basieren ausschließlich auf hochauflösenden optischen und/ 

oder hydroakustischen Kartierungstechniken. Alle hochauflösenden Daten wurden unter 

Einsatz von ferngesteuerten Unterwasserfahrzeugen (‚remotely operated vehicles’, ROV) 

gewonnen. Optische Daten wurden verwendet, um visuelle Karten des Meeresbodens in 

Form von georeferenzierten Video- und Fotomosaiken zu produzieren. Hydroakustische 

Techniken erlaubten die Abbildung der detaillierten Topographie des Meeresbodens, der 

Mikrobathymetrie. Darüber hinaus gibt die Rückstreuintensität des akustischen Signals 

Hinweise auf die Sedimentbeschaffenheit und Gasblasen in der Wassersäule. Diese Arbeit 

zeigt wie wertvoll hochauflösende Kartierungstechniken sind und in wie fern diese zu einer 

verbesserten Kenntnis der Tiefsee beitragen können. 

Einige der hochauflösenden Techniken die in dieser Arbeit verwendet wurden, sind noch nicht 

in der wissenschaftlichen Meeresforschung etabliert. Dies gilt besonders für großflächige 

Fotomosaike. Obwohl das Interesse und der Bedarf an Mosaiken wachsen, gibt es noch 

keine frei oder kommerziell verfügbaren Programme, die es Wissenschaftlern erlauben 

routinemäßig präzise und großflächige Fotomosaike zu konstruieren. 

Manuskript 1 stellt eine MATLAB-Toolbox für die Erzeugung großflächiger Fotomosaike 

(LAPM Toolbox) dar, die im Rahmen dieser Arbeit entwickelt wurde. Die Toolbox funktioniert 

auf jedem modernen Computer und ermöglicht die Konstruktion von Fotomosaiken jeglicher 

Größe mit einem beliebigen Satz von Bildern. Die Bildregistrierung erfolgt entweder mittels 

feature-matching Methoden, anhand von Navigationsdaten oder beidem. Die endgültigen 

Mosaike sind georeferenziert und können direkt in Geoinformationssysteme importiert 

werden. Die LAPM Toolbox soll in Zukunft im Internet frei zugänglich gemacht werden. 

Die erste Fallstudie (Manuskript 2) wurde am hydrothermalen Menez Gwen Vulkan am 

Mittelatlantischen Rücken in 800 m Wassertiefe durchgeführt. Das übergeordnete Ziel dieser 

Studie war es zu beurteilen, wie bedeutend der Umsatz von Methan und Schwefelwasserstoff  

durch Fauna im Vergleich zu natürlichen Freisetzung von Gas aus dem System ist. Mehrere 

Gebiete aktiver Entgasung wurden detailliert untersucht; vier wurden komplett durch 

georeferenzierte Fotomosaike abgebildet. Die Gesamtbiomasse und Abundanz der 

chemosynthetischen Megafauna wurde, basierend auf räumlicher Analyse der Mosaike, 

bestimmt. Diese Berechnungen dienten als Grundlage für die Quantifizierung des jährlichen 

Gesamtverbrauchs von Methan und Schwefelwasserstoff durch die dominante 

chemosynthetische Art im kartierten Gebiet. Diese Umsatzraten wurden dann mit den  

Methan- und Schwefelwasserstoffflüssen des Systems verglichen, die ebenfalls anhand der 

Mosaike bestimmt wurden. Diese Studie ergab, dass der Verbrauch gelösten Gases durch 

Fauna an Hydrothermalquellen niedrig ist im Vergleich zu diffusen und fokussierten 
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Emissionen. Dies steht im Gegensatz zu Beobachtungen an kalten Quellen, die zeigen, dass 

chemosynthetischen Organismen einen benthischen Filter für die Emission gelösten Methans 

in die Wassersäule bilden. 

Die zweite Fallstudie (Manuskript 3) wurde an der großen Regab Pockmark in 3160 m 

Wassertiefe, im Kongobecken durchgeführt. Pockmarks sind Depressionen im Meeresboden 

die verschiedenen Formen und Tiefen annehmen können. Im Allgemeinen wird die Bildung 

solcher Strukturen durch Fluidemissionen erklärt. Die Studie untersuchte die Verteilung 

chemosynthetischer Fauna und deren Entwicklung über zehn Jahre, basierend auf der 

räumlichen Analyse von Videomosaiken, die das am dichtesten besiedelte Gebiet der 

Pockmark abdecken. Es wurden diskrete Verteilungsmuster der Fauna beobachtet, die 

zeigen, dass Gasflussintensitäten im kartierten Gebiet sehr heterogen sind. Aufgrund dieser 

Beobachtungen wurde ein Modell entwickelt, in dem die vorherrschende megafaunale Art auf 

Bereiche intensivster Fluidadvektion konzentriert ist. Des Weiteren, zeigte die Studie, dass 

sich die Verteilung der Fauna innerhalb der letzten zehn Jahre nur minimal geändert hat, was 

auf stabile Fluidflüsse in diesem Zeitraum hindeutet. 

In der dritten Fallstudie (Manuskript 4), werden Mikrobathymetrie und Rückstreukarten des 

gesamten Gebiets der Regab Pockmark gezeigt. Die Daten wurden mit einem ROV 

aufgezeichnet und zeigen eine sehr detaillierte Ansicht der gesamten Struktur. Die 

geophysikalischen Daten werden durch ein 105.000 m2 großes Fotomosaik, dass den 

aktivsten Teil der Pockmark abdeckt, ergänzt. Eine detaillierte Kartierung von Gasemissionen, 

anhand von Seitensichtsonardaten komplimentiert den Datensatz. Diese Studie stellt die  

umfassendste und detaillierteste publizierte Kartierung einer solch großen Pockmark dar. 

Diese Daten wurden verwendet, um ein besseres Verständnis der Entstehungs- und 

Entwicklungsmechanismen von großen Pockmarks zu entwickeln. Die Ergebnisse zeigen, 

dass sich die Regab Struktur aus mehr als 1000 kleineren Pockmarks, unterschiedlicher 

Größe und Form, zusammensetzt. Die Verteilung dieser Subpockmarks erlaubte die 

Identifizierung von zwei Bereichen, die durch unterschiedliche Fluidflüsse charakterisiert sind. 

Der erste Bereich ist durch diskrete, fokussierte Fluidemissionen charakterisiert, die durch 

Fluidmigrationswege, wie z.B. Störungen, kontrolliert werden. Der zweite Bereich ist durch 

diffuse Fluidflüsse in porösem, ungestörtem Sediment gekennzeichnet. 
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Chapter 1 Introduction 

1.1 Seabed Fluid Flow 

Seabed fluid flow generally refers to the upward flow of liquids and gases through the seafloor 

(Judd & Hovland 2007). It is a widespread phenomenon in the marine environment, which has 

been observed all around the world (Figure 1.1). Rising fluids can have very different 

chemical compositions and temperatures, depending on their origin and on the geological 

context. Commonly, seabed fluid flow features are divided in two categories, based on the 

temperature of the escaping fluids: hot vents and cold seeps. Hot vents, also known as 

hydrothermal vents, are associated to ocean spreading centers, whereas cold seeps occur 

primarily along convergent or passive continental margins (Campbell 2006, Figure 1.1). 

Therefore, origins of the fluids, flow mechanisms and surficial expressions between vents and 

seeps are very different. 

 

Figure 1.1: Distribution map of known hydrothermal vent (red squares) and cold seep (blue 
squares) systems. Adapted from Campbell (2006) and Suess (2010), including additional 
locations from Dover et al. (2001), Ondréas et al. (2005), Yoerger et al. (2007), Sahling et al. 
(2008a), Westbrook et al. (2009), Rogers et al. (2012). 

 

1.1.1 Hydrothermal vent systems 

Hot hydrothermal vents have been discovered in 1977 (Ballard 1977, Corliss et al. 1979) and 

occur along mid-ocean ridges and back-arc basins in all oceans (Campbell 2006, Figure 1.1). 

Their occurrence can be considered as a side-effect of plate tectonics, and specifically of 

seafloor spreading processes. Mid-ocean ridges, also known as ocean spreading centers, are 

underwater mountain ranges that are generated by the rise and surface crystallization of 

magma from the Earth’s lithosphere. On its way to the surface, the rising magma is stored in 
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magmatic chambers a few kilometers under the seabed. Related cooling and shrinkage of the 

magma allows cold seawater to infiltrate along cracks in the seafloor (Figure 1.2). At the 

contact with the magma, the water becomes heated up to temperatures in excess of 300 °C 

and rises towards the surface due to an increase in pressure (Edmond et al. 1982, Baross & 

Hoffman 1985). 

The increased solubility of heated water facilitates its enrichment in metallic ions and 

dissolved gases by interacting with the oceanic crust. Therefore, the composition of end-

member fluids depends on the initial temperature of the fluids and on the type of rocks 

encountered (Damm 1995, Charlou et al. 2000, 2002, Douville et al. 2002). End-member 

hydrothermal fluids are usually enriched relatively to seawater in volatiles such as hydrogen 

(H2), helium (He), carbon dioxide (CO2), methane (CH4) and hydrogen sulfide (H2S). Most 

these gas originate from direct degassing from the magma chamber or high temperature 

abiogenic fluid-rock interactions (Welhan 1988, Shanks et al. 1995, Kelley et al. 2002). 

However, other mechanisms occur that can contribute significantly to gas enrichment of 

hydrothermal fluids. For instance, isotopic analyses showed that H2S in hydrothermal fluids is 

mostly related to the reduction of seawater sulfate to sulfide (Damm 1995, Shanks et al. 

1995). Similarly, CH4, which is in very variable concentrations in hydrothermal fluids of 

basaltic systems (Welhan 1988, Jean-Baptiste et al. 1991, Charlou & Donval 1993, Lilley et 

al. 1993, Charlou et al. 2000, Lilley & Olson 2001), is generally very enriched within fluids of 

mafic and ultramafic-hosted systems, due to serpentinization processes (Kelley 1996, 

Charlou et al. 1998, 2002, Kelley et al. 2001, Douville et al. 2002). 

During ascent to the seafloor, the composition of rising fluids can be altered by condensation 

and boiling processes (Kelley et al. 2002). Such processes occur mainly in high-temperature 

systems and trigger a phase separation, in which rising fluids are separated into a gas-rich 

fluid and a saline, metal-enriched brine (Butterfield et al. 1994, 1997, Charlou et al. 1996, 

Lilley et al. 2003, Foustoukos & Seyfried Jr. 2007). Furthermore, hot fluids may undergo 

various amounts of dilution due to mixing with ambient seawater (2 °C) in the subsurface 

(Edmond et al. 1982).  

As they reach the seafloor, hydrothermal fluids are reduced, enriched in metals, and exhibit 

temperatures up to 400 °C. The sudden mixing with oxygenated cold seawater causes 

precipitation and deposition of minerals such as anhydrite, barite, pyrite, chalcopyrite, or 

sphalerite (Kelley et al. 2002), thus forming chimneys and mound structures around the 

emissions of vent fluid.  

The particular physicochemical conditions of hydrothermal environment generally allow 

sustaining very diverse microbial and faunal communities (Lutz & Kennish 1993, Dover 2000, 

Desbruyères et al. 2006) that are dependent on reduced compounds such as hydrogen, 

methane, and hydrogen sulfide (Dubilier et al. 2008, Petersen et al. 2011). 
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Figure 1.2: Schematic illustrating the general geological context of hydrothermal vent 
systems. 

 

1.1.2 Hydrocarbon cold seeps 

The term ‘cold seep’ refers to the escape of fluids, involving transport of gas, water or 

sediments at ambient seawater temperature and slow emission rates in comparison to hot 

vents (Parnell 2002, Talukder 2012). This definition can apply to several sorts of fluid 

discharges, e.g. groundwater discharge, brine discharge, or hydrocarbon seepage. However, 

only hydrocarbon seeps will be considered in this work. Unlike hydrothermal vent systems, 

which occur along divergent plate margins, cold seep systems occur mainly at convergent 

and passive continental margins (Campbell 2006, Suess 2010, Figure 1.1). Hence, the 

processes involved in the fluid expulsion at cold seeps are radically different to those that 

occur at hydrothermal vent systems. Indeed, fluid advection at cold seeps is mainly driven by 

compressional tectonics and fluid density gradients, whereas it is generally temperature-

driven in hydrothermal systems. Numerous cold seeps have been discovered to date (Figure 

1.1), and their distribution suggest that they are widespread along all continental margins, 

both active and passive (Campbell 2006, Judd & Hovland 2007, Suess 2010). 

Geological contexts of marine cold seeps 

An active continental margin is a plate boundary where a dense oceanic crust gets subducted 

beneath a lighter crust, made of continental or island arc material (Von Huene & Scholl 1991). 

During the subduction process, the upper crust acts as a buttress against the underthrusting 
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plate. Depending on the effect of such a buttress onto the subducting plate, active margins 

can be divided in two categories: the accretionary margins and the erosive margins. At 

accretionary margins, the sedimentary deposits of the oceanic crust are being scrapped off 

and piled up in slices against the bedrock of the upper crust. Such piling of sliced sedimentary 

masses results in the formation of accretionary prisms. Von Huene & Scholl (1991) estimated 

that up to 30 % of the incoming sediment can be scrapped off a decollement surface and 

accreted to the accretionary prism. In response to the lateral compression of the subduction 

process, pore water is expelled from accreting sediments and driven to the surface though 

thrust faults in the accretionary prism (Suess 2010). Conversely, erosive margins are 

characterized by the absence of a significant accretionary prism. In this case, the sediments 

are carried down with the oceanic crust. At both accretionary and erosive margins, with depth 

subducted sediments undergo increasing conditions of pressure and temperature, and 

subsequent dewatering. Expelled pore water is driven to the surface along the decollement 

surface (Moore 1989, Mascle & Moore 1990, Le Pichon et al. 1993, Talukder 2012) or through 

deep-penetrating faults across the upper plate (Ranero et al. 2008, Sahling et al. 2008b, 

Suess 2010). 

Conversely, a passive continental margin is characterized by the absence of subduction. In 

this context, the expulsion and origin of fluids is not necessarily related to compressional 

tectonics, and can be very varied (Gay et al. 2007, Suess 2010). Especially in the case of 

hydrocarbon seep systems, fluids are driven upwards from a reservoir to the surface by 

buoyancy and diffusion through fractures, or pore spaces (Floodgate & Judd 1992, Clennell et 

al. 2000, Etiope & Martinelli 2002). (Gay et al. 2007) proposed a schematic model to illustrate 

and summarize the different seep-related processes that can be observed at the West African 

passive margin (Figure 1.3). 
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Figure 1.3: 3D block diagram illustrating the geological controls of cold seep-related 
processes that occur on the East-Atlantic passive margin. From Gay et al. (2007). 

 

1.1.2.1 Origins of methane and other gases in hydrocarbon cold seeps 

The presence of gases in shallow sediments is common and can involve the presence of 

hydrocarbon gases, of carbon dioxide (CO2) or also of hydrogen sulfide (H2S). Nevertheless, 

methane (CH4) is by far the most abundant of these gases (Claypool & Kvenvolden 1983, 

Floodgate & Judd 1992). The formation of methane, and of hydrocarbons in general, results 

from the alteration of organic matter deposits in sediments. Therefore, hydrocarbon reservoirs 

normally occur in sediments with of high organic carbon content. The origin of methane in 

such sediments is, thus, considered as biogenic (i.e. from organic material), as opposed to 
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the mostly abiogenic origin
*
 (i.e. from inorganic substances) of methane in hydrothermal vent 

systems (Floodgate & Judd 1992, Judd & Hovland 2007). 

The accumulation of large volumes of organic matter in sediments requires (1) high primary 

productivity, (2) low bottom-water oxygen (O2) concentrations and (3) high burial rates (i.e. 

high sedimentation rates). A high productivity allows abundant deposition of organic matter on 

the seafloor, while low oxygen concentrations and rapid burial prevent the oxidation of organic 

carbon to CO2 (Tissot & Welte 1978). With increasing burial depth, organic matter then 

undergoes several transformation stages, which are function of temperature and pressure 

conditions: diagenesis, catagenesis and metagenesis. 

Sediment diagenesis occurs at relatively low temperatures (<50 °C) and shallow depths (<1 

km). During this stage, the organic matter is anaerobically degraded by microbes. Dominant 

reactions include denitrification, sulfate reduction and methanogenesis, and lead to the 

formation of gases such as nitrogen (N2), hydrogen sulfide (H2S) and methane (CH4) (Tissot & 

Welte 1978, Floodgate & Judd 1992). Methane produced during methanogenesis is referred 

to as microbial
*
 methane. Methanogenesis occurs under the sulfate reduction zone (Claypool 

& Kvenvolden 1983) and involves the following reactions: 

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂 (𝐶𝑂2 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)   (1) 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝑂2 + 𝐶𝐻4 (𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)   (2) 

However, because acetate is preferentially used in sulfate reduction reactions, CO2 reduction 

is the dominant methanogenesis reaction in marine sediments (Whiticar 1999, Reeburgh 

2007).  

At deeper depths (>1 km), catagenesis (60 to 200 °C) and metagenesis (>200 °C) reactions 

occur. In particular during early catagenesis, the remaining organic material is converted into 

heavy kerogen complexes. With increasing temperatures, those complexes are progressively 

broken down into shorter-chain hydrocarbons, producing successively crude oil (C15+), 

condensate (C8-C15), wet gas (C2-C7) and, ultimately, dry gas, i.e. methane (C1) (Floodgate & 

Judd 1992, Figure 1.4). The methane produced during catagenesis is known as thermogenic
*
 

methane. During metagenesis, temperatures (>200 °C) become too elevated to allow for 

hydrocarbon formation, and kerogens are turned into inert carbon (Durand 1980, Floodgate & 

Judd 1992). 

                                            
*
 The terms ‘biogenic’ and ‘abiogenic’ are here used to refer to the source of carbon (i.e. 
organic or inorganic), while the terms ‘microbial’ and ‘thermogenic’ will be used to refer to the 
degradation process (i.e. microbial or thermal). Indeed, the term ‘biogenic’ is often used 
erroneously to refer to the microbial degradation of organic matter (Judd & Hovland 2007). 
This work being about both hydrothermal- and cold seep-related processes, this distinction 
was necessary. 
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Figure 1.4: Schematic of hydrocarbons 
generation with depth; the depth scale 
varies with the geothermal gradient. 
Adapted from Floodgate & Judd (1992). 

 

The driving forces for upward fluid migration are (1) overpressure caused by tectonic (active 

margins) and burial (active and passive margins) compaction of source-rocks, (2) density 

gradient or buoyancy of light hydrocarbons (mostly methane and ethane), and (3) fluid 

diffusion (concentration gradient) (Floodgate & Judd 1992, Clennell et al. 2000, Etiope & 

Martinelli 2002). Upon leaking from their source rock, hydrocarbons migrate through 

permeable or fractured rocks. On the way to the surface, rising hydrocarbons may become 

trapped under impermeable rocks layers (i.e. shales). Over time, large volumes of 

hydrocarbons can accumulate in such reservoirs, leading to an increase in pore fluid 

pressure. From there, lateral migration occurs until an escape pathway is found, which will 

allow fluids enriched in light hydrocarbons (mostly methane and ethane) to seep through to 

the surface. Escape pathways can be varied (Figure 1.3): higher permeability strata, presence 

of faults, diapirism, or also buried channel/levee systems (Floodgate & Judd 1992, Gay & 

Lopez 2004, Ondréas et al. 2005, Gay et al. 2006b, c, a, 2007). 

1.1.2.2 Surficial expression of hydrocarbon cold seeps 

Due to the lowest density of methane, methane cold seeps are the most abundant 

hydrocarbon cold seeps (Judd & Hovland 2007). The surficial expression of seafloor fluid 



Introduction 

 

8 

seepage can be very varied, and depends on several factors such as fluid flow type (gas, 

pore water or both) and rate (slow or vigorous), sediment type and grain size, pore pressure 

conditions, driving forces (buoyancy, compressional tectonics), faulting system, or also 

duration of seeping activity (Loncke et al. 2004, Judd & Hovland 2007). The main common 

expressions of hydrocarbon seeps include pockmarks (King & MacLean 1970, Hovland et al. 

2002, Gay et al. 2003, Ussler III et al. 2003, Ondréas et al. 2005, Pilcher & Argent 2007), mud 

volcanoes (Vogt et al. 1999, Milkov 2000, Somoza et al. 2003, Bohrmann et al. 2003, Sahling 

et al. 2009), gas hydrate pingoes (Hovland & Svensen 2006, Paull et al. 2008, Serié et al. 

2012), carbonate pavements (Suess et al. 1999, Paull et al. 2008), and carbonate chimneys 

(Peckmann et al. 2001, Loncke et al. 2004, Bayon et al. 2009). 

For instance, mud volcanoes involve the strong, sometimes violent, advection of fluids (water 

and gas) and fluidized sediments, whereas pockmarks are generally considered to be related 

to lower fluid advection rates and gas-dominated fluids (Judd & Hovland 2007). To illustrate 

these features, Figure 1.5 shows the detailed morphologies of a mud volcano and of a large 

pockmark. 

 

Figure 1.5: Detailed morphology of (a) the Håkon Mosby Mud Volcano (HMMV) (Jerosch et al. 
2007b) and (b) the Regab pockmark (© Ifremer, WACS 2011). Both datasets were acquired 
with the ROV Victor 6000 (Ifremer). The HMMV is mostly a positive feature, characterized by 
a large hummocky mound located within a flat and shallow circular depression; a depression 
filled with fresh mud (main crater) occurs in the center of the volcano. The Regab pockmarck 
is mostly a negative feature; it is composed of a main circular depression slightly elongated in 
a N70 direction; the bottom of the pockmark is very rugged and shows the presence of a 
myriad of sub-depressions of various sizes and depths. The scale bar applies to both 
datasets. Maximum elevation differences between high and low points are of 16 m at HMMV 
and 13 m at Regab. 

 

The several types of surficial expressions, therefore, reflect the variety of fluid expulsion 

regimes. Especially, methane can escape as free gas, as dissolved gas into advecting pore 
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water, or by diffusion due to a gas concentration gradient between the pore fluids and ambient 

seawater (Luff & Wallmann 2003, Luff et al. 2004, Sommer et al. 2006, Naudts et al. 2010).  

 

1.2 Anaerobic Oxidation of Methane (AOM) 

The anaerobic oxidation of methane (AOM) is considered to be an important sink in oceanic 

methane geochemistry (Reeburgh 2007). Its existence and mechanism were observed and 

postulated since many years (Reeburgh 1976, Barnes & Goldberg 1976, Martens & Berner 

1977), but the agents of the AOM were unknown until recently (Hoehler et al. 1994, Boetius et 

al. 2000). In particular, the AOM appeared to be mediated by a microbial consortium within 

the shallow sediments (Boetius et al. 2000) and to be a major process at hydrocarbon seep 

systems, where it efficiently removes methane before it reaches the sediment-water interface 

(Hinrichs & Boetius 2002). The consortium comprises sulfate-reducing bacteria and methane-

oxidizing archaea and achieves the following net reaction: 

𝐶𝐻4 + 𝑆𝑂4
2− → 𝐻𝐶𝑂3

− + 𝐻𝑆− + 𝐻2𝑂    (3) 

The anaerobic oxidation of methane occurs mainly within the sediments, at the sulfate-

methane interface (SMI) (Devol & Ahmed 1981, Iversen & Jørgensen 1985, Borowski et al. 

1999), and has been shown to play a major part in the reduction of seawater sulfates (Treude 

et al. 2005). It is notably responsible for the production of hydrogen sulfide, iron sulfide 

(pyrite) and bicarbonate ions, which, by reacting mainly with seawater calcium and 

magnesium, cause the precipitation of carbonates (Kulm et al. 1986, Ritger et al. 1987, 

Burton 1993, Bohrmann et al. 1998, Aloisi et al. 2002). The main factors controlling the AOM 

rate are the availabilities of methane and sulfide (Knittel & Boetius 2009). 

Thereby, AOM is a very important process at seep systems, where it allows sustaining rich 

endemic sulfide-dependent microbial and faunal populations. To a lesser extent, AOM also 

occurs at hydrothermal vents, but in very small niches because the lack of sediments seems 

to hinder the development of the microbial consortium (Knittel & Boetius 2009). 

1.3 Chemosynthetic fauna 

Chemosynthetic fauna refers to organisms that rely on reduced compounds such as 

hydrogen, hydrogen sulfide, and methane as primary energy source. The term 

‘chemosynthesis’ is here opposed to ‘photosynthesis’, for which the sunlight is the primary 

energy source. Chemosynthetic organisms possess endosymbionts, mostly in their gills, that 

oxidize the reduced compounds into organic carbon (Dubilier et al. 2008, Petersen et al. 

2011). 

The first chemosynthetic organisms were discovered together with hydrothermal vents at the 

Galapagos Rift in 1977. Since then chemosynthetic fauna have been shown to be widespread 

and to occur in many different habitats (Figure 1.6). They were in particular observed at 
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hydrothermal vents (Lutz & Kennish 1993, Dover 2000, Desbruyères et al. 2006), deep-sea 

cold seeps (Fisher et al. 1997, Sibuet & Olu 1998, Hinrichs & Boetius 2002, Cordes et al. 

2009) and whale falls (Smith & Baco 2003). Numerous species have been discovered and 

chemosynthetic fauna have proved to be very rich and diverse. In many cases, hydrothermal 

and cold seep faunal assemblages are dominated by various combinations of sulfur-oxidizing 

bacteria, bivalves (mussels and clams), vestimentiferan tubeworms, shrimps or crabs. 

Nevertheless, chemosynthetic fauna are very endemic species, and their distribution is 

directly linked to the availability of reduced compounds and to the tolerance thresholds of 

each organism (Olu et al. 1996a, b, 1997, Sibuet & Olu 1998, Bergquist et al. 2003a, Olu-Le 

Roy et al. 2007a, Cuvelier et al. 2009, Podowski et al. 2009). 

 

Figure 1.6: Overview of the different chemosynthetic marine habitats of the deep-sea, and of 
the chemosynthetic organisms that are typically observed. Adapted from Dubilier et al. (2008). 

 

1.4 Authigenic carbonates 

By producing bicarbonate ions, the anaerobic oxidation of methane causes pore water 

alkalinity to increase. This process results in the precipitation of carbonates (Kulm et al. 1986, 

Ritger et al. 1987, Aloisi et al. 2002). The main reaction for precipitation of methane-derived 

carbonates is: 

2𝐻𝐶𝑂3
− + 𝐶𝑎2+ → 𝐶𝑎𝐶𝑂3 + 𝐶𝑂2 + 𝐻2𝑂    (4) 
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However, the mineralogy of such carbonates can be varied, including magnesium-rich calcite 

(MgCO3), aragonite (CaCO3) or dolomite (CaMg(CO3)2) (Ritger et al. 1987, Burton 1993, 

Bohrmann et al. 1998). The precise controls on the carbonate mineralogy are still not fully 

understood, but could be related to the pore water sulfate concentrations (Burton 1993, Aloisi 

et al. 2002, Luff & Wallmann 2003). 

Such carbonates are called methane-derived authigenic carbonates (MDAC) and are 

widespread on continental margins, and in particular at hydrocarbon seeps (Baker & Burns 

1985, Bohrmann et al. 1998, Judd & Hovland 2007, Naehr et al. 2007). They form mostly in 

anoxic layers of sediments or at the sediment surface in anoxic seawaters like the Black Sea 

(Peckmann et al. 2001). However, there are some suggestions that AOM-derived carbonate 

mounds could be able to grow in oxic seawaters too (Teichert et al. 2005). 

 

Figure 1.7: Photos illustrating the close link between tubeworms and methane-derived 
authigenic carbonates, at cold seeps of the West-African passive margin. (a) Bush of juvenile 
tubeworms; the roots of the tubeworms are closely intertwined with authigenic carbonates. 
From Sahling et al. (2008a). (b) A single tubeworm root within a carbonated sheathing (Cruise 
M56, 2002). 

 

Methane-derived authigenic carbonates can form extensive and thick crusts, slabs, 

concretions, or chimneys depending on the places and conditions in which they form and on 

the duration of the seeping activity (Judd & Hovland 2007, Haas et al. 2010). Little is known 

about the timescales of carbonate formation. Current available age estimations are in order of 

thousand to hundreds of thousands of years for thick carbonate crusts (Luff & Wallmann 

2003, Teichert et al. 2003). Nonetheless, a few recent studies imply that some faunal 

communities, to a certain extent, enhance the rate of the anaerobic oxidation of methane, 
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which could possibly boost the precipitation of MDAC (Figure 1.7). For instance, by releasing 

seawater sulfate through their roots, tubeworms can contribute to maintain a high AOM 

activity even under thick carbonate pavements (Cordes et al. 2005a, Dattagupta et al. 2008, 

Haas et al. 2009). A similar mechanism has been postulated for vesicomyid clams (Wallmann 

et al. 1997, Fischer et al. 2011). However, it is unclear to what extent such faunal influence 

could reduce timescales of carbonate formation. 

 

1.5 Methane hydrates 

Gas hydrates, also called clathrates, are ice-like compounds that entrap light gas molecules 

under specific conditions of temperature and pressure. Gas hydrates form solid cages of 

water molecules, each of which contains a guest molecule. They can crystalize with three 

different structures (types I, II and H), each made of a combination of hydrate cages of 

various sizes and shapes (Figure 1.8). Depending on the type of cages, hydrates can 

imprison molecules of various sizes. However, when all cages are filled with a guest 

molecule, all crystal structures have similar concentrations of water (about 85%) and gas 

(about 15%) (Sloan 1998, 2003, Bohrmann & Torres 2006). 

 

Figure 1.8: Illustration of the cages (cavities) and crystal structures of gas hydrates. Left: 
example of the hydrate structure type I. Right: illustration of the cages that form each hydrate 
structure. From Bohrmann & Torres (2006). 

 

The hydrate structure type I, which can contain only relatively small molecules, is by far the 

most common in marine sediments. Indeed, it can form with most gases present in the 

sediments (CH4, CO2, and H2S). 

However, the formation and stability of gas hydrates is bound to specific physicochemical 

conditions. It requires in particular high hydrostatic pressure, low water temperature and 

concentrations in low molecular weight gases above saturation; in addition, salinity is 

influencing the stability conditions (Figure 1.9). These conditions are often met in the marine 
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sediments (Figure 1.10), in a shallow zone called the gas hydrate stability zone (GHSZ). 

Nevertheless, the thickness of this zone is variable, and depends on the water depth and on 

the geothermal gradient (Figure 1.9). Within the GHSZ, hydrates will form and be stable only 

if the water is oversaturated in a certain dissolved gas. 

 

Figure 1.9: Left: Phase diagram showing the limit between free gas and hydrate, for a pure 
methane/H2O system; the red arrows show the direction towards which the boundary is 
shifted in the addition of ions or other gases. Right: Definition of the gas hydrate stability zone 
(GHSZ) as a function of depth and temperature (at a normal seawater salinity). After 
Bohrmann & Torres (2006). 

 

Gas hydrates are considered to play a major role in the formation and evolution of some 

methane seep systems. For instance, mechanisms involving hydrate dissolution or buoyancy-

driven hydrate rafting have been proposed to explain pockmark and mound formation on the 

seafloor (Suess et al. 2001, Sultan et al. 2010, Pape et al. 2011). Furthermore, slow 

dissociation of hydrate deposits in shallow sediments can allow a stable release of methane 

into the overlying sediments, thus ensuring a stable supply to methane-dependent microbes 

and organisms (Sahling et al. 2002, 2008a). In such a case, hydrate deposits act as a 

‘capacitor’ to buffer transient fluid seepages (Dickens 2003, Sahling et al. 2008a). 
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Figure 1.10: Outcrops of gas hydrate deposits within sediments at the giant Regab pockmark 
(© Ifremer). (a) Massive gas hydrates occur at the surface under a crust of carbonates and 
indurated sediments. From Olu-Le Roy et al. (2007a). (b) Gas hydrate deposits under 
carbonate crusts (Cruise WACS, 2011); the gas hydrate outcrop occurs within a fracture 
between the carbonated seafloor and a collapsing block; the hydrate formation could be 
responsible for the break-up of the overlying crust. 

 

Indeed, gas hydrates in marine sediments (Figure 1.10) can contain significant volumes of 

gases. For instance, when dissociating at surface conditions of temperature and pressure, 1 

m
3
 of methane hydrate can release up to 164 m

3
 of methane (Kvenvolden 1993). For this 

reason, marine structure I gas hydrates are simultaneously regarded as new potential 

resources of natural gases (Collett 2002, Makogon et al. 2007), potential geohazards (Maslin 

et al. 2004, 2010, Sultan et al. 2004), and major actors in global climate changes (MacDonald 

1990, Buffett & Archer 2004, Archer & Buffett 2005, Reagan & Moridis 2007). 
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1.6 Motivation and objectives 

The overall aim of this work is to determine to what extent the use of state-of-the-art high-

resolution imaging and mapping techniques can help better understanding seabed fluid flow-

related processes. 

The deep marine environment is hardly accessible and most part has remained largely 

unknown. One reason is that available underwater vehicles for deep ocean exploration have 

limited range and that surveys and investigations are still much localized, and must focus on 

small areas of the seafloor only. One of the main focuses of deep sea studies are areas 

where seabed fluid flow occur, both in hot vent and cold seep systems. However, the 

challenging conditions prevailing in the deep sea constrain the exploration to rely on the use 

of a range of sensors and sampling devices, both ship-borne and transported by underwater 

platforms. These tools are very diverse, from sediment corers to in-situ sensors, but are 

mainly restricted to local measurements. Therefore, most studies of seep-related processes 

are based either on discrete observations and measurements at the sediment surface or 

within the first few meters, or on ship-borne seismic and acoustic mapping surveys of the 

seabed morphology and sub-seafloor structure. Also, deep-tow surveys using sidescan sonar 

systems, TV-sled observations and video-guided sampling represent important steps on the 

way to map and sample discrete seepage structures (Bohrmann et al. 2003, Klaucke et al. 

2006, Sahling et al. 2008a, b). 

However, very few works have carried out systematic ROV- or AUV-borne mapping and 

provided high-resolution maps of entire features of seabed fluid flow. To date, very few micro-

bathymetry maps of entire vent and seep systems have been published (Hovland et al. 2005, 

Jerosch et al. 2007b, Dupré et al. 2008, Feseker et al. 2010, Bell et al. 2012, Römer et al. 

2012). Furthermore, high-resolution visual maps of such features are even scarcer (Escartín 

et al. 2008, Barreyre et al. 2012). Hence it is often difficult to visualize large areas of the 

seabed, and spatial dimensions and morphologies remain difficult to comprehend. A better 

insight on these environments would be a key step towards getting a better understanding of 

the deep ocean communities and geology. 

This fact highlighted the current need for high-resolution imaging techniques and motivated 

the decision to use optical- and acoustic-mapping techniques in this work. Optical mapping 

was carried out using ROV-borne cameras and the final maps were produced in the form of 

‘areal’ photo- and video-mosaics of the seafloor. Acoustic surveys relied on multibeam 

echosounders and sidescan sonars both to produce micro-bathymetry maps and to map 

backscatter anomalies on the seafloor and in the water column. Therefore, this work had a 

very strong technical side, and required the development of dedicated tools and workflows, in 

particular for the construction of geo-referenced mosaics (cf. Chapter 2.3). These high-

resolution imaging techniques were then used to better understand seabed fluid flow-related 

processes. 
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Notably, spatial imaging techniques provide the missing link that relates large-scale geological 

processes to local-scale observations such as surficial features and endemic fauna 

distribution and biomass. For instance, most studies on vent and seep fauna focus on getting 

a better knowledge of the habitats and physiology of the organisms or on their relations to the 

environment (Dubilier et al. 2008, Cordes et al. 2009, Podowski et al. 2009). Although several 

local measurements of biomasses or estimations of population densities have been published 

(e.g. Colaço et al. 1998), there is virtually not any information available about total biomasses 

or population estimations at the scale of a vent or seep site, and only few works provide 

faunal coverage estimations at cold seep ecosystems (Olu et al. 1996a, b, Sibuet & Olu-Le 

Roy 2002, Jerosch et al. 2006, Olu-Le Roy et al. 2007a). It is now commonly accepted that 

the presence of chemosynthetic communities is an indication for seabed fluid flow (e.g. Olu et 

al. 1997). However, it seems that chemosynthetic fauna has never been used as a proxy to 

assess chemical fluxes, even within orders of magnitude. Assessing the faunal consumption 

of dissolved gases (e.g. methane or sulfide) at the scale of an entire site of fluid flow could 

indeed provide minimum estimations of mass flows. 

Sommer et al. (2006) introduced the term ‘benthic filter’ to describe the impact of microbial 

and faunal populations on the diffuse fluxes of dissolved methane at the Hydrate Ridge cold 

seep system, on the Cascadia margin. There, both sulfide-oxidizing bacteria and clams 

appeared to consume significant portions (respectively 66% and 83%) of the natural release 

of dissolved methane, suggesting that seep fauna plays a significant role in controlling 

methane effluxes to the hydrosphere and, possibly, to the atmosphere. In a context where 

seabed methane emissions are considered to contribute noticeably to the global carbon 

budget (Judd, 2003), it is important to evaluate the relative significance of faunal methane 

consumption against natural methane effluxes. Similar estimations would, therefore, be 

necessary for hydrothermal vent systems. Indeed, compared to cold seeps, fluid release at 

hydrothermal vent systems is generally more vigorous and focused; hence methane fluxes 

are more likely to bypass the benthic filter. However it is currently unclear, whether the 

chemical consumption by vent fauna is significant compared to the focused chemical fluxes at 

hydrothermal vents. This leads to the first questions of this work: 

(1) At the scale of a hydrothermal vent site, how significant is the chemical consumption by 

vent fauna in comparison to the natural release in dissolved gas? Do benthic vent fauna exert 

a noticeable control on the methane and sulfide effluxes to the hydrosphere? 

 

Several studies used mosaics to describe the faunal composition and to map its distribution in 

relation to the environment (Grehan & Juniper 1996, Jerosch et al. 2006, 2007b, Olu-Le Roy 

et al. 2007a, Podowski et al. 2009, Lessard-Pilon et al. 2010a). These studies generally 

suggested that the fauna distribution is controlled by the ambient physicochemical conditions, 

which expectedly depend on the fluid flow regime. However, those mosaics provided either 

full coverage (= ‘areal’ mosaic) over small areas (up to 110 m
2
) (Grehan & Juniper 1996, 
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Podowski et al. 2009, Lessard-Pilon et al. 2010a), or partial coverage over larger areas 

(Jerosch et al. 2006, 2007b, Olu-Le Roy et al. 2007a); therefore, they could not always allow 

reliable identification of large-scale distribution patterns. In this work, for the first time, the 

faunal distribution of the Regab pockmark was mapped over a 14,000 m
2
-large area, based 

on a fully covering ‘areal’ video-mosaic (i.e. without gaps between mosaic lines), in order to 

answer the following questions: 

(2) Is there any distinct pattern in the distribution of seep fauna? If so, what does it reveal 

about the seepage activity and plumbing system of the pockmark? 

 

Video- and photo-mosaics can also be seen as large-scale snapshots, in that they provide 

views of entire scenes at a specific point in time. Digging this idea further, the comparison of 

snapshots of a same site but from different times could allow identifying temporal changes. 

The range of possibilities offered by such method is still largely unexplored, since it was used 

for the first times only very recently, either to identify small-scale changes in the micro-

distribution of benthic fauna (Lessard-Pilon et al. 2010b, Cuvelier et al. 2011), or to describe 

the temporal evolution of the venting activity in parts of the Lucky Strike hydrothermal vent 

(Barreyre et al. 2012). It is generally accepted that cold seeps provide more stable 

environments than hydrothermal vents. Indeed, seep fauna are known to be extremely long-

lived (Nix et al. 1995, Fisher et al. 1997, Smith et al. 2000, Bergquist et al. 2000). Therefore 

studies about temporal evolution of seep fauna micro-distribution are very scarce and usually 

focused on very small areas (up to 110 m
2
) (Lessard-Pilon et al. 2010b). Currently there is not 

any information available about larger-scale distribution changes at cold seeps. Such 

information is of importance since distribution changes can reflect changes in the seeping 

activity. In this work, two large-scale video-mosaics (4600 m
2
), representing the same scene 

with a 10-year interval, were used to describe the temporal evolution of cold seep fauna and 

to answer the following questions: 

(3) How dynamic are cold seep communities? What can be inferred about the temporal 

evolution of the seepage activity? 

 

Processes involved in the formation and evolution of giant pockmarks are still subject to 

discussion, and several mechanisms have been proposed that are partly based on 

interpretations from surficial observations (Hovland et al. 1984, 2005, Harrington 1985, Sultan 

et al. 2010). However, apart from a few published high-resolution ROV-bathymetry maps 

(Hovland et al. 2005), most available bathymetry datasets of entire pockmark features are 

ship-based and, thus, too coarse for detailed interpretations of pockmark structures. More 

generally, published micro-bathymetry (i.e. ROV-borne) maps of entire vent and seep systems 

are scarce. One of the largest and most studied of them is certainly the map of Håkon Mosby 

Mud Volcano (Jerosch et al. 2007b) (Figure 1.5), which provided valuable information to 
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improve the understanding of mud volcanoes. Interestingly, up to now, a comparably large 

dataset did not exist for giant pockmarks. 

To fill this gap, a comprehensive dataset was acquired at the giant Regab pockmark. This 

dataset combines for the first time high-resolution micro-bathymetry and backscatter maps, 

extensive and high-definition photo-mosaics, and comprehensive mapping of gas bubbles in 

the water column over the entire pockmark. Such dataset, together with GIS mapping of 

fauna distribution and carbonate occurrence, and observations of outcropping gas hydrates, 

were used to understand the fluid flow pattern across the pockmark, and to answer the 

following question: 

(4) What are the main mechanisms driving the growth of the Regab pockmark? 

 

And finally, the last question is based on all case studies: 

(5) To what extent do high-resolution acoustic and optical datasets allow understanding vent- 

and seep-related processes? 
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Chapter 2 Methods and data 

2.1 Image-mosaicking 

As evidenced in Chapter 1.6, the deep marine environment is hardly accessible and most part 

has remained largely unknown. One reason is that light in the deep-sea undergoes strong 

attenuation and high backscattering, which constrains seafloor observations to be carried out 

from few meters only from the scene of interest. Such short distances severely limit the field 

of view of the cameras (Figure 2.1). Hence, representing extended scenes of the seafloor 

requires several images to be taken and assembled together. 

 

Figure 2.1: Effects of the altitude of survey on the visibility and on the field of view (the ring 
has an inner diameter of 49 cm); the level of details and the lighting quality decrease sharply 
with the altitude; at 10 meters the ring is not visible at all. These images were taken at about 
3600 m water depth. 

 

Such method is called mosaicking. Video- or photo-mosaicking consists in aligning and 

stitching frames or photographs together to form a large composite picture. This is a widely 

used technique in photography, in particular for the production of panoramas, for which many 

dedicated open-source and commercial programs are available. Several programs were 

tested during this work, which all failed to cope with underwater imagery correctly. The main 

reason for failure is not so much the heterogeneity of lighting as the lack of contrasts and the 

perspective distortions caused by features with relief. Unlike traditional scenery photography, 

deep-sea optical surveys must be conducted a few meters away from the scene, commonly 

less than five meters. In this context, a feature protruding slightly from the scene would cause 

a strong perspective change between consecutive images. 

Efforts have been made in several institutes to develop tools to generate photo- and video-

mosaics of the seafloor (Gracias & Santos-Victor 2001, Eustice et al. 2002, Vincent et al. 

2003, Pizarro & Singh 2003, Allais et al. 2004, Ferrer et al. 2007, Escartín et al. 2008). Those 

tools cope better, although variously well, with underwater images. Details on the different 

mosaicking techniques available are presented in Appendix A. Based on this review, the 
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routines and programs that were deemed most appropriate for underwater imagery were 

selected and used with different datasets to assemble mosaics. The chosen methods include 

both video- and photo-mosaicking techniques, depending on the types of cameras available 

on the ROVs. 

 

Figure 2.2: Illustration of the photo-mosaicking process; this example shows a photo-mosaic 
of mud flows in the Black Sea. The scene was surveyed by conducting several parallel 
transects with an ROV flying at low altitude (3 to 4 meters); photos of the seabed were taken 
at regular intervals to ensure sufficient overlap between consecutive images (each image is 
about 3.4 m wide); to further constrain the global registration error, spacing between adjacent 
lines was chosen so as to ensure a minimum overlap between transects too. The final photo-
mosaic was constructed with the LAPM toolbox (Individual photos: © Marum). 

 

2.1.1 Video-mosaicking 

The video-mosaics were constructed with the Ifremer MATISSE program. MATISSE was 

developed to construct lines of mosaic based the ROV navigation data and on pictorial 

information (Vincent et al. 2003, Allais et al. 2004). This method offers the great advantage of 

producing lines of mosaic at the speed of the video feed, i.e. in real-time. Mosaic segments 

are geo-referenced based on the navigation data and can be directly loaded into GIS 

programs. 

The only downside of video-mosaicking techniques is that minor local imprecisions generally 

add up and can lead to larger global errors (drift, image distortion) over long lines of mosaic. 

Indeed, such techniques do not consider potential overlaps between the different lines of 

mosaics in order to constrain the global registration error. 

To limit such errors, the video-mosaics were constructed in short segments. These segments 

were then loaded into a GIS and geo-referenced together based on the information provided 

by the overlapping areas. This allowed creating a high-resolution video-mosaic of a 14,000 

m
2
-large area with only limited drift-related errors (cf. Chapter 5). 
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2.1.2 Photo-mosaicking 

Photo-mosaics generally achieved better results and higher definition than video-mosaics. 

Indeed, the chosen methods allowed considering all information gained from all overlaps 

between any pair of images in order to minimize a cost function, i.e. to compute for every 

image the best position and transformation that are required to obtain the lowest possible 

global error (Figure 2.2). Therefore, such photo-mosaicking methods are in general very slow, 

memory-demanding and applicable to a limited amount of images; hence, they are often 

limited to relatively small areas. 

Therefore, a MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox) was created 

(cf. Chapter 2.3). The main strength of this tool lies in its ability to generate photo-mosaics of 

any size and on virtually any recent computer. To achieve such capability, large mosaics are 

automatically divided in several square tiles (Figure 2.3), which are then constructed 

successively. The size of individual tiles is limited by the computing resources, but the amount 

of tiles is unlimited. Tiles are automatically given geographic attributes and can be directly 

imported into GIS, where the entire mosaic will be displayed. More technical details about this 

toolbox are given in Chapter 2.3. 

 

Figure 2.3: Illustration of the mosaic tiles as produced by the LAPM toolbox (in this example, 
each square tile covers about 100,000 m

2
); individual tiles are constructed separately in order 

not to exceed the computing resources; tiles are geo-referenced, hence, loading them into a 
GIS allows visualizing the entire photo-mosaic; GIS analyses can then be performed. 
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2.2 Hydroacoustic mapping 

Bathymetry and micro-bathymetry data were acquired using multibeam echosounders 

(MBES) mounted either on ships (bathymetry) or on underwater vehicles (micro-bathymetry), 

such as ROV and AUV. The systems used in this work include the hull-mounted Kongsberg 

Simrad EM122 (RV METEOR), and an ROV-borne Reson Seabat 7125 (ROV VICTOR 6000). 

A MBES not only allows mapping the seafloor topography, but can also provide information on 

the intensity of the signal reflection, also known as signal backscattering. The backscattering 

intensity of the acoustic signal can be influenced by many parameters (Figure 2.4), and is 

generally enhanced by the presence of hard substrata, such as hard rock or bivalve shells. 

Such capability is very useful at hydrocarbon seeps, where high backscatter intensity can 

help identifying carbonate crust occurrences or faunal presence (Figure 2.4), i.e. areas of past 

or present seepage activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Block diagrams showing 
the impact of the bottom fauna and 
substratum type on the intensity of 
signal backscattering. From Gay et 
al. (2007). 

At high frequencies, acoustic methods can also be used to detect the presence of free gas in 

the water column (Greinert et al. 2006, Nikolovska et al. 2008). Indeed, the acoustic signature 

of free gas bubbles is characterized by a very strong and much localized backscatter 
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anomaly. The most common application of such characteristic is for the detection of gas 

plumes at hydrocarbon seeps. Gas induced acoustic anomalies are known as flares. Flares 

can be imaged in various ways, for instance with sub-bottom profilers, multibeam 

echosounders, or also sidescan sonars (Figure 2.5). 

The flare mapping survey conducted in this work used a MBES Reson Seabat 7125 mounted 

on a ROV. The system was running at very high frequency (400 kHz) and was therefore very 

sensitive to the presence of gas in the water column. However, because of the widespread 

occurrence of highly reflective carbonate crusts within the surveyed area, gas emissions 

could not be reliably identified on the MBES swath view, and the side-scan view was used 

instead. The sidescan view consists in plotting the raw (i.e. unprocessed) sonar data against 

time, i.e. in the sequence in which it is received. The presence of gas bubbles in the water 

column can then be detected before the first echo of the seabed is received and, thus, 

generates a strong backscatter anomaly within the water column section of the sidescan view 

(Figure 2.5c). 

 

 

Figure 2.5: Illustration of several flare-mapping techniques. (a) View of the swath of a 
multibeam echosounder representing flares on the seafloor; the swath provides a view 
perpendicular to the ship direction and is relatively suited to map large areas. (b) Along-track 
view from a sub-bottom profiler showing several flares; because of the narrow angle of sub-
bottom profilers, flares must be close to the ship track to be detectable with this method. (c) 
Sidescan view of three large flares; the across-track axis represents time; this method allows 
mapping large areas, but the localization of flare origin is less precise than with other 
techniques. (a) and (b) from Nikolovska et al. (2008). 
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2.3 LAPM: A MATLAB Toolbox for Underwater Large-Area Photo-Mosaicking 
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2.3.1 Abstract 

This paper presents a new MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox). 

This toolbox was developed specifically for the purpose of underwater mosaicking, and it is 

aimed at providing end-user scientists with an easy and robust way to construct large photo-

mosaics from any set of images. It is notably capable of constructing mosaic with an unlimited 

amount of images and on any recent computer. The mosaicking process can rely on both 

feature matching and navigation data. This is complemented by an intuitive graphical user 

interface, which gives the user full control over the feature matches between any pair of 

overlapping images. Finally, mosaics are given geographic attributes that allow direct import 

into ArcGIS. So far, the LAPM toolbox was successfully used to construct geo-referenced 

photo-mosaics with photo and video material from several scientific cruises. The largest 

photo-mosaic contained more than 5000 images for a total area of about 105,000 m
2
. 
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2.3.2 Introduction 

Low visibility in the deep-sea constrains images of the seafloor to be taken from a very short 

distance only (<10 m) to the scene. Such low altitude severely limits the field of view of 

individual images. Hence, imaging extended areas requires many images. 

Photo-mosaicking consists in aligning and stitching photographs together to form a large 

composite picture. This technique is widely used in photography for the production of 

panoramas. However, the interest in mosaics to map deep-sea environments is growing 

among the scientific community, and several works have focused on developing algorithms to 

reliably build underwater mosaics (Gracias & Santos-Victor 2001, Eustice et al. 2002, Vincent 

et al. 2003, Pizarro & Singh 2003, Allais et al. 2004, Ferrer et al. 2007, Escartín et al. 2008). 

Indeed, traditional panorama-dedicated programs usually fail to cope with underwater 

imagery correctly. The deep sea is a very challenging environment, and the reasons for failure 

are manifold; strong lighting heterogeneities, low contrasts, perspective distortions, poor 

accuracy of camera positioning data, or adverse camera motions due to bottom currents are 

many hindrances to the construction of large and low-distorted photo-mosaics. 

Efforts have been made in several institutes of physics, robotics or computer vision sciences 

to develop tools to generate photo-mosaics of the seafloor (Eustice et al. 2002, Pizarro & 

Singh 2003, Ferrer et al. 2007, Escartín et al. 2008), and impressive results were achieved. 

However, applying those techniques often requires strong mathematics, physics and 

programming skills, which the end-user of deep-sea mosaics does not necessarily possesses. 

Indeed, published works about mosaicking techniques are generally aimed at improving 

known techniques rather than on developing a robust end-user product for potential deep-sea 

scientists. It is interesting to note that recent mosaicking works now concentrate on 3-

dimensional imaging and mosaicking techniques (Nicosevici et al. 2006, 2009, Brandou et al. 

2007, Pizarro et al. 2009), whereas no freely available tool exists for end-users to routinely 

produce 2-dimensional areal mosaics. 

The MATLAB large-area photo-mosaicking toolbox (LAPM toolbox) was developed to palliate 

this lack. The main strength of this tool lies in its ability to generate photo-mosaics of any size 

and on virtually any recent computer. Furthermore, mosaic files are given geographic 

attributes and can be directly imported into a geographic information system (GIS). Finally, the 

toolbox has an intuitive interface, which makes it easy to use for end users without requiring 

detailed mathematics, physics and programming knowledge. 

 

2.3.3 Mosaicking process 

2.3.3.1 Photo-mosaicking background 

Two main sorts of photo-mosaicking techniques exist. The first consists in geo-referencing 



Manuscript 1: LAPM Toolbox  Methods and data

 

26 

each individual photograph based on navigation (easting, northing, and altitude) and attitude 

(pitch, roll, and yaw) data of a remotely operated vehicle (ROV) or autonomous underwater 

vehicle (AUV). The method is fast and low demanding in terms of computing resources, but 

the quality of the mosaic suffers from the inaccuracies of the navigation data (Figure 2.6a). 

The other method consists in using pictorial information to infer the motion between two 

images. Such method requires each image to overlap with the next and has higher computing 

requirements, but it generally yields better results (Figure 2.6b). However, the second 

technique may not be able to register images if the overlap area is too small or if the scene is 

featureless. 

 

Figure 2.6: Two photo-mosaics of a same area, constructed with different methods. (a) 
Navigation-based photo-mosaic; mismatches occur between consecutive images. (b) 
Feature-based photo-mosaic; better fit between consecutive images; however, more images 
are required to cover the same area. 

 

Therefore, a robust underwater mosaic tool must rely on feature tracking methods to ensure 

best registration accuracy. However, it should also be able to use navigation data in areas 

were feature mapping is not possible. 

2.3.3.2 Graphical user interface 

The LAPM toolbox was developed so as to be easy to use for an end-user without prior 

knowledge of the techniques involved. Therefore, it has a graphical user interface (GUI) to 

guide the user through the several stages of mosaic creation (Figure 2.7). Depending on the 

available data, mosaics can be constructed in three different ways: with feature tracking and 

navigation data, with feature tracking only, or with navigation data only. 
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Figure 2.7: Graphical user interface (GUI) 
of the large-area photo-mosaicking 
(LAPM) toolbox; the column of buttons is 
designed to guide the user through the 
mosaicking process. 

2.3.3.3 Feature tracking 

If used, feature tracking is the first step of the mosaicking process. It consists in detecting and 

matching features between each pair of the image sequence. The feature tracking is based 

on the VLFeat toolbox (Vedaldi & Fulkerson 2008, 2010), which includes an open-source 

implementation of the Scale Invariant Feature Transform (SIFT) method (Lowe 1999, 2004). 

With this method, a set of features is computed for every image and tracked onto the next 

image of the sequence in order to compute the transform matrix, or homography, that 

explains the motion. In addition, an outlier rejection (Pizarro & Singh 2003) is performed in 

order to remove erroneous matches from the set of positive matches, which ensures that the 

best possible homography is computed. 

In some cases, the feature tracking may also fail to compute matches. This happens generally 

if the overlap between the images is insufficient, if the scene is featureless, or if the relief 

causes perspective distortions. Such failure can be overcome by user intervention, i.e. by 

creating a few links between the unmatched images (Figure 2.8). Alternatively, navigation 

data can be used to estimate the motion between unmatched images. 

 

Figure 2.8: The interface of the match selector allows browsing through each pair of images 
and visualizing the computed matches; erroneous matches can be removed and new 
matches can be manually created. 
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2.3.3.4 Initial topology and crossover 

In mosaicking terms, the topology is the estimation of the position and orientation of every 

image onto the 2D plane of the mosaic (Figure 2.9). The projection of an image onto the 2D 

plane of the mosaic is called image registration. Computing the topology is the next main step 

of the mosaicking process and a pre-requisite for the actual construction of the mosaic. 

 

Figure 2.9: Illustration of the initial topology. Left: estimation of the center position of each 
image. Middle: estimation of the projection of the image frames onto the 2D plane of the 
mosaic. Right: corresponding mosaic. 

 

The initial topology step consists in estimating the position of each image onto the mosaic 

plane from the homographies. In this step, the image registration is done successively from 

the first image to the last in the order of the image sequence. In such context, minor 

registration errors tend to add up from a pair to the next and to lead to a larger global error. 

The use of overlaps between nonconsecutive images can help limiting the error by providing 

additional positioning constraints (Figure 2.10), also known as crossover points (Fleischer et 

al. 1996, 1997, Fleischer & Rock 1998). However, overlaps between nonconsecutive images 

must be planned at the image acquisition stage; they can be of two types: crossover path and 

sidelap (Figure 2.11). 
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Figure 2.10: Illustration of the contribution of crossover points in limiting registration errors. (a) 
Small positioning errors add up along the trajectory and grow unbounded. (b) By forcing the 
trajectory to cross itself at a given point, the position of each point within the loop can be 
recalculated backward; the registration error of each image is reduced. 

 

 

Figure 2.11: Examples of crossover trajectories. (a) A crossover path is a trajectory, in which 
the camera crosses its own trajectory and surveys a same point several times; adapted from 
Fleischer et al. (1996). (b) Side-overlap, or sidelap, occurs when parallel lines of mosaic 
overlap. 

 

Concretely, implementing crossover information consists in computing or manually adding 

additional matches between pairs of adjacent (i.e. nonconsecutive) images. Crossover points 

have been used in previous mosaicking efforts, and in some cases in a fully automatized and 

iterative fashion (Pizarro & Singh 2003). In contrast, the LAPM toolbox gives to the user full 
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control over crossover matches. It includes a graphical interface, called links editor, to display 

all existing matches and to identify potential crossover points. 

Crossover points are used in the computation of the initial topology after the pairwise 

registration of all images has been estimated. Starting again from the first image, whenever a 

crossover point is found, the registration parameters of all images within the loop are 

recalculated backward until the beginning of the loop or until the previous crossover point. 

The principle of this technique is comparable to the smoother-follower technique described by 

Fleischer et al. (1996). 

The use of crossover points can significantly improve the quality of the topology and of the 
final mosaic (

Figure 2.12). Crossover points can also be used to compensate for inaccuracies in the 

navigation data. 

Figure 2.12: Illustration 
of the benefits of using 
crossover points. Top: 
pairwise registration 
errors add up and lead 
to a huge global error. 
In this example, the 
right line of the mosaic 
corresponds to a 
featureless area, and 
the pairwise image 
registration is impacted 
by large errors. Bottom: 
the use of crossover 
points allows 
constraining the error. 
The final mosaic is 
consistent.

 

2.3.3.5 Global registration 

The global registration consists in computing for each image the optimal transformation matrix 

in order to obtain the smallest possible global error. This operation, also known as bundle 

adjustment, is done by minimizing a cost function, which simultaneously takes into account all 

matches from every matched pair of images. 
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The LAPM toolbox uses the cost function proposed by Pizarro & Singh (2003) to compute 

homographies. It is solved in one iteration by linear least squares. The global registration 

solves for affine (i.e. 6 degrees of freedom) homographies; hence, it generally results in a 

finer estimation of the topology than the initial topology. However, in some cases, it may 

produce less satisfying results than the initial topology estimation; this happens especially if 

the navigation data is used, or if the amount of matches between some images is too low to 

reliably compute a homography. 

2.3.3.6 Mosaic construction 

After all images have been registered, they are merged together to compose the actual 

mosaic. Several methods exist to optimize the rendering of the overlaps, which can be divided 

in two categories: clipping and blending methods (Burt & Adelson 1983, Marks et al. 1994, 

Eustice et al. 2002, Pizarro & Singh 2003, Ferrer et al. 2007, Lirman et al. 2007, Gracias et al. 

2009).  

Clipping methods consist in taking into account the pixels from one image of the overlapping 

images only; they are usually fast but clear seams are visible at the intersection between 

overlapping images. Conversely, blending methods combine pixels from the overlapping 

images; depending on the blending type, such technique can better render the mosaic, 

although at a higher computing cost. 

Two rendering methods are available with the LAPM toolbox: a clipping method, in which the 

pixels that are closest to the center of their image are chosen (Lirman et al. 2007), and a 

blending method, known as multi-resolution pyramidal blending (Eustice et al. 2002, Pizarro & 

Singh 2003). The latter method is significantly slower but produces a seamless mosaic. 

 

2.3.4 LAPM toolbox: Functions 

The LAPM toolbox was developed specifically for the purpose of underwater mosaicking, and 

its main functions were designed to meet the needs of an end-user scientist, interested in 

building visual maps of the seafloor. The main requirements included the ability to (1) 

assemble large high-resolution image datasets on a regular computer, (2) to produce geo-

referenced mosaics, (3) to give the user full control over feature matches, and (4) to produce 

mosaics in different resolutions. 

2.3.4.1 Tiling the mosaic 

Due to limited field of view in the deep sea, mosaicking large areas commonly requires 

hundreds to thousands of images. Most panorama-dedicated programs were usually not 

designed to cope with such large datasets, and computer resources are often exceeded. 

For instance, a photo-mosaic image from a set of several thousand high-resolution 
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photographs can easily reach a few hundred million pixels. Most computers and operating 

systems cannot cope with such large files. 

The main strength of the LAPM toolbox lies in its ability to generate photo-mosaics of any size 

and on any recent computer. To achieve such capability, large mosaics are automatically tiled 

in several square images (Figure 2.13), which are then constructed successively and 

independently. 

 

Figure 2.13: Illustration of the mosaic tiles as produced by the LAPM toolbox; in this example, 
each square tile covers about 100,000 m

2
. Individual tiles are constructed separately in order 

not to exceed the computing resources; tiles are geo-referenced, hence, loading them into a 
GIS allows displaying the photo-mosaic entirely. 

 

The size of individual tiles must be defined by the user and is limited by the computing 

resources available. Therefore, lower computing capabilities result in smaller tiles. However, 

because the amount of tiles is unlimited, photo-mosaics of any size can be constructed on 

any computer. 

2.3.4.2 Geo-referencing the mosaic 

If the navigation data is used, photo-mosaics can be geo-referenced. The geo-referencing 

data is written in a world file, which allows mosaics to be imported into a geographic 

information system (GIS) such as ArcGIS directly. 

A world file is created for every tile of the mosaic. The final photo-mosaic can be visualized 

entirely by loading each tile into GIS (Figure 2.13). Therefore, spatial analyses can be 
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performed directly on the entire mosaic, instead of separately on each individual tiles. 

A world file can also be produced when full navigation data is not available. In such case, the 

geo-referencing information is estimated from the position, orientation, and field of view of the 

first image of the mosaic. However, such method only gives a crude approximation of the true 

geographical data; its accuracy depends strongly on the morphology of the surveyed area 

and on the motion of the camera. 

2.3.4.3 Editing feature matches 

Although robust, feature tracking methods are not always foolproof and they sometimes fail to 

detect matches between overlapping images. This generally happens when the overlap is too 

small or when perspective distortions are too strong. 

The toolbox includes graphical interfaces that provide the possibility to visualize current 
matches (Figure 2.14) and to manually edit them (Figure 2.8). If necessary, the user can 
select and delete individual links, or create new ones between any pair of images. 

This function is particularly useful when reliable navigation data is not available, and that 

feature tracking fails. It is also very efficient to force the implementation of crossover points 

even between very low overlapping images. 

 

 

 

Figure 2.14: View of the link editor of the 
LAPM toolbox; it give the possibility to 
visualize all matches and to identify 
potential unmatched overlapping images. 
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2.3.4.4 Lowering the resolution 

The LAPM toolbox includes the option to produce the final mosaics at several different 

resolutions. Lowering the resolution reduces computing times significantly. The construction of 

a high-resolution photo-mosaic is a very computer-intensive and slow process, and it may 

sometimes be advantageous to lower the resolution in order to speed up the process. 

For instance, building large and accurate photo-mosaics can be an iterative process, for 

which the construction of low-resolution intermediary mosaics may be beneficial; a preliminary 

mosaic is indeed an efficient way of identifying crossover points in a set of images. 

 

2.3.5 Results 

The LAPM toolbox was used to create maps of several deep-sea features. In particular, it 

produced photo-mosaics with images datasets from different underwater vehicles (ROV and 

AUV) and from both video- and photo-cameras. 

2.3.5.1 Helgoland mud volcano 

The Helgoland mud volcano, in the Back Sea, was visited in 2010 during the MSM15/2 cruise 

(Bohrmann et al. 2011). 

 

Figure 2.15: Photo-mosaic showing mud pool and mud flows at the Helgoland mud volcano; 
the mosaic was built with 218 images and covers a 400 m

2
 area. 
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High-resolution images of the volcano center were acquired with a Canon Powershot G10 

camera mounted on the MARUM ROV Quest 4000. The surveyed areas included both sharp 

topography and featureless areas, and reliable ROV-navigation data was not available. 

Nevertheless, photo-mosaics could be successfully constructed with the LAPM toolbox. The 

results include in particular a 400 m
2
-large photo-mosaic of the center of the volcano (Figure 

2.15). 

2.3.5.2 Regab pockmark 

The Regab pockmark, is a cold seep structure located at 3160 m water depth in the Congo 

deep-sea fan. It was intensively studied during the WACS cruise (2011) and large video and 

photo surveys were conducted with the Ifremer ROV Victor 6000. Datasets also include high 

quality ROV navigation data. 

 

Figure 2.16: Geo-referenced photo-mosaic constructed from high-definition video material; 
the resolution of the mosaic allows distinguishing individual living and dead clams. 

 

Results include notably a 105,000 m
2
-large photo-mosaic of the most active area of the 

pockmark. Photos were obtained with the high-sensitivity OTUS camera (Simeoni et al. 2007) 

from an altitude of 8 m above seafloor. Illustration of this mosaic is given in Figure 2.13. 
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Photo-mosaics could also be constructed from video data. In such case, individual frames 

were extracted at regular interval (1 second) from the video files. Video images are usually of 

lower quality than photos from still cameras; however, the high frequency of frames (25 fps for 

PAL cameras) ensures large overlap areas between consecutive images. Therefore, a very 

high-definition 5,800 m
2
-large mosaic could be constructed (Figure 2.16). 

All mosaics are geo-referenced, thus enabling spatial analyses in a geographic information 

system. 

 

2.3.5.3 Håkon-Mosby Mud Volcano 

The Håkon-Mosby Mud Volcano (HMMV) is a 1.4 km-wide circular structure located at about 

1250 m water depth in the Barents Sea (Jerosch et al. 2006). The HMMV has been 

intensively surveyed since its discovery, and high-resolution micro-bathymetry and video-

mosaics are already available (Jerosch et al. 2006, 2007b). 

Additional photo-mapping surveys were carried out during cruise MSM16/2 (Boetius et al. 

2010), with the Sentry AUV from the Woods Hole Oceanic Institute. The largest of these 

surveys contains more than 5500 photos. The final photo-mosaic was built using both AUV 

navigation data and feature tracking, and almost fully covers a 75,000 m
2
-large area of the 

volcano (Figure 2.17). It is geo-referenced and spatial analyses and area calculations can be 

performed in GIS. 

 

Figure 2.17: Excerpt of the photo-mosaic of Håkon-Mosby Mud Volcano; the continuity of the 
Beggiatoa mats and pogonophoran distribution across the mosaic indicates that images were 
accurately registered. 
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2.3.6 Conclusion 

The MATLAB large-area photo-mosaicking (LAPM) toolbox was presented in this work. It 

allows end-users to easily construct large geo-referenced photo-mosaics without requiring in-

depth knowledge of the technical aspect of the mosaicking process. The toolbox can be used 

with any imagery data, but its interface and functions were tailored specifically for the purpose 

of underwater mosaicking. However, in terms of quality and speed of execution, the LAPM 

toolbox does not claim to compete with the most advanced photo-mosaicking techniques. The 

development of this tool was instead motivated by the current lack of end-user underwater 

photo-mosaicking tools freely available to deep-sea scientists interested in seafloor mapping. 

The LAPM toolbox is functional and has already been used successfully with photo and video 

material from several scientific cruises for the production of high quality and high-resolution 

photo-mosaics. It will be ultimately available for download online. 
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Chapter 3 Study areas 

This thesis focused on two different areas of seabed fluid flow: a hydrothermal vent and a 

cold seep area. The areas studied are the Menez Gwen volcano and the giant Regab 

pockmark, and are both located in the Atlantic Ocean (Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overview map showing the location of 
the two study areas. 

3.1 Menez Gwen hydrothermal vent 

The Menez Gwen segment is 55 km long and is located immediately to the north of the Lucky 

Strike segment and south of the Azores Triple Junction (Figure 3.2a). In this area, the 

spreading rate of the Mid-Atlantic Ridge approaches 24 mm yr
-1

 (Parson et al. 2000). 

However, the segment is characterized by the absence of a central rift, and by the occurrence 

of fresh lava (Fouquet et al. 1994). 

 

Figure 3.2: (a) Overview map showing the location of Menez Gwen in relation to Lucky Strike 
and the Azores Triple Junction; the bathymetry background (GEBCO data) shows the Mid-
Atlantic Ridge and the tectonic plates. (b) Bathymetry of the Menez Gwen volcano acquired 
during cruise M82/3 in 2010; the black dots mark the location of known sites of active venting; 
the most southern site, named ‘Bubbylon’ was discovered during cruise M82/3 in 2010. 
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The Menez Gwen hydrothermal vent system is concentrated on a 15 km-large volcano 

structure (Figure 3.2b) that lies in the central part of the segment. The volcano is composed of 

basaltic boulders and is generally sediment-free. It is split into two halves by a 2 km-wide 

graben, globally in the same direction as the ridge segment. A large lava lake is present in the 

graben, which is surrounded by recent pillows and fresh lobate flows. A new 200 m-high 

volcano covered with extremely fresh pillows occurs within the graben, north of the lava lake 

(Fouquet et al. 1994, 1995). This recent volcano hosts most of the currently known 

hydrothermal vent fields of Menez Gwen (Desbruyères et al. 2001). The co-occurrence of a 

lava lake and hydrothermal fields in the graben is considered to indicate the presence of a 

shallow axial magma chamber (Fouquet et al. 1995).  

The sites of hydrothermal activity are characterized by the absence of sediment cover and by 

unconsolidated anhydrite chimneys that grow on fresh pillows directly (Fouquet et al. 1994, 

Desbruyères et al. 2001). This suggests that the Menez Gwen system is very young in 

comparison, for instance, to the neighboring Lucky Strike system (Fouquet et al. 1994). 

Furthermore, emitted fluids are chlorite-depleted and much enriched in gases, especially in 

methane, indicating important phase separation processes (Fouquet et al. 1994, Charlou et 

al. 2000). The gas-enrichment of the fluids is an additional indication that the hydrothermal 

activity at Menez Gwen is recent (Butterfield et al. 1997). 

Venting sites are not larger than 200 m
2
 and host an abundant chemosynthetic fauna, largely 

dominated by mussels of the species Bathymodiolus azoricus (Fouquet et al. 1994, 

Desbruyères et al. 2001). 
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3.2 Regab pockmark 

The Regab pockmark is an 800 m-large depression on the seafloor that is located on the 

West-African passive margin (Figure 3.3), at 3160 m water depth and about 10 km north of 

the Congo (Zaire) deep-sea canyon (Ondréas et al. 2005, Gay et al. 2006c). 

 

Figure 3.3: Location maps of the Regab pockmark. (a) Overview map showing the location of 
‘b’; adapted from Gay et al. (2006c). (b) Location of the pockmark in relation to the regional 
bathymetry; the pockmark is on the lower slope of the Congo deep-sea fan; the rectangle 
indicates the extent of ‘c’; adapted from Olu-Le Roy et al. (2007a). (c) Backscatter map; the 
Regab pockmark appears as a strong backscatter anomaly; a similar anomaly occurs a few 
kilometers north of Regab, which correspond to a smaller pockmark; adapted from Ondréas 
et al. (2005). 

 

The West-African continental margin was formed in the Early Cretaceous, about 130 Ma ago, 

with the opening of the Southern Atlantic Ocean (Jansen et al. 1984, Marton et al. 2000). After 

the deposition of a massive salt formation during the Aptian marine transgression, the 

sedimentation has been entirely marine (Fort et al. 2004). The two main post-salt sedimentary 

sequences are (1) an aggradation of carbonate/siliclastic deposits from Late Cretaceous to 

Early Oligocene, and (2) a progradation of silty/sandy turbiditic sediments during Post-

Oligocene times. The Oligocene was characterized by a major erosional period, during which 

the large turbiditic Congo fan was formed, due to increased terrigenous input (Droz et al. 

1996, Gay et al. 2006c). 

The Congo fan is 1000 km long and extends down the slope to the abyssal plain at about 

5000 m water depth (Droz et al. 1996). Numerous fossil channel/levee systems occur in the 

Quaternary fan, some of which are not connected to the present Congo main channel (Droz 
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et al. 1996, Savoye et al. 2000). The Regab pockmark is located towards the middle part of 

the fan, over oceanic crust, is and rooted to one of these fossil channels (Marton et al. 2000, 

Moulin et al. 2005, Ondréas et al. 2005). 

 

Figure 3.4: Seismic NW-SE transect crossing the Regab pockmark and corresponding 
interpretation; the pockmark is linked to a channel/levee system, which acts as a reservoir for 
mostly biogenic methane. A chimney is visible on the northern side of the channel that leads 
to a buried palaeo-channel. From Gay et al. (2006c). 

 

Pockmark features are common in and around the Lower Congo Basin (Gay et al. 2003, 

2006b, Sahling et al. 2008a), and are generally related to either tectonic structures (fault 

zones, salt diapirs, polygonal faults) or to buried sedimentary bodies (turbiditic channels, 

erosional surfaces) (Gay et al. 2007). However, with only one other pockmark in the vicinity, 

the Regab pockmark is rather isolated (Ondréas et al. 2005). Regab was shown to be related 

to a buried palaeochannel, which acts as a reservoir for mainly biogenic methane (Charlou et 

al. 2004, Ondréas et al. 2005, Gay et al. 2006c). The expulsion of fluids is triggered by the 

overpressure caused by the high sedimentation rate of the Congo fan, and occurs at the 

interface between the buried channel and its northern levee (Figure 3.4). 

At the sediment surface, the Regab pockmark is characterized by extended crusts of 
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authigenic carbonates and the presence of very abundant fauna (Figure 3.5). Chemosynthetic 

fauna at Regab is dominated by siboglinid polychaetes (vestimentiferan tubeworms), mytilids 

(mussels), and vesicomyid clams (Olu-Le Roy et al. 2007a). Outcropping gas hydrate 

deposits and free gas emissions have been observed (Charlou et al. 2004, Ondréas et al. 

2005). 

 

Figure 3.5: Excerpts of high-resolution photo-mosaics of the Regab pockmark. (a) Mussels 
between dense tubeworm bushes. (b) Large bush of adult tubeworms; these tubes are 
several meter long. (c) Dense aggregation of dead and living clams; dark sediments around 
the living clams indicate that sulfate reduction occurs. (d) Large pavement of authigenic 
carbonates. The white line represents 1 m on all images. Photo-mosaics constructed with the 
LAPM toolbox (Original images: © Ifremer). 
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4.1 Abstract 

The Menez Gwen hydrothermal vents, located on the flanks of a small young volcanic 

structure in the axial valley of the Menez Gwen seamount, are the shallowest known vent 

systems on the Mid-Atlantic Ridge that host chemosynthetic communities. Although visited 

several times by research cruises, very few images have been published of the active sites, 

and their spatial dimensions and morphologies remain difficult to comprehend. We visited the 

vents on the eastern flank of the small Menez Gwen volcano during cruises with RV Poseidon 

(POS402, 2010) and RV Meteor (M82/3, 2010), and used new bathymetry and imagery data 

to provide first detailed information on the extents, surface morphologies, spatial patterns of 

the hydrothermal discharge and the distribution of dominant megafauna of five active sites. 

The investigated sites were mostly covered by soft sediments and abundant white 

precipitates, and bordered by basaltic pillows. The hydrothermally-influenced areas of the 

sites ranged from 59 to 200 m
2
. Geo-referenced photo-mosaics and video data revealed that 

the symbiotic mussel Bathymodiolus azoricus was the dominant species and present at all 

sites. Using literature data on average body sizes and biomasses of Menez Gwen B. 

azoricus, we estimated that the B. azoricus populations inhabiting the eastern flank sites of 

the small volcano range between 28,640 and 50,120 individuals with a total biomass of 50 to 

380 kg wet weight. Based on modeled rates of chemical consumption by the symbionts, the 

annual methane and sulfide consumption by B. azoricus could reach 1760 mol CH4 yr
-1

 and 

11,060 mol H2S yr
-1

. We propose that the chemical consumption by B. azoricus over at the 

Menez Gwen sites is low compared to the natural release of methane and sulfide via venting 

fluids. 

 

Keywords: photo-mosaic, Bathymodiolus azoricus, Menez Gwen, hydrothermal vent, 

biomass, chemical consumption, fluid flow. 
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4.2 Introduction 

Hydrothermal vents were first discovered in 1977 and have been the focus of many studies 

since then (Lutz & Kennish 1993, Dover 2000). Especially the discovery of non-

photosynthesis-fuelled ecosystems associated with these systems, with abundant and diverse 

endemic fauna, excited the interest of a multitude of scientists from various disciplines. 

However, hydrothermal vent systems are located in depths without natural sunlight where the 

field of view for researchers and cameras diving with submersibles or remotely operated 

vehicles (ROV) is extremely limited despite the use of powerful lights. Hence, more than 30 

years after the first discovery, the overall structure of hydrothermal venting sites and the 

distribution of the associated fauna are often only known from images providing close-up 

views of limited sections of vents, while only very few detailed maps of entire sites have been 

published (Escartín et al. 2008, Bell et al. 2012, Barreyre et al. 2012). 

Detailed descriptions of the distribution of the faunal assemblages at hydrothermal vent 

systems that are available in the literature are mostly based on drawings or geo-referenced 

GIS layers that are drawn from video data. Such data are available in particular from the 

Endeavour hydrothermal field on the Juan de Fuca Ridge (Sarrazin et al. 1997, Juniper et al. 

1998), from the Broken Spur vent field (Copley et al. 1997) and the Logatchev site on the Mid-

Atlantic Ridge (MAR) (Gebruk et al. 2000a), and from the Lucky Strike system, at which the 

faunal distribution on a large chimney structure was described (Cuvelier et al. 2009). Such 

maps give valuable qualitative information on the distribution of the faunal patches and the 

layout of the sites but they rely on hand drawings from observations of video material and 

precision of inferred areas of cover is likely to be limited. Some works (Sarrazin et al. 1997, 

Juniper et al. 1998, Durand et al. 2002), however, focused particularly on the issue of 

improving the accuracy of spatial measurements from video imaging by drawing the contours 

on a background geology map of the site. In those cases, geo-referencing data of the 

basemap were obtained either from passive reference markers that were captured on video 

images (Durand et al. 2002) or from long baseline (LBL) navigation data that were correlated 

to the images (Delaney et al. 1992, Sarrazin et al. 1997, Sarrazin & Juniper 1998). All these 

methods can be very efficient and can be applied in areas with sharp topographic contrasts. 

An alternative approach is to use geo-referenced photo-mosaics to map the faunal 

distribution. Image mosaicking consists in assembling several overlapping images together to 

form a composite image of a larger scene. The mosaic is then geo-referenced into a 

geographic information system (GIS), and areas can be computed. Such a method can 

provide a significant gain of time to study areas with low to moderate relief but also, contours 

of features of interest can be drawn onto the geo-referenced image material directly. Similar 

methods have been used to successfully map faunal communities at different scales and in 

various types of environments. Examples include large-scale studies of faunal distribution at 

the Håkon Mosby Mud Volcano (Jerosch et al. 2006, 2007a) and at the Regab pockmark 

(Olu-Le Roy et al. 2007a), and small-scale studies at the Chowder Hill mound on the Juan de 
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Fuca Ridge (Grehan & Juniper 1996), at cold seeps in the Gulf of Mexico (Lessard-Pilon et al. 

2010a, b) and at discrete sites of hydrothermal activity on the Eastern Lau Spreading Center 

(Podowski et al. 2009). 

Analyses of hydrothermal fauna usually focus on the distribution of the assemblages or on 

population structure in relation to their environment, and sometimes give estimations of 

density and biomass estimations per unit areas (Lutz & Kennish 1993, Ramirez Llodra et al. 

2007), but the overall spatial distributions of faunal assemblages and animal abundances or 

biomasses at entire vent sites have rarely been quantified (e.g. Gebruk et al. 2000a, 

Podowski et al. 2009). Such knowledge is valuable as it gives information on the size of 

hydrothermal faunal populations, and can be used to infer chemical consumption rates. In a 

context where seabed methane emissions are considered to contribute noticeably to the 

global carbon budget (Judd 2003), it is important to evaluate the relative significance of faunal 

methane consumption against methane effluxes in hot fluid emissions. 

In this study, we use high-resolution bathymetry data together with areal photo-mosaics to 

provide for the first time detailed maps and descriptions of five sites of active venting from the 

Menez Gwen system in the area of the previously reported marker position PP30/31 

(Desbruyères et al. 2001). The Menez Gwen hydrothermal vent field was chosen for this 

study because it is a volcano structure of the Azores region where hydrothermal activity was 

believed to be concentrated over small areas. It has been visited by several cruises and the 

faunal communities hosted by the vent field have been the focus of many biological studies 

(Fouquet et al. 1994, Comtet & Desbruyères 1998, Sarradin et al. 1999, 2001, Cosel et al. 

1999, Dixon et al. 2001, Shank & Martin 2003, Riou et al. 2010). However, descriptions and 

images of the sites of venting activity remain poor and quantitative data on dimensions, size 

of populations and biomasses are scarce. 

Ship- and autonomous underwater vehicle- (AUV) based bathymetry surveys were conducted 

in September-October 2010 during cruises POS402 and M82/3 to the Menez Gwen 

hydrothermal vent field on the Mid-Atlantic Ridge. Five sites of active venting activity were 

intensively studied during twenty ROV dives. Using GIS, we provide measurements of 

surfaces covered by dominant species of megafauna, and estimations of minimum biomass of 

Bathymodiolus azoricus. Also, we use published values of size, density and substrate uptake 

rates for B. azoricus at Menez Gwen to infer total methane and sulfide consumption rates at 

the scale of a vent site. The final goal of this study is to assess the significance of faunal 

methane and sulfide consumption against natural methane and sulfide release within vent 

fluids. 

 

4.3 Site description 

The Menez Gwen segment of the Mid-Atlantic Ridge is about 55 km long (Parson et al. 2000), 

and stretches from 38°03’N to 37°35’N in a S-SW to N-NE direction (Figure 4.1). A large 
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volcano with a mean diameter of 15 km is present near the center of the segment, and it 

reaches up to about 800 m above the surrounding seafloor (Figure 4.2a). The top part is 

divided into two halves by a 9-km long axial graben of similar orientation to the ridge segment 

that forms a 300 to 400-m deep and 2-km wide valley across the volcano. 

 

Figure 4.1: Location of the Menez Gwen volcano on the Mid-Atlantic Ridge. 

 

Several recently formed minor volcanoes are scattered across the northern part of the 

graben. The largest of them is about 1 km wide, up to 200 m high (Figure 4.2b) and its 

highest point reaches up to 800 m water depth. The surface rocks of this young volcano are 

composed of fresh lava and some volcanic breccia (Fouquet et al. 1995, Ondréas et al. 

1997). The lava has no sediment cover and it has been suggested that the entire small 

volcano built up during the latest eruptive episode (Ondréas et al. 1997). The hydrothermal 

activity at Menez Gwen is mainly concentrated on the southern and eastern flanks of this 

small volcano (Figure 4.2b) (Charlou et al. 2000, Desbruyères et al. 2001). Although the 

Menez Gwen hydrothermal vents have been visited several times by research cruises, 

information on the morphology and geological composition of active sites is scarce and 

concentrates on two locations on the southern flank of the volcano (Figure 4.2b). One of them 

(PP10/F11) is characterized as a low-elevated and 50-m wide mound with 2-m high anhydrite 

chimneys which are surrounded by barite-rich precipitates; the other (D9, PP11, F12) is an 

escarpment topped by a chimney, which is bordered by pillow lava and crumbled rock 
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(Fouquet et al. 1994, 1997, Charlou et al. 2000, Desbruyères et al. 2001). Such information is 

not available for sites on the eastern volcano flank. 

 

Figure 4.2: (a) Overview map of the Menez Gwen volcano; the rectangle indicates the 
location of the area shown in (b); (b) AUV-based micro-bathymetry of the young volcano 
(highest elevations are highlighted with black triangles) and individual sites of active venting 
during the M82/3 cruise (black squares); the sites described by Desbruyères et al. (2001) are 
also plotted (gray squares); the rectangle indicates the location of the area shown in (c); (c) 
outline and relative position of the photo-mosaics. 
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The sites of hydrothermal activity studied during the cruise M82/3 (2010) were therefore 

located in this area. Menez Gwen is part of the Azores Marine Park, and future potential 

access restrictions to the southern sites may lead future research interests at Menez Gwen to 

the eastern area. All visited sites are located on the eastern flank of the small volcano close to 

its summit (Figure 4.2b-c), and between 850 and 814 m depth. In 20 dives, five major sites 

were found in the area: Atos 10, Cage Site, Marker 4, White Flames, and Woody. The site 

names were those assigned during the cruise M82/3 in September-October 2010. 

Large megafauna is composed of the bivalve species Bathymodiolus azoricus, the caridean 

shrimps Chorocaris chacei, Mirocaris fortunata and Alvinocaris sp. aff. stactophila, numerous 

gastropods, mainly Lepetodrilus atlanticus and Protolira valvatoides, the crab Segonzacia 

mesatlantica and the large non-hydrothermal crab Chaceon affinis (Cosel et al. 1999, Gebruk 

et al. 2000b, Ramirez Llodra et al. 2000, Desbruyères et al. 2001, Galkin & Goroslavskaya 

2010). Smaller fauna is even more diverse (Galkin & Goroslavskaya 2010), but is not 

discernible in video and photo materials. 

 

4.4 Methods 

4.4.1 Bathymetric surveys 

Swath-mapping surveys were conducted during the M82/3 cruise with the hull-mounted 

multibeam echosounder (MBES) EM122 from Kongsberg Maritime operating at 12 kHz with 

432 beams. Micro-bathymetry was acquired during the POS402 cruise with the MARUM AUV 

SEAL 5000, using a RESON SeaBat 7125 multibeam echosounder operating at 400 kHz with 

512 beams. Processing of the bathymetry data was done with MB-System (Caress & Chayes 

2001). 

4.4.2 Imagery, mosaicking and image processing 

Imagery used for the production of mosaics was acquired with a DSPL SSC 6500 Colorzoom 

video camera with corrected optics to eliminate geometric and chromatic distortions. The 

DSPL camera was mounted on a pan-and-tilt head at the front of the ROV Quest 4000 m 

(MARUM). For mosaicking applications, the camera was positioned into the most possible 

vertical direction without having parts of the ROV within the view. In this position, the angle of 

the optical axis of the camera in relation to the vertical plane was 39 degrees; therefore every 

image was affected by the same perspective distortion. Laser pointers were used throughout 

the surveys to ensure that scale information is recorded with the imagery. 

Images were obtained in a structured way by performing several parallel and overlapping 

transects at a constant speed and a steady altitude across each site. Photo-mosaics were 

constructed using consecutive frames from the video files, with an overlap of 25-30%. 

Individual transects of the mosaics were constructed using a MATLAB algorithm (Pizarro & 
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Singh 2003) provided by C. Fisher and E. Podowski. This algorithm was developed to cope 

with the peculiarities of the underwater environment (low lighting, adverse motion of the 

camera such as roll, pitch and yaw) and is relatively well suited to compensate for 

inaccuracies between consecutive images that would be related to the camera inclination. 

The final mosaics were constructed manually with Photoshop by assembling individual 

transects together. Drift-induced errors between transects were low (about 50 cm error every 

10 m in flat areas, i.e. 5%) due to the small dimensions of the mosaics. Nevertheless, where 

possible, registration artifacts were positioned away from the main areas of interest in order to 

ensure the best possible matches in the most active areas of the study sites. For each 

mosaic, colors and contrasts were enhanced using ImageJ software (Abramoff et al. 2004). 

Interpretation of the mosaics was supported by further images acquired with a high-definition 

camera “Insite Zeus Plus Colorzoom”, useful because images loose quality during the 

mosaicking procedure. This camera was mounted at the front of the ROV in a forward-looking 

orientation that gives a view of the scene from a different perspective, closer to the seafloor, 

and allowed observing the relief. Based on observations from videos of 20 dives, we identified 

high and low features and reconstructed 3D views directly on the mosaics. While such 

information is hard to scale and does not give exact values for altitude variations, it gives 

valuable insight on the overall site morphologies, which usually are difficult to comprehend 

from mosaics alone. At White Flames, altitude information provided by ROV sensors was 

used to estimate the height variation of the bottom topography. 

4.4.3 GIS and spatial analyses 

Mosaics were geo-referenced in ArcGIS using navigation data of the ROV Quest. Ultra-short 

baseline (USBL) data was used for the relative positioning of each site, whereas dead-

reckoning navigation data from the Doppler Velocity Log (DVL) sensor was used for scaling 

and orientating the mosaics. Information from laser pointers was used to confirm correct 

scaling of the mosaics. 

For all mosaics, bottom topography features were delineated and polygons were created in 

ArcGIS to map the spatial distribution of each feature. Mapped features include hard and soft 

substrata, patches of mussels or shells, and zones of intense whitish mineral precipitation. 

Total areas of each site were measured in ArcGIS and correspond to the limit of the 

hydrothermal deposits and fauna. The extent of mussel communities was delineated, areas 

and percentages of cover were calculated. All areas were measured using a Mollweide equal 

area projection. 

Additional qualitative observations made from all high-resolution video and photo material 

from the cruise M82/3 were pinpointed onto the mosaics. Point features that were mapped 

include locations of the exit points of fluid emission, and qualitative assessments of 

abundance of some mobile fauna. Points of fluid emission were sorted depending on the 

presence or absence of chimney structure and, where relevant, on the height of the 
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chimneys. Additionally, wherever the videos showed the seafloor close enough to reliably 

observe the presence or absence of shrimps and gastropods, the observation was marked in 

the mosaics. Animal abundances were semi-quantitatively assessed. Shrimp abundance was 

categorized according to absence, low abundance (1-10 ind. m
-2

) and high abundance (>10 

ind. m
-2

). Gastropods were present in all sites and therefore divided into two categories of low 

abundance (individuals are scattered, substrate is clearly visible between individuals) and 

high abundance (gastropods build closed groups, substrate not visible between individuals). 

This work was performed for all five sites but the amounts of observation points at Atos 10 

and Marker 4 were too low (<5) for interpretation; therefore the results are not shown. 

However, data from every site were used for the analyses of abundance against distance to 

points of fluid emission. The resolution of the mosaic images did not allow an identification of 

shrimps and gastropods to species level. Therefore, our analyses only used the higher taxon 

levels ‘shrimp’ and ‘gastropods’. 

4.4.4 Estimations of B. azoricus biomass, methane and sulfide consumption 

Total population and total biomass of B. azoricus were estimated for all sites (except Marker 

4), based on our measured values of mussel coverage and on estimated mussel sizes and 

densities. 

From our observations, mussel patches included various sizes from juveniles to largest 

individuals of ca. 12 cm shell length. We did not analyze representative values for population 

densities and size frequencies of the mussels, however, our collections revealed that small 

juveniles and very large individuals were rare, while the majority of the animals was medium 

sized. This corresponded to published data based on collections in several years and at 

different seasons. According to these data the shell lengths for the majority of individuals at 

Menez Gwen ranged between 40 and 80 mm (Comtet & Desbruyères 1998). Population 

density in B. azoricus mussel patches at Menez Gwen has been estimated 400 to 700 ind. m
-2

 

(Colaço et al. 1998). Based on these estimates of B. azoricus shell size and population 

density, biomass estimations range between 0.71 and 5.3 kg wet wt m
-2

 (Martins et al. 2008). 

Table 4.1: Ranges of values for all parameters concerning Bathymodiolus azoricus at Menez 
Gwen, which are used in this study; minimum and maximum calculated values are based 
respectively on the lowest and highest limits of assumed shell length and population density; 
refer to text of detailed explanations. 

Parameter Range Type Source 

Shell length (mm) 40 - 80 Assumption (Comtet & Desbruyères 1998) 

Population density (ind m
-2

) 400 – 700 Assumption (Colaço et al. 1998) 

Weight (g wet wt ind
-1

) 1.78 – 7.56 Calculated from Martins et al. (2008) 

Biomass (kg wet wt m
-2

) 0.71 – 5.3 Calculated from Martins et al. (2008) 

Gill weight (g dry wt ind
-1

) 0.09 – 0.36 Calculated from Martins et al. (2008) 

CH4 uptake (µmol d
-1

 ind
-1

) 5.9 – 96.1 Calculated from Martins et al. (2008) 

H2S uptake (µmol d
-1

 ind
-1

) 36.5 – 604.1 Calculated from Martins et al. (2008) 
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We used these values (Table 4.1) to estimate population sizes and total biomasses of B. 

azoricus for each site, except for Marker 4, for which the perspective distortion of the mosaic 

did not allow calculating areas. The population size estimations were based on the extents of 

mussel coverage measured on 2D images from the various sites. As these images do not 

account for the bottom relief, the calculated population sizes are possibly underestimated. 

Furthermore, as biomass estimations were additionally based on a range representative of 

the most frequent shell sizes and not on real size frequency distributions, the total areal 

biomasses are also very likely underestimated and represent minimum values. 

Our calculations of methane and sulfide consumption by the mussels are based on published 

values of chemical uptake rates by B. azoricus at Menez Gwen. We followed the modeling 

results of Martins et al. (2008) and used uptake rates of 5.9 to 96.1 µmol CH4 d
-1

 ind
-1

 and 

36.5 to 604.1 µmol H2S d
-1

 ind
-1

 (Table 4.1). These values were modeled based on estimated 

average volatile concentrations in Menez Gwen mussel habitats of 100 µM methane and 60 

µM sulfide (Sarradin et al. 1998, Martins et al. 2008), and on maximum uptake rates of 

methane and sulfide of 742 and 4596.5 mol g
-1

 gill dry wt d
-1

 (I. Martins personal comm.). 

According to Martins et al. (2008), maximum uptakes rates could only be reached by the 

largest mussel specimen (≥110 mm SL), and with CH4 and H2S concentrations about three 

times higher than those estimated within the Menez Gwen habitats. Therefore, in order to 

constrain our estimations, we chose ranges of uptake values that are representative of the 

majority of the mussel population, and do not consider under-represented extreme values 

(low and high). 

4.4.5 Estimations of focused fluid flow rates 

Focused fluid flow rates at Menez were estimated from the mosaics, the dive videos, and 

published estimations of fluid velocities (Sarrazin et al. 2009). Indeed, the imagery data gave 

a reasonable overview of the number and distribution of discrete fluid flow outputs at each 

site. At some of them, mainly with chimney structures, hot fluid vigorously discharged in the 

form of a distinct plume clearly visible on the images. However, in most cases we could 

neither visualize the contours nor estimate the basal diameters of the plumes of venting fluids. 

Moreover, observations showed that the height of the chimneys could not be used as a proxy 

for plume size. Therefore we were not able to assess the relative strength of focused 

discharges between sites. Nevertheless, based on our observations of high definition dive 

videos, we could conclude that a diameter of 2 cm is a likely low estimate of the average 

plume diameter. We arbitrarily chose this value for our calculations of fluid flow rates. 

Unfortunately fluid flow velocity measurements do not exist for the Menez Gwen system. 

Published fluid velocity measurements in other hydrothermal systems give broad ranges of 

values: velocities range from 100 to 6200 mm/s in discrete sources and from 1.1 to 150 mm/s 

in diffuse sources (Sarrazin et al. 2009). We chose the low range limit velocity of 100 mm/s for 

discrete sources in our estimations of minimum fluid flows. Therefore, and assuming that 
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discrete outflows are circular, an average focused source is likely to yield a minimum of 991.4 

m
3
 yr

-1
. 

The values chosen for plume diameters and fluid velocities are aimed at providing a low 

range estimation of focused fluid flow rates. Furthermore, considering that some discrete fluid 

outflows may not have been spotted, final fluid flow estimates are likely to be underestimated. 

 

4.5 Results 

4.5.1 Visual and geophysical site descriptions 

The high-resolution bathymetry data gathered during cruises POS402 and M82/3 in 2010 

showed that the inner volcano is bisected by a fracture in a SW-NE direction similar to that of 

the graben (Figure 4.2a-b). According to visual exploration, several additional N-NE striking 

fractures across the eastern summit of the volcano, with few steep, meter-high slopes 

covered with broken pillow tubes. The dive videos also disclosed an inner volcano mostly 

covered by sediment-free pillow lavas (Figure 4.3a) likely resulting from recent volcanic 

events, while the grabens mainly are filled with talus material. These fractures suggest 

apparently that the topography in this area was shaped by a combination of volcanic and 

tectonic events. Furthermore, such fractures are likely to provide preferential pathways for the 

hydrothermal fluids. 

Some parts of the eastern side of the young volcano, and particularly in the close vicinity of 

the sites of hydrothermal activity, are dominated by talus of broken pillows and areas of 

breccia. In general, the pillows were not or only sparsely covered by sediment; except at the 

sites of active venting, which were covered by sandy material. 

The five sites investigated in the study are grouped spatially into two clusters (Figure 4.2c). 

The first cluster comprises Woody, Atos 10, and White Flames (Figures 4.4-4.6). This cluster 

also includes some minor sites of active venting, in particular between White Flames and 

Woody (Figure 4.3b). The alignment of some of these sites suggests that hydrothermal 

activity in this area is structurally controlled. The second cluster, which includes the sites 

Marker 4 and Cage Site, is located about 50 meters to the southwest and closer to the 

summit of the volcano (Figures 4.7-4.8). Mosaics were constructed for all five sites, and the 

full resolution GeoTIFF files of the corresponding geo-referenced mosaics are given as 

electronic supplements. 
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Figure 4.3: Seafloor images taken by ROV Quest (courtesy Marum). For all images scale bars 
apply to the foreground. (a) Pillow lava (dive 281); (b) unnamed mini-site of venting activity 
halfway between Woody and White Flames (dive 286); (c) center of the main mound at 
Woody covered with anhydrite precipitates; the chimney structure showed no active venting; 
the greyish speckle around the bottom of the chimney is caused by a high abundance of 
gastropods (dive 293); (d, e) chimney structure and hydrothermal fluid close to boiling point at 
the top of White Flames (dive 276); (f) basaltic rock covered with mussels on the side facing 
the hot fluid chimney, and bare on the opposite side (dive 295); (g) swarm of shrimps and 
gastropods on rocks around hot fluid emissions (dive 289); (h) Bathymodiolus azoricus with 
high (background) and low (foreground) gastropods abundance on their shells (dive 281). 
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Table 4.2: Characteristics of the sites and mussel covers. 

Site Approx. 
depth (m) 

Area (m
2
) Discrete 

sources with 
chimneys 

Discrete 
sources 
without 
chimney 

Mussel 
cover (m

2
) 

Mussel 
cover (%) 

Woody 829 69 1 (inactive?) 7 17 24.6 

Atos 10 828 59 13 2 13.2 22.4 

White Flames 835-850 199 43 4 29.1 14.6 

Cage Site 813.5 100 16 7 12.3 12.3 

Marker 4 812 20-30 ? ? - - 

 

4.5.1.1 Woody 

The Woody site (Figure 4.4) is about 829 m deep and has a total area of 69 m² (Table 4.2). 

The site is composed of a main mound structure and two small areas of minor venting activity. 

The topography in this zone is dipping gently toward east to a break in slope and then 

flattening on the east of the site. The main mound is located in the slope and is characterized 

by an almost flat circular center dipping strongly down to the break in slope on its east side 

(Figure 4.4c). The break-in-slope could be the result of a normal fault running across the site 

in a north-south direction, and it is likely related to one of the larger fractures that cross the 

volcano. Based on the videos, the vertical displacement was estimated to less than two 

meters. Such a fault may provide preferred pathways for the hydrothermal fluids. 

The main mound appeared devoid of boulders, and was covered by a sandy material and 

slabs and crusts. Its center was about 4.5 m in diameter and white precipitates covered large 

parts of it. The main chimney was about 50 cm high and was located on the center part. In 

contrast to the chimneys of the other study sites, the chimney at Woody did not seem recently 

active (Figure 4.3c). It was entirely white, likely due to anhydrite precipitates, and no vent fluid 

was observed coming out of the chimney during the cruise M82/3. The most active sites of 

fluid exit were observed around the chimney, from small fractures and from within the mussel 

patches. 

Table 4.3: Minimum and maximum estimated mussel population, total biomass, and annual 
consumptions of methane and sulfide by Bathymodiolus azoricus; minimum estimates are 
based on the lowest limits of shell length (SL = 40 mm) and density (400 ind m

-2
), whereas 

maximum estimates rely on the highest limits (SL = 80 mm, density = 700 ind m
-2

). 

Site Population size 
(ind) 

Total biomass 
(kg wet wt) 

CH4 uptake by B. 
azoricus (mol yr

-1
) 

H2S uptake by B. 
azoricus (mol yr

-1
) 

Woody 6800 – 11900 12.1 – 90 15 – 418 91 – 2626 

Atos 10 5280 – 9240 9.4 – 69.9 11 – 324 70 – 2039 

White Flames 11640 – 20370 20.7 – 154.1 25 – 715 155 – 4494 

Cage Site 4920 – 8610 8.7 – 65.1 11 – 302 66 – 1890 

Total 28640 - 50120 50.9 – 379.1 62 - 1759 382 - 11059 
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Figure 4.4: Representations of the Woody hydrothermal vent site: (a) photo-mosaic, (b) 
schematic, (c) three-dimensional representation; the relative dimensions of the 3D view are 
not to scale. The main chimney represented on the schematic was inactive at the time of the 
cruise M82/3. ‘Other fluid emission site’ refers to sites where localized emission of hot fluid 
was observed, but without a chimney structure. This site is characterized by a break-in-slope 
in the topography, likely related to a fault. 

 

Bivalves were present in thick layers and they were mostly restricted to hard surfaces. 

Nevertheless, they did not cover every rock surface that surrounded the main mound; pillows 

on the western and southwestern sides were entirely bare, and rocky surfaces on the 

northeastern side supported most of the bivalve population (Figure 4.4a-c). In terms of 

surface, almost 25% of the total area was covered by mussels (Table 4.2). The maximum 

distance between the mussel beds and the hot fluid exits did not exceed 2.5 m. According to 

our estimations, the mussel population and total biomass at Woody range from 6800 to 

11,900 ind. and from 12.1 to 90 kg wet wt respectively (Table 4.3). 

The smaller active emission sites were located at 6 and 8 m from the center of the main 

mound. Both were very close to the break-in-slope and slightly off on its eastern side. They 

were characterized by a very small center covered with white precipitates surrounded by 

mussels B. azoricus. Sandy cover was not visible. 
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4.5.1.2 Atos 10 

Atos 10 is located at a depth of 828 m, covered an area of 59 m² (Table 4.2), and is 

composed of a major eastern site and a minor western site, about 5 meters apart (Figure 

4.5a-c). Experiments and colonization cages had been deployed at Atos 10 during the 

French/Portuguese/British Atos cruise in 2001 and earlier French/Portuguese research 

cruises (Dixon et al. 2001, Sarradin et al. 2001). The site was clearly identified by the 

presence of old mooring weights. 

 

Figure 4.5: Representations of the Atos 10 hydrothermal vent site: (a) photo-mosaic, (b) 
schematic, (c) three-dimensional representation; for detailed explanations, see caption of 
Figure 4.4. Atos 10 is composed of two sites; the eastern site is characterized by a mound of 
sandy material, covered with abundant white precipitates and with focused outflows. The 
western site is devoid of soft sediments and developed around a single chimney; Mussels are 
abundant at both sites. 

 

The major eastern site formed a circular mound of about 4 m in diameter, slightly elevated 

compared to the surrounding ground, and devoid of large pillows (Figure 4.5c). The central 

part was largely covered by white precipitates and scattered with 13 chimneys, most of them 

very small (less than 5 cm). One chimney on the northern edge of the mound was significantly 

larger, reaching up to about 50 cm in height. 

Bathymodiolus azoricus covered the rim of the main mound, and the abundance of this 

species increased with the distance to the chimneys and to the main area of hot fluid 



Manuscript 2

 

60 

emission. The largest and thickest cover of bivalves was observed in the south and 

southwestern edges of the mound (Figure 4.5b). In total, this bivalve covered 22.4% of the 

total area of the Atos 10 site (Table 4.2). 

The western site has developed only a location of fluid emission and did not form a mound. It 

consisted of a single 15-20 cm high chimney, which has grown between basaltic pillows. 

Sandy or crusty material was absent. White precipitates were visible on the pillows in the 

close vicinity of the chimney, over an area of about 0.5 m². Surrounding rocks were densely 

covered by B. azoricus over an area of about 6 m². 

Bivalve aggregations at Atos 10 were never observed farther than 3.2 m from the hot fluid 

exits. According to our estimations, mussel population and total biomass at Atos 10 range 

from 5280 to 9240 ind. and from 9.4 to 69.9 kg wet wt respectively (Table 4.3). 

4.5.1.3 White Flames 

White Flames (Figure 4.6) is located about 20 meters to the west of Woody and it is the 

largest of the Menez Gwen sites investigated during the M82/3 cruise, with an area of 199 m
2
 

(Table 4.2). This site was characterized by several chimneys of various sizes (5 cm to 1 m 

high) expelling hot fluids and gas bubbles that are considered to represent the gaseous phase 

separated by subsurface boiling. These emissions brightly reflected ROV lights and gave the 

impression of burning flares (Figure 4.3d-e). The site extended over 25 meters in a west to 

east direction, and had an approximate width of 6 meters. The elevation decreased regularly 

from west to east with a relatively strong gradient (Figure 4.6c). The difference in altitude was 

estimated from the navigation data of the ROV to be 15 m, which corresponded to a mean 

slope gradient of 60% between the western/top and eastern/bottom ends of the site. 

The highest chimney (about 0.8-1 m high) was located at a depth of 835 m and marked the 

western and top end of White Flames. More chimneys were observed downslope towards 

east. Their numbers and sizes decreased in a downslope direction. The site was mostly 

covered by sands and gravels with a few pillows of basalt. Barite-rich crusts were also visible. 

White mineral precipitates indicating diffuse fluid flow were present in many places around the 

chimneys and towards the bottom of the site (Figure 4.6a-b). 
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Figure 4.6: Representations of the White Flames hydrothermal vent site: (a) photo-mosaic, (b) 
schematic, (c) three-dimensional representation; for detailed explanations, see caption of 
Figure 4.4. The White Flames site developed along a steep slope and is topped by high 
chimneys; sandy material and white mineral precipitates are abundant; mussels are mostly 
distributed on basaltic boulders along the northern side of the site. 

 

Bivalves covered 14.6% of the White flames area and this coverage was low compared to the 

other sites in the same cluster. (Table 4.2, Figure 4.6b). The bivalve distribution did not extend 

to all zones where diffuse fluid was expected to occur, and seemed limited to hard substrates, 

such as basaltic pillows and crusts that were in the upper two-thirds of the slope. In this area, 

the northern side of the site was bordered by large basaltic structures that grew larger and 

higher nearer the top of the site, thus creating jagged vertical surfaces that overlooked the 

main areas of hot fluid emission. Those structures were heavily covered by bivalves and, 
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based on the mosaics, represented more than 90% of the total bivalve cover at White Flames. 

The main aggregations of mussels were constantly observed within 2.8 m from a hot fluid exit. 

According to our estimations, mussel population and total biomass at White Flames range 

from 11,640 to 20,370 ind. and from 20.7 to 154.1 kg wet wt respectively (Table 4.3). 

4.5.1.4 Marker 4 

Marker 4, located in 812 m water depth, is the smallest of the five investigated sites (Table 

4.2). The mosaics of Marker 4 were composed of images from the forward-looking cameras. 

They were strongly impacted by perspective distortion and GIS geo-referencing was therefore 

not possible (Figure 4.7). The size of the site was assessed at 20 – 30 m² from navigation 

data. 

Hot fluid was emitted from small chimneys at the top of the site. From that point, a stripe of 

white hydrothermal deposits extended over about 4 meters down-slope towards the east. The 

slopes were partly covered by sandy deposits, and slabs of crusts were visible that stuck out 

around the top of the site. Iron oxides could be seen over the surrounding rocks. 

This site harbored only a few mussels scattered individually or in patches of less than 20 

animals over the white deposits. Their abundance was negligible compared to the other sites. 

 

Figure 4.7: Photo-mosaic of Marker 4; Active venting occurs at the top of the site (indicated by 
blurry water). Downslope from there white precipitates form a 4 m-long and 1 m-wide stripe. 
Mussels are present in small aggregations (<20 ind) mostly located on the white precipitates. 

4.5.1.5 Cage Site 

Cage Site (Figure 4.8a) is located at 813.5 m water depth and covers 100 m² (Table 4.2). It 

was used for mooring deployments during earlier cruises, and was easily identified from 

remaining ground weights. 

This site consisted mainly of a single W-NW dipping oval mound (9-9.5 m diam.) that was 

protruding slightly from the surrounding basaltic pillows. A few basaltic pillows were scattered 
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on the higher part, in the southeastern corner of the mound, while the rest was covered by 

sandy material and slabs of barite-rich crust. Located south-east of the mound center was a 

large (4 m
2
) depression, less than 1 m deep and covered by soft sediments. On the western 

side the sediment cover extended up to 2 m away from the edge of the mound (Figure 4.8b-

c). 

White precipitates related to fluid flow were unevenly distributed on the mound surface. The 

most intense venting occurred on the highest part of the site. In this area, hot fluid was 

emitted from several chimneys, which were all located within an 8-m² large area of high 

mineral precipitation. In other areas of high mineral precipitation, hot fluid emission was only 

observed from fractures or from under slabs of barite (Figure 4.8b). 

Bathymodiolus azoricus were concentrated within 2.8 m of hot fluid exits and covered about 

12% of the site area (Table 4.2). Mussels settled predominantly on rock surfaces that were 

orientated towards the fluid emissions while the central depression was almost bare of 

bivalves (Figure 4.3f). Mussel patch sizes ranged from dense aggregations of hundreds of B. 

azoricus to single individuals. According to our estimations, mussel population and total 

biomass at Cage Site range from 4920 to 8610 ind. and from 8.7 to 65.1 kg wet wt 

respectively (Table 4.3). 

 

Figure 4.8: Representations of the Cage Site hydrothermal vent site: (a) photo-mosaic, (b) 
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schematic, (c) three-dimensional representation; for detailed explanations, see caption of 
Figure 4.4. Cage Site is a single W-NW dipping oval mound covered by sandy material and 
slabs of barite-rich crusts. The site is characterized by the presence of a depression (4 m

2
) 

near its center. East of the depression is the most active area, as indicated by the presence of 
chimneys and abundant white precipitates. 

 

 

Figure 4.9: Shrimp distribution at (a) Woody, (b) Cage Site and (c) White Flames. The shrimp 
distribution pattern is similar at all sites, and shows a strong correlation with the presence of 
focused fluid outflows; high shrimp abundance occurs within 1 m of hot fluid outflows. 

 

4.5.2 Occurrences of other fauna visible on video materials 

Shrimps usually occurred at all sites around fluid emission and occasionally also in mussel 

beds. High shrimp densities (>10 ind. m
-2

) were always related to hot fluid discharge and 
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occurred within a radius of 1 m around the fluid source during all observations (Figures 4.9, 

4.10). Animals were concentrated in dense swarms in close proximity to single hot fluid 

emissions (Figure 4.3g) or spread more evenly over larger areas with several smaller point 

sources. These swarms were located next to hot fluid emissions at all sites (Figures 4.9, 4.10) 

and were particularly common nearby some chimneys of White Flames. However, shrimps 

were not present at each hot discharge locations; for instance, shrimps were not observed 

close to the larger chimneys at the top of White Flames. At Cage Site and Woody, the shrimp 

spread over larger areas where hot fluids were emitted from several small sources. 

Gastropods were observed at all sites on mussel shells and hard rock surfaces (Figure 4.3h). 

While close-up photos revealed that they were also present on soft substrates, they were not 

reliably discernible on the mosaic images because the contrast resolution was not sufficient. 

Gastropods were patchily distributed. Dense aggregations were observed on rocks and 

mussel shells next to hot fluid emissions and along the path of the hot fluid flows (Figures 

4.10, 4.11). Only a few centimeters to decimeters away, the density of gastropods dropped 

sharply. Videos showed that gastropods were constantly moving and that their distribution 

pattern was thereby very dynamic. 

 

 

 

Figure 4.10: Variation of the abundance of shrimps (left) and gastropods (right) with the 
distance to the closest hot fluid exit; the values above the bars represent on the left plot the 
total amount of observations of abundance. 
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Figure 4.11: Gastropod abundance at (a) Woody, (b) Cage Site and (c) White Flames. The 
gastropod distribution pattern is similar at all sites, and is related to the presence of fluid flow; 
dive videos showed that the gastropod abundance drops sharply a few centimeters only away 
from the distance to hot fluid (see text). 

 

4.6 Discussion 

4.6.1 Mosaics for site identification 

Hydrothermal activity at Menez Gwen has been described at two areas on the southern and 

eastern flanks of the inner volcano (Charlou et al. 2000, Desbruyères et al. 2001). The sites 

studied in this work correspond to the active vent area on the eastern flank that is referred to 

as marker PP30/31 in the literature (Desbruyères et al. 2001, Riou et al. 2010), but we were 
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not able to unequivocally relocate this site. Therefore our investigation sites may not be 

identical to the originally described marker positions, but it is also possible that the original 

markers were not anymore in place. Clear identification of bottom weights at Atos 10 and 

Cage Site that had been left from cage moorings deposited during the Atos cruise in 2001 

indicated that these sites were identical to locations of earlier work. 

In total, five sites were found on the eastern flank, and a mosaic was built for each of them. 

The area was intensively investigated during twenty dives and it is unlikely that other major 

sites were missed in the close vicinity. 

We used USBL navigation which is known to suffer from temporary inaccuracies of up to tens 

of meters offset from the real positions. However, occasional outliers in our navigation data 

were leveled for a total of 20 dives at the investigation sites to guarantee reliable navigation 

data. The mosaics presented here provide an additional basis for future identification of the 

vent sites on the eastern flank of the young Menez Gwen volcano, and this information will 

compensate for possible inaccuracies of underwater navigation. 

A loss of quality is commonly introduced during the mosaicking process. Indeed, where 

adjacent frames overlap, images are seamlessly blended together (Pizarro & Singh 2003). 

However, small registration errors may occur, which can cause some fuzziness in parts of the 

mosaics. The schematics of the sites (Figures 4.4b, 4.5b, 4.6b, 4.8b) compensate for this loss 

of quality by showing the most important features of each site. 

4.6.2 Faunal distribution 

Mussels preferentially settled on rock surfaces and they were rarely placed on hydrothermal 

deposits. This is in accordance with previous observations around the marker sites PP10/F11 

on the southern volcano flank and PP32/33 on the eastern flank (Desbruyères et al. 2001). 

The mussels predominantly concentrated on rock surfaces exposed to the vent fluid flow. This 

was particularly obvious at Cage Site where only rock surfaces facing fluid emanations were 

densely covered by mussels while other surfaces of the same rocks were entirely bare of 

mussels (Figures 4.3f, 4.8b). The distribution of the bivalves was therefore highly controlled 

by site morphologies and exposure of rock surfaces to fluid flow. However, B. azoricus 

avoided close contact with focused vent fluids and were scarcely present in the immediate 

vicinity of the focused fluid discharge. Maximum distances between mussel aggregations and 

hot fluid exits ranged between 2.5 and 3.2 m. This matched earlier observations at the Eiffel 

Tower edifice in Lucky Strike where B. azoricus always kept a distance of at least 25 cm from 

hot fluid exits, and where mussel beds and clumps were never observed farther than about 3 

m from black smokers (Cuvelier et al. 2009). 

Conversely, shrimps occurred mostly within the hot fluid and in the very close vicinity of the 

emission sites. High abundances of shrimps were never observed farther than in 1 m distance 

from a fluid exit point. This is comparable to earlier observations at Lucky Strike. There, 

swarms of shrimps occurred within 1.25 m distance to black smokers and 50 cm distance to 
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flanges and diffusion zones (Cuvelier et al. 2009). 

Shrimp species could not be identified from the images. However, Chorocaris chacei, 

Mirocaris fortunata, and Alvinocaris sp.aff. stactophila have been found in Menez Gwen 

before (Colaço et al. 1998, Gebruk et al. 2000b). All of them have different feeding behaviors 

(Gebruk et al. 2000b, Ramirez Llodra et al. 2000) and this certainly controls their distribution. 

C. chacei and M. fortunata have been observed on chimney walls in Lucky Strike before 

(Gebruk et al. 2000b, Cuvelier et al. 2009) and it is very likely that both species existed also 

among the shrimps we detected next to hot fluid discharge. C. chacei scavenges and also 

carries episymbiotic micro-organisms which are considered chemoautotrophic and most likely 

add to the nutrition of their hosts (Gebruk et al. 2000b, Ramirez Llodra et al. 2000). Therefore, 

it is reasonable that C. chacei aggregated next to hot fluids in Menez Gwen where the 

chemosynthetic bacteria should have good access to diluted sulfide. M. fortunata grazes on 

bacteria on sulfide surfaces and also feeds on detritus and fecal deposits of Bathymodiolus 

(Gebruk et al. 2000b, Ramirez Llodra et al. 2000). Accordingly, we may have observed this 

species among the dense shrimp aggregates around hot fluid discharge sites and also among 

the scattered shrimp individuals in the mussel beds. The feeding habits of A. sp. aff. 

stactophila are unknown, but Alvinocaris species in general are predators and opportunistic 

feeders and they are often observed at the peripheries of vent communities (Gebruk et al. 

2000b). Hence, we assume that Alvinocaris sp. aff. stactophila were existent among the 

shrimps in the mussel beds. 

4.6.3 B. azoricus area calculations 

Bathymodiolus coverage was estimated at each site by delineating each individual patch of 

bivalves into a GIS. The smallest areas of mussel coverage were measured at Cage site and 

Atos 10, with respectively 12.3 m
2
 and 13.2 m

2
, while the largest coverage areas occurred at 

Woody with 17 m
2
 and at White Flames with 29.1 m

2
. 

From those data, it is not clear whether the extent of the mussel coverage is correlated to the 

size of the sites (Table 4.2). Data from Atos 10, Woody and White Flames suggest that larger 

sites host a larger mussel population. However, data from Cage Site, the second largest of 

the studied sites, suggest otherwise. The comparatively low mussel coverage of Cage Site 

could be related to a different fluid chemistry than at Atos 10, Woody and White Flames. 

Although we do not have fluid chemistry data to support this hypothesis, we know that Cage 

Site and Marker 4 are located in a different cluster than the other sites (Figure 4.2c). Barreyre 

et al. (2012) proposed that the spatial distribution of active sites at Lucky Strike may reflect 

“the geometry of the underlying plumbing system”. Such interpretation implies that the larger 

the distance between outflows, the greater the differences in fluid composition. This would 

support the hypothesis that the fluid chemistry may be different between the two clusters 

described in this study. 

Likewise, we could not correlate mussel coverage and fluid flow intensity from our data. 
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Although the imagery data gave a reasonable view of the distribution (Figures 4.4-4.6, 4.8) 

and amount (Table 4.2) of focused outflows at each site, it did not allow assessing the size of 

focused outflows reliably enough to compare fluid flow intensity between sites. Moreover, it 

appears that the number of discrete outflows alone may not be representative of the strength 

of fluid flow. Indeed, Woody, the second largest site in terms of mussel cover, has fewer 

discrete outflows than Atos 10, Cage Site, and White Flames. 

Similarly, zones of diffuse fluids could not be defined and, therefore, a comparison of diffuse 

fluid occurrence between sites could not be done. Indeed, the main indicators for diffuse fluid 

flow that can be observed on imagery data of hydrothermal vents are bacterial mats and 

anhydrite precipitates (Barreyre et al. 2012). However, bacterial mats were rarely observed at 

the Menez Gwen sites, and diffuse fluid-related precipitates could not, in most cases, be 

unequivocally distinguished from precipitates related to focused fluid flow. 

It is difficult to compare our estimations of mussel coverage to other hydrothermal vents 

because calculations of mussel coverage area are rarely available. An exception is the 

Logatchev hydrothermal vent field where Bathymodiolus puteoserpentis forms a large and 

continuous mussel bed of at least 100 m
2
 at the base of the Irina-2 sulfide mound (Gebruk et 

al. 2000a). However, the extension of the Irina-2 mussel bed at Logatchev is controlled by the 

special underlying local geology. Logatchev is an ultramafic system characterized by 

serpentinization processes. The Irina-2 mussel bed is situated on silicified crusts that are 

underlain by sulfide fragments and chalcopyrite sand grading into serpentinite mud (Petersen 

et al. 2009). This incoherent underlying material provides many conduits for rising 

hydrothermal fluids that mix in the subsurface with entrained bottom water and exit the 

silicified crusts via many diffuse outlets spread over a large area (Petersen et al. 2009). 

Conversely, Menez Gwen is a basaltic-hosted system in which subsurface fluid conduits are 

controlled by basaltic rock. Fluid discharge is much more focused and colonization of mussels 

is predominantly confined to rock surfaces next to this focused discharge. 

Other values of Bathymodiolus bottom coverage are available for two 50.3-m
2
 and 40-m

2
 

large mosaics of diffuse flow areas at vents in the Eastern Lau Spreading Center of the 

western Pacific (Podowski et al. 2009). Here, the given values of site areas correspond to the 

mosaic areas. The dimensions of the actual sites of diffuse flow are not known and are 

potentially larger, thus, percentages of cover cannot be determined. However, the mussel 

Bathymodiolus brevior alone covered bottom areas of 3.8 m
2
 and 0.72 m

2
 and it is believed to 

be in competition with the provannid snail Ifremeria nautilei over additional areas of 3.8 m
2
 

and 0.6 m
2
 (Podowski et al. 2009). The relation of the values to the size of the study areas is 

similar to this relation at Menez Gwen. 

4.6.4 B. azoricus biomass estimations 

Based on our measured values of mussel coverage (Table 4.2), population assessments 

(Table 4.3) ranged from about 4900 to 8600 ind at Cage Site (the least populated site) and 
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from 11,600 to more than 20,000 ind at White Flames (the most populated site). The smallest 

biomass values were calculated for Cage Site with between 9 and 65 kg wet wt, and the 

largest for White Flames with between 21 and more than 154 kg wet wt. 

These are the first estimations of total mussel biomass on entire hydrothermal vent sites, 

while all other published values use the standardized unit kg m
-2

. In the absence of data about 

the size of the mussel beds at the other sites, the total biomasses cannot be compared. 

Published data for mussel biomass at hydrothermal vents or hydrocarbon seeps are rare and 

most of them range from 2.2 to 10 kg m
-2

 (Table 4.4), while a single peak value of 43.4 kg m
-2

 

has been reported from the Oasis vent field on the Southern East Pacific Rise (Sarrazin et al. 

2006). Compared to these values, a mussel biomass of 0.71 to 5.3 kg m
-2

 at Menez Gwen 

appears low. Nevertheless, this range is in accordance with the biomass estimation for B. 

azoricus at Lucky Strike (3.5 kg m
-2

) (Dover et al. 1996). 

 

Table 4.4: Published biomass estimations of mussels at hydrothermal vent and cold seep 
systems. 

Site Biomass (wet weight) Reference 

Galapagos 10.1 kg m
-2

 (Hessler & Smithey 1983) 

Galapagos Ridge 2.2 kg m
-2

 (Fustec et al. 1988) 

EPR 44.5 kg m
-2

 (tubeworms/mussels) (Desbruyères & Laubier 1991) 

Lucky Strike 3.5 kg m
-2

 (Dover et al. 1996) 

Barbados Prism 5.4-9 kg m
-2

 (Olu et al. 1996b) 

Oasis vent, SEPR 43.4 kg m
-2

 (Sarrazin et al. 2006) 

Menez Gwen 0.71-5.3 kg m
-2

 Assessed from Martins et al. (2008) 

 

4.6.5 Methane and sulfide consumption by B. azoricus 

Hydrothermal fluids at Menez Gwen are relatively enriched in dissolved gas (Charlou et al. 

2000), some of which are partly consumed by B. azoricus. Indeed, Bathymodiolus species are 

characterized by a great abundance of symbionts in their gills and by depleted isotopic carbon 

signatures in their tissues, which indicates that Bathymodiolus species from hydrothermal 

vents and hydrocarbon seeps primarily rely on the chemosynthetic production of the 

symbionts (Le Pennec et al. 1990, Raulfs et al. 2004). Bathymodiolus azoricus harbor sulfur 

oxidizing and methane oxidizing symbionts in their gills which provide the host with 

metabolites from chemosynthetic oxidation of both volatiles present in the Menez Gwen 

hydrothermal fluids (Fiala-Médioni et al. 2002, Duperron et al. 2006). However, 

Bathymodiolus can filter feed (Page et al. 1990, Riou et al. 2010), and although the relative 

contribution of filter feeding to the nutrition of hosts has never been evaluated experimentally, 

recent modeling results suggest that particulate organic matter (POM) contributes to 48% to 

the nutrition of B. azoricus at Menez Gwen. Consequently, 52% of their nutrition is derived by 
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symbiotic chemosynthesis that is fueled by oxidation of sulfide and methane (Martins et al. 

2008). 

Based on our assumptions of chemical uptake rates by the mussels (Table 4.1) and the 

calculated population size (Table 4.3), we provided minimum and maximum estimations of the 

annual methane and sulfide consumption at each study site (Table 4.3). The minimum 

estimates were obtained by combining the low limit (40 mm) of shell lengths range given by 

Comtet & Desbruyères (1998) with the lowest published estimation of mussel density at 

Menez Gwen (400 ind m
-2

) (Colaço et al. 1998). The maximum estimate was using the 

corresponding upper limits of shell length and mussel density (SL = 80 mm, density = 700 ind 

m
-2

) (Colaço et al. 1998, Comtet & Desbruyères 1998). Therefore, the minimum and 

maximum scenarios provide very broad ranges for the estimated annual consumption of 

methane and sulfide by B. azoricus. Indeed, according to these calculations, the annual 

methane and sulfide consumption of population of B. azoricus at the study sites was 

estimated to range between 62 and 1760 mol CH4 and between 382 and 11,060 mol H2S. 

Such ranges reflect the uncertainties of our assumptions. Future measurements of mussel 

size distribution, density and chemical uptake rates should help constraining these estimates 

further. 

The estimation method for uptake rates of methane and sulfide by B. azoricus (Martins et al. 

2008) does not take into account the recent discovery that hydrogen also fuels endosymbiosis 

in Bathymodiolus mussels on the MAR (Petersen et al. 2011). With an average value of 38 

µmol kg
-1

 the hydrogen concentration of Menez Gwen fluids is considered to be low in 

comparison to other vent systems (Charlou et al. 2000). This could imply that hydrogen 

consumption by mussels at Menez Gwen is low in comparison to sulfide and methane 

consumption. 

Nevertheless, these are the first estimates of total consumption of methane and sulfide by B. 

azoricus over entire sites of active venting. Hence we cannot provide a comparison with 

similar estimations from other hydrothermal vent systems, but these values could serve for 

future comparisons with other sites. 

4.6.6 Methane and sulfide effluxes 

In order to put these estimations of chemical consumption by the mussel population into a 

broader perspective, we need to look at the chemical fluxes that are potentially released via 

venting. Previous estimations of chemical fluxes at Menez Gwen do not exist but can, within 

orders of magnitude, be estimated from published fluid data (Charlou et al. 2000) and 

estimations of fluid flow rates. 

Hydrothermal fluids at Menez Gwen are relatively enriched in dissolved gas. For instance, 

mean end-member methane and sulfide concentrations were estimated at 1.7 mmol CH4/kg 

and 1.6 mmol H2S/kg (Charlou et al. 2000). Considering a mean fluid flow rate of 990 m
3
 yr

-1
 

per discrete outflow, each focused source could yield 1685 mol CH4 yr
-1

 and 1586 mol H2S yr
-
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1
. Based on the number of discrete fluid discharges (Table 4.2), we estimate the total focused 

discharge in the area of study at 91,000 m
3
 yr

-1
. This corresponds to total annual releases of 

methane and sulfide via discrete venting of 155 × 10
3
 mol CH4 yr

-1
 and 146 × 10

3
 mol H2S yr

-

1
. These values are based on low limit estimations of fluid velocity and of mean plume 

diameter; hence, they likely underestimate the actual chemical fluxes. 

These estimations suggest that methane and sulfide consumption by the mussel population 

represents a small fraction of fluxes potentially released from the system into the water 

column. Indeed, considering that 92 active discrete outflows were observed (Figures 4.4-4.6, 

4.8, Table 4.2), the mussel consumption would represent up to 1.1 % of the methane and 7.6 

% of the sulfide fluxes released via focused venting. 

Areas of diffuse outflow were not easily identified from the imagery data and could not be 

quantified. Based on mosaics of Lucky Strike, Barreyre et al. (2012) suggest several types of 

diffuse flow-related features. Some of these, such as bacterial mats and patches of 

hydrothermal precipitates, occurred in the studied sites. However, bacterial mats were rarely 

observed at the Menez Gwen sites, and diffuse fluid-related precipitates could not, in most 

cases, be unequivocally distinguished from precipitates related to focused fluid flow. For these 

reasons, we diffuse flow rates could not be quantified for the entire sites. Nevertheless, 

available data allow estimating order of magnitude of diffuse chemical fluxes. According to 

Sarrazin et al. (2009), existing velocity measurements of diffuse fluids in hydrothermal 

systems range from 1.1 to 150 mm s
-1

 in diffuse sources. Therefore, using the low range limit 

value of 1 mm s
-1

, diffuse chemical fluxes could be in the order of at least 54 × 10
3
 mol CH4 m

-

2
 yr

-1
 and 50 × 10

3
 mol H2S m

-2
 yr

-1
. 

Based on these values of diffuse chemical fluxes, diffuse venting over a 1 m
2
 area could meet 

respectively 30 and 4.5 times the total mussel consumption of methane and sulfide in the 

entire studied area. 

A few values of methane fluxes within hydrothermal plumes have been published for other 

vent fields with similarly high end-member methane concentrations. All are at least 3 orders of 

magnitude higher than our estimations of methane fluxes at Menez Gwen. For instance, 

methane fluxes of about 132 × 10
6
 mol yr

-1
 were estimated in the plume 200 m above the 

Endeavor vent field on the Juan de Fuca Ridge (Rosenberg et al. 1988). Similarly, published 

estimations of helium isotope 
3
He flux and of the CH4/

3
He ratio at the Rainbow hydrothermal 

vent on the MAR allow calculating a methane flux of 50.8 × 10
6
 mol yr

-1
 for a plume that 

includes all hot fluid flow emanating from a 100 × 200 m
2
-large area (Jean-Baptiste et al. 

2004). Furthermore, for the same plume, German et al. (2010) inferred a methane flux of 31.6 

× 10
6
 mol yr

-1
 by establishing a linear relationship between methane concentrations and 

“plume-particle” fluxes from optical backscatter anomalies. Finally, Keir et al. (2008) 

calculated methane fluxes at the solitary “Drachenschlund” black smoker vent in the 

“Nibelungen” hydrothermal vent field on the Southern MAR ranging from 1.8 × 10
6
 mol yr

-1
 at 

the vent itself to 15.8 × 10
6
 mol yr

-1
 in the horizontal plume. All these systems emit hot fluids 
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with high methane concentrations (Lilley et al. 1993, Charlou et al. 2002, Melchert et al. 2008) 

similarly to those measured at Menez Gwen (Charlou et al. 2000), even though their 

geological settings are different. 

This could imply that the Menez Gwen sites are minor in terms of chemical release. However, 

our estimations of fluid flow and chemical fluxes were purposely low estimations, which were 

aimed at assessing the relative importance of chemical consumption by the mussel. Indeed, 

according to available fluid velocity measurements (Sarrazin et al. 2009), actual fluid flow 

rates and chemical fluxes at Menez Gwen could be higher than our estimations by more than 

an order of magnitude. 

 

4.7 Conclusions 

The zones of active venting have very limited extents and are mainly concentrated on the 

flanks of a mini-volcano close to the center of the Menez Gwen volcano. 

The faunal distribution at the studied sites is very similar to that at the Eiffel Tower structure in 

the neighboring Lucky Strike vent field (Cuvelier et al. 2009). The fauna at the studied Menez 

Gwen sites is dense and largely dominated by Bathymodiolus azoricus. Patches of mussels 

are mostly distributed on hard substrata on the pathway of the hot fluid but preferentially away 

from the chimney flanks. Populations of more mobile taxa such as shrimps and gastropods 

are clearly denser in the vicinity of points of fluid emission. Nevertheless, this behavior was 

not observed at every point of venting activity. Good examples are the large chimneys at the 

top of White Flames site, where the venting fluid appears as if boiling.  

Despite the small extent of the sites of active venting, mussel population amounts to 

thousands of individuals and estimates of the minimum total biomass over the sites of study 

sum up to hundreds of kilograms. The estimations of total annual consumption of methane 

and sulfide by B. azoricus can be significant, and respectively up to 1760 mol CH4 yr
-1

 and 

11,060 mol H2S yr
-1

. The chemical consumption seems nevertheless low in comparison to 

estimations of vent-scale hydrothermal methane and sulfide effluxes. However, this work 

considered the consumption by mussels only, and the total consumption by all symbiotic 

fauna may be more substantial. Nevertheless, B. azoricus was the dominant species at these 

sites and, therefore, the total consumption by the fauna is likely to be in the same order of 

magnitude. 

Geo-referenced photo-mosaics and geographic information systems constitute efficient tools 

to observe the faunal distribution and are amongst the most accurate tools available for areal 

calculations in such remote environments. Estimating the total biomass of B. azoricus at 

every site was only possible with accurate estimates of the extent of the mussel patches. The 

photo-mosaics presented in this work are also aimed at giving a snapshot of the situation at 

Menez Gwen in 2010 and can serve for future works as basemaps for planning or site 
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recognition purposes. They also are a good basis to observe the temporal evolution of the 

venting and faunal activity. 
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5.1 Abstract 

The Regab pockmark is a large cold seep area located 10-km north of the Congo deep sea 

channel at about 3160 m water depth. The associated ecosystem hosts abundant fauna, 

dominated by chemosynthetic species such as the mussel Bathymodiolus aff. boomerang, 

siboglinid polychaetes Escarpia southwardae, and vesicomyid clams Laubiericoncha chuni 

and Christineconcha regab. The pockmark was visited during the West African Cold Seeps 

(WACS) cruise with RV Pourquoi Pas? in February 2011, and a 14,000 m
2
-large high-

resolution video-mosaic was constructed to map the most populated area and to describe the 

distribution of dominant megafaunal species. The results are compared to previous published 

works, which also included a video-mosaic in the same area of the pockmark, based on 

images of the Biozaire cruise, in 2001. The 10-year evolution of the faunal distribution is 

described and reveals that the abundance and distribution of the dominant megafaunal 

populations at Regab did not change significantly, suggesting that the overall methane and 

sulfide fluxes that reach the faunal communities have been stable. Nevertheless, small and 

localized distribution changes in the clam community indicate that it is exposed to more 

transient fluxes than the other communities. Observations suggest that the main megafaunal 

aggregations at Regab are distributed around focused zones of high flux of methane–

enriched fluids likely related to distinct smaller pockmark structures that compose the larger 

Regab pockmark. The results are generally consistent with the existing successional models 

for seep communities. However, we observe that the distribution of the Regab mussel 

population does not entirely fit into these models of successions, and we hypothesize that the 

mussel distribution at Regab could also be controlled by the occurrence of zones of both 

intense methane fluxes and reduced efficiency of the anaerobic oxidation of methane. 

 

Keywords: temporal evolution, pockmark, cold seep, Regab, mosaic, fauna. 
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5.2 Introduction 

Cold-seep ecosystems have been identified along active and passive margins worldwide, and 

are known to host rich and abundant chemosynthetic communities (Sibuet & Olu-Le Roy 

2002). Many studies have described the distribution of the dominant faunal assemblages in 

relation to their environment in several cold seeps systems (Sibuet & Olu-Le Roy 2002, 

MacDonald et al. 2003, Olu-Le Roy et al. 2007a, Jerosch et al. 2007b, Lessard-Pilon et al. 

2010b), and cold seeps are usually considered to provide more stable environments than 

hydrothermal vents. Indeed, numerous studies of temporal evolution of vent communities 

suggested that hydrothermal vents are highly dynamic environments (Hessler et al. 1988, 

Shanks 1995, Shank et al. 1998, Mullineaux et al. 2000, Cuvelier et al. 2011), whereas 

observations of individual taxonomic groups at cold seeps revealed very slow growth rates 

and extremely long lifetimes likely related to slow and steady fluxes of reduced compounds 

(Nix et al. 1995, Fisher et al. 1997, Smith et al. 2000, Bergquist et al. 2000). For instance, 

some tubeworm aggregations were estimated to be at least 250 years old (Fisher et al. 1997, 

Bergquist et al. 2000), and ages of several hundreds of years have been assessed for 

Bathymodiolus childressi (Smith et al. 2000). 

Up to now, very few works focused on the temporal evolution of the faunal distribution 

(Lessard-Pilon et al. 2010b) in a cold seep environment. Such information is yet not only 

important to increase our knowledge about the community dynamics, but it also allows better 

understanding the dynamics of the venting activity. Indeed, chemosynthetic communities are 

highly dependent on their environment, primarily as distribution patterns of the dominant 

symbiont-bearing, habitat-creating taxa are linked to methane and sulfide levels and fluxes, 

and substrata (Sahling et al. 2002, MacDonald et al. 2003, Levin et al. 2003, Bergquist et al. 

2005, Mau et al. 2006, Olu-Le Roy et al. 2007a). Distribution changes therefore could also 

reflect changes in the venting activity. 

Bergquist et al. (2003b) and Cordes et al. (2005b) suggested that community changes could 

be also time-related, and proposed a succession model for Gulf of Mexico seep communities, 

in which mussel beds become replaced by tubeworm communities as carbonate precipitates 

in the sediments. With time, tubeworm communities then contribute to reducing methane and 

sulfide availability at the sediment/water interface, thus leading to changes in the associated 

communities, by allowing non-endemic species to venture and compete with chemosynthetic 

species. 

Whichever the cause of flux change, mussel population mortality and movements is 

considered to reflect Changes in seepage flow or chemistry (Roberts et al. 1990, Lessard-

Pilon et al. 2010b), while tubeworms tend to increase their dominance when fluid flow 

declines and can persist for years (Bergquist et al. 2003a, b, Cordes et al. 2005b). Finally, 

Lessard-Pilon et al. (2010b) attributed succession patterns between tubeworm and mussel 

populations along a 15 years interval to renewed or redirected active seepage. 
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During the West African Cold Seeps (WACS) cruise in February 2011, the Regab pockmark 

was intensively surveyed and a 14,000 m
2
-large video-mosaic was assembled to map the 

main populated area of the pockmark. A subset of this same area had already been described 

by Olu-Le Roy et al. (2007a), who provided a detailed description of the spatial patterns of the 

faunal assemblages, highlighting high degree of spatial heterogeneity. This work was based 

on imagery data, and in particular on video-mosaics, taken in 2001 during the Biozaire cruise. 

Using geo-referenced mosaics and geographic information systems (GIS), we propose a 

description of the current faunal distribution and its ten-year evolution in one of the most 

densely populated areas of the Regab pockmark gathering siboglinid tubeworms, 

bathymodiolid mussels and vesicomyids that create the dominant habitats of the pockmark. 

This is to our knowledge the first study of the temporal evolution of the distribution of 

chemosynthetic fauna at this scale and including such diverse habitats. 

 

5.3 Site description 

The Regab pockmark is located on the passive Congo-Angola margin at 3160 m water depth 

and about 10 km to the north of the Congo deep-sea canyon. The pockmark is a circular-

shaped depression on the seafloor that is less than 20 m deep and about 800 m wide 

(Charlou et al. 2004, Ondréas et al. 2005) (Figure 5.1). Regab has been described as a 

‘pockmark cluster’ since it is considered to be composed of several smaller pockmarks 

(Ondréas et al. 2005). Those features are believed to result from seafloor collapses following 

the release of over-pressured interstitial fluids. This was suggested after seismic profiles 

showed the presence of an underlying 300 m-deep pipe rooted in a palaeo-channel that acts 

as a reservoir for the accumulating fluids (Ondréas et al. 2005, Gay et al. 2006c). Trapped 

fluids are mostly enriched in methane and are believed to be produced in deeper layers of 

sediment by microbial activity (Charlou et al. 2004). Presence of gas hydrates was observed 

both in hydrate outcrops at the sediment surface and in gravity cores down to a depth of 6 m 

(Charlou et al. 2004, Ondréas et al. 2005). Sulfide is produced from methane and sea-water 

sulfate in the subsurface sediment by anaerobic methane oxidation evidenced in the different 

habitats (Cambon-Bonavita et al. 2009). 

The most active area in terms of fluid escape is a 600 m-long and 200 m-wide N70º-directed 

area located near the middle of the pockmark. This area corresponds to a zone of extensive 

carbonate crusts and it seems to host most of the fauna of the pockmark (Ondréas et al. 

2005). The faunal communities present at Regab are dominated by symbiont-bearing species 

including Siboglinidae polychaetes (vestimentiferan tubeworms) of the species Escarpia 

southwardae (Andersen et al. 2004), two species of Vesicomyidae bivalves, Laubiericoncha 

chuni and Christineconcha regab (Cosel & Olu 2008, 2009, Krylova & Cosel 2011), and of the 

mussel Bathymodiolus aff. boomerang (Olu-Le Roy et al. 2007b). These foundation species 

create habitats that support associated heterotrophic macro- and meio-faunal communities 
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which vary in biomass and diversity among habitats (Gaever et al. 2009, Menot et al. 2009, 

Olu et al. 2009). 

 

Figure 5.1: Location of the Regab pockmark; the insert map shows the approximate outline of 
the pockmark and the mosaic area. 

 

5.4 Methods 

5.4.1 WACS mosaic 

5.4.1.1 Acquisition 

Imagery used for the production of mosaics was acquired with a high-definition color video 

camera over two ROV dives during the WACS cruise with RV Pourquoi Pas?. The camera is 

mounted vertically on the ROV Victor 6000 and is dedicated to high-resolution mosaicking 

applications. The surveys were carried out in a structured way by performing parallel lines 
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separated by 3-meter intervals and from an average altitude of 3 meters, so as to ensure 

overlap between the mosaic lines. The total surveyed area covers a rectangular surface of 

about 65×220 m
2
. The limits of this surface correspond to the limits of the 'mosaic 2' produced 

by Olu-Le Roy et al. (2007a) from images acquired during the BIOZAIRE cruise in 2001. The 

reason for this is to enable later comparison of the two mosaics. To minimize drift-induced 

positioning errors, the survey area was split into two equal subareas of 65×115 m
2
 each. The 

survey required a total of twenty-one lines per subarea to cover the entire surface. Each line 

was 115 m long in order to ensure overlap between the two subareas. Moreover, the ROV 

position was reset onto a marker at the beginning of each line in order to eliminate any drifting 

error before starting a new line. During the survey, the maximum observed drift error at the 

end of a line was about 3 meters. The markers were also used to reset the ROV position 

when resuming the survey in another dive. Final navigation is therefore a hybrid navigation 

from USBL and dead-reckoning navigation reset with markers. 

5.4.1.2 Construction of the video-mosaic 

The lines of mosaic were constructed using the Ifremer in-house MATISSE program (Vincent 

et al. 2003, Allais et al. 2004). The MATISSE program was first designed for online-

mosaicking, i.e. to build the mosaic while the survey is ongoing. However, due to compatibility 

issues between the program and the new camera and navigation systems of the ROV Victor 

6000, building the mosaic involved numerous intermediate data manipulation steps and could 

not be performed in real-time. For instance, the HD-formatted video files (1920x1080 pixels) 

had to be converted into DVD-PAL format (720x576 pixels) before they could be read by 

MATISSE. This involved adding black bands on the image in order to preserve the 16/9-ratio 

of HD frames. Conversion to DVD format was done with the ConvertXtoDVD commercial 

program. Navigation files also had to be rewritten according to an older standard to ensure 

compatibility with MATISSE. The navigation was then replayed with the Ifremer TRIADE 

Software, a program that sends navigation entries to MATISSE at a real-time frequency in 

order to simulate an online mode. Mosaic lines were then constructed at a real-time pace. 

Each line of mosaic was constructed separately instead of letting Matisse run straight from 

the beginning to the end of the survey. The reason was to keep size of files small, and to 

allow more flexibility in the construction of the final areal mosaic. 

5.4.1.3 GIS and spatial analyses 

The separate lines were imported and geo-referenced into ArcGIS. Geo-referencing was done 

with the ROV navigation data, but care was taken that corresponding features between 

overlapping segments would match on the same points. 

For all mosaics, surficial features were delineated and polygons were created in ArcGIS to 

map the spatial distribution of each feature. Mapped features are similar to those used for the 

Biozaire mosaic (Olu-Le Roy et al. 2007a), and they include carbonate concretions, dense 
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and sparse patches of living and dead mussels, vesicomyid clams, and tubeworms, and 

zones of reduced sediment and microbial cover. Areas of coverage were computed for each 

non-sparse category. 

Carbonate crusts were mapped only where concretions could clearly be seen on the images, 

and the mapped areas often do not include the carbonated crusts that underlie the tubeworm 

population or thin sediment covers. The dense Mytilidae category refers to areas where the 

living mussel distribution is almost continuous and where the substratum is rarely visible. 

Conversely, sparse mussel patches correspond to areas where the substratum is clearly 

visible between the individuals. Such distinction was not made for mussel shells, and only 

dense patches were mapped. The dense E. southwardae category refers both to single large 

bushes of adult tubeworms, and to fields of bushes of adult tubeworms, whereas the sparse 

category corresponds to areas where bushes of adult tubeworms are not closely distributed 

and contain relatively few tubes (roughly 10 or less). The young tubeworm category refers to 

bushes where tubeworms are of strikingly small size in comparison to the adult community. 

The recumbent tubeworm category designates bushes where the tubes are disposed 

horizontally, and senescent refers to dead and bad-conditioned individuals whose tubes lie on 

the seafloor. Patches of vesicomyid clams are categorized either as living, mixed or dead. 

Living clams are normally vertically disposed and half buried in the sediments, whereas clam 

shells are generally open and lying in the sediments. The ‘mixed’ categories refer to mussel or 

clam patches that contain both living and dead individuals. 

The delineation process was supported by the use of the full HD resolution video files, 

particularly for differentiating clams from mussels and living bivalves from dead bivalves. 

Vesicomyid clams comprehend two species, Laubiericoncha chuni and Christineconcha 

regab, that cannot be separated on the images. However, both in 2001 and in 2011, 

Christineconcha regab was largely dominant in samples and on close-up views (Cosel & Olu 

2009, Decker et al. 2012). 

5.4.2 BIOZAIRE mosaic 

The BIOZAIRE mosaic corresponds to the 'mosaic 2' described in the literature (Olu-Le Roy 

et al. 2007a). Due to the absence of navigation data, the BIOZAIRE mosaic was never geo-

referenced. But surfaces could be calculated anyway from the altitude of survey and the 

camera parameters. In this work we used the new WACS mosaic to geo-reference each 

individual segment of the BIOZAIRE mosaic. The geo-referencing was done in ArcGIS by 

registering features common to both mosaics, such as unchanged carbonate concretions, 

dead shells, detritus and also bushes of tubeworms. The advantage of this technique is that it 

reduces the discrepancies between both mosaics, no matter how accurate the geo-

referencing of the WACS mosaic is. In other words, a same polygon should have the same 

surface on both mosaics and patch sizes be directly comparable, with only a low relative 

error. However, differences in angles of perspective, in image quality, in visibility and in 
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contouring precision also occur and cause some discrepancies in the computed areas. 

Contours of living and dead mussel patches are the most affected by such discrepancies. 

In order to keep consistency with the published work, BIOZAIRE contours were not redrawn. 

Instead, the original contours, drawn in Photoshop by Olu-Le Roy et al. (2007a), were reused. 

This implied exporting every contour layer from Photoshop. Contours were then imported as 

polygon features into ArcGIS and geo-referenced over the BIOZAIRE mosaic. The surfaces 

were recalculated according to the new geo-referencing data. 

 

5.5 Results 

5.5.1 WACS mosaic (2011) 

The surveyed zone almost fully covers a 14,000 m²-large rectangular area directed in a 

southwest-to-northeast direction (Figure 5.1). Direct mapping of the main faunal assemblages 

and visible carbonate concretion areas is available for the entire study area (Figure 5.2a). It 

shows that the substratum is composed either of soft sediments or of harder carbonate 

concretions and that the faunal distribution is spatially non-uniform but instead is divided into 

areas of high and low faunal abundance. Areas of high faunal abundance can in turn be 

categorized based on the dominant type of fauna (Figure 5.2b). 

Carbonate concretions were visible over a large portion of the survey area (Figure 5.2b). The 

total measured extent exceeds 4400 m
2
. This is however a minimum estimation since it does 

not include carbonate concretions that were not directly visible at the surface, i.e. concretions 

covered by sediments or underlying the fields of tubeworms and mussels. 

5.5.1.1 Mussel distribution 

The map of faunal distribution (Figure 5.2a) shows that large mussel beds were round-shaped 

and always adjacent to the tubeworms fields. At the limit between the two aggregations, a 

transition zone with co-occurrence of mussels and tubeworms was often observed. In these 

transition zones mussels were present on the substratum between the tubeworms but they 

were also attached onto the tubeworms themselves. The mosaic and video material from 

ROV dives also indicated that areas of mussel occurrence tended to coincide with areas of 

hard substrata, i.e. of carbonate concretions, either bare or with thin sediment cover. Most of 

the mussel population within the study area was concentrated in two main (M2, M1) and one 

minor (M4) areas (Figure 5.2b). 

The largest mussel area, known from the Biozaire mosaic as “M2”, stretched over 20 m and 

26 m in the SW-NE and NW-SE directions respectively and had an approximate surface of 

450 m
2
. Observations of video footages showed that a large part of the population in this area 

was located at the bottom of a depression between boulders of carbonate concretions (Figure 

5.2a). This mussel bed stretched further towards the north boundary of the mosaic and was 
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likely to extend beyond it. 

 

Figure 5.2: (a) Distribution of the main faunal assemblages and carbonate concretions based 
on the WACS mosaic; (b) Simplified areas of distribution of the main types of fauna according 
to the WACS mosaic. 

 

The second main mussel area (“M1”) was located at about a hundred meters to the southwest 
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of the first one. It was composed of two beds of dense living mussels, one of about 45 m
2
 and 

the other of about 30 m
2
. The population was almost entirely surrounded by dense bushes of 

tubeworms but image material indicates that mussels were also present, although at a lower 

density. Patches of dead mussels seemed to be larger at M1, whereas the abundance of 

living mussels was believed to be lower than at M2. 

Additionally a minor mussel patch was present at the northeastern limit of the mosaic. In this 

area, the densest mussel bed covered an area of less than 10 m
2
, but was likely to extend 

over the limit of the mapped area. This area will be referred to as “M4”. 

5.5.1.2 Tubeworm distribution 

The majority of the tubeworm population within the area of study was concentrated in dense 

bushes. Bushes of tubeworms were solitary and isolated but were more commonly present in 

large and dense fields. In either case, tubeworms were mostly present on carbonate 

concretions and surrounded the main mussel areas. 

The largest field with high tubeworms density was up to 1400 m
2
-large and was located near 

the middle of the study area, west-northwest of M2. This area seemed more elevated than in 

the rest of the study area. This was due to the presence of blocks of hard concretions that 

gave the relief a rugged surface. A relatively high abundance of mussels was observed within 

the transition zone between mussel and tubeworm populations. In this area the transition 

zone was up to 7 m-wide. 

The second largest field of tubeworms covered an area of about 600 m
2
 and surrounded M1 

almost entirely. In this field, the zone of co-occurrence between tubeworms and mussels was 

very small and it was not observed at every mussel/tubeworm limit. The field stretched farther 

towards the south-southwest and beyond the limits of the study area. 

The next largest fields of dense tubeworms were located at the eastern and northeastern end 

of the mosaic. In this area, two fields of about 130 m
2
 each were separated by a zone of soft 

sediments and low faunal abundance. A 55 m
2
-large zone of co-occurrence between 

tubeworms and mussels could be observed in the vicinity of M4. 

Juveniles were mostly observed as lonely bushes or as small fields in the periphery of the 

large aggregations of dense tubeworms. Mytilidae were also observed within populations of 

juvenile tubeworms, where those bordered the mussel beds. 

Senescent/recumbent populations were rarely observed, and never within the main 

tubeworms aggregations. The main occurrences were located in the periphery of larger fields 

of tubeworms, and often over soft sediments and in the immediate vicinity of clam 

aggregations. 

5.5.1.3 Vesicomyid clam distribution 

Vesicomyids were observed in aggregates of very varied dimensions, and ranged from very 
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small clusters about 0.01 m
2
-large to large fields of up to 400 m

2
, gathering living, dead or 

mixed individuals. However, most aggregates contained mixed individuals, i.e. both living and 

dead, and it was hard to quantify the relative proportion of living and dead individuals from the 

images. In a few cases, small clusters of living clams could be observed and delineated within 

larger patches of mixed clams. Dimension of individual aggregates of living clams in the 

survey area did not exceed 1.5 m
2
. 

Clam communities seemed limited to the areas covered by soft sediments. For instance, 

clusters of living vesicomyids were scattered across the mosaic but were consistently 

observed in the areas covered with soft sediments. They were also often located in patches of 

dark reduced sediments. 

This was also the case for the larger patches of vesicomyids, which were mostly present in 

the bottom half of the survey area and often in the periphery of the aggregations of mussels 

and tubeworms. The largest field of vesicomyids, located on the eastern side of the survey 

area, however did not appear to be restrained to the periphery of the other communities. 

Around this field were observed some areas of reduced sediments occurrence and, to a 

lesser extent some bacterial mats. Those areas were devoid of visible living fauna. 

Patches of dead vesicomyids were also mainly observed in soft sediments, although 

sometimes in carbonate concretions too. Large fields of dead communities were present in 

the bottom part of the survey area, and particularly along the aggregates of mixed 

vesicomyids southeast of M2, where the field of clam shells exceeded 200 m
2
 in surface. 

5.5.1.4 Areas of lower faunal abundance 

Areas of lower faunal abundance were not totally bare of fauna, but exhibited strikingly low 

numbers of tubeworms, clams, and mussels patches in comparison to the rest of the survey 

area (Figure 5.2a). Apart from the highly mobile fauna such as the galatheids, most of the 

fauna in those areas was composed mainly of sparse patches of tubeworms (≤ 25 m
2
) or of 

living and mixed clams (≤ 20 m
2
). Clam shells were also frequently observed. 

The emptiest zone was located to the south of the large mussels and tubeworms communities 

located in the middle of the survey area. It covered an area of about 1000 m
2
 and was mostly 

composed of soft, bioturbated sediments. 

5.5.2 Comparison with BIOZAIRE mosaic (2001) 

The Biozaire mosaic (2001) covers only a subset of the WACS (2011) survey area, and both 

mosaics overlap over a 4605 m
2
-large area. In order to compare the trend in faunal 

distribution, this overlapping area is shown the Biozaire and WACS video-mosaics (Figure 

5.3). Overall, there were only little changes in the spatial location of the main faunal 

assemblages. 
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Figure 5.3: Distribution of the main faunal assemblages and carbonate concretions in the area 
of overlap between the Biozaire (2001) and the WACS (2011) mosaics. 

 

The mussel distribution has remained mostly the same as it was during the Biozaire cruise. 

Although it is hard to compare the size of the patches due to the smaller coverage of the 

Biozaire mosaic, there is evidence that M2 contained a larger mussel population on the 

WACS mosaic than on the Biozaire map, with fewer gaps between the different patches 

(Figure 5.4a). Conversely, some small mussel beds at M1 seem to have disappeared and to 

have been replaced by mussel shells (Figure 5.4b). M4 is not covered by the Biozaire mosaic 

and cannot be compared. 
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Figure 5.4: Images taken from the Biozaire (left) and WACS (right) mosaics, representing 
almost the same areas of the seafloor; (a) at M2, some areas previously devoid of mussels 
are now fully colonized by mussels; (b) at M1, small beds of living mussels on the Biozaire 
have been replaced by mussel shells on the WACS mosaic; (c) a recumbent tube of siboglinid 
polychaete showed no change in size and position between 2001 and 2011. Images taken by 
ROV Victor 6000 (© Ifremer, Biozaire 2001 and WACS 2011). 

 

Tubeworm fields showed no change in distribution, the slight difference in polygon sizes being 

more due to the lower resolution of the Biozaire imagery data than on actual distribution 

changes. From these results, the tubeworm community is believed to be the one that changed 

the less across the study area. Most bushes or even single tubeworms were found 

unchanged and in some cases in the exact same position than in the older mosaic (Figures 
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4c, 5). Tubeworms were indeed the most reliable features when registering the Biozaire 

mosaic onto the WACS mosaic. 

 

Figure 5.5: Images taken from the Biozaire (left) and WACS (right) mosaics, representing 
almost the same areas of the seafloor; (a,b) new patches of vesicomyids that did not exist at 
the time of the Biozaire cruise; b also shows that the patch of dead clams has been partly re-
colonized; (c) a patch of mixed vesicomyids almost disappeared under sediment cover. 
Images taken by ROV Victor 6000 (© Ifremer, Biozaire 2001 and WACS 2011). 

 

The vesicomyid clam population is the one that changed the most. Although the main fields 

have remained at the same locations, their sizes seem to have increased. In addition, new 

patches of living clams were observed that did not exist during the Biozaire cruise. Those new 
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patches were often in the close vicinity of older patches (Figure 5.5b), but were also in a few 

cases new settlements farther from previously existing patches (Figure 5.5a). Conversely, 

there were also a few patches that did not exist anymore or at least that were buried under 

some sediments (Figure 5.5c). 

Extents of the areas of occurrence of dense mussels, tubeworms and clams were computed 

for both the Biozaire and the WACS faunal distribution maps (Table 5.1). Areas of sparse 

mussel and sparse tubeworm occurrence are not shown due to too large errors in contouring 

sparse aggregations. In addition, to keep consistency with previous work on the Biozaire 

mosaic, areas of zones of living mussel and tubeworm co-occurrence are given (Table 5.1). 

Given a total common area of 4605 m
2
 between the Biozaire and the WACS mosaics, the 

areas can be expressed in percentage of cover of the mosaic. According to these 

calculations, patches of living siboglinid polychaetes, of siboglinid with mussels and of mixed 

(dead and living) clams underwent the most significant changes, with coverage increases of 

up to 1.5, 1.3 and 1.2% of the total area respectively. The total areal extent of the other 

assemblages showed almost no change. 

 

Table 5.1: Areas of coverage of the different assemblages in both Biozaire (2001) and WACS 
(2011) mosaics. The percentages are relative to the total area (4605 m

2
) covered by both 

mosaics. 

Assemblage Biozaire (m
2
) Biozaire (%) WACS (m

2
) WACS (%) Trend 

Escarpia, living 716 15.5% 782 17.0% +1.5% 
Escarpia + 
Bathymodiolus 

207 4.5% 268 5.8% +1.3% 

Escarpia, juveniles 25 0.5% 28 0.6% +0.1% 
Escarpia, recumbent 79 1.7% 60 1.3% -0.4% 
Escarpia, senescent 70 1.5% 95 2.1% +0.6% 
Mytilidae, living 194 4.2% 207 4.5% +0.3% 
Mytilidae, shells 2 0.04% 14 0.3% +0.3% 
Vesicomyidae, living 23 0.5% 27 0.6% +0.1% 
Vesicomyidae, mixed 141 3.1% 199 4.3% +1.2% 
Vesicomyidae, shells 112 2.4% 125 2.7% +0.3% 

 

Overall, the distribution of the carbonate concretions over the study area did not change 

between the Biozaire and the WACS cruises. The higher resolution of the new mosaic 

allowed better defining the contours of the concretions, especially in areas covered with 

vestimentiferans or mussels, and no major new area of occurrence was observed. On the 

contrary, in many places the carbonate concretions tended to slightly disappear under a thin 

sediment cover. 
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5.6 Discussion 

5.6.1 Faunal and carbonate distribution 

The mosaic and the distribution map of the megafaunal communities (Figure 5.2) give a very 

detailed view and full coverage of the entire study area. The results show that the megafauna 

at Regab is concentrated mainly in three distinct areas of high faunal abundance, separated 

by areas of relatively lower abundance (Figure 5.2b). Such distribution indicates that the 

chemical fluxes that are required to sustain these chemosynthetic communities are 

heterogeneous over the study area. Indeed, the distribution of the main faunal assemblages 

(Figure 5.2) showed a concentric spatial succession pattern starting from mussel beds in the 

middle to tubeworms and finally fields of vesicomyids towards the outside. In our study this 

spatial succession pattern from mussels to vesicomyid clams was observed, to various 

extents, around the three main mussel areas (M1, M2, M4). 

A model presenting a concentric pattern has been proposed previously for the Regab 

pockmark (Gay et al. 2006c), but it considered both mussels and siboglinids as methane-

dependant species inhabiting the same carbonate-dominated facies (Olu-Le Roy 2006). 

Although Bathymodiolus aff. boomerang contains both methanotrophic and thiotrophic 

symbionts (Duperron et al. 2005) and, for the populations living in the Regab pockmark, is 

known to rely on methane as dominant energy source (Olu et al. 2009, Duperron et al. 2011), 

siboglinid polychaetes are known to host sulphur-oxydizing symbionts (Dubilier et al. 2008) 

and to have very high demands in terms of sulfide supply (Cordes et al. 2003). 

We postulate that the observed distribution is controlled by the strength of fluid advection and 

related methane fluxes, and propose a model in which the megafaunal distribution at Regab 

is structured by the presence of discrete zones of intense fluid advection and methane fluxes 

under the mussel beds. The distribution of the other communities would therefore be related 

to decreasing advection rates with distance from the mussel beds. The existence of such 

localized pathways of high fluid advection rate is compatible with the current understanding 

that the center of the pockmark is composed of several smaller pockmarks (Ondréas et al. 

2005). In this section we discuss the concepts of this model, and confront them to more 

detailed observations of the faunal distribution and of the presence/absence of carbonate 

crusts. 

Our observations show that the main mussel beds occur in areas where carbonates form 

blocs of indurated sediments and concretions within slight depressions, and that the main 

tubeworm aggregations occur in areas with extensive, continuous and prominent carbonate 

crusts. The formation of authigenic carbonates is a byproduct of the anaerobic oxidation of 

methane (AOM) in the sediment (Boetius et al. 2000, Aloisi et al. 2002) and is an indicator of 

methane fluxes and microbial activity within the sediments. However, the formation of 

continuous carbonate crusts impacts the porosity and permeability of the sediments and 

hence reduces the possible pathways for methane- and sulfide-rich fluid escapes and for 
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sulfate-rich seawater infiltration (Hovland 2002, Luff et al. 2004). Therefore, areas of mussel 

occurrence are likely to be characterized by higher fluxes between the sediments and the 

bottom water than the encrusted areas where tubeworms occur. 

We propose that the three main mussel areas present in our study area are located on 

focused zones where the seepage activity is the strongest, and where fluid flow is intense 

enough for the methane fluxes to reach the sediment/water interface. Indeed, the distribution 

of mussels mainly in dense circular beds suggests the presence of localized areas of intense 

methane fluxes. This hypothesis was mentioned previously from the results of the Biozaire 

mosaic (Ondréas et al. 2005, Olu-Le Roy et al. 2007a). This is also supported by previous 

studies in other areas that showed that release of methane to the water column is indeed 

facilitated in high fluxes areas (Boetius & Suess 2004, de Beer et al. 2006, Niemann et al. 

2006). 

Co-occurrence of mussels and tubeworms is commonly observed at the transition between 

the two populations. In such zones, numerous mussels are observed onto the tubes of the 

siboglinid aggregations that directly border the mussel beds. This confirms that methane 

fluxes are higher in those areas than in the tubeworms aggregations located farther from the 

mussel beds. This is supported by previous studies that indicate that mussel beds at Regab 

are located in areas with the highest concentrations of methane in the water (Charlou et al. 

2004, Olu-Le Roy et al. 2007a). Such behavior was also observed for methanotrophic mussel 

populations in the Southern Barbados prism (Olu et al. 1996b). 

The distribution of the tubeworms aggregations around the mussel beds could be related to 

lower fluid advection rates than those under the mussel beds. Niemann et al. (2006) and De 

Beer et al. (2006) suggested that by preventing downward fluxes of sulfate-rich water into the 

sediments, intense fluid advection rates can hinder the efficiency of AOM. This could explain 

why tubeworms did not settle in place of the mussel bed. 

Our observations show that those areas correspond to where the carbonate crusts are most 

prominent, and likely the thickest. Siboglinid polychaetes in seeps at the Gulf of Mexico have 

been shown to release sulfate through their roots into the sediments (Cordes et al. 2005a), 

thus preventing a potential sulfate-depletion of the sediments. This ability is believed to allow 

adult tubeworms to fuel or even enhance the AOM (Cordes et al. 2005a, Dattagupta et al. 

2008) in order to maintain their supply in sulfide. As a corollary effect, the siboglinid 

population contributes to the formation of carbonates, which is supported by our observations 

that tubeworms are present where concretions form continuous and prominent crusts. 

Juvenile tubeworms consistently occur near or at the limit between carbonate crusts and bare 

sediments. Sulfide fluxes and concentrations are likely to be higher in such areas with 

unsealed sediment/water interface than in areas covered by thick crusts, and thus to provide 

a suitable environment for the larvae to settle until they can self-maintain their supply in 

sulfide. According to Bergquist et al. (2002), the recruitment of new tubeworms is time-

constrained and stops in older aggregations, due to the presence of thick carbonate 
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pavements and low concentrations of sulfide in the water (Bergquist et al. 2003a). Sulfide 

concentrations have indeed been reported to be higher around aggregations of juvenile than 

within older aggregations (Bergquist et al. 2003b).  

This interpretation is further supported by the occurrence of bands of black reduced 

sediments along the limits of the siboglinids-hosting carbonate concretions (Figure 5.6), 

indicating that AOM and sulfide release occur in those areas. These features also suggest 

that part of the methane fluxes trapped beneath the carbonates could be redirected toward 

the sides of the carbonate crusts. 

 

Figure 5.6: Excerpt from the WACS mosaic showing a band of reduced sediments along the 
border of carbonate crusts; juvenile siboglinid polychetes are visible on the right, and fields of 
vesicomyid clams can be seen in the sediment on the left. Images taken by ROV Victor 6000 
(© Ifremer, WACS 2011). 

 

The distribution of the vesicomyid population is likely related to even lower advection rates 

than the tubeworm aggregations. Results show indeed that the living vesicomyid clams are 

mainly located in the soft sediment areas surrounding the tubeworms and mussel 

aggregations, where methane and sulfide fluxes are lower. This is consistent with the current 

understanding that methane/sulfide availability shapes the structure of the microbial and 
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megafaunal communities (Olu et al. 1996a, b, 1997, Sahling et al. 2002, Sibuet & Olu-Le Roy 

2002, Levin et al. 2003, Levin 2005, Ritt et al. 2011). 

In search of a successional model, the vesicomyid clam environment is sometimes proposed 

as being a precursor stage towards a tubeworms/carbonate environment (Sahling et al. 

2008a). This is partly supported by our observations of dead shells occurrences on some 

bare carbonate concretions. Also, the presence of shells within the concretions has been 

reported previously (Pierre & Fouquet 2007). These observations suggest that areas with 

vesicomyids are in some cases led towards the formation of carbonated crusts, either with or 

without siboglinids. However, we have also observed large patches of vesicomyid shells 

within the sediments, sometimes almost buried, that would suggest that seepage activity in 

these areas decreased or stopped and that living populations either died or moved away. 

Such areas might never turn into tubeworms/carbonate environments due to too low or too 

transient fluxes. Thus, vesicomyid populations might not be restricted to one particular 

successional stage of colonization, but be present in a range of areas representing different 

evolution stages of the seeping activity and the observed patterns of distribution reflect the 

spatial heterogeneity of fluid flux. 

Bergquist et al. (2003b) and Cordes et al. (2005b) suggested that the relative distribution of 

mussels and tubeworms could be related to different stages of succession, and explain that 

mussel beds indicate an earlier stage of colonization that would later be replaced by 

tubeworms, when the formation of carbonate concretions reduces the methane supply to the 

water column. 

However, we propose that the situation at Regab is somehow different and that it could also 

be partly related to spatial heterogeneity of the fluid advection regime. If the relative 

mussel/tubeworm distribution was solely related to different colonization stages, the mussel 

population would expectedly be observed mainly together with, or in the vicinity of, juvenile 

tubeworm aggregations. Although we do observe juveniles around some small mussel 

clusters, the larger mussel beds present in the study area are predominantly bordered by 

large adult tubeworm aggregations (Figure 5.2a). Considering the extreme slow growth rate of 

tubeworms (Fisher et al. 1997, Bergquist et al. 2000), this indicates that fluid advection in 

those areas has been going on for a relatively long time, but that recruitment of juvenile has 

not occurred or has been hindered. 

5.6.2 Temporal comparison 

The comparison of the maps of faunal distribution and of the computed areas reveals that the 

size of the areas of faunal occurrence has remained globally the same between the Biozaire 

(2001) and the WACS (2011) cruises (Figure 5.3, Table 5.1). We consider the discrepancies in 

computed values (Table 5.1) and mapped areas (Figure 5.3) to be largely caused by 

uncertainties in the method. First, images for each mosaic have been taken with different 

camera and lighting setups, which results in different resolutions and visibilities between the 



Manuscript 3

 

94 

Biozaire and WACS mosaics. Furthermore, small perspective distortions can, in places, 

impact the precision of the relative geo-referencing of the mosaics, or make a same feature 

look larger on one mosaic than on the other. Finally, the contouring process is a manual step 

that highly depends on the interpretation and precision of the observer. For all these reasons, 

mapped features may look different (Figure 5.3) and discrepancies in the computed areas 

(Table 5.1) may arise that are difficult to evaluate. However, based on qualitative observations 

described below, we consider that the calculated areas are due to error of the method and 

cannot be used to analyze the temporal changes in the areas of faunal cover. Nevertheless, 

considering the possible causes for uncertainty and the large size of the study area, the 

computed areas are remarkably consistent between the two mosaics. 

For instance, our observations confirm that no change occurred in the population of 

tubeworms within the studied area over the past 10 years. Indeed, an increase of the area 

covered by tubeworms would signify that recruitment occurred. However, we did not observe 

new juvenile aggregations, possibly because the observation period was too short and that 

juveniles are still too small to be seen, or that the recruitment in the area covered by the 

mosaics was somehow limited. Overall, the absence of changes in the siboglinid population is 

in accordance with the findings that tubeworms can be very slow-growing and long-living 

(Fisher et al. 1997, Bergquist et al. 2000), and such observations were somewhat expected. 

Conversely, some changes in size of individual beds of living and dead mussels were 

observed (Figure 5.4a-b), which suggest that localized variations of methane fluxes or 

carbonate precipitation might have occurred. For instance, small scale visual observations 

suggest that the dense mussel bed in M2 could sustain a greater abundance of mussels in 

2011 than in 2001 (Figure 5.4a), and that some minor mussel beds at M1 disappeared (Figure 

5.4b). This could indicate that the intensity of the fluxes increased in M2 and decreased in 

M1. A decrease in activity in M1 would be consistent with the findings of Olu-Le Roy et al. 

(2007a), who also hypothesized that a decreasing methane flux occurs in this area, based on 

the lower density of the mussel beds. 

Overall, the mussel population showed very little changes. These findings are only partly 

consistent with observations of the temporal evolution of discrete seep communities in the 

Gulf of Mexico (Lessard-Pilon et al. 2010b). Both studies agree that only little change was 

observed on the total area covered by foundation fauna. However, Lessard-Pilon et al. 

(2010b) observed significant changes in distribution of mussel populations, and reported that 

about 50% of the area originally covered by living mussels at one site had been, after a period 

of 15 years, either replaced by mussel shells or colonized by tubeworms. Although we did 

observe minor changes in the mussel distribution, we did not observe the settlement of new 

siboglinid aggregations. 

Indeed, no change was observed in the tubeworm aggregations surrounding these areas. 

Expectedly mussel populations are more dynamic and respond faster to environmental 

changes than siboglinid polychaetes (Lessard-Pilon et al. 2010b), which may be insensitive to 
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small variations of seepage activity. Alternatively, the increased dead mussels occurrence in 

M1 could reflect a late stage of the successional model developed by (Bergquist et al. 2003b), 

characterized by a decrease of mussel population due to a decrease of methane and maybe 

of sulfide in the water column. Indeed mussels are associated to areas of vigorous seepages 

and high methane concentrations (Nix et al. 1995, Bergquist et al. 2005). 

Changes in the population of vesicomyid clams were more frequently observed than for the 

mussel population. Although we cannot conclude if the total living population globally did 

change, the location of the aggregates of living individuals shows relatively more differences 

in comparison to the other populations studied. Indeed, several patches of living individuals 

observed in the 2011 mosaic did not exist in 2001 (Figure 5.5a-b). Conversely some patches 

of Vesicomyid clams that existed in 2001 did not exist anymore in 2011 (Figure 5.5c). Also, in 

some cases, old patches of dead clams were re-colonized by living clams (Figure 5.5b). 

However, changes in the patches distribution of living/dead clams are difficult to apprehend 

since the relative proportion of living and dead clams cannot be estimated from the images. 

Overall, the distribution of living vesicomyid clams is very patchy (Figure 5.2a) and is difficult 

to understand. 

Sahling et al. (2008a) proposed a model where the distribution of the tubeworm and clam 

assemblages is controlled by the depth of the gas hydrate deposits. The model considers that 

gas hydrates deposits act as “capacitors” (Dickens 2003) that buffer the transient influxes of 

methane from below and that ensure a more stable diffusion of methane into the pore water 

above, thus allowing sustaining long-living seep communities. We believe that a similar 

control mechanism occurs at Regab. Indeed, the presence of gas hydrates at Regab is known 

both from direct observation of outcrops on the sediment surface and from sediment cores 

(Charlou et al. 2004, Ondréas et al. 2005). 

However, although this model is supported by the presence of such large populations of long-

living seep communities and by their spatial patterns of distribution, it does not fully explain 

the temporal changes observed within the clam populations. At Regab, most aggregates of 

living individuals are indeed located within patches of black sediments, indicating the 

occurrence of AOM, and changes in areas of distribution must somehow reflect changes of 

sulfide availability. One possible explanation could be that gas hydrate deposits under clam 

communities are either absent or too thin to buffer the transient methane fluxes. The observed 

changes in clam distribution would therefore be the response to the transient release of 

methane and subsequent sulfide production. Clearly, some monitoring of sulfide 

concentrations and some geological sampling under the clam aggregates would be required 

to further refine this interpretation. However, this is in accordance with other studies that 

suggest that vesicomyid clams are supported by diffuse or transient fluxes (Olu et al. 1996a, 

b). 
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5.7 Conclusion 

This study is the first to describe the 10-year evolution of the distribution of the megafauna in 

a cold seep environment over a 4600 m
2
-large area. Changes in areas of faunal coverage 

appeared to be well below the precision limit of our methodology. Therefore, at such a scale, 

a mosaic-based comparison does not allow accurately quantifying small changes in faunal 

distribution. 

Nevertheless, the study revealed that the overall size of the dominant megafaunal populations 

of Regab did not change, indicating an overall unchanged intensity of the methane and sulfide 

fluxes that reach the faunal communities. Such continuity could be related to the presence of 

gas hydrate deposits acting as “capacitors” for the methane fluxes. This study also shows that 

the small-scale distribution of the living population of vesicomyid clams changed more than 

the other populations studied, suggesting that the clam community is exposed to more 

transient fluxes. 

 

 

Figure 5.7: Summary schematic model (not to scale). The main aggregations are distributed 
in concentric patterns with the mussels in the middle, then the siboglinid polychaetes on thick 
concretions, and finally the vesicomyid clams in the sediments around. Mussels are present in 
an area of intense flux with significant release of methane in the water column. A transition 
zone is observed where mussels are present at the bottom and on the tubes of the 
siboglinids. Siboglinid polychaetes are present on carbonate concretions but reach the 
sediments with their roots. Through sulfate release, they maintain the AOM and the sulfide 
production. Juvenile tubeworms are distributed near the limit of the crusts where the sulfide 
fluxes from the sediments are likely higher. The presence of dark reduced sediments around 
the concretions indicate that part of the methane and sulfide fluxes are redirected from under 
the crusts towards more sulfate-rich zones where AOM occurs. Populations of vesicomyid 
clams occur in the sediments around. Their patchy distribution suggests that it is controlled by 
discrete and transient fluxes from below. 
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In addition, our mosaic-based observations of the faunal distribution over a 14,000 m
2
-large 

area show that the main megafaunal aggregations at Regab are distributed according to 

spatial patterns with the methanotrophic mussels in the middle, then the siboglinid 

polychaetes and finally the vesicomyid clams on the outer zone. We interpret that each of 

these patterns is centered on a zone of high flux of methane–enriched fluids (Figure 5.7). 

Such zones of high fluid flow are responsible for the spatial variation of intensity of the fluxes 

reaching the upper sediments, and hence structure the distribution of the chemosynthetic 

megafauna in the pockmark. 
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6.1 Abstract 

Pockmarks are seafloor depressions commonly associated to fluid escape from the seabed. 

They have been observed in many different areas and geological contexts, and can greatly 

vary in size and shape. Nevertheless the global mechanisms of pockmark growth are still 

largely unclear. 

The giant complex Regab pockmark, located at 3160 m water depth near the Congo deep-

sea channel, was investigated during the West African Cold Seeps (WACS) cruise with RV 

Pourquoi Pas? using current state of the art mapping devices mounted on the Ifremer’s 

remotely operated vehicle (ROV) Victor 6000. ROV-borne micro-bathymetry and backscatter 

data of the entire structure, 105,000 m
2
-large high-resolution photo-mosaic of the most active 

area, sidescan mapping of gas emissions, and maps of fauna distribution as well as of 

carbonate crust occurrence are combined to provide an unprecedented detailed view of a 

giant pockmark. 

All datasets suggest that the pockmark is composed of two very distinctive zones in terms of 

seepage intensity. We postulate that these zones are the surface expression of two distinct 

fluid flow regimes in the sub-surface: focused flow through a fractured medium and diffuse 

flow through a porous medium. We conclude that the growth of giant pockmarks is controlled 

by self-sealing processes and lateral spreading of rising fluids. In particular, partial redirection 

of fluids through fractures in the sediments can anisotropically drive the pockmark growth into 

preferential directions.  
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6.2 Introduction 

The term “pockmark” commonly refers to a seafloor depression and is considered to be one 

surficial expression type of fluid (i.e. liquid or gas) seepage processes, as well as mud 

volcanoes or gas hydrate pingoes (Judd & Hovland 2007, Serié et al. 2012). However, 

observations of pockmarks in various areas and settings show great differences in terms of 

sizes, morphologies, and frequencies of occurrence (Hovland et al. 2002, Judd & Hovland 

2007, Gay et al. 2007). Such differences suggest that the term “pockmark” is loosely 

constrained and applies to a broad range of seafloor features (Hovland et al. 2002). For 

instance, reports of pockmarks on the Scotian Shelf mention diameters ranging from a few 

meters up to 150 m and spatial densities sometimes exceeding 40 km
-2

 (Judd & Hovland 

2007). By contrast, pockmarks up to 1 km in diameter have been observed on the West 

African continental margin and with a distribution density of about 20.4 per 100 km
2
 (Gay et 

al. 2007, Sahling et al. 2008a). 

The shape of a pockmark is the result of local conditions and the processes involved in the 

formation and growth of pockmarks are likely to vary between settings. Several mechanisms 

have been proposed for the formation of individual pockmarks: fine sediment lifting by 

ascending gas (Hovland et al. 1984), drainage and escape of pore water (Harrington 1985), 

sudden fluid flow release following pressure buildup (Hovland et al. 2005), or collapse 

depression caused by hydrate dissolution (Sultan et al. 2010). All the different hypotheses 

confirm that several processes could apply and that the main mechanisms involved in the 

formation and growth of pockmarks remain largely unclear. 

In this study we present for the first time the results of high-resolution acoustic and optical 

surveys of the giant ‘Regab’ pockmark in the lower Congo basin. Surveys were conducted 

using the Ifremer’s remotely operated vehicle (ROV) Victor 6000 during the West African Cold 

Seeps (WACS) cruise on the RV Pourquoi Pas? in January-February 2011. The dataset is 

fully comprehensive and includes in particular ROV-borne micro-bathymetry and backscatter 

maps together with detailed sidescan-based mapping of seafloor gas emissions over the 

entire pockmark. This is completed by a 105,000 m
2
-large high-resolution photo-mosaic and 

fauna mapping of the most populated and active area of the pockmark in terms of seepage 

intensity. 

To date such a comprehensive dataset of a pockmark feature is unique and gives 

unprecedented insights on the detailed morphology of complex pockmarks. In particular, the 

results provide valuable clues to decipher the functioning of giant pockmarks, which are 

discussed in this study. 

 

6.3 Study area 

The Regab pockmark is located on the Gabon-Congo-Angola margin about 10 km north of 
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the Congo deep-sea channel at about 3160 m water depth (Ondréas et al. 2005). In this area, 

muddy hemipelagic sediments cover turbiditic channel/levee bodies of the Congo fan (Droz et 

al. 1996, Gay et al. 2003). Seismic data show that the pockmark is linked to a deep 

palaeochannel/levee system that could act as reservoir for the seeping fluids (Ondréas et al. 

2005, Gay et al. 2006c).  

The pockmark was described as being composed of a cluster of 50-100 m-large sub-

pockmarks aligned in a N70 direction (Ondréas et al. 2005, Gay et al. 2006c). Advecting fluids 

are enriched in methane of biogenic origin (Charlou et al. 2004) and sustain an abundant 

population of chemosynthetic fauna (Olu-Le Roy et al. 2007a) within the pockmark. Crusts of 

authigenic carbonates are extensive (Ondréas et al. 2005, Olu-Le Roy et al. 2007a) and 

widespread presence of shallow gas hydrates was inferred from seafloor observations and 

sediment cores (Charlou et al. 2004, Pierre et al. 2012). 

 

6.4 Data and methods 

Bathymetry data were acquired with a multibeam echosounder (MBES) Reson Seabat 7125 

running at 400 kHz. The main survey was conducted from a 30 m altitude over a 1.2 km
2
-

large area and allowed mapping the entire pockmark. An additional survey was conducted 

from an 8 m altitude over a 0.175 km
2
-large subarea of the pockmark. The data was 

processed with CARAIBES (Le Gal & Edy 1997) and the final bathymetry and backscatter 

maps include both datasets. 

Imagery data were acquired simultaneously to the second bathymetry survey with the Victor 

6000’s high sensitivity OTUS photo-camera (Simeoni et al. 2007), and the photo-mosaic was 

constructed using an the ROV navigation data. Both datasets having been acquired 

simultaneously, an excellent match of the photo-mosaic onto the bathymetry was obtained. 

The mosaic was used to map the extent of carbonate crusts and the fauna distribution. 

Mapped fauna include siboglinid polychaetes (tubeworms), mussels and vesicomyid clams. 

Seabed gas emissions in the water column were mapped using the CARIS program to 

visualize the sidescan data. Sidescan data from the 30 m altitude survey allowed identifying 

presence of gas in the water column as far as 40 to 60 m on each side of the ROV depending 

on the seabed morphology. Due to the dense track line spacing this ensured full coverage of 

the pockmark. 

 

6.5 Results 

6.5.1 Bathymetry 

The bathymetry (Figure 6.1) shows that the pockmark is a large elliptical structure with 
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diameters ranging between 700 and 950 m. Its stretches in the N70 direction along an 

elongated feature, possibly related to a fracture. Elongated appendices can be observed in 

several places at the edge of the pockmark. The largest of these occur in the northeastern 

side and seem to be extensions of the N70 fracture expression. The pockmark boundary 

shows a sharp edge in the northeastern half, and becomes softer towards the southwestern 

side. The bathymetry also reveals that Regab is composed of numerous (>1000) rounded 

depressions, or sub-pockmarks, of very various sizes (from less than 5 m to 100 m in 

diameter) and depths (from 0.5 to 15 m).  

 

Figure 6.1: Micro-bathymetry of the Regab pockmark, and extent of the photo-mosaic (insert). 
Regab is about 800m in diameter and stretches slightly in the N70 direction along an 
elongated feature. The pockmark boundary shows a sharp edge in the northeastern half, and 
becomes softer towards the southwestern side. Zone 1 is characterized by a very rugged 
surface with relatively deep (>3 m) and large (>20 m) depressions; zone 2 has a smoother 
appearance and is scattered by numerous (>1000) very small- (<5 m) to medium- (up to 60 
m) size shallow (<3 m) depressions. 

 

Those depressions are not randomly distributed and two zones can be clearly distinguished 

(Figure 6.1): zone 1 is composed of relatively large (>20 m) and deep (>3 m) sub-pockmarks, 

and is characterized by a very rugged surface and the presence of carbonated elevations and 

slabs; zone 2 has a smoother appearance but is scattered by more than a thousand very 

small (<5 m) to medium (up to 60 m) and shallow (<3 m) pockmarks. 



Manuscript 4

 

104 

 

6.5.2 Backscatter and gas plumes 

The signal reflectivity and gas plume distribution show a very characteristic pattern over the 

pockmark area (Figure 6.2). 

 

Figure 6.2: Seabed gas emissions (red dots) and gas hydrate outcrops (blue dots) in relation 
to backscatter intensity (large map) and to micro-bathymetry (insert). The signal reflectivity 
shows a very characteristic pattern over the pockmark area. Zone 1 is almost entirely 
characterized by high-reflectivity areas; the largest of them is located along and around the 
N70 longitudinal feature identified from the bathymetry, while the other two areas are located 
precisely on the boundary of the Regab pockmark, respectively on the northern and southern 
edges, and are associated to large individual sub-pockmarks (80-100 m in diameter). Zone 2 
has a comparatively low-backscatter signature, but is scattered by a myriad of high-reflectivity 
anomalies of various sizes (up to 50 m in width) and shapes, which are consistently located 
within the numerous shallow sub-pockmarks identified from the bathymetry. Gas emissions 
occurred exclusively within the high-reflectivity area of zone 1. 

 

Zone 1 is almost entirely characterized by high-reflectivity areas. The largest of them is 

located around the N70 longitudinal feature identified on the bathymetry; it stretches up to and 

along the eastern edge of Regab. Two additional areas of high backscatter occur precisely on 

the boundary of the pockmark, respectively on the northern and southern edges; they are 

associated to distinct and relatively large sub-pockmarks (80-100 m in diameter). 
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In contrast, zone 2 has a comparatively low-backscatter signature, but is scattered by a 

myriad of high-reflectivity anomalies of various sizes (up to 50 m in width) and shapes; these 

anomalies are consistently located within the numerous shallow unit pockmarks identified 

from the bathymetry. Vice versa, zone 2 unit pockmarks are always associated to high-

reflectivity anomalies. 

Gas emissions occurred exclusively within the largest high-reflectivity area of zone 1. They 

were generally observed in the slopes surrounding the main depressions or right at the edge 

of Regab, but never in the center of depressions. 

6.5.3 OTUS and video imagery 

The faunal and carbonate mapping from the photo-mosaic reveals a clear segregation 

between zones 1 and 2, and a clear causal link with backscatter data (Figure 6.3). 

The rugged morphology of zone 1 is shaped by massive carbonate crusts that form thick 

elevations around sediment-covered depressions. Gas hydrates occur at the surface in 

several places (Figure 6.2) under carbonated crusts. Near the most active areas in terms of 

gas emissions, carbonate elevations host abundant mussel and tubeworm populations 

(Figure 6.2, Figure 6.3). Generally, mussel beds are located closer to active gas emissions 

and in areas of disturbed seafloor, where carbonate crusts seem broken or displaced. Clams 

are generally distributed in sediment-covered areas, but rarely within the deepest depressions 

of zone 1. Conversely, carbonate crusts, mussels and tubeworms are never observed in zone 

2, and the imagery data only reveals soft sediments and clams presence. However, the clam 

distribution is very distinctive and shows that clams are only present in the center of the zone 

2 unit pockmarks (Figure 6.3, Figure 6.4). 
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Figure 6.3: A: Carbonate distribution 
and backscatter; the good spatial 
correlation indicates that carbonates 
cause most high-backscatter 
anomalies. B: Fauna distribution and 
backscatter; tubeworms and mussels 
occur in high-backscatter areas 
related to carbonate presence; 
conversely clams generate their own 
high-backscatter anomalies, which are 
not related to carbonates. C: Fauna 
distribution and micro-bathymetry; the 
gray lines show the extent of the 
photo-mosaic; tubeworms and 
mussels occur mainly on elevated 
areas; clams are present in 
comparatively lower areas, but rarely 
in the deepest depressions. B and C: 
Inserts represent magnifications of the 
same area (shown by black 
rectangles) of zone 2; in this zone, 
clams occur exclusively within shallow 
sub-pockmarks of various size. 

 

6.6 Discussion 

Previous studies showed that the activity at Regab is linked to the presence of a vertical 

chimney under the pockmark that is rooted into a palaeo-channel (Ondréas et al. 2005, Gay 

et al. 2006c) and that the advection of fluid through the gas hydrate stability area is possibly 

related to a fault (Gay et al. 2006a). Such interpretation is supported by the elliptical shape of 

the pockmark and the linear feature evidenced from the bathymetry (Figure 6.1). However, 

although a fracture is likely the main feature controlling the fluid expulsion pattern at Regab 

(Figure 6.2), the new high-resolution data revealed two very distinctive zones within the 

pockmark. These two zones show strikingly different morphologies and distributions of 



Chapter 6

 

107 

carbonates, fauna and gas emissions, and are clearly the expressions of very distinct fluid 

flow regimes. 

 

Figure 6.4: A-C: Bathymetry, backscatter and photo-mosaic of the same close-up view of a 
middle-size eyed-pockmark. A large aggregation of vesicomyid clams causes a high 
backscatter. 

 

6.6.1 Zone 1: Intense and focused fluid flow 

At zone 1, thick carbonate elevations, rich fauna and intense gas venting are many 

indications for high, focused and long-term seepage activity. First, the abundance of thick 

crusts of authigenic carbonates at the surface suggests that the anaerobic oxidation of 

methane (AOM) occurs close to the sediment surface (Aloisi et al. 2002) and has been active 

for a long period of time (Luff & Wallmann 2003, Teichert et al. 2003). A shallow AOM front 

would therefore indicate an intense upward flux of methane from below (Borowski et al. 

1999). 

Next, patterns in the distribution of mussels and tubeworms (Olu-Le Roy et al., 2007, Figure 

6.3b-c) indicate that the chemical fluxes are heterogeneous across the zone. Regab mussels 

are strongly dependent on methane as energy source (Olu et al. 2009, Duperron et al. 2011) 

and tubeworms are known to be high sulfide consumers (Cordes et al. 2003, Dubilier et al. 

2008); in particular, mussels and gas emissions were often observed together. Therefore, 

their occurrence could reflect areas of intense fluid flow where chemical supply is locally high. 

This is consistent with the distribution of bottom seawater methane concentrations, which is 

very heterogeneous in this zone (Charlou et al. 2004, Ondréas et al. 2005). 

Finally, the faunal distribution (Ondréas et al. 2005), the backscatter signal, and the overall 

shape of zone 1 show a strong correlation with the N70 axis identified from the bathymetry. It 

is likely that such fracture provides the main pathways for focused fluid flow in this zone. 

Additional pathways for intense fluid flow may exist at sediment discontinuities along 

pockmark edge; this is supported by the presence of two large sub-pockmarks right on the 

boundary of Regab. 
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6.6.2 Zone 2: Diffuse and homogeneous fluid flow 

We postulate that the relatively smooth surface of zone 2 is the expression of a more diffuse 

and uniform fluid flow pattern than in zone 1. Results show that carbonates, gas emissions, 

and hard substratum fauna, such as mussels and tubeworms were never observed in zone 2. 

Instead, a myriad of small and medium shallow sub-pockmarks are scattered across the 

zone; backscatter anomalies are present in each sub-pockmark (Figure 6.2), which are likely 

generated by the presence of clams (Figure 6.3). This supports findings from previous works 

in the Congo basin that correlated the distribution of clams to low seepage activity areas (Olu-

Le Roy et al. 2007a, Sahling et al. 2008a). 

The formation of unit pockmarks is not yet fully understood and could be related to various 

mechanisms such as sediment lifting by ascending gas (Hovland et al. 1984), volume loss 

caused by pore fluid drainage (Harrington 1985), rafting of small hydrate clumps (MacDonald 

et al. 1994, Paull et al. 1995), or hydrate dissolution (Sultan et al. 2010). Mechanisms 

involving free gas escape in this zone are not supported by our observations of gas flare 

distribution, whereas those involving presence of shallow subsurface gas hydrates deposits 

are not supported by backscatter data and the observed scarcity of faunal communities 

(Figure 6.2, Figure 6.3), which suggests low seepage activity. 

However, pore fluid advection is known to occur at Regab, with rates up to 2.3 mm/a at the 

western edge of the pockmark (Chaduteau et al. 2009). This would favors the model by 

Harrington (1985), according to which advecting pore water is retained in fine sediments until 

it is released due to pressure buildup. Subsequent sediment winnowing and water drainage 

ultimately leads to the formation of pits, or unit pockmarks, at the surface. 

Finally, the presence of clams in every unit pockmark of Regab brings the chicken-and-egg 

question of which appeared first. Clams are known to be water-pumping animals and to 

noticeably influence the water flow at seep sites (Wallmann et al. 1997). Such bioirrigation 

could also contribute to pit formation according to the pore fluid drainage model (Harrington 

1985). 

 

6.6.3 Possible mechanisms controlling the pockmark growth 

We propose that self-sealing processes and subsequent fluid flow redirection control the 

pockmark growth. The formation of authigenic carbonates at methane seeps causes the 

sediment permeability to decrease, and may ultimately form a natural seal for rising fluids 

(Hovland 2002). Assuming that the overall seepage intensity is not decreasing, such 

permeability loss would result in an increase of pore fluid pressure; thus, excess fluids would 

spread laterally within the sediments until sufficient pathways to the surface become available 

and that uniform flow at hydrostatic pressure is restored. This is similar to the concept of 

‘shortest and most permeable vertical pathway’ used to explain the migration of petroleum 
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fluids in rocks and sediments (Mackenzie & Quigley 1988, Floodgate & Judd 1992). 

Furthermore, the interpretation that fluid overpressure may occur under carbonate crusts is 

supported by our observations of gas emissions and outcropping hydrates in areas of broken 

crusts or of displaced blocs; such features are evidences for catastrophic events and could be 

related to the sudden release of pressured free gas from under the crusts (Hovland et al. 

2005) or to the formation and rafting of gas hydrates (MacDonald et al. 1994). 

Redirected fluids may transit as diffuse (Darcy) flow through non-fractured porous sediments 

or as focused flow along discontinuities or fractures in the sediments. Regab provides 

evidences for both flow types: mainly focused in zone 1 and mainly diffuse in zone 2. The 

distribution of high backscatter areas and gas emissions within zone 1 suggests that rising 

fluids were partly redirected from the center towards the northeastern boundary of Regab, 

likely along a fracture, thus giving an elliptical shape to the pockmark. This hypothesis is 

supported by previous findings that southwesterly tubeworm and mussel assemblages may 

be older than northeasterly assemblages, and may be related to decreasing methane fluxes 

(Olu-Le Roy et al. 2007a). In the absence of similar preferential fluid pathways, fluid flow in 

zone 2 spreads over a relatively large area and reaches the surface with a lower intensity 

than in zone 1. 

 

6.7 Conclusion 

This is the first study to present such a high resolution and comprehensive mapping dataset 

of an entire giant complex pockmark. It demonstrates that current modern techniques exist 

that allow for detailed and large-scale investigations of the deep-seafloor. The value of such 

comprehensive datasets goes beyond the mere production of high quality maps. By giving full 

sight of the area of study it allows getting a deeper understanding of the system and the long-

term processes involved. In this study, it allowed identifying zones with distinct fluid flow 

regimes, and inferring a growth model for giant pockmarks. 

The proposed model is based on strong indications that the fluid flow at Regab occurs both as 

focused and diffuse flow. Self-sealing processes constrain rising fluids to redirect laterally until 

ways to the surface become available. In the case of Regab, fluids are primarily driven 

through fractures or discontinuities within the sediments, thus leading the pockmark growth 

into one preferential direction. However, fluids also partially redirect through non-fractured 

porous sediments, and reach the surface is a more isotropic way. 
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Chapter 7 Conclusion and outlook 

The three case studies, which are the major milestones of this work, investigated different 

aspects of seabed fluid flow processes, in various environments. The strong focus on high-

resolution imaging techniques allowed mapping deep-sea sites in more detail and at larger 

scales than what is commonly done (Figure 7.1). In the two study areas, the Menez Gwen 

hydrothermal vent and the Regab pockmark, zones of active venting or seeping were mapped 

almost entirely, either with optical or acoustic imaging methods. Such datasets allowed 

measuring the dimensions of active areas and faunal coverage, quantifying related processes 

such as chemical fluxes and biomasses, and getting a better understanding of the spatial and 

temporal variation of fluid flow activity. 

 

 

Figure 7.1: Summary of the main datasets and imaging methods used in this work, together 
with schematics (not to scale) of the geological contexts. The Menez Gwen volcano system 
occurs on the Mid-Atlantic Ridge (MAR); in this system, the hydrothermal activity is located 
almost right on the axis of the MAR; the dataset includes mainly a comprehensive bathymetry 
map of the volcano and several photo-mosaics and 3D views (not all shown). The Regab 
pockmark is located in the Congo deep-sea fan; seeping fluids originate from a shallow buried 
channel that acts as a reservoir for biogenic fluids; the pockmark was imaged with ROV-
bathymetry, backscatter and large-area photo-mosaics and video-mosaics (not shown); the 
high data quality allowed detailed comparison of the different datasets. 

 

The first case study focused on five venting sites of the Menez Gwen hydrothermal vent 
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system. A photo-mosaic was constructed for each of them, using an ROV-mounted 

underwater camera. These photo-mosaics provided full geo-referenced overviews of four of 

the sites and a partial panorama-view of the fifth and smallest site. Based on GIS analyses 

and area calculations, the distribution of the dominant megafauna species was described and 

population densities and biomasses were assessed at the scale of entire sites of active 

venting. The total population density over the four largest sites ranges between 28,640 and 

50,120 individuals, which corresponds to a total biomass of 50 to 380 kg wet wt. Such 

estimations are so far unique, in the sense that similar estimations for entire sites of venting 

activity could not be found in current scientific litterature. Indeed, comparable studies 

generally use standardized units of density (individuals m
-2

) and biomass (kg m
-2

), but do not 

provide area measurements. The estimated total biomasses were used to infer the total 

consumption in dissolved gases by the fauna at different sites of active venting. 

The second case study was based on two overlapping video-mosaics, which represent the 

most populated area of the Regab pockmark with a 10-year interval (2001-2011). It allowed 

studying the large-scale distribution of the megafauna and authigenic carbonates and its 

temporal variations. Seep fauna and methane-derived authigenic carbonates (MDAC) are 

indications for past or present seepage activity; hence, a model linking the fauna and MDAC 

occurrences to the subsurface plumbing system was proposed. Furthermore, the temporal 

evolution of the fauna and MDAC was used to discuss the evolution of the seepage activity. 

The third case study presented a ROV-bathymetry and backscatter map of the entire Regab 

pockmark, together with a large-scale photo-mosaic and a comprehensive survey of gas 

emissions across the pockmark. This unprecedented dataset gave a new view of the entire 

pockmark morphology and of the actively venting areas, as well as a detailed mapping of the 

areas of occurrence of the megafauna and crusts of MDAC. It was shown that the pockmark 

is composed of two distinct areas in term of seepage activity. One area was associated to 

strong fluid seepage, enabled by the occurrence of preferred fluid pathways such as fractures 

in the subsurface; conversely, the second area was characterized by comparatively lower 

seepage activity, likely related to slowly rising fluids through low- or un-disturbed sediments. It 

was evidenced that the growth of the pockmark is driven by self-sealing processes and by the 

formation of new pathways for focused and diffuse fluid flow. 

These three case studies allowed answering the initial questions: 

 

(1) At the scale of a hydrothermal vent site, how significant is the chemical consumption by 

vent fauna in comparison to the natural release in dissolved gas? Do benthic vent fauna exert 

a noticeable control on the methane and sulfide effluxes to the hydrosphere? 

This work concludes that the faunal consumption in dissolved gases is low in comparison to 

the natural gases from the system. Total consumption in methane and sulfide by the dominant 

fauna over the four largest active sites of the study was estimated to be about ten (sulfide) 
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and a hundred (methane) times lower than the minimum estimations of the focused release 

from the system. Similarly, a one-square meter area of diffuse venting could meet at least 30 

and 4.5 times the total consumption of methane and sulfide in the four largest sites together. 

This conclusion was reached based on the most optimistic scenario, i.e. by comparing the 

maximum estimations of faunal consumption with the minimum estimations of gas effluxes. 

Therefore, it is likely that the faunal consumption is even less significant in comparison to the 

total natural gas release from the system. Considering this, the control of vent benthic fauna 

on diffuse methane and sulfide effluxes to the hydrosphere is relatively poor at Menez Gwen. 

As a comparison, this is unlike seep fauna, which was shown to act as an efficient benthic 

filter for dissolved methane (Sommer et al. 2006). 

 

(2) Is there any distinct pattern in the distribution of seep fauna? If so, what does it reveal 

about the seepage activity and plumbing system of the pockmark? 

Distinct distribution patterns of seep fauna were observed, in which the megafaunal 

communities of Regab were distributed more or less concentrically; the most methane 

consuming fauna (mussels) occurred towards the center of the circular patterns, and were 

surrounded by the rather sulfide-dependent fauna. Tubeworms occurred associated to 

carbonate crusts directly around the main mussel aggregations, while clams were generally 

present on the outer side, within soft sediments. 

Such pattern was observed in three different places and provided information to understand 

subsurface seeping activity. Indeed, this particular distribution suggested that the seeping 

activity is very heterogeneous and discrete, with several localized zones of high methane 

advection. The faunal patterns are centered on such zones, and reflect the spatial variability 

of the methane fluxes. The plumbing system must, therefore, be characterized by the 

presence of preferential pathways for seeping fluids, such as fractures or zones of higher-

permeability. Different advection rates result in different depths of the gas hydrate deposits 

and of the sulfate-methane interface zone, and, thus, control the distribution of the 

chemosynthetic fauna and MDAC. 

 

(3) How dynamic are cold seep communities? What can be inferred about the temporal 

evolution of the seepage activity? 

Results of the case study 2 showed that the distribution and overall size of the dominant 

megafaunal populations globally remained unchanged over the 10-year period of the study. In 

particular, the same distribution patterns were observed on both video-mosaics, what 

suggests that the main pathways for fluid advection did not change. This is in accordance with 

the general understanding that cold seep systems provide rather stable environments to 

chemosynthetic communities. 
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However, some small and localized distribution changes were observed, especially within the 

clam population. They consisted mostly in small-scale re-organization of some clam 

aggregates, and they did not put back in question the general distribution of the clam 

population. Nevertheless, such rearrangement indicates that the chemical fluxes reaching the 

surface within the clam population, i.e. within soft sediments, are locally variable. 

 

(4) What are the main mechanisms driving the growth of the Regab pockmark? 

Self-sealing processes and formation of new pathways for focused fluid flow are likely the 

main mechanisms that control the evolution of the pockmark. In this work, two areas with 

distinct fluid flow regimes could be identified at the Regab pockmark. One area is 

characterized by relatively large and deep depressions (sub-pockmarks) associated to thick 

carbonate crusts, abundant and diverse fauna, and gas ebullition. This area is the most active 

in terms of seepage and is related to the presence of preferential pathways for focused fluid 

flow, such as fractures, in the shallow sub-surface. The second area is composed of a myriad 

of unit shallow depressions (‘pits’ or ‘unit pockmarks’) of various dimensions and aspects. 

This area is associated to comparably low seepage intensity, related to diffuse fluid flow 

through sediment pores, and occur mostly on the outer side of the pockmark. The formation of 

unit pockmarks could be related to drainage of pore water, either triggered by fluid advection 

or by bio-irrigation of the fauna. 

It is postulated that the formation of extensive carbonate crusts in the focused flow area, and 

the subsequent permeability loss (self-sealing), cause fluids to redirect until pathways 

become available for focused or diffuse flow. Focused flow would occur following the 

reopening of a former pathway through breakup of the carbonate seal, or when a new 

preferential pathway is found on the side of the sealed area. With time, a new focused fluid 

pathway will lead to the formation of a sub-pockmark at the surface, as well with carbonate 

crusts and diverse fauna. Conversely, diffuse flow occurs as long as sufficient pathways for 

focused flow are not available. In the absence of focused pathways, seepage continues 

through a continuous and porous medium, and rising fluids disperse over a larger area; at the 

surface, such seepage is associated with small and shallow sub-pockmarks and low faunal 

diversity. 

 

(5) To what extent do high-resolution acoustic and optical datasets allow understanding vent- 

and seep-related processes? 

This work showed that geo-referenced mosaics are so far the best tools currently available to 

perform spatial analyses of fluid flow-related features. By enabling area measurements they 

allow quantifying vent- and seep-related processes at the scale of entire structures. In 

particular, this has been shown in this work with the quantification of the faunal consumption 

in dissolved gases, and of fluid flows at the Menez Gwen hydrothermal vent. The value of 
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mosaics was also shown in case studies 2 and 3, where they allowed (1) identifying spatial 

distribution patterns for the fauna and the carbonate crusts, (2) comparing mosaics from 

different years to study the temporal evolution of the system, and (3) identifying distinct zones 

with different fluid flow regimes. 

It is interesting to note that, although many institutes have been working on improving 

mosaicking techniques since the first discovery of hydrothermal vents in 1977, these 

techniques are still marginally used, and most known seabed fluid flow systems have not 

been fully imaged so far. Very few works provide such large-scale mosaics or quantify fluxes 

over entire sites. 

Similarly, micro-bathymetry maps, either alone or in combination with mosaics and local 

observations, are still under-represented in studies about seabed fluid flow systems. So far, 

only few large vent and seep features have been mapped with ROV-mounted multibeam 

echosounders. However, when available, those datasets are very valuable assets for the 

understanding of the formation and evolution of the studied structures. The third study case of 

this work confirms that detailed seafloor topography does give a deeper insight on the 

mechanisms involved. Indeed, it allowed identifying features that could not be seen on 

previous datasets of the same pockmark; thus, from morphology differences, different sub-

surface fluid flow regimes could be inferred. 

Therefore, high-resolution mapping techniques contribute in various ways to the 

understanding deep-sea processes. However, the benefits gained from such techniques could 

be much strengthened by combining such maps with other datasets. For instance, additional 

information about the pore water chemistry or the depth of hydrate deposits and of carbonate 

concretions in the different zones of the Regab pockmark would be crucial to constrain and 

support the interpretation of the subsurface processes, and could help assessing chemical 

and mass fluxes at the scale of the pockmark. 

 

About the technical aspect, this entire work highlighted the need for reliable mosaicking tools 

that could be used by end-users, without any in-depth knowledge of the mathematics and 

physics involved. It was mentioned that mosaicking techniques are generally developed by 

experts in informatics, robotics and computer vision sciences who are often aimed at 

improving known techniques rather than on developing a robust product for potential end-

users. For instance, most recent mosaicking works concentrate on 3-dimensional imaging 

and mosaicking techniques, but no freely available tool exists for end-users to easily produce 

2-dimensional areal mosaics. To palliate this lack, the MATLAB toolbox for large-area photo-

mosaicking (LAPM toolbox) that was developed in this work for the third case study will 

ultimately be freely available on the Internet. This tool is not designed to compete with the 

most advanced mosaicking techniques, and it is certainly not the fastest either; but it does 

allow a potential end-user scientist to build a large-scale and geo-referenced photo-mosaic 

easily, with relatively low knowledge of the technical background involved. 



Conclusion and outlook

 

116 

Nevertheless, faster and more robust tools will be required in the future, in order to make 

mosaics the routine and not the exception. Indeed, the growing interest of the marine 

scientific community in the field of mosaicking and the increasing number of studies that use 

photo-mosaics, confirm that underwater mosaics have a huge potential in improving our 

understanding of deep-sea processes. 
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Appendix A: Review of commonly used mosaicking techniques 

A.1 Introduction 

The deep marine environment is hardly accessible and most part has remained largely 

unknown. One reason is that available underwater vehicles for deep ocean exploration have 

limited range and that surveys and investigations are still much localized, and focus on small 

areas of the seafloor only. But another main reason is that light in the deep-sea environment 

undergoes strong attenuation and high backscattering, which constrains optical surveys of the 

seafloor to be carried out from few meters only above the bottom. Such low altitudes severely 

limit the field of view of the cameras and representing extended scenes of the seafloor 

requires several images to be taken and assembled together. 

This creates the need for mosaicking. Video- or photo-mosaicking consists in aligning and 

stitching images together to form a large composite picture. The mosaics are usually 2D 

representations of a 3D scene, and hence rely on the assumption that the scene is planar. 

Several uncertainties and inaccuracies impact the data acquisition and quality. The main 

technical issues as regards the acquisition of images for mosaicking purposes are related to 

the accuracy of the positioning data and to the presence of tilt and drift in the submersible’s 

motion. 

Frame alignment can therefore hardly rely solely on the navigation data and must be 

complemented with pictorial correlations. This is the main step in the creation of mosaics, i.e. 

to match the points in areas of overlap between consecutive pictures. This step is commonly 

called image registration, and is the base of most accurate methods for relative positioning 

between two pictures. Such correspondence mapping between adjacent images not only 

allows to align the images but also to determine the geographic transformation between them. 

This information is critical, as images generally need to be resized and wrapped in order to 

compensate for distortions and to match with the reference image or mosaic. 

The main transformation between two images depends chiefly on the motion of the camera. 

For instance transformations between consecutive images taken that were with a camera 

moving on a 2D plan should consist mostly in translation and/or rotation. In practice however, 

the camera’s motion can be subject to pitch, roll, yaw and heave, and the transformations get 

more complex. Moreover, the planar scene assumption is not always verified and more 

scaling discrepancies can occur. Other sorts of distortion also impact the images, such as the 

lens distortion and the radial distortion caused by the water/air interface. Determining and 

compensating for the main distortions and motion transforms between consecutive frames is 

a key step towards precise registration and accurate rendering. 

There are additional difficulties that are related to the environment itself. First, due to strong 

attenuation of light, photo-imaging techniques must rely on powerful lighting systems, 

including strobes; such systems have the side effect of non-uniformly illuminating the scene 
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and of generating light backscattering towards the camera. Next, the seafloor can be 

relatively featureless and show little contrasts, which impacts both data acquisition and image 

registration phases. Those difficulties are very challenging in terms of mosaicking and 

algorithms must be robust enough to cope with all of these peculiarities.  

The present document reviews the main mosaicking techniques (Table A.1), and is structured 

as follow; section A.2 describes the data acquisition, sections A.3 to A.5 present the 

mosaicking workflow and review the main techniques and algorithms, section A.6 tackles the 

limitations related to the lighting or lens distortions, and section A.7 details the advances that 

have been made in three dimensional mosaicking. 

 

Table A.1: Overview of most cited mosaicking methods. 

Source Underwater 
application 

Type Real-time Method relying on 
navigation data 

Haywood (1986) yes photo no LBL 

Marks et al. (1995) yes video yes no 

Sawhney & Kumar (1997) no photo no no 

Fleischer et al. (1997) yes video yes DVL 

Gracias & Santos-Victor 
(2000) 

yes video no no 

Rzhanov et al. (2000, 2002) yes video yes no 

Eustice et al. (2002) yes photo no no 

Vincent et al. (2003) yes video yes 
USBL and DVL, mainly 
for geo-referencing 

Pizarro & Singh (2003) yes photo no no 

Maki et al. (2006) yes (AUV) photo possible 
Profiling sonar to detect 
acoustic reflectors 

Ferrer et al. (2007) yes photo no USBL and DVL 

Caccia et al. (2009) yes video possible no 

Nicosevici et al. (2009) yes any no no 

Bülow et al. (2009) yes photo yes no 

 

A.2 Data acquisition 

A.2.1 Material 

Work in the deep sea relies mostly on the use of remotely operated underwater vehicles. 

According to the literature, several of them have been equipped with cameras and lighting 

systems for the exploration of the seafloor. One can cite the ROVs Victor 6000 (Vincent et al. 

2003, Simeoni et al. 2007), Jason II (Podowski et al. 2009), Minerva (Ludvigsen et al. 2007), 
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Quest (Sahling et al. 2009), and the AUVs SeaBED (Singh et al. 2004a), Tri-Dog 1 (Maki et al. 

2006), and Sirius (Johnson-Roberson et al. 2009). 

Cameras for seafloor mapping purposes must be facing downwards and can be either video 

or still cameras. Video cameras produce images at a high frequency rate, with high overlap 

between each frame. This is very useful for mosaicking algorithms that rely on pictorial 

information. Conversely still cameras generally produce higher resolution images, but must 

rely on the use of powerful strobes; for mosaicking applications, strobe charging times limit 

the acquisition frequency, hence photo-images show low overlap areas. Therefore, 

mosaicking techniques must be more robust to align and stitch images in order to form a 

mosaic. However, areas for pictorial correspondence between images are smaller and 

transformations between consecutive frames are likely to be more complex or of higher 

amplitude than between video-frames. 

Underwater platforms also integrate positioning and navigation sensors. Ultra-short-baseline 

(USBL) is a positioning system that is commonly used onboard underwater vehicles. It allows 

absolute positioning of the vehicle in relation to the ship. Accuracy of USBL systems can be in 

the order of a few meters and experience and literature has shown that USBL data cannot be 

used for precise vehicle tracking and image-mosaicking (Eustice et al. 2005). Other systems, 

such as long-baseline (LBL) can offer sub-meter precision but rely on the deployment of 

acoustic landmarks. 

Doppler velocity log (DVL) sensors provide relative positioning data. Those sensors are also 

called dead-reckoning sensors. DVL relative positioning is more precise than with USBL but is 

impacted by drift. Drift between consecutive measurements is generally small but grows 

unbounded with each new measurement and can lead to larger positioning errors. Eustice et 

al. (2005) shows that DVL data can be complemented with visually augmented navigation 

(VAN) to compute accurate positioning. Visually augmented navigation is based on the 

concept of simultaneous localization and mapping (SLAM), which for an autonomous vehicle 

consists in simultaneously building a map and keeping track of its current position. 

A.2.2 Trajectories for areal mapping 

Due to the limited vision in the deep sea, seafloor imaging is done from very low altitude and 

has limited field of view. For this reason, imaging areas of the seafloor requires taking several 

images and assembling them into a mosaic of the scene. It is important to ensure that images 

are sufficiently overlapping and that no gap occurs in the dataset, i.e. that every point of the 

scene appears on one image at least. Therefore, images must be acquired in a consistent 

and structured way. 

A common trajectory for areal mapping is the lawn-mower pattern (Figure A.1), which consists 

in doing several parallel and overlapping transects. 
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Figure A.1: Lawn-mower pattern 
for areal mapping. 

 

In order to reduce drift and orientation errors between transects, it can be beneficial to keep a 

constant heading during the entire survey. This can be achieved by moving alternatively 

forward and backward without altering the heading between two transects (Marks et al. 1995). 

An alternative is to rely on high accuracy positioning data. For instance, (Maki et al. 2006, 

2007a, b) proposed a navigation system that relies on the use of a profiling sonar to position 

the underwater vehicle in relation to artificial and natural acoustic landmarks. 

However, accurate positioning data is not always available, and it is important to limit the 

effect of the drifting. Bottom currents or compass imprecisions can be source of drift, and 

methods exists that propose to include crossover points, i.e. points where the ROV crosses 

its own trajectory in order to survey a same area twice, as complement to the lawn-mower 

pattern (Fleischer et al. 1996, 1997, Fleischer & Rock 1998, Garcia Campos 2001, Vincent et 

al. 2003, Borgetto 2005). When the camera passes over a same area twice, its relative 

position can be re-estimated accurately and compensated for drift. 

Vincent et al. (2003) take advantage of crossover points, called rendezvous points, and DVL 

data (relative positioning) to estimate an optimized trajectory, prior to its fusion with the 

mosaic. This is done by iteratively calculating the shortest path between two extreme 

positions, implementing some “retiming positions”, gained from information from the crossover 

points, and then re-calculating the shortest path.  

Fleischer et al. (1996, 1997) propose to use the information from crossover data on the image 

alignment directly, instead of applying it to the navigation data. He explains it is not sufficient 

to simply use such information to update the current position and to go on with the image 

alignment. He asserts that additional information can be used to propagate the error 

correction back through the chain of images. Whenever the camera path crosses itself, a 

closed loop is formed. Using a filter, called smoother-follower, the image alignment along the 

loop is re-estimated, thus reducing the general registration errors. 

Although it is not explicitly mentioned as such, Pizarro & Singh (2003) perform a similar 

correction based on rendezvous points. Using the images pre-alignment based on the time 

sequence to detect further overlaps between non-consecutive images enables the algorithm 

to detect possible crossover points. The correction of alignment errors is done during the 
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global registration phase (Section A.4) by minimizing a cost function, which uses all overlap 

information. 

 

A.3 Image registration 

Image registration is the process of aligning and matching two images in the same plane. It is 

considered as the first step in image mosaicking and can be seen as the combination of 

image alignment, overlap detection and image matching. Zitová & Flusser (2003) propose a 

thorough survey of registration methods in the wider field of image mosaicking, i.e. not only 

for areal mapping but also for medical imaging or landscape planning. The registration 

process follows a four-step workflow: feature detection, feature matching, transform model 

estimation, and image re-sampling and transformation. Garcia Campos (2001) also presented 

an overview of the registrations methods with a focus on underwater applications. He 

described a common frame for mosaic construction that is similar to the one proposed by 

Zitová & Flusser (2003). Feature detection consists in extracting from each image the salient 

features such as points, lines, or regions. This is usually done by edge or corner detectors 

(Harris & Stephens 1988, Lowe 1999, Bay et al. 2008). Feature matching is the process of 

finding a correspondence between adjacent images. Numerous methods exist, some 

matching the frames based on the spatial distribution or on the description of the features, 

while others do not even rely on feature detection. These methods are discussed in more 

details in section A.3.1. After the matching step, a mapping function can be estimated from 

the control points to relate one frame to the next. The mapping function somehow models the 

transformation between the frames. In underwater imagery it is commonly assumed that 

simple geometric deformations applied to the entire image can compensate for most of the 

distortion. One reason is to find the right balance between quality of the mosaic and speed of 

execution. Last, images are re-sampled and transformed to compensate for the distortion and 

be matched to the previous image. This is the actual registration of the image. 

A.3.1 Feature detection and matching 

Feature detection can be done over the entire image area. Feature matches are then looked 

for among any pair of images. To speed up the process however, some techniques generate 

a pre-alignment of the frames in order to focus the image matching process on overlapping 

images only. It also prevents wrong matches between non-adjacent images. Ferrer et al. 

(2007) rely on navigation data of the camera’s platform to produce a preliminary frame 

alignment. This pre-alignment is then used to detect overlaps not only on consecutive frames 

but also on any adjacent images. Gracias & Santos-Victor (2000) proposed to use the time 

sequence of the frames instead of relying on navigation sensors to pre-align the images. By 

correlating feature points between one image and the next, they align images chronologically. 

In this approach, matching inaccuracies and alignment errors between consecutive frames 
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are small but build up with every new image. This can lead to a large error in the global 

alignment. To palliate this problem they extended the technique by directly matching the 

images with the mosaic being constructed. Pizarro & Singh (2003) adopted a similar 

approach to pre-align low-overlapping images (in the order of 30%). The main improvement 

lies in the fact that the pre-alignment is then used to detect overlapping areas between non-

consecutive frames. Marks et al. (1994) used image correlation to determine the 

displacement of every image and to allow for real-time video mosaicking. To prevent gaps in 

the mosaic, the images are selected based on their spatial offset instead of their time-

intervals. Fleischer et al. (1997) constructed a real-time mosaic from DVL positioning data, 

and implemented a filter smoother algorithm (named smoother-follower) to iteratively detect 

closed loops in the trajectory. Such information about crossover points is used to update the 

current position and to recalculate and improve the global placement of all previous images in 

the mosaic. Such method is highly demanding in terms of computation resources but yields 

noticeable improvements. Maki et al. (2006) successfully generated mosaics without using 

any image-based correlations. The system was implemented on an autonomous underwater 

vehicle (AUV), and relied on accurate and drift-free positioning of the vehicle. The AUV used 

a profiling sonar to estimate its position in relation to pre-deployed acoustic reflectors. Finally, 

Haywood (1986), a pioneer in the creation of underwater photo-mosaics, used pre-defined 

positional coordinates, to acquire and align the images. Good accuracy was obtained using 

LBL positioning system, which also enabled taking and scaling stereo photographs. 

A.3.2 Image matching techniques 

Image matching techniques have been extensively described in the literature and are 

commonly divided into two major categories: Featureless and feature-based methods (Garcia 

Campos 2001, Pizarro & Singh 2003, Zitová & Flusser 2003, Bülow et al. 2009, Caccia et al. 

2009). 

A.3.2.1 Featureless methods 

In the literature, featureless methods are also referred to as direct methods, or intensity-

based methods (Pizarro et al. 2003). These methods use the pixels intensity values to 

estimate the motion between images and their accuracy depends highly on the percentage of 

overlap between consecutive frames; this makes them more suited for video-mosaicking than 

photo-mosaicking. The most common direct methods are (1) cross-correlation of image 

intensities and (2) Fourier methods, i.e. correlation of images in the frequency domain (Zitová 

and Flusser 2003). The latter method is generally more robust, faster and less noise-

sensitive. 

Techniques using cross-correlation use directly the pixels intensities and require a fixed light 

source. The fact that in underwater imagery the light source moves together with the camera 

generates moving shadows and significant variations in intensity across the images, and 

directly affects the efficiency of cross-correlation techniques. Another drawback of these 
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techniques is that translation is assumed to be the main transform between consecutive 

frames, and images with significant rotation, scaling or affine transforms are not successfully 

registered. Therefore those methods are efficient for mosaicking of planar scenes where the 

motion between frames can be assimilated to a translation, but do not cope well with rapidly 

changing topography, and areas with relief and moving shadows are not always well 

rendered. To improve robustness of the technique, most methods are based on a “coarse-to-

fine” strategy, estimating the parameters of the flow vector at each level of the Gaussian 

pyramid, successively moving from the coarsest level to the finest level (Odobez & Bouthemy 

1995, Sawhney & Kumar 1999, Vincent et al. 2003, Singh et al. 2004b). 

Frequency-based techniques, also called Fourier methods, are generally more efficient and 

cope better with scale and orientation differences. For instance, in the frequency domain, 

scaling and rotation transforms can be represented as translations and ,thus, be easily 

registered (Rzhanov et al. 2000, Eustice et al. 2002, Singh et al. 2004b, Bülow & Birk 2009, 

Bülow et al. 2009). 

Featureless methods are effective in relating images with large overlapping areas and can be 

well suited for applications on video imagery. Especially their computing times are usually 

short, what makes them a good option for real-time applications. However, these techniques 

usually fail to successfully register low overlapping still images. 

A.3.2.2 Feature-based methods 

Feature-based methods rely on feature extraction and matching techniques, and proved 

efficiency with low overlapping imagery (Pizarro & Singh 2003). The technique consists in 

recognizing and mapping a set of features over consecutive images. Point-to-point mapping 

between two frames is done via the use of control points. Therefore, accuracy of those 

methods highly depends on the efficiency of the feature extraction and matching method. 

Indeed, low contrasts, terrain relief, heterogeneous lighting, perspective distortions, rotation 

and scaling changes represent many challenges. Feature-based methods rely on corner 

detectors to detect features or contours across images (Harris & Stephens 1988, Marks et al. 

1994, Lowe 1999, Bay et al. 2008). 

Marks et al. (1994) used the signum of the “Laplacian of the Gaussian” (S-LoG) operator to 

generate a binary version of the original image, which highlights the main contours in the 

image. The LoG operator allows detecting high image gradients in the image (i.e. contours). 

Image registration is then done by correlating sections of the binary image with sections of the 

previous image. This method is somewhat similar a featureless cross-correlation technique, 

but differs in that it is less impacted by illumination heterogeneities. This technique enabled 

real-time mosaicking applications, but it requires a powerful hardware to meet the computing 

demands (Marks et al. 1994, 1995). Although this method was successful in generating 

mosaics, it could not cope with rotation or scale changes. 

A same feature can appear distorted on a next image if it has undergone some rotation, 
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scaling or non-linear transforms and be hardly identifiable. As motion is not always known and 

cannot always be compensated for beforehand, identification of such features on several 

images relies on the use of invariant descriptors. The idea behind is to describe features in a 

way that is invariant to changes such as translation, rotation, scaling, affine or even 

perspective transforms. 

The Harris corner detector (Harris & Stephens 1988) is often used in underwater imagery. 

Gracias & Santos-Victor (2000) implemented a simplified version without Gaussian filtering 

(Gracias 1998) for feature detection. Ferrer et al. (2007) used the Harris detector to validate 

registration of each pair of images, whereas the detection and matching is performed with the 

more recent SURF algorithm (Bay et al. 2008). Pizarro & Singh (2003) used a modified 

version of the Harris corner detector (Harris & Stephens 1988), that can recognize a same 

point in the presence of rotation and scale changes. In their method, moment invariants 

(Zernike moments) are used to describe image patches around each detected feature. 

The real-time video mosaicking MATISSE program (Vincent et al. 2003) can perform the 

motion estimation either with a featureless method or a feature-based method (Section A.3.2). 

The latter is based on the Shi-Tomasi-Kanade tracker (Shi & Tomasi 1994). This detector can 

cope with affine changes in the feature window, i.e. translation, rotation, scaling and even 

shear (Garcia Campos 2001). 

More recently, other powerful algorithms have been developed, two of which are commonly 

used in commercial or open source programs to detect and describe features: the scale-

invariant feature transform (SIFT) descriptor (Lowe 1999, 2004), and the Speeded Up Robust 

Features (SURF) descriptor (Bay et al. 2008). These detectors are now commonly used for 

underwater mosaicking (Ferrer et al. 2007, Escartín et al. 2008, Bülow et al. 2009, Caccia et 

al. 2009, Nicosevici et al. 2009), and are considered as being the most robust detectors 

currently available. The more recent SURF descriptor is faster than the SIFT descriptor for a 

comparable efficiency. 

A major source of errors in feature-based registration methods is the occurrence of false 

matches in the sets of detected features and it is primordial that feature-based methods 

integrate detection and filtering capabilities to remove mismatches. Commonly used 

mismatch removal techniques are: Least Median of Squares (LMS or LMedS) (Pizarro & 

Singh 2003), MEDian Set Reduction (MEDSERE) (Gracias & Santos-Victor 2000) or RANdom 

SAmple Consensus (RANSAC) (Fischler & Bolles 1981, Vincent et al. 2003, Ferrer et al. 

2007, Escartín et al. 2008). 

A.3.3 Homography estimation 

Feature matching is used to determine the motion between consecutive images. Not only it is 

used to position an image relatively to another but it also allows calculating the homography, 

i.e. the planar transformation, which best explains the motion between two images. The 

planar transformation, also called mapping function (Zitová & Flusser 2003) or motion model 
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(Garcia Campos 2001), is used to project an image onto the 2D plan of the mosaic. This 

projected image can also be called an homography. Briefly, the creation of the mosaic 

consists in stitching the homographies together. 

Motion of the camera is impacted by multidirectional tilt and heave; hence, distortions 

between images do not always consist in mere translations but often comprehend a 

combination of rotation, scaling, and perspective deformations. 

Planar transforms can be divided in several types based on the number of parameters that 

define them, i.e. based on the number of degrees of freedom (DOF). The different types of 

planar transformations are listed below, starting from the simplest to the most general: 

- Translation (2 DOF). 

- Euclidean (3 DOF): translation and rotation. 

- Similarity (4 DOF): translation, rotation, and scaling change. 

- Affine transform (6 DOF): same as the similarity but also includes the shear. 

- Projective transform (8 DOF): same as the affine transform but it also includes 

perspective deformation. This is the most general planar transformation. 

For the creation of a mosaic, it is important to choose the type of motion model based on the 

assumed deformation. The most general transform, with 8 degrees of freedom, might not 

always return the best results, and in some cases a restricted transformation may be less 

sensitive to noise. For instance, for a set of images acquired with a translating camera that is 

free of adverse motion, a transform with 2 DOF will explain the motion as a translation only; 

Conversely, a transform with more degrees of freedom will try to estimate more parameters 

and might not explain the motion with a mere translation. Hence, prior knowledge of the 

camera’s motion is valuable to assume the geometric deformation. 

As stable as they may be, underwater remotely operated vehicles are never entirely free of 

pitch and roll and perspective deformations do occur. Rzhanov et al. (2001) suggested to rely 

on the attitude sensor to correct images for pitch and roll and, thus, to reduce the complexity 

of the transform from projective to affine. He showed that registration and mosaic quality can 

be greatly improved, even with approximate values of pitch and roll. Pizarro & Singh (2003) 

proposed to first estimate the topology, i.e. the spatial relation between images, by registering 

all the images with an affine transform. Then, new overlaps between non-consecutive images 

are detected and a global solution is recomputed. This step is done iteratively until no new 

overlap is detected. The purpose is to identify overlaps and to accurately position the frames 

together before the final global registration phase, which is done assuming a projective 

transform. Finally, Vincent et al. (2003) estimate the motion entirely with an affine model. 
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A.4 Global registration 

The global registration phase consists in registering all the images together. Most methods 

described so far have allowed estimating the motion between every consecutive image. This 

technique is known as pairwise registration (Pizarro & Singh 2003) or image-to-image 

registration (Marks et al. 1994, Rzhanov et al. 2000, Gracias & Santos-Victor 2000). However 

small registration errors between consecutive images accumulate during mosaic construction 

and can lead to a large global registration error, as the registration error grows unbounded 

with every new image added to the mosaic. 

An alternative is to directly register new images with the mosaic being constructed. This 

technique is known as image-to-mosaic registration or also as online-mosaicking, since it is a 

very common strategy for real-time applications. Registering an image to the mosaic allows 

bounding the registration error. The registration is not performed only with the previous image, 

but also takes into account other overlaps with adjacent pictures (Gracias & Santos-Victor 

2000). (Pizarro & Singh 2003) proposed a very consistent approach by considering every 

overlaps of the mosaic simultaneously. Rather than concatenating pairwise homographies, 

the homographies are determined considering the overlap areas with both the previous and 

the following image. Then further overlaps with non-consecutive frames are detected and the 

homographies are recomputed. This process is done during the topology estimation phase 

using affine transforms, and serves as a starting point to the global registration step, which is 

performed with projective transforms. Such a technique cannot be used for real-time 

applications but yields remarkable results. Rzhanov et al. (2002) described a similar method 

but with the possibility to include additional positioning and attitude data in the cost function 

calculation. The use of weighting coefficients allows considering the modest accuracy of such 

data. Ferrer et al. (2007) proposed to select a subset of the correspondence points that were 

used to compute the pairwise homographies, and to compute a global solution for the entire 

mosaic, also called bundle adjustment. This is less demanding in terms of computing 

resources, but the subset of point must be well spread and representative of the homography, 

in order to yield good results. Vincent et al. (2003) proposed a radically different approach, in 

which pairwise homographies are used to compute the mosaic, which in turn is fused with the 

dead-reckoning data (DVL data). This involves some pre-processing of the positioning data to 

improve the trajectory, and then some warping of the mosaic to match the trajectory. 

 

A.5 Mosaic rendering 

After registration, images are merged together to compose the mosaic. Methods to render the 

overlapping areas are manifold and can be divided in two categories: blending and clipping. 

The blending approach consists in combining the overlapping pixels. This can be done for 

instance by averaging the colors or taking the temporal median. Depending on the technique, 
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moving objects such as fish can be more or less well rendered. According to Garcia Campos 

(2001), a temporal average strategy usually creates a slight blurring where the object has 

moved. Alternatively, a temporal median strategy can solve this issue much more effectively, 

but only if moving objects cover background pixels over less than half the frames. Therefore, 

the use of a temporal median strategy is more sensible for video-mosaicking applications, for 

which single mosaic pixels appear on many frames. Images used in photo-mosaicking are 

generally low-overlapping and most mosaic pixels do not appear on more than two images. In 

such a case, use of the average is more suited. More complex blending methods exist; 

among those, the use of multi-resolution pyramidal based blending (Burt & Adelson 1983, 

Eustice et al. 2002, Pizarro & Singh 2003) and of wavelets and graph cuts (Gracias et al. 

2009) produced very promising results. 

The clipping approach consists in taking into account one image only. Usually the first image 

(less recent) or the last image (more recent) is chosen (Marks et al. 1994, Ferrer et al. 2007). 

But similarly, a variant exists, which is to choose the pixel that is the closest from the image 

center (Lirman et al. 2007). This method can minimize the effects of uncorrected lens 

distortions, which are larger close to the image boundaries (Gracias 2002). 

Requirements in terms quality of image alignment differ between the two approaches. The 

blending strategy requires a good pixel alignment over the entire overlap area, in order to get 

a mosaic free of blurred patches, whereas the clipping strategy requires accurate alignment 

along the seams only. The clipping is not as memory demanding as blending the pixels, and is 

commonly chosen for real-time applications. 

 

A.6 Limitations 

A.6.1 Scene Lighting and image processing 

Lighting represents one of the main limitations in underwater imagery. Light in the deep sea 

undergoes strong absorption and attenuation, and seafloor imagery techniques must integrate 

powerful artificial lighting systems. The main difficulties related to the lighting are (1) non-

uniform illumination of the scene and (2) backscattering of light towards the camera. Judicious 

positioning of the lights and thorough survey planning can help to reduce adverse lighting 

effects (Ludvigsen et al. 2007); however images often require being pre-processed prior to 

stitching, so as to enhance the contrasts and to compensate for the lighting heterogeneities. 

A.6.1.1 Non-uniformity of illumination 

Quality of most underwater images is impacted by non-uniform illumination. Images present a 

bright halo in their center and become darker towards the border of the frame (e.g. see Figure 

2.1). This phenomenon is sometimes called vignetting, and affects the whole set of images in 

a similar fashion. Vignetting is a known issue in imagery techniques that is usually caused by 



Review of commonly used mosaicking techniques

 

A-xii 

lens’s failure to properly render a uniform illumination. However, it is accentuated in the deep 

sea due to light being rapidly attenuated, and its intensity depends on several factors such as 

the altitude of the camera, the position of the light system, or also the relief of the scene. 

Vignetting is an important issue in image-mosaicking applications, and can be a hindrance to 

feature tracking and matching algorithms. Since the lighting systems moves along with the 

camera, scene illumination varies between consecutive images, and a well-lit feature in one 

image can appear dark in the next frame; hence image registration algorithms must be robust 

enough to cope with intensity variations. Although vignetting generally cannot be totally 

prevented, its intensity can be limited by optimizing the setup of the lighting system. It is 

commonly accepted that using several lights and moving them away from the camera can 

achieve better illumination (Ludvigsen et al. 2007). The idea behind this is to hamper the 

occurrence of a bright halo by combining several light sources and to produce a more even 

lighting over the scene. 

A.6.1.2 Light backscattering 

This is another common issue of underwater imagery that light is being scattered back to the 

camera. Light backscattering is caused by suspended particles, known as marine snow, and 

impacts the overall quality of the images by generating some high frequency artifacts. 

Increasing the intensity of the light also increases the backscatter-induced noise, resulting in 

a lower contrast. 

An effective way to limit light backscattering is to increase the distance between the light 

sources and the camera. This has the effect of reducing the quantity of light that is scattered 

back towards the camera (Jaffe 1990, Singh et al. 2004b). 

A.6.1.3 Images processing for lighting correction and contrast enhancement 

Processing images for lighting, colors, and contrast compensation can enhance the overall 

quality of a mosaic and ease the stitching process. However, there is a limit to the quality of 

improvement that can be achieved with image processing, and information cannot always be 

recovered if for instance the scene has been insufficiently lit. It is therefore important to get 

the best illumination and quality from the acquisition stage and not to rely on image 

processing only. 

Several processing methods are described in the literature, to improve the illumination of the 

images and to reduce the backscatter-induced noise. Marks et al. (1995) used the Laplacian 

of the Gaussian operator to reduce effects of lighting biases and low contrast. From there, 

filtered versions of the images are created and used for finding correspondences. This 

technique can also be used to improve the visual quality of the final mosaic; however, this 

step is not detailed in the publication. The Laplacian of the Gaussian is considered to be 

efficient in removing backscatter-induced noise to a certain extent; but, it can also destroy 

some information. Rzhanov et al. (2000) presented an approach called de-trending. A low-
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order polynomial spline is fitted to the frames and subtracted from the image. Such method is 

efficient in removing dark edges and darkening bright spots. Also, it can be applied as a batch 

processing to the whole set of frames. Eustice et al. (2002) applied a technique called 

contrast-limited adaptive histogram specification (CLAHS). It is based on the contrast-limited 

adaptive histogram equalization (CLAHE) technique (Zuiderveld 1994). The idea is to divide 

an image in a set of sub-regions and to equalize the histogram of each region separately, 

according to the desired distribution. Bi-linear interpolation is then used to smooth the 

transition between the sub-regions. According to Eustice et al. (2002), the Rayleigh 

distribution yields better results with underwater imagery. Pizarro & Singh (2003) applied a 

radiometric correction on every image and showed remarkable improvement on the final 

mosaic. The radiometric correction is calculated for each pixel and is based on the inverse of 

the average of intensities. Ludvigsen et al. (2007) explained that light of an underwater scene 

can be divided into an illumination component and a reflectance component, and that both 

components can be separated easily in the frequency domain. By applying a de-trending 

technique on the illumination component, a more uniformly lit image can be obtained. 

To complete this brief overview, several comprehensive reviews of image processing methods 

for lighting, color and contrast enhancement can be found in the literature (Garcia Campos 

2001, Garcia et al. 2002, Borgetto 2005, Schettini & Corchs 2010). 

A.6.2 Geometric distortion and camera calibration 

A.6.2.1 Geometric distortion 

Due to the behavior of the camera sensor and to imperfections in the design and alignment of 

the optical elements of the camera, images are usually impacted by geometric distortion. It 

may not be immediately distinguishable on single images but can be a problem when 

attempting to compose a mosaic with several images (Sawhney & Kumar 1999). This 

phenomenon is known as lens distortion. It is a common problem in video or photo imagery 

and it is accentuated in underwater applications, where different refractive indexes of light in 

the water and the air media generate additional distortion at the air/water interface, i.e. 

between the camera pressure housing and the water. 

The global distortion is mostly a combination of two main components: a radial distortion and 

a tangential distortion (Elibol et al. 2008). The effect of the tangential component is commonly 

considered as negligible in comparison to the radial distortion, and most works focus on the 

correction of radial distortion. Radial distortion can be of two types: pincushion or barrel 

distortion, or a combination of both and is considered to be more prominent with wide-angle 

lenses, such as fish-eye objectives. 

For this reason, some techniques (Marks et al. 1995, Ludvigsen et al. 2007) use narrow angle 

objectives, or long focal lenses, to reduce the distortion to a level where it can be considered 

as negligible. However, this has the effect of reducing the camera’s field of view and more 
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images are needed to compose a mosaic. Other methods use full or partial camera 

calibration, i.e. use the extrinsic and intrinsic parameters of the camera (Gracias & Santos-

Victor 2000, Pizarro et al. 2003, Gracias & Negahdaripour 2005, Eustice et al. 2008). This 

way, images can be warped prior to mosaicking in order to compensate for the distortion. 

However, camera calibration is not the only way to compensate for the distortion. Pizarro & 

Singh (2003) showed the gain in quality of registration obtained by correcting the lens 

distortion. In this method, a simple radial distortion correction is estimated from the matched 

features of a subset of adjacent images of a planar scene, and then applied to the whole set 

of frames. The correction is only approximate but yields relatively good results. The 

advantage of such technique is that it can be calculated from the survey imagery and does 

not require a camera calibration. 

A.6.2.2 Camera calibration 

Nevertheless, most methods rely on camera calibration to eliminate the distortion. Several 

methods have been described to fully or partially calibrate a camera. Zhang (2000) proposes 

a technique to fully calibrate the camera, using an underwater target. Bryant et al. (2000) 

developed a camera calibration scheme using an algorithm based on point detection and a 

3D calibration pattern. Heikkila & Silven (1997) developed a MATLAB toolbox to fully calibrate 

a camera and compensate for both radial and tangential distortions. Rzhanov et al. (2002) 

performs the calibration with the Camera Calibration Toolbox for MATLAB (Bouguet 2010), 

which is freely available on the internet. Then the distortion correction is applied as a pre-

processing step prior to mosaicking. (Vincent et al. 2003) uses a self-calibration method that 

is based on feature tracking across a sequence of images, i.e. without resorting to external 

target. This method is likely to be efficient mainly for high-overlapping images. 

 

A.7 3D mosaicking 

Several attempts at three-dimensional mosaicking have been proposed, often with very 

different approaches. 

Haywood (1986) was one of the firsts to propose a 3D mosaicking technique. His approach 

consists in using stereo-photography to generate stereo-photographic mosaics. Information 

about the camera setup is used to estimate the vertical scale. (Negahdaripour & Madjidi 

2003) also uses stereo-images to produce 3D mosaics. The mosaicking algorithm relies on 

the optic flow and works with video-imagery. The algorithm allows for some real-time 

applications such as trajectory following to ease the data acquisition step. Some other 

methods rely on the fusion of the mosaic and the bathymetry data (Singh et al. 2000, 

Johnson-Roberson et al. 2009). 

But impressive results have been obtained by methods based on pictorial information. These 

methods generally assume that the camera system is calibrated and use an algorithm that 
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extracts 3D information directly from the pictures (Pizarro et al. 2003, 2004, 2009). The 

algorithm relies on the concept of structure from motion (SFM) reconstruction. This consists in 

first recovering the vehicle motion to infer the relation between consecutive images, in order 

to better render the 3D information. Their method also takes advantage of the available 

navigation data from other sensors to constrain the solution. Nicosevici et al. (2009) described 

a similar technique but without relying on navigation priors. Their methods can be applied to 

both high-overlap video imagery and low-overlap photographs. 

 

A.8 Conclusion 

The topic of underwater mosaicking has been subject to extensive research, and impressive 

results have been achieved both in video-mosaicking and photo-mosaicking. 

Photo-mosaics generally achieve better resolutions than video-mosaics, due to the higher 

definition of photo-cameras. Photo-mosaicking techniques based on feature detection and 

mapping must cope with more constraints than video-mosaicking techniques, especially in 

terms of size of overlaps and lighting peculiarities caused by the use of strobes. However, 

they also allow more flexibility and better rendering for the production of areal mosaics, i.e. 

mosaics that follow a lawn-mower pattern. Indeed, by enabling feature matching between 

distinct lines, instead of between consecutive frames only, photo-mosaicking methods 

generally achieve a better global registration, with comparably low error. 

The use of video-mosaicking is therefore very efficient for the production, on- or off-line, of 

linear mosaics. It is both fast and yields good results (Allais et al. 2004). Conversely, feature-

based photo-mosaics are more accurate for areal-mapping applications. 

Several mosaicking techniques have been proposed for underwater applications (Gracias & 

Santos-Victor 2000, Eustice et al. 2002, Vincent et al. 2003, Pizarro & Singh 2003, Allais et al. 

2004, Ferrer et al. 2007, Nicosevici et al. 2009), some of which could successfully construct 

mosaics of the seabed. However, very few led to the development of a final end-user product 

that could be easily used by marine scientists interested in seafloor mapping, without 

requiring extensive background in mathematics and physics, and programming skills. The 

MATISSE program (Vincent et al. 2003, Allais et al. 2004) is one of the few programs 

available for the construction of geo-referenced video-mosaics. No such equivalent exists for 

the production of feature-based photo-mosaics. This constitutes an issue, especially since 

techniques that are described in the literature are not always easy to initiate for the end-user 

of deep-sea mosaics. Moreover, photo-mosaics are currently among the most accurate ways 

of mapping the seafloor and a robust end-user underwater photo-mosaicking tool would be of 

great benefit to the marine scientific community. 
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