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Abstract
In recent years, a collection of new techniques which deal with video as input data, emerged in computer graphics
and visualization. In this survey, we report the state of the art in video-based graphics and video visualization.
We provide a review of techniques for making photo-realistic or artistic computer-generated imagery from videos,
as well as methods for creating summary and/or abstract visual representations to reveal important features and
events in videos. We provide a new taxonomy to categorize the concepts and techniques in this newly emerged body
of knowledge. To support this review, we also give a concise overview of the major advances in automated video
analysis, as some techniques in this field (e.g. feature extraction, detection, tracking and so on) have been featured
in video-based modelling and rendering pipelines for graphics and visualization.

Keywords: video-based graphics, video visualization, video processing, video summarization, video abstraction,
video retargeting, video-based modelling

ACM CCS: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Video Analysis I.3.3 [Computer
Graphics]: Picture/Image Generation— I.3.8 [Computer Graphics]: Applications—Visualization I.4.8 [Image Pro-
cessing and Computer Vision]: Scene Analysis—Time-varying Imagery H.5.1 [Information Interface and Presen-
tation]: Multimedia Information Systems—Video

1. Introduction

Until recently, video has largely been used only as an out-
put medium in computer graphics and visualization. Con-
currently, the rapid advance of digital recording and creation
technologies has resulted in an explosion of video data, stim-
ulating the need for creating computer graphics and visual-
ization from video. In this survey, we report on the emergence

of a new collection of graphics and visualization techniques,
which deal with video as the input data.

Video-based graphics is concerned with the manipulation
and rendering of graphical models built from video data, in-
stead of, or in addition to, traditional object representations.
Its primary aim is to make creative computer-generated im-
agery from videos for artistic appreciation and entertainment.
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There are two main strands in this field, video refashioning
and video-based scene modelling. The former typically in-
volves manipulation of the geometrical entities (e.g. object
shape and distribution) and optical attributes (e.g. lighting,
colour) of an input video, producing a new video that cap-
tures the essence of the input but in an expressive art form,
such as by relighting the video scene with imaginary lights or
mimicking hand-drawn cartoon animation. The latter, mean-
while, involves reconstruction of a three-dimensional (3D)
object or scene model captured by the input video, allowing
such a model to be manipulated, combined with other mod-
els, and rendered in the same way as conventional graphical
models. The primary motivation for video-based graphics
has been consumer multimedia applications, and the film
and game industries.

Video visualization is concerned with the creation of a new
visual representation from an input video to reveal important
features and events in the video. It typically extracts mean-
ingful information from a video and conveys the extracted
information to users in abstract or summarized visual rep-
resentations. Video visualization is not intended to provide
fully automatic solutions to the problem of making decisions
about the contents of a video. Instead, it aims at offering a tool
to assist users in their intelligent reasoning while removing
the burden of viewing videos. This aim justifies deviation
from the creation of realistic imagery (as found in video-
based graphics), and allows simplifications and embellish-
ments, to improve the understanding of the input video. In
many ways, the subject of video visualization encompasses
some aspects of video-based graphics. The development of
the subject has been heavily influenced by many applications
in science, medicine, sport and security.

There is a huge collection of literature in the fields of image
processing, computer vision and multimedia technology. Au-
tomated video analysis encompasses a variety of techniques,
ranging from low-level processing techniques for filtering,
enhancement, motion flow estimation, image segmentation
and feature extraction to high-level analytical techniques for
object and event detection and recognition, tracking and 3D
reconstruction. Automated video analysis is fundamentally
different from video-based graphics and video visualization.
The low-level techniques typically result in an output video
as a more cost-effective, informative or usable representation
than the input. The high-level techniques typically result in
a binary or probabilistic decision in relation to a classifica-
tion, or 3D measurements and models of objects and scenes
captured on videos.

Figure 1 illustrates three typical data flows of video-based
graphics, video visualization and video analysis. We can
observe that these three fields share a substantial amount
of functional components, although having dissimilar aims.
This survey focuses on video-based graphics and video visu-
alization. To provide readers with a brief background about
various functional components found in the literature of im-

Figure 1: Typical computational pipelines for video-based
graphics, video visualization and video analysis. This survey
focuses on the first two fields while giving a brief overview
of techniques in video analysis.

age processing, computer vision and multimedia technology,
we also provide an overview section on video analysis.

2. Taxonomy

Video-based graphics and video visualization are relatively
new developments in visual computing. It is highly desir-
able to establish a means for categorizing different technical
contributions in the literature. A taxonomy is usually defined
upon one or several classification attributes that differentiate
entities (e.g. concepts or methods) in a body of knowledge.
For video-based graphics and video visualization, such at-
tributes may include: (i) the principal goal of a method, (ii)
the data type of the output, (iii) the additional information that
accompany the input video and (iv) the level of automation.

Like categorization problems in many applications, clas-
sification schemes in a taxonomy cannot always ensure that
every entity falls into only one category exclusively. In our
case, it is unavoidable that some previous and future works
may fall into a few classes, often due to adoption of a hybrid
approach or generalization of a concept across different ap-
plications. Nevertheless, the majority of the works surveyed
in this paper do not incur any ambiguity in classification,
especially if we consider their primary features.

2.1. Classification by goals

As stated in Section 1, video-based graphics and video visu-
alization differ by their goals. We define two distinguishable
categories (Figure 2):

A1. Video-based graphics—to make use of video content
in creating computer-generated imagery for artistic
appreciation and entertainment.

A2. Video visualization—to provide users with a tool to
aid their intelligent reasoning while removing or alle-
viating the burden of viewing videos.

c© 2012 The Authors
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Figure 2: First and second classifications proposed by our
survey: (a) by goals; (b) by type of output data.

Video-based graphics can be further categorized by differ-
ent intents as:

A1.1. Artistic presentation—focuses on altering the pre-
sentation of a video by rendering it in different
styles, typically mimicking a non-photo-realistic
(NPR) technique (e.g. painting) and transforming
a video to a more ‘expressive’ cartoon representa-
tion.

A1.2. Compositing—focuses on creating an artistic im-
age by selectively mixing content from different
frames of a video. In some cases, multiple viewing
perspectives are mixed in the same composition,
akin to cubist artworks. In other cases, objects in
different temporal steps are mixed together, mim-
icking the dynamic characteristics of some futurist
artworks.

A1.3. Editing and retargeting—focuses on altering video
content to accommodate specific display con-

straints (e.g. empty space removal) or to allow
coherent integration into a visual context (e.g. re-
lighting). Although, editing and retargeting can be
done on a frame-by-frame basis, video-based ap-
proaches address the need for temporal coherence.

A1.4. Video-based modelling—focuses on creating
graphical models from videos to enhance the per-
ception of spatial and dynamic features of a scene.
This ranges from video-based panorama compo-
sition to 3D object reconstruction. The primary
use of this class of techniques is the modelling of
virtual environments.

The goals of video visualization can be further classi-
fied according to those of the applications. For example,
for sports applications, the goals may include detecting key
events, depicting team formation, and summarizing statistical
patterns of a game. For surveillance applications, the goals
may include depicting signatures of typical events, detect-
ing anomalies and tracking important movements. Although
many developments in video analysis also aim at these goals,
computer vision has not yet been able to deliver automated
technology to fulfill such goals in the general case. Video
visualization, which keeps the user in the loop, is a comple-
mentary technology to bridge the gap. By removing and alle-
viating the time-consuming burden of viewing many videos,
it enables users to gain an overview of a video, detect impor-
tant events or identify dynamic features in a video without
the need of viewing videos.

2.2. Output data types

Although videos are the principal input to the techniques
covered by this survey, the outputs can vary considerably.
Typical data types of the output are (Figure 2):

B1. Another video or an animation—a common form
of output in video-based graphics.

B2. A large collection of images—where the collection
cannot be displayed in a single reasonably sized im-
age. These images may be organized as a linear se-
quence, or by a hyperlinked structure.

B3. A single composite image—where the composite can
be as simple as an annotated key frame, or as complex
as a composite image comprised of objects extracted
from different parts of a video. It may also be a synthe-
sized image showing a 3D model reconstructed from
a video.

B4. Additional information and actions—where infor-
mations and actions accompany any of the above three
data types. One common form of additional informa-
tion are textual and iconic annotations, which may
be used to label objects in an output, depict relation-
ships and connections between objects, or highlight
important objects. Here the term ‘actions’ describes

c© 2012 The Authors
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Figure 3: Third and fourth classifications proposed by our
survey: (a) by input data; (b) by level of automation.

information attached to objects to facilitate interactive
activities, such as hyperlinks and hot spots.

Note that we did not include a data type for text-only
output. Such output is commonly seen in computer vision
(e.g. ‘a face is detected’). The emphasis on visual forms of
the output is one of the main factors distinguishing video-
based graphics and video visualization from video analysis
and computer vision.

For techniques that generate video output, i.e. data type
(B1), we can further categorize them according to what has
been added, deleted or modified:

B.1.1. Presentation style– e.g. photo-realistic, pen-and-
ink, water-colour, etc.

B.1.2. Optical model—e.g. lighting, focus, atmospheric
effects, etc.

B.1.3. Objects or object features—e.g. object replace-
ment, etc.

B.1.4. Spatial relationship and layout—e.g. empty space
removal.

For techniques in classes B2 and B3, we can further cat-
egorize them according to what is preserved from the input
video:

B.2.1. Timing of events.
B.2.2. Temporal ordering of events.
B.3.1. Background or context.
B.3.2. Tracking of focused objects.

2.3. Input information

As shown in Figure 1, video analysis can provide video-based
graphics and video visualization with processed information
to supplement the original video. The users can also provide
additional information manually. Hence, we can also con-
sider a classification based on the input information, which
may include (Figure 3):

C1. Original video.
C2. Underlying models—a floor plan, a 3D environmen-

tal model.
C3. Semantic descriptions—a face to be detected.
C4. Processed information—optical flow data.
C5. User instructions—editing commands and interac-

tive direct manipulation for influencing the output.

2.4. Levels of automation

One can also classify video-based graphics and video vi-
sualization techniques based on the levels of automation as
(Figure 3):

D1. Mostly automatic.
D2. Semi-automatic.
D3. Mostly manual.

2.5. Taxonomy used in this survey

By combining the above four classification schemes, one can
define a variety of taxonomic trees. In this paper, we use
Scheme A for the top-level classification, separating video-
based graphics and video visualization into two categories
to be presented in Sections 4 and 5, respectively. For video-
based graphics, we use the classification of its subgoals, that
is, categories A1.1–A1.4, to organize Section 4. For video
visualization, we use the classification of output data types,
B1–B4 to organize Section 5. Figure 4 shows a hierarchical
representation of the full taxonomy.

2.6. Terminology

The development of a new field is often accompanied by a
confusion of terminology. Over the last decade, various terms
have been used to encompass the body of the works surveyed
in this paper. For example, video abstraction was sometimes
used in the context of artistic transformation of videos as
well as video summarization, even though the resulting im-
agery is not necessarily in an abstract form. There was also
a proposal for using video presentation to encompass both
video-based graphics and video visualization. However, this
phrase can easily lead to confusion with activities for pre-
senting visual information using videos. Perhaps even more
actual would be the phrases video representation or video
transformation. However, the former shares similarities with

c© 2012 The Authors
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Figure 4: Taxonomy used in the survey.

video representation which has a very different meaning,
although the latter does not encapsulate the purposes very
well. Furthermore, both phrases also compass works that are
not considered in this survey (e.g. video restoration). We
hence adopt the phrases video-based graphics and video vi-
sualization in this survey.

3. Video Analysis

In this section, we present state of the art methods used in
the field of computer vision to extract information from im-
age sequences. Primarily we review those techniques which
we believe to be of principal interest to the graphics and
visualization community. These methods are broadly split
into two subgroups: low level and high level vision. Low
level vision techniques often operate at the pixel level of
an image and are generally employed to reduce the dimen-
sionality/complexity of an image so that it can be processed
by higher level, often more complex, algorithms. Low-level
vision can be interpreted as a filtering step used to remove
redundant information that is often of little or no interest.
The typical output of these algorithms may be a set of inter-
est features, optical flow vectors or an image segmentation.
However, this information alone often provides little useful
insight as regards to the contents of an image sequence.

Alternatively, high-level algorithms that almost exclu-
sively operate on the output of low-level vision approaches,
can be used to automatically extract some high-level infor-
mation from a video sequence, such as a list of events that
have taken place, a set of locations where objects have been
detected or a 3D reconstruction of the scene depicted in the
sequence. It is this high-level extraction of data that is the pri-
mary goal of most computer vision practitioners. However,

one of the principal difficulties encountered is in overcom-
ing errors produced by low-level algorithms. As a result,
currently approximately equal effort is spent by the vision
community on improving low-level methods as are invested
in developing high-level approaches.

3.1. Low level

In this section we describe low-level vision techniques that
are particularly relevant to the domain of video analysis,
we group these into three principal areas: optical flow esti-
mation, image segmentation and feature extraction. Whilst
optical flow estimation and image segmentation provide a
well-defined output that can be treated as a complete tool in
the visualization or graphics pipeline, feature extraction will
often produce a more abstract output that is only of benefit
to the higher level algorithms designed to exploit it.

3.1.1. Optical flow estimation

Motion estimation is one of the most fundamental techniques
relevant to video analysis since it exploits the key element
that distinguishes video from single images: the temporal
dimension. Whilst the focus of this section will be on com-
monly used differential methods, block matching can also
be used to extract motion information and should briefly
be mentioned. In its simplest formulation, block matching
takes each image patch and exhaustively compares it against
it’s neighbouring frames to find the best matching location.
This approach is typically used for video compression and
is therefore not concerned about the correctness of the es-
timated motion, only that matched blocks closely resemble
one another. Various methods have been proposed to per-
form block matching more efficiently such as the diamond
search adopted for the reference implementation of MPEG4
[ZM97]. A comprehensive survey of block matching tech-
niques is provided by Huang et al. [HCT*06].

The most popular methods for motion estimation between
two consecutive frames are differential methods. These ap-
proximate optical flow using a first-order Taylor expansion
of image motion and as such assume only small displace-
ments between consecutive frames, however, are capable of
achieving subpixel accuracy. Differential methods to esti-
mate optical flow can be split into local and global methods.
Whilst local methods attempt to solve the motion for small
regions of the image independently, global methods attempt
to solve motion for the entire image in one instance.

Perhaps the most popular local method is that given by
Lucas and Kanade [LK81]: this is an iterative approach that
uses Newton–Raphson gradient descent to minimize the dis-
similarity between patches in consecutive images. The short-
coming of this approach is that it fails to address the aper-
ture problem. This is where locally the motion between two
frames is ambiguous and can not be uniquely identified. This

c© 2012 The Authors
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results in some regions for which the motion is unknown
or poorly estimated, for example large motions can often be
incorrectly observed along the edges of objects.

Global methods solve the same first-order Taylor expan-
sion of image motion, but introduce a regularization term or
smoothness penalty. The addition of the smoothness penalty
allows the optical flow to be estimated in regions where local
methods would fail as a result of the aperture problem. This
allows dense flow to be estimated. However, this method
is particularly sensitive to image noise [BFB94, BWS05].
The most notable global method is that of Horn and Schunk
[HS81].

Whilst the local method of Lucas and Kanade fails to solve
the aperture problem, their formulation provides a method to
test how well a particular image patch could be tracked. This
is achieved by examining the eigenvalues of the covariance
of the image gradients [ST94]. Two large eigenvalues imply
large gradients (i.e. edges) in adjacent directions of the patch,
which represent a good feature to track. Using this method
each motion vector can have a level of certainty attached to it
about how reliable the feature used can be tracked. This is of-
ten invaluable for higher level algorithms because noisy data
can automatically be discarded. Some methods have been
suggested to ‘densify’ the sparse output of the Lucas–Kanade
method using interpolation [HCG05], which provides better
dense motion estimation compared with global methods in
sequences where there is little texture. Another approach is
that of Bruhn et al. [BWS05], who investigate combining
local and global methods to extract optical flow, which is
achieved by using local confidence measures and effectively
growing a dense representation.

Other local methods use local spectral phase differences to
estimate motion displacements between images[FJ90] and a
real-time approach using the census transform to represent a
pixel neighbourhood is proposed by Stein [Ste04]. An eval-
uation of optical flow methods can be found in [BFB94] and
[GMN*98]. For a comprehensive survey on global optical
flow methods we refer the reader to [WBBP06].

3.1.2. Image segmentation

Image segmentation is a generic term for grouping pixels in
an image or video into a number of predefined classes, such
as those that belong to a particular object or those that are
part of the foreground. Pixels are classified using image cues
such as colour/texture [SS04] and often the spatial location of
the pixels are exploited preferring neighbouring pixels to be
members of the same class. These include methods such as
split and merge, region growing and edge-based techniques
(comprehensive surveys can be found in [CJSW01, LM01]).
These approaches often result in a segmented image being
represented as a set of blobs, each blob representing a dif-
ferent homogeneous region. However, each blob may not
necessarily have a semantic meaning.

In general, image segmentation is not a well-defined prob-
lem in that a good segmentation is itself somewhat subjec-
tive and dependent on what the user requires. For this reason
methods must often be trained for the task for which they are
required (e.g. skin detection [KMB07]). Perhaps one of the
most popular uses of segmentation in video is background
subtraction [Pic04, McI00] or more generally change de-
tection [RAAKR05], where the segmentation algorithm is
trained on a particular scene to detect (segment) any pix-
els or regions that change temporally. An evaluation of cur-
rent background subtraction techniques applied to the most
challenging conditions, such as during gradual illumination
changes or whilst observing a scene containing a dynamic
background, is provided in [BHH11].

Further methods for image segmentation include dynamic
programming [Fel05, CYES00], graph cuts [BFL06] and
level sets [CRD07]. These approaches allow segmentation
to be formulated as an energy minimization problem and
have the advantage that they allows the inclusion of com-
plex shape priors specific to the task for which they are
required, e.g. segmenting cows [KTZ05], leaves [Fel05]
or hands [CYES00]. These methods are particularly ro-
bust to noise and background clutter and it is the inclu-
sion of the aforementioned shape priors that leads to this
robustness.

The drawback to these energy minimization approaches
is that they can not be used ‘out of the box’ and must be
trained to the specific task for which they are required. Whilst
methods that segment homogeneous regions can be treated
as a black box and for images that contain little clutter can
achieve acceptable results.

3.1.3. Feature extraction

In this section we describe low-level features commonly used
in computer vision algorithms. These can be subdivided into
two principal categories: global and local features. Global
features describe a property of the entire image, such as
statistics about the luminance or colour, whilst local features
describe the properties of only a small region.

The key advantage of local features is that extracted infor-
mation can be attributed to a particular location in the image;
this is crucial if, for example, an object is being tracked or
detected within an image. Although surprising, if applied to
a tightly constrained problem, global features can yield en-
couraging results. For example, wildlife frames containing
quadrupeds can be detected using the image’s power spec-
trum [Sio07], which effectively describes the dominance of
each frequency in constructing the image.

Some global features may be learnt adaptively for a spe-
cific video clip, for example statistical techniques such as
principal component analysis can be used to project entire
frames into a two-dimensional (2D) or 3D space allowing a

c© 2012 The Authors
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complete video to be easily visualized. Furthermore, cluster-
ing this low-dimensional representation permits automatic
key frame extraction [GCT02].

However, the limitation of global features to provide infor-
mation about specific regions of an image constraints their
use in video analysis; their strength lies in applications where
the interest is in looking at large scale properties of an image
sequence, e.g. to detect shot boundaries, or for classification
problems where the domain is very constrained.

Low-level features can either be generated exhaustively at
every point in the image, in which case a higher level learning
algorithm can be used to select the set of features that are most
relevant to a particular problem, or interest point detectors
can be used to automatically detect image regions of interest.
Different interest point detectors regard interesting features
in different ways, for example the Kanade–Lucas–Tomasi
feature tracker [ST94] discussed in Section 3.1.1 defines an
interest feature as an image patch with a covariance with two
large eigenvalues. Other standard interest feature detectors
include the Harris corner detector [HS88], Förstner-Gülch
[FG87] and the Reisfeld symmetry operator [RWY90].

Within the last decade, invariant local features have be-
came popular including approaches like SIFT [Low04] or
SURF [BETVG08] that rely for scale adaption on the scale-
space theory introduced by Lindeberg [Lin98]. Other tech-
niques, such as MSERs [MCUP04], intrinsically adapt the
detected region size. A variety of affine interest point detec-
tors as well as suitable region descriptors are evaluated by
Mikolajczyk et al. [MTS*05, MS05]. A recent evaluation
of the matching performance of several detector-descriptors
combinations for 3D object features is provided by [MP07].

Low-level features used by machine-learning techniques to
train classifiers/detectors include simple rectangular features
which are fast to compute and can capture large-scale struc-
ture as well as some information on image texture [VJ01],
histogram of orientated gradients (HOG) features [DT05],
which primarily capture information about image gradients,
and local binary patterns [AHP04], which capture texture.
These features are designed to be fast to compute and offer
some robustness to noise or small changes in, for example,
the illumination or orientation of the object. These features
are often much simpler than their interest point detector coun-
terparts and therefore less discriminative.

Thus far all features presented are only spatial in nature.
However, often these features can be extended to the temporal
domain, e.g. in the form of a temporal extension of the SIFT
feature [SAS07], temporal Gabor filters [DRCB05], temporal
Harris corner features [Lap05] and temporal simple rectangu-
lar features [KSH05]. Typical uses for these types of features
are for video retrieval or action recognition. A discussion on
spatio-temporal interest points and an evaluation of volume
descriptors is presented by Laptev and Lindeberg [Lap05,
LL06]. Whilst all of the above features are hand designed, a

promising technique is to use machine learning techniques
to automatically engineer low-level features [LZYN11].

3.2. High level

In this section, we review high-level methods used to ex-
tract information from video sequences. These are split into
three categories: recognition and detection, tracking and 3D
reconstruction.

3.2.1. Recognition and detection

Recognition and detection can both be seen as a classifica-
tion problem. However, the difference between them is that a
detection problem can be seen as a two-choice classification
problem and recognition as a ‘one of N’ classification prob-
lem. Counterintuitively, this does not imply that detection
is an easier problem. For example, take a pedestrian detec-
tor, whilst the positive class is well defined the negative (no
pedestrian) class must represent every possible image that
does not contain a pedestrian; of course this image class is
infinite and cannot be achieved. A recognition task however,
is often more constrained, e.g. given a text character, what
letter is it most likely to be?

A recognition or detection system is composed of two
parts, a set of low-level features such as those discussed in
Section 3.1.3 and a classifier which will be trained using
examples of each class. Popular classifiers include decision
trees, neural networks, AdaBoost, support vector machines
(SVM) and k-nearest neighbours. There are several well-
documented implementations of all of these classifiers and
a good introductory text to machine learning is provided by
Bishop [Bis06]. All of the above methods are trained using
a set of positive and negative labelled examples and cross-
validation may be used to prevent overfitting to the training
data.

The typical approach to object detection is using a sliding
window to exhaustively test whether an object is located at
each pixel location in the image at varying scales. For ex-
ample, this method has been used for face detection using
AdaBoost combined with rectangular features [VJ01] and
pedestrian detection using a SVM combined with HOG fea-
tures [DT05]. For the detection of objects that exhibit a lot of
variation in appearance due to changes in orientation or artic-
ulation, a part-based method may achieve improved results
(e.g. [FMR08]). Modelling context can also be used to im-
prove detection accuracy (for a recent review see [DHH*09]).

For classifying sequential data hidden Markov models,
commonly used in speech recognition, remain a popular
choice. For example, to classify the trajectories of the hands
performing different gestures [WB99] or martial art actions
[SCM02]. Recently, combining temporal features and using
classifiers such as those discussed in the previous paragraphs

c© 2012 The Authors
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have became popular [KSH05, Lap05, DRCB05]. For ex-
ample, temporal corners are used to detect sudden changes
in motion present in actions such as walking or bouncing a
ball [Lap05]. Subtle actions such as grooming, eating and
sleeping performed by rodents have been recognized using
Gabor filters applied to the temporal dimension of an image
sequence [DRCB05].

One of the difficulties with action recognition is that of-
ten it is not clear, in a temporal sense, exactly where an
action starts and where an action finishes. This can lead to
difficulties in creating a consistent training set of positive
and negative examples for a given action. However, methods
such as multiple instance learning can be used to address
this problem. This requires that for each positive example a
positive event is known to have occurred without specifying
the exact temporal location or duration. This has been ap-
plied to, for example, detecting shoppers picking items off of
a shelf [HCL*09] and automatically learning sign language
from TV subtitles [BEZ09].

3.2.2. Tracking

Tracking and detection are closely related. If detection was
100% accurate, tracking would be redundant, an object could
simply be located in an image in each frame independently.
However, this is currently not the case and tracking exploits
knowledge of an object’s location in a previous time instance
to make a prediction and thus narrow the search space of
the object’s location at the present time. Most tracking algo-
rithms assume detection or initialization in the first frame to
be a separate problem and the integration of the tracking and
detection into a common framework remains an open prob-
lem in computer vision; though some recent attempts have
been made (e.g. [ARS08]).

There are a small number of established tracking algo-
rithms, most notably the Kalman filter (tutorial provided in
[WB95]), which assumes Gaussian noise and a linear dy-
namic model, and the particle filter (a tutorial is provided
in [AMGC02]), which is a stochastic approach and as such
makes no assumption about the underlying probability dis-
tributions or dynamics. Each has a number of variations, the
most popular is the extended Kalman filter [WB95], which is
an extension of the Kalman filter to incorporate non-linear dy-
namics, and the annealed particle filter [DBR00], which uses
the method of simulated annealing to allow the stochastic
search of the particle filter to be performed more efficiently.

Most recent developments made in the field of tracking
have been domain specific, in particular modelling the solu-
tion space or system dynamics of a particular problem. As
examples in the case of 3D, human pose estimation methods
such as Gaussian process models [UFF06] or PCA [ZL08]
have been used to learn action-specific models (e.g. walking)

so that tracking can take place in a much lower dimensional
space. For the domain of tracking individuals in crowded
environments, models of social interaction have been learnt
to predict how people will behave, which can be used to im-
prove the performance of tracking algorithms [PESvG09].

Tracking can also be made more robust by learning the
appearance of the object online. For example, learning the
appearance of individual limbs whilst tracking articulated
objects [RFZ07] or adapting an offline trained classifier to
a specific instance of an object observed during run time
[GRG10].

3.2.3. 3D reconstruction

There are many methods used to extract a 3D representa-
tion of a scene or object observed in video. Well-established
methods include approaches such as structure from motion
(SfM) [DSTT00], space carving and stereo reconstruction.
Whilst we briefly discuss these well-established techniques,
we also discuss methods that typically attempt to reconstruct
3D structure from single images using cues such as shad-
ing, shape and texture. A good overview of vision-based
3D reconstruction is provided in [Sze11], and a recent sur-
vey, focusing on reconstruction from video, is provided in
[SAB*07].

SfM takes a set of images and attempts to extract both a 3D
reconstruction and the camera’s motion within this. This is
typically achieved by finding point correspondences across
multiple images. The main benefit of the SfM approach is
that it is relatively inexpensive both in terms of computation
and memory; to date entire cities have been reconstructed
[ASS*09a]. Furthermore, a dense reconstruction can be esti-
mated through the use of a priori knowledge, such as assum-
ing all surfaces are planar [FCSS09] or by applying stereo
matching using the initial structure as a set of constraints.
The principal assumption in most SfM algorithms is that the
scene is rigid and any motion observed is due to either cam-
era motion or from the entire scene moving as a rigid entity.
Non-rigid motion of the face or simple deformable objects
such as a shoe have been accommodated in the SfM frame-
work by extracting a set of rigid 3D basis shapes allowing the
object in each frame to be constructed from a linear combi-
nation of these basis shapes [TYAB01, TB02]. An approach
that can cope with much larger deformations is to segment
the object into a piecewise model and reconstruct each piece
independently. The problem then becomes one of robustly
segmenting the features, which can be achieved using en-
ergy minimization [RFA11]. The algorithms used in SfM are
relatively mature and well understood and a number of com-
mercially available software packages exist. As the process
of 3D reconstruction becomes automated it is desirable to
be able to exclude objects that are not wanted in a final 3D
reconstruction. For example, in a reconstruction of a city,
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cars and pedestrians could be automatically detected and re-
moved [CLCVG08]. There are many good tutorials and text
books on structure from motion, such as that of Hartley and
Zisserman [HZ04] or more recently Moons et al. [MGV09].

Another method, closely related to structure from mo-
tion, is vision-based Simultaneous Localization and Mapping
(SLAM), where feature tracking is performed online to cre-
ate a sparse map and also track the camera within this map.
Typically, the focus in this work is on achieving real-time
performance using a typical consumer web cam [DRMS07].
This has made the approach particularly applicable to cre-
ating augmented realities [CGCMC07, KM07] with SLAM
systems that can operate on mobile phone devices [KM09].
For the purpose of augmented reality, a dense reconstruc-
tion is not typically needed as higher lever structures such
as planar surfaces can be inferred from the extracted sparse
representation. Whilst the typical SLAM frame work used
for tracking a monocular camera tightly entwines the track-
ing and mapping into a single estimation problem, a recent
approach is Parallel Tracking and Mapping [KM07]. This
performs tracking and mapping as two separate tasks allow-
ing the mapping to be done as a batch operation using a
much larger set of features, whilst tracking is still performed
on a frame-by-frame basis. This results in an approach that is
more robust to tracking failure and produces more accurate
maps.

Stereo matching across two images can be used to create a
dense depth map. Typically, an important step in this process
is image rectification, where the epipolar lines of the images
are rectified to be parallel to the horizontal axis of the image.
This allows matching between pixels to be performed along
scan lines of the image rows. The difference in position be-
tween two pixels that observe the same point is called the
disparity. The matching of pixels to estimate the disparity
between two images can be performed via a number of stan-
dard optimization techniques such as dynamic programming
[VMVPVG02], level sets [FK98], graphcuts [VTC05] and
loopy belief propagation [FH06]. A survey and evaluation of
existing stereo reconstruction methods is provided by Seitz
et al. [SCD*06].

An alternative technique to dense reconstruction is space
carving, which requires a predefined ‘search space’ to be con-
structed in which the object or scene of interest is assumed
to be contained. This space is split into voxels, each voxel
is projected into every frame, and a measure of consistency
is extracted. If a voxel is consistent across all views it is as-
sumed to be on the surface of the object of interest otherwise
it is discarded [KS00]. In this approach, it is typically as-
sumed the cameras are fully calibrated and the surface of the
object is Lambertian. Another approach is to use foreground
silhouettes to extract the visual hull of an object [Lau94].
Results from this method are typically poorer than those us-
ing colour consistency or texture, but the method can be used
to initialize more complex approaches. A review of methods

used to extract a 3D reconstruction of complex, often moving
deformable, objects from multiple views in a studio setting
is provided in [SMN*09]. A discussion of practical issues
such as illumination and camera placement is also presented
in this work.

It is worth mentioning approaches to extract 3D structure
from single images that could be applied to video sequences.
Whilst cues such as shading [DFS08] or texture [LF06] can
be used to extract some information about 3D structure in-
dependently most approaches tend to achieve accurate re-
sults by making assumptions about the scene or object being
viewed. For example, in estimating the 3D shape of a hu-
man face, a 3D geometric prior model may first be learnt
to constrain the solution space [RV05]. Machine-learning
approaches are also popular to learn a regression from 2D
binary silhouettes to 3D human poses [AT06]. To allow re-
construction of more unconstrained images a classifier may
be learnt to identify different image elements such as sky,
ground or buildings which allow simple pop-up 3D models
to be reconstructed [HEH05]. For reconstruction of struc-
tured objects, such as buildings, a grammar can be learnt that
describes how different architectural features should relate
to one another [KST*09].

In the majority of cases, current monocular approaches
tend to achieve quantitatively poor results compared to those
using multiple views. However, for many tasks the results are
qualitatively acceptable. Furthermore, for sequences where
very little texture exists making assumptions about the en-
vironment being viewed may be the only method to resolve
many of the ambiguities that exist. It is likely that the area
of 3D reconstruction coupled with machine-learning tech-
niques will continue to receive much attention over the com-
ing years.

4. Video-Based Graphics

Like images, videos can provide computer graphics with
spatial information of the scene (e.g. in image-based mod-
elling and rendering), and attributes of objects (e.g. textures,
BRDF data). However, videos contain a much richer set of
information, such as multiple views and motion of an ob-
ject. It is thereby not difficult to conclude that video data
can in principle help produce more photo-realistic graphics
and animation. It also provides computer artists with a richer
collection of raw materials, if there are tools to harvest. A
useful overview of both techniques and terminology can be
found in [Ass09b].

4.1. Artistic presentation

The success of techniques for transforming static images of
the real world in artistic or technical illustrations (generally
termed non-photo-realistic rendering, or NPR) has inspired
research into applying similar methods to image sequences
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or video. The major difficulty is maintaining temporal co-
herency of the effect throughout the video. Much effort has
been made on the artistic front, with relatively little applica-
tion found for technical illustration methods.

The artistic techniques are widely viewed as a ‘more ex-
pressive’ representation of a scene, and particular focus is
given to replicating art forms which would require consider-
able skill and time to create animations, e.g. oil-based paint-
ing, and watercolours. Such techniques are occasionally used
in cinema to convey emotional effects. It is believed that
automatic, flicker-free (i.e. temporally coherent) methods
would encourage more frequent use. From these novel tech-
niques, which attempt to replicate existing art forms, have
come more abstract and sometimes counterintuitive, meth-
ods which we believe are unique to video, and may be termed
video art.

Early NPR techniques were applied to video by Litwinow-
icz [Lit97], highlighting the difficulty of temporal coherence.
Minor changes in a video affected the algorithms’ placement
of brush strokes, the colour quantization and other features
which caused major visual distractions for the viewer.

Hertzmann and Perlin [HP00] address this by only ‘re-
painting’ parts of the video which have changed; thereby
reliant on the underlying change detection algorithm. Opti-
cal flow is used to direct brush strokes in the directions of
movement, to highlight the sense of motion for the viewer.
The authors also describe how typical video frame rates of
30Hz produce a video which can look ‘too real’ because ‘the
underlying motion and shape is integrated so well by the hu-
man visual system’, and suggest frame rates of 10–15 Hz to
accentuate the NPR feel.

Optical flow and mean-shift segmentation are both low-
level computer vision techniques which, along with morpho-
logical operators, are described by Gooch et al. [GCS02] as
having some value in this problem domain. Hays and Essa
[HE04] extend this relationship by using edge detectors to
create a wide variety of painterly styles. The frequency and
gradient of the edge is used to define the brush width and
stroke direction in the abstract representation. The authors
show how parameters of this method can be altered to pro-
duce a wide variety of styles (see Figure 5).

The use of optical flow in the above methods generally
intends to solve two problems: segmentation and direction
coherence. Wang et al. [WXSC04] employ a different method
for segmenting the video data, and do not consider the prob-
lem of aligning brush strokes. The authors use a mean-shift
segmentation of colour information in both spatial and tem-
poral domains, which significantly reduces the effect of flick-
ering. Collomose et al. [CRH05], extend this method to cre-
ate continuous boundaries around segments identified by the
mean-shift operator. These segments then prevent flicker or
popping artefacts from occurring during the segmentation
stage of the abstraction process.

Figure 5: Painterly rendering of a flower, from top-left in
clockwise order: watercolour, Van Gogh, impressionism, ab-
stract, pointillism and flower styles. (Image courtesy of Hays
et al. [HE04], c©2004 ACM.)

An alternative method to the previous shape or stroke-
based renderings involves creating a texture which is ad-
vected according to the optical flow field of the video.
Bousseau et al. [BNTS07] describe this method as a means
to create watercolour representations of images. In this work,
the authors use the texture to describe the deposition of pig-
ments during painting.

Real-time methods for video abstraction are uncommon
due to the extensive segmentation and refinement processes.
However, Winnemoller et al. [WOG06] present a method
whereby an input video is quantized in HSL colour space;
the underlying representation of the video when stored in
MPEG format. By quantizing only the luminance or satura-
tion channels, visual results similar to mean-shift segmenta-
tion are achieved.

4.2. Compositing

Time and space are intermixed components of a video, the en-
tertainment industry plays on re-expressing both components
according to different canons. Compositing techniques alter
the structural integrity of the contiguous video flow to attain
entertaining and aesthetically pleasing results. Space-time
relationships are revisited in favour of highlighting feature-
events to enrich the video experience.

Pioneer work in the fieldis represented by the multi-
resolution video project [FJS96], which first introduced the
use of time-space partitioning trees to enable the organiza-
tion of video sequences (normally univariate) into different
temporal and spatial resolution tiers to allow for highlighting
of varying features and events within a unique multivariate
video. Finklestein et al. [FJS96] enhanced the video experi-
ence by enabling the viewer to treat the video sequence as a
sort of dynamic panoramic environment where the environ-
ment changes in time and carries different amounts of detail
in different locations.

Finkelstein et al. [FJS96] paved the way for the em-
ployment of videos in a variety of applications ranging
from immersive environments with the use of interactive
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visualizations of high-resolution time-varying video data
(panoramas), to video posters with the use of both temporal
and spatial multi-resolution images (mosaics).

Compositing techniques must face major issues related
to the selection of informative key frames or poses, maxi-
mization of screen space utilization and avoid cluttering or
occlusion although maximizing the conveyed visual informa-
tion. To address these issues, techniques like multi-resolution
and clustering methods are borrowed from the visualization
field to achieve coherence in time and space when visualizing
highly detailed scenes at interactive frame rates.

4.2.1. Mosaicing

Mosaicing is the art of creating patterns or pictures by assem-
bling small pieces of coloured glass, stones or other materi-
als. The quality of the final outcome relies upon the semantic
similarity between each mosaic tile and the respective part
of the represented object. Artists have experimented with
mosaic images for centuries exploiting the layered image
concept and semantic similarity function beneath the mosaic
structure. A video screen, as a collection of colour-varying
pixels, is in itself an example of a digital mosaic. With the
advent of digital photography pixels and tile materials could
soon be replaced by collections of small images giving birth
to what is now known as image mosaic. As a visual medium,
image mosaics correspond to a carefully arranged collec-
tion of small images that when seen at a proper distance (or
resolution) form a recognizable larger image [FR98]. The
entertainment industry has exploited the idea behind image
mosaics to create large film posters composed by carefully
chosen and assembled video key frames; image tiles often
undergo colour adjustment to improve the quality of the final
result.

Beside being an aesthetically pleasing visual medium,
video posters represent a powerful resource for interactive ex-
ploration of video sequences. Solutions have been developed
that rely on video posters for video browsing to address the
issue of minimizing user time whereas maximizing the crux
of the conveyed visual information. Caspi et al. [CAMG06]
proposed a method based on the tracking and extraction of
salient video objects. For each tracked object key poses from
different time frames are selected and eventually fused in
the final image to mimic the sensation of the object motion.
Key poses, also denoted as pose slices, are either composed
into a single static image (dynamic still) or organized into a
short video clip representing the essence (see Figure 6) of the
action (clip trailer). Dynamic stills differ from standard im-
age synopsis [IA98] as they allow self-occluding pose slices,
although image mosaicing techniques usually rely on distri-
bution and translation of objects trying to avoid replication
or self-intersection (as in [IA98]).

A quite different approach has been proposed by Klein
et al. [KGFC02]; their technique denoted as video mosaics

Figure 6: Dynamic still and clips. The transparency of addi-
tional poses is based on their importance. Most informative
poses (i.e. motion extreme points) are completely opaque.
(Image courtesy of Caspi et al. [CAMG06] c©2006 Springer-
Link.)

Figure 7: A frame from a video mosaic. (Image courtesy of
Klein et al. [KGFC02].)

uses video frames rather than key frames as tiling units of
the mosaic composition. Video mosaics stretch Finkelstein’s
multi-resolution video concept [FJS96] (see Figure 7): each
video tile becomes a collection of layered images although
the mosaic itself becomes a large video clip that can be
appreciated both as a static picture or dynamic video clip.
Video tiles are not necessarily related to the master video or
to each other.

As time can be stretched along different dimensions, so
can space as in panoramic mosaicing or panoramas.

4.2.2. Panoramas

The concept of image panoramas dates back to the mid-19th
century with examples like the Warsaw panorama [BK75].
Today panoramas reconstructed from digital images are com-
monly used to provide virtual tours of places of interest like
travel destinations and museums, or to add interactivity to
simple city maps. With respect to video mosaicing panoramas
maintain the temporal information explicitly, time is treated
as a fixed axis along which the sequence of images devel-
ops. Panoramas rely on the assumption that static portions
of a scene are not dominant in the process of understanding
the information conveyed through the video. This assump-
tion allows for the creation of two distinct layers: a dynamic
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Figure 8: Background and motion panoramas of a jumping
athlete. (Image courtesy of Bartoli et al. [BDH04] c©2004
Wiley.)

Figure 9: Dynamosaic of a waterfall video. (Image courtesy
of Rav-Acha et al. [RAPLP07] c©2007 IEEE.)

layer corresponding to the moving objects and a static layer
corresponding to the static background. The panoramic im-
age output is composited by merging the two layers, static
parts remain unchanged while the time-varying path of mov-
ing objects is exposed. Exemplar of bridging between the
concepts of video mosaics and video panoramas is the work
described in [BDH04]. Video sequences are represented as
motion panoramas, i.e. a visual representation of motion.
Much effort is put in the segmentation of moving objects
with respect to static background, key poses of a moving ob-
ject are extracted and later stitched and aligned within a final
panoramic canvas composed of the static background parts
(see Figure 8).

A different approach is taken in [AZP*05], where mo-
tion is not conveyed via object tracking and silhouette ex-
traction but maintained explicitly as a video sequence. The
resulting panorama becomes a video mosaic of video parts
aligned to a single time interval and consistently stitched
together; the technique is referred to as panoramic video tex-
tures (or PVT). The PVT approach performs extremely well
for objects having horizontal motion path. For more chaotic
behaviours, however, dynamosaicing [RAPLP07] is better
suited. Dynamosaicing (see Figure 9) recalls the video cube
concept. First, an aligned space-time volume is constructed
from the input video, secondly a continuous 2D plane (time
front) is swept through that volume generating the sequence
of images. Alignment is performed via key frame interpo-
lation introducing a cost function to minimize artefacts due
to chaotic moving objects. The natural step from dynamic

panoramas to video textures is short as we can already see
with the PVT. This intriguing aspect of extending video to
augment visual appreciation of synthetic scene is explored in
Sections 4.3.1 and 4.4.

4.2.3. Cut-outs

Video cut-outs is a hybrid approach between mosaics,
panoramas and retargeting techniques (see Section 4.3.3).
Video cut-out techniques allow for the extraction of fore-
ground or background objects from video sequences for
use in a variety of applications including compositing onto
new backgrounds and NPR cartoon style rendering. Even
when the continuous temporal information is lost, as in still
shots, smooth and realistic motion can still be synthesized
[XWL*08, SCRS09] by finding the motion path connecting
the motion snapshots and generating for example cartoon like
animations [WXSC04]. Reverse engineering this process al-
lows for the extraction of moving objects from general back-
grounds and for the development of sophisticated interactive
systems [LSS05, WBC*05] for background substitution, ob-
ject removal and reconstruction [RAKRF08].

A more sophisticated and commercially oriented version
of the video cut-outs process is video matting, e.g. the process
of extracting a high-quality alpha matte and foreground from
a video sequence. Video matting concentrates on the prob-
lem of accurate foreground estimation in images and videos
and represents a crucial operation in commercial television
and film production giving a director the power to insert new
elements seamlessly into a scene or to transport an actor into
a completely new location. State of the art in video mat-
ting has significantly advanced recently, a good source of
reference can be found in [WC07]. One of the latest achieve-
ments in interactive video editing is represented by Bai et al.
[BWSS09] with their SnapCut system which extends state
of the art algorithms for both object cut-outs and matting to
videos.

4.3. Editing and retargeting

4.3.1. Video textures

Video textures [SSSE00] replace static images like digital
photos with synthesized video sequences, enriching textured
objects or scenes with dynamic qualities and living action.
The concept at the base of video textures is the one of Markov
processes, where states correspond to video frames and prob-
abilities to the likelihood of transition from one frame to the
other. The choice of transition points is a major challenge
in creating a video texture; morphing-based techniques are
employed by [SSSE00] although [FNZ*09] used a similarity
metric based on 3D marker trajectories and their 2D pro-
jection into the video. The use of markers is better suited
for tracking of human motion as it allows for greater con-
trol over the output animation sequence. For video texture
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mapping over a 3D model, as in [WZY*08], extension of pa-
rameterized texture mapping techniques is a simpler choice.
In [WZY*08] a mosaic of video textures is created via vi-
sual tracking, the 3D model is then parameterized over the
video mosaic through an optimization function for minimiz-
ing the geometric distortion. PVT provide a continuous in-
finitely varying stream of images which easily extends to
several applicative domains; PVT can be employed in the
creation of contiguous video loops, single moving objects
can be extracted and employed as video sprites [SE02] for
feature-based texture mapping of 3D models [WZY*08],
photo-realistic animation of human motion [VBMP08,
FNZ*09] or reconstruction of natural phenomena exhibit-
ing cyclic and continuous patterns of behaviour [BSHK04,
RAPLP07].

4.3.2. Video relighting

Image relighting is a general term given to describe methods
which alter the lighting conditions of a scene without knowl-
edge of the geometric or material properties of the objects
which constitute the scene.

Typical methods require that a reflective sphere be placed
in the scene to capture the light information. This sphere can
then be lit under different conditions and provide the mapping
from the original lighting conditions to the new conditions.
Given these mappings, new objects can also be inserted into
scenes and lit correctly using these methods.

Typical applications of image relighting include the en-
tertainment industry (film production and special effects),
CAD, augmented reality, face recognition, etc.

Video relighting is not seen as a separate problem (indeed,
many methods require image sequences of varying lighting
conditions), although the use of video does introduce the
special problems described in previous sections (i.e. temporal
coherence, frame to frame registration, etc.).

Akers et al. [ALK*03] describe the use of image relighting
techniques to construct images which better convey the shape
and texture of an object, one example being our moon, the
image of which is constructed from a time-lapse sequence of
the 12 phases occurring in one month (see Figure 10).

Other methods for processing the lighting of a video have
been described in what may roughly be grouped under ‘video
relighting’, although distinct from image-based methods.
These methods attempt to process the video signal to im-
prove the information content.

Bennett and McMillan [BM05] used pixel values from
previous frames to increase the light level of low-contrast
regions. In this work, the light level of a pixel is integrated
along several frames to improve perceptibility. Wang et al.
[WDC*08a] supplemented low-quality digital video with an

Figure 10: Twelve photographs of the moon. (a) Unmodified
photograph. (b) Control arrows to define a field of incident
light direction. (c) Resulting composite photograph. (Image
courtesy of Akers et al. [ALK*03] c©2003 IEEE.)

infrared video signal. As the infrared reflectance of a surface
is less affected by the incoming light direction, this signal is
used to provide edge and contrast information for areas of a
scene with low light levels.

Both of these methods show a trend for improving video
content in low light areas. A similar trend for reducing the
effects of light saturation levels in images resulted in high
dynamic range photography (HDR). Some research has been
conducted on HDR video [KUWS03, AA04], but at present
the hardware is prohibitively expensive.

Rubinstein et al. [RGSS10] presented the first evaluation
of retargeting algorithms, using both subjective (e.g. viewer’s
preferences) and objective metrics. The perceptual study was
based on a public available benchmark of images named
RetargetMe [RGSS12].

4.3.3. Video retargeting

Video retargeting attempts to resize an input video to be
more appropriate for a given display. Traditionally, this ac-
tivity has been performed when films are converted from
cinema (2.39:1 or 1.85:1 width to height ratio) to television
(4:3 or 16:9 ratio) by manually cropping redundant elements
from the scene. The wide range of digital display devices,
and variety of input devices, makes manual retargeting unre-
alistic. As a result, automatic retargeting methods for static
images and video sequences have become an active research
area.

Initial video retargeting attempted to replicate the manual
pan-and-scan methods used for converting cinema films to
television. These methods used saliency maps [FXZM03] or
attention models [WRL*04] to decide how to cut the ‘vir-
tual’ shots introduced into the video. The aim of duplicating
manual methods resulted in an introduction of new zoom and
pan shots along with new cuts into the video, preserving the
on-screen spatial relationship between content, but possibly
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Figure 11: Importance preserving image retargeting. The
three important elements of the image are preserved as
the image size is reduced. (Image courtesy of Setlur et al.
[STR*05] c©2005 ACM.)

Figure 12: Improved seam-carving accounts for frame
changes over time, creating a consistent viewing experience.
(Image courtesy of Rubinstein et al. [RSA08] c©2008 ACM.)

affecting the narrative constructed by the director [LG06a]
(which is also a common criticism of the manual method).

An alternative approach fully embraced the flexibility al-
lowed by digital storage and avoided the need for homogenity
in the retargeted scene; allowing an image to be warped, re-
placing large parts of the background with relatively smaller
details of interesting objects [STR*05] (see Figure 11 for
an example). This approach was extended to video by Wolf
et al. [WGCO07]. Typically in these methods, the impor-
tance of a pixel is determined by combining outputs from
saliency, face detection and motion detection algorithms into
a single scalar value, which allows a great deal of flexibility
in the definition of ‘importance’ as any contribution can be
weighted, replaced or even augmented with a new measure.
Pipelines for these methods are described by Setlur et al.
[SLNG07b].

An improved representation introduced the concept of
seam-carving to images [AS07], which was extended to
videos via the video cube representation [RSA08]. Borrow-
ing ideas from rotoscoping and video synthesis [KSE*03],
this method preserves important regions of the video by sac-
rificing background content. The major contribution is the
temporal coherence of the curve used to carve the video (see
Figure 12).

These methods have recently been combined, along with
geometric image-resizing methods, into a single algorithm
which chooses the most effective transformation method
based on local properties [RSA09] to find the optimal re-
targeting of an input (see Figure 13). Wang et al. [WHSL11]
supplement the optimization with automatic pan-and-scan

Figure 13: The output of a number of retargeting methods,
including the recent multi-operator. (Image courtesy of Ru-
binstein et al. [RSA09] c©2009 ACM.)

and cropping techniques which prioritize motion informa-
tion, reducing the amount of distortion applied to frames.

4.4. Video-based modelling

Multi-resolution videos allow for interaction with the flat
video environment; video panoramas and textures are em-
ployed to enhance the perception of spatial and dynamics
feature of a scene. A natural step towards video apprecia-
tion is their extension to augmented reality and into different
forms of virtual reality as in video-based modelling. En-
vironment maps, with their 360o field of view, have been
extensively used in crafting virtual reality environments and
special effects, however the 2D nature only allows for single
resolution display of the scene. The vast amount of optical
devices that allow to capture video sequences make videos
virtually unlimited resolution means and as such a source for
arbitrary resolution photo-realistic imagery. Szeliski [Sze96]
concentrated on depth recovery in the process of reconstruct-
ing a scene from a video sequence. An image panorama of the
video sequence is constructed although the depth information
of the depicted scene is recovered through stereographically
projecting matching key frames pairs. Combining stereo-
matching with video textures it is possible to recreate and
navigate through a remote space through a virtual environ-
ment [AS99] or artwork [JPA07].

5. Video Visualization

Obtaining a quick overview of a video is an important task in
many applications. Whetheranalyzing surveillance videos,
wanting a quick overview of a sports match or selecting
a movie to watch from a large DVD collection, watching
the entire sequence is usually not an option. Instead, one
wants a quick summary of the crucial events happening in
the video. This can be done by summarizing the video by
a number of short sequences like in a cinema trailer or by
creating an image narrating the story. In some situations,
one can also extract meaningful information, such as motion
flow and depict such information in a way that helps the
viewer recognize certain patterns or unusual events in the
video. We refer to these techniques collectively as video
visualization.
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Figure 14: Segments of a video.

In this section, we categorize video visualization tech-
niques according to the content and format of the output
media. We will base our classification on the taxonomy pre-
sented in Section 2.2. In the first section, we will examine
methods that generate new videos as an output media, which
is more ‘cost-effective’ to view in comparison with the orig-
inal videos. The following sections instead will concentrate
on the common methods which summarize videos using key
frame storyboards. We consider first the techniques for key
frame selection, and then a collection of methods that en-
hance key frame-based representations. This is followed by
a review of techniques for generating abstract visualization,
where information in the temporal feature space is displayed
to aid summarization and understanding of a video.

5.1. Key frame selection

Before going into detail about the different techniques, we
will have a quick look at the structure of a video. Let us
consider a video of a certain length t that consists of several
minutes or hours of film material as depicted in Figure 14.
Each video consists of a sequence of images, or frames.
Most movies consist of 24 to 30 frames per second and when
watched at that rate the human eye perceives a smooth mo-
tion. Higher frame rates are used with high-speed cameras.
When one or more frames, depicting a continuous action in
time and space, are combined in a contiguous recording, this
is called a shot [PS97]. The assembly of subsequent shots
of a semantic unit is called a scene. Both, shots and scenes,
can be of arbitrary length and the single units usually differ
in length, i.e. there are scenes in a video that only take a
split second while others might take several minutes. Image-
based video visualization commonly operates on the three
lower levels: frames, shots and sequences. For example, sev-
eral frames might be selected and presented to the user or
the contents of a shot or sequence might be summarized in a
single image. A crucial step for all these applications is the se-
lection of key frames, i.e. representative frames of the video.
In the following, we will first have a look at the different key
frame selection techniques, continue with different depiction
methods and finish with a number of techniques that incor-

porate additional information into key frames to enhance
understanding. As mentioned before, key frame selection is
typically the first step in image-based video visualization.
Key frame selection means that we are looking for a set of
images that optimally represents the contents of the video ac-
cording to a specified criterion such as ‘find a representative
image for each shot’. As in most optimization procedures,
two different strategies can be pursued when choosing rele-
vant images. Either, a maximum number of frames is given
or an error rate to be met. The maximum number criterion
is commonly used when dealing with limited resources. For
example, when the key frames are to be displayed on a single
page or transmitted to a mobile device at a low transmis-
sion rate. The error rate approach is applied when looking
for the best set of images meeting the optimality criterion.
In both techniques, manipulating one parameter affects the
other. Commonly, the number of key frames and the error
rate are correlated, i.e. if we allow a larger number of key
frames to be selected the error will drop and if we increase
the allowed error in the second technique, we will obtain
more images. Hence, when choosing a strategy, we have to
decide what is more important: a fixed number of images or
a limit on the error.

No matter which technique we choose, in both cases an op-
timality criterion has to be defined. The simplest one would
be to uniformly select images from the movie, but this might
easily lead to missing short key sequences or several depic-
tions of long uninteresting scenes. Truong and Venkatesh
[TV07] classified a number of partly overlapping criteria for
the optimization, which we summarize in the following five
categories. For a comprehensive list of references refer to
[TV07].

• Sufficient content change: Choose key frames such
that they mutually represent different visual content.
With the error criterion, we sequentially go through
the video and select a frame as key frame whenever
it largely differs from the previous key frames. Alter-
natively, we can look for the n frames that represent
sequences of equal variance.

• Maximum frame coverage: Select key frames such that
they represent a maximum number of frames that are
not key frames.

• Feature space analysis: Treat each frame as a point
in high-dimensional feature space. One optimization
strategy is based on point clustering, where the key
frames are the representative points of the clusters.
Alternatively, the video can be seen as a path in high-
dimensional space connecting subsequent frames and
we look for a simplified path with minimal error.

• Minimum correlation: Choose key frames such that
they feature a minimum amount of correlation be-
tween each other.
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• ‘Interesting’ events: Methods in this category take se-
mantics into account and try to identify key frames
with high information content. They might analyse
motion patterns, look for faces or high spatial com-
plexity.

5.2. Another video or an animation

In this subsection, we consider a group of techniques that
alleviate the problem of watching videos without leaving the
video output domain. There are three different approaches,
differing in the way they maintain the content of the video.

The first category contains video navigation techniques.
Here, the full content of the video is maintained. Content
control and time compression achieved via video browsing
approaches and fast-forward techniques.

Within the second category, video montage and video syn-
opsis, a new video with a shorter duration is created by com-
bining different spatial and temporal video parts. Spatial and
temporal context information may be lost using this tech-
nique while the occurring actions are preserved.

The third category covers video-skimming techniques
which skips uninteresting parts of the video to create shorter
clips with the purpose of video abstraction. Due to the ab-
sence of whole video parts, time compression is achieved
by the cost of information loss. However, the available parts
maintain spatial context information.

5.2.1. Video navigation

Many proposals have been made regarding the problem of
watching videos in a time-saving and efficient manner. Basic
video browser controls include Play, Pause, Fast-Forward,
Seek, Skip-to-beginning and Skip-to-end of video. Li et al.
[LGS*00] add enhanced controls. The most important fea-
tures include the support for modifying the playback speed
between 50 % and 250 % of the original speed while pre-
serving the pitch of the audio, an automatical pause removal
feature that enables the user to remove parts of the video
where pauses in continuous speech occur, and the possibility
to select shots of the video to jump to their temporal positions
[LGS*00].

Ramos and Balakrishnan [RB03] focused on controlling
videos with pressure-sensitive digitizer tablets. Beside fading
in and out annotations and several interaction possibilities,
they present a variation of the fish-eye view called Twist
Lens to seek in video streams. The timeline slider consists of
several sampled frames semi-occluded by each other. If the
user coarsely selects a frame and increases the pressure, the
slider is smoothly morphed around this frame into a sinu-
soidal shape (see Figure 15). The occlusion of the frames in
the vicinity of the selected one is decreased and an accurate
selection of the time position is feasible.

Figure 15: Twist Lens. (Image courtesy of Ramos et al.
[RB03] c©2003 ACM.)

Figure 16: Video browsing using interactive navigation
summaries. (Image courtesy of Schoeffmann et al. [SB09].)

In [SB09] a timeline slider is created as a combination of
an arbitrary number of navigation summaries. This enables
the user to see several content abstractions of the video in the
timeline at one glance. Navigation summaries can be visited
frames, dominant colours, frame stripes or a motion layout
(see Figure 16).

Another possibility to browse through videos is given
by direct object manipulation approaches (e.g. [KDG*07,
GKV*07, DRB*08, GGC*08, KWLB08]). To browse videos
in this way, objects and their movements are extracted in a
pre-processing step. Afterwards, objects can be picked in
the video window. The video is directly scrubbed by mov-
ing the selected object to another position (see Figure 17).
In [KDG*07] and [GKV*07] scrubbing is also allowed by
object manipulation on a floor plan.

As mentioned above, fast-forward is a basic control for
video browsing. Wildemuth et al. evaluated in [WMY*03]
how fast too fast is. They recommended showing every 64th
frame of a video for fast-forward surrogates. Even at lower
speeds, the user’s abilities in object recognition (graphical),
action recognition, linguistic comprehension (full text) and
visual comprehension decrease. This problem leads us to
different approaches to adapt the video playback speed by
video content.
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Figure 17: Video browsing by direct manipulation. (Image
courtesy of Dragicevic et al. [DRB*08] c©2008 ACM.)

Peker et al. adapted the playback speed relative to the mo-
tion in the videos [PDS01, PD04]. Parts of the video with
less motion are played faster than parts with more motion.
Höferlin et al. [HHWH10] adapted the playback speed ac-
cording to the temporal information, which allows users to
adjust the information load according to their personal abili-
ties, consider static changes and is more robust to video noise
than motion.

An adaptive playback speed based on similarity to a target
clip is described in [PJH05]. One example application they
propose for this type of adaptive video playback is a football
game. The user feed the system with a target clip of the game.
Scenes of the ongoing game will then be displayed in nor-
mal speed although game interruption scenes (e.g. showing
spectators) are highly accelerated.

In [CLCC09] the playback speed is adapted based on three
criteria: motion speed, semantic rules and user input. Motion
in the video has a similar effect as in [PD04]. The manually
defined semantic rules lead the playback speed to slow down
while the video passes those parts. The user can manually
increase or decrease the speed while the video player learns
these user preferences and further adapts the speed.

In [BBPP10] SLAM techniques are used to generate a 3D
reconstruction of the footages captured by typical consumer
video cameras. The work is an example of how SLAM tech-
niques can achieve real-time performance in the creation of
free viewpoint video transition. The approach heavily relies
on colour priors, e.g. foreground objects to have to have spe-
cific shape or colours, to avoid artefacts in the reconstruction.

5.2.2. Video montage and video synopsis

Kang et al. introduced a technique for video abstraction
called video montage [KCMT06]. They extract visual in-
formative space-time portions from video and merge these
parts. Their technique changes the temporal and the spatial
occurrence of the information and results in a shorter video
clip with condensed information.

One of the method’s drawbacks is the loss of spatial con-
text. A method preserving spatial positions was proposed in

[RAPP06], [PRAGP07] and[PRAP08]. In their approaches,
objects are detected, tracked and temporally rearranged. The
recomposed video shows different actions, occurring at dif-
ferent temporal positions, at the same time. Even if the tra-
jectory of the object has a long time duration it is cut into
several pieces, all displayed at the same time.

5.2.3. Video skimming

The goal of video skimming is to create a short summariza-
tion of a given video stream. Therefore, less interesting parts
of the video are discarded. The process builds upon what was
previously described as key frame selection (see Section 5.1).

Truong et al. identified a five-step process for automatic
video skim generation [TV07]. For some video skimming
techniques steps are skipped or combined in a different varia-
tion, but the basics remain. These five steps are segmentation
(extract shots, scenes, events, parts of continuous speech,
etc.), selection (choose ‘interesting’ parts for summariza-
tion), shortening (reduce the time duration for the selected
parts further, e.g. by cutting), multi-modal integration (com-
bine skims for different features such as image, audio and
text into the final skim) and assembly (temporally arrange
independent video skim parts, e.g. chronological).

Correa et al. [CM10] introduced Video Narratives single
compositions of dynamic mosaics organized along a linear
timeline. The system supports speed varying skimming of
videos as well as the generation of storyboard or dynamic
video summaries.

The field of video skimming covers a huge research area;
we refer to [TV07] for further reading.

5.3. A large collection of images

The easiest direct depiction of key frames is the storyboard
technique, where equally sized images are arranged on a
regular grid, e.g. three by four images on a page [BT07].
This technique can be extended to allow for different lev-
els of temporal detail when presenting the key frames in a
hierarchical manner [LSB*00, SKK*01]. At the top level,
a single frame represents the entire film and at the lowest
level, all frames are included. Although easy to apply and
understand, both techniques have the disadvantage, that they
do not provide information about the relevance of individ-
ual snapshots. To include such semantics, the images can
be scaled according to their importance to the video [YY97,
UFGB99]. Yeung and Yeo [YY97], for example, use the
number of frames being represented by a key frame, which
is equivalent to the subset’s length, to scale the key frames
of a sequence and arrange them according to predefined de-
sign patterns in a video poster. The illustration of several
video posters in temporal order summarizes the content of
a sequence. Barnes et al. [BGSF10] presented another ap-
proach to video summarization called Tapestries, merging the
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Figure 18: Reassembled depictions of key frames: (a) Salient stills compute the background from a number of frames and
add local information about relevant events (image courtesy of Teodosio et al. [TB05] c©2005 ACM). (b) A similar approach
is taken by dynamic video synopsis with the focus on the concurrent display (lower image) of events at different times (upper
images)(image courtesy of Pritch et al. [PRAP08] c©2008 IEEE). (c) A video collage rearranges elements of different key frames
in a new image of arbitrary shape (image courtesy of Mei et al. [MYYH08] c©2008 SpringerLink).

structure of DVD chapter menus with the timeline represen-
tation of video editing tools.

5.4. A single composite image

All methods in the previous category are common in that
they do not alter the contents of the individual key frames.
Reassembled depictions, by contrast, combine the contents
of several images to create a new one. An early goal in this
area was to reconstruct the background of a scene. Methods
to achieve such a reconstruction [IAH95, TAT97, LCL*97,
JDD99], sometimes called mosaics (see Section 3.2.1), com-
bine several successive video frames and reconstruct the
scene while correcting for camera movement and zooming.
Salient stills [TB05] extend this technique and add additional
information about temporal changes (Figure 18a). Therefore,
salient regions of interest are extracted and seamlessly ar-
ranged on the background such that the temporal structure of
the video content is preserved. A similar approach is followed
by Pritch et al. [PRAP08] who concentrate on the simulta-
neous depiction of events happening at different times in the
video (Figure 18b).

An alternative approach is taken by techniques that extract
relevant subsections of the key frames and reassemble the
subimages to form a new image. The video collage technique
[CGL04] first arranges the important components on a page
and fills the gaps in between with image data according to a
Voronoi tessellation of the data. This approach was extended
in the video collage algorithm [MYYH08] (Figure 18c) and
autocollage [RBHB06] where a combination of template-
based arrangement and an energy minimization algorithm is
used to find good locations for the different subimages. Al-
though the first concentrates on boundaries of arbitrary shape

(Figure 18c), the second concentrates on seamless transitions
between the different subimages.

5.5. Additional information and actions

In our last category of key frame depictions techniques, we
will summarize methods that add additional information to
the extracted keyframes.

5.5.1. Enhanced stills

A well known approach is schematic storyboards (Fig-
ure 19a), where annotations are added to illustrate the move-
ment of persons or the camera [GCSS06]. Nienhaus and
Dollner [ND05] (Figure 19b) take a similar approach us-
ing additional dynamics glyphs. Further, image-based video
visualization that enhance the raw data are graph-based ap-
proaches that depict, additionally to the key frames, the in-
teraction between different characters or the use of different
scenes in a graph [ACCO05].

A hierarchical exploration technique for surveillance
videos, the Interactive Schematic Summaries (Figure 19c), is
introduced by Höferlin et al. [HHWH11]. They apply scat-
ter/gather browsing to trajectories for video exploration and
use an abstract representation that bundles the trajectories of
the clusters.

5.5.2. Video abstraction

In some cases, abstract attributes, such as changes in a scene,
changes between frames, motion flow and pixel clusters, can
be depicted visually to aid the understanding of a video using
only one or a few visualizations. Such visualization may
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Figure 19: Enhanced stills: (a) Schematic storyboards en-
hance the displayed key frames with additional informa-
tion on characters and camera movement (image courtesy
of Goldman et al. [GCSS06] c©2006 ACM). (b) Additional
dynamics glyphs are used to enhance understanding (image
courtesy of Nienhaus et al. [ND05] c©2005 IEEE). (c) Trajec-
tories extracted from video are grouped together and depicted
by schematic summaries (image courtesy of Höferlin et al.
[HHWH11] c©2011 ACM).

not display objects in an intuitive manner, but the abstract
visual representation can convey temporal attributes more
effectively than discrete key frame displays.

A popular approach interprets video data as a space-time
volume. This idea was first published by Fels and Mase

Figure 20: Interactive Video Cubism. (Image courtesy of
Fels et al. [FM99] c©1999 ACM).

Figure 21: Video Visualization - changes that remain for
a period. (Image courtesy of Daniel et al. [DC03] c©2003
IEEE).

[FM99]. Here, the spatial axes x and y are combined with
time as the third axis (see Figure 20). Within this represen-
tation, they define cut planes to intersect the video volume.
Cut planes can be arbitrarily defined to watch the video in
a different way. Normally, watching video in this context
is nothing but applying using a cut plane parallel to the x–y
axes that is moving along the z axis. The principle of cut
planes through a video volume were refined for other appli-
cations like cut outs (see Section 3.2.3) or NPR rendering
[KSFC02].

Daniel and Chen proposed to employ volume visualiza-
tion techniques to visualize the video volume with the aim
of summarization [DC03]. They transformed the video vol-
ume into other shapes, e.g. a horseshoe view, to convey more
information. A change detection filter was applied and the re-
sults were displayed in the volume. Within this visualization,
several visual patterns can be identified indicating related
events like changes that remain for a period (see Figure 21),
walking with moving arms or an opened door.

Chen et al. [CBH*06] introduced visual signatures as ab-
stract visual features to depict individual objects and motion
events. Therefore, they apply and evaluate flow visualization
techniques to video volume visualization. Example visual
signatures they used to evaluate their approach are a tempo-
ral visual hull, a colour coded difference volume, glyphes and
streamlines (see Figure 22, where a sphere moves towards
the upright corner of the image frame).
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Figure 22: Visual Signatures in Video Visualization. (Image
courtesy of Chen et al. [CBH*06] c©2006 IEEE).

A further enhancement was done by Botchen et al.
in [BBS*08]. In this work, the video volume visualiza-
tion approach has been further enhanced with semantic
annotations.

6. Summary and Conclusions

We have examined the state-of-the-art of video-based graph-
ics and video visualization, and proposed a new taxonomy to
categorize the concepts and methods in this newly emerged
field. We have the following observations:

• The developments in video-based graphics have been fol-
lowing a certain trend in parallel with that in the digital
entertainment industry. It is driven primarily by the de-
mand for novel and creative digital contents as well as the
need for consumer multimedia applications. This trend
is expected to continue, and hence provide new inspira-
tion and stimulus for further research and development.
However, the focus will likely change from one subgoal
to another, although new subgoals will surely emerge.

• Video visualization can have applications in many disci-
plines including science, engineering, sports, medicine
and security. However, most of these applications share
a common goal: to reduce the time needed for watch-
ing videos and to assist the users in gaining insight
and making decisions in a cost-effective manner. Dif-
ferent output data types reflect the diversity of means to
achieve such a common goal. With the rapid increase
of captured video data, there will be a continuous in-
crease in demand for video visualization to address the
shortcoming of automated video analysis. The research
in this area also faces a huge challenge of scalability in
terms of space, time and interaction required for viewing
visualization.

• Like artificial intelligence, automated video analysis is
an ultimate ambition in computer science. Although the
realization of such an ambition will require a long-term
effort, the research and development in video analysis has
resulted in a large collection of low- and high-level tech-

niques. Many techniques, such as optical flow estimation
and 3D model reconstruction, have already been adopted
for pre-processing data in video-based graphics and video
visualization. Many more are yet to be integrated into
systems for video-based graphics and video visualiza-
tion. Hopefully, the brief overview of video analysis
in Section 3 will enthuse researchers to explore vari-
ous techniques originally developed for automated video
analysis.

In addition, there is an emerging interest in handling stereo
video streams, which is not surveyed in this report. The pro-
cess of making movies such as ‘Avatar’ in stereo is rais-
ing many research challenges on how to manipulate stereo
footage in the process. We believe that video-based graphics
and video visualization will continue to be fruitful areas of
research.
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demann, B. Höferlin, M. Höferlin and D. Weiskopf acknowl-
edge support from the German Research Foundation (DFG)
as part of the Priority Program ‘Scalable Visual Analytics’
(SPP 1335).

References

[AA04] AGGARWAL M., AHUJA N.: Split aperture imaging for
high dynamic range. International Journal of Computer
Vision 58, 1 (2004), 7–17.

[ACCO05] ASSA J., CASPI Y., COHEN-OR D.: Action synop-
sis: Pose selection and illustration. ACM Transaction on
Graphics 24, 3 (2005), 667–676.

[AHP04] AHONEN T., HADID A., PIETIKAINEN M.: Face
recognition with local binary patterns. In European Con-
ference on Computer Vision (2004), pp. 469–481.

[ALK*03] AKERS D., LOSASSO F., KLINGNER J., AGRAWALA

M., RICK J., HANRAHAN P.: Conveying shape and features
with image-based relighting. In VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (Washington, DC, USA,
2003), IEEE Computer Society, p. 46.

[AMGC02] ARULAMPALAM S., MASKELL S., GORDON N.,
CLAPP T.: A tutorial on particle filters for on-line non-
linear/non-gaussian Bayesian tracking. IEEE Transac-
tions on Signal Processing 50, 2 (2002), 174–188.

[ARS08] ANDRILUKA M., ROTH S., SCHIELE B.: People-
tracking-by-detection and people-detection-by-tracking.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



2470 R. Borgo et al./State of the Art Report on Video-Based Graphics and Video Visualization

In IEEE conference on Computer Vision and Pattern
Recognition (2008), pp. 1–8.

[AS99] AKESSON K.-P., SIMSARIAN K.: Reality portals. In
VRST ’99: Proceedings of the ACM symposium on Vir-
tual Reality Software and Technology (New York, NY,
USA, 1999), ACM, pp. 11–18.

[AS07] AVIDAN S., SHAMIR A.: Seam carving for content-
aware image resizing. ACM Transaction on Graphics 26,
3 (2007), 10:1–10:11.

[ASS*09a] AGARWAL S., SNAVELY N., SIMON I., SEITZ S.,
SZELISKI R.: Building Rome in a day. In IEEE Interna-
tional Conference on Computer Vision (2009), pp. 72–79.

[Ass09b] ASSA J.: Enriching Visual Expressiveness in
Medium Transformations (1st edition). Tel Aviv Univer-
sity, Tel Aviv, Israel, 2009.

[AT06] AGARWAL A., TRIGGS B.: Recovering 3D human pose
from monocular images. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28, 1 (2006), 44–58.

[AZP*05] AGARWALA A., ZHENG K. C., PAL C., AGRAWALA

M., COHEN M., CURLESS B., SALESIN D., SZELISKI R.:
Panoramic video textures. ACM Transaction on Graph-
ics 23, 11 (2005), 821–827.

[BBPP10] BALLAN L., BROSTOW G. J., PUWEIN J., POLLEFEYS

M.: Unstructured video-based rendering: Interactive ex-
ploration of casually captured videos. ACM Transaction
on Graphics 29 (July 2010), 87:1–87:11.

[BBS*08] BOTCHEN R. P., BACHTHALER S., SCHICK F., CHEN

M., MORI G., WEISKOPF D., ERTL T.: Action-based multi-
field video visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 14, 4 (2008), 885–899.

[BDH04] BARTOLI A., DALAL N., HORAUD R.: Motion
panoramas. Computer Animation and Virtual Worlds 15,
5 (2004), 501–517.

[BETVG08] BAY H., ESS A., TUYTELAARS T., VAN GOOL L.:
Speeded-up robust features (surf). Computer Vision and
Image Understanding 110 (June 2008), 346–359.

[BEZ09] BUEHLER P., EVERINGHAM M., ZISSERMAN A.: Learn-
ing sign language by watching TV (using weakly aligned
subtitles). In IEEE Conference on Computer Vision and
Pattern Recognition (2009), pp. 2961–2968.

[BFB94] BARRON J., FLEET D., BEAUCHEMIN S.: Performance
of optical flow techniques. International Journal of Com-
puter Vision 12, 1 (1994), 43–77.

[BFL06] BOYKOV Y., FUNKA-LEA G.: Graph cuts and efficient
image segmentation. International Journal of Computer
Vision 70, 2 (2006), 109–131.

[BGSF10] BARNES C., GOLDMAN D. B., SHECHTMAN E.,
FINKELSTEIN A.: Video tapestries with continuous temporal
zoom. ACM Transaction on Graphics 29, 4 (2010), 1–9.
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