333 research outputs found

    A global unstructured, coupled, high-resolution hindcast of waves and storm surge

    Full text link
    Accurate information on waves and storm surges is essential to understand coastal hazards that are expected to increase in view of global warming and rising sea levels. Despite the recent advancement in development and application of large-scale coastal models, nearshore processes are still not sufficiently resolved due to coarse resolutions, transferring errors to coastal risk assessments and other large-scale applications. Here we developed a 50-year hindcast of waves and storm surges on an unstructured mesh of >650,000 nodes with an unprecedented resolution of 2-4 km at the global coast. Our modelling system is based on the circulation model SCHISM that is fully coupled with the WWM-V (WindWaveModel) and is forced by surface winds, pressure, and ice coverage from the ERA5 reanalysis. Results are compared with observations from satellite altimeters, tidal gauges and buoys, and show good skill for both Sea Surface Height (SSH) and Significant Wave Height (Hs), and a much-improved ability to reproduce the nearshore dynamics compared with previous, lower-resolution studies. Besides SSH, the modelling system also produces a range of other wave-related fields at each node of the mesh with a time step of 3 hours, including the spectral parameters of the first three largest energy peaks. This dataset offers the potential for more accurate global-scale applications on coastal hazard and ris

    Evaluation and Application of Newly Designed Finite Volume Coastal Model FESOM-C, Effect of Variable Resolution in the Southeastern North Sea

    Get PDF
    A newly developed coastal model, FESOM-C, based on three-dimensional unstructured meshes and finite volume, is applied to simulate the dynamics of the southeastern North Sea. Variable horizontal resolution enables coarse meshes in the open sea with refined meshes in shallow areas including the Wadden Sea and estuaries to resolve important small-scale processes such as wetting and drying, sub-mesoscale eddies, and the dynamics of steep coastal fronts. Model results for a simulation of the period from January 2010 to December 2014 agree reasonably well with data from numerous regional autonomous observation stations with high temporal and spatial resolutions, as well as with data from FerryBoxes and glider expeditions. Analyzing numerical solution convergence on meshes of different horizontal resolutions allows us to identify areas where high mesh resolution (wetting and drying zones and shallow areas) and low mesh resolution (open boundary, open sea, and deep regions) are optimal for numerical simulations

    Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions

    Get PDF
    Assimilating oceanic observations into prediction systems is an advantageous approach for real-time ocean environment characterization. However, its benefits to underwater acoustic predictions are not trivial due to the nonlinearity and sensitivity of underwater acoustic propagation to small-scale oceanic features. In order to assess the potential of oceanic data assimilation, integrated ocean-acoustic Observing System Simulation Experiments are conducted. Synthetic altimetry and in situ data were assimilated through a variational oceanographic data assimilation system. The predicted sound speed fields are then ingested in a range-dependent acoustic model for transmission loss (TL) predictions. The predicted TLs are analyzed for the purpose of (i) evaluating the contributions of different sources to the uncertainties of oceanic and acoustic forecasts and (ii) comparing the impact of different oceanic analysis schemes on the TL prediction accuracy. Using ensemble member clustering techniques, the contributions of boundary conditions, ocean parameterizations, and geoacoustic characterization to acoustic prediction uncertainties are addressed. Subsequently, the impact of three-dimensional variational (3DVAR), 4DVAR, and hybrid ensemble-3DVAR data assimilation on acoustic TL prediction at two signal frequencies (75 and 2,500 Hz) and different ranges (30 and 60 km) are compared. 3DVAR significantly improves the predicted TL accuracy compared to the control run. Promisingly, 4DVAR and hybrid data assimilation further improve the TL forecasts, the hybrid scheme achieving the highest skill scores for all cases, while being the most computationally intensive scheme. The optimal scheme choice thus depends on requirements on the accuracy and computational constraints. These findings foster developments of coupled data assimilation for operational underwater acoustic propagation

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage

    Changes in water and carbon in Australian vegetation in response to climate change

    Get PDF
    Australia has experienced pronounced climate change since 1950, especially in forested areas where a reducing trend in annual precipitation has occurred. However, the interaction between forests and water at multiple scales, in different geographical locations, under different management regimes and in different forest types with diverse species is not fully understood. Therefore, some interactions between forests and hydrological variables, and in particular whether the changes are mediated by management or climate, remain controversial. This thesis investigates the responses of Australia’s terrestrial ecosystems to both historical and projected climate change using remote sensing data and ecohydrological models. The thesis is structured in seven chapters, and contains five research chapters. Vegetation dynamics and sensitivity to precipitation change on the Australian continent for the past long drought period (2002-2010) are explored in Chapter 2 using multi-resource vegetation indices (VIs; normalized difference vegetation index (NDVI) and leaf area index (LAI)) and gridded climate data. During drought, precipitation and VIs declined across 90% and 80% of the whole continent, respectively, compared to the baseline period of 2000-2001. The most dramatic declines in VIs occurred in open shrublands near the centre of Australia and in southwestern Australia coinciding with significant reductions in precipitation and soil moisture. Overall, a strong relationship between water (precipitation and soil moisture) and VIs was detected in places where the decline in precipitation was severe. For five major vegetation types, cropland showed the highest sensitivity to water change, followed by grassland and woody savanna. Open shrublands showed moderate sensitivity to water change, while evergreen broadleaf forests only showed a slight sensitivity to soil moisture change. Although there was no consistent significant relationship between precipitation and VIs of evergreen broadleaf forests, forests in southeastern Australia, where precipitation had declined since 1997, appear to have become more sensitive to precipitation change than in southwestern Australia. The attribution of impacts from climate change and vegetation on streamflow change at the catchment scale for southwestern Australia are described in Chapter 3. This region is characterized by intensive warming and drying since 1970. Along with these significant climate changes, dramatic declines in streamflow have occurred across the region. Here, 79 catchments were analyzed using the Mann-Kendall trend test, Pettitt’s change point test, and the theoretical framework of the Budyko curve to study changes in the rainfall-runoff relationship, and effects of climate and vegetation change on streamflow. A declining trend and relatively consistent change point (2000) of streamflow were found in most catchments, with over 40 catchments showing significant declines (p < 0.05, -20% to -80%) between the two periods of 1982-2000 and 2001-2011. Most of the catchments have been shifting towards a more water-limited climate condition since 2000. Although streamflow is strongly related to precipitation for the period of 1982 to 2011, change of vegetation (land cover/use change and growth of vegetation) dominated the decrease in streamflow in about two-thirds of catchments. The contributions of precipitation, temperature and vegetation to streamflow change for each catchment varied with different catchment characters and climate conditions. In Chapter 4, the magnitude and trend of water use efficiency (WUE) of forest ecosystems in Australia, and their response to drought from 1982 to 2014, were analyzed using a modified version of the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model in the BIOS2 modelling environment. Instead of solely relying on the ratio of gross primary productivity (GPP) to evapotranspiration (ET) as WUE (GPP/ET), the ratio of net primary productivity (NPP) to Transpiration (ETr) (NPP/ETr) was also adopted to more comprehensively understand the response of vegetation to drought. For the study period, national average annual forest WUE was 1.39 ± 0.80 g C kg−1 H2O for GPP/ET and 1.48 ± 0.28 g C kg−1 H2O for NPP/ETr. The WUE increased in the entire study area during this period (with a rate of 0.003 g C kg−1 H2O yr-1 for GPP/ET; p < 0.005 and a rate of 0.0035 g C kg−1 H2O yr-1 for NPP/ETr; p < 0.01), whereas different trends were detected in different biomes. A significantly increasing trend of annual WUE was only found in woodland areas due to higher magnitudes of increases in GPP and NPP than ET and ETr. The exception was in eucalyptus open forest area where ET and ETr decreased more than reductions in GPP and NPP. The response of WUE to drought was further analyzed using 1-48 month scales standardised precipitation-evapotranspiration index (SPEI). More severe (SPEI < -1) and frequent droughts (over ca. 8 years) occurred in the north than in the southwest and southeast of Australia since 1982. The response of WUE to drought varied significantly regionally and across forest types. The response of WUE to drought varied significantly regionally and across forest types, due to the different responses of carbon sequestration and water consumption to drought. The cumulative lagged effect of drought on monthly WUE derived from NPP/ETr was consistent and relatively short and stable between biomes (< 4 months), but notably varied for WUE based on GPP/ET, with a long time lag (mean of 16 months). As Chapters 2-4 confirmed that climate change has been playing an important role in the water yield and vegetation dynamics in Australia, the response of water yield and carbon sequestration to projected future climate change scenarios were integrated using the Water Supply Stress Index and Carbon model (WaSSI-C) ecohydrology model in Chapter 5. This model was calibrated with the latest water and carbon observations from the OzFlux network. The performance of the WaSSI-C model was assessed with measures of Q from 222 Hydrologic Reference Stations (HRSs) in Australia. Across the 222 HRSs, the WaSSI-C model generally captured the spatial variability of mean annual and monthly Q as evaluated by the Correlation Coefficient (R2 = 0.1-1.0), Nash-Sutcliffe Efficiency (NSE = -0.4-0.97), and normalized Root Mean Squared Error by Q (RMSE/Q = 0.01-2.2). Then 19 Global Climate Models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5), across all Representative Concentration Pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), were used to investigate the potential impacts of climate change on water and carbon fluxes. Compared with the baseline period of 1995-2015 across the 222 HRSs, the temperature was projected to rise by an average of 0.56 to 2.49 ˚C by 2080, while annual precipitation was projected to vary significantly. All RCPs demonstrated a similar spatial pattern of change of projected Q and GPP by 2080, however, the magnitude varied widely among the 19 GCMs. Overall, future climate change may result in a significant reduction in Q but may be accompanied by an increase in ecosystem productivity. Mean annual Q was projected to decrease by 5 - 211 mm yr-1 (34% - 99%) by 2080, with over 90% of the watersheds declining. On the contrary, GPP was projected to increase by 17 - 255 g C m-2 yr-1 (2% - 17%) by 2080 in comparison with 1995-2015 in southeastern Australia. A significant limitation of WaSSI-C model is that it only runs serially. High resolution simulations at the continental scale are therefore not only computationally expensive but also present a run-time memory burden. In Chapter 6, using distributed (Message Passing Interface, MPI) and shared (Open Multi-Processing, OpenMP) memory parallelism techniques, the model was parallelized (and renamed as dWaSSI-C), and this approach was very effective in reducing the computing run-time and memory use. By using the parallelized model, several experiments were carried out to simulate water and carbon fluxes over the Australian continent to test the sensitivity of the model to input data-sets of different resolutions, as well as the sensitivity of the model to its WUE parameter for different vegetation types. These simulations were completed within minutes using dWaSSI-C, and this would not have been possible with the serial version. Results show that the model is able to simulate the seasonal cycle of GPP reasonably well when compared to observations at 4 eddy flux sites in Australia. The sensitivity analysis showed that simulated GPP was more sensitive to WUE during the Australian summer as compared to winter, and woody savannas and grasslands showed higher sensitivity than evergreen broadleaf forests and shrublands. With the parallelized dWaSSI-C model, it will now be much easier and faster to conduct continental scale analyses of the impacts of climate change and land cover change on water and carbon. Overall, vegetation and water of Australian ecosystems have become very sensitive to climate change after a considerable decline in streamflow. Australian ecosystems, especially in temperate Australia, are projected to experience warmer and drier climate conditions with increasing drought risk. However, the prediction from different models varied significantly due to the uncertainty of each climate model. The impacts of different forest management scenarios should be studied to find the best land use pattern under the changing climate. Forest management methods, such as thinning and reforestation, may be conducted to mitigate the impacts of drought on water yield and carbon sequestration in the future

    High-resolution wave forecasting : the Catalan coast case : modelling, coupling and validation

    Get PDF
    It is widely known that wind and wave predictions in the nearshore are less precise for semi enclosed domains than in the open ocean. The Catalan coast is a clear example of this situation, with a wave climate controlled by short fetches, complex bathymetry, high wind field variability in time and space, and sea and swell waves combined that generate bimodal spectra. These characteristics, typical for a semi-enclosed basin, limit the reliability of wave predictions in the area, with errors on the significant wave height around 10% and a clear under-prediction of the wave period with errors around 30%. The motivation of this work is to improve the actual wave forecasting abilities for the Catalan Coast using the SWAN v.4091 wave model. In order to achieve this goal, three working lines are considered: (1)adapting the model to the Catalan coast conditions, tuning the wave growth rates included in the model to better reproduce the observed values, (2) evaluate the effect of the currents and wind into the wave field by using a coupled system and (3) consider the use of unstructured grids as an alternative to the traditionally nested systems in order to obtain high resolution wave forecasts in coastal areas reducing the computational time and avoiding the use of internal boundary conditions with their associated errors. The results obtained support previous studies where the limited ability of the models to reproduce wave growth rates in young seas have been detected. The whitecapping term correction proposed in this document helps reducing under-prediction of the wave period observed with almost no effect on the significant wave height. This correction can be applied to similar environments. However, the proposed formulation is only suitable for the early stages of generation and should be discontinued after waves reach a certain maturity. Two coupling strategies are considered, a one-way coupling where current fields are directly introduced into the wave model, and a two-way coupling where the waves, currents and winds models run in parallel. The effects of the coupling are evaluated during calm periods but also during energetic events. The results show that during calm conditions the coupling does hardly improve the results while during energetic events, such as superficial currents intensifications or wind jet events, the coupling has greater importance. However, the two-way coupling has extremely high computational requirements, not always available. In this sense, the use of unstructured grids as an alternative to the traditional nested systems is presented. The main benefit of unstructured grids is that allows working with a single grid with different resolutions in each sub-domain, improving the resolution in coastal areas. Other advantage is the capacity to better reproduce the sharp coastline and the areas around the islands. The design of unstructured grids has been shown as one of the most delicate parts of this methodology, requiring special attention for the grid generation criteria. The validation of the results, performed with buoy measurements in the nearshore but also for the entire domain with altimetry measurements, allows stating that unstructured grids perform correctly in the study area. Finally, the proposed work suitability for an operational forecasting system has been considered. The whitecapping term modification is proven to be decisive in the quality of the wave forecast, while the coupling is not always recommended depending on computational capabilities. The use of unstructured grids with a regional triangular mesh covering the entire Western Mediterranean sea is considered as the first option, providing accurate high resolution wave conditions near the coast with a clear reduction of the computational time in comparison with a traditional nested system.És sobradament conegut que les prediccions d'onatge i vent a prop de la costa són menys precises en regions semi tancades que en mar obert. La costa Catalana és un clar exemple d'aquesta situació, amb un clima d'onatge controlat per fetch curts, batimetries complexes, camps de vent fortament variables tant en el temps com en l'espai, i combinacions de mar de fons i de vent que generen espectres bimodals. Aquestes característiques, típiques de dominis semi tancats, limiten la precisió de les prediccions d'onatge, obtenint errors de l'alçada d’ona significant sobre el 10% i una clara subpredicció del període d'ona amb errors al voltant del 30%. La motivació d'aquesta treball és doncs millorar la capacitat de predicció d'onatge actual per la costa Catalana utilitzant el model d’onatge SWAN v.4091. Per tal d'assolir aquest objectiu, es consideren tres línies de treball: (1) adaptar el model a les condicions de la costa Catalana, calibrant les corbes de creixement d'onatge per que reprodueixin millor la realitat, (2) examinar l'efecte de les corrents i el vent sobre l'onatge utilitzant sistemes acoplats i (3)considerar l'ús de malles no estructurades com a alternativa a sistemes aniuats tradicionals per tal d'obtenir prediccions d'onatge d'alta resolució en zones costeres reduint el temps de càlcul i evitant les condicions de contorn i els errors associats. Els resultats obtinguts concorden amb estudis previs en els quals la incapacitat dels models per reproduir correctament les corbes de creixement de l'onatge havia estat ja detectada. La proposta de modificació del terme de whitecapping presentada en aquest document ajuda a reduir la subpredicció del període d’ona sense gairebé cap efecte en l'alçada d'ona. Aquesta correcció es aplicable a entorns similars. Tan mateix, la formulació proposada és només vàlida en els primers estats de generació d'onatge, i hauria de ser substituïda quan les ones adquireixen certa maduresa. Es consideren dues estratègies d'acoplament, un acoplament one-way en el que el camp de corrents s'introdueix directament en el mode d'onatge, i un acoplament two-way en el que models d'onatge, corrents i vent corrent paral·lelament. Els efectes de l'acoplament son avaluats durant períodes de calma i episodis més energètics. Els resultats obtinguts mostren que durant períodes de calma l'acoplament aporta ben poc, mentre que durant episodis energètics tals com intensificacions de corrents o vents canalitzats presenta més importància. Finalment cal tenir en compte que l'acoplament two-way presenta uns requeriments computacionals no sempre disponibles. En aquest sentit es proposa l’ús de malles no estructurades com alternativa al mètode tradicional de malles aniuades. El principal avantatge de les malles no estructurades es que permeten treballar amb una única malla que té diferents resolucions segons el subdomini, millorant així la resolució en zones costeres. Un altre avantatge es la capacitat de reproduir millor la línia de costa o les zones al voltant de illes. Una de les parts més delicades de tot el procés consisteix en el disseny de les malles, on s’ha de prestar especial atenció en els criteris considerats. La validació dels resultats, realitzada amb mesures de boies en zones costeres i dades de satèl·lit per mar obert, ens permeten afirmar que les malles no estructurades funcionen correctament a la zona d’estudi. Finalment, es considera l’adequació de les diferents propostes per a un sistema de predicció operacional. Queda demostrat que la modificació del terme de whitecapping millora decisivament la qualitat de les prediccions, mentre que l’acoplament es recomana en funció de la capacitat de càlcul disponible. L’ús de malles no estructurades per a tot el Mediterrani Occidental es considera com la primera opció, obtenint així onatge d’alta resolució en zones costaneres reduint considerablement el temps de càlcul en comparació amb el sistema aniuat tradicional.Postprint (published version

    Automated Approaches for Capturing Localized Tsunami Response—Application to the French Coastlines

    Get PDF
    Local bathymetry and onshore features can have a substantial effect on the spatial variability of the hazard from an incoming tsunami. In a warning context, being able to provide localized tsunami forecasts at strategic locations would therefore help mitigate the damage. Despite the recent advancements in computing powers and the development of highly efficient tsunami codes, capturing this local variability can oftentimes be infeasible in a warning setting. Traditional high-resolution simulations which can capture these localized effects are often too costly to run “on-the-fly.” Alternative approaches that capture the localized response to an incoming tsunami, which are based upon using the maximum wave heights from a computationally cheap regional forecast, are developed here. These alternative approaches are envisaged to aid in a warning center's ability at providing extremely rapid localized forecasts. The approaches focus upon two different methods: transfer functions and machine learning techniques. The transfer function is based upon a recent extension to the established Green's Law. The extended version introduces local amplification parameters, with the aim of capturing the neglected localized effects. An automated approach which optimizes for these local amplification parameters is outlined and the performance of the transfer function is explored. A machine learning model is also trained and used to predict the localized tsunami hazard. Its performance is compared to the extended Green's Law approach for a site along the French coast. These developed methods showcase promising techniques that a tsunami warning center could use to provide high-resolution warnings

    Global ocean modeling and state estimation in support of climate research

    Get PDF
    During the last decade it has become obvious that the ocean circulation shows vigorous variability on a wide range of time and space scales and that the concept of a "sluggish" and slowly varying circulation is rather elusive. Increasing emphasis has to be put, therefore, on observing the rapidly changing ocean state on time scales ranging from weeks to decades and beyond, and on understanding the ocean's response to changing atmospheric forcing conditions. As outlined in various strategy and implementation documents (e.g., the implementation plans of WOCE, AMS, CLIVAR, and GODAE) a combination of the global ocean data sets with a state-of-the-art numerical circulation model is required to interpret the various diverse data sets and to produce the best possible estimates of the time-varying ocean circulation. The mechanism of ocean state estimates is a powerful tool for such a "synthesis" of observations, obtained on very complex space-time pattern, into one dynamically consistent picture of the global time-evolving ocean circulation. This process has much in common with ongoing analysis and reanalysis activities in the atmospheric community. But because the ocean is, and will remain for the foreseeable future, substantially under-sampled, the burden put on the modeling and estimations components is substantially larger than in the atmosphere. Moreover, the smaller dynamical eddy scales which need to be properly parameterized or resolved in ocean model simulations, put stringent requirements on computational resources for ongoing and participated climate research

    Earthquake Characteristics and Structural Properties of the Southern Tyrrhenian Basin from Full Seismic Wave Simulations

    Get PDF
    Modelling the response of seismic wavefields to sharp lateral variations in crustal discontinuities is essential for seismic tomography application and path effects correction in earthquake source characterization. This is particularly relevant when wavefields cross back-arc oceanic basins, i.e. mixed continental-oceanic settings. High-frequency (&gt; 0.05 Hz) seismic waves resonate and get absorbed across these settings due to a shallow Moho, crustal heterogeneities, and energy leakage. Here, we provide the first high-frequency wave-equation model of full seismograms propagating through realistic 3D back-arc basins. Inversion by parameters trial based on correlation analyses identifies P-, S-and coda-wave as attributes able to estimate jointly 3D Moho variations, sediment thickness, and earthquake source characteristics using data from a single regional earthquake. We use as data waveforms produced by the Accumoli earthquake (Central Italy, 2016), propagating across the Southern Tyrrhenian basin and recorded across Southern Italy. The best model comprises a deep Moho ( similar to 18 km) in the middle of the basin and a crustal pinch with the continental crust in Sicily. The deep Moho corresponds to the Issel Bridge, a portion of continental crust trapped between the Vavilov and Marsili volcanic centres. The Accumoli earthquake is optimally described at a depth of 7.3 km using a boxcar with rise time of 6 s. Our results show that the early S-wave coda comprises trapped and reverberating phases sensitive to crustal interfaces. Forward modelling these waves is computationally expensive; however, adding these attributes to tomographic procedures allows modelling both source and structural parameters across oceanic basins

    Multiscale, Multiphysics Modelling of Coastal Ocean Processes: Paradigms and Approaches

    Get PDF
    This Special Issue includes papers on physical phenomena, such as wind-driven flows, coastal flooding, and turbidity currents, and modeling techniques, such as model comparison, model coupling, parallel computation, and domain decomposition. These papers illustrate the need for modeling coastal ocean flows with multiple physical processes at different scales. Additionally, these papers reflect the current status of such modeling of coastal ocean flows, and they present a roadmap with numerical methods, data collection, and artificial intelligence as future endeavors
    corecore