
High-resolution wave forecasting
The Catalan coast case

Modelling, coupling and validation

Elena Pallares

Thesis directors:
Agustin Sánchez-Arcilla Conejo

Manuel Espino Infantes

A thesis presented for the degree of Doctor

Spain

July 2016





Per la meva mare Esperança i la meva germana Marta.

i





High resolution wave forecasting.
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Elena Pallares

Abstract

It is widely known that wind and wave predictions in the nearshore are less
precise for semi enclosed domains than in the open ocean. The Catalan coast is
a clear example of this situation, with a wave climate controlled by short fetches,
complex bathymetry, high wind field variability in time and space, and sea and swell
waves combined that generate bimodal spectra. These characteristics, typical for a
semi-enclosed basin, limit the reliability of wave predictions in the area, with errors
on the significant wave height around 10% and a clear under-prediction of the wave
period with errors around 30%.

The motivation of this work is to improve the actual wave forecasting abilities
for the Catalan Coast using the SWAN v.4091 wave model. In order to achieve this
goal, three working lines are considered: (1)adapting the model to the Catalan coast
conditions, tuning the wave growth rates included in the model to better reproduce
the observed values, (2) evaluate the effect of the currents and wind into the wave
field by using a coupled system and (3) consider the use of unstructured grids as
an alternative to the traditionally nested systems in order to obtain high resolution
wave forecasts in coastal areas reducing the computational time and avoiding the
use of internal boundary conditions with their associated errors.

The results obtained support previous studies where the limited ability of the
models to reproduce wave growth rates in young seas have been detected. The white-
capping term correction proposed in this document helps reducing under-prediction
of the wave period observed with almost no effect on the significant wave height. This
correction can be applied to similar environments. However, the proposed formula-
tion is only suitable for the early stages of generation and should be discontinued
after waves reach a certain maturity.

Two coupling strategies are considered, a one-way coupling where current fields
are directly introduced into the wave model, and a two-way coupling where the
waves, currents and winds models run in parallel. The effects of the coupling are
evaluated during calm periods but also during energetic events. The results show
that during calm conditions the coupling does hardly improve the results while dur-
ing energetic events, such as superficial currents intensifications or wind jet events,
the coupling has greater importance. However, the two-way coupling has extremely
high computational requirements, not always available.

In this sense, the use of unstructured grids as an alternative to the traditional
nested systems is presented. The main benefit of unstructured grids is that allows
working with a single grid with different resolutions in each sub-domain, improving
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the resolution in coastal areas. Other advantage is the capacity to better reproduce
the sharp coastline and the areas around the islands. The design of unstructured
grids has been shown as one of the most delicate parts of this methodology, requiring
special attention for the grid generation criteria. The validation of the results, per-
formed with buoy measurements in the nearshore but also for the entire domain with
altimetry measurements, allows stating that unstructured grids perform correctly in
the study area.

Finally, the proposed work suitability for an operational forecasting system has
been considered. The whitecapping term modification is proven to be decisive in
the quality of the wave forecast, while the coupling is not always recommended
depending on computational capabilities. The use of unstructured grids with a
regional triangular mesh covering the entire Western Mediterranean sea is considered
as the first option, providing accurate high resolution wave conditions near the coast
with a clear reduction of the computational time in comparison with a traditional
nested system.
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F́ısica Española. Madrid, Spain. Poster.

Pallares, E, M Espino, A Sanchez-Arcilla (2013), ”The relevance of the whitecap-
ping term in wave forecasting: an analysis for the wave period of the Catalan coast.”
EGU2013 - European Geoscience Union General Assembly 2013. Viena, Austria.
Oral presentation.

Pallares, E, A Sanchez-Arcilla, M Espino (2014), ”Improving the wave forecast
in the Catalan Coast.” EGU2014 - European Geoscience Union General Assembly
2014. Vienna, Austria. Poster.

Pallares, E, G van Vledder, A Sanchez-Arcilla, M Espino (2014), ”Design and
validation of unstructured grids in SWAN for the Western Mediterranean Sea.” The
WISE 2014 meeting – Waves in Shallow Water Environment. Reading, United
Kingdom. Poster.

v



Pallares, E, L Rafols, M Espino, M Grifoll, J Lopez, M Bravo, A Sairouni, V
Gracia, M Garcia (2014), ”High resolution ocean modelling forecast for a coastal
early warning system in the Catalan Coast.” 7th EuroGOOS Conference: Opera-
tional Oceanography for Sustainable Blue Growth. Lisbon, Portugal. Poster.

Pallares, E, A Sanchez-Arcilla, M Grifoll, M Espino (2015) ”Coastal zone require-
ments for satellite products supported by coupled meteo-oceanographic numerical
models.” Sentinel -3 for Science workshop. European Space Agency (ESA). Venice,
Italy. Poster.
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Chapter 1

Introduction

1.1 Motivation

The need for information and the easy access to it is one of the characteristics

that defines the actual society. Due to modern technology, people can now have

immediate access to almost any kind of data just using their smartphone or laptop.

The ocean state, including the wave forecast, does not escape from the technical

development.

Users require information in different areas and with different purposes. In this

sense, wave forecasting data can be divided into two general groups, on one hand the

information provided by global models, covering almost the entire globe with a coarse

resolution, and on the other hand the local models, which provides information in

delimited areas usually near the coast with better resolution.

The first kind of models provides useful information for route mapping, navi-

gation, and also for large-scale fishing, while the second type are allied to other

activities that involve a lot of people and money, since the majority of human ac-

tivities on the ocean occur in the first kilometres near the shore. Some examples of

users requiring information in the coastal areas are related to leisure (e.g. tourism,

uses of the coast, surfing or recreation sailing), to engineering and economic activ-

ities (e.g. design of coastal structures, beach restoring, offshore platforms design,

renewal energy assessment or aquaculture), and also to hazard assessment by au-

thorities, especially when a storm event reaches the coast. The accuracy of the

wave forecasts, together with the wind and current information, is the key point

to propitiate better support to management decisions for harbour, coastal and nav-

igation authorities, and particularly interesting for hazard assessment and coastal

vulnerability during energetic events.
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It should be remarked that for the two wave forecast options different model

configurations are used.

The first global wave operational models appeared in the 80s and the 90s, imple-

mented by national weather services in Australia, Japan, Europe and North Amer-

ica. Forecast information for a horizon of up to 6 days was provided once a day.

During the first years the errors were considerable. A comparison between five of

the most noted wave forecasting systems between 1996 and 1999 is presented in Bid-

lot et al. (2002), obtaining root mean square errors for the significant wave height

between the 17% and the 22% for the first day of simulation that increased up to

24% to 31% after 48 hours. The errors for the peak period moved between 23% and

37% depending on the model. In 2013 the errors of global models in open waters

had decreased to 10% for the significant wave heights and to the 30% for the wave

period (Ardhuin and Roland, 2013), and are continuously evolving up to the present.

Some of the betterments implemented consist of progressing on the quality and res-

olution of the wind forcing (Janssen, 2008), improving the grid design in areas near

the equator or the poles (e.g. Tolman, 2008; Chawla et al., 2013), assimilating wave

height data from satellite or including the ice coverage and icebergs (Ardhuin et al.,

2011) among others.

When moving to coastal areas the wave forecast becomes more complicated. The

transition from global wave models to coastal scales applications in an operational

real-time has been the focus of interest for many decades, and has promoted new

research projects like the NOPP project (Tolman et al., 2013) or the European

MyWave project (FP7-SPACE project no.284455), involving a great number of wave

modellers. Then it can be assured that the operational systems in coastal scales

have progressed considerably the last years. However, an equilibrium between the

scientific advances in new physics parametrizations or the evolution of the numerical

schemes and the forecasting efficiency is not yet reached. These deficiencies are more

evident when applying the models to complex environments, where the accuracy of

the models is diminished (Tolman et al., 2013).

The Catalan coast and the Western Mediterranean Sea are clear examples that

there is still work to be done in wave modelling and forecasting in complex environ-

ments.

Previous studies describe the wave climate in the area controlled by short fetches,

complex bathymetry with deep canyons close to the coast, high wind field variability

in time and space, wave calms combined with energetic storms, the presence of

wind jets canalized by the river valleys and the consequent sea and swell waves

combination that generate bimodal spectra (Bolaños, 2004; Sanchez-Arcilla et al.,

2008; Alomar, 2012). These characteristics, some of them typical for a semi-enclosed
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basin, limit the reliability of wave predictions in the area (Sanchez-Arcilla et al.,

2014).

More specifically, an underestimation of the significant wave height and wave

period has been observed in this area by different authors. Bolaños (2004) consid-

ered that part of the error was due to the limited spatial and time scales of the

processes to reproduce, around 10 km and 12 hours, and recommended using an

atmospheric model nested with enough resolution to reproduce the different phe-

nomena. Alomar (2012), continuing with this work, presented two ways to improve

the wave predictions. One option consisted in increasing the temporal and spatial

resolution of the wave modelling system to capture the wind and wave gradients in

the geographic dimension. She proved that using a wind input with better tempo-

ral resolution improve the maximum values for a storm event, while a higher wind

spatial resolution only improved the timing of the peaks but not the magnitude.

The second modification proposed was adjusting the wave growth rate. The author

confirmed that the observed rate of wave growth in the region of study was faster

than the simulations and faster than the rates derived for more homogeneous wind

conditions. However, she was not able to tune enough the wave model in order to

amend the sub-prediction problem associated to the wave period (only improved by

4%).

The first results obtained by the author in the framework of this thesis (not

shown), by comparing the wave model simulations during a storm event (using the

configuration detailed in chapter 2) with buoy measurements in a location 50 km

offshore, presented root mean square errors for the wave height around 10%, with a

clear under-prediction of the storm peaks up to 1 m, despite the timing of the storm

peak was well reproduced. The errors for the peak period moved around 30%, with

a clear under-prediction bias of 2 s with respect to the buoy measurements that

made up 40% of the total error. When analysing the validation results in locations

nearer the coast the errors became slightly worse. These errors were of the same

order of magnitude as those obtained by previous authors in the study area.

The requirements of information for the Catalan coast, motivated by social and

economic interests, together with the lack of ability of the models to provide wave

forecast with the accuracy expected, have been the main motivation of the present

work. Previous and important works have been already carried out in the area,

considered as a starting point, enabling to produce the actual wave predictions.

However, a step forward should be done in order to adapt the new products to the

user’s necessities.
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1.2 Objectives

As previously mentioned, the wave simulations in the Catalan coast present impor-

tant inaccuracies, mainly for the significant wave height during storm events, but

also during all the year for the wave period. The forecasting systems available in the

area only provide general information about wave conditions in coastal areas, with

poor spatial and temporal resolution and with a lack of accuracy during energetic

events. The main objective of this thesis is then to improve the actual wave

forecasting abilities for the Catalan coast.

In general, the main issues affecting the wave accuracy are reported to be, in

decreasing order of importance: (1) the accuracy of the forcing fields, (2) the accu-

racy of the source term parametrizations, and (3) the effect of numerical schemes.

Additionally, some other effects are specifically involved in coastal areas like (4) the

interaction between the currents and the wave field or (5) the boundary conditions

quality from the coarser domain in nested grids (Ardhuin and Roland, 2013). Con-

sequently, for coastal areas the wave models gain in complexity in order to better

reproduce the reality. This is driven by more physical processes affecting the wave

evolution in shallow and intermediate waters together with the important variability

of the wind fields and the orography on those areas.

Previous works on the Catalan coast have addressed the topic of wind accuracy

with interesting conclusions and good improvements of the wave forecasts in coastal

areas (Bolaños, 2004; Alomar, 2012). The accuracy of the source terms parametriza-

tions has been treated in Alomar (2012), focusing on the wave growth in variable

wind conditions and the capability of models to reproduce it, with also very stim-

ulating conclusions. However, still some progress may be achieved in this line of

work.

With regard to specific topics referring to local domains in coastal areas, like

the effect of the boundary conditions or the wave modifications due to the ambient

currents, it had not been deeply treated for the study area at the beginning of this

study, in 2011. However, similar studies carried out in other areas present promising

results.

The coupling between oceanic, atmospheric and wave models takes more rele-

vance during energetic events (Jorda et al., 2007; Warner et al., 2010) due to the

intense wind, currents and wave fields involved. The Western Mediterranean sea is

an area mainly defined by calm periods most of the year. However, coastal areas are

often characterized by highly variable and heterogeneous conditions, which make the

numerical prediction of the meteo-oceanographic processes difficult. Some examples

of this local energetic events in coastal areas, when the effect of the coupling may be
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decisive, are the wind jets or the surface current intensifications, frequently observed

along the Catalan coast.

Moreover, the usage of unstructured grids as an alternative to the nested regular

grids has been considered by several authors in the last years (Siadatmousavi et al.,

2015; van Vledder and Akpinar, 2015) in order to improve the wave modelling. The

main advantages of the unstructured grids is that a refinement of the grid resolution

near the coast is possible removing the internal boundaries and so the complications

associated. Additionally, the unstructured grids better fit the shoreline and easily

reproduce the bathymetric gradients.

Finally, a reflection should be performed about the viability of applying the

proposed measures in an operational forecasting system. The computational cost

and the expected improvements need to be analysed in order to find an equilibrium

adapted to the user’s demands.

In this sense, five specific objectives are defined:

• Improve the wave forecasting in the Catalan coast by tuning the

wave model parametrizations related to the wave growth.

• Evaluate the effect of the coupling between the wave model and the

current and atmospheric models for different situations.

• Consider the use of unstructured grids as an alternative of the reg-

ular nested grids.

• Define the criteria necessary to generate an efficient unstructured

grids, considering the grid resolution and the distribution of cells in

the domains.

• Asses the viability of these improvements into an operational fore-

casting system.
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1.3 Outline

In order to achieve the specific objectives defined in previous lines, the work has

been structured in four main blocks, so it is with this document.

After presenting the motivation and the main objectives of the study in Chap-

ter 1, a general review of the background is presented in Chapter 2, where the

study area, the wave models history and evolution, together with the SWAN third-

generation wave model and the measurements and validation techniques used in the

thesis are detailed. A more specific background would be presented in each of the

following main chapters.

The four chapters comprising the core work performed in the framework of this

thesis topic come next.

In Chapter 3 a review of the wave model implementation to the Catalan coast is

presented, focusing on the wave growth problems detected in previous studies. Two

modifications are proposed, one concerning the whitecapping dissipation and the

other related to the comparison between wave model results and buoy measurements.

The different coupling alternatives are analysed in Chapter 4, including a one-

way coupling with a current model and a two-way coupling with both an atmospheric

model and a current model. Both alternatives are applied to calm periods and to

energetic events.

In Chapter 5 the design of two unstructured grids covering the study domain

is performed, in order to achieve an efficient equilibrium between grid resolution

and computational time requirement. The quality of the results obtained from wave

model simulations is assessed validating it with buoy measurements and satellite

wave data.

In the last Chapter 6, an evaluation of the mentioned improvements in opera-

tional systems is performed through a comparison between the unstructured grids

and the traditional nested systems for a one year hindcast.

The final discussion and conclusions are presented in Chapter 7, together with

the future lines of work.

The common structure of chapters 3 to 6 is as follows:

• Introduction of the topic.

• Specific background review.

• Methodology used, including the forcing required, the measurements available

for the selected period and the wave model configuration and grids used.
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• Analysis of the results obtained.

• Discussion.

• Final conclusions.

The structure of these chapters is motivated by part of the work that has already

been published (chapter 3 and part of chapter 4) or is intended to be published soon

(chapters 5 (paper under preparation) and 6 (paper under review)), so the structure

of the chapter follows somehow a paper structure. In the publication section a list

of the papers and conferences related to this thesis is detailed.
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Chapter 2

Background

2.1 Study area : The Catalan coast

The Catalan coast is located in the north-western Mediterranean Sea. It corresponds

to the northern section of the Spanish coast, located between latitudes 40o45’ N and

42o25’ N and longitudes 0o45’ E and 3o15’ E, with an extent of around 600 km

(figure 2.1). The Balear Sea is located between this coast and the Balearic Islands.

Figure 2.1: The Catalan coast orography and bathymetry.
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In the subsequent lines a description of the meto-oceanic conditions is presented,

followed by a description of the socio-economic activity in the area.

2.1.1 Meteorology and oceanic conditions

Winds:

The meteorological situation in the area is mainly controlled by orographic patterns,

air-sea temperature differences and the passage of low-pressure centres from the

Atlantic. The Pyrenees mountain range, situated at the north of the Catalan coast,

acts as a physical barrier that strongly modifies the wind patterns and produces the

Mistral (north-west) and Tramontana (north) winds, whose influence can be noticed

hundreds of kilometeres offshore (Bolaños et al., 2009).

When the wind blows from the north, the mountain ranges induce wind chan-

nelling through river valleys, with the most important being the Ebro Delta wind

jet. These characteristic land-to-sea winds are highly variable both in space and

time (Sanchez-Arcilla et al., 2008) and are particularly intense and persistent dur-

ing autumn and winter (Alomar et al., 2014).

The prevalent winds come from the north and north-west, primarily during De-

cember and January; southerly and easterly winds are also important, particularly

during the months of February, March, April and November (Arnau, 2000). On

average, the winds are not very intense. The maximum velocities correspond to

easterly winds, in agreement with storm conditions; in addition, the most energetic

storms registered in the area are associated with this directional sector and affect

the full length of the Catalan coast (Mendoza et al., 2011).

Waves:

Wave climate is one of the characteristic properties on coastal areas due to the im-

portant energy associated with it, its impact on coastal structures and the associated

sediment transport. Measurements along the Catalan coast for more than 25 years

have allowed several authors to study the characteristics of the area (Garcia et al.,

1993; Bolaños and Sanchez-Arcilla, 2006).

From these studies it can be stated that the predominant wave directions, as

with the wind, vary along the coast, showing clearly the topographic control due to

complex bathymetry, with submarine canyons and a heterogeneous continental shelf

width (Sanchez-Arcilla et al., 2008; Bolaños et al., 2009).
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Sanchez-Arcilla et al. (2008) describe how the southern and northern sections of

the coast show a predominance of north-west and north wave conditions, while the

central part of the Catalan coast is dominated by east and south wave conditions.

The largest waves come from the east, where the largest fetches and stronger winds

coincide. In the areas where the wind blows from the north-west (offshore winds),

like the Ebro Delta (see fig 2.1) there is a tendency to develop a large amount of

bimodal spectra due to the co-existence of sea and swell waves (Bolaños et al., 2007).

The Western Mediterranean Sea is an area mainly defined by calm periods most

of the year. However, when analysing the buoy records in the area, important storms

are detected despite the fetch-limited conditions (Bolaños et al., 2009). Recent

studies define the significant wave height threshold as 2.2 m and set a minimum

duration of 6 h for the study area (Lin-Ye et al., 2016). Forecasting these fast

and energetic storms near the coast, characteristic of the area, is a challenge for

operational oceanography.

Currents:

The region is characterized by a micro-tidal condition. The bathymetry varies in

the domain from a quite narrow shelf in the northern areas to a wider shelf in the

southern part (fig 2.1), controlling the hydrodynamics of the Catalan coast.

The ocean dynamics are mainly dominated by the associated quasi-permanent

slope current at the regional Northern Current (Jorda, 2005; Millot, 1999), which

may be affected by mesoscale phenomena. These mesoscale events are usually cur-

rent meanders and eddies (Font et al., 1995) and are the main dynamic agent of the

coastal ecosystem (Font, 1990).

In general terms, the mean intensity of the superficial currents is not very strong,

around 10 to 20 cm /s, but current intensifications have been observed by several

authors (Palanques et al., 2002; Jorda et al., 2007; Grifoll et al., 2015) within the

study area, associated with strong local events.

According to Mestres et al. (2016), a flow intensification can be defined as an

intense water flow lasting more than 12 h and exceeding a threshold defined as the

surface current monthly 95th percentile. With these criteria Mestres et al. (2016)

detected up to 14 events on the Catalan coast during a three-year period (from June

2008 to July 2011) mainly during spring (6) and summer (5), and less frequently in

autumn (1) and winter (2). The mean superficial current for the entire study period

in front of the Barcelona harbour was 0.20 m/s, while the events selected reached

values around 0.75 m/s, with an extreme of 1.39 m/s during an event tat occurred

in October 2010.

11



Chapter 2. Background

As concluded Mestres et al. (2016), the current intensifications in front of the

Barcelona harbour area are mainly induced by locally strong and persistent winds

blowing from north-east to south-east, typically associated with the presence of lows

in the south-western Mediterranean and highs over central Europe.

2.1.2 Potential social and economic impacts

A significant part of the European Mediterranean coast is limited in its ability

to deal with environmental, physical and hydro-meteorological hazards due to the

inhabitation of the first few hundred metres inland. This inhabitation has progressed

in most of the locations, on the assumption of a stable coastal fringe. This idea is

probably reinforced by a gentle sea state during most of the year, resulting in a false

perception of security by society. However, energetic storm events are not rare at all

and, when combined together with high water levels, can cause significant damages

(figure 2.2). In the last 20 years, extreme storm events have been responsible for

at least 50 casualties on the north-western Mediterranean coast and for significant

damages in coastal defences, harbours and infrastructure, amounting to over EUR

30 million (Gracia et al., 2014).

Figure 2.2: Train hit by waves in a railway located along the coast line (left) and
damages in a promenade after a storm event (right) on the Catalan coast.

The Catalan coast is no exception. Located in the north-east corner of Spain,

on the north-western Mediterranean Sea, Catalonia is a Spanish region that in 2014

received 16.8 million tourists, who spent around EUR 15,000 million. The harbour

facilities together with the touristic attractions of Barcelona city, the nice weather

and its strategic location on the Western Mediterranean Sea and in Europe have

been the main reasons for several cruise companies picking Barcelona as their main

port of call. But tourism is not the only activity affecting the coastal areas in

Catalonia. On the one hand, there are several economical activities affected by
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the ocean conditions, such as maritime transport or fisheries. On the other hand,

along the Catalan coast it is easy to find promenades, buildings, roads and even

railways very close to the coast that are highly exposed to the meteo-oceanographic

conditions.
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2.2 Wave modelling

2.2.1 Evolution of wave models

The prediction of the wave height distribution, wave direction and wave periods

has always been a point of interest for coastal engineers for different purposes. The

first attempts to estimate the sea state date back to the Second World War, when

information was required for landing. After that some experiments were carried

out in order to better understand the physics behind the wind wave generation

and propagation (e.g. the Joint North Sea Project, JONSWAP; Hasselmann et al.,

1973).

With the emergence of the first high-computing-capacity computers and the

consequent appearance of supercomputing centres, in parallel with improvements

upon theknowledge of physical parametrizations, wind wave forecasting was driven

on.

Estimations of the sea state can be performed using different types of models that

- using information about meteorological conditions, especially the wind intensity

and direction on the sea surface - provide information about the sea state. The

obtained results are then propagated to coastal areas.

The propagation and dissipation of wind waves can be reproduced with two

classes of numerical models:

• Phase-resolving models

These models, also named deterministic models, describe the form of the sea

surface itself. Among their advantages is that the models account for pro-

cesses like diffraction, reflection and nonlinear interactions in shallow waters.

However, they cannot describe the momentum transfer from the atmosphere

to the sea, so generation is not reproduced. This class of models is valid for

small domains, usually located near-shore, for example inside a harbour.

• Phase-averaged models

In contrast with phase-resolving models, phase-averaged models (also named

spectral models) do not describe the surface evolution but rather the evolution

of the wave energy in each cell forming the domain. The parameters provided

consist of statistical values representative of the sea surface in space and time.

This class of models accounts for the most important processes governing the

evolution of wind waves and can be used in larger areas.
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In the first-generation of spectral wave models the growth and dissipation of the

waves was predicted from empirical expressions, and the absence of the nonlinear

interactions was compensated for by the better reproduction of the wave growth (e.g.

Ewing, 1971). Following upon this, the second-generation wave models introduced

some parametrizations of the nonlinear interactions (Young, 1988) or limited the

spectral density as a function of the wind conditions (Holthuijsen and DeBoer, 1988)

in order to improve the estimations.

In the middle of the 1980s a group of wave modellers who called themselves the

Wave Modelling Group (WAM) considered that a wave model that solves the energy

balance equation for surface wind waves including nonlinear wave interactions was

feasible (SWAMPgroup, 1985). Although the previous models performed reasonably

well in some situations, they realized that under rapidly varying wind conditions the

results of the different models considerably diverged (Janssen et al., 1997). That

was how the third-generation models appeared. The models were based on the

Hasselmann spectral balance equation (equation 2.1, Hasselmann, 1960), where the

source terms were explicitly parameterized and integrated in time without assuming

the spectral shape. This was possible by improving the nonlinear interactions with

the development of a computationally inexpensive parametrization of this term,

known as the discrete interaction approximation (DIA; Hasselmann et al., 1985),

and the related developments of the Wave Modelling Group (WAMDIgroup, 1988;

Komen et al., 1994).

The resulting model was known as the WAM spectral wave model (WAMDI-

group, 1988) and sparked the development of some other third-generation spectral

wave models, the most renowned of which being SWAN (Booij et al., 1999; Ris et al.,

1999) and WAVEWATCHIII (Tolman et al., 2002; Tolman, 2008).

In those first years, the third-generation spectra wave models were not adapted to

coastal areas for two main reasons: some coastal processes were not implemented in

the models, and the computational cost was too high to solve the balance equation

at those scales. The SWAN model was the first model to introduce most of the

missing processes and adapted the numerical scheme in order to be able to provide

accurate sea state estimations in coastal areas. Nowadays almost all models include

this option.

The latest developments in this sense include, among others, the coupling of wave

models with current and atmospheric models (Warner et al., 2010; Bolaños et al.,

2011), the assimilation of buoy and satellite information (Abdalla et al., 2006),

the continuous development of the physical parametrizations (Ardhuin and Roland,

2013) and the improving of the numerical schemes to include two-way nesting and

unstructured grids (Zijlema, 2010).
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2.2.2 The SWAN wave model

The SWAN Cycle III v.4091A code has been used to simulate wave evolution in the

area. SWAN (Simulating Waves Nearshore) is a third-generation wave model that

computes random, short-crested wind generated waves in coastal regions and inland

waters (Booij et al., 1999; Ris et al., 1999).

SWAN simulates wind wave generation and propagation in coastal waters and

includes the processes of refraction; diffraction; shoaling; wave–wave interactions;

and dissipation due to whitecapping, wave breaking and bottom friction. Based on

the wave action balance equation with sources and sinks, the shallow-water wave

model SWAN is an extension of the deep-water third-generation wave models. It

incorporates the state-of-the-art formulas for the deep-water processes of wave gener-

ation, dissipation and the quadruplet wave-wave interactions from the WAM model

(Komen et al., 1994), while in shallow water these processes have been supplemented

with the state-of-the-art formulas for dissipation due to bottom friction, triad wave-

wave interactions and depth-induced breaking; it also admits ambient currents as

an input.

The SWAN model works with the action density, defined as N(σ, θ) = E(ω, θ)/σ

(where E is the energy density and ω and σ are the absolute and the relative

radian frequency, respectively), rather than the energy density, because during the

propagation in the presence of ambient currents this magnitude is conserved whereas

the energy density is not (Whitham, 1974). The action balance equation thus reads:

∂N

∂t
+
∂cxN

∂x
+
∂cyN

∂y
+
∂cθN

∂θ
+
∂cσN

∂σ
=
Stot
σ

(2.1)

The first term of the equation represents the local rate of change of action den-

sity in time; the second and the third terms represent the propagation of action

density in geographic space (with propagation velocities cx and cy thus accounting

for shoaling process). The fourth term represents the depth-induced and current-

induced refraction (with propagation velocity cθ), and the fifth term represents the

shifting of relative frequency due to variations in depth and currents.

The right term of equation 2.1 is the source term in terms of energy density. In

shallow waters, six processes contribute to the sinks and sources term:

Stot = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,bd (2.2)

Where the first term denotes the wave growth due to wind (Sin); the second and

third terms correspond to the nonlinear transfer of wave energy through three-wave
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(Snl3) and four-wave (Snl4) interactions, respectively, and the next three terms rep-

resent the action density dissipation due to whitecapping (Sds,w), bottom friction

(Sds,b) and depth-induced breaking (Sds,db). The parametrizations used for wave sim-

ulations in the study area are presented in section 2.2.3. For an extended description

of these terms, calibrated for fully-developed wave conditions, it is recommended to

consult the SWAN manual (SWANteam, 2015b) and the SWAN scientific and tech-

nical documentation (SWANteam, 2015a).

One of the main differences between SWAN and the other third-generation wave

models is the numerical scheme. Traditionally, explicit finite-differences schemes are

used to propagate the waves through geographic space. These schemes are simple,

robust and economical for applications in oceanic waters. However, in coastal areas

such schemes are not quite as adequate because the time step necessary would be

very small (Holthuijsen, 2007). This is caused by the Courant criterion limitation

of the explicit schemes, which states that the wave energy may not travel more than

one geographic cell in one time step.

The SWAN model is therefore based on an implicit finite-differences numerical

scheme, and such schemes are always numerically stable. Thus, the criterion for

choosing the time step is mainly based on the phenomena scales that are being

computed. The implicit schemes may lead to non-physical solutions of equation 2.1

under some circumstances, when the cθ or the cσ are too big in comparison to

the x and y dimensions so the action density travels more than one geographic

cell, accumulating at one point. More details on this issue will be presented in

section 5.3.3; however, it can be said in advance that the proposed solution consists

in introducing a limiter of the spectral velocities (Dietrich et al., 2013; SWANteam,

2015a).

2.2.3 The model setup for the Catalan coast

In this thesis the SWAN model Cycle III version 40.91A has been implemented in

the Catalan coast as a third-generation model for non-stationary conditions.

Spherical coordinates and nautical convention have been selected.

The wind growth is obtained as the sum of a linear term, following Cavaleri and

Malanotte-Rizzoli (1981), and an exponential term that is the same one used by

WAM Cycle 3, following Snyder et al. (1981) and rescaled by Komen et al. (1984).

The alternative exponential formulation (Janssen, 1991a) implemented in the WAM

Cycle 4 model (Komen et al., 1984) was initially tested but dismissed because it

presented worse results for the study area, with over-predictions of the significant

wave height up to 1 m during storm events.
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The quadruplet nonlinear wave-wave interactions are computed using the DIA

proposed by Hasselmann et al. (1985), while the triad-wave interactions are not

activated.

The whitecapping term used is the Komen et al. (1984) formulation. However,

a correction is proposed, as detailed in chapter 3 and used thereafter, to adapt the

action energy balance to the wave growth rates observed in the study area.

The depth-induced wave breaking in shallow water is treated by Battjes and

Janssen (1978) spectral formulation with α = 1 and γ = 0.73. Bottom friction is

not activated.

The geographic space and time discretization used is known as the first-order

backward space, backward time (BSBT) scheme. The advantage of this method

is that it is fully monotone, so it cannot generate spurious oscillations. On the

other hand the main disadvantage is that the scheme is numerically diffusive. The

numerical diffusion is caused by gradients of wave action across geographic space,

due to refraction processes for example, which may be considered small in coastal

areas.

The numerical scheme for geographic propagation has a maximum number of

iterations per time step up to 15. A time step of 15 min has been chosen, which is

small enough to reproduce the wind and wave variability but keeps the computa-

tional cost affordable (Alomar, 2012).

The frequency range considered is 0.01-1 Hz, with 49 values logarithmically

spaced with a frequency resolution of df/f = 0.1 as recommended by the SWAN

manual (SWANteam, 2015a), and the directional resolution is 10o.

Finally, the SWAN model has been run in a shared memory parallel environment.

Using the OpenMP protocol, the tasks are divided in different processors using a

unique memory.
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2.3 Validation techniques

The SWAN wave model implementations for the Catalan coast presented in this

document are validated against buoy measurements and satellite data using different

techniques. In this section the measurement instruments used and the validation

tools applied are presented.

2.3.1 Measurements

The measurement techniques of surface waves over the ocean can be divided into two

main group; the in situ measurements (instruments deployed in the water, near the

sea surface) and remote-sensing techniques (instruments measuring from a certain

distance above the sea surface). The first group includes not only the buoys located

on the sea surface but also some other instruments like the AWACs deployed at the

sea bottom, while the second group is mainly formed by radar measurements, which

can be mounted not only on a structure near the shore or on a ship but also on a

satellite.

Each kind of measurement presents different characteristics, including different

spatial and temporal coverage, resolutions and accuracy, as well as different main-

tenance and costs.

In situ measurements

The in situ measurements are located near the sea surface water, floating at the

surface (e.g. a buoy) or some meteres below (e.g. an AWAC mounted on a structure

on the seabed), and are used to obtain time series of the sea surface evolution at a

fixed location.

The buoys are able to measure the vertical acceleration of the sea surface while

floating on the ocean by using an accelerometer included in the instrument. The

buoys also move horizontally, but this movement is generally considered negligible.

By integrating the vertical acceleration twice, it is possible to obtain the sea surface

vertical movements.

The size and weight of the buoy, together with these small horizontal movements,

affect the measurements, creating time series with more smooth crests and troughs

and underestimating short waves (Holthuijsen, 2007). Some of these effects are

widely known and can be corrected with the instrument software, so the buoys can

be considered to perform well in general.
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The buoys are usually provided with radio communication to send their signals

to a land or a platform receiving station. Most recently, satellite communication

and positioning protocols are also included.

In order to obtain directional information from a buoy measurement, some ad-

ditional parameters need to be recorded, so in this sense two different types of

directional buoys have been developed. The first one is based in a flat buoy that

measures the slope of the sea surface by incorporating some extra inclinometer sen-

sors. Then the tilt of the buoy in two orthogonal directions is measured (including

a positioning sensor to determine the angle with respect to the geographic north).

With these parameters the mean wave direction can be obtained in addition to the

evolution of the sea surface at the mooring location. Directional buoys of the sec-

ond type measure the horizontal movements in two orthogonal directions with some

extra accelerometers and, using a similar procedure to the one previously explained,

obtain the mean wave direction of the waves.

Other instruments deployed in the study area are the AWACs. The AWAC is an

instrument composed of three current meters and an acoustic surface tracker located

under the surface at the sea bottom.

The current meters measure the wave-induced orbital motion (with magnitude

and direction) and the pressure. Then, the directional wave characteristics can be

easily obtained from these measurements. Some of the limitations of this method

are that it can only be deployed in shallow waters (maximum 10-15 m) and that

measurements of waves with periods shorter than 4 s are not possible due to the

attenuation of the signal. In order to overcome these limitations, new techniques

appeared at the end of the twentieth century that consist in obtaining these mea-

surements closer to the sea surface. In doing so, the pressure is no longer obtained

from the current meters but from the acoustic surface tracker. The AWAC instru-

ments can be deployed at the sea bottom or in a subsurface buoy positioned closer

to the surface (e.g. 30 m below the surface).

In conclusion, the in situ instruments provide detailed information about the

evolution of the sea surface in time at a fixed location. The accuracy of these

instruments is around 0.5% of the measured value (Datawell, 2006). However, no

spatial distribution is offered, so a large number of instruments should be deployed

throughout the study area in order to monitor the sea state.

Remote-sensing measurements

The remote-sensing instruments are located over the sea surface, from a few meteres

above when located on an observation tower to hundreds of kilometeres above when
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the instrument is located on a satellite. The principle of these instruments is to

receive signal reflections off the sea surface and transform them into sea surface

elevation. The most important difference from previous instruments mentioned is

that large areas can be covered almost instantaneously; however, it is also a more

expensive technique.

The altimetry satellites determine the distance from the satellite to the sea sur-

face by measuring the time required by a radar pulse to travel from the satellite to

the surface and back to the satellite. The surface height is the difference between

the satellite’s position in orbit with respect to a reference ellipsoid, so extremely

precise knowledge of the satellite’s position is needed in order to obtain accurate

results.

The altimeter emits a spherical microwave radiation with one or two known

frequencies (the Ku-band with 13.575 GHz and the S-band with 3.2 GHz). These

pulse are emitted at regular intervals defined by the pulse repetition frequency; in

order to reduce the statistical fluctuations and to perform a time tracking, these

pulses are averaged over time. The return echo power, affected by the sea surface

shape, is recorded in a tracking window (with 64 or 128 waveform samples) which,

when represented as a function of time, provides the echo waveform (ESA and CNES,

2016).

The waveform has a characteristic shape that can be described analytically with

the Brown model (Brown, 1997). When comparing a measured waveform with the

theoretical curve, six parameters can be obtained. By looking at the return signal

characteristics (amplitude and waveform parameters), the sea surface roughness

(and so the significant wave height) and the wind speed over the oceans can be

obtained. No information about the wave period or wave direction is provided by

the remote-sensing altimetry measurements.

When a satellite is launched and the instruments are properly working, the com-

mon procedure consists in comparing the measurements with analysed modelled

fields and buoy measurements on a global scale to check the main errors and, if nec-

essary, to retune the geophysical algorithms (Janssen et al., 2007; Queffeulou et al.,

2011). The comparison with buoy data (Queffeulou, 2004) shows that the altimeter

significant wave height is in general agreement with the in situ data, with differences

of the order of 0.30 m, and tends to slightly overestimate the low significant wave

heights and underestimate the higher significant wave heights. In order to solve this,

global corrections to the wave measurements were established. These corrections,

in general linear, correspond to a few percent of the measurements (Queffeulou and

Croize-Fillon, 2016). For more details on the wave height corrections, the reader is

recommended to consult Queffeulou (2004) and Queffeulou and Croize-Fillon (2016).
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After the corrections, the reported error for altimetry radar measurements is of

the order of a few centimetres (e.g. Dinardo et al., 2014), which is usually higher than

buoy measurement accuracy. However, the spatial coverage of these measurements

provides an interesting opportunity to evaluate the model performance in areas

where in situ measurements are not available.

2.3.2 Validation tools

Traditional wave measurements, obtained from a buoy, consisted of time-record

series of the sea surface elevation at a fixed location. In contrast, satellite measure-

ments present the sea surface variations over time along a track. The combination

of both measurements allows an even better image of the reality to be created.

The validation tools used to evaluate the wave model results with time series

at a fixed location or in satellite trackdata are presented below. It should be re-

marked that no spectrum validation has been possible due to the absence of spectra

measurements in the study area.

Time series analyses and statistics

The validation of results from the different simulations has mainly been based on

time series plots, scatter diagrams and Taylor diagrams (Taylor, 2001).

A Taylor diagram is a graphical representation of the correlation coefficient (R),

the root mean square difference (RMSD) between two fields, and the standard devi-

ation of each field summarized at one point located in a 2D graphic (see figure 2.3).

These diagrams are very useful to present a statistical evaluation of different models

performance in comparison to a measurement time series. The nearer a point is

located to the reference field, the better the correspondence.

The only drawback of Taylor diagrams is that the biases are eliminated when

computing the RMSD, and thus the results may not be representative in some

situations.

For these reasons, some statistical parameters have also been computed and

employed for quantitative comparisons; the main ones are the root mean square

error (RMSE), the bias, the scatter index (SI) and the correlation coefficient (R).

These parameters are obtained as follows:

RMSE =

√∑N
i=1(Si −Oi)2

N
(2.3)
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bias =

∑N
i=1(Si −Oi)

N
(2.4)

SI =
RMSE

Ō
(2.5)

R =

∑N
i=1

(
(Si − S̄) · (Oi − Ō)

)
√∑N

i=1(Si + S̄)2 ·
√∑N

i=1(Oi + Ō
(2.6)

Where S corresponds to the simulated data and O to the measured data (obser-

vations); N is the number of data points; andŌ and S̄ correspond to the mean value

of the time series for observed and measured values, respectively. All these formulas

except the bias have been adapted to analyse the wave direction, considering the

minimum angle between the two data (simulated and measured).

Figure 2.3: Example of a Taylor diagram in which the significant wave height ob-
tained from three models (A, B and C) is compared with a buoy record.

The data measured by the instruments and those obtained from the SWAN

simulations both correspond to 1 h time resolution for the different study periods

selected in each exercise. The number of validation points varies between 1,000 and

8,000 values in most of the situations.
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The parameters considered for validation are summarized in table 2.1. Results

from the wave model correspond to the same location as the measurement instru-

ments after an interpolation performed by the SWAN model: a spatial interpolation

in the discrete components of the spectra; hereafter the integral parameters are

computed.

Table 2.1: Definition of the bulk parameters used to compare the SWAN simulations
with the instrument measurements.

Moment mn mn =
∫ fmax
fmin

∫ 2π
0 fn · E(f, θ)dθdf

Significant wave height Hm0 Hm0 = 4
√
m0

Mean wave direction Dir Dir = arctg
[∫

sinθ·E(f,θ)dfdθ∫
cosθ·E(f,θ)dfdθ

]
Mean wave period Tm01 Tm01 = 2πm0

m1

Mean zero up-crossing period Tm02 Tm02 = 2π
√

m0

m2

Peak wave period Tp Period corresponding to the maximum energy

Satellite collocation and model validation

The collocation process is a method to compare the satellite measurements (along

tracks) with data at a fixed point (from buoy measurements or model simulation re-

sults). Once the significant wave height from the satellite is corrected, the method-

ology consists in selecting the satellite measurements that are included in a time

interval and in a spatial region around the comparison point.

First a collocation in time is necessary, selecting a time interval of 30 min before

and after the model or measurement time. Thereafter, a space collocation is per-

formed in order to determine whether there is any measurement near the comparison

point (e.g. figure 2.4). The traditional collocation radius is 50 km. If several mea-

surements satisfy the collocation conditions, the nearest point or the mean value is

usually selected. The situation can be described as a superobservation when there

are more than six points available (Sepulveda et al., 2014); under these conditions

the satellite data considerably improve the accuracy.

From this collocation procedure a time series of a pair of points is obtained,

including the collocated satellite significant wave height measurement and corre-

sponding fixed-point data. The series obtained are not equally distributed through-

out time. From these pairs of collocated points, scatter plots can be generated

together with the statistics described before (equations 2.3 to 2.6).
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A previous analysis performed with several altimetry data compared with buoy

measurements by Sepulveda et al. (2015) confirms that the better agreements cor-

respond to open-ocean buoys, while in coastal areas the scatter is much larger.

Additionally, for significant wave heights under 0.7 m the errors become more im-

portant. For these reasons it is common to eliminate the satellite measurements

near the shore. In the present study a 30 km distance to the coast has been selected

as the invalid region.

Figure 2.4: Satellite tracks for one month (April 2013) over the Western Mediter-
ranean sea (top) and the space collocated points over a regular grid for the same
period (bottom).
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Chapter 3

Wave energy balance for

semi-enclosed domains

3.1 Introduction

It is widely known that wind and wave predictions are less precise in semi enclosed

domains than in the open ocean. Ardhuin et al. (2007) pointed that in the Western

Mediterranean Sea, the winds are still the major source of errors for the wave model

results. These errors, however, tend to decrease in stormy conditions or, more

generally, when the meteorological situation is better defined. However, in coastal

areas and enclosed basins, improving the wind quality it is not enough to improve

the wave results because of the wave characteristics due to their nearly permanent

local generation. Cavaleri and Bertotti (2004) considered the underestimation of

wind speed and wave height dependency on fetch, and proved than fetches smaller

than 100 km generate larger errors. These errors are more important and persistent

in waves than in wind. The boundary layer when the air blows from land to sea

and the poor description of the orography are suggested as possible reasons for the

underestimation at short fetches.

Previous studies in the Catalan coast describe the wave climate controlled by

(1) short fetches, (2) shadow effect for waves from the south and east due to the

Balearic islands (figure 3.1), (3) complex bathymetry with deep canyons close to

the coast, (4) high wind field variability in time and space, (5) wave calms during

the summer and energetic storms from October to May, (6) presence of wind jets

canalized by the river valleys and, (7) sea and swell waves combination that generate

bimodal spectra (Bolaños, 2004; Sanchez-Arcilla et al., 2008; Alomar, 2012). These

characteristics, some of them typical for a semi-enclosed basin, limit the reliability

of wave predictions in the area.
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More specifically, an underestimation of the significant wave height and wave pe-

riod has been observed in this area by different authors. Bolaños (2004) considered

that part of the error was due to the limited spatial and time scales of the processes

to reproduce, around 10 km and 12 hours. The author confirmed that using an

atmospheric model nested with enough resolution to reproduce the different phe-

nomena. Alomar (2012) presented two ways to improve the wave predictions. One

option consisted in increasing the temporal and spatial resolution of the wave mod-

elling system to capture the wind and wave gradients in the geographic dimension.

She proved that using a wind input with better temporal resolution leads to improve

the maximum values for a storm event, while a higher wind spatial resolution only

improved the timing of the peaks but not the magnitude. The second modification

proposed was adjusting the wave growth rate. The author confirms that the ob-

served rate of wave growth in the region of study was faster than the simulations

and faster than the rates derived for more homogeneous wind conditions.

Nevertheless, this is not a local effect since in similar locations the same problems

have been observed, all of theme using the SWAN third-generation wave model with

the exponential wind growth due to Snyder et al. (1981) and rescaled by Komen et al.

(1984), and the whitcapping dissipation formulation by Komen et al. (1984).Akpinar

et al. (2012) describe an equivalent behaviour, with an under-prediction of the signif-

icant wave height and period for the Black Sea. Their results show a clear similarity

to the results obtained for the Catalan coast, with an under-prediction of the sig-

nificant wave height, more important for the maximum values (peaks of the storms)

and an important negative bias for the wave periods. Similar results have been ob-

tained also in semi enclosed basins and bays, as Lin et al. (2002) who demonstrate

that in Chesapeake Bay (USA) the waves are dominated by locally generated and

fetch-limited young seas. The results obtained show significant wave-heights slightly

over-predicted, but with an under-prediction of the peak period, with large scatter

and a low correlation coefficient. Alari et al. (2008) identify a strong underestima-

tion of the peak-periods for waves locally generated and fetch limited in a small bay

called Küdema, in the Baltic Sea. An intensive study on the wave growth and decay

characteristics in the SWAN model was performed by Rogers et al. (2003) after ob-

serving a similar under-prediction pattern to the one here described in three different

locations in the USA. The authors identify the cause as an under-prediction of low

and medium frequency energy in the modelled spectra together with an overly strong

dissipation of the swell. The solution proposed was to modify the whitecapping term

to depend on the wave steepness.

The goal of this study is, thus, to improve the wave forecasting and hindcast-

ing in the Catalan coast, focusing particularly on the under-prediction of period
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measurements. These predictions are of major interest for different agents and ac-

tivities such as coastal management, harbour access, navigation or fisheries, in an

area highly dependent on the sea.

To reach this goal two actions are considered. The first one consists in modifying

the source terms in the energy balance equation to increase the wave energy for

early generated waves. As noted Alomar et al. (2014), the wave growth rates are

under-predicted for the wave conditions in the study area. To modify the balance

equation two options are available: increase the energy from generation processes

or reduce the dissipation. The measure proposed in this paper is based on the

second option, and consists in modifying the formulations implemented as previously

done by Rogers et al. (2003) to correct the whitecapping dissipation term and its

dependence on the wave number and wave steepness for young sea waves. The second

action consists in evaluating the methodology to obtain the integral wave parameters

from the modelled spectra, considering the frequency integral range measured by

the buoys in order to compare the simulations and observations under the same

conditions.
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3.2 Background: re-evaluation of the energy bal-

ance. The whitecapping term

3.2.1 The energy balance

The wave growth in the SWAN model is mainly controlled by the energy input from

the wind and the dissipation processes, while the non-linear terms redistribute the

energy to higher and lower frequencies. To prescribe the growth rate, three different

wind input formulations are available in the model, with an associated dissipation

term for each.

The wind input is written in terms of a resonance mechanism Philips (1957) and

a feed-back mechanism (Miles, 1957). The first mechanism contributes to the initial

stage of wave growth and varies linearly with time, while the second mechanism

controls the energy transfer from the atmosphere to the waves, with an exponential

behaviour (SWANteam, 2015a). The total wave growth due to wind is then described

as the sum of both terms:

Sin(σ, θ) = A+B · E(σ, θ) (3.1)

Where A and B depend on the wave frequency and wind speed; the expression

of the A term is that of Cavaleri and Malanotte-Rizzoli (1981) with a filter to avoid

growth at frequencies lower than the Pierson-Moskowitz frequency (Tolman, 1992a),

and it is commonly smaller than the exponential term. The B term is represented

by two different formulations. The first one is the same one used in the WAM Cycle

3 model (WAMDIgroup, 1988), due to Snyder et al. (1981) and rescaled by Komen

et al. (1984). The second formulation is from the WAM Cycle 4 model (Komen et al.,

1984) and is due to Janssen (1991a). A third wind input formulation is available

based on that of Yan (2007).

Three whitecapping formulations are implemented in SWAN, corresponding to

each of the growth options. In fact, the total dissipation is obtained from the

sum of the three terms mentioned in chapter 2: whitecapping, bottom friction and

depth-induced breaking. However, as all the measurement instruments are located

geometrically near the coast but in deep or intermediate waters, where the bottom

friction and the depth-induced breaking are very small, in our balance we will only

consider the wave growth and dissipation due to whitecapping.

For this purpose the first two whitecapping formulations are obtained from the

pulse-based model of Hasselmann (1974) reformulated in terms of wave number

(WAMDIgroup, 1988):

30



3.2. Background: re-evaluation of the energy balance. The whitecapping term

Sds,w(σ, θ) = −Γσ̂
k

k̂
E(σ, θ) (3.2)

where σ̂ and k̂ denote the mean frequency and the mean wave number, and the

coefficient Γ depends on the wave steepness (Janssen, 1991b):

Γ = Cds

(
(1− δ) + δ

k

k̂

)(
ŝ

ŝPM

)p
(3.3)

The coefficients Cds, δ, and p can be adapted to the study case,ŝ is the overall

wave steepness, and ŝPM is the value of ŝ for the Pierson and Moskowitz (1964)

spectrum.

In SWAN the previously mentioned coefficients are obtained by adjusting the

energy balance for idealized wave growth conditions (fully developed wind seas in

deep water). Then, depending on the growth formulation used, the coefficients may

vary to reach the desired target. For the WAM Cycle 3 formulation Cds = 2.36 ·10−5

, δ = 0, and p = 4 (Komen et al., 1984); and for the WAM Cycle 4 formulation

Cds = 4.0 · 10−5 , δ = 0.5, and p = 4 (Komen et al., 1994).

The third whitecapping formulation is obtained from a saturation-based model

(van der Westhuysen et al., 2007), and it is based on experimental data. The

formulation is designed for mixed sea-swell conditions and is not suitable for shallow

water.

3.2.2 Application to the Catalan coast

Alomar et al. (2014) studied the wave growth for the Catalan coast, and detected

that the growth rates derived from measurements may be larger than the simulated

rates obtained with SWAN. Also, they affirm that under variable wind conditions,

like the ones observed in the study area, these growth rates are higher than for

homogeneous wind conditions. In conclusion, the authors pointed out that the

source terms are a potential source of error within wave forecasting, especially in

sharp-gradient regions, defined by the presence of submarine canyons near the coast,

highly variable wind conditions and an abrupt line coast. Therefore, it becomes

important to better understand wave growth and energy dissipation under variable

wind geometric conditions, so as to improve the resulting wave simulations.

To deal with the wave under-prediction problem in the Catalan coast we therefore

propose to adjust the different terms of the energy balance. As it is well known,

the whitecapping term, or dissipation in deep waters, is the least understood part of
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wave evolution equation. By combining some intuition with a pragmatic approach,

it still is the tuning knob of any wave model (WISEgroup, 2007).

Important previous work has been carried out in this topic. Rogers et al. (2003)

execute some simulations in three different locations (all of them with similar prop-

erties to as the ones described for the study area), using the SWAN model with

the WAM cycle 3 growth formulations and the Hasselmann (1974) whitecapping

expression. The author changed the delta coefficient from 0 to 1 without modifying

the remaining parameters involved in equation 3.3 and obtained an improvement of

the predictions at lower frequencies for short fetch/duration events. However, they

clearly demonstrates that with this modification, the energy is over-predicted in fully

developed seas. In their work it is shown that for mean fetch and duration smaller

than 350 km and 12 h respectively, the model with the increased delta is much closer

to the Pierson and Moskowitz (1964) energy level than are the models with lower

delta values. Rogers et al. (2003) also pointed out that the model with delta equal

to 1 exceeds the Pierson and Moskowitz energy level at larger fetch/durations.

Due to the similarities between the study areas considered by Rogers et al. (2003)

and our selected area, with local generated sea and storm events associated with

short duration and fetch, a similar experiment, with a modification of the delta

parameter, has been carried out for the Catalan coast to adapt the numerical growth

rates to the measurements in the area. With this modification we expect an increase

of the energy for lower frequencies which will result in a smaller prediction error for

the wave period.

However, there are other studies dealing with this same issue and proposing

different solutions. Siadatmousavi et al. (2012) realized a similar correction for

the Gulf of Mexico, obtaining a worsened fit for the SWAN results. Moreover,

they showed that the effect of using different expressions for the parametric high

frequency tail added to the spectrum and the reduction of the cut-off frequency

from 1 Hz to 0.5 Hz may reduce the under-prediction of the SWAN model under

longer fetch and more homogeneous wind conditions. Because of the difference in

conditions this approach has not been further pursued in this thesis.
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3.3 Methodology

3.3.1 Data available and model setup

In the framework of the European project FIELD AC (contract no. FP7-SPACE-

2009-1-242284) two measurement campaigns have been carried out. The FIELD

AC project is focused on the meteo-oceanographic forecasting for small regions such

a beach, a harbour or the mouth of a river. To reach this goal, it is necessary

to simulate with high resolution and in a coupled manner the meteorology, the

circulation and wave fields, the land/river discharge and the resulting transport

(e.g. for sediment) patterns.

Three of the instruments deployed off the Catalan coast were used to validate the

wave model results: two AWAC directional systems located at the seabed and one

directional wave buoy. The characteristics of these instruments, together with their

location and the data provided can be found in table 3.1. The data was collected

during two periods, the first one from the 12th of November 2010 to the 18th of

January 2011, and the second campaign going from the 11th of March 2011 to the

18th of April 2011. The campaign was scheduled during these months because, as

mentioned in chapter 2, from October to May the more energetic wind and wave

events are expected in the area. However, the measurements show that during the

first period only one storm from the north-west occurred, while during the second

period several energetic episodes from the south and east were captured.

Table 3.1: List of the instruments location and information provided for the Catalan
coast.

Institution Name Lon Lat Depth Parameters provided

FIELD AC
campaign

AWAC
Bogatell

2.21o E 41.39o N 24 m Hs, Dir, Tm02, Tp, Tm01

AWAC
Besos

2.24o E 41.41o N 24 m Hs, Dir, Tm02, Tp, Tm01

Buoy
Besos

2.26o E 41.40o N 50 m Hs, Dir, Tm02, Tp, Tm01

XIOM

Blanes 2.28o E 41.65o N 74 m Hs, Dir, Tm02, Tp, Tm01

Llobregat 2.14o E 41.28o N 45 m Hs, Dir, Tm02, Tp, Tm01

Tortosa 0.98o E 40.72o N 60 m Hs, Dir, Tm02, Tp, Tm01

Puertos de
estado

Barcelona 2.20o E 41.28o N 68 m Hs, Dir, Tm02, Tp

Tarragona 1.47o E 40.68o N 688 m Hs, Dir, Tm02, Tp
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Additionally, five more instruments have been considered in the study. The local

network XIOM (Xarxa d’Instruments Oceanogràfics i Meteorològics, www.xiom.cat)

with four buoys along the coast and time series for more than 25 years has been

used to characterize the wave properties in the study area. For this purpose, three

of these buoys have been used to validate the obtained results (table 3.1). Comple-

mentary to this local network, the general Spanish network of Puertos del Estado

(www.puertos.es) presents three buoys in the study area. Two of them have also

been used in this study; the first one is located offshore the Barcelona harbour en-

trance, while the second one is located in the southern part of the domain at about

50km from the coast (Tarragona buoy, in deep water offshore wards the Tarragona

harbour entrance).

All the buoy locations used are represented in figure 3.1. Table 3.1 shows that,

except for the Tarragona buoy, all the instruments are moored near the coast. How-

ever, due to the young wave age conditions prevailing in the area (consequence of

the short fetch available and the highly variable wind conditions) all the instrument

locations correspond to deep or intermediate water conditions.

The bathymetry used is obtained from GEBCO (General Bathymetric Chart of

the Oceans, www.gebco.net) with a grid resolution of 30 arc-second (0.0083o).

The simulations have been structured in three nested domains covering the West-

ern Mediterranean Sea (figure 3.1). The first one is a large domain all over the men-

tioned area with a grid resolution of 9 kilometres. This domain is used to generate

boundary conditions for the smaller domains. The second domain is located in the

Balearic Sea, with a mesh size of 3 kilometres and the next one is a domain follow-

ing the Catalan coast and shelf domains, represented by a curvilinear grid with a

mean cell size of 1 kilometre. The grid dimensions and resolutions are presented in

table 3.2.

Table 3.2: Description of the grids implemented in SWAN for the Catalan coast.

Western
Mediterranean Sea

Balearic Sea Catalan Coast

Longitudes 4.90o W - 16.05o E 0.45o W - 5.26o E 0.17o E-3.591 E

Latitudes 35.00o N - 44.52o N 39.00o N - 43.66o N 39.63o N - 41.83 oN

Mesh size 196 x 119 160 x 174 208 x 106

Grid
resolution

9km
(0.107o x 0.081o)

3km
(0.035ox0.027o)

1km
(mean value)
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Figure 3.1: On top: The Western Mediterranean Sea. Represented the local distri-
bution of the computational grids implemented in SWAN (in red) and the two atmo-
spheric domains used as a forcing (in green). At the bottom: a detailed bathymetry
for the finest grid (1km grid size in average) is presented. The dots represent the
measurement locations.

The initial conditions for each domain have been obtained running the SWAN

model in a stationary mode while the boundary conditions for the medium and

small domains are generated by the enveloping larger domain. The largest grid

covers almost the whole Western Mediterranean Sea which can be considered as a

semi-enclosed basin. As the boundaries of this grid are far away from the area of

interest, we do not expect that omitting the influx of energy along these boundaries

will affect our model results near the Catalan coast.
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Two periods are considered in the present study, corresponding to the measure-

ment campaigns mentioned before. These periods have been selected because of the

different processes represented in each one such as offshore wind conditions; long

fetch storm events and calm periods, all of them typical processes for the study

area. During these dates two high resolution campaigns were carried out within

the European project FIELD AC and there are available high resolution wind fields

and a variety of observations. The selected wind field domains are represented in

figure 3.1, and have been provided by the Barcelona Supercomputing Centre (BSC,

www.bsc.es) using the Weather Research and Forecasting (WRF) Model (Skamarock

et al., 2005). The first wind domain covers the full Western Mediterranean Sea, with

a spatial resolution of 12 km and a temporal resolution of 1 hour and it is used for

the Western Mediterranean Sea grid. The two smaller wave grids are forced by the

second wind field provided by BSC, with a spatial resolution of 4 km and a time res-

olution of 1 hour. As presented by Alomar et al. (2014) this resolution is considered

enough to capture the wind space and time gradients in the studied coastal area.

A more extensive validation of the wind patterns against remote-sensing measure-

ments and a comparison to other wind options is presented by Bertotti et al. (2014),

where the WRF model is considered to perform reasonably well, with a correlation

coefficient for the study period around 0.83, a bias of 0.56 m/s and a RMSE = 1.98

m/s, quite high. The high-resolution wind field is also analysed with practically

identical results, presenting some minor differences only very close to the coast.

3.3.2 Whitecapping dissipation for early wave growth

As mentioned before, an assessment and subsequent modification of the whitecap-

ping formulation (equations 3.2 and 3.3) has been performed. The delta (δ) values

considered are: 0, 0.5, 0.75, 1, always keeping the coefficient Cds = 2.36 · 10−5 and

p = 4. Rogers et al. (2003) demonstrate that an increase of the delta value causes

a decrease in the lower frequency energy dissipation, and consequently, an increase

of the peak period and mean period (Tm02). However, this increase of the delta

parameter without modifying Cds leads to an overestimation of the total energy for

fully developed sea conditions.

In the study area, the wave growth rates for the typical conditions are proven to

be larger than the ones obtained from the SWAN model, as previously, so the delta

modification may be a good correction to this problem, always keeping in mind that

an over-prediction will occur for waves with longer fetch and/or duration. Since

we do not observe fully developed sea conditions in the area the overestimation is

acceptable.
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Figure 3.2: Scatter plots for the Hs and Tm02, showing the effect of modifying the
whitecapping term for three different delta values. Results from the finest grid, for
the first study period in the Besos buoy location.

Figure 3.3: Scatter plots for the Hs and Tm02, showing the effect of modifying the
whitecapping term for three different delta values. Results from the finest grid, for
the second study period in the Barcelona buoy location.

The results of a sensitivity analysis are shown in figures 3.2 and 3.3. The two

temporal periods previously chosen have been included in the comparison, and the

eight buoys have been used to validate the results, but only the results for two dif-

ferent locations, each one for one period and representative of the whole set, are
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presented. The graphics, supported by tables 3.3 and 3.4, show that a modification

of the delta parameter hardly affects the significant wave height, while the effect is

more noticeable for Tm02. The increase of the delta parameter causes an important

increase in the period values because it augments the dissipation for higher frequen-

cies. The increase of the period is, thus, also important for the smaller frequencies

in their relative weight within the spectrum.

In order to better evaluate the sensitivity of the two variables to different delta

values, a linear regression fitting, with formulation a · x+ b, is computed comparing

the results using delta values higher than zero with the default value (delta = 0).

The coefficients of the linear fitting corresponding to the figures 3.2 and 3.3 are

presented in tables 3.3 and 3.4, respectively.

Table 3.3: Linear regression line coefficients for the data presented in figure 3.2.

Besos buoy Variable a b

δ = 0.5
Hsig 0.975 0.041

Tm02 1.276 -0.434

δ = 0.75
Hsig 0.955 0.047

Tm02 1.335 -0.523

δ = 1
Hsig 0.937 0.051

Tm02 1.378 -0.591

Table 3.4: Linear regression line coefficients for the data presented in figure 3.3.

Barcelona buoy Variable a b

δ = 0.5
Hsig 0.996 0.015

Tm02 1.278 -0.498

δ = 0.75
Hsig 0.985 0.015

Tm02 1.328 -0.566

δ = 1
Hsig 0.974 0.014

Tm02 1.364 -0.618

In fact, there are not so many differences in using delta values between 0.5 and

1, although it seems, from the performed computations, that the best option is delta

equal to 1 in almost all the locations for the two periods . However, in some locations

with more energetic situations and a smaller under-prediction, normally when there
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is a longer fetch, a delta equal to 0.75 or event 0.5 could be more appropriate

according to the observations.

3.3.3 Adjusting the frequency interval to the measurements

In wave modelling it is common to compare some integrated parameters obtained

from a numerical model with measured data, but it is not so common to determine

how these bulk parameters have been obtained from the model and the wave buoy

and to confirm that the comparison is being done under precisely the same terms,

as noted by Akpinar et al. (2012).

Third-generation wave prediction models represent the wave spectrum over a

certain frequency range, called the prognostic range. This range is affected by the

source terms and propagation terms. For higher frequencies a parametric tail is

used, typically an f−5 or, in SWAN, an f−4 tail. The wave model computes the

bulk parameters integrating the spectra up to a high frequency limit (in SWAN the

typical value is 10 Hz). However, the spectra provided by measurement instruments,

buoy or pressure gauge, have a limited frequency range, usually between 0.05 and

1 Hz, and often also integrated parameters are obtained over this range (without

considering a parametric tail), so one should be careful to ensure that the same

quantities are being compared.

Two options are available to modify the integral frequency range used to obtain

the bulk parameters. The first one consists in obtaining the spectra from the wave

model and as a post process compute the bulk parameters in the range of interest.

The second option is to introduce the frequency integration range in SWAN so that

the outputs are computed for the desired frequency range.

In our case, the different buoys have different integral ranges (from 0.025 Hz

to 0.58 Hz in some locations, and from 0.033 Hz to 0.625 Hz in the others), so

the chosen interval goes from 0.03 Hz to 0.6 Hz. This frequency range has been

introduced in the SWAN model to integrate the numerical spectrum and obtain the

corresponding simulated bulk parameters.

Akpinar et al. (2012) carried out a sensitivity test of the integration range, finding

that, depending on the wave conditions, the results may differ noticeably. It was

also pointed out that significant wave height is rather insensitive to the integration

range while the period (Tm02) is more sensitive to the integration range and the

dependence becomes smaller as the waves periods increase.
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Figure 3.4: Scatter plots for the Hs and Tm02, showing the effect of the adjustment
of the frequency integration interval for two different delta values. Results from the
finest grid, for the first study period in the Llobregat buoy location.

Figure 3.5: Scatter plots for the Hs and Tm02, showing the effect of the adjustment
of the frequency integration interval for two different delta values. Results from the
finest grid, for the second study period in the Besos buoy location.

In figures 3.4 and 3.5 some representative results of our own sensitivity tests are

presented. For the first period studied (figure 3.4), where the wind mainly blows

from the coast and the waves are locally generated, the significant wave height is

hardly affected by this adjustment. The mean period (Tm02) presents different types

of behavior depending on the delta applied; for delta equal to zero (default setting in
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SWAN) there is clearly an increase in the mean period, while for delta greater than

zero, this enhancement is more important for lower periods, as observed by Akpinar

et al. (2012). Similar results are obtained for the second observation period studied,

where there are more energetic events. For the several values of delta tested, the

effect of adjusting the frequency interval is different. In some locations, as shown in

figure 3.5, the significant wave height may suffer a reduction, especially for higher

Hs values, and the same situation is observed for the mean period (Tm02). Similar

results have been obtained when studying the mean wave period Tm01 (not shown).

Our results were as expected. Since with this adjustment we are integrating

only one part of the total energy spectrum to obtain the bulk parameters, part of

the total energy corresponding to the higher frequencies is not being considered,

causing a decrease of the wave momentum and their derived parameters. The effect

is more important for spectra with more energy in higher frequencies, where an

important part of the energy is located outside the integration range considered for

the validation. In our opinion this adjustment of the frequency integral ranges is

necessary to compare model results with instrument measurements under the same

terms.
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3.4 Analysis of the results

Eight simulation series have been run for each study period, adjusting the integration

frequency interval and testing four different delta values mentioned in section 3.3.2

for the whitecapping term. The results presented in the following figures and tables

correspond to the finest grid (1 km averaged grid size), during both periods con-

sidered and validated with the measured data from the eight buoys available in the

area. All this work has generated a large volume of information summarized in this

section and discussed in the next one.

First campaign

During the first observation period, from the 12th November 2010 to the 18th January

2011, there is a predominance of offshore blowing winds, which generate young

sea waves that interact with swell generated in the open sea. This situation is

characterized by bimodal spectra, and relatively mild energetic conditions.

Table 3.5: Summarize of the statistical errors for the simulations presented in fig-
ure 3.6.

Besos buoy Variable RMSE Bias SI R

Delta = 0
f: 0.01 - 10Hz

Hsig 0.25 m -0.03 m 0.35 0.73

Dir 73.7o - 0.52 0.40

Tm02 2.60 s -2.37 s 0.56 0.43

Tp 2.67 s -1.64 s 0.42 0.29

Delta = 0
f: 0.03 - 0.6Hz

Hsig 0.26 m -0.07 m 0.37 0.73

Dir 66.2o - 0.47 0.44

Tm02 1.69 s -1.38 s 0.38 0.45

Tp 2.67 s -1.64 s 0.42 0.29

Delta = 1
f: 0.01 - 10Hz

Hsig 0.27 m -0.04 m 0.37 0.67

Dir 63.6o - 0.45 0.47

Tm02 2.05 s -1.62 s 0.45 0.36

Tp 1.95 s -0.94 s 0.31 0.42

Delta = 1
f: 0.03 - 0.6Hz

Hsig 0.27 m -0.06 m 0.38 0.68

Dir 58.4o - 0.41 0.49

Tm02 1.27 s -0.81 s 0.28 0.46

Tp 1.95 s -0.94 s 0.31 0.42
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Figure 3.6: Time series for the significant wave height (a), mean wave direction (b),
mean wave period (c) and peak wave period (d) comparing the results obtained from
the simulations run with the SWAN configuration by default, adjusting the frequency
interval to obtain the integration parameters and modifying the whitecapping term.
First study period in Besos buoy.
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Different time series are compared in figure 3.6 to determine the effect of properly

adjusting of the frequency interval for calculating the bulk parameters and the pro-

posed modification of the delta value in the whitecapping formulation. The location

corresponds to the Besos buoy, moored just in front of the Besos river mouth and

affected by the offshore winds. The corresponding errors are presented in table 3.5.

Figure 3.7 presents a comparison between the results without modifications (i.e.

SWAN model using the whole prognostic range to integrate the bulk parameters

and using a delta value of 0 in the whitecapping term) and the improved settings

(obtained adjusting the frequency range to the one measured by the instruments and

correcting the delta value to 1 so that the whitecapping term depends on the square

of the wave number). To prove the regional validity of the comparison, figure 3.7

corresponds to another location, Tortosa, also highly affected by the offshore wind

conditions. The corresponding errors are presented in table 3.6. Despite testing four

delta values, the results show that for this period, in most of the locations the best

adjustment corresponds to using delta equal to 1; these are, thus, the results here

discussed.

Figure 3.7: Scatter plots for the Hs and Tm02, showing the improvement between the
original simulation and the resulting run with both proposed corrections (frequency
interval from 0.03 Hz to 0.6 Hz, and delta equal to 1 in the whitecapping term).
Results from the finest grid, for the first study period in the Tortosa buoy.
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Table 3.6: Summarize of the statistical errors for the simulations presented in fig-
ure 3.7.

Barcelona
buoy

Variable RMSE Bias SI R

Delta = 0
f: 0.01 - 10Hz

Hsig 0.35 m 0.20 m 0.42 0.85

Dir 72.7o - 0.37 0.45

Tm02 1.60 s -1.33 s 0.42 0.38

Delta = 1
f: 0.03 - 0.6Hz

Hsig 0.38 m -0.22 m 0.46 0.85

Dir 68.5o - 0.35 0.48

Tm02 0.72 s 0.08 s 0.19 0.50

45



Chapter 3. Wave energy balance for semi-enclosed domains

Second campaign

During the second observation period, from 11th March 2011 to 18th April 2011, the

situation is quite different, with wind blowing mainly from the east with a much

longer fetch and, thus, more energetic and developed wave conditions.

Table 3.7: Summarize of the statistical errors for the simulations presented in fig-
ure 3.8.

Besos buoy Variable RMSE Bias SI R

Delta = 0
f: 0.01 - 10Hz

Hsig 0.28 m -0.04 m 0.28 0.88

Dir 50.6o - 0.38 0.41

Tm02 2.24 s -2.12 s 0.52 0.68

Tp 2.33 s -1.69 s 0.38 0.54

Delta = 0
f: 0.03 - 0.6Hz

Hsig 0.29 m -0.08 m 0.40 0.88

Dir 47.5o - 0.35 0.43

Tm02 1.32 s -1.12 s 0.31 0.72

Tp 2.33 s -1.69 s 0.38 0.54

Delta = 1
f: 0.01 - 10Hz

Hsig 0.24 m 0.05 m 0.33 0.91

Dir 42.6o - 0.32 0.56

Tm02 1.35 s -0.99 s 0.31 0.73

Tp 1.57 s -0.36 s 0.25 0.61

Delta = 1
f: 0.03 - 0.6Hz

Hsig 0.29 m -0.09 m 0.39 0.89

Dir 43.9o - 0.33 0.51

Tm02 0.88 s -0.31 s 0.20 0.77

Tp 1.57 s -0.36 s 0.25 0.61

In figure 3.8, the different time series are compared to determine the effect of

properly adjusting of the frequency interval for calculating the bulk parameters and

the proposed modification of the delta value in the whitecapping formulation. The

results correspond to the Besos buoy, located just in front of Barcelona, in the central

part of the Catalan coast. The respective errors are presented in table 3.7.

In figure 3.9 a comparison is presented between the original SWAN simulations

(using the complete prognostic range to integrate the bulk parameters and using a

delta value of 0 in the whitecapping term) and the “improved” simulations (obtained

adjusting the frequency range to 0.03 Hz to 0.6 Hz and choosing delta = 1). For this

period, with more energetic wave conditions, the majority of buoy positions along
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the Catalan coast show the best adjustment when using delta equal to 1; only in

cases of comparatively higher wind velocities and longer fetch, a smaller delta value

(0.75) generates better results. The respective errors are presented in table 3.8.

Figure 3.8: Time series for the significant wave height (a), mean wave direction (b),
mean wave period (c) and peak wave period (d) comparing the results obtained from
the simulations run with the SWAN configuration by default, adjusting the frequency
interval to obtain the integration parameters and modifying the whitecapping term.
Second study period in Besos buoy.
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Figure 3.9: Scatter plots for the Hs and Tm02, showing the improvement between the
original simulation and the resulting run with both proposed corrections (frequency
interval from 0.03Hz to 0.6 Hz, and delta equal to 1 in the whitecapping term).
Results from the finest grid, for the second study period in the Llobregat buoy.

Table 3.8: Summarize of the statistical errors for the simulations presented in fig-
ure 3.9.

Llobregat
buoy

Variable RMSE Bias SI R

Delta = 0
f: 0.01 - 10Hz

Hsig 0.2 m -0.01 m 0.35 0.83

Dir 49.5o - 0.35 0.52

Tm02 1.53 s -1.25 s 0.37 0.69

Delta = 1
f: 0.03 - 0.6Hz

Hsig 0.26 m -0.02 m 0.34 0.85

Dir 38.7o - 0.28 0.69

Tm02 0.72 s -0.25 s 0.17 0.77
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3.5 Discussion

It has been proven during the study that the under-prediction of the mean period

(Tm02) and peak period in the Catalan coast is a persistent problem (e.g. figures 3.6

and 3.8). As concluded by Alomar et al. (2014), the main reason is that the wave

growth rates included in wave models are lower than the measured rates in the area.

This is due to the specific features of the Catalan coast: a semi-enclosed domain

with transient wind (in strength and direction) and fetch-limited conditions.

In order to correct this systematic error, two modifications have been proposed.

The first is a modification of the delta value in the Hasselmann (1974) whitecapping

term formulation implemented in SWAN, as previously done by Rogers et al. (2003).

This correction introduces a dependence on the squared wave number, improving

the prediction of the energy spectra at lower frequencies. In fact, the SWAN team

has recently modified the default option of delta for the WAM cycle 3 formulations

from 0 to 1 in version 40.91AB. The results obtained in this study support the recent

choice of the SWAN team, at least for young or moderate sea wave conditions.

The second modification is an adjustment of the frequency range used to integrate

the bulk parameters in the wave model, so that it coincides with the one used by

the field instrument; this ensures that the comparison is being made under the same

conditions. The first proposed correction is specific for domains with a limited fetch

and variable wind conditions, while the second aspect is valid, and necessary, for all

cases.

From the results shown in this study, it can be concluded that the behavior

of the SWAN model is sensitive to the prevailing conditions and situation; here

the proposed modifications will affect differently each type of wave conditions. A

general improvement can be observed in all studied cases (not only the results shown

here in figures 3.6 and 3.8 but also in the other simulations performed) with the

modifications here proposed. They result in a significant wave height and mean

wave direction that are slightly modified; however, the mean period (Tm02) and the

peak period increased considerably solving largely the well-known under-prediction

problem.

In general terms, we may conclude that the corrections here proposed can be

valid along the Catalan coast and also for similar environments and wave conditions:

young and moderate sea waves with variable wind fields. These conditions are typical

of coastal areas within semi-enclosed domains.

With the proposed corrections the significant wave height can become slightly

lower within the frequency interval adjustment due to a reduction of the energy

considered to calculate the bulk parameters in the validation process. This is a
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consequence of not using the parametric tail in the spectrum to compute the integral

wave parameters. In the Catalan coast there is a tendency to slightly under-predict

the significant wave height, mainly during storm events. This problem may be

slightly exacerbated by this correction, but with a limited quantitative relevance, as

can be observed in tables 3.5 to 3.8. However, this consideration is necessary to be

sure that the comparison between modeled and measured values is done under the

same terms.

Due to the young sea wave conditions present in the Catalan coast, the correction

of the whitecapping term is essential. However, this modification is less relevant for

the significant wave height than for other variables as is mentioned below. The mean

wave direction is not so affected by the proposed modifications. They may lead to

a slightly smoother behavior when there is an abrupt change of direction. Under

other conditions, there is hardly any difference.

The peak period and the mean wave period (Tm02) are the variables most affected

by the proposed changes, presenting an important improvement for the Catalan

coast. In figures 3.6 and 3.8 we show a comparison between the original results

obtained running SWAN, and the improved simulations with a frequency integration

range between 0.03 Hz and 0.6 Hz and a correction of the whitecapping term. These

results show a great improvement in all locations; the RMSE is reduced and the

negative bias is almost corrected. However, the effect is more important in Tm02

because the effects of the two corrections are added, while Tp is not affected by the

frequency integration range. Similar results to the Tm02 have been obtained for the

Tm01, although they are not shown in this document.

The present work provides a clear improvement of the wave simulations for the

Catalan Coast that could be exported to similar environments, characterized by

young/moderate sea wave conditions due to fetch limited and variable wind fields,

taking into consideration that depending on the sea state a certain delta would be

optimal. However there remains work to be done in the wave modeling physics (e.g.

Tolman, 1992a). The actions proposed in this thesis correct part of the problem, but

are far from a final solution since better formulations for the energy balance terms

are necessary to reproduce the actually occurring growth and dissipation rates in

coastal areas within semi-enclosed domains.
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3.6 Conclusions

To determine the performance limits for wave forecasting at coastal scales we have

looked into the various terms contributing to the wave action balance equation

and tested their relevance for a set of observations off the Catalan coast. This

represents a particularly demanding situation since the storm duration is limited

and the orography affects the wind fields, resulting in the large spatial gradients

that compound the problem.

We have focused on the whitecapping term because it is easy to tune it and it

is the least well-known term in wave models. Because of that it is often the tuning

knob for wave simulations. The results show that, as suggested by other authors,

this term should depend more explicitly on the wave characteristics. Moreover we

have seen the importance of introducing wave number as a parameter for the closure,

which is particularly relevant for the Catalan sea where most of the time there are

young seas, actively generated or modified by the acting winds. These young seas

are generally steep and the proposed modification works primarily by a different

weighting of the mean wave steepness as a function of the wave number so these

situations are the most affected by the proposed correction.

Following this argument we have adjusted the present formulation for the white-

capping term in young seas by modifying the delta value of the Hasselmann (1974)

expression. It is adapted to the wave – growth and evolution for the Catalan coast

but since it is based on the physics of young sea evolution it should be applicable

to other similar environments. In fact, the present work supports the choice of the

SWAN team to make delta equal to 1 the default value in versions 40.91AB and

following. It is however important to notice that the proposed formulation is only

suitable for the early stages of generation and should be discontinued after the waves

reach a certain maturity, as happens for example in open sea conditions. In this

work we have also seen that the integral wave parameters for the simulations and

the measurements should be referred to the same frequency interval since otherwise

we are introducing into the fit parameters the contribution of high or low frequency

bands not present simultaneously in simulations and observations. This refers, more

specifically, to the need of adjusting the working frequency interval in the validation

process, since now the spectral high frequency tail is present in the simulations but

not in the measured data.

It should be finally stressed that the key element in wave models is the balance

between input and output terms for the wave action balance. Although we have only

considered dissipation due to the deep water breaking, the overall model performance

will be the result of combining the various terms contributing to the action balance.
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As shown also by previous authors this requires adjusting the growth term, the

physical and numerical dissipation and also the nonlinear interactions term (or its

approximation) so that the resulting balance conforms to what is happening in

nature for the particular studied domain.
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Chapter 4

The effect of coupling on the wave

modelling in the Catalan Coast

4.1 Introduction

Due to the increased performance of computational resources, the use of numerical

models to predict natural events is becoming more prevalent. To accomplish this,

numerical models are not only being pushed to increase their spatial resolution but

also to increase the complexity of the simulated physics. Coupling of models is one

method to allow increase in model complexity (Warner et al., 2010). The coupling

of models allows the effects of larger scale processes to directly influence the smaller

scale response. Three-dimensional coupled atmosphere–ocean models have been

developed and applied to idealized and realistic scenarios to predict the interactions

between the atmosphere and the ocean (Warner et al., 2008b; Bolaños et al., 2011;

Dietrich et al., 2011b).

It is during the most energetic events when the coupling takes more relevance

(Warner et al., 2010; Jorda et al., 2007) due to the intense wind, currents and

wave fields involved. The Western Mediterranean sea is an area mainly defined by

calm periods most of the year. However, coastal areas are often characterized by

highly variable and heterogeneous wind, wave and current conditions, which make

the numerical prediction of the meteo-oceanographic processes difficult.

For instance, wind jets induced by orographic effects present strong spatial wind

field variability due to the orographic characteristics (e.g. Shimada and Kawamura,

2006; Zhai and Bower, 2013). Instead of the relatively limited fetch in the wind jet

region, the wave height can be relevant, interacting with bimodal features (Shimada

and Kawamura, 2006). In this sense, several contributions have highlighted the

influence of variable wind conditions in relatively small-scale areas (such as wind jet),
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influencing wind-wave generation Shimada and Kawamura (2006); Bolaños et al.

(2007); Alomar et al. (2014) or modifying ocean circulation patterns (Zhai and

Bower, 2013; Schaeffer et al., 2011; Klaic et al., 2011).

The case of the Ebro River shelf (north-western Mediterranean Sea; figure 4.4) is

characterized by strong, dry and usually cold wind that blows from the north-west

through the Ebro valley, induced by the lee of the Pyrenees Mountains. The westerly

wind, greatly affected by the orography, is channelized into a limited band, forming a

wind jet (Jansa, 1985). Offshore wind is more usual and intense during autumn and

winter, when larger atmospheric pressure gradients take place and cause stronger

winds with advection of cold air, but a small atmospheric pressure difference along

the Ebro valley is sufficient to initiate wind during any season (Cerralbo et al., 2015).

The current intensifications are another energetic event in which the interaction

between the wave field and the current field is relevant. Several authors have studied

the interaction between waves and currents using coupled models in different areas

of the world (Jorda et al., 2007; Warner et al., 2010; Malhadas et al., 2010; Bolaños

et al., 2011).

Intense water flows have been observed along the Catalan coast by several authors

(Palanques et al., 2002; Jorda, 2005; Grifoll et al., 2015) associated to strong local

winds and with current intensities up to 50 cm/s. According to Mestres et al.

(2016) a flow intensification can be defined as an intense water flow lasting more

than 12 hours and exceeding a threshold defined as the surface current monthly 95th

percentile. With this criteria Mestres et al. (2016) detected up to 14 events in the

Catalan coast during a three years period (from June 2008 to July 2011) distributed

mainly during spring (6) and summer (5), and less frequently in autumn (1) and

winter (2). The mean superficial current for the entire study period in front of the

Barcelona harbour was 0.20 m/s, while the events selected reached values around

0.75 m/s and with an extreme of 1.39 m/s during and event occurring in October

2010. As concluded by Mestres et al. (2016) the current intensifications in front

of the Barcelona harbour area are mainly induced by locally strong and persistent

winds blowing from the northeast to southeast, typically associated to the presence

of lows in the southwestern Mediterranean and highs over Central Europe.

In this chapter we present different coupling forms applied to both calm periods

and energetic events, as wind jets or current intensifications described before, with

the objective to quantify the effect of models coupling on wave fields for the Catalan

coast.
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4.2 Background: model coupling

4.2.1 One-way and two-way coupling

When working in coastal areas the interaction between the wind, waves and currents

fields is not negligible, and therefore it is recommendable to couple the different

models. Various types of coupling are available, that will be discussed in this chapter.

A one-way coupling (also known as offline coupling) is the simplest option that

consists in getting results from one model and introduce them as an input into

another model. Additionally, there is the option to execute a two-way coupling (or

online coupling), so that for each time step both models run in parallel, and every so

often they share physical parameters such as the wave height, the current intensity

or the atmospheric pressure, thus being able to reproduce more realistically the

physical behaviour in coastal areas.

The last decades, the scientific community has begun to consider the currents

fields in the wave modelling. Jorda et al. (2007) quantified the importance of cur-

rents fields when modelling the waves in a shelf ocean domain. In this study, he

concluded that under storm conditions, a decisive contribution of currents on waves

is observed, basically due to the wave refraction. Few years later, Benetazzo et al.

(2013) modelled the waves coupled to the circulation model for the semi-enclosed

Gulf of Venice, obtaining considerably variations of the significant wave height and

an increase/decrease of wave spectral energy in situation of opposite/following cur-

rents respectively. Some experimental studies have been carried out by Rusu and

Soares (2011), compared to wave simulations under different current conditions.

The interaction between surface winds and waves was studied by Charnock

(1995). An estimation of the surface drag created by the waves as a function of

the wind speed was proposed. More recent studies have revisited the topic propos-

ing new parameterizations (e.g Johnson et al., 1998). Few years later, studies using

atmospheric and wave models have focused on case studies that analyse many as-

pects of the ocean and atmospheric feedbacks (e.g. Warner et al., 2010), which make

difficult to generalize results regarding the potential benefit in the lower level wind

simulation and its effect on wave forecast as a result of coupling atmospheric and

wave models.

The contributions presented above, although quantifying processes related to the

three fields (waves-circulation-atmosphere), treat each phenomena separately (which

is usually called one-way coupling). This is performed running the different models

sequentially and introducing some of the results as inputs for the other models.

However, the coupling of models can also occur with all the models running
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concurrently, using a coupling toolkit to allow the transfer of information between

models, which is usually called two-way coupling. Warner et al. (2008a) implemented

the SWAN wave model and the circulation model ROMS (Regional Ocean Modelling

System; Haidovel et al., 2008; Shchepetkin and Williams, 2005, 2009) coupled in

a two-way manner. This coupling was undertaken with the tool Model Coupling

Toolkit(MCT; http://www-unix.mcs.anl.gov/mct/ ; Larson et al., 2004; Jacob et al.,

2005) and is valid for riverine areas, estuaries, coastal and ocean platform. In this

case, the proposed system implements, compiles and executes a parallel models tak-

ing into account the influence of currents on waves and waves on currents, but it

was not coupled with the atmosphere. The coupling of the three fields at the same

time was finally implemented and applied by Warner et al. (2010) under the name

of COAWST system (Coupled Ocean-Atmosphere-Wave-Sediment Transport mod-

elling system), which executes a system where the three models run concurrently:

the wave model SWAN, the circulation modelling ROMS and the non-hydrostatic

meteorological model WRF (Weather Research and Forecasting; Skamarock et al.,

2005).

Furthermore, some other models have been coupled in a two-way manner with

also good results. Bolaños et al. (2011) improved the coupling between the cir-

culation model POLCOMS (Proudman Oceanographic Laboratory Coastal-Ocean

Modelling System; Holt and James, 2001) and the waves model WAM (WAMDI-

group, 1988). The previous version (Osuna and Wolf, 2005) worked with a two-way

coupled system in two dimensions (with depth-averaged momentum equations) and

considered the wave refractions by currents, the bottom friction modification due

to wave and current fields, and the increase of the wind stress due to waves. The

new version also includes the effects of Stokes drift in the currents and the distri-

bution of the surface tension between the waves and currents. This system was

evaluated in the North-western Mediterranean sea and the results conclude that

currents, typically small in this region, do not have a great effect on the waves while

the currents generated by waves, usually caused by a change in wind stress due to

the surface roughness of the sea, are not negligible. Other system that has been

used to study the circulation and waves in a coupled manner is formed by the wave

model STWAVE (STeady State Spectral WAVE; Smith et al., 2001) and the circu-

lation mode MOHID (Santos, 1995) implemented in a coastal lagoon off the coast

of Portugal (Malhadas et al., 2010). In this case performing a one-way coupling in

which the STWAVE wave model results are introduced as an input into the MOHID

model, where currents are calculated. Dietrich et al. (2011b) have integrated the

SWAN model working with unstructured grids with the circulation and storm surge

model ADCIRC (Luettich and Westerink, 1994b) for two hurricane events in the

Gulf of Mexico, demonstrating the importance of the wave-circulation interactions
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under those conditions.

4.2.2 The COAWST system

Since the COAWST system is a free distributed system, easy to implement and

suitable for subsequent transfer of the progresses achieved, it has been chosen among

the others presented before. The COAWST system uses the SWAN wave model and

includes several test cases useful to become familiar with it. Also, the system has

shown good and improved results for various different locations.

Besides the SWAN model, defined in chapter 2, the other models used by the

COAWST system are described in the following lines:

• The circulation model ROMS:

It is a free-surface, terrain-following numerical model which resolves the three-

dimensional Reynolds-averaged Navier-Stokes equations using hydrostatic and

Boussinesq approximation. It is a model widely used by the scientific commu-

nity for a diverse range of applications. ROMS includes accurate and efficient

physical and numerical algorithms and several coupled models for biogeochem-

ical, bio-optical, sediment, and sea ice applications. It also includes several

vertical mixing schemes, multiple levels of nesting and composed grids.

ROMS uses finite-difference approximations on a horizontal curvilinear grid

and on a vertical stretched terrain-following coordinate. Momentum and scalar

advection and diffusive processes are solved using transport equations and an

equation of state computes the density field that accounts for temperature,

salinity, and suspended-sediment contributions.

• The atmospheric model WRF (Advanced Research WRF version):

It is a non-hydrostatic, quasi-compressible atmospheric model with bound-

ary layer physics schemes and a variety of physical parameterizations of sub-

grid scale processes for predicting mesoscale and microscales of motion. The

model predicts three-dimensional wind momentum components, surface pres-

sure, dew point, precipitation, surface sensible and latent heat fluxes, longwave

and shortwave radiative fluxes, relative humidity, and air temperature on a

sigma-pressure vertical coordinate grid. WRF has been used extensively for

operational forecasts as well as for realistic and idealized research experiments.

• The coupler Model Coupling Toolkit (MCT; Jacob et al., 2005):

To manage the three models running concurrently, and the transfer of infor-

mation and variables from one to another, the Model Coupling Toolkit coupler
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is used (MCT) (Larson et al., 2004; Jacob et al., 2005). MCT is a program

written in Fortran90 and works with the MPI parallel communication proto-

col. During model initialization each model decomposes its own domain into

sections that are distributed to processors assigned for that component. Each

grid section on each processor initializes into MCT, and the coupler compiles

a global map to determine the distribution of model segments. Each segment

also initializes an attribute vector that contains the fields to be exchanged

and establishes a router to provide an exchange pathway between model com-

ponents. During the run phase of the simulation the models will reach a

predetermined synchronization point, fill the attribute vectors with data, and

use MCT send and receive commands to exchange fields. Further details are

described in Warner et al. (2008a).

• The Spherical Remapping Interpolation Package (SCRIP; Jones, 1999):

It is used to exchange data fields on different grids computing the interpolation

weights.

The variables exchanged between the three models during the coupling process

are shown in table 4.1.

4.2.3 Expected improvements

The expected improvements in the wave model due to the coupling process are de-

tailed by analysing the physics behind the coupling. The resulting wave conditions

in a local area are a sum of different factors. Under some circumstances, this waves

are very sensitive to the current fields and the state of the atmosphere due to inter-

actions between the different fields, and also because the growth of waves is mainly

controlled by the wind stress. The main interaction processes affecting the waves

are the following:

Wave refraction due to currents

The refraction process is the rotation of the waves approaching to the shore in

shallow water due to depth variation. However, it is known that the waves are not

only refracted due to bathymetry effects but can also refract in presence of ambient

currents distributed no uniformly in space. Then, one section of the wave front is

traveling at a higher speed than another. The refraction process causes a change

in the direction of the waves and in their frequency, and is strongly linked to the

phenomenon of the Doppler Effect.
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Table 4.1: Configuration of data fields exchanged between the coupled models.

Source model Model that adresses Variables

ROMS SWAN

Surface currents

Free surface elevation

Bathymetry

WRF SWAN 10m surface winds

SWAN ROMS

Significant wave height

Wave length

Wave direction

Wave period

Percent wave breaking

Wave energy dissipation

Bottom orbital velocity

SWAN WRF
Significant wave height

Wave length

ROMS WRF Sea Surface Temperature (SST)

WRF ROMS

10m surface winds

Atmospheric pressure

Relative humidity

Atmospheric surface temperature

Cloud fraction

Precipitation

Shortwave and longwave net heat fluxes
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Wind-stress modifications in presence of currents

Wind is the main wave forcing. When the wind blows, in the boundary layer between

the ocean and the atmosphere takes place a process of energy transfer. In the

presence of currents the wind tension is altered, since the wind stress is proportional

to the squared wind intensity. In a situation with presence of ambient currents, the

formula should be modified using the relative wind speed over water instead of the

absolute wind speed (equation 4.1).

τw = ρ · CD · (u− uc)2 (4.1)

Where ρ is the sea water density, CD is the drag coefficient, u is the wind speed

and uc the current velocity.

Typically, this formulation does not affect too far the result, since in the study

area the wind speed is usually of the order of 10 m/s while the currents are two

orders of magnitude lower. However, in the Catalan Coast under storm conditions,

Jorda et al. (2007) states that the currents near the surface can reach considerable

values, thus affecting the wave generation.

Bottom friction

The bottom friction is the main dissipation mechanism in continental shelf areas

and sand bottoms. This friction is proportional to the velocity of the water near the

bottom (in particular the Urms,bottom, the root-mean-square orbital velocity at the

bottom). This speed is determined by the presence of currents and waves, and will

affect both fields, especially in shallow water areas.

There are several formulations to calculate the bottom friction and the corre-

sponding energy dissipation, depending on the background material, the length of

bottom roughness, the presence or absence of ripples and their shape, etc. However,

the fact of unknowing too precisely how the bottom is, usually cause more errors

than ignore the effect of the currents (Tolman, 1992b).

Wave breaking

When a wave propagates toward the shore, the shoaling phenomenon causes an

increase of the wave height. When the ratio of wave height versus depth exceeds

a certain limit, the waves start to break quickly, dissipating its energy. In shallow

water areas this process becomes dominant over all other processes that affect the
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waves (surf zone). In presence of a current field, the wave height is modified so the

breaking behaviour changes.

The process of breaking induced by the bathymetry is quite unknown, and there-

fore little is known of how it affects the wave spectrum (which is the main parameter

in the wave models). However, the total dissipation (integrated with the spectral

space) has been more studied, and can be modelled approximately as a percentage

of the total spectrum energy.

Additionally, in a two-way coupling, the waves also generate modifications in

both the current and the wind fields that in the next time steps return to modify

again the wave field. From all this process the most important for wave modelling

is the wind stress modification due to the sea surface roughness.

Wind stress modification due to sea surface roughness

Waves modulate the surface drag exerted over the surface winds. The stress is a

function of the characteristics of the waves and there are several parameterizations

to represent it:

The standard sea surface roughness length scale is expressed as a function of the

Charnock coefficient (Ca; typical value of 0.016 for young seas) and surface wind

stress (us):

z0 = Ca ·
us

2

g
(4.2)

where g is the gravity.

Coupling online simulations in COAWST allows three different additional formu-

lations to be chosen to parameterize the sea surface roughness considering the wave

effects. The formulation of Taylor and Yelland (2001) considers the wave effects:

z0
Hs

= 1200 ·
(
Hs

Lp

)4.5

(4.3)

where Hs is the significant wave height and Lp is the wavelength at the peak of

the wave spectrum.

Drenann et al. (2003) proposed a formulation to estimate z0 as a function of the

phase-wave speed (Cp) and wind friction velocity (u∗):

z0
Hs

= 3.35 ·
(
u∗

Cp

)3.4

(4.4)
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Similar to Drennan’s formulation, Oost et al. (2002) proposed the following for-

mulation based on an experimental data set:

z0
Lp

=
25

π
·
(
u∗

Cp

)4.5

(4.5)

Conceptual differences arise from these formulations: Taylor and Yelland (2001)

considers the wave steepness, while Drenann et al. (2003) and Oost et al. (2002) are

based on the wave age.

Hence, the coupling of WRF with SWAN should allow for a more realistic repre-

sentation of the wind and wave feedbacks since the waves are explicitly modelled by

SWAN and the information is transferred to the atmospheric model every few time

steps. An improved simulation of the lower level winds is therefore expected. How-

ever, it is necessary to investigate which parameterizations provide a more realistic

interaction in order to realistically simulate the lower level wind.
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4.3 Methodology

The tests performed in this chapter have been structured in two separate sections:

the first one consisting in a one-way coupling, in which the effect of the currents

into the wave field is considered, and the second in a two-way coupling, in which

the circulation, atmospheric and wave models are coupled.

For each of the mentioned sections two different experiments have been carried

out in order to compare the different behaviour during calm periods and local en-

ergetic events. In the following lines a description of the different episodes selected

for each test are presented.

4.3.1 One-way coupling experiments description

In order to evaluate the one-way coupling effect of the currents on the wave field

the episode selected during a calm period goes from 11th March 2011 to 18th April

2011, corresponding to the second period analysed in chapter 3. During this period

the wind blows mainly from the east, with long fetches and thus quite developed

wave conditions.

In contrast with this first episode, in which the currents are not very intense, a

second episode is selected during which a surface current intensification occurred in

front of Barcelona harbour. The flow intensification started the 11th of October 2010

around noon, and lasted 48 hours, with a maximum current intensity in the ocean

surface of 1.39m/s in north-west direction (figure 4.1). The current intensification

is generated by a persistent wind blowing from the east.

Figure 4.1: Superficial current intensity (in m/s) before the flow intensification (left)
and during the peak of the current intensification event (right).

A large set of buoy measurements was available to validate the results for the two

episodes selected. However, the Llobregat buoy (defined in table 3.1 and represented

63



Chapter 4. The effect of coupling on the wave modelling in the Catalan Coast

in figure 4.2) was selected due to its location in front of the Barcelona harbour, highly

affected during the current intensification event.

The bathymetry used in all the episodes tested is obtained from GEBCO (Gen-

eral Bathymetric Chart of the Oceans, www.gebco.net) with a grid resolution of 30

arc-second (0.0083o).

Figure 4.2: Orography and bathymetry of the study area (top). The red boxes
represent the SWAN meshes and the green boxes the wind forcing domains for the
one-way episodes. In the bottom the Catalan coast domain is represented and the
Llobregat buoy location marked with a red dot.

The nesting strategy in both episodes consists of a set of different downscaling

meshes (figure 4.2). For the SWAN simulations the grids used are the same ones
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described and used in chapter 3. The largest wave domain covers the Western

Mediterranean Sea, which is considered enough to capture the wave generation in

the study area, so no boundary conditions are needed.

The SWAN model set up used in all the domains is the one described in chapter 2

with the whitecapping term modification proposed in chapter 3.

The set of forcing (including both wind and current fields) used in the two

episodes is quite different due to the availability of data sets for each period.

On one hand, for the calm period episode, the wind used is provided by the

Barcelona Supercomputing Center (BSC, www.bsc.es) using the WRF model (like

in the chapter 3). The resolution of the wind fields provided is 12 km and 1 h for the

Western Mediterranean sea domain and 4 km and 1 h for the Balearic Sea domain.

On the other hand, for the current intensification event the only wind available

is provided by Meteo-Frace (www.meteofrace.com) using the ALADIN atmospheric

model (Radnoti et al., 1995; ALADINteam, 1997) covering the Western Mediter-

ranean Sea domain with a spatial resolution of 0.1o (around 8.5 km) and a temporal

resolution of 3 h.

The current field in both episodes was computed with ROMS model for the

Catalan coast domain, with a spatial resolution of 1 km and a temporal resolution

of 6 h. More information on the ROMS configuration and the validation of the

currents fields can be found in Grifoll et al. (2013).

4.3.2 Two-way coupling experiments description

For the evaluation of the two-ways coupling, the entire 2012 year is simulated and

analysed. During the full year several north-west wind jet events occurred in the

Ebro River shelf, so one of them was selected as the energetic event. The episode

lasted from the 19th of May 2012 to the 23rd of May 2012. The sequence of wind field

modelled in the Catalan coast mesh during the wind jet period is characterized by

a rise of wind intensity during the 20th and 21st of May, leading to a wind jet in the

northern margin of the Ebro delta (see daily-averaged wind intensity in figure 4.3).

Then, the offshore winds remains strong during the 22nd of May, decreasing during

the 23rd of May 2012.

As noted in section 4.2, the air-sea momentum transfer presents high complexity

due to the relation of wave characteristics and the sea surface roughness, which in

turns affect the wind field. In order to investigate the air-sea momentum transfer in

the wind jet, a set of simulations have been designed applying different sea surface

roughness formulations included in the COAWST modelling system. The sensitivity
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tests pursue an evaluation of the coupling effects on two principal variables involved

in the air-sea momentum transfer: wind intensity and significant wave height. In this

sense three different formulations have been tested (equations 4.3 to 4.5 described

in section 4.2) and compared with the configuration set up by default in WRF.

Figure 4.3: Sequence of the wind jet intensity on four days for a wind jet event in
the domain of the Catalan coast (in m/s).

In consequence, the coupled results are directly compared with an uncoupled

simulation where the sea surface roughness length is only a function of the wind

stress. The sensitivity tests are as follows: ‘CHK’ for the simulation considering

the sea surface roughness as a function of the wind stress (uncoupled with the wave

sea state) using the Charnock coefficient equal to 0.016 (typical value for young

seas), ‘T-Y’ simulation considering the Taylor and Yelland formulation (Taylor and

Yelland, 2001), ‘DRE’ using the Drennan formulation proposed by Drenann et al.

(2003) and ‘OOST’ simulation considering the formulation introduced by Oost et al.

(2002).

As a part of the European project NEPTUNE a buoy was moored in the north-

ern margin of the Ebro shelf where the wind jet develops (figure 4.4) that was used

to validate the results for the second section episodes. The buoy was moored 3.1 km

from the coast at 43.5 m bottom depth, measuring wind, waves and water currents
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for one year (November 2011 to December 2012). A TRIAXYS directional wave

sensor mounted on the moored buoy was used to record statistical wave spectral

parameters. Wind speed and direction were measured at 4 m height every 10 min

using an ultrasonic wind sensor (Gill Instruments), and water currents were mea-

sured with a SonTek acoustic Doppler currentmeter profiler (ADCP) at 500 kHz

every hour using 20 vertical layers (layer depth was 2m).

Figure 4.4: Orography and bathymetry of the study area (top). The red boxes
represent the SWAN and ROMS meshes and the green boxes the WRF domains
for the two-way episodes (resolutions detailed in table 4.3). In the bottom the
Ebro delta domain is represented and the Neptune buoy and control point locations
marked with pink dots.

During the wind jet event two evaluation locations are considered to compare the

results for the sensitivity test simulations. One point corresponds to the Neptune

buoy position (where the numerical results are also compared with the measure-

67



Chapter 4. The effect of coupling on the wave modelling in the Catalan Coast

ments) and the second point is located 30 km offshore of the measurement point

(see control point in figure 4.4). This point has been chosen in order to capture the

wave growth due to off-shore winds and evaluate properly the coupling - uncoupling

differences

Additionally satellite-measured winds are used for the numerical model vali-

dation. Sea wind intensity and direction were obtained from the National Cli-

matic Data Center (NCDC- NOAA, http://www.ncdc.noaa.gov/oa/rsad/air-sea/

seawinds.html). This product is the result of a spatial and temporal interpolation of

the data received from the different satellites passing through the study area during

a time interval, with a 6 h time resolution and 15 km spatial resolution.

The bathymetry used in all the episodes tested is obtained from GEBCO (Gen-

eral Bathymetric Chart of the Oceans, www.gebco.net) with a grid resolution of 30

arc-second (0.0083o).

The system strategy in the two-way coupling is very similar to the one presented

previously with an extra curvilinear grid located in the Ebro Delta with a spatial

resolution of 250 m and nested to the Catalan Coast grid (table 4.2). The main

purpose of this local grid is to implement the ocean-atmospheric-wave two-ways

coupling because is in the coastal areas where the scale of the coupling process may

be more evident in the results.

Table 4.2: Description of the grids implemented in SWAN for the Catalan coast.
The Ebro Delta grid is only valid for the two-ways coupling episodes.

Western
Mediterranean
Sea

Balearic Sea Catalan
Coast

Ebro Delta

Longitudes 4.90o W
16.05o E

0.45o W
5.26o E

0.17o E
3.59o E

0.25o E
1.26o E

Latitudes 35.00o N
44.52o N

39.00o N
43.66o N

39.63o N
41.83o N

40.27o N
41.03o N

Mesh size 196 x 119 160 x 174 208 x 106 253 x 226

Grid
Resolution

9 km
(0.107o x 0.081o)

3 km
(0.035ox0.027o)

1km
(mean value)

250m
(mean value)

In the two-way coupling exercises the WRF atmospheric model and the ROMS

circulation models run simultaneously to the SWAN model, providing the forcing

for the wave model. In table 4.3 a description of the downscaling system of meshes

used in the two-ways coupling episodes is presented.
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Table 4.3: Resolution of the different domains used in the two-ways coupled system
as a function of each model and regional scale.

Model Western
Mediterranean
Sea

Balearic Sea Catalan
Coast

Ebro Delta

WRF 27 km 9 km 3 km 1 km

SWAN 9 km 3 km 1 km 250 m

ROMS - - 1 km 250 m

The water circulation system for the study area consist of two domains, matching

the Catalan Coast and Ebro Delta wave domains (table 4.2). The largest oceanic

domain is nested into the daily MyOcean-MEDSEA product (Tonani et al., 2014),

with a horizontal resolution of 1/16 o x 1/16 o and 72 unevenly spaced vertical levels,

in order to provide suitable boundary conditions for the oceanographic variables in

terms of water velocity, sea level, temperature and salinity.

The Western Mediterranean Sea atmospheric model is nested into the ECMWF

ERA-Interim reanalysis product (www.ecmwf.int) considering four downscaling mesh-

es, with resolutions of 27km, 9km, 3km and 1km respectively, to obtain suitable grid

resolution for the complex orography of the region (figure 4.4).

In the COAWST system designed for the Ebro delta domain the information be-

tween models is exchanged every 10 min of simulated time. The computer used to

run the coupled simulations belongs to the Centro de Investigaciones Energéticas,

Medioambientales y Tecnológicas from the Spanish Government (CIEMAT, www

.ciemat.es) and has 48 processors available that were distributed as follow: 32 pro-

cessors to run the WRF meteorological model, 8 processors to run the ROMS circu-

lation model and 8 processors to run the SWAN wave model. The distribution was

designed to minimize the waiting time between the different models on the instant

when the information is exchanged.
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4.4 Analysis of the results

As previously mentioned, the chapter is divided in two sections. In the first one the

effects of the currents on the wave modelling are considered while in the second one

a two-way coupling between the wave model and the circulation and atmospheric

model is performed.

The results are presented following the same structure, including two episodes,

a calm period and an intensification event, for each section.

4.4.1 One-way coupling: The effect of the currents on wave

simulation

Calm period

A period longer than 5 weeks is simulated with the SWAN model in the Cata-

lan coast domain using the configuration defined in chapter 3 and compared with

measurements from a buoy moored in front of Barcelona Harbour (Llobregat buoy

from table 3.1). Additional simulations are carried out in which the effect of the

ambient currents is considered in the wave generation and propagation. The time

series resulting from this comparison are presented in figure 4.5, where the signifi-

cant wave heigh, the mean wave period (Tm02), and the mean wave directions are

shown. In order to perform a cuantitative comparison several stadistical parameters

are computed for the same variables and displayed in table 4.4.

During the study period the waves mainly come from east and south directions,

with relatively small significant wave height except from the first week when a storm

hit the coast reaching up to 2.5 m significant wave height. At the same time, the

surface currents during the period are not very important (figure 4.6), travelling in

southwest direction and showing a maximum intensity of 40 cm/s, so the interaction

between the two fields can be disregarded as observed from figure 4.5 and table 4.4.

In fact, from the statistics shown in table 4.4 it seems that the coupled system

could be performing slightly worse than the SWAN model, mainly for the mean wave

period and the mean wave direction. This difference may be due to the accuracy

of the current fields, not easy to predict due to their low intensity. The current

fields for the selected period are validated in Grifoll et al. (2013) in two different

locations near our buoy, showing an acceptable agreement with the observations

in the prevalent along-shelf direction, with correlation coefficients between 0.5 and

0.7, but more discrepancies in the across-shelf direction, with correlation coefficients
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between 0.4 and 0.6. Nevertheless, these current fields are the best among availabe

to us.

Figure 4.5: Time series of the significant wave height, the mean wave period (Tm02)
and the mean wave direction for the 11th of March to the 18th of April 2011. In
black the buoy measurement is represented, in blue the results of the not coupled
SWAN model in the buoy location and in red the results of the one-way coupled
system.
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Table 4.4: Statistics for the comparison between buoy measurements and model
outputs.

RMSE Bias R

Hs (no coupled) 0.24 m -0.01 m 0.85

Hs (coupled) 0.24 m -0.01 m 0.85

Tm02 (no coupled) 0.84 s 0.22 s 0.73

Tm02 (coupled) 0.85 s 0.25 s 0.72

Dir (no coupled) 39.95 o - 0.67

Dir (coupled) 41.77 o - 0.64

Figure 4.6: Time series of the surface current intensity and the current direction
for the 11th of March to the 18th of April 2011. In black the buoy measurement is
represented and in red the model results used as forcing for SWAN in the one-way
coupling exercise in the buoy location.
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Energetic event - current intensification

A current intensification event is studied in order to analyse the effect of the unusual

superficial currents in the area on wave modelling. The results for an entire month

are presented in figure 4.7, where a comparison between the SWAN simulations, the

buoy measurements in a buoy located in front of Barcelona Harbour, and the one-

way coupling SWAN simulation are presented. The variables represented are the

significant wave height, the mean wave period (Tm02) and the mean wave direction,

and the energetic event is identified by the shaded area.

Figure 4.7: Time series of the significant wave height, the mean wave period (Tm02)
and the mean wave direction for October 2010. In black the buoy measurement is
represented, in blue the results of the not coupled SWAN model in the buoy location
and in red the results of the one-way coupled system.

During the event considerable differences can be seen between the uncoupled
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SWAN simulation and the one-way coupled SWAN simulation. The significant wave

height presents a decrease up to 0.5 m with the coupling, obtaining better adjust-

ments with the buoy measurements. A similar behaviour is detected on the mean

wave period (Tm02), where reductions of more than one second are observed, and

on the mean wave direction during the current intensification event.

The superficial currents used for the one-way coupling during the entire event

are presented in figure 4.8 and compared with the buoy measurements available in

both current intensity and direction. From the graphics it can be observed that

the time variability of the model data is lower than the buoy measurements, with

a temporal resolution of 6 h in comparison with the hourly information from the

buoy measurements. Additionally, the current intensification seems to be quite well

captured in time but not in magnitude, with a maximum current intensity of 104

cm/s instead of the 139cm/s recorded by the buoy. Despite the poor accuracy of

the current field, the results of the one-way coupling are considerably better than

those corresponding to the non-coupled simulations, as shown in figure 4.8.

Figure 4.8: Time series of the surface current intensity and the current direction for
October 2010. In black the buoy measurement is represented and in red the model
results used as forcing for SWAN in the one-way coupling exercise for the Llobregat
buoy location.

In order to analyse the effect of the coupling during the current intensification,
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not only in one point but in all the study area, several snapshots corresponding to

instants previous to the event (figure 4.9), during the energetic event (figure 4.10)

and after the event (figure 4.11) are presented, and marked in figures 4.7 and 4.8 with

a green vertical line. The significant wave height distribution from the uncoupled

model is compared with the one-way coupled model in the top graphics, while in

the bottom graphics the current intensity on that moment is represented together

with the difference between the not coupled modelled significant wave height field

minus the coupled modelled significant wave height field.

The first instant selected, represented in figure 4.9, corresponds to a situation

with a relatively high significant wave height (1.7 m) but with currents within the

usual magnitude, while the second instant (figure 4.10) represents the specific situ-

ation during the maximum current intensification.

Just after the current intensification event a refraction process due to the cur-

rents seems to occur. In figure 4.11 the significant wave height comparison between

the one-way coupled model and the SWAN results is performed, with almost no

differences between the two fields. In contrast, figure 4.12 shows the comparison

between the mean wave direction, showing important variations due to the wave

refraction. The current field is represented in the lower-left box, not as intense as in

figure 4.10 but still presenting higher superficial current intensities than usual, and

the wind field is represented in the lower-right box, showing a not very intense wind

jet event.
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Figure 4.9: Surface current intensity (bottom-left), significant wave height distribu-
tion from the SWAN model (top-left) and the one-way coupled SWAN (top-right)
and the difference between them (bottom-right) for a time step before the flow inten-
sification: 4th of October 2010 - 06:00h. The Llobregat buoy location is represented
with the black dot.

Figure 4.10: Surface current intensity (bottom-left), significant wave height distri-
bution from the SWAN model (top-left) and the one-way coupled SWAN (top-right)
and the difference between them (bottom-right) for the peak of flow intensification:
12th of October 2010 - 12:00h. The Llobregat buoy location is represented with the
black dot.
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Figure 4.11: Surface current intensity (bottom-left), significant wave height distri-
bution from the SWAN model (top-left) and the one-way coupled SWAN (top-right)
and the difference between them (bottom-right) for a time step after the flow in-
tensification, when a refraction process due to currents took place: 15th of October
2010 - 00:00h. The Llobregat buoy location is represented with the black dot.

Figure 4.12: Mean wave direction distribution from the SWAN model (top-left) and
the one-way coupled SWAN (top-right), surface current intensity (bottol-left) and
wind intensity (bottom-right) for a time step after the flow intensification, when a
refraction process due to currents took place: 15th of October 2010 - 00:00h. The
Llobregat buoy location is represented with the black dot.
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4.4.2 Two-ways coupling: Ocean-Atmosphere-Wave charac-

terization

Yearly results

In figure 4.13, three time series comparing the results obtained from the coupled

SWAN model (for the Catalan coast domain) and the no coupled SWAN model

on the NEPTUNE buoy measurements (see position in figure 4.4) are shown, for a

period of three months, between the 1st of January 2012 to the 31st of March 2012.

The time series comparison corresponds to the significant wave height, the mean

wave period (Tm01) and the mean wave direction. In general, the model reproduces

the observations in terms of mean behaviour and variability.

Figure 4.13: Time series of the significant wave height (m), the mean wave period
Tm01 (s) and the mean wave direction for the first trimester of 2012. In black the
buoy measurement is represented, in blue the results of the not coupled SWAN
model in the buoy location and in red the results of the coupled system.
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Table 4.5 presents the error statistics for the whole year for mesh Catalan coast

domain in terms of significant wave height, mean wave period (Tm01) and mean

wave direction

Table 4.5: Statistics for the comparison between buoy measurements and model
outputs for the two-way coupling exercise.

RMSE Bias R

Hs (no coupled) 0.28 m 0.07 m 0.76

Hs (coupled) 0.29 m 0.09 m 0.75

Tm01 (no coupled) 0.84 s -0.05 s 0.58

Tm01 (coupled) 0.83 s -0.06 s 0.57

Dir (no coupled) 48.99 o - 0.47

Dir (coupled) 47.60 o - 0.51

Since the coupling is performed in a two-way manner, also the wind fields and

the currents are modified and thus shown.

Modelled winds during the simulation period reproduce the main wind direc-

tions previously reported in the study area. The representation of the yearly wind

time series in a histogram and the adjustment of these into a Weibull distribution is

used to evaluate the statistical inter-comparison between wind observations (mea-

sured from the buoy and satellite) and the 3km WRF model results (Catalan coast

domain). Blended Sea Winds are used from the NCDC-NOAS SeaWinds project

which contain 6-hourly globally gridded, high-resolution ocean surface vector winds

and wind stresses on a global 0.25o grid. Figure 4.14 shows the histograms and the

Weibull distributions considering the wind intensity time series.

A snapshot of the SeaWinds product is compared with the numerical outputs

in figure 4.15. Wind patterns from both products present a significant level of

agreement in both components assuming the coarser resolution of the SeaWinds.

Additional verification is presented in table 4.6 using model- observation statistics

in terms of wind intensity for the whole year of 2012. In summary, modelled winds

show an acceptable level of agreement with the observations. Small differences can be

observed between the coupled and the not coupled systems, as physically expected

since most of the time the annual wave conditions are not significant enough to

modify the wind stress due to variations in the sea surface roughness.
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Figure 4.14: Weibull distribution adjustment for the wind velocities regarding the
duration for the 12 months analysed.

Figure 4.15: Wind components (top: east—west; bottom: north—south) from the
satellite gridded product for the study area (left) and from the results of the me-
teorological model (right). The figure corresponds to 1st of January 2012 at 12:00
UTC.
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Table 4.6: Statistics for the comparison between buoy measurements and model
outputs. W is the wind intensity.

Mean RMSE Bias R

W (no coupled) 6.60 m/s 3.20 m/s 0.69 m/s 0.78

W (coupled) 6.59 m/s 2.70 m/s 0.68 m/s 0.79

Table 4.7: Statistics for the comparison between buoy measurements and model
outputs. C is the depth-averaged along-shelf currents.

Mean RMSE Bias R

C (no coupled) -4.60 cm/s 3.07 cm/s 2.14 cm/s 0.82

C (coupled) -4.32 cm/s 2.98 cm/s 3.56 cm/s 0.85

The skill assessment of the numerical results in terms of current intensity was

carried out following a similar scheme to the one used for winds and waves. The

velocity field in the area of study tends to polarize following the along-shelf and

cross-shelf direction. In consequence, the comparison of the water velocity measured

and modelled is carried out considering the along-shelf and cross-shelf velocity. The

numerical model validation with ADCP observations shows an acceptable level of

agreement according to the comparison for the entire 2012. Table 4.7 presents the

error statistics for the depth-averaged velocity measurements compared with the

numerical model results.

Energetic event - wind jet

The two-way coupling yearly results show minimum differences with the not coupled

simulations. To evaluate the two-way coupling during energetic events the wind jet

occurring in front of the Ebro Delta from the 20th of May to the 24th of May 2012

is analysed.

The wind jet presents a wind intensity up to 20 m/s from the north-west direc-

tion. In figure 4.16 the measured wind intensity 10 meters above the sea surface and

the mean wind direction are represented and compared with the model results (both

the WRF results and the two-way coupling COAWST results). From the graphics it

is easy to state that an important improvement is observed for the coupled system

in comparison with the original wind fields, mainly for the wind intensity. So it can

be stated that is for energetic enough events when the coupling improves the results.
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Figure 4.16: Time series of the wind intensity at 10 m above the sea surface and the
wind direction for the wind jet event. In black the buoy measurement is represented,
in blue the results of the not coupled WRF meteorological model in the buoy location
and in red the results of the coupled system.

In the figure 4.16 the time evolution of the measured significant wave height,

mean wave period (Tm01) and mean wave direction during the wind jet event are

represented and compared with the results from the SWAN model (in blue) and

the coupled COAWST system (in red) during the wind jet event. It is interesting

to remark that due to the wind intensity the waves generated by the offshore wind

change the direction to match the wind direction.

In contrast with the results obtained in section 4.4.2, in which the coupling
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showed almost no effect, during the wind jet event some differences can be noticed

between the SWAN and the two-way coupling results, with variations of the signif-

icant wave height up to half meter. During the calm period (at the beginning and

the end of the wind jet event) the differences are not appreciable.

Figure 4.17: Time series of the significant wave height (m), the mean wave period
Tm01 (s) and the mean wave direction for the wind jet event. In black the buoy
measurement is represented, in blue the results of the not coupled SWAN model in
the buoy location and in red the results of the coupled system.

The figure 4.18 (right) show a snapshot of the wave’s directional spectrum from

the two-way coupling system during the wind jet period at the Neptune buoy loca-

tion; the results reveal the tendency to develop bimodal directional spectrum due

to the co-existence of sea and swell waves. Directional spectrum presents a peak

around 315o (waves from north-west) associated with the growing wave due to the

wind jet and another peak around 135o (waves from south-east) associated with the

swell. In figure 4.18 (left) the directional spectrum for a period without wind jet is

also shown for comparison.

In summary, the high-resolution mesh (Ebro Delta domain) is able to capture

the bimodal spectrum during wind jet. Unfortunately, only the statistical spectral
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parameters were recorded in the buoy measurements, so full spectrum comparison

is not possible.

Figure 4.18: Numerical wave spectrum for two different instants at the observation
point: before the wind jet event (left; 2nd of March 2012) and during the wind jet
(right; 21st of March 2012). The radius represent the frequencies: 0.01-0.18-0.34-
0.5-0.67-0.84-1.0 Hz.

Additionally, for the wind jet energetic event a sensitivity test is carried out in

order to better understand the air-sea momentum transfer between the wind and the

waves in the boundary layer. The study is carried out in two different locations, the

Neptune buoy point and a control point located offshore, as previously mentioned.

The wind intensity and the significant wave height from the four simulations, for

both the control and buoy points, are compared among them and with observations

when available. The results of the numerical simulations (not shown) reproduce the

wind intensity and the significant wave height with a similar level of agreement. The

not coupled (CHK) and coupled simulations (T-Y, OOST and DRE) only present

differences in the numerical outputs during the jointly occurrence of strong winds

and wave peaks, being more important for the control point, located further away

the coast and so with longer fetch.

Comparing the error statistics for the measurement location among the three cou-

pled numerical simulations it cannot be assured which formulation ensures a better

skill assessment (table 4.8). Although DRE sensitivity case presents a slightly better

agreement at the buoy location, the relative size of the wind intensity and significant

wave height limit the conclusions for the wind jet event. More extensive studies,

including similar situations in the area, would be necessary to obtain conclusive

findings.
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Table 4.8: Statistics for the comparison between buoy measurements and model
outputs during the wind jet event, from the 20th to the 24th of May 2012. Hs is the
significant waves height and W is the wind intensity.

Mean RMSE Bias R

Observation
Hs 0.74 m - - -

W 10.93 m/s - - -

T-Y
Hs 0.72 m 0.26 m -0.02 m 0.61

W 11.51 m/s 4.83 m/s 0.58 m/s 0.61

DRE
Hs 0.72 m 0.26 m -0.02 m 0.62

W 11.46 m/s 4.79 m/s 0.53 m/s 0.61

OOST
Hs 0.72 m 0.26 m -0.02 m 0.61

W 11.47 m/s 4.85 m/s 0.54 m/s 0.60

85



Chapter 4. The effect of coupling on the wave modelling in the Catalan Coast

4.5 Discussion

In the present chapter the effects of the coupling between the wave model and a

circulation and an atmospheric model are analysed for the Catalan coast. Two

different types of coupling are considered.

On one hand, the one-way coupling (also known as off-line coupling) is carried

out. For the one-way coupling only the effect of the ambient currents is introduced

into the SWAN wave model. No reference to the atmosphere-wave one-way coupling

is made because the only variable obtained from the atmospheric model that can be

introduced into the wave mode is the wind intensity, already introduced in SWAN,

so there is no option to execute a one-way coupling between the wave model and

the atmospheric model.

The results obtained from the first exercises conclude that, during calm periods

and even during storm events reaching the coast with significant wave height up to

2.5 m, if the superficial current intensity is not exceptional, there are no appreciable

differences between considering or not the current effect on the wave modelling in

any of the variables analysed. During the period selected the mean current was

around 20 cm/s, a typical value for the area, and the direction was from the east

and south-east, matching the direction of the waves, so no refraction occurred.

The behaviour of the two models is statistically quantified in table 4.4, where

no differences between the significant wave heights computed considering or not the

currents can be noticed, physically expected due to the low current intensity (around

10-20 cm/s) compared with the wind intensity (around 8-10 m/s, two orders of

magnitude bigger). For the mean wave period (Tm02) and the mean wave direction

slightly differences can be observed between the two models, getting worse results

when including the currents effect on the wave modelling. This may be due to the

lack of ability of the circulation model to reproduce the currents measured in the

area, both in intensity and in direction.

In conclusion, during most of the time, with the conditions typical of the Catalan

coast, it is not necessary to introduce the currents field as an input for the wave

model. Besides, if one is interested in introducing them anyway it is important to

have very accurate currents fields in order not to deteriorate the wave simulation.

In contrast with the previous results, during a current intensification the situation

is the opposite. As stated by some other authors in different parts of the world

(Jorda et al., 2007; Warner et al., 2008b; Zambon et al., 2014), when the magnitude

of the superficial current is more intense than usual, for example due to a flow

intensification or during an important storm or hurricane, the effect of the coupling

cannot be omitted.
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In this sense, the figure 4.9 shows a typical situation, with current intensities

around 20 cm/s and significant wave height of 1.7 m in the buoy location. Under

these conditions the differences between the SWAN simulations considering or not

considering the current field are inappreciable. In contrast, during the peak of the

flow intensification analysed, with current fields up to 140 cm/s and significant wave

heights around 2.5 m the differences are much more appreciable. The significant

wave height variations are located in the current intensification domain (figure 4.10)

due to the wind stress modification in this area. Since the direction of wind and

waves agree, the relative velocity of the wind to the ocean decrease (see equation 4.1),

reducing the wind stress and thus the significant wave height and the wave period.

Another process detected just after the current intensification is a refraction pro-

cess due to residuary currents in the area and an off-shore wind event. In figure 4.11

the significant wave height for the 15th of October 2010 is represented, both for the

SWAN model not considering and considering the current effect, with almost no

differences. However, when looking at the wave direction (figure 4.12) it is possible

to see some discrepancies between the two model results. The wind pattern for

these days presents an off-shore jet affecting the southern part of the Catalan coast

domain that tends to modify the angle of the waves in the same direction. The

current field is also affected by the off-shore wind, and presents an area between

the coast and the current intensification where the direction of the flow turns to

the east and south-east. In the not coupled model the mean wave direction in the

area is determined by the off-shore wind while in the one-way coupled system the

wave field coming from the east is partially refracted by the opposite currents and

tends to turn to the south, in accordance to the buoy measurements represented in

figure 4.11.

In conclusion, introducing the current fields into the wave model (in a one-way

coupling way) is only interesting when the magnitude of the current is one order of

magnitude higher than usual (around 100 cm/s in the study area). Even when a

storm event is reaching the coast the effect of the coupling is not important unless

the current magnitude is also intensified.

For the Catalan coast the current intensifications take place in delimited areas

(e.g. southerly of the Barcelona harbour due to the local stretch of the shelf and a

persistent wind blowing from the east). As detailed in Mestres et al. (2016), the flow

intensifications take place around four or five times a year with a duration between

24 h and 48 h. During these specific events is when the one-way coupling between

the wave model and the current field will be very beneficing for the wave simulation.

During the rest of the year the effects of the currents can be omitted.

On the other hand, the two-way coupling is considered. In this type of coupling
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the wave, circulation and atmospheric model are involved, running in parallel and

sharing information (variables mentioned in table 4.1) between models every several

time steps.

The wave simulation results from the yearly analyse, resumed in table 4.5, sup-

port the conclusions previously obtained. The differences between the coupled

COAWST system and the SWAN model are almost inexistent for the significant

wave height, the mean wave period and the mean wave direction. Similar deduc-

tions are obtained for the wind field (table 4.6) and the current field (table 4.7),

also analysed due to their relevance in the coupling. For both variables a slightly

improvement of the statistical parameters is obtained with the coupling, but almost

negligible.

During the wind jet event the wave model is able to reproduce the bimodal

spectrum (figure 4.18) despite there are no spectra measurements in the area to

validate the results. The shape of the wind jet modelled is benefited by the high

resolution meshes used. According to the results obtained from both the coupled

and the not coupled systems, the wind jet approximately covers an area of 50 km

width offshore. In this sense, high-resolution meshes used in this investigations are

suitable for an accurate wind jet modelling.

Several investigations have found the importance of the sea state in the impact

on the air-sea momentum flux mainly during energetic events; in particular the

calculations based on the Charnock constant underestimated the air-sea momentum

transfer (e.g Janssen, 1989; Janssen and Viterbo, 1996; Drenann et al., 2003) which

can be significant under mixed seas (Sanchez-Arcilla et al., 2008). In the northern

margin of the Ebro delta and during the wind jet, minor differences were found when

comparing the significant wave height and the wind intensity between numerical

model and observations.

The detailed analysis of the event showed that when the coupled results (T-Y,

OOST and DRE) are compared versus the CHK results (table 4.8), the wind inten-

sity at the measurement location is affected by the sea state during the jointly occur-

rence of strong winds and wave peaks. For the coupled simulations the wind intensity

is reduced due to wave-induced sea surface roughness increasing (figure 4.16). This

behaviour is consistent with other coupling atmosphere-ocean investigations under

a high level of meteorological energy (e.g Olabarrieta et al., 2012). In parallel, the

wave field is modified by the feedback between wave and wind stress, reducing the

significant wave height (figure 4.17).
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4.6 Conclusions

The coupling between waves, ocean and atmospheric models has been one of the

main topics in the scientific community for the last decade. The effect of this

coupling on the wave simulation is analysed in this chapter for the Catalan coast

area.

Two different types of coupling are considered, the first is the simplest one,

a one-way coupling consisting in introducing the current field as an input for the

SWAN wave model, and the second one consist in running in parallel the ROMS

circulation model, the WRF atmospheric model and the SWAN wave model. This

second option requires an important computational capacities, not always available.

From the four different situations studied the main conclusion extracted is that

during most of the time, with the calm conditions typical of the Catalan coast, it is

not necessary to consider the coupling in any of its forms to provide accurate wave

simulations. Even when a storm event is reaching the coast the effect of the coupling

is not important unless the current magnitude is also intensified.

Then, the coupling is only interesting during specific energetic local events like

wind jet events or current intensifications.

During the wind jets events the numerical results from sensitivity tests have

shown the relative relevance of air-sea transfer formulations considering the signifi-

cant wave height for the sea surface roughness estimation during the wind jet. While

for the current intensifications the wind-stress modification and the wave refraction

due to the ambient currents are the more significant interactions.

However, both processes are local and punctual in time. For example, the flow

intensifications appear four or five times a year, with a maximum duration of 48

hours, that represents around the 2% of the year. Also it is important to remark

that, if one is interested in introducing the current effect on the wave simulation

anyway it is essential to dispose of very accurate currents fields in order not to

deteriorate the previous results.
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Chapter 5

Unstructured grids design and

validation for wave modelling in

semi-enclosed domains

5.1 Introduction

Traditionally, the methodology to improve the resolution of wave forecasting near

the coast consists of a downscaling process with a system of nested domains, each

with a smaller resolution and covering a smaller area than the previous one (e.g

Sanchez-Arcilla et al., 2014; Alomar et al., 2014; Alari et al., 2008), where the

required boundary conditions are provided by the coarser mesh.

An alternative to this methodology consists in using an unstructured grid. The

main advantage of using an unstructured grid for wave modelling is that it allows

working with a single grid with different resolutions at each sub-domain, thus im-

proving the resolution in coastal areas, and therefore the nesting is not needed. An-

other advantage is that the unstructured grid is able to reproduce the sharp coastline

and the areas around islands more accurately than regular meshes (Zijlema, 2010).

Finally, unstructured grids allow indirectly what is known as two-way nesting, where

information is transferred not only from the coarser to the finer domain but also in

the other direction – a process especially interesting in situations with inland winds,

such as the case of the Mistral (nort-west wind) on the Mediterranean coast.

Generating a simple unstructured grid for wave modeling is not a difficult process;

just the contour of the study domain and a mesh generator (e.g Bilgili et al., 2006;

Shewchuk, 2002) are needed. Nevertheless, special attention should be payed to the

grid design in order to optimize the triangle’s size and its distribution in the study

area. For this purpose two different criteria to design an unstructured grid efficiently
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are presented, reducing the cell size only when necessary. The first one considers

the distance to the coast, where more accuracy is required and hig- resolution winds

are provided. The second criterion considers the effect of the bottom on the waves,

including the depth, the bathymetric gradient and the level of bottom influence (in

terms of a classification into deep, intermediate or shallow waters). Both criteria

try to infer/predict where gradients in the wave field are likely to occur.

Once the unstructured grids are designed, sensitivity tests are performed to study

the effects of using different spatial resolutions in the wind field for the entire domain.

The code used for wave modelling is SWAN, for which the numerical settings also

require attention (Zijlema, 2010; Dietrich et al., 2013).

The SWAN model has previously been used to simulate the wave field with un-

structured grids (Hsu et al., 2005), mainly coupled with the ADCIRC oceanic model

(Dietrich et al., 2011b,a) since it is prepared to work with both types of grids, nested

regular systems and unstructured grids, using exactly the same physics. Zijlema

(2010) presents and validates the numerical scheme adapted for unstructured grids,

consisting of a vertex-based, fully implicit, finite-differences method that requires

several sweeps through the grid.

In previous works the unstructured grids for wave simulation have been mainly

applied to small domains nested to regional or global grids (Siadatmousavi et al.,

2015; Zijlema, 2010; Hsu et al., 2005). In the present study an unstructured grid

for a semi-enclosed domain such the Western Mediterranean Sea is designed and

compared with a regional unstructured grid nested to a coarser model. The results

of the different simulations are validated with measurements from buoys located

near the Catalan coast and satellite data for the Western Mediterranean Sea during

a one-year period.
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5.2 Background: unstructured grids for wave

modelling

The use of unstructured grids offers a good alternative to nested models because

with them an improvement of the grid resolution near the coast is possible while

also removing the internal boundaries and thus the associated complications, both

numerical and physical.

In the past decades several studies have been carried out in order to introduce

unstructured grids into spectral wave models, most of the time simultaneously to the

coupling with a circulation model, since those models have been using unstructured

grids for a longer time.

The first spectral wave model that introduced unstructured grids was TOMAWAC

(Benoit et al., 1996). TOMAWAC is a third-generation wave model dedicated both

to deep water and nearshore applications that uses a finite-elements technique for

the spatial discretization in order to better represent complex bottom topographies

and irregular shorelines (Benoit et al., 1996). The model was validated during a

storm event in the French Atlantic using an unstructured grid varying from 40 km

in open seas to 5km in the English Chanel. A few years thereafter Sorensen et al.

(2004) created a new Eulerian spectral wave model based on unstructured meshes,

the MIKE 21 SW. Using an unstructured finite-volume method for the spatial dis-

cretization, the MIKE 21 wave model was validated for a storm event in the North

Sea, with grid elements size varying from 15 km2 to 800 km2, with very good results

(Sorensen et al., 2004).

Roland et al. (2006) and Zanke et al. (2006) presented the Wind Wave Model

(WWM) for unstructured grids and validated it for deep and shallow waters, respec-

tively. The WWM model is based on the SWAN wave model, with similar physical

formulations but a different numerical scheme, and was verified versus measurement

data at the Sargasso Sea, the Baltic Sea and the Pacific Ocean around Taiwan (Hsu

et al., 2005) with good results. A few years later the WWM model was coupled to

a circulation model developed at the ISMAR-CNR and validated in the Venetian

Lagoon (Ferrarin et al., 2008), focused on sediment dynamics, and in the US east

coast and the Gulf of Mexico (Roland et al., 2009) during Hurricane Ivan. At the

same time, Qi et al. (2009) implemented an unstructured mesh spectral wave model

using finite volumes, named FVCOM-SWAVE, and validate it in the Gulf of Maine.

One year later Zijlema (2010) finally implemented a new numerical scheme in the

SWAN wave model in order to introduce the usage of unstructured grids, consisting

of a vertex-based, fully implicit, finite-differences method. This variant retains the
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physics and the numeric as well as the code structure of the regular SWAN model,

but it is able to run on unstructured meshes. This model was validated in the

Dutch coast by Zijlema (2010) and in the northern Gulf of Mexico by Siadatmousavi

et al. (2012); subsequently the unstructured version of SWAN was coupled to the

ADCIRC circulation model by Dietrich et al. (2011b, 2012) and validated during

several hurricanes in southern Louisiana in an unstructured grid varying from 4-6

km in open waters to 200 m in surf zone zones and 20-50 m in small-scale channels.

It was in these works where some instabilities that arise in SWAN when using

unstructured grids were detected, but it was not until a few years later that some

corrections were proposed by Dietrich et al. (2013).

It is important to highlight that little attention is generally paid to the unstruc-

tured grid design for wave models. All the studies presented until now have applied

unstructured grids to regional domains, in most of the cases nested to other coarser

models. In general, unstructured grids are designed by correlating the size of the

elements with the bathymetry (Zijlema, 2010), by determining the grid size as a

function of the coastline (Roland et al., 2009) or by improving the grid resolution in

some areas as if it were a nesting procedure (Benoit et al., 1996; Hsu et al., 2005).

However, no detailed information about the grid design is presented in any of the

works.

When focusing on SWAN, the only criteria that an unstructured grid should

fulfil in order to be introduced in the model include, firstly, that the number of

triangles that meet at each vertex inside the mesh should not be smaller than 4

or larger than 10 and, secondly, that the angles inside each triangle should not

be higher than 143o (SWANteam, 2015b), so the Delaunay triangulation is not an

indispensable condition. These loose restrictions leave the pressure of a good design

of the unstructured grid to the modeller.

Although only limited work has been published about the design of unstructured

grids for wave modelling, similar procedures to the one presented here have been

generated and applied to generate unstructured grids for circulation models. In this

sense Legrand et al. (2000) created a pioneer method to generate global unstruc-

tured grids for a circulation model using such criteria as the curvature of the Earth to

determine the size of the triangles, thereby properly addressing the coastline bound-

aries. A few years later the same author improved the method for regional domains,

adding some strategies to increase the mesh resolution considering the bathymetric

field, an approximated distance to the islands or the tidal wave propagation. The

new strategies were applied to the Great Barrier Reef in Australia (Legrand et al.,

2006) and to the north-western European continental shelf (Legrand et al., 2007)

with good results.
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5.3 Methodology

5.3.1 Data available and model set-up

The main data necessary to generate an unstructured grid are the bathymetry and

the coastline (also used as the contour of the domain). For the present study the

bathymetry has been obtained from GEBCO (General Bathymetric Chart of the

Oceans, www.gebco.net) with a grid resolution of 30 arc seconds (0.0083o), and

the coast line has been extracted from the National Geographycal Data Center

(www.ngdc.noaa.gov/mgg/shoreline).

In order to test the designed unstructured grids, simulations with the SWAN

wave model were carried out for a period of one year, corresponding to 2013. For

the present study the wind fields have been provided by the Spanish Meteorological

Agency (AEMet, www.aemet.es) and include a coarser wind field that provides the

wind conditions 10 m above sea level, with a spatial resolution of 0.16 degrees for the

entire Western Mediterranean Sea, and a better-resolution wind field that covers only

the Catalan coast area, with a spatial resolution of 0.05 degrees (figure 5.1). Both

wind fields are obtained using the High Resolution Limited Area Model (HIRLAM;

et al., 2002) and have a temporal resolution of 1 h and a forecast horizon of 72 h. In

the present study analysed winds have been used for the two resolutions available,

herein named HIRLAM 0.16o and HIRLAM 0.05o.

Figure 5.1: Orography, bathymetry and coast line of the study area. The green
boxes represent the wind forcing domains, the red boxes the unstructured mesh
limits, and the red dots the buoys measurement locations.

The bad accuracy of the winds, especially when the resolution is low, is com-
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monly reported as one of the main causes of poor results of wave models near the

coast (Ardhuin et al., 2007), so a validation of the wind fields over the sea has been

performed for a one-year period. Since it has not been possible to find other wind

measurements on the sea for the selected period, only one validation location is pre-

sented, corresponding to the Tarragona buoy described in table 5.2 and represented

in figure 5.1.

Figure 5.2: Weibull distribution of the wind intensity (m/s) for the buoy measure-
ments (black), the HIRLAM 0.16o wind model (blue) and the HIRLAM 0.05o high
resolution wind model (yellow) for the 2013.

The results of the calibration process are shown in figure 5.2, where the his-

tograms obtained as the distribution of the different winds during the whole period

are presented using a range of 1 m/s and adjusted to a Weibull distribution. Addi-

tionally, some statistics have been calculated and are shown in table 5.1. From the

validation process it can be stated that the general quality of the wind is acceptable,

with correlation coefficients around 0.85 in intensity and slightly lower, around 0.67,

in direction for the two models, although both of them tend to slightly overestimate

the intensity of the wind fields.

It can be observed that at the validation location there are no important dif-

ferences between the accuracy of the two models despite the different resolution

(table 5.1), so one cannot be considered to work better than the other. However,
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as Alomar et al. (2014) concluded, the wave conditions tend to improve consider-

ably when they are obtained from winds with better resolution in space and time.

For this reason, since only one wind field can be used as a forcing in unstructured

grids, to take advantage of the high-resolution information a merging process has

been performed to combine both existing wind fields into a new one. Since both

wind fields proceed from the same source and the continuity is assured, the merging

process consisted in interpolating the boundaries. In the results section a sensitivity

test is performed for the Western Mediterranean Sea domain in order to determine

the effect of adding high-resolution winds in one part of the unstructured grid.

Table 5.1: Results of the validation of the two wind models including the wind
intensity (m/s) and wind direction (degrees) for the 2013 year in Tarragona buoy
location.

Wind intensity Wind direction

Model RMSE
[m/s]

Bias
[m/s]

Si R RMSE
[o]

Si R

HIRLAM 0.16o 1.89 0.54 0.40 0.84 77.45 0.37 0.67

HIRLAM 0.05o 2.02 0.92 0.42 0.86 77.08 0.21 0.67

The validation of the numerical results is performed in two different ways. On

the one hand, for coastal areas a direct validation with the buoy measurements is

performed. The buoy data available for the study period are provided by the Spanish

harbour agency, Puertos del Estado (www.puertos.es), at three different locations:

the Barcelona coast and Tarragona coast, moored near the coast, and Tarragona,

moored in deep waters (figure 5.1, table 5.2).

Table 5.2: List of the instruments location and the information provided by each of
them for the Catalan coast.

Name Lon Lat Depth Parameters provided

Barcelona coast 2.20o E 41.28o N 68 m Hs, Dir Tp

Tarragona 1.47o E 40.68o N 688 m Hs, Dir, Tm02, Tp, Wind

Tarragona coast 1.19o E 41.07o N 15 m Hs, Dir, Tp

On the other hand, for the open-sea conditions the validation is realized by

comparing the model results with altimetry wave height measurements for the en-

tirety of 2013. The remote-sensing data used come from several satellite missions

(Jason-1, Jason-2, Cryosat-2 and SARAL) and are obtained from the IFREMER ftp
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(ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves), where altime-

ter significant wave height measurements from nine missions over a 23-year time

period are provided in a unified format (Queffeulou and Croize-Fillon, 2016).

Biases and trends are commonly observed in altimeter significant wave height

measurements that need to be corrected (Queffeulou, 2004) using buoy and cross-

altimeter data comparisons. Ona study (Queffeulou, 2004) illustrates the particular

significant wave height variability over the Western Mediterranean Sea, in which the

satellite measurements are compared to three buoys located in the area, obtaining

generally good agreement and low scatter. However, the results vary depending on

the buoy location, mainly due to the particular characteristics of the area, such short

fetch, high wind variability and swell predominance.

For this reason a preliminary validation of the satellite measurements in the

study areas was performed, comparing the satellite significant wave height with

the measurements provided by the buoys presented in table 5.2. The statistics of

the validation for the three locations are presented in table 5.3 and represented in a

scatter plot (figures 5.3). The collocation is performed using a radius of 50 km and a

time threshold of 30 min, as initially suggested by Monaldo (1988) and subsequently

reaffirmed by Queffeulou (2004).

Figure 5.3: Scatter plot of the collocated pairs of point for the significant wave
height. The Barcelona coast (blue), Tarragona (orange) and Tarragona coast (yel-
low) buoys are included in the comparison for the entire 2013.
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Table 5.3: Results of the validation of the collocation between satellite measurements
and the buoy data for the significant wave height [m] for the entire 2013. The Values
column shows the number of collocated pairs of data used to obtain the statistics.

Buoy location RMSE [m] Bias [m] SI R Values

Barcelona coast 0.45 0.30 0.54 0.900 126

Tarragona 0.28 0.09 0.29 0.902 80

Tarragona coast 0.54 0.41 0.95 0.709 47

From table 5.3 one can see that the best statistics correspond to the Tarragona

buoy, located 50 km offshore, showing a good correlation coefficient and a relatively

small RMSE if we consider that only 80 values are available for all the 2013. For

the Tarragona coast buoy, located really near the coastline, the statistics are much

worse, as expected, due to the known satellite measurement errors nearshore. This

behaviour is also appreciable in figure 5.3, where for the coastal buoys a clear over-

estimation of the satellite measurements is observed in comparison to the buoy data.

In conclusion, analysing our results together with the ones presented by Queffeulou

et al. (2004) for three other buoy locations in the Western Mediterranean Sea, the

altimeter significant wave height measurements are considered acceptable for the

validation of the model results in deep waters but not for coastal areas.

Figure 5.4: Satellite tracks coverage for the four satellite missions during April 2013.
The different colours correspond to different satellite missions.

In figure 5.4 the satellite tracks used in the present chapter for the Western

Mediterranean Sea domain are represented. For the model validation the satellite

data are collocated against numerical results from the unstructured grid. To obtain
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the collocated pairs of significant wave height, several processes are necessary: first

a time collocation of the satellite data is performed with a 1 h interval, coinciding

with the model temporal resolution, after a space collocation is performed with

a radius of 25 km, followed by selecting the nearest location and then a linear

interpolation in time. The points located at a distance less than 0.3 degrees (roughly

30-35 km) from the coast have been eliminated from the validation process due

to the errors associated with the satellite measurements in these nearshore areas.

After the collocation process 31,991 pairs of values were obtained for the Western

Mediterranean Sea domain and 6,549 pairs for the Balearic Sea domain for the

entirety of 2013.

5.3.2 Grid design

The main purpose of an unstructured grid is to provide high resolution in coastal

areas and coarser grid size in deep waters, thus requiring a unique mesh. With this

methodology the nesting and the corresponding interpolations are avoided. Addi-

tionally, these sorts of grids better fit the coastline of the area.

There are plenty of mesh generators able to create an unstructured grid from

a closed contour, just considering the resolution of the boundary segments and

some size proportion between neighbouring triangles. However, in some of the grid

generators, sizing information can be also introduced to control varying levels of

mesh resolution within the domain.

The SWAN model accepts three different formats for unstructured grids that

correspond to three different sources: (1) the ADCIRC oceanic model (Luettich and

Westerink, 1994a), (2) the Triangle grid generator (https://www.cs.cmu.edu/quake/

triangle.html; Shewchuk, 2002) and (3) the Easymesh grid generator (http://www-

dinma.univ.trieste.it/nirftc/research/easymesh/ easymesh.html; Rebay, 1993). Re-

gardless of the mesh generator used, the data introduced in SWAN are composed

of a list of the vertices’ coordinates, including boundary markers, and a connectiv-

ity table for the triangles. Thus it is possible to generate a grid using any of the

described mesh generators, or any other at one’s disposal, and then transform the

results into the format of any of the three mentioned before.

The grid generator used in the present study is the MESH2D – Automatic Mesh

Generation for Matlab (http://es.mathworks.com/matlabcentral/fileexchange/25555-

mesh2d-automatic-mesh-generation), a toolbox for 2D meshing in which a size func-

tion can be included together with a maximum grid size and the maximum size

proportion between neighbouring cells.
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Figure 5.5: Detail of the BASIC unstructured grids designed for the Western
Mediterranean sea grid (top) and the Balear Sea (bottom). The colour scale repre-
sents the grid size in km as the medium length of the sides of each triangle.

The coastline information is used to generate the contour of the study domain.

In the present study two different domains are tested, corresponding to the Western

Mediterranean Sea (from the Strait of Gibraltar to the Strait of Sicily) and the

Balear Sea (including the Catalan coast and the Balearic Islands), both represented

in figure 5.1. The first step into designing the contour of the grid goes through the

coastline softening, because the triangle size in the boundary areas depends on the

distance between two consecutive points. Then, depending on the resolution desired

in each coastal area, the coastline should be smothered subsequently. The minimum
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grid size used for both domains has been established as 800 m for the Catalan coast

and the Balearic Islands, and up to few kilometres for the remaining boundaries.

Using the mesh generator MESH2D with the softened contour, and considering

a maximum grid size of 0.3 degrees and a maximum size proportion between neigh-

bouring cells of 25%, we can compute the first unstructured grids for the Western

Mediterranean Sea and the Balearic Sea. We give the name BASIC to these grids,

which are represented in figure 5.5 and described in table 5.4, because any size

function is used to generate them.

Table 5.4: Description of the grids obtained without any size function.

Grid Resolution Lat - Lon Grid points

BASIC Western
Mediterranean Sea

45 km to 800 m
5.495o W – 16.218o E 8,412 nodes

35.091o N – 44.424o N 14,680 triangles

BASIC Balear Sea 35 km to 800m
0.331o W – 4.500o E 6,328 nodes

38.670o N – 42.830o N 11,019 triangles

Two size functions are defined and used in the present study to improve the

BASIC unstructured grids. The idea is to refine the mesh only where this procedure

can improve the wave simulation results so a balance can be established between

grid resolution and the computational time required to resolve the simulation. The

criteria selected for the grid sizing are based on the distance to the coast, where

usually better forcings are available, and on the bathymetry and depth gradients,

because in some areas the bottom conditions increase the wave field variability.

Distanceto the coast criterion

The first criterion considers the distance to the coast, where more accuracy is re-

quired, high-resolution winds are provided and buoy measurements are available. In

both domains considered the distance is centred on the Barcelona coast, from 1.5o

E to 2.5o E and from 41.15o N to 41.50o N (in red in figure 5.7).

The procedure adopted consists first of all in defining a regular grid covering

the entire domain and determining the distance to our reference (in degrees). Then

equation 5.1 is applied:

sizeD = AD +BD · tanh(C · distance) (5.1)

Where the coefficients AD and BD are weights to calibrate the function. If one

considers AD = 0.01 as the minimum value for the size function and BD = 0.24,
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the maximum value that can be reached by the function becomes 0.25, so these

parameters can be calibrated for each problem considered.

Figure 5.6: sizeD function with AD=0.01, BD=0.24 and three C values (0.3 – 0.6 –
0.9).

The coefficient C corresponds to the growth velocity of the function, and thus

to the spatial distribution of the size function, and can be adjusted to any given

problem. In both domains studied we have selected C = 0.6, keeping in mind

that bigger values make the influence of the size function smaller, and vice versa

(figure 5.6). In figure 5.7 the distance to the coast and the sizeD function are

represented for the Balear Sea domain using the coefficients mentioned above.

Figure 5.7: Example of the distance to the coast in degrees (left) and the corre-
sponding sizeD function values (right) for the Balear Sea domain. In red the coast
line from where the distances are calculated is represented.
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Depth gradients and bathymetry criterion

The second criterion applied considers the effect of the bottom on the wave propa-

gation, including the water depth, the bathymetric gradient and the level of bottom

influence (in terms of classification into deep, intermediate or shallow waters).

A parameter named step is created to include information about the depth and

the bathymetric gradient as described in equation 5.2. The step equation is a func-

tion of the hyperbolic tangent of the depth (in metres) divided by the bathymetric

gradient (both computed in a regular grid covering the entire study area), so when

the gradient is big or the depth small the step function gets smaller.

step =
tanh(AS · (depth+BS))

min(max(1, gradient), CS)
(5.2)

The coefficient BS is defined to avoid depths near 0 and is fixed to 10 for our

study, while the coefficient AS is used to scale the effect of the bathymetry. In the

present exercise the AS coefficient has been set to 0.001, so the effect of the depth is

considered from 10 up to around 1000 m. The gradient value is also limited between

1 and a maximum value defined by the CS coefficient. After testing the typical

conditions of our study domain, the CS coefficient was fixed to 100. In table 5.5

some of the values used to calibrate the coefficients AS, BS and CS are presented.

Table 5.5: Description of the grids obtained without any size function.

Depth Gradient step numerator step denominator step range

Small
(<20m)

Important 0.09 – 0.3 80-100 0.001 – 0.0037

Small
(<20m)

Small 0.09 – 0.3 1-10 0.01-0.3

Big
(>1000m)

Important 0.9 80-100 0.01-0.012

Big
(>1000m)

Small 0.9 1-10 0.1-1

Once the step function is calibrated and calculated for the entire study domain,

the size function is defined as follows:

sizeB = AB +BB · tanh(CB · step) (5.3)

Where the coefficients AB and BB are weights of the function, as used in the

104



5.3. Methodology

Figure 5.8: Unstructured grids designed using the sizeB size function for the Balear
Sea domain, using a CB coefficient of 30 (top) and 50 (bottom).
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distance to the coast criterion (equation 5.1), and should be fixed in the same range

of values in order to better compare and combine both criteria.

The CB coefficient needs to be calibrated depending on the step function range

of values and the resolution desired in the shallow-water areas or where the bottom

gradients are more important (for example in a submarine canyon). In figure 5.8 two

different grids are presented, obtained using the sizeB size function for two different

CB coefficients.

It is important to remark that the sizeB function is based on the water depth and

the bathymetric gradient to refine the unstructured grid in some areas. However,

the size function described in equation 5.3 does not takes into account the level of

bottom influence. The effects of the bathymetry will only be interesting for the

wave modelling in situations of shallow or intermediate waters in which the wave

conditions depend on the depth (table 5.6), so we should use the sizeB criterion

under these conditions (equation 5.4).

sizeB =


AB +BB · tanh(CB · step) if d

L
< 0.5

AB +BB if d
L
> 0.5

(5.4)

Table 5.6: Classification of the wave conditions depending on the bottom influence.
Where d is the water depth (in metres), L the wave length (in metres), T the wave
period (in seconds) and g the gravity constant.

Criteria Classification Wave length

d
L
< 0.05 Shallow waters L = T ·

√
g · d

0.05 < d
L
< 0.5 Intermediate waters L = g·T 2

2π
tanh

(
2πd
L

)
d
L
> 0.5 Deep waters L = g·T 2

2π

For the purpose of delimiting the areas where the depth affects the wave char-

acterization, three extreme situations for the Catalan coast have been reproduced

in SWAN. The stationary simulations are run in the same regular grid covering the

entire Western Mediterranean Sea used to calculate the size functions, with the fol-

lowing wind conditions: wind blowing from the east with an intensity of 25 m/s,

offshore wind from the north-west with an intensity of 15 m/s and southerly wind

with an intensity of 15 m/s. The magnitude and direction of the extreme wind con-

ditions correspond to typical values for the Catalan coast and have been obtained

from previous studies (Bolaños et al., 2009; Font, 1990).
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Grid design

A combination of both sizing criteria presented before and defined in equations 5.1

and 5.4 is used to generate the unstructured grids for the Balear Sea and the Western

Mediterranean Sea domains. The coefficients used, chosen after some testing and

adapted to the domain scales and characteristics, are the following: AD = AB =

0.01; BD = BB= 0.24; C= 0.6; AS= 0.001; BS = 10; CS= 100; and CB= 50.

Figure 5.9: Detail of the unstructured grids designed for the Western Mediterranean
sea grid (top) and the Balear Sea (bottom). The colour scale represents the grid
size in km as the medium length of the sides of each triangle.

The criteria used to combine both size functions have simply consisted in se-

lecting the minimum value for each point (equation 5.5), since both functions are
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defined in the same spatial domain, use the same grid and take values from the same

interval (from 0.01 to 0.25).

size = min(sizeD, sizeB) (5.5)

The mesh generator used is MESH2D for Matlab, using equation 5.5 as a size

function, with a maximum grid size of 0.3 and a maximum size ratio between neigh-

bouring cells of 25%. The resulting grids are represented in figure 5.9 and described

in table 5.7. In figure 5.10 a zoom from the Mediterranean sea unstructured grid for

the Catalan coast region is presented so the resolution of both designed grids can

be compared in the coastal areas, presenting almost no difference between them.

Figure 5.10: Zoom of the Western Mediterranean sea unstructured grid designed.
The colour scale represents the grid size in km as the medium length of the sides of
each triangle.

Table 5.7: Description of the grids generated, including the mesh resolution, the
domain covered and the number of nodes and triangles for both grids.

Grid Resolution Lat - Lon Grid points

Wester
Mediterranean Sea

40 km to 800 m
5.495o W – 16.218o E 4,548 nodes

35.091o N – 44.424o N 8,317 triangles

Balear Sea 25 km to 800m
0.331o W – 4.500o E 2,710 nodes

38.670o N – 42.830o N 4,928 triangles

If the resulting grids are compared with the BASIC grids, obtained using the

same grid generator without any size function (table 5.4, figure 5.5) but using exactly
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the same values for the maximum grid size and the maximum size ratio between

neighbouring cells, an important reduction of nodes and triangles can be observed,

as well as a better distribution of the cells.

5.3.3 Using unstructured grids in SWAN: the refraction

problem

In order to introduce the designed grids into SWAN, small changes in the files format

are required. We have decided to use the Tringle grid generator format, consisting

of two files with the extensions .node and .ele. The first file (.node) is a table with

as many rows as the grid has nodes, and three columns, including the longitude,

the latitude and a marker for each node. The marker can take the following values:

0 for an inside point of the computational grid, 1 for land boundary points and 2

for free boundary points, where the boundary conditions should be introduced. The

second file (.ele) is the connectivity table, used to generate triangles, and includes

for each element the three nodes that generate it in anticlockwise order.

The SWAN configuration is the same one used allthroughout the thesis, de-

scribed in chapter 2 but using a delta coefficient equal to 1 for the whitecapping

term as described in chapter 3. The main difference in the SWAN model when

working with unstructured grids is the numerical scheme, which has been adapted

from the backward space, backward time (BSBT) first-order upwind SWAN scheme

(SWANteam, 2015a) by Zijlema (2010). It consists of a vertex-based, fully implicit,

finite-differences method that requires several sweeps through the grid. The param-

eters used to define the convergence criteria and the maximum number of iterations

are set up as suggested in the SWAN manual (SWANteam, 2015b). Another dif-

ference that appears in SWAN when working with unstructured grids is that the

model is not able to compute the wave setup, which is especially important in shal-

low waters and in the surf zone, where the set-up induced by the waves may generate

variations in the sea level and along-shore currents (SWANteam, 2015a).

It is widely known that the SWAN model may present some refraction problems

due to the numerical scheme used to resolve the balance equation, and there is no

exception to this when using unstructured grids (Zijlema, 2010). The discretization

in geographical space in SWAN is solved with an implicit upwind difference scheme

that has one main disadvantage: it is numerically diffusive, which naturally degrades

the accuracy of the model. The numerical diffusion is caused by gradients of wave

action across geographic space, e.g. due to refraction by bathymetry or currents

(Zijlema, 2010). Thus this problem usually appear due to intense local variations in

the grid size or the bathymetry, making the unstructured grids more susceptible to
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this problem due to the varying mesh size. Some possible solutions to this problem

include (1) improving the spatial and spectral resolution of the computational grid,

(2) smoothing the bathymetry and (3) activating the spectral propagation velocity

limiter included in SWAN and described in detail in Dietrich et al. (2013). Of course

another possible solution is to enable selectively some physical processes, e.g. the

refraction, depending on the region studied as performed in Dietrich et al. (2011b,a,

2012). However, this last option is not acceptable in this study since the refraction

is considered crucial in coastal areas.

The most convenient solution for our domain consists in activating some of the

mentioned limiters. They are based on the Courant-Friedrichs-Lewy (CFL) criteria

for the spectral propagation (refraction and frequency shifting) velocities in SWAN.

These limiters are not required for model stability, but they improve accuracy by

reducing local errors that would otherwise spread throughout the computational

domain (Dietrich et al., 2013).

After analysing the first results obtained from SWAN simulations, few refraction

errors were detected in some local areas, where due to refraction excessive wave

energy was focused at a single point, causing the computer solution to be infeasible.

Since the errors appear only locally, the refraction limiter was considered the most

robust solution and then switched on. Several values for the limiter were tested: 0.5,

1.0, 1.5 and 2.0, as suggested in Dietrich et al. (2013). It was set to 1.5, so it was the

bigger value that solved the refraction problems without limiting the natural wave

refraction.

110



5.4. Analysis of the results

5.4 Analysis of the results

In the present section a validation of the wave simulations obtained using the de-

signed unstructured grids is performed. In fact, two different validations are pre-

sented:in the first one the model results are compared with the buoy measurements

near the coast, and in the second one all model results are compared with satellite

measurements. The validation period is the entire year of 2013.

The SWAN wave simulations included in the comparison are the following: the

Western Mediterranean Sea unstructured grid designed in section 5.3.2 forced with

the coarser wind field (named MED) in comparison with the same grid forced with

the merged wind field defined in section 5.3.1, and a combination of HIRLAM 0.16

and HIRLAM 0.05 performed to include the high-resolution wind fields in a common

grid (named MED-wind).

The results from the Balear Sea unstructured grid are also included in the val-

idation, hereby named BAL-wind. This grid is forced with the merged wind and

uses boundary conditions obtained from a coarser domain covering the Western

Mediterranean Sea with a spatial resolution of 9 km forced with the coarser wind

field.

5.4.1 Nearshore validation

The validation of the yearly SWAN wave simulations using unstructured grids is

performed at three different locations, corresponding to two coastal buoys (Barcelona

coast and Tarragona coast) and a deep-water buoy (Tarragona) (table 5.3). The

variables analysed are the significant wave height, the mean wave period (Tm02),

the peak period (not shown because it presents similar behaviour to the mean wave

period) and the mean wave direction.

Figure 5.11 shows a time series representation for the Barcelona coast buoy dur-

ing autumn 2013, in which no differences between the three configurations compared

can be appreciated. In order to present a quantitative comparison, in tables 5.8 and

5.9 the statistical parameters obtained from the validation for the entire year are

presented for the coastal buoys, while in table 5.10 the same results are shown for

the deep-water Tarragona buoy.
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Figure 5.11: Time series of the significant wave height, the mean wave period (Tm02)
and the mean wave direction for autumn 2013. In back the Barcelona coast buoy
measurement is represented and in colour the three unstructured grid wave simula-
tions.
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Table 5.8: Statistics for the comparison between the Barcelona coast buoy measure-
ments and the unstructured grids model outputs, for the significant wave height,
the mean wave period and the mean wave direction.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

MED 0.26 -0.09 0.35 0.82 0.60 0.12 0.16 0.78 32.8 0.09 0.69

MED-
wind

0.22 -0.05 0.30 0.83 0.61 0.09 0.16 0.77 33.7 0.09 0.68

BAL-
wind

0.23 -0.05 0.30 0.83 0.62 0.08 0.16 0.77 33.8 0.09 0.68

Table 5.9: Statistics for the comparison between the Tarragona coast buoy measure-
ments and the unstructured grids model outputs, for the significant wave height, the
mean wave period and the mean wave direction.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

MED 0.19 -0.07 0.38 0.79 0.92 -0.35 0.23 0.63 45.6 0.13 0.44

MED-
wind

0.18 -0.04 0.35 0.80 0.88 -0.34 0.22 0.65 46.3 0.13 0.46

BAL-
wind

0.19 -0.08 0.38 0.78 0.87 -0.32 0.21 0.64 49.5 0.14 0.46

The results from the Western Mediterranean Sea unstructured grid show similar

behaviour in both coastal buoys (tables 5.8 and 5.9). The usage of a better wind field

slightly improves the significant wave height and has almost no effect on the wave

period and wave direction. Since the depth at the Tarragona coast buoy (15 m) is less

than at the Barcelona coast buoy (68 m), the errors are more important at the first

one. The increase of the errors at the Tarragona coastal buoy is enhanced when using

the Balear Sea unstructured grid with the merged wind field, obtaining a similar

accuracy to that obtained when using the Western Mediterranean unstructured grid

with the coarser wind forcing, so the effect of improving the wind conditions is not

appreciable in the Balear grid for the Tarragona coast buoy location. The differences

between the Western Mediterranean Sea domain and the Balear sea grid using the

merged wind forcing are inappreciable for the Barcelona coast buoy.

113



Chapter 5. Unstructured grids design and validation for wave modelling in
semi-enclosed domains

Table 5.10: Statistics for the comparison between the Tarragona buoy measurements
and the unstructured grids model outputs, for the significant wave height, the mean
wave period and the mean wave direction.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

MED 0.24 -0.09 0.27 0.93 0.63 -0.30 0.15 0.85 3.0 0.11 0.65

MED-
wind

0.25 -0.03 0.27 0.93 0.61 -0.25 0.15 0.85 36.9 0.10 0.71

BAL-
wind

0.25 -0.03 0.27 0.93 0.61 -0.25 0.15 0.84 36.9 0.10 0.71

In general, the statistics present better values for the deep-water Tarragona buoy

location (table 5.10), with correlation coefficients of 0.93 for significant wave height

(in comparison with 0.83 for the Barcelona coastal buoy) and values of 0.85 for the

mean wave period (in comparison with 0.77 for the Barcelona coastal buoy). In

contrast, the statistics for the mean wave direction are worst at this location. This

is due to the large variability of directions recorded at a more offshore location in

comparison with the buoys located near the shore, where the refraction tends to

unify the directions. Almost no differences can be appreciated between the three

configurations presented.

Despite the little nuances mentioned, the errors, bias, scatter index and corre-

lation coefficient for the unstructured grids present acceptable values for nearshore

buoys, of the same order of magnitude as the results presented in previous chapters

obtained from regular grids. In conclusion, near the coast the SWAN model using

unstructured grids provides good wave simulations and can be a good alternative to

the regular grids. An extended comparison between the unstructured grids and the

regular nested grids is presented in chapter 6.

5.4.2 Offshore validation

In order to validate the performance of the unstructured grids in open waters, a

comparison with satellite measurements is presented in this section. The SWAN

configurations used in the validation are the Western Mediterranean Sea unstruc-

tured grid and the Balear Sea unstructured grid, both forced with the merged wind

fields.
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Prior to presenting the results, it is important to keep in mind that the unstruc-

tured grids used have been designed to improve the grid resolution in coastal areas,

so the resolution in open waters is quite coarse. For the Western Mediterranean Sea

grid the maximum cell size is 40 km, and for the Balear Sea grid it is 25 km, in

comparison with the resolutions in coastal areas (around 1 km) where the buoys are

located, so worst statistics should be expected.

In table 5.11 the statistics obtained from the collocation process for the entire

year of 2013 are presented. As expected, the errors and bias are larger than at buoy

locations, due to the combination of lower grid resolution and more intense wave

conditions. When looking at normalized statistics, such as the scatter index and

the correlation coefficients, the values presented are quite similar to those from the

buoy measurements, notably in comparison with the Tarragona buoy, located 50 km

offshore.

The differences between the two unstructured grids take on more importance in

open-sea conditions than in coastal areas, obtaining better results for the Western

Mediterranean Sea domain. One probable reason for these differences is the bound-

ary conditions introduced in the Balear Sea domain boundaries that generate an

area near the frontiers where interpolations are made and some errors may appear.

Table 5.11: Statistics for the comparison of the collocated pair of points between
the satellite measurements and four configurations model outputs, for the significant
wave height; coefficients of the linear regression and number of collocated pairs of
points.

Configuration RMSE [m] Bias [m] SI R a b Number of
values

MED-wind 0.40 -0.18 0.29 0.94 0.926 -0.078 31,991

BAL-wind 0.41 -0.08 0.30 0.93 1.027 -0.115 6,549

Finally, figure 5.12 shows the comparison of the pairs of collocated points, the

observed significant wave height from the altimeters and the model results for both

domains: the Western Mediterranean Sea and the Balear Sea. The colour scheme

represents the number of values for per 0.10 m box normalized with the maximum

number of values in a box. Each figure has two lines: the black line is the line of

perfect agreement, and the red line is the linear regression line, with the formulation

a · x+ b (coefficients presented in table 5.11).
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Figure 5.12: Comparison of observed (altimeter) and predicted significant wave
height for the 2013. For the two unstructured grids designed. The colours represent
the density of points .
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5.5 Discussion

The use of unstructured grids for wave modelling is becoming more popular, espe-

cially when the unstructured grids cover local domains and are nested to regular

grids. As previously mentioned, these types of grids present some advantages, from

the use of a unique mesh for different scales with different resolutions to the dis-

posal of boundary conditions and their associated interpolation errors to the better

adaptation to the coastline.

The design of the unstructured grid plays an important role in the quality of

the results. In this sense, adding some size criteria to the basic distribution of grid

sizes is decisive. The first criterion presented here depends on the distance to the

coast, because it is in these areas where high-resolution wave conditions are usually

required, as well as where more information is available (e.g. better wind forcing).

The second criterion proposed increases the grid resolution as a function of the water

depth and the bathymetric gradients where the influence of the bottom modifies the

wave fields.

Thus, the design of the unstructured grid depends not only on the characteristics

of the domain considered but also on the problem that one pretends to reproduce

and solve. Unstructured grids are easily adaptable to different situations and scales,

and this is probably one of their strengths, but it can be also an inconvenience if

the design is not thought through.

Once the unstructured grids are properly designed, and the size and distribu-

tion of the cells are optimized, they can be introduced into the wave model. In

order to run the simulations, the only factor that needs some especial consideration

is the numerical-scheme-associated problems. It is widely known that the SWAN

wave model may present some errors due to an excess of refraction that generates

an accumulation of energy in some of the cells. This error is more common when

using unstructured grids due to the large variability of the grid size. As previously

mentioned,there exists the option to activate a refraction limiter to prevent mis-

calculations. In the present work the refraction limiter has been switched on and

calibrated in order to solve the punctual problems, while trying not to affect the

natural wave refraction processes that are well represented.

The validation process consisted in comparing the annual results from the SWAN

wave model with both buoy measurements and satellite data. The first methodol-

ogy demonstrates that improving the wind resolution in some areas with better-

resolution grids slightly improves the significant wave height statistics in averaged

yearly results in those areas and presents fewer effects on the mean wave period and

the mean wave direction.
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In general, the statistics obtained for the three buoy locations are typical values

in wave modelling at the Catalan coast, so the designed unstructured grids are

considered a valid alternative to nested regular systems, at least for coastal areas.

As expected, the model results show a better agreement with the buoy measurements

in deep waters (at the Tarragona buoy, table 5.10), while small problems are detected

at the Tarragona coast buoy (table 5.9) located really near the shore, at a depth of

only 15 m. These discordances may have several causes: the distance to the coast is

really small, so part of the errors may come from the grid resolution and the number

of cells between the shore and the comparison point; other reasons may be that the

formulations used in the SWAN configuration are selected for intermediate and deep

waters, so formulations specific to shallow waters, such as the nonlinear triad wave

interaction or bottom friction formulations, are not activated. As will be discussed

ater, this is probably the worst disadvantage when using unstructured grids for a

regional domain: that one should choose between different scale formulations for a

unique mesh.

The results obtained from the satellite measurement validation show the good

work of the unstructured grids even in open waters, with correlation coefficients

around 0.92 and 0.94 (table 5.11).

Since a collocation process needs to be performed to do the validation, and some

data need to be removed (the altimeter measurement points near the coast may

present some errors due to the proximity of land), the number of valid points for

the entirety of 2013 is not as big as expected. Additionally, the coarse resolution

of the unstructured grids in some subdomains is the cause of the decrease in the

number of comparison points. The maximum grid resolution, which for the Western

Mediterranean Sea grid is around 40 km and for the Balear grid around 25 km, is

chosen as part of the grid design and is selected according to the wind resolution and

the expected variability of the wave fields in the area. It is therefore important to

find an equilibrium between the maximum grid size and the accuracy of the desired

results depending on the problem being treated.

To conclude, several benefits of unstructured grids have been mentioned, and

the good performance of the designed grids for the Western Mediterranean Sea and

the Balear Sea has been praised, but some drawbacks also need to be discussed.

The main inconvenience of unstructured grids is exactly the main interest: only

one grid with varying mesh size is needed. Using a unique grid involving different

scales presents some problems when having to decide which physical process should

be switched on and off, or the better formulations or coefficients to use, since usu-

ally these decisions depend on the scale represented. This dilemma can be solved

using local unstructured grids nested to coarser models instead of using a unique
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mesh covering different scales. However, with the proposed solution the boundary

conditions are needed again.
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5.6 Conclusions

In the present chapter the unstructured grids are proved to be a good alternative

to the traditional nested grids for the Western Mediterranean Sea and the Balearic

Sea domains.

The design of an unstructured grid is probably the most delicate part ofl the

entire simulation process, since to obtain efficient unstructured grids several criteria

need to be accounted for. In the present work two different criteria are proposed

that decrease the grid size in the areas near the coast and also in intermediate and

shallow waters as a function of the depth and the bathymetric gradients. These

criteria need to be calibrated depending on the characteristics of the domains to

reproduce. The resulting unstructured grids present fewer elements and nodes than

the original ones and, what it is probably more important, the triangles are better

distributed throughout the domain.

The nearshore validation process, performed for one year and comparing the two

unstructured grids using two different wind field (with different resolution), allows

us to state that the unstructured grids perform correctly near the coast, especially

at the Tarragona buoy location (moored in deep waters) but also at the Barcelona

coastal buoy location. The results for the Tarragona coast buoy are not so good due

to the closeness of the location to the shore. Some improvements can be appreciated

when increasing the wind field resolution, mainly for the significant wave height.

Furthermore, the validation of the significant wave height model results allthrogh-

out the entire domain with altimetry data presents very good results, with correla-

tion coefficients up to 0.94 for the Western Mediterranean Sea.

In conclusion, despite the work associated with a good unstructured grid design,

it may be considered a worthy investment due to the good results obtained with the

unstructured grids for both cases tested: a semi-enclosed domain such the Western

Mediterranean Sea and a local domain like the Balear Sea nested to a coarser model.
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Chapter 6

Comparison between nested grids

and unstructured grids for a

high-resolution wave forecasting

system in the Western

Mediterranean Sea

6.1 Introduction

Thanks to advances in numerical tools and coastal observations it is now possible to

implement operational high-resolution forecast models (waves, oceanic and sediment

transport) yielding timely and valuable intervention data to reduce coastal risks due

to incoming storms. In this sense, the present chapter proposes a wave forecasting

system that might be part of an early-warning system developed to minimize the

coastal hazards due to storm events on the Catalan coast, where the SWAN model

has been used to provide high-resolution wave conditions in a reduced time frame.

This reduction of time is decisive in the period previous to a storm event, when

certain decisions need to be made in order to minimize the impacts in coastal areas.

Although nowadays there are several operational systems providing wave fore-

casts in the study area, all of them use the traditional methodology of nested grids

to improve the resolution in some coastal areas. In the present study different

grid configurations are tested, including unstructured grids as an alternative to the

downscaling process, and considering the use of boundary conditions from an exter-

nal system, in order to obtain high-resolution wave forecast that are as accurate as

possible while reducing the computational time.
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6.2 Background: wave forecasting and early warning

systems

Sea state information has always been required by the different agents involved on

maritime activities, from navigation and offshore activities to local agents concerned

about the uses of the coastal areas and the possible damages happening when a storm

reach the coast.

During the last two decades great efforts have been carried out with the intention

to provide that information with the better accuracy possible, for different locations

and with different resolutions. The evolution of the spectral wave models together

with the progress of the computational capabilities enabled the development of op-

erational wave forecasting systems. It was during the late 80s and the 90s that many

national weather services in Australia, Japan, Europe and North America started

using spectral wave models, normally driven by surface-level winds obtained from

regional or global weather forecast models (Kandekar and Lalbeharry, 1996).

The first operational global wave model implemented were the U.S. Navy’s Global

Spectra Ocean Wave Model (GSOWM) in 1985 (Clancy et al., 1986) and the United

Kingdom Meteorological Office global wave model (Francis and Stratton, 1990).

The GSOWM model, implemented by the U.S. Navy’s Fleet Numerical Meteo-

rology and Oceanography Center (FNMOC) was initially based on the global and

regional implementations of the WAM model, including several regional implemen-

tations nested to the global run, with a resolution of 1o. In August 2001 the WAM

spectral model was changed to the WAVEWATCHIII.

The Met Office global wave model was based on a second-generation model

first developed and described by Goldin (1983) and improved by Holt (1994). The

operational run consisted of a 12 hours hindcast during which assimilation of ERS-2

altimeter measurements of significant wave height were performed, followed by a five

days forecast, with a spatial resolution around 1o.

Another of the first global wave operational systems was developed by the Eu-

ropean Centre of Medium Weather Forecast (ECMWF), described in detail and

validated against buoy measurements and altimeter data in Janssen et al. (1997).

Since November 1991 the new version of WAM model (Komen et al., 1994) was

running operationally at ECMWF, implemented on the globe with a resolution of

1.5o and on the Mediterranean and Baltic Sea with a resolution of 0.25o with a

forecast horizon up to 10 days. The assimilation of altimetry wave height data from

the ERS-1 mission started in 1993, and supposed a beneficial impact on the wave

forecast that may last up to 5 days (Komen et al., 1994). At December 1996 the

122



6.2. Background: wave forecasting and early warning systems

parallel version of the global model was introduced, with an effective resolution on

the order of 55 km (Bidlot and Holt, 1999).

Simultaneously, since early 1991 Kandekar and Lalbeharry (1996) implemented

an operational ocean wave model called the Canadian Spectra Ocean Wave Model

(CSOWM) for the Canadian Meteorological Center (CMC). The global model was

designed to operate over two separate oceanic regions, the northwest Atlantic and

the northeast Pacific, with a resolution of 1o and a nested finer grid with resolution

0.36o. The verification results, comparing one year results with buoy measurements

located in the Canadian coast, suggested that the CSOWM model was able to

provide wave height analysis and forecast out to 36 h with considerable skills. In

1996, the CSOWM model was substituted by the WAM cycle 4 spectral wave model,

covering the same domains.

The latest global wave forecast implemented was the National Centres for En-

vironmental Prediction (NCEP) wave model, in October 1994 (Chen, 1995), with a

spatial resolution of 2.5o. The model used was WAM cycle 4 until 2000, when the

WAVEWATCHIII model with parallel programming was implemented. The initial

WAM spectral model was modified to consider the ice edge and to assimilate buoy

and ERS-2 altimeter measurements in 1998.

In order to determine the quality of the operational wave forecasting systems, in

1995 a group conformed by the five wave models from different meteorological centres

mentioned above (including the ECMWF, the Met Office, the U.S. Navy’s GSOWM,

the Canadian COSWM and the NCEP) agreed to exchange wave model results and

statistical scores at selected locations in where measurements were available. The

methodology and results of this program are presented in Bidlot and Holt (1999)

and Bidlot et al. (2002). Some of the conclusion obtained from this collaboration

included that still some work was needed in order to improve the spectral wave

models, since a tendency to under predict some storms in global scales was detected,

and that assimilating altimeter wave heights had a positive impact on the model

performance (Bidlot et al., 2002).

In the last years the operational wave forecasting systems have been evolving,

including some new parametrizations and techniques in order to improve the wave

forecast in a global domain but also in coastal areas. The usage of several regional

finer grids nested to the global model has been the traditional methodology used by

the different meteorological agencies in order to provide information near the coast.

Some examples of this are observed in the Netherlands (Sembiring et al., 2015), in

the Portuguese continental coast (Soares et al., 2011) or in the east coast of India

(Sandhya et al., 2014). The last version of the NCEP wave forecasting system,

which uses a mosaic of grids with two-way nesting in a single model (still using

123



Chapter 6. Comparison between nested grids and unstructured grids for a
high-resolution wave forecasting system in the Western Mediterranean Sea

WAVEWATCHIII) to increase the spatial resolution and extend the global domain

closer to the North Pole while at the same time optimizes the computational coast

is a clear example of this evolution (Chawla et al., 2013).

In this sense, some international projects have appeared in the recent years, like

the MyWave EU project. This is an ongoing project, started in 2012, that brings

together several major institutions responsible for forecasting, research and observa-

tion of ocean waves in Europe, including Meteo-France (France), Helmholtz Zentrum

Geesthacht (Germany), Puertos del Estado (Spain), ISMAR (Italy), Deltares and

KNMI (The Netherlands) and HRG (Greece). The expected outcome of the project

is a unified European system for forecasts and disseminations of wave predictions

that includes new and improved wave physics. The equivalent North American

project is the National Oceanographic Partnership Program (NOPP) project enti-

tled ‘Improving Wind Wave Predictions: Global to Regional Scales’ (Tolman et al.,

2013) focused on improving the physics and the methodologies to provide wave

forecasts.

The information provided by the wave forecasting models can be used in different

applications. One of the most recent is the configuration of an early warning system

that, using the results of the wave forecasts together with sea level and meteoro-

logical forecasts and some information of the area, generates different alarms when

a storm event or a hurricane reaches the coast. Some examples of this systems are

presented by Alves et al. (2015) applied to the tropical storm sandy, by Souza et al.

(2013) where coastal vulnerability early warning system is defined for the Irish Sea

and the Liverpool bay, or by Gracia et al. (2014) for the Catalan coast.
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6.3 Methodology

6.3.1 Experimental configuration

Four different configurations have been tested to determine which may be the best

option, regarding the accuracy of results and the computational time, when de-

signing an operational wave forecasting system (figure 6.1). Different situations are

considered: on the one hand, the regular nested grids are compared with a unique un-

structured mesh, while, on the other hand, the systems covering the entire Western

Mediterranean Sea, a semi-enclosed domain, are compared with local grids nested in

actually running regional forecast systems. The aim of this comparison is to provide

accurate wave conditions with high resolution in coastal areas in an efficient way.

Figure 6.1: Representation of the four configurations tested in the study. The yellow
dots in configuration D represent the buoy locations.

Regarding the grids covering the entire semi-enclosed domain, the regular nested

system (herein named A) is comprised of three meshes with a spatial resolution of

9km, 3km and 1km, while the regional unstructured mesh for the Western Mediter-

ranean Sea (herein named B) is the one designed in chapter 5, with 8,317 elements

and 4,548 nodes, and a resolution from 40 km in open waters to 800 m in shallow

waters (figure 5.9). Similar systems to the ones presented previously are considered
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in the second alternative, albeit covering a smaller area, the Balear Sea, and nested

to an actually running regional operational system. The first one (herein named C)

consists of the two smaller regular nested grids (with 3km and 1km spatial resolu-

tion), and the second one consists on the local unstructured grid covering the same

area (herein named D) designed in the previous chapter, with 4,928 elements and

2,710 nodes and a resolution from 25 km at the boundaries to 800 m in the coastal

area (figure 5.9). In table 6.1 and table 6.2 the characteristics of all the meshes used

and the configurations considered are presented.

Table 6.1: Description of the grids used in the study, including the mesh resolution,
the domain covered, the number of grid points for regular grids and the number of
nodes and triangles for unstructured grids and the wind forcing.

Grid Resolution Lat-Lon Grid points Wind forcing

Mediterranean
regular

9 km 4.900 W – 16.048 E
35.000 N – 44.523 N

119 x 196
(23,324 nodes)

HIRLAM
0.16o

Balear
regular

3 km 0.470 W – 4.500 E
38.670 N – 42.830 N

155 x 139
(21,545 nodes)

HIRLAM
0.16 o

Local regular 1 km 0.145 E – 3.291 E
40.083 N – 42.787 N

136 x 332
(45,152 nodes)

HIRLAM
0.05o

Mediterranean
unstructured

40 km to
800 m

5.495 W – 16.218 E
35.091 N – 44.424 N

4,548 nodes
8,317 triangles

Merged wind

Balear
unstructured

25 km to
800m

0.331 W – 4.500 E
38.670 N – 42.830 N

2,710 nodes
4,928 triangles

Merged wind

Table 6.2: Description of the four configurations considered in the present study,
named A to D and formed by one or several grids. The need of boundary conditions
is resumed in the third column.

Configuration Grids used Boundary conditions

A

Mediterranean regular No

Balear regular

Local regular

B Mediterranean unstrcutured No

C
Balear regular Yes

Local regular

D Balear unstructured Yes

The SWAN model is implemented using the four configurations mentioned above,
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using the formulations and parameters defined in chapter 2 but for the whitecapping

term that has been calibrated in chapter 3. For the regular grids, SWAN provides

several numerical schemes; however, among them the one that was used for this

exercise is the backward space and backward time (BSBT), a first-order upwind

scheme (SWANteam, 2015a), since it is the equivalent to the numerical scheme

available for the unstructured grids. As mentioned by Zijlema (2010), in most of

the situations the CPU cost per grid point is higher for the unstructured meshes;

however, the reduction of the number of grid points in this type of meshes offsets

the total time.

In order to provide some general results and conclusions, avoiding the seasonal

effects, one year of simulations is performed, corresponding to 2013. Additionally,

a storm event is also analysed in detail, since during these periods the information

provided by the model forecast needs to be more accurate, mainly for coastal early-

warning systems as mentioned previously.

6.3.2 Data available

Three buoys located along the Catalan coast and operated by the Spanish harbour

agency Puertos del Estado (www.puertos.es) were considered for the validation pro-

cess. Two of the buoys, Barcelona coast and Tarragona coast, are moored near the

coast; the other buoy, Tarragona, is moored in deep waters (figure 5.1, table 5.2).

In order to evaluate the performance of the models in open water a validation with

altimetry data is carried out. The remote sensing data used comes from several

satellite missions: Jason-1, Jason-2, Cryosat-2 and SARAL, and is obtained from

the IFREMER ftp (ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters

/waves). A validation of the satellite measurements in a semi-enclosed domain like

the Western Mediterranean Sea is developed in chapter 5, where also the collocation

process and the selection of the valid measurements is detailed.

The bathymetry used for the simulations is obtained from GEBCO (General

Bathymetric Chart of the Oceans, www.gebco.net) with a grid resolution of 30 arc-

seconds (0.0083o).

The winds for the present study are the same ones used in chapter 5. It have

been provided by the Spanish Meteorological Agency (AEMet, www.aemet.es) and

include a coarser wind field that provides the wind conditions 10 m above the sea

level, with a spatial resolution of 0.16 degrees for the entire Western Mediterranean

Sea, and a better resolution wind field that covers only the Catalan coast area, with

a spatial resolution of 0.05 degrees. In the present study analysed winds have been

used for the two resolutions available, herein named HIRLAM 0.16o and HIRLAM

127



Chapter 6. Comparison between nested grids and unstructured grids for a
high-resolution wave forecasting system in the Western Mediterranean Sea

0.05o. The validation of the wind fields is detailed in section 5.3.1. From the valida-

tion results it can be noted that there are no important differences in the accuracy

of the two models despite the different resolution, so one cannot be considered to

work better than the other. However, from the results obtained in chapter 5 it is

stated that increasing the wind field resolution improves the results mainly for the

significant wave height, so when possible the high-resolution wind field will be used

instead of the coarser one. As previously mentioned, for both unstructured grids a

unique wind field can be used, so a merging process has been performed to combine

both existing wind fields into a new one. In table 6.1 the wind forcing used for each

of the SWAN configurations is detailed.

For the Balear Sea configurations, in order to avoid some computational time

when running the coarser wave domain, a consideration has been to nest our system

to an actually working operational service. The boundary conditions necessary for

running configurations C and D are initially obtained from the wave forecast system

of the Spanish harbour agency, Puertos del Estado, using the significant wave height,

the mean wave period, the mean wave direction and the wave spread coefficient to

generate a theoretical spectrum at the boundaries. The operational forecast system,

described in Gomez and Carretero (2005), consists of an application of the WAM

model (WAMDIgroup, 1988) for the Spanish Mediterranean coast, with two nested

domains with a spatial resolution from 5 to 10 minutes and a temporal resolution

of 1 h that are operated on a twice-a-day cycle and provide a forecast horizon of 72

h. However, analysed wave fields have been used in the present study.

6.3.3 Computational structure

The computations were performed in a small cluster named ‘Alien’ belonging to the

computational centre of the civil engineering school of Barcelona, BarcelonaTech.

The machine is made up of Dell computers and a Red Hat Linux operating system,

including four nodes with Intel processors and two nodes with AMD processors.

Each of the four Dell PowerEdge R900 nodes has four quad-core Intel Xeon proces-

sors with 2.4GHz, 16 MB of L3 cache per processor and 128 GB of RAM, while the

two Dell PowerEdge R805 nodes have quad-core AMD Opteron processors with 2.5

GHZ, 6MB of cache per processor and 32GB of RAM.

An initial test was performed to determine the time requirements for running the

SWAN model depending on the number of CPUs used. The Western Mediterranean

Sea domain was chosen for the exercise, forced with the HIRLAM 0.16o wind field, for

a period of three days. Only the Intel nodes were considered, and the parallelization

was carried out through the OpenMP protocol.
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Figure 6.2: Time requirement in minutes necessary to run the test case using from
one up to sixteen processors.

The results presented in figure 6.2 show an exponential decrease of the compu-

tational time required to run the model when increasing the CPUs. The reduction

of time is especially significant from one to eight processors, while adding more pro-

cessors does not result in an appreciable time savings. It can be concluded that,

for the machine used, the optimal situation would be to work with eight or more

processors. However, the machine available is shared with other users, so only one

core can be guaranteed per jobs (equivalent to four processors). For this reason it

was decided herein to use four processors to run the SWAN model.
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6.4 Analysis of the results

6.4.1 Yearly analysis in coastal areas

Four different configurations have been tested for a one-year period and validated

in three different locations. In these sections only the most representative results

are presented. That implies that two unique locations will be shown: the Tarragona

deep water buoy, since it is the only one located in the open sea, and the Barcelona

coast buoy. The results obtained from the Tarragona coast buoy present similar

behaviour to the Barcelona coast buoy (with some additional errors as mentioned

in chapter 5) and the observed differences will be mentioned in the discussion but

not shown in detail.

A comparison between the results from the different configurations and the

Barcelona coast buoy measurements are represented in the Taylor diagrams in fig-

ure 6.3 for the significant wave height and the mean wave period, respectively. The

results for the peak period are not presented but have behaviour very similar to the

Tm02. From the graphics it is straightforward to declare that configurations A and

B have almost the same statistics, while configuration C is slightly further from the

buoy point and configuration D presents the worst results.

Figure 6.3: Taylor diagram of the significant wave height (left) and the mean wave
period (right) for the annual analyse in the Barcelona coast location. The letters
correspond to the configurations tested.

In the first columns of table 6.3 the statistic for the significant wave height
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are shown, with a RMSE around 22 cm and a negative bias of 5 cm in all the

configurations except D. The correlation coefficient is very good for configurations

A, B and C, with values around 0.92, but the scatter index is slightly high, around

0.30. Configuration D is the only one presenting a positive bias.

Table 6.3: Results of the validation of the four configurations including the signif-
icant wave height (m), the mean wave period (s) and the wave direction (degrees)
for the 2013 year in Barcelona coast buoy location.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

A 0.23 -0.05 0.30 0.92 0.60 0.08 0.16 0.83 33.93 0.09 0.69

B 0.22 -0.05 0.30 0.92 0.61 0.09 0.16 0.82 33.69 0.09 0.68

C 0.23 -0.05 0.30 0.92 0.65 0.08 0.17 0.80 36.25 0.10 0.67

D 0.30 0.16 0.40 0.82 0.85 0.72 0.22 0.67 54.35 0.15 0.53

Also in table 6.3 the results for the mean period are presented. The RMSE is

around 0.6 s for configurations A, B and C, and the bias is not very important

except for configuration D, where a clear overestimation is present. The correlation

coefficients take values around 0.80, and the scatter index has values around 0.16.

The wave direction is validated with RMSE around 36 degrees, a very low scatter

index and a correlation coefficient of 0.68 in the best situations.

In summary, configurations A, B and C have a similar quality for the significant

wave height, while configurations A and B work slightly better than C for the mean

period and the wave direction. For the three wave parameters considered, configu-

ration D is clearly the one presenting the worst results, showing an overestimation

of the significant wave height and the mean wave period not present in the other

alternatives.

Almost the same conclusions may be extracted from the comparison between the

four configurations and the measurements of the Tarragona coast buoy (not shown).

The main differences derive from the fact that the mean values of the variables

are smaller, so the RMSEs are also smaller, and the correlation coefficients slightly

worse (e.g. around 0.86 for the significant wave height or 0.68 for the mean period).

The results from the validation process for the deep-water Tarragon buoy are

presented in figure 6.4, where the Taylor diagrams for the significant wave height and

the mean wave period are shown. From the diagrams it can be declared that there
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are no important differences between configurations A, B and C, while configuration

D tends to work slightly worse mainly for the mean wave period.

Figure 6.4: Taylor diagram of the significant wave height (left) and the mean wave
period (right) for the annual analyse in the Tarragona location. The letters corre-
spond to the configurations tested.

Table 6.4: Results of the validation of the four configurations including the signif-
icant wave height (m), the mean wave period (s) and the wave direction (degrees)
for the 2013 year in Barcelona coast buoy locationResults of the validation of the
four configurations including the significant wave height (m), the mean wave period
(s) and the wave direction (degrees) for the 2013 year in Tarragona buoy location.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

A 0.25 -0.03 0.28 0.94 0.61 -0.26 0.15 0.86 37.83 0.11 0.69

B 0.25 -0.03 0.27 0.94 0.61 -0.25 0.15 0.86 36.89 0.10 0.71

C 0.24 -0.0 0.27 0.94 0.60 -0.21 0.15 0.86 37.71 0.11 0.70

D 0.32 0.15 0.36 0.91 0.68 0.32 0.17 0.76 48.43 0.14 0.61

The results in table 6.4 show that, in contrast with the previous case, configu-

ration D does not present results very different from the others for the significant

wave height in terms of correlation coefficient. At this point located in deep water

the RMSEs are around 25 cm; the bias is negative in all the configurations except

132



6.4. Analysis of the results

D, as was happening in coastal waters; and the correlation coefficients tend to be

higher than in coastal zones, between 0.91 and 0.94.

Similar behaviour is identified when looking at the mean wave period in table 6.4.

The RMSE is around 0.60 s, there is an underestimation of the Tm02 in all the

configurations except D, and the correlation coefficients and scatter index are better

than in coastal areas.

The wave direction is analysed in the last columns of table 6.4. In deep water

the RMSE is slightly higher, around 37 degrees, for configurations A, B and C,

while for configuration D the RMSE is smaller than in coastal areas. In general the

correlation coefficients are better, with values around 0.70 for configurations A, B

and C, and 0.6 for configuration D (still better than in coastal areas).

In summary, the four configurations have good accuracy for the significant wave

height, but D is the worst among them. For the mean wave period the bad behaviour

of configuration D is enhanced. However, in general all the configurations work

better in deep water than in coastal areas.

6.4.2 Yearly analysis in the Western Mediterranean Sea

In order to evaluate the performance of the four configurations in open waters a

validation with altimetry measurements has been carried out for both domains,

the Western Mediterranean Sea and the Balear Sea. Since the area covered by

configurations A and B is larger than the one covered by configurations C and D,

two different comparisons are presented. The first one corresponds to the Western

Mediterranean Sea domain, including all the values obtained from configurations

A and B, and the second comparison corresponds to the Balear Sea domain, so

results from configurations A and B have been limited to this region and compared

with configurations C and D. Additionally, the resolution in open waters is quite

different between the regular grids and the unstructured grids. For the Western

Mediterranean Sea domain, the regular grid presents a spatial resolution of 9 km

while the unstructured grid has a maximum grid size of 40 km. A similar situation is

reproduced in the Balear Sea domain, with a regular grid presenting a resolution of

3 km and an unstructured grid with a maximum grid size of 25 km. This resolution

differences also generate an important reduction of the collocated pairs of points

used in the validation. The number of collocated pairs for each configuration for the

entire study period are presented in the last column of the table 6.5. It is important

to remember that the points located within a distance of 30 km from the coast have

been omitted in the validation process due to the common altimeter measurement

errors in that area.
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Figure 6.5: Comparison of observed (altimeter) and predicted significant wave height
for the 2013, for the Western Mediterranean Sea region. The colours represent the
density of points.

Figure 6.6: Comparison of observed (altimeter) and predicted significant wave height
for the 2013, for the Balear Sea region. The colours represent the density of points.
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In figure 6.5 the scatter diagrams of the collocated pairs of point for the Western

Mediterranean sea region are presented, and in figure 6.6 the collocated pairs of

point for the four configurations studied in the Balear Sea domain are presented.

The colour scheme represents the number of values for box of 0.10 m normalized

with the maximum number of values in a box. Each figure has two lines, the black

line is the line of perfect agreement and the red line is the linear regression line,

with formulation a · x+ b (coefficients presented in table 6.5).

The statistics obtained from the validation process are presented in table 6.5.

From these results a comparison between the regular nested grids and the unstruc-

tured grids can be easily performed, on the basis that the four configurations present

acceptable values for the scatter index and the correlation coefficient. In fact, the

dispersion of highest significant wave heights is considerable, probably due to the

lower number of points compared to other measuring ranges.

Table 6.5: Statistics for the comparison of the collocated pair of points between the
satellite measurements and four configurations model outputs, for the significant
wave height; coefficients of the linear regression and number of collocated pairs of
points.

Configuration RMSE [m] Bias [m] SI R a b Number of
values

A 0.42 -0.24 0.29 0.94 0.892 -0.081 72,520

B 0.40 -0.18 0.29 0.94 0.926 -0.078 31,991

A zoom 0.40 -0.18 0.30 0.93 0.974 -0.143 9,610

B zoom 0.41 -0.06 0.36 0.92 1.048 -0.120 6,596

C 0.46 -0.17 0.31 0.92 0.956 -0.103 12,583

D 0.50 -0.01 0.36 0.88 0.934 0.090 6,549

For the Western Mediterranean Sea domain the results obtained from configu-

rations A and B are very similar, consistent with the situation previously observed

in the buoy locations. Similar results are observed for the same configurations

in a smaller region. However, the unstructured grid for the Balear Sea domain

(configuration D) does not seem to work as good as the equivalent regular nested

grids (configuration C). Hence, the small problems observed in configuration D for

coastal areas are also appreciable when evaluating the entire domain with satellite

measurements, with bigger RMSE, and worst scatter index and correlation coeffi-

cients. Further possible explanations for this discordances will be presented in the

discussion section.
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6.4.3 Storm analysis

The previous results show the average behaviour of the four configurations over

a one-year period. However, one of the main purposes of an operational forecast

system is to be able to predict a storm event a few days in advance. For this reason,

the annual results have been analysed in order to identify all the storm events

reaching the coast. The criteria used to define a storm were a significant wave

height threshold of 2 m and a minimum duration of 8 h (Lin-Ye et al., 2016). At the

Tarragona deep-water location seven storms were detected, with significant wave

heights at the peak of the storm between 3 and 4.5 m. However, only three of them

reached the coast and were detected from the Barcelona coast buoy or Tarragona

coast buoy. The three storms had a similar pattern, occurring during autumn and

winter and generated by important east winds. Since one of them was particularly

intense and caused severe damages on the Catalan coast, it has been selected for the

present study. The chosen storm occurred between the 26th of February 2013 and

the 6th of March 2013, and it presents a two-peak profile. The first peak reaches a

significant wave height of 4.5 m, and the second one between 3 and 4 m depending

on the locations.

In figure 6.7 the time series for the significant wave height, the mean wave period

and the direction, both observed and modelled, are presented for the Barcelona

coast and Tarragona locations. The storm also reached the Tarragona coast buoy,

but the results are not shown due to their similarity to the Barcelona buoy. From

a qualitative analysis it seems that the four configurations tested work properly for

the first storm peak but present some errors for the second one.

The statistics obtained for the Barcelona coast buoy, presented in table 6.6, show

that for significant wave height there is almost no differences between configurations

A, B and C, while configuration D presents the worst results, with a RMSE that

doubles the others. It is interesting to remark that during the storm event configu-

ration D presents an important negative bias in contrast with what is happening in

the annual mean, where configuration D presents an overestimation. For the mean

wave period, configurations A and B have similar behaviour, while C and D present

some problems in the RMSE for the first one and the correlation coefficient in the

second one. The bias for all the configurations is higher than that observed for the

annual average. The direction is quite constant during the entire event and is well

represented by the four configurations, although A and B present better results than

C and D.
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Figure 6.7: Time series for the significant wave height (first row), the mean wave
period (second row) and the mean wave direction (third row) for the Barcelona
coast location (first column) and the Tarragona location (right column) during the
storm event. In black the buoy measurements are represented, while the colours
correspond to the four configurations tested.
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Table 6.6: Results of the validation of the four configurations including the signif-
icant wave height (m), the mean wave period (s) and the wave direction (degrees)
for the storm event in Barcelona coast buoy location.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

A 0.36 -0.19 0.17 0.97 0.87 0.66 0.16 0.94 11.31 0.03 0.94

B 0.35 -0.21 0.66 0.97 0.86 0.61 0.16 0.94 13.45 0.04 0.81

C 0.33 -0.07 0.15 0.96 1.05 0.69 0.20 0.93 16.29 0.05 0.69

D 0.69 -0.30 0.32 0.83 0.81 0.39 0.15 0.80 20.81 0.06 0.68

Table 6.7: Results of the validation of the four configurations including the signif-
icant wave height (m), the mean wave period (s) and the wave direction (degrees)
for the storm event in Tarragona buoy location.

Hs Tm02 Dir

RMSE
[m]

Bias
[m]

Si R RMSE
[s]

Bias
[s]

Si R RMSE
[o]

Si R

A 0.22 0.01 0.11 0.98 0.57 0.05 0.09 0.90 16.19 0.05 0.75

B 0.23 0.01 0.11 0.98 0.53 0.01 0.09 0.92 17.64 0.05 0.72

C 0.37 0.14 0.18 0.95 0.81 0.23 0.13 0.87 21.53 0.06 0.55

D 0.44 -0.06 0.21 0.90 0.82 -0.13 0.14 0.76 24.60 0.07 0.61

The results in deep waters, presented in table 6.7, show that, in contrast with the

results for coastal areas, the significant wave height has better behaviour for config-

urations A and B than for configurations C and D, which depend on the boundary

conditions obtained from the operational model. As previously seen, configuration

D tends to underestimate the significant wave height during storm events as opposed

to the annual behaviour. For the mean wave period and the mean wave direction

similar observations can be made.

In conclusion, configurations A and B work best, and configuration D is the one

presenting the worst results. The main difference can be found in configuration C,

which works fine in coastal areas but not so well in deep waters.
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6.4.4 Computational time requirements

Until now the comparison has been focused on the accuracy and quality of the

results. However, there is another key point to account for in the comparison: the

computational time required to obtain the results. This aspect can become vital

in an early-warning system when the information is required as soon as possible in

order to be able to take decisions.

Following this idea, a comparison of the four configurations described in section

6.3.1 has been carried out. The selected period for the comparison was June 2013,

and the computer used is the one described in section 6.3.3.

Table 6.8: Computational time requirements for each of the grids used in the study
(third column) and for each configuration tested (fourth column).

Configuration Grids used Grid time Total time

A

Mediterranean regular 7 h 46 min 24 h 17 min

Balear regular 8 h 10 min

Local regular 8 h 21 min

B Mediterranean unstrcutured 8 h 11 min 8 h 11 min

C
Balear regular 9 h 1 min 17 h 22 min

Local regular 8 h 21 min

D Balear unstructured 14 h 33 min 14 h 33 min

The results for each of the grids are presented in the third column of table 6.8.

The total time for each configuration can be obtained as the sum of the time required

for each of the domains included in it. The results show a reduction of time of

about 66% from the traditional way of providing a high-resolution wave forecast

(the nested grids, configuration A) to the regional unstructured grid proposed in

the present study (configuration B). Configuration C, using boundary conditions

from an operational system, presents a reduction of time of about 23% with respect

to configuration A. Finally, the Balear unstructured grid (configuration D) is faster

than configuration C but slower than configuration B due to the time required to

read the boundary conditions, despite configuration D having fewer nodes than B.
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6.5 Discussion

In the present study the use of unstructured grids is presented as an alternative to

the traditional downscaling methods consisting of a series of nested grids. The un-

structured grids (figure 6.1) allow the boundary conditions to be removed, obtaining

high-resolution forecasts in less computational time. However, it should be taken

into account that designing an efficient unstructured grid is a long process, and still

some small problems can appear, as happens with configuration D.

From the analysis of annual results, both in coastal areas and in deep waters, it

can be concluded that using a system of nested grids (configuration A) or a regional

unstructured grid (configuration B) provides almost the same results, so there is

no effect of the meshes used on the accuracy of the forecast. Some differences may

appear when nesting the local grids (regular as in configuration C or unstructured

as in configuration D) due to the boundary conditions. These differences mainly

depend on the quality of the boundary conditions for regular grids. From the present

study it can be stated that using good boundary conditions generates forecasts very

similar to the ones generated by a regional model, like happens with configuration

C.

The mentioned differences are more relevant when nesting an unstructured grid

into a regular regional system (configuration D), obtaining lower correlation coef-

ficients and presenting a slight overestimation of the results not seen in the other

configurations. It should be pointed out that in the SWAN model it is possible to

introduce boundary conditions in two different ways: providing the full spectrum

in all the boundary points, or providing some bulk parameters (significant wave

height, wave period, wave direction and wave spread) and letting the model calcu-

late a theoretical spectrum with this information. In both configurations C and D,

the second option has been used, but only some problems have been detected with

the unstructured grid (configuration D). In order to assure that the small problems

in configuration D are due to the reading of the boundary conditions and not related

to the grid design, some additional tests have been carried out.

The sensitivity test has been performed in order to evaluate the ability of the

SWAN model to read different types of boundary conditions when using unstruc-

tured grids. Two situations are compared, consisting in (1) introducing boundary

conditions in a parameter form (including the significant wave height, the mean

wave period, the mean wave direction and the wave spread coefficient obtained from

the operational service), and (2) introducing boundary conditions in a spectral form

(directly obtained from the SWAN wave model using a regular coarser domain).

The different options are used for both configurations C and D (corresponding to
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the regular nested system and the unstructured Balear grid respectively).

Figure 6.8: Time series for the significant wave height (top), the mean wave period
(medium) and the mean wave direction (bottom) comparing the buoy measurements
in black and the SWAN results for configurations C and D using boundary conditions
in parameter form (1) and in spectral form (2).

The test is carried out for the two measurement locations, in the Barcelona coast

buoy location and in the Tarragona buoy location, for a one year period. In figure 6.8

a time series for the significant wave height, the mean wave period (Tm02) and the

mean wave direction is presented during a one month and a half period, when a storm

event reached the area. From the presented results it is clearly stated that the SWAN

model has some problems when reading and/or processing the boundary conditions
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in parametric form on unstructured grids (D(1)). This problems disappear using

exactly the same boundary conditions in regular grids (C(1)) or when using spectral

boundary conditions in the unstructured grid (D(2)).

Figure 6.9: Taylor diagram of the significant wave height (left) and the mean wave
period (right) for the annual analyse in the Barcelona coast location for configu-
rations C and D using boundary conditions in parameter form (1) and in spectral
form (2).

Figure 6.10: Taylor diagram of the significant wave height (left) and the mean wave
period (right) for the annual analyse in the Tarragona location for configurations C
and D using boundary conditions in parameter form (1) and in spectral form (2).
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In order to quantify this errors, in figures 6.9 and 6.10 the Taylor diagrams for the

significant wave height and the mean wave period are represented for both validation

locations for the entire year, thereby confirming that is not a local problem.

The Taylor diagrams show that both configurations, C and D, present almost

equivalent results when using the boundary conditions obtained from a coarser

SWAN domain in spectral form (2). However, when using the boundary conditions

obtained from the Puertos del Estado operational service in parameters form (1),

the regular grids present similar results to the previous ones, while the unstructured

grid is not able to properly use this boundary conditions providing worst results for

the significant wave height and the mean wave period for both locations.

When running configuration D using the full spectra as boundary conditions,

obtained directly from SWAN simulations in the biggest grid of configuration A, the

obtained results are almost equivalent to the ones from configuration C (figures 6.9

and 6.10). From the analysis of the test it seems that the local unstructured grid

only works properly when the boundary conditions are provided as a spectra (not

always available from an operational forecast service), and some errors appear when

the boundary conditions are provided in parameter form.

A storm event has also been analysed, with very similar conclusions. Although

during energetic events the different configurations tend to work better than for

the annual average, the behaviours of the different configurations are very similar.

The regional configurations (A and B) present very similar results, confirming that

there is almost no contrast between unstructured grids and regular nested grids.

The differences, more important during energetic events, appear when introducing

boundary conditions from an operational forecasting system.

The computational time required is the key point of the configuration compar-

ison. All the considered configurations present a reduction of time with respect to

the traditional methodology, with the unstructured regional grid being the most im-

portant, with a decrease of around 66% without losing quality in the wave forecast.

The local regular domains nested in a forecast system also present very good results

and a reduction of time of 23% with respect to the traditional methodology.

The unstructured grids have considerably fewer points than the regular grids

(table 6.1). However, the numerical scheme for these grids is slower, obtaining a

total computational time per grid of the same order of magnitude as a regular grid.

The advantage derives from the fact that only one unstructured grid is necessary as

compared to a system of several nested grids.

One last critical point is that the Mediterranean unstructured grid is faster than

the Balear unstructured grid despite having a greater number of nodes. This increase

143



Chapter 6. Comparison between nested grids and unstructured grids for a
high-resolution wave forecasting system in the Western Mediterranean Sea

of time is due to the process of reading and interpolating the boundary conditions

from several locations at the boundaries into the grid nodes located at the boundaries

(not regularly distributed). When working with boundary conditions in spectral

form, the time required to run the Balear unstructured grid is reduced to 5 h and

12 min.
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6.6 Conclusions

In recent years the application of unstructured grids in wave modelling has been

gaining relevance. In the present study an unstructured grid applied to a regional

environment like a semi-enclosed sea is compared to the traditional downscaling

method in terms of both the accuracy of the results and the computational time

required. Two local grids (one regular and the other unstructured) nested in an op-

erational system are also included in the comparison. The main conclusions obtained

can be summarized in three points.

Designing a good unstructured grid is a hard process that only needs to be done

once. After obtaining an efficient and accurate unstructured grid, it is possible to

achieve the same forecast accuracy and costal resolution as the traditional down-

scaling method, with an important reduction of the computational time.

For semi-enclosed domains it is more interesting to generate a regional unstruc-

tured grid than a local grid nested into an operational forecasting system. However,

if the operational system provides good boundary conditions, as happens in the

present study, the local nested grid may provide accurate results with a reduction

of time with respect to the traditional method.

Finally, the SWAN model presents some problems when using boundary condi-

tions in parameter format in unstructured grids with respect to regular grids. These

differences disappear when the boundary conditions come in a spectral format.
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Chapter 7

Final discussion and conclusions

7.1 Summary

The main objective of this thesis is to improve the actual wave forecasting abilities

for the Catalan Coast. Although several previous studies have identified some of

the main characteristics of the wave climate and have improved considerably the

wave prediction in the area, some progress can still be achieved which have not been

acquired in previous contributions. In consequence, the chapters included in the

thesis pointed out the different aspects which remain to be solved.

The work presented in chapter 3 has been motivated by the limited accuracy

of wave models under short-duration and fetch-limited conditions. This applies

particularly to the wave period, in semi-enclosed domains with highly variable wind

patterns along the Catalan coast, where the wave growth rates included in the

models are lower than the measured rates (Alomar et al., 2014). The spectral wave

model SWAN was implemented in three nested grids covering all the North-western

Mediterranean Sea with a grid resolution from 9 to 1 km, forced with high resolution

wind patterns from BSC (Barcelona Supercomputing Center) for two study periods,

the winter 2010 and the spring 2011. The results were validated in eight locations

with different types of in-situ instruments.

In order to correct this systematic errors, a modification of the delta value in

the Hasselmann (1974) whitecapping term formulation was performed, based on the

Rogers et al. (2003) previous work, thus improving the prediction of the energy

spectra at lower frequencies. This correction is appropriate only for young and

moderate sea wave conditions. In fact, the SWAN team has recently modified this

delta coefficient according to the findings presented in this thesis.

The appropriate frequency integral range used to calculate the integral wave

parameters from the model results was also tested. This was done to compare the
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simulation results and the instrument data for the same frequency interval.

The results obtained show a clear improvement of the mean wave period and

the peak period for the study area, decreasing considerably the negative bias ob-

served previously, while almost no change was observed in wave height due to the

proposed modifications. These results can be generalized for the Spanish Mediter-

ranean coast and may be applicable to study areas with similar characteristics as the

ones presented here: semi-enclosed domains with fetch-limited conditions, variable

wind conditions and young sea waves.

When working in coastal areas the interaction between wind, waves and currents

fields is not negligible, and therefore it is recommendable to couple the different

numerical models. The effect of the coupling in the wave modelling was analysed

for the Catalan coast in chapter 4. Two different types of coupling were considered,

the first one consists of a one-way coupling in which the current field is directly

introduced in the SWAN wave model, and the second consists of a two-way coupling

in which the wave model, the current model and the atmospheric model are run in

parallel and information is transferred between them. Both coupling methodologies

have been tested for a calm period but also during a local energetic event (when the

effect of the coupling is expected to be more important): a current intensification

in front of the Barcelona harbour and a wind jet event in the Ebro river shelf.

The results for the Catalan coast show that during clam events the one-way inter-

action between the waves and the ambient currents are negligible, even during storm

events. However, during intense episodes of currents (one order of magnitude higher

than usual) or when the wind is extremely intense and it interacts with opposite

wave conditions, the effect of one-way or two-way coupling should be considered.

The main processes affecting the waves during the interaction are the wind-stress

modification in the presence of currents, the wave refraction due to currents and the

sea surface roughness modification.

It should be noted that the coupled models have higher computational require-

ments, mostly when a two-way coupling is performed and several models need to

run at the same time in the same computer. For this reason, it is not always feasible

to implement this kind of models in an operational forecasting system, especially

when the benefits are only appreciable under very specific conditions.

In this sense, in chapter 5 the use of an unstructured grid with a varying res-

olution instead of a system of nested regular grids was considered, improving the

resolution in coastal areas while reducing the computation time. The main advan-

tage of using an unstructured grid for wave modelling is that it allows working with

a single mesh with different resolutions in each of the sub-domains, and therefore
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the nesting is not needed, avoiding the associated problems due to the internal

boundary conditions. Another advantage is that the grid can reproduce the sharp

coastline with more accuracy than regular meshes. Finally, unstructured grids allow

in a natural manner to build in a two-way nesting, a process especially interesting

in situations of land winds such as the Mistral case in the Mediterranean coast.

On the other hand, the use of unstructured grids in SWAN also has some draw-

backs: the same parametrizations need to be used in all the domain, usually involv-

ing different scales. Additionally, in some local areas with step gradients and too

coarse spatial resolution some unwanted accumulation of wave energy may occur

due to the numerical scheme used in SWAN, which can be solved by activating a

refraction limiter.

The design of the unstructured grid plays an important role in the quality of the

results. In this sense, adding some size criteria to the basic distribution of grid sizes

is decisive to obtain efficient grids with a cell refinement only where necessary. The

first criteria presented depend on the distance to the coast, because it is in this areas

where high resolution wave conditions are usually required, but also where more

information is available (e.g. better wind forcing). The second criteria proposed

increases the grid resolution as a function of the water depth and the bathymetric

gradients where the influence of the bottom modifies the wave fields.

In chapter 5 two unstructured grids were designed according to the mentioned

criteria, covering the Western Mediterranean Sea and the Balear Sea with coastal

resolutions up to 800 m. The grids were tested for a one year period using two high

resolution wind field domains from AEMET, and were validated with in-situ and

remote-sensing measurements.

The results obtained for the coastal areas presented good agreement with buoy

measurements, mainly for deep water buoys. The simulations in this areas showed

that increasing the spatial resolution of the wind forcing slightly improved the signif-

icant wave height statistics in averaged yearly results. The validation with satellite

data supports the previous results also in open waters, confirming the unstructured

grids as a valid alternative to the nested regular systems.

Finally, in chapter 6, a direct comparison between the unstructured grids and the

traditional downscaling method was presented. Traditionally, wave modellers used

a downscaling process by means of successive nested grids to obtain high-resolution

wave fields near the coast. This supposes an uncertain error due to internal boundary

conditions and a long computational time. Unstructured grids avoid multiple meshes

and thus also eliminating the problem of internal boundary conditions.

In the present study, high-resolution wave simulations were analysed for a full

year where high-resolution meteorological models were available in the Catalan
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coast, comparing the traditional nested sequence and a regional unstructured grid.

Also a local unstructured grid nested in an operational forecast system was included

in the analysis.

The obtained results were compared to wave observations from buoys near the

coast and to satellite data along the simulation domain. In both cases, almost no

differences were observed between the unstructured grids and the regular grids.

Simultaneously, tests have been carried out in order to analyse the computational

time required for each of the alternatives, showing a decrease to less than half the

time when working with regional unstructured grids and maintaining the forecast

accuracy and coastal resolution with respect to the downscaling system. Despite the

numerical scheme for unstructured grids is slower, the total time requirements were

reduced since only one grid was necessary to cover different domains and resolutions.

An additional sensitivity test was performed in order to evaluate the performance

of SWAN model using unstructured grids when boundary conditions were introduced

in two different formats. For the first test, using boundary conditions in a spectral

format (directly generated from a coarser domain SWAN simulation), the model

performed properly, showing no differences between regular and unstructured grids.

However, for the second test, when boundary conditions were obtained from an

operational system in a parametric form (including the significant wave height, the

mean wave period and the wave direction), SWAN unstructured grid simulations

presented some discrepancies. This issue is still being investigated together with the

SWAN team.

Despite these last small drawbacks, the unstructured grids are proved to be a

better alternative to the traditional nested systems. The results obtained were as

good as the ones obtained from regular grids or even better, providing high resolution

only where the wave field is expected to present variations and reducing considerably

the computation time. In conclusion, in few years the unstructured grids would be

the preference for most of the wave modelling community.
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7.2 Conclusions

According to the main objective of this thesis, consisting on improving the actual

wave forecasting abilities for the Catalan Coast, the conclusions associated to each

specific objective are:

1. Improve the wave forecasting in the Catalan coast by tuning the wave model

parametrizations related to the wave growth.

• The overall model performance is a combination of various terms con-

tributing to the action balance. The whitecapping term is the easier

parameter to tune, since it is the least well-known term in wave models.

However, the problem also affects the growing terms.

• The whitecapping term correction proposed by Rogers et al. (2003) is a

good solution for young sea conditions, in which the growth rates are

under predicted by the models. With this correction, an increase of

the energy spectra at lower frequencies is presented, reducing the under-

prediction of the wave period.

• However, the proposed formulation is only suitable for the early stages

of generation and should be discontinued after the waves reach a certain

maturity.

• Since this correction is based on the physics of the young sea evolution

it should be applicable to other similar environments.

• Finally, the integral wave parameters obtained from the wave simula-

tions and the instrument measurements should be referred to the same

frequency integration range in order to compare the two magnitudes un-

der the same conditions, since the spectral high frequency tail is present

in the wave model results but it is not included in the measurements.

2. Evaluate the effect of the coupling between the wave model and the current and

atmospheric models for different situations.

• Two different types of coupling were proposed, a one-way coupling con-

sisting of introducing the current field as an input for the wave model to

analyse the effect of ambient currents on the wave field, and a two-way

coupling consisting of running at the same time an atmospheric, current

and wave model. The interaction between fields is better represented

in the second type, but this method also requires higher computational

requirements which are not always available.
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• During most of the time for the Catalan coast, under calm conditions,

the coupling between models does hardly improve the results. Even when

a storm event is reaching the coast, with significant wave height up to 2.5

m, if the current magnitude are not extremely intense the coupling can

be neglected.

• However, during local energetic events the coupled predictions provide

a more accurate reproduction of the situation. For the Catalan coast

these energetic events correspond to superficial current intensifications

and wind jet events.

• An equilibrium should be searched between the computational require-

ments associated to the coupled systems and the improvements obtained

from the coupling.

• The main physical processes affecting the wave field due to the coupling

are the sea surface roughness modification in presence of intense winds,

and the wave refraction together with the wind-stress modifications in

presence of intense currents.

3. Consider the use of unstructured grids as an alternative of the regular nested

grids.

• After a one-year period simulations analysis the unstructured grids are

proved to be a good alternative to the traditional nested systems for the

study area.

• The results of the validation with in-situ measurements presented high

correlation coefficients and RMSE and biases the same order of magnitude

than the ones obtained in previous works using regular grids.

• As expected, the wave simulations presented a better agreement in deep

water areas than in coastal locations.

• Improving the wind field resolution generated few variations on the wave

predictions, only appreciable for the significant wave height.

• The design of the unstructured grid is probably the most delicate part,

and usually requires a lot of work and time. However, it should be con-

sidered a worthy investment due to the good results obtained.

4. Define the criteria necessary to generate an efficient unstructured grids, con-

sidering the grid resolution and the distribution of cells in the domains.

• The basic unstructured grids obtained without any size criteria were not

good enough, presenting an excess of cells in some areas and a lack of

resolution in some subdomains.
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• Two different criteria were proposed to increase the grid size: in the areas

near the coast, as a function of the distance to the shore line, and also

in intermediate and shallow waters, as a function of the depth and he

bathymetric gradients.

• The resulting grids present less elements and nodes than the basic ones

and, what it is more important, the triangles are better distributed along

the domain.

• The criteria can be applied to other locations, but need to be calibrated

depending on the geometric characteristics and the wave conditions of

the domain to be simulated.

5. Assess the viability of these improvements into an operational forecasting sys-

tem.

• The important improvements obtained from tuning the wave model pa-

rameterizations are easy to implement in an operational system, and do

not require any additional computational cost.

• In contrast, the two-way coupling between models is not an easy process

to incorporate in an operational forecasting system due to the high com-

putational requirements associated to this methodology and the small

benefits obtained, only appreciable in few situations and in punctual lo-

cations.

• The one-way coupling can be considered in an operational forecasting sys-

tem, since the computational cost associated is small (mainly related to

computer memory necessary to save all the current fields files). However,

in order to implement a one-way coupling the accuracy of the current

fields should be guaranteed if one wants to avoid worsening the wave

predictions.

• Finally, unstructured grids can be considered a great alternative to regu-

lar nested grids systems, especially for an operational forecasting system,

since the experience shows that the accuracy of the results is maintained

and the computational time is highly reduced.

• Some differences appear when working with regional unstructured grids

(e.g. the Western Mediterranean grid presented in this thesis) and local

nested grids (e.g. the Balear sea domain grid). The first involve sev-

eral scales and so it will be difficult to determine which parametrizations

to use. In contrast, this kind of grids is faster. The second grids cover

smaller areas and thus the scales affected are also smaller. This grids
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characteristic makes it easy to choose the coefficients and parametriza-

tions. However, these grids are usually nested to other models and need

boundary conditions that can incorporate important errors. Finally, the

SWAN model presents some problems when reading boundary conditions

in some specific formats, so special attention is required.
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7.3 Future work

The work presented in this document sheds some light to some questions related to

the wave forecasting in semi-enclosed domains and coastal areas with high variable

wind conditions, including the adaptation of the spectral wave models to the wave

growth characteristics of the area, the effect of coupling the wave model with a circu-

lation and meteorological models, or the use of unstructured grids as an alternative

to the traditional nested systems to obtain high resolution in coastal areas. How-

ever, new questions have also arisen from the work performed that are suggested in

the following lines.

The actions proposed in this chapter 3 related to the wave growth implemented

in the model and the rates measured in the area corrected part of the problem of the

wave under prediction, but are far from a final solution since better formulations for

the energy balance terms are necessary to reproduce the actually occurring growth

and dissipation rates in coastal areas within semi-enclosed domains.

In this sense it is important to remark that the results presented in this document

correspond to relatively small periods, so an analysis of extended periods (including

several years) together with a discretization of the results depending on the season

or the wave characteristics should be advisable.

Another aspect not treated in the thesis is the use of other models for wave

prediction, and specifically the use of other numerical schemes when working with

unstructured grids. The SWAN wave model uses an implicit numerical scheme

that has been proven to properly solve the unstructured grids with a reduction

of the computational time in comparison to the traditional nested grids system.

However, a comparison between an implicit and an explicit numerical scheme would

be very interesting in terms of computational requirements and results accuracy. In

this sense, the Wave Watch III model offers the possibility to choose between the

two numerical schemes mentioned. Additionally, the WWIII spectral wave model

is continuously introducing new parametrizations that may be interesting to try

for the study area, like the recent formulations to predict extreme waves not only

considering the temporal variability but also the spatial variability (Barbariol et al.,

2016).

Finally, despite every day the wave information provided by the models is im-

proving in quality (including the resolution and the accuracy of the results), the

wave forecast is based on a deterministic solution of the problem. In the recent

years some efforts have been carried out in order to generate a methodology to

determine the uncertainty associated with the wave forecast. Based on the meteo-

rology progresses, the ensemble methodology has recently been applied to the wave
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prediction (e.g. Bunney and Saulter, 2015). This methodology consists in using an

ensemble of winds to force the wave model, obtaining a range of possible predictions

for the following days. Once all the possibilities are simulated several statistics can

be computed in order to define the most probable, and then add a probability ac-

companying the wave prediction. The first exercises performed in the Catalan coast

in this direction were carried out using global ensemble wind fields, no accurate

enough to capture the variability of the Western Mediterranean Sea. So that, high

resolution ensemble winds should be generated before implementing an ensemble

wave forecast, thing that will surely happen during the next few years.
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