
1. Introduction
For tsunami warning centers, obtaining real-time coastal inundation forecast maps in a near-field or regional 
context is a major challenge. Currently, the tsunami warning systems are mainly focused on the first parameters 
of the earthquake, with the emphasis on earthquake monitoring and seismic data processing, while the tsunami 
models give only basin scale information of the corresponding risk. Precise coastal water heights and inundations 
can be computed, but contrary to what happens in the deep ocean, the simulation of tsunami hazard at the coast 
requires a non-linear model with fine resolution bathymetry and topography to cope with the non-linearity and 
the complex topography of the coasts. Despite the parallelization of tsunami codes and the power of comput-
ers used (Behrens & Dias, 2015; Løvholt et al., 2019), the computing time necessary to carry out a number of 
high-resolution inundation forecasts in real-time is still non-negligible, particularly in relation to the arrival times 
for a near-field event. Therefore, in a real-time warning setting, the computational runtime for high-resolution 
inundation forecasts places a restriction on the extent of the forecast area.

Abstract Local bathymetry and onshore features can have a substantial effect on the spatial variability of 
the hazard from an incoming tsunami. In a warning context, being able to provide localized tsunami forecasts 
at strategic locations would therefore help mitigate the damage. Despite the recent advancements in computing 
powers and the development of highly efficient tsunami codes, capturing this local variability can oftentimes 
be infeasible in a warning setting. Traditional high-resolution simulations which can capture these localized 
effects are often too costly to run “on-the-fly.” Alternative approaches that capture the localized response to 
an incoming tsunami, which are based upon using the maximum wave heights from a computationally cheap 
regional forecast, are developed here. These alternative approaches are envisaged to aid in a warning center's 
ability at providing extremely rapid localized forecasts. The approaches focus upon two different methods: 
transfer functions and machine learning techniques. The transfer function is based upon a recent extension to 
the established Green's Law. The extended version introduces local amplification parameters, with the aim of 
capturing the neglected localized effects. An automated approach which optimizes for these local amplification 
parameters is outlined and the performance of the transfer function is explored. A machine learning model 
is also trained and used to predict the localized tsunami hazard. Its performance is compared to the extended 
Green's Law approach for a site along the French coast. These developed methods showcase promising 
techniques that a tsunami warning center could use to provide high-resolution warnings.

Plain Language Summary Tsunamis are high-impact, long-duration disasters that in most cases 
allow for only minutes of warning before impact. Even though there have been significant advancements 
in warning methodology, pre-disaster preparedness and basic understanding of related phenomena, the 
vulnerability of bays, harbors, beaches and maritime assets to tsunamis remains poorly understood. The 
tsunami hazard on such local sites is greatly affected by the offshore and onshore topography. High-resolution 
simulations which resolve site-specific features can capture this local variability but are computationally too 
expensive to run. As tsunami early warning centers operate under severe time constraints, it is often not feasible 
to run these high-resolution simulations in a warning setting. A simulation which is completed after a tsunami 
has arrived on the coastline of interest, as precise as it might be, is worthless to a warning center. Alternative 
approaches that are based upon capturing the response of a site to an incoming tsunami ahead of time are 
developed here. Such approaches could be used by a warning center to quickly forecast the local tsunami hazard 
in the immediate aftermath of a tsunamigenic event.
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In a near-field and regional context, the rapid determination of water heights at the coast, or even the estimation 
of run-ups, are part of the objectives of the French tsunami warning center (CENALT) to improve the level of 
expertise and the information that can be provided to the alert center's correspondents. However, to capture the 
local variability of water heights at the coast, high-resolution simulations are traditionally required, with a mini-
mum mesh element size ∼

(

101
)

 m. Unfortunately, as stated, there exists a balance between mesh resolution and 
runtime that one must consider when the time constraints of a warning setting are involved (Giles et al., 2021). 
Therefore, the integration of rapid modeling tools including wave heights at coast and inundation are a priority.

To alleviate the problem of this race against time for the determination of near-field and regional water heights 
at the coast, the warning centers are developing tools for the rapid prediction of the amplitude of coastal tsuna-
mis, calculated from empirical laws (Gailler et al., 2017; Jamelot & Reymond, 2015; Lalli et al., 2019). This 
type of linear approximation rapidly provides the tsunami heights along the coastline, with an associated error 
on the order of a factor 2 at best (Gailler et al., 2017; Jamelot & Reymond, 2015; Reymond et al., 2012). Such 
approaches are adapted to the near-field context, but not all local effects are effectively resolved and estimates of 
run-up and horizontal inundation are lacking.

To provide a rapid estimate of the run-up, Wronna et al. (2020) proposed a tsunami runup predictor, relating the 
accelerating phase of the wave to the length of the beach slope over which the wave is traveling. Other recent 
studies develop methods involving the use of pre-calculated databases. Gusman et al. (2014) compare the tsunami 
waveforms simulated at different virtual observation points with the waveforms contained in a database. Each 
waveform in the database is associated with a high-resolution map of the inundation, pre-calculated with the 
non-linear model. This allows, once the best scenario of the database is found, to use the corresponding map 
to quickly estimate the flood. Such pre-calculated databases can be used in deep-learning approaches. Indeed, 
Mulia et al. (2018) improved the method of Gusman et al. (2014) by using low-resolution maps containing the 
maximum tsunami heights calculated by a linear model instead of tsunami waveforms. The dimensions of the 
matrices are reduced using principal component analysis, generally used in computer vision. Recently, Fauzi 
and Mizutani (2020) and Mulia et al. (2020) applied deep learning algorithms to a tsunami inundation database, 
and Lee et al. (2020) proposed a tsunami run-up response function including a method to reduce the number of 
simulations to build this function. The tsunami run-up distribution is therefore decomposed into source run-up 
and topographic run-up. The source run-up can be modeled by earthquake fault parameters, and the normalized 
topographic run-up is associated with local topographic characteristics.

Alternative approaches for capturing localized maximum wave heights are introduced here, with one approach 
also being capable of capturing the inundation. These automated approaches are based upon transfer functions 
and machine learning techniques. In practice, they are extremely quick to run 𝐴𝐴 ((s)) and are computationally 
cheap once the local response to an incoming tsunami is captured ahead of time. In a warning context, all that is 
required are the regional (coarse grid) maximum wave heights, which could be sourced from pre-computed data-
bases (Gailler et al., 2013; Reymond et al., 2012) or obtained from “on-the-fly” regional simulations (Jamelot & 
Reymond, 2015). The local variability in the tsunami hazard can be rapidly deduced by taking the maximum wave 
height from a regional scale and transferring it to the high-resolution local area by incorporating the localized 
response. Due to the lack of available data for the areas considered here, in this work, the goal is to approximate 
computationally expensive high-resolution localized simulations. It should be stressed that the high-resolution 
simulations are also not perfect predictors of real tsunamis, leading to an additional source of predictive error that 
is not treated in this study.

The transfer function method is derived from the established Green's Law, the form of which is outlined in 
Section 2.1 and the method for using this approach is highlighted in Section 2.1.1. The extended version of 
Green's Law introduces site specific amplification factors. An automated approach for optimizing these local 
parameters is given in Section 2.1.1. Details of the machine learning approach are provided in Section 2.2. A 
robustness study of the optimized site specific amplification parameters is presented in Section 3.1, followed 
by a comparison against the performance of the machine learning technique in Section 3.2. Due to the large 
data constraints on the machine learning approach, results for the other sites studied here are presented with the 
transfer function only and are included in Appendix A. This paper is wrapped up with concluding remarks and 
proposed future work (Section 4).
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2. Methods
2.1. Transfer Functions—Extended Green's Law

The evolution of sea-surface gravity waves over varying bathymetry has captivated scientists for centuries and 
has been the subject of an extensive body of literature. The classical work of Green dealt with the evolution of 
shallow water waves in channels with varying depth and width (Green, 1838). His key finding is now referred to 
as Green's Law, which states that when the bathymetry is slowly varying with respect to the wavelength, the wave 
height at a shallower point (η2) is dependent on the wave height at deeper point (η1) and the ratio of the depths 
(h1/h2). In a 1D channel of constant width the exact form of this functional relationship is given in Equation 1:

𝜂𝜂2 = 𝜂𝜂1

(

ℎ1

ℎ2

)
1

4

. (1)

Green's Law effectively captures the shoaling phenomenon in a 1D case with the wave approaching normal to the 
shoreline. The theory neglects various 2D physical phenomena, such as reflection and refraction which play an 
extremely important role in the amplification of shallow water waves. Further, in reality the tsunami wave isn't 
necessarily approaching normal to the shoreline and instead propagates as a complex wave train over varying 
bathymetry in the long-shore direction (George et al., 2020). Recently, extended versions of Green's Law have 
been developed (Lalli et al., 2019; Reymond et al., 2012), which aim to account for the localized effects on the 
tsunami amplification. These extended versions of Green's Law can capture local variability in tsunami wave 
height through the incorporation of a local amplification parameter.

Lalli et al. (2019) derived the following extended version of Green's Law

𝜂𝜂2 = 𝛼𝛼𝜂𝜂1

(

ℎ1

ℎ2

)
1

4

, (2)

where η2, η1, h2, and h1 are the same as in Equation 1, and α is defined as the local amplification parameter.

The extended version of Reymond et al. (2012) (not shown here) has been used to forecast maximum tsunami 
wave heights along the French Polynesia (Jamelot & Reymond,  2015) and Mediterranean coastlines (Gailler 
et al., 2017). In these works, uniform or coarsely regionalized values of the local amplification parameters were 
obtained for a whole site (harbor/bay area) via a “trial and error” approach.

The work presented here focuses on the α formulation (Equation 2). However, it can be shown that the α formula-
tion is mathematically equivalent to the empirically derived extended version of Green's Law given in Reymond 
et  al.  (2012). In comparison to the formulation given in Reymond et  al.  (2012) the α formulation possesses 
additional benefits, namely the absence of an added free parameter and the stronger mathematical underpinning 
provided by Lalli et al. (2019).

Differing from the “trial and error” approach undertaken in Jamelot and Reymond (2015) and Gailler et al. (2017) 
an optimization methodology which optimizes for the local amplification parameters finely (i.e., highlights 
detailed variability within a site) has been developed here (Section 2.1.1). The high-resolution sites studied are 
located along the French Atlantic and Mediterranean coastline (Figure 1). Due to the lack of tsunami data for 
the areas of interest a collection of scaled historical events and hypothetical scenarios are simulated to capture a 
site's response to an incoming tsunami. As these site specific parameters play a vital role in the accuracy of the 
localized forecasts, a robustness study is carried out (Section 3.1).

2.1.1. Forecasting the Local Maximum Wave Height

A localized forecast of the maximum wave height ηf(α) at each point in the fine grid is calculated using Equa-
tion 2, which is reproduced here with the dependence on α clearly shown,

𝜂𝜂𝑓𝑓 (𝛼𝛼) = 𝛼𝛼𝜂𝜂𝑝𝑝

(

ℎ𝑝𝑝

ℎ𝑓𝑓

)
1

4

, (3)

with ηp defined as the wave height at a predictor (deeper) point, hp/hf is the ratio of depths (as outlined in Section 2.1) 
and the value for α is obtained by an optimization procedure introduced in Section 2.1.2. The predictor point at 
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each step is chosen to be the nearest neighbor in geographical space which is deeper than the point of interest. The 
motivation for this choice is given in Section 2.1.3. By using the nearest deeper neighbor as the predictor point the 
workflow marches serially through the fine grid from the deepest point to the shoreline, predicting the maximum 
wave height at each location. A search algorithm for the nearest deeper neighbor is implemented once for each site 
of interest, with the geographical location of the associated neighbor stored and quickly accessed when carrying 
out the forecasting and optimization. For the deepest point in the fine grid the coarse grid results are used for the 
predictor point in the optimization of the α value and forecasted wave height.

In summary, the workflow sequentially moves through the fine grid from deepest point (h1) to the shoreline with 
the choice of predictor point determined as follows (where h is the value of bathymetry at the point of interest):

1.  If h = h1: extract the maximum wave heights and bathymetry values from the nearest coarse grid points in 
geographical space. An interpolation of these values is defined as the predictor point.

Figure 1. Sites of interest along the French Atlantic and western Mediterranean coastline. Results for Morbihan, Nice Area, 
Bandol, and Antibes are presented in Appendix A.
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2.  If h1 < h ≤ 1 m: the predictor point is chosen to be the nearest deeper neighbor in geographical space.
3.  If 1 m < h < 0 m: the wave heights are extrapolated to the shoreline using the values obtained at the nearest 

deeper neighbor with h < 1 m.

The code which carries out this workflow is predominantly written in Python with calls to functions written in 
C to carry out the optimization algorithm (Section 2.1.2). Despite the code operating serially, due to reasons 
outlined above, the hybrid language (Python and C) implementation allows one to rapidly map the amplification 
parameters for a site (runtime 𝐴𝐴 (mins) ). The Python and C code can be accessed at the following repository: 
Giles (2022).

2.1.2. Optimization of the Local Amplification Parameters α

Values of the local amplification parameter, α, are calculated at each point in the fine grid by using an automated 
optimization procedure via a gradient descent algorithm. The localized forecast which is dependent on α (Equa-
tion 3) is compared to a computationally expensive high-resolution simulation (ground truth) of the same event. 
An ordinary least squares optimization of the site specific values has also been carried out (not shown here) and 
it produces almost identical results to the gradient descent algorithm introduced. The optimized value of α is 
obtained by minimizing a calculated cost function

𝐶𝐶(𝛼𝛼) =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(𝜂𝜂𝑠𝑠 − 𝜂𝜂𝑓𝑓 (𝛼𝛼))
2
, (4)

where ηs is the fine resolution simulated wave height (ground truth), ηf(α) is the forecasted wave height from 
Equation 3 and N is the total number of tsunami scenarios simulated.

When selecting a cost function, one must decide whether the approach should be optimized to handle larger 
wave heights or perform satisfactorily across the range of wave heights present in the training data set. The mean 
squared error cost function is chosen here, as it will place a greater emphasis on the larger tsunami wave heights. 
From a warning perspective, tsunami waves of less than 10 cm are not considered to be impacting and therefore 
the cost function is chosen to reflect this. The choice of evaluation metrics in Section 3 will also focus on larger 
tsunami wave heights.

Once the local amplification parameters have been pre-calculated, a tsunami early warning center could utilize 
this same method outlined in Section 2.1.1 in forecasting mode (i.e., without the optimization steps) to obtain 
localized wave forecasts from “unseen” regional maximum wave heights with minimal runtime required 𝐴𝐴 ((s)) .

2.1.3. Motivation and Implications of the Marching Scheme

Marching through the fine grid from the deepest point to the shoreline involves the repeated composition of the 
extended Green's Law at each prediction point. This strategy results in the optimized α values having a multiplica-
tive effect on the predicted wave heights. To highlight the multiplicative effect of the α values we take a test point 
with a bathymetry value of hn. We assume that this test point is close to the shoreline. Therefore hn < h1, where h1 
is the bathymetry depth of the deepest point in the fine grid. For the extended Green's Law implementation, the 
predicted maximum wave height at hn is given as

𝜂𝜂𝑛𝑛 = 𝛼𝛼𝑛𝑛𝜂𝜂𝑛𝑛−1

(

ℎ𝑛𝑛−1

ℎ𝑛𝑛

)
1

4

, (5)

where hn−1 is the bathymetry value of the nearest deeper neighbor, ηn−1 is the predicted wave height at that 
neighboring point and αn is the optimized amplification parameter for the test point. As this is just the repeated 
composition of the transfer function, one can rewrite ηn−1 as

𝜂𝜂𝑛𝑛−1 = 𝛼𝛼𝑛𝑛−1𝜂𝜂𝑛𝑛−2

(

ℎ𝑛𝑛−2

ℎ𝑛𝑛−1

)
1

4

. (6)
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Subbing expression Equation 6 into Equation 5 and repeating until the deeper point corresponds to h1 (i.e., work-
ing your way back to the deepest point in the domain) one gets,

𝜂𝜂𝑛𝑛 = (𝛼𝛼1 × 𝛼𝛼2 ×⋯ × 𝛼𝛼𝑛𝑛) 𝜂𝜂1

(

ℎ1

ℎ𝑛𝑛

)
1

4

. (7)

The multiplicative effect of the α values on the predicted wave height can now be seen. The α values in the prod-
uct depend on the individual selection of the nearest deeper neighbor at each predictive step. By repeating this 
analysis for the “pure” Green's Law implementation (null model) one can show that the predicted wave height at 
the same test point will be independent of intermediary deeper points and will solely depend on the value of the 
wave height at the deepest point in the fine grid and the ratio of the bathymetry depths. This implies that the null 
model will predict uniform wave heights along isobaths of the fine grid domain.

An alternative approach to the marching scheme and resultant reliance on the product of deeper neighbors (Equa-
tion 7) would be to use the deepest point in the fine grid as the predictor point for each point in the fine grid. The 
product of α values in Equation 7 would therefore be replaced by individual optimized values (β) for each point,

𝜂𝜂𝑛𝑛 = 𝛽𝛽𝑛𝑛𝜂𝜂1

(

ℎ1

ℎ𝑛𝑛

)
1

4

. (8)

Before comparing this alternative approach to the marching scheme, it is worth reiterating that the march-
ing scheme involves the repeated optimization of separate cost functions with different depth ratios at each 
step. Despite the mathematical reasoning for Equation 7, the current implementation involves using a gradient 
descent algorithm which is unaware of the product of α values and is solely optimizing for αn in Equation 5. 
Further, as forecasted wave heights at the predictor point are used in the marching scheme the resultant optimiza-
tion set up is different when compared to the alternative approach. Therefore, it can be shown that (α1 × α2 ×⋯ × 
αn) ≠ βn. However, when the two approaches are used to predict events the resultant wave heights are found to be 
identical. The key benefit therefore for the marching scheme is the computational efficiency, as the optimization 
generally requires fewer iterations to converge to the optimal value (αn is generally closer to 1).

2.2. Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is trained and tested for predicting maximum wave heights and inundation 
in the Cannes region. The authors were restricted to the Cannes region as training a neural network requires a 
substantial number of high-resolution model simulations as input data, which are computationally expensive to 
produce. As seen in Appendix A only a limited number of scenarios were available for the other sites studied. 
The MLP consists of an input layer, two hidden layers and an output layer. A cropped array of the maximum wave 
heights from the coarse regional results (mother grid Figure 2) is flattened and fed into the input layer. The output 
layer corresponds to a flattened array of the maximum wave heights in a subset of the Cannes region (daughter 
grid Figure 2). The MLP is then trained on the mother/daughter grid pairs, with standard gradient descent and 
back-propagation techniques used to optimize for the weights and bias terms in the network.

A python code which utilizes the Keras and TensorFlow packages (Abadi et al., 2015) was developed to construct 
and train the MLP. The mother grid has dimensions 150 × 150, therefore the input to the MLP is a flattened array 
of dimensions 22,500 × 1. It is a fully connected network with the two hidden layers having 256 neurons each. 
The output dimension is 120,000 × 1, as the daughter grid has dimensions 300 × 400. The activation function 
in each layer is the popular Relu function. L2 regularization and neuron dropout are implemented in each of the 
hidden layers to avoid overfitting. Identical to the extended Green's law approach, the loss function is chosen to 
be the mean squared error. As stated this choice of loss function will place a greater emphasis on the larger wave 
height events. The evaluation metrics used to compare the performance of the MLP and extended Green's Law 
approach (Section 3) reflect this emphasis on larger tsunami wave heights. To generalize well the MLP model is 
trained with the full training set (Section 2.3) for 200 epochs. Further information on the activation function, layer 
features and loss function can be found on the Keras API website (https://keras.io/api/). The MLP implementation 
developed here can also be located at the referenced repository (Giles, 2022). Finally, to plot the predictions of 
the MLP or to carry out analysis on them, the outputs are reshaped back into two dimensional arrays (300 × 400).

https://keras.io/api/
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2.3. Data Set

A large number of high-resolution simulations for the Cannes region performed with the Taitoko code (Heinrich 
et al., 2021 down to 10 m resolution, which have been carried out under a different framework (Souty and Gail-
ler (2020) within the NARSIS project, Foerster et al. (2020)), are used for this study. The total number of tsunami 
scenarios for the Cannes region is 120 simulation pairs (consisting of both coarse and fine grid simulation results), 
drawn from the seismogenic zones of the north Algerian margin and the Ligurian Sea (see Figure 3),  the latter 
being the most tsunamigenic for the target area. This data set is built from tsunamigenic earthquakes following 
the western Mediterranean basin active tectonic structures (French tsunami warning center fault database, Gailler 
et al. (2013)) with magnitudes ranging from 6.2 Mw to 7.5 Mw. The data set is split into 10 subsets (9 training 
subsets and 1 test subset), with each data subset containing 12 scenarios and representing a stratified sample, that 
is, each subset contains a proportional amount of scenarios from each seismogenic zone.

3. Results
3.1. Robustness of the Local Amplification Parameters

The robustness of the local amplification parameters is investigated by increasing the amount of data being used 
in the optimization method. If the values are stable they can be considered to be well constrained by the input 
high-resolution model results. To test the robustness of the optimized amplification parameters, the values are 
optimized with increasing amounts of “seen” data (Figure 5), one data subset (12 scenarios) at a time.

The optimized α values obtained with one training data subset (12 tsunami scenarios) are plotted in Figure 4. 
One can see that the optimized values are close to 1. However, due to the multiplicative effect of the α values in 
the marching scheme (see Section 2.1.3) the percentage differences from 1 have a bearing on the predicted wave 
heights.

Changes in the calculated α values with increasing amounts of “seen” data are shown in the subplots of Figure 5, 
where the incremental relative differences

Δrel𝛼𝛼 =
|𝛼𝛼

𝑛𝑛 − 𝛼𝛼
(𝑛𝑛−1)

|

𝛼𝛼𝑛𝑛
 (9)

Figure 2. Left: cropped region of the regional maximum wave heights which are fed in as the input grids to the Multi-Layer Perceptron (MLP; mother grid). Right: 
cropped region of the localized maximum wave heights which are the targets of the MLP (daughter grid).
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are calculated at each point in the fine grid, with the superscripts n − 1 and n referring to the number of subsets 
used. Each subset contains 12 scenarios. The value of n increases as one moves from the top left to bottom right 
subplot (Figure 5). The convergence of the optimized parameters with increasing data can be observed in each 
subplot of Figure 5. This is a promising result as it highlights the robustness of the optimized α values and mini-
mal amounts of scenarios (i.e., costly high-resolution simulations) are required to accurately capture the localized 
response.

3.2. Comparison Between Extended Green's and MLP Model

The MLP is trained on the same Cannes region data set as the one that was introduced above (Section 2.3). The 
performance of the MLP model is compared to the extended Green's law approach on the same testing subset. The 
α values obtained in Section 3.1, where 12 and 108 tsunami scenarios are used in the optimization, are chosen 
for the comparison. The two sets of local amplification parameters are selected for the comparison to explore the 
minimal data requirements of the extended Green's approach.

The performance of the approaches at forecasting the tsunami events is demonstrated by comparing the forecasted 
wave heights (ηf) to the fine grid simulation results (ground truth) (ηs) at virtual wave gauges. The locations of 
the virtual wave gauges are selected to be at a depth of 2 m and are marked as red stars in the bathymetry subplot, 
see top figure in Figure 6. Log-log plots of the forecasted versus ground truth wave heights can be seen in the 
middle row of Figure 6. Minimal differences can be observed between the extended Green's Law model which 
was trained using N = 12 and 108 scenarios. The extended Green's approach generally overpredicts the maximum 
wave heights of the smaller wave heights and more accurately forecasts for the larger values. As the mean squared 
error function (Equation 4) was chosen for the loss function, thus placing a greater emphasis on larger wave 
heights, this behavior was to be expected. The MLP model performs better across the range of maximum wave 
heights, despite the same choice of loss function. As stated in Section 2.1.3, Green's Law (null model) predicts 
uniform wave heights along iso-baths of the fine grid domain. This is clearly seen as the virtual gauges are all 
located at a depth of 2 m.

Figure 3. Map of the location of the seismogenic scenarios used in this study. The seismogenic zones are derived from Sørensen et al. (2012) and the scenarios come 
from Souty and Gailler (2020). The tsunamigenic potential for the Cannes region mainly comes from the North Algerian margin (turquoise and green) and from the 
Ligurian Sea (yellow).
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To emphasize the performance of the extended Green's Law and MLP approaches on larger wave heights, subplots 
of the percentage relative error versus ground truth wave height are included in the bottom row of Figure 6. The 
current implementation of the automated approaches offer an improvement when compared to the null model 
results, with the percentage relative error on the majority of waves greater than 0.5 m constrained to be within 
±50%.

To further highlight the performance of the approaches on larger wave heights, a tailored percentage mean rela-
tive error (Equation 10), which only includes scenarios with a maximum tsunami wave height greater than 10 cm, 
is calculated at each point in the daughter grid and plotted in Figure 7:

Mean Relative Error % =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(

𝜂𝜂𝑓𝑓 − 𝜂𝜂𝑠𝑠

𝜂𝜂𝑠𝑠

)

× 100, (10)

where ηf is the forecasted maximum wave height coming from either the extended Green's Law or MLP model, 
ηs is the simulated wave height and N is the number of scenarios. From a warning perspective, tsunami waves of 
less than 10 cm are not considered to be hazardous and therefore the cost function and choice of evaluation metric 
is chosen to reflect this.

Figure 4. The optimized local amplification parameters (α in Equation 5) for the Cannes region, where the number of tsunami scenarios (N) used in the optimization is 
12, which corresponds to one training data subset (n = 1).
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Figure 5. The effect of increasing the amount of tsunami scenarios in the optimization of the local amplification parameters (α in Equation 5) in the Cannes region. 
From top left to bottom right, the number of training subsets (n) and therefore tsunami scenarios (N) increases in each subplot. To showcase the convergence of the 
optimized parameters, the relative difference Δrelα (Equation 9) at each point is plotted.
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Focusing on the performance of the extended Green's model, one can see that in Figure 7 (top row) there are slight 
differences between the performance of the extended Green's model optimized with 12 and 108 scenarios with 
the maximum mean relative error being less for the latter set up. Despite this the extended Green's model trained 
with only 12 scenarios does offer an improvement when compared to the null model. This behavior highlights that 
with minimal data requirements the extended Green's approach can be used to improve localized forecasts. Nota-
ble differences between the MLP and extended Green's Law model trained with 108 scenarios can be observed 
within the harbors. The null model showcases the largest mean relative errors, particularly in the eastern region of 
the domain. In Figure 7 a key benefit of the MLP approach is also highlighted: the ability to predict inundation. 
The MLP predicts a mean relative error of <50% for the inundated points. The inundated regions are masked in 
white in the extended Green's Law model and null model subplots. Owing to the breakdown of the Green's Law 
formulation in the immediate nearshore and onshore region, additional methods would have to be employed to 
take the offshore values and predict inundation (Smart et al., 2016).

Figure 6. Top row: the fine grid bathymetry of Cannes with the location of the virtual wave gauges marked with red stars. Middle row: log-log plots of the simulated 
(ground truth) and forecasted maximum wave heights at the virtual wave gauge points for the various automated approaches and the null model. The black line is a plot 
of the ηf = ηs line showing perfect agreement. Bottom row: percentage relative error between forecasted and simulated wave height versus ground truth at virtual wave 
gauge points produced using the various approaches.
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To provide a concrete example of the expected outputs for a warning center, Figure 8 has been included to demon-
strate the performance of the approaches on a particular scenario drawn from the testing set (12 scenarios). In 
Figure 8, one observes the ground truth maximum wave heights coming from the high-resolution simulation and 
the corresponding predictions made by the automated approaches and the null model. The errors between the 
forecasted (ηf) and simulated (ηs) maximum wave heights can also be seen. Differences between the errors of the 
extended Green's models trained with 12 and 108 scenarios respectively can be seen, in particular for the western 
harbor region. The MLP model accurately predicts the extent of inundation but shows some errors in the predicted 
flow depth. The null model again features the largest errors when compared to the automated approaches. Over-
all, the areas of enhanced amplification are generally well captured by both automated approaches. If computed 

Figure 7. Tailored percentage mean relative error (Equation 10) for larger tsunami wave heights calculated at each point in the grid across the 12 “unseen” scenarios. 
Top row: extended Green's Law model with 12 scenarios (left) and 108 scenarios (right) used in the optimization. Bottom row: Multi-Layer Perceptron model trained 
with 108 scenarios (left) and the null model (right).



Journal of Geophysical Research: Oceans

GILES ET AL.

10.1029/2022JC018467

13 of 21

ahead of time, these approaches could be leveraged by a tsunami warning center to capture the local variability in 
tsunami amplitude with minimal added runtime 𝐴𝐴 ((s)) .

4. Concluding Remarks and Future Work
In a warning setting, and especially in a near field context, capturing the local response is often too computa-
tionally expensive, despite local bathymetry greatly influencing the variability in the tsunami hazard at a site. 
Two approaches, which can rapidly predict the local tsunami hazard when calculated ahead of time, are inves-

Figure 8. Top row: Ground truth maximum wave heights for a particular scenario drawn from the testing set of 12 scenarios. Middle row: Maximum wave heights 
for the same scenario as forecasted by the extended Green's Law (left and left center), Multi-Layer Perceptron (MLP; right center) and the null model (right). N in the 
extended Green's and MLP model results refers to the number of scenarios utilized in the training. Bottom row: The respective errors between the forecasted and ground 
truth maximum wave heights. The particular ground truth scenario is drawn from seismogenic zone 5 (Figure 3) and corresponds to a 7.3 Mw event.
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tigated. Sites located along the French Atlantic and Mediterranean coastlines are studied. The local response 
is captured by incorporating regional and computationally expensive local tsunami simulation results. Scaled 
historical and hypothetical earthquake sources form the initial conditions of these simulations. An automated 
method for calculating the site specific parameter in the formulation of the extended Green's Law proposed 
by Lalli et al. (2019) has been developed. This automated method differs from the “trail-and-error” approach 
undertaken in previous works (Gailler et al., 2017; Jamelot & Reymond, 2015). The method relies upon opti-
mization techniques.

The robustness of the optimized local amplification factors is explored by utilizing a large database (120 
scenarios) of pre-computed pairs of regional and local maximum tsunami wave heights for the Cannes region 
(Section 3.1). Incrementally increasing the amount of data (scenarios) in the optimization procedure results in the 
convergence of the local amplification parameters (α). This allows one to conclude that the value of the parameter 
is robust and that the extended Green's Law approach can be utilized in a setting where minimal pre-computed 
high-resolution data is available.

An “off-the-shelf” MLP network is then trained and tested on the same 120 scenarios for the Cannes region. 
The network is considered “off-the-shelf” as no hyperparameters are optimized for and the architecture of the 
network is a standard form. The performance of the network at predicting maximum wave heights is compared 
to the predictions made by the optimized transfer function method for the same 12 unseen scenarios. The relative 
data requirements for each approach should be highlighted, with the MLP model requiring a training set of 108 
scenarios to produce satisfactory results, whilst the α values optimized using only 12 scenarios perform compa-
rable to those optimized with 108 scenarios. However, a key benefit of the MLP model compared to the extended 
Green's Law approach can be seen in its ability to predict inundation.

Due to the limited number of high-resolution results for the other French sites studied here (Appendix A), only 
the extended Green's approach is carried out. Results for Morbihan, Bandol, Nice, and Antibes are presented in 
Figures A1–A4, respectively. As is the case with the Cannes results (Figure 6), in its current implementation the 
extended Green's Law method is shown to be able to rapidly predict the maximum wave heights, with a good 
agreement between the simulated (ground truth) and forecasted wave heights for larger events. These figures 
highlight the performance of the approach at capturing “seen” data, with percentage relative errors between 
±25% for the larger values at virtual wave gauges located along the coastline. Comparing against “seen” data 
does not provide an accurate representation of the generalization of the approach, that is, how will the approach 
perform for an “unseen” event. Therefore, it is noted that a greater number of high-resolution simulations for the 
sites studied would allow for a more in depth testing of the optimized amplification parameters.

In the current form of the extended Green's Law (Equation 2), improved results could be obtained by optimizing 
for the choice of prediction point. The choice of the loss function can also play a role in the performance of the 
approach. A mean squared error cost function was chosen here to place a greater emphasis on larger wave heights. 
Further, an alternative method similar to the transfer function approach would be generalized additive models 
(Wood, 2017). These statistical models capture functional responses between variables and offer an alternative 
approach to calculating local values from off-shore wave heights.

Future work involving machine learning methods could focus on developing customized machine learning models, 
where convolutional neural networks could be used. The use of deep neural networks for tsunami forecasting tasks 
is an active area of research, with various approaches being developed (Fauzi & Mizutani,  2020; Makinoshima 
et al., 2021; Mulia et al., 2020). To build on these existing works, a customized convolutional neural network could be 
built which leverages stacked layers of the bathymetry, wave heights and flow velocities. These variables could form 
the input for a traditional three channel RGB (Red, Green, and Blue) image classification network. This approach of 
stacking the bathymetry, maximum wave heights and flow velocities into three layers would have the extra benefit of 
predicting the maximum flow velocities in conjunction to the maximum wave heights and inundated areas. Transfer 
learning techniques could also be investigated. One could incorporate well established convolutional neural networks, 
which have been used for similar image classification tasks, to minimize the training data requirements.

Finally, an extension of the present work could be the coupling of pre-computed localized response models with 
a computationally cheap statistical emulator. This would greatly improve a warning center's capabilities at provid-
ing extremely localized tsunami hazards with the associated uncertainties in a warning setting. This coupling 
would allow for the uncertainties on the rapid source characterization to be propagated through to the localized 
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tsunami wave heights. The regional maximum wave heights needed for forecasting the localized response would 
be computationally cheap to obtain. Then the emulator could be trained on the output of the localized response 
approach (transfer function or machine learning model) and then used to predict the uncertainty on the tsunami 
hazard. This would differ from the results presented in Giles et al. (2021) as the underlying mesh resolution could 
be refined by a factor more than 10, but with a reduction/minimal addition in the runtime.

At present tsunami warning center's provide rapid estimates of regional tsunami hazard maps along with predic-
tions at various forecast points. These forecasts could be greatly augmented by incorporating the methods devel-
oped here. The maximum wave heights predicted at a regional scale form the input and the resultant output will 
be forecasted maximum wave heights on a localized level (harbor/port scale)—with minimal additional runtime 
required. The localized information will greatly benefit any resultant warnings issued.

It should be noted, that the approaches developed here do not lend themselves to rigorous uncertainty quanti-
fication. The main source of uncertainty will center on the use of computationally expensive high-resolution 
simulations as the “ground truth.” This choice was due to the lack of historical data available for tsunami events 
in the regions studied. As stated the numerical errors associated with the computational approach, despite using 
high-resolution simulations, are not accounted for here and are an added source of prediction error.

To wrap up this work, two separate automated approaches which are capable of capturing the local variability in 
maximum tsunami wave height have been developed. Both approaches offer an improvement when compared to 
the null model. For the extended Green's Law approach, improvements can be seen with minimal data needed in 
training and optimization of the local amplification parameters. The robustness of the amplification parameters 
is showcased by increasing the amount of training data in the extended Green's Law optimization. However, as 
the values of the amplification parameters converge so to does its performance. This limiting nature and the addi-
tional benefit of the MLP (ability to predict inundation) allows one to conclude that—when sufficient training 
data is available the MLP model provides more promising results. However, if computed ahead of time both of 
the developed approaches allow for extremely rapid localized forecasts of tsunami wave heights.

Appendix A: Additional Results
The data set of high-resolution simulation results for the following French coastal sites is limited to 9 tsunami 
scenarios for Morbihan and 8 scenarios for the Mediterranean sites (Nice Area, Bandol, and Antibes), with the 
seismic source parameters listed in Table A1. The sources used for the Western Mediterranean echo those defined 
in Gailler et al. (2017). Due to the limited availability of training data, only the extended Green's Law model is 
used to capture the local response. This decision is justified by the previous findings on the robustness of the local 
amplification parameters (Section 3.1).

Nevertheless, the minimal data set of high-resolution simulations restricts our ability to carry out a proper 
performance evaluation of the optimized site specific parameters. A training and testing data split cannot 
be afforded with such minimal high-resolution simulation data. Therefore, the performance of the extended 
Green's Law approach is non-optimally compared against the same scenarios used for optimization. This test-
ing against the training data set is not ideal and therefore work is ongoing to increase the number of high-res-
olution simulations for the sites studied here. As before the ground truth results were obtained as part of a 
separate study, which involved running computationally expensive high-resolution nested grid simulations 
with the Taitoko code (Heinrich et al., 2021), down to 20 and 10 m resolution for the Atlantic and Mediterra-
nean sites respectively.

In Figures A1–A4, the high-resolution bathymetry and optimized α parameters are plotted. Areas of enhanced 
amplification are associated with larger α values. The performance of the obtained amplification factors at fore-
casting the tsunami events is demonstrated by comparing the forecasted wave height to the fine grid simulation 
results (ground truth) at virtual wave gauges, the locations of which are marked as red stars in the bathymetry 
subplots. A log-log plot of the forecasted versus ground truth (ηs) wave heights can be seen in Figures A1–A4. 
As in Section 3.2, the effects of the design of the loss function in the optimization procedure can be clearly 
seen. Across the different sites, the extended Green's Law model underpredicts the smaller wave heights and 
more accurately forecasts for the larger values. If one's motivation was to predict wave heights across a broad 
scale of values, a cost function which is based upon a relative error formulation would be more appropriate. 
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Subplots of the percentage relative error versus ground truth (ηs) wave height for values greater than 10 cm are 
included in Figures A1–A4. The current implementation of the automated optimization procedures is found to 
capture the localized response to larger wave heights well, with percentage relative errors between ±25% for 
the larger values.

Scenario Mw Lon (°) Lat (°) Depth (km) Slip (m) Strike (°) Dip (°) Rake (°) Length (km) Width (km)

GC01_80 8 −12.26 33.67 12.91 3.5 30 35 90 200 45

GC01_85 8.5 −12.26 33.67 16.27 7.8 30 35 90 370 55

GC05_85 8.5 −9.01 35.94 16.27 7.8 270 35 90 370 55

GC07_85 8.5 −10.64 36.38 16.27 7.8 235 35 90 370 55

GF02_85 8.5 −13.49 38.77 27.9 7.8 102 85 170 370 55

AZ01_75 7.5 −26.06 40.25 15.2 1.4 117 60 −90 100 35

AZ01_85 8.5 −26.06 40.25 24.32 7.8 117 60 −90 370 55

GCMT1_80 8 −32.77 52.62 10 10.5 186 80 −4 150 20

GCMT1_85 8 −35.1 35.17 10 10.5 282 87 15 150 20

S_7.1 7.1 3.34–4.01 36.66–37.12 2.4–22.9 128 × 0.007 54 47 90 128 × 4 128 × 4

Y_7.5 7.5 3.56 36.80 12.0 2.5 60 42 84 85 35

J_7.1 7.1 5.47–5.73−6.15 36.95–37.08−37.18 7.0 1.0–1.5−1.5 75−85−75 40 90 25−37−44 3 × 22

J_7.8 7.8 5.47–5.73−6.15 36.95–37.08−37.18 7.5 3 × 6.0 75−85−75 40 90 25−37−44 3 × 20

413_6.5 6.5 6.95 37.29 4.0 0.45 91 50 90 45 10

413_7.0 7.0 6.95 37.29 7.0 1.5 91 50 90 42 18

413_7.5 7.5 6.95 37.29 12.0 2.6 91 50 90 85 29

413_7.5s 7.5 6.95 37.29 9.0 8.0 91 50 90 33 22

Note. The Azores-Gibraltar source parameters (GC0*, GF*, and AZ*) are adapted from Matias et al. (2013) and are taken from the French tsunami warning center 
(CENALT) fault database Gailler et al. (2013). The GCMT scenarios are located along the Mid-Atlantic Ridge and correspond to real events that occurred in 2014 
and 2015, with a magnitude increased to 8.0 in a conservative approach. The Mediterranean sources cover the range of source location, magnitude and azimuth most 
representative of the main tsunami sources for the French Riviera area, coming form the Algerian margin. The S*, Y*, and J* sources are based on historical events 
(1856 and 2003), and the 413* sources are derived from the No. 413 fault of the CENALT pre-computed scenario database. See Gailler et al. (2017) for more details.

Table A1 
Source Parameters for the 9 Atlantic and 8 Mediterranean Reference Scenarios
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Figure A1. Top left: the fine grid bathymetry of Morbihan with the location of the virtual wave gauges marked with red stars. Top right: the optimized α (Equation 5) 
values. Bottom left: log-log plot of the simulated (ground truth) and forecasted maximum wave heights at the virtual wave gauge points. The black line is a plot of the 
ηf = ηs line showing perfect agreement. Bottom right: percentage relative error between forecasted and simulated wave height versus ground truth at virtual wave gauge 
points for wave heights >10 cm. The wave heights from the various earthquake sources have been color-coded.
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Figure A2. Top left: the fine grid bathymetry of Bandol with the location of the virtual wave gauges marked with red stars. Top tight: the optimized α (Equation 5) 
values. Bottom left: log-log plot of the simulated (ground truth) and forecasted maximum wave heights at the virtual wave gauge points. The black line is a plot of the 
ηf = ηs line showing perfect agreement. Bottom right: percentage relative error between forecasted and simulated wave height versus ground truth at virtual wave gauge 
points for wave heights >10 cm. The wave heights from the various earthquake sources have been color-coded.
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Figure A3. Top left: the fine grid bathymetry of the Nice Area with the location of the virtual wave gauges marked with red stars. Top right: the optimized α 
(Equation 5) values. Bottom left: log-log plot of the simulated (ground truth) and forecasted maximum wave heights at the virtual wave gauge points. The black line is 
a plot of the ηf = ηs line showing perfect agreement. Bottom right: percentage relative error between forecasted and simulated wave height versus ground truth at virtual 
wave gauge points for wave heights >10 cm. The wave heights from the various earthquake sources have been color-coded.
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Data Availability Statement
The software (version 1.0.0) developed for this manuscript is licensed under BSD 2-Clause “Simplified” License 
and published on GitHub (Giles, 2022).

Figure A4. Top left: the fine grid bathymetry of Antibes with the location of the virtual wave gauges marked with red stars. Top right: the optimized α (Equation 5) 
values. Bottom left: log-log plot of the simulated (ground truth) and forecasted maximum wave heights at the virtual wave gauge points. The black line is a plot of the 
ηf = ηs line showing perfect agreement. Bottom right: percentage relative error between forecasted and simulated wave height versus ground truth at virtual wave gauge 
points for wave heights >10 cm. The wave heights from the various earthquake sources have been color-coded.
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