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Preface to ”Multiscale, Multiphysics Modelling of

Coastal Ocean Processes: Paradigms and Approaches”

Climate change and increasing human activities have resulted in many ocean flow problems,

which involve distinct physical processes across varying temporal and spatial scales and present

grand challenges to our modeling capabilities. For instance, the 2010 BP oil spill in the Gulf of

Mexico started as a fully three-dimensional, high-speed jet flow covering an area of 10 m. Later,

it evolved into drifting patches of oil film on the water surface, expanding to hundreds of kilometers

of coverage. Although both are fluid flows, the jet and patches comprise multiscale, multiphysics

phenomena; they exhibit distinct physical behaviors at vastly different scales, and different sets of

governing equations better describe them. More example problems include the interaction of land

runoff and coastal water, compound flooding, and tsunami propagation and its impact on coastal

structures. Currently, the state-of-the-art simulations for these phenomena (e.g., spill jet and oil

patches), are made using wholly disjoint computer models (e.g., from the engineering and ocean

science communities). However, these approaches encounter difficulties in appropriately handling

such multiscale, multiphysics problems to meet the needs of scientific research and engineering

practice. It has become critical to break through barriers and to integrally and simultaneously

simulate these flow phenomena and their interactions.

Multiscale simulations of coastal ocean flows trace back to early mariners interested in

determining optimal shipping routes owing to the impacts of permanent currents such as the Gulf

Stream and changing sea states. Now, such simulations have become common practice within the

ocean science community. However, this is not yet the case for multiphysics simulations, which

in general cannot be realized merely by local mesh refinement but needs to integrate different

models. To attract the attention of communities and to promote further development, this Special

Issue of the Journal of Marine Science and Engineering entitled “Multiscale, Multiphysics Modelling of

Coastal Ocean Processes: Paradigms and Approaches” is a collection of papers on the simulation of

multiscale, multiphysics coastal ocean flows. This collection provides perspectives on the status of

such simulations, discussions related to current issues, and research ideas to further understand this

field of science. This Special Issue covers coastal flooding, model assessment, effects of scales and

wind fields, model coupling, parallel computation, and computational methods.

We thank all authors who kindly contributed their papers to this issue and the in-house editors

from the Journal of Marine Science and Engineering for their kind help and co-operation. We are also

indebted to the MDPI staff for their assistance in preparing and publishing this issue.

Hansong Tang, C. Reid Nichols, Donald T. Resio, Don Wright

Editors
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Abstract: In this paper, subtidal responses of Barataria Bay to an atmospheric cold front in 2014 and
Hurricane Barry of 2019 are studied. The cold fronts had shorter influencing periods (1 to 3 days),
while Hurricane Barry had a much longer influencing period (about 1 week). Wind direction usually
changes from southern quadrants to northern quadrants before and after a cold front’s passage. For a
hurricane making its landfall at the norther Gulf of Mexico coast, wind variation is dependent on
the location relative to the location of landfall. Consequently, water level usually reaches a trough
after the maximum cold front wind usually; while after the maximum wind during a hurricane,
water level mostly has a surge, especially on the right-hand side of the hurricane. Water level variation
induced by Hurricane Barry is about 3 times of that induced by a cold front event. Water volume
flux also shows differences under these two weather types: the volume transport during Hurricane
Barry was 4 times of that during a cold front. On the other hand, cold front events are much more
frequent (30–40 times a year), and they lead to more frequent exchange between Barataria Bay and
the coastal ocean.

Keywords: cold front; Hurricane Barry; numerical simulation; subtidal hydrodynamics; multi-inlet;
volume flux

1. Introduction

The coast of Louisiana in the northern Gulf of Mexico (NGOM) is characterized by semi-enclosed
bays with exchange flows of water through multiple inlets, such as Lake Pontchartrain, Calcasieu Lake,
Vermillion Bay, and Barataria Bay. They have limited connections with the coastal ocean except
through narrow inlets. These are, however, different from inland freshwater lakes or general coastal
plain estuaries connected to the coastal ocean through multiple inlets. The NGOM has several major
environmental processes that are determined by hydrodynamics, particularly those related to the
exchange of water and sediment between estuaries and shelf water, e.g., the significant land loss
around lower Mississippi River basin associated with processes that cause erosion and sediment
transport [1–6]. Along the NGOM coast, the most regular hydrodynamic motions are the relatively
weak tides, which are mainly diurnal oscillations with a maximum tidal range of about 0.6 m [7,8].
Because of weak tides, the effect of weather [9–14] becomes more prominent in moving the sediment
through inundation and erosion [15]. As a result, the less predictable weather-induced bay oscillations
may cause more significant flood and drain of the micro-tidal system [16–20]. Synoptic weather
systems and hurricanes can produce responses in these water bodies affecting the water exchange,
which is important to the ecosystem [21–23]. However, there is a lack of in-depth analysis of weather
conditions characterizing different weather patterns.

J. Mar. Sci. Eng. 2020, 8, 979; doi:10.3390/jmse8120979 www.mdpi.com/journal/jmse1
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Among the weather influences, hurricane impact can be most dramatic. Because of the low
gradient of land and relatively shallow and broad shelf along NGOM, hurricanes can cause significant
damages to the micro-tidal coast zone [24–28]. For instance, severe storm surge caused damages in 2005
by Hurricanes Katrina and Rita [29–33], in 2008 by Hurricanes Gustav and Ike [34–37], and in 2017 by
Hurricanes Harvey and Irma [38]. Compared with hurricanes, cold front-associated winds can be more
frequent, and have a more accumulative effect in driving the hydrodynamics. The length of influence
of a cold front can reach ~2000–3000 km, much larger [39] than the region of strong wind within a
typical hurricane. Previous studies have covered various aspects of weather impact to coastal ocean.
For example, Keen [40] used numerical models to predict the waves and currents under cold front
passage over Mississippi bight. Keen and Stavn [41] later used observations and numerical models
with interaction of atmospheric forcing and hydrodynamics to investigate the optical environment at
Santa Rosa Island, Florida during two cold front passages. Water exchange and circulations in the bays
and estuaries under meso-scale weather systems like winter storms and cold fronts can be related not
only to the circulations in the coastal regions but also to the sediment transport [42] and ecosystems.
Sediment transport and distributions on the shallow shelf and in the estuaries of Gulf of Mexico under
the influence of cold front passages in winter time are investigated by, e.g., Perez et al. [43] and Kineke
et al. [44]. Siadatmousavi et al. [45] studied the wave energy during a cold front and skill assessed a
phase-averaged spectral wave model.

There have been many studies on subtidal flow in estuaries [46–48]. In these studies, the wind
effects are often discussed as a time series forcing without examining the spatial structure of the weather
systems. The subtidal energy in the estuarine circulations caused by cold fronts may be comparable
if not larger than that of tides in the area [49]. A recent study [50] investigated the weather-induced
exchange flows through multiple inlets of the Barataria Bay in a few months period in 2013, 2014,
and 2015 with 51 atmospheric cold fronts passing the Louisiana coast. These events are apparently
very common: an analysis [51] covering a period of 40 years identified more than 1600 atmospheric
frontal events, with an average of ~41.2 ± 4.7 per year excluding the months between May and August
for much weaker activities of this kind. However, no quantitative comparisons are made between the
hydrodynamic responses induced by cold fronts and that from hurricanes. Therefore, it is of interest
for a comparison between the hydrodynamic responses to these two different weather systems with
different scales.

This work will use a calibrated three-dimensional finite volume community model (FVCOM) to
simulate water level and flows in Barataria Bay under multi-scale weather systems including cold front
and hurricane events. The goals are to (1) compare the hydrodynamic responses to different weather
systems (cold front and hurricane), (2) examine water exchange between Barataria Bay and coastal
ocean through multiple inlets under the different weather systems, and (3) assess the quasi-steady
state balance under different weather systems.

2. Study Site and Data

Barataria Bay (Figure 1) is a shallow estuary in southeast Louisiana and south of the City of
New Orleans. It is bounded by several barrier islands and irregular-shaped wetlands with multiple
tidal inlets connecting to the open ocean. The main axis from north to south and from east to west is
about 30–40 km. The tidal inlets include Barataria Pass with a width of ~800 m and a maximum depth
of 20 m at the mouth, Caminada Pass with ~800 m width, 9 m depth, and a 90 degree turn in channel
orientation near the mouth, and the 15 m deep Pass Abel with a width of about 1.9 km. Freshwater is
mainly from the manmade Davis Pond Diversion facility with a capacity of about 250 m3/s of flux.
Water inside the Barataria Bay is very shallow (average depth of 2 m). Erosions in the bay appear to be
significant, e.g., there is a 50 m hole [50] northwest of the Barataria Pass, which is the deepest point
among all Louisiana lagoons, bays, and estuaries, revealing the significant contribution of non-tidal
forcing to the micro-tidal system.
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Figure 1. Study site (b) and model grid (a) for FVCOM simulation. Star represents the location of wind
observations (NDBC station GISL1); red dot represents the location of ADCP deployment for water
level and velocity observations.

Observational data of water level and velocity were obtained from 5 Sontek Argonaut DP SL
500-KHz horizontal acoustic Doppler current profilers (ADCPs, manufacture: SonTek/Xylem Inc.,
San Diego, USA). Information about the measurements can be found in Li et al. [50]. Wind data are
from the National Ocean Service station at Grand Isle (29.265◦ N, 89.958◦ W, Figure 1). The atmospheric
forcing for the upper boundary of the hydrodynamic numerical model was obtained from the global
Climate Forecast System Reanalysis (CFSR) data (https://climatedataguide.ucar.edu/climate-data/
climate-forecast-system-reanalysis-cfsr).

3. Model Setup and Validation

3.1. Model Description

A finite volume community ocean model (FVCOM) was applied in this study. FVCOM is widely
used for investigating coastal ocean hydrodynamics with complicated topography [52]. The governing
equations are [52]:
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+
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+
∂w
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= 0, (4)

where x, y, z are the three axes in the east, north, and vertical directions, respectively; u, v, w are the x,
y, z velocities, respectively, ρ0 is the density; P is the total pressure of air and water; f is the Coriolis
parameter; g is the gravitational acceleration; Km is the vertical eddy diffusion coefficient, determined by
the Mellor and Yamada [53] level-2.5 (MY-2.5) turbulent closure scheme; Fw is the diffusion term of the
vertical momentum; and Fu, Fv are the diffusion terms for the horizontal momentums.
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The surface and bottom boundary conditions are:

Km
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where
(
τsx, τsy

)
and
(
τbx, τby

)
are the surface wind stress and bottom stress vectors, respectively. H is

the water depth and ζ is the surface elevation.
(
τsx, τsy

)
is calculated by Cdρa|U10|U10, where U10 is the

wind at 10 m height, ρa is the air density (1.29 kg/m3), and Cd is the surface wind drag coefficient and
is calculated by the following equations:

Cd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0.49 + 0.065× 11.0) × 10−3, U10 < 11.0 m/s

(0.49 + 0.065× |U10|) × 10−3, 11.0 m
s ≤ U10 ≤ 25.0 m/s

(0.49 + 0.065× 25.0) × 10−3, U10 > 25.0 m/s
, (7)

where
(
τbx, τby

)
is the bottom stress calculated by Cd

√
u2 + v2(u, v), where Cd is the drag coefficient

and is determined by the following equation:

Cd = max(
k2

ln (
zab
z0
)

2 , 0.0025), (8)

where k is the von Karman constant (0.4), z0 is the bottom roughness parameter, and zab is the height
above the bottom.

3.2. Model Setup

The model mesh covers the entire Gulf of Mexico, horizontally from 80.7◦W to 97.9◦W, and zonally
from 18.1◦ N to 30.7◦ N (Figure 1). There are two open boundaries. One is located in the Caribbean
Sea, connecting the east border of the Mexico and the west edge of Cuba. The other open boundary
is located at the North Atlantic Ocean with the north point in the edge of Florida and the south
point at the border of Cuba. The mesh contains 119,566 nodes and 214,297 elements. The finest
resolution is about 50 m. There are 40 sigma layers. The model is three-dimensional barotropic,
so salinity and temperature are not simulated nor discussed. The model is cold started with a time
step of 1 s. The output time interval is set to be 30 min. The time periods for cold fronts and
Hurricane Barry are from 20 December 2013 to 30 January 2014 and 20 June to 30 July 2019, respectively.
Open boundary is only forced by tides, a combination of 10 tidal constituents (M2, S2, N2, K2, K1, O1,
P1, Q1, MF, and MM). It is predicted by a tide model called TMD [54]. Wind stress and air pressure at
mean sea level forcing at surface are obtained from the global Climate Forecast System Reanalysis
(CFSR: https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr) data
with horizontal resolution of 0.5 degree by 0.5 degree.

3.3. Model Validation

The skill scores of FVCOM in simulating water elevation and along-channel velocity are 0.7
and 0.67 (Figure 2), which shows “excellent” performance based on Wu et al. [55]. The low-pass
filtered water elevation and velocity are also in line with the observed data, which are categorized as
“very good” with the skill scores of 0.51 and 0.60 (Figure 2). Discrepancies between the modeled and
observed low-pass filtered water levels and along channel velocities may be caused by the uncertainty
of bathymetry of these highly active tidal inlets. As mentioned earlier, tidal passes of Barataria bay are
severely eroded. The model bathymetry may therefore have errors, leading to larger uncertainties in

4
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model results. Since our focus is on the weather-induced hydrodynamics, variables to be examined
below are all low-pass filtered with a cut off frequency of 0.6 cycles per day.

Figure 2. Validation of water level and along-channel velocity using observation in January 2014 at
Caminada Pass, (a,c) are validations of water elevation and surface flow at Caminada Pass, (b,d) are
validations of low-pass filtered water elevation and along channel velocity at Caminada Pass. Skill score
for water level and along channel simulation are 0.7 and 0.67, which are categorized as “excellent”.

3.4. Atmospheric Background

Here, we examine two types of atmospheric systems with different scales and influence regions.
One is a cold front that entered the study area around 0000 UTC, 6 January 2014 and left the region
around 1800 UTC, 6 January 2014. As shown in Figure 3a,b, the cold front developed from a
low-pressure center (1003 hPa), which was located in Indiana. Southwesterly wind was dominating in
our study site. As the front moved to the east, air pressure continued to drop to a minimum of 992 hPa.
When the front was passing Barataria Bay, the southwesterly wind abruptly changed to northwesterly
wind. After the cold front’s passage, wind was from the northern quadrants for about two days with a
maximum magnitude of 13.5 m/s (Figure 4a). This cold front passage is a typical weather phenomenon
between late fall and the following spring ( mostly October to April). During each of the frontal
events, wind changes its direction from southern quadrants to northern quadrants when the cold front
passages [50].

The other type of weather system studied here is Hurricane Barry. Hurricane Barry was first
originated from a mesoscale convective vortex on 2 July 2019. It went into Gulf of Mexico on 10 July
and developed into a tropical depression, before being upgraded to Tropical Storm Barry. It made its
landfall on 13 July on Marsh Island, Louisiana, 190 km west of Barataria Bay as a Category 1 hurricane
with a minimum sea-level pressure of 993 hPa and a maximum wind speed of 33 m/s (Figure 3c,d).
The maximum wind speed measured at the Grand Isle station near Barataria Bay reached 14.5 m/s.
Before Barry’s landfall, northerly wind was dominating, and after the landfall of Barry, wind changed
its direction to southerly wind and persisted for at least 4 days. From Figure 4b, one can see that
Hurricane Barry had longer influencing period than the cold front mentioned above. Wind magnitude
was also larger than that during the cold front.

5
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Figure 3. Weather maps during the cold front at 0000 UTC, 01/06 and 1800 UTC, 01/06, and during
Hurricane Barry at 0600, 07/11 and 1800, 07/14. (a,b) are the weather maps before and after the cold
front passage in January 2014, and (c,d) are weather maps before and after the landfall of Hurricane
Barry. Blue lines are contours of air pressure.

Figure 4. Wind vectors during cold front event in January 2014 and Hurricane Barry in July 2019.
(max wind magnitude: 13.5 m/s and 14.5 m/s). (a,b) show the wind vectors during cold front and
hurricane, respectively.

6
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4. Results

4.1. Hydrodynamic Response

Low-pass filtered water level variations during cold front and hurricane are shown in Figure 5a,b,
respectively. Water level dropped about 15 cm after the cold front passage during northerly wind,
so that one can see an obvious trough at 1500 UTC on 6 January. This is because northerly wind after
the cold front passage continuously blew the water out of the bay, leading to the water level minimum.
As northerly wind weakened, water level begun to rise. On the other hand, when the water level was
under the influence of Hurricane Barry, it is found that there was a surge of 40 cm after the hurricane’s
landfall, when wind also reached the maximum of 14.5 m/s. The surge resulted from the southerly
wind after Barry’s landfall, which blew the water from the coastal ocean into the bay. Compared with
the trough induced by the cold front, the surge caused by Hurricane Barry is about 3 times larger in
terms of magnitude.

Figure 5. Water level variation during different weather types. (a) a cold front event and (b) Hurricane Barry.

Figure 6 shows the surface (Figure 6a) and bottom (Figure 6b) flows at 1200 UTC on 5 January 2014
before cold front passage when southerly wind dominated (with maximum magnitude of about 3 m/s).
Flows inside the bay were in the wind’s direction, flowing from south to north. Shallower and surface
water had a larger magnitude of flows. Surface and bottom flows were unidirectional, while surface
flow had a larger magnitude. After the cold front’s passage (Figure 6c,d), when northerly wind
dominated (maximum magnitude of 13.5 m/s), flows inside the bay were also in the direction of the
wind, flowing from north to south. However, there existed a strong return flow in the middle of the
bay where it had a greater water depth, which is consistent with previous studies in many systems:
currents for shallower water tends to move in the direction of wind, whereas against the wind’s
direction for the region with a greater water depth (e.g., [49,56]). Again, surface and bottom flows
were mostly uniform, except that surface flow had a larger magnitude. This is because bottom flow is
decreased by bottom friction.

Figure 7 shows the surface (Figure 7a,c) and bottom (Figure 7b,d) flows prior (Figure 7a,b) and
after (Figure 7c,d) Hurricane Barry’s landfall. During Hurricane Barry, wind was rotating clockwise.
Before Hurricane Barry’s landfall, wind in the northern quadrant was dominating (with magnitude of
10 m/s). As a consequence, both surface and bottom currents were flowing in the direction of wind,
from north to south in the shallow water region. An apparent returning flow against the wind’s
direction occurred in the deeper water region. After the landfall of Hurricane Barry, southerly wind
dominated with the magnitude reaching 14.5 m/s. The surface and bottom flow in shallower water
were flowing in the direction of the wind, moving from south to north, while in the deeper water region,
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they were flowing against the direction of wind, moving from north to south. Similarly, surface and
bottom flows were mostly unidirectional, except that the surface flow had a larger magnitude.

 

Figure 6. Surface and bottom flows influenced by the cold front event in January 2014. (a,b) are surface
and bottom flows on 1200 UTC, 5 January 2014; (c,d) are surface and bottom flows on 1800 UTC,
1 January 2014.

4.2. Water Volume Transport

To examine the water transport through multiple inlets, water volume fluxes are calculated using
the following equation [50]:

V(t)|Γ =

∫ ς
−H

(

L∫
0

Vn(x, y, z, t)|Γdξ)dz, (9)

where V is the water volume flux in cubic meters per second. Γ is the transect perpendicular to the
along-channel direction, H is the water depth, and ζ is the surface elevation. Vn(x,y,z,t) is the low-pass
filtered along-channel velocity in different water depths. A positive sign means water is transported
into Barataria Bay.

Figure 8 shows the volume flux through Caminada Pass, Barataria Pass, Pass Abel, and Quatre
Bayou. Positive value means water is flowing into the bay, while negative values means water is
flowing out of the bay. During the cold front event in January 2014, the results indicate that water

8



J. Mar. Sci. Eng. 2020, 8, 979

volume flux through Barataria Pass was the largest. Before cold front passage at 0000 on 6 January,
water was flowing inside the bay through Caminada Pass and Quatre Bayou, while it was transported
out of the bay through Barataria Pass and Pass Abel, which is consistent with mode 2a in Li et al. [50]
under southerly wind. After the cold front’s passage, as wind changed its direction from the south
quadrants to north quadrants, volume flux through the four inlets began to decrease, then started to
flow into the bay. Interestingly, volume flux changed the sign at different time stages: volume flux
through Barataria Pass changed its sign first, followed by Pass Abel, Caminada Pass, and Quatre Bayou
at last, which means there was a period (from 2000 UTC on 6 January to 0000 UTC on 7 January) when
water was flowing out of the bay through Barataria Pass, while flowing inside of the bay through the
other three inlets. From 0000 UTC on 7 January, water was transported into the bay through both
Barataria Pass and Pass Abel, but it transported out of the bay through the other inlets, which is
consistent with mode 2b in Li et al. [50] under northerly wind.

 

Figure 7. Surface and bottom flows under Hurricane Barry in 2019. (a,b) are surface and bottom flows
on 0600 UTC, 11 July 2019; (c,d) are surface and bottom flows on 1800 UTC, 14 July 2019.

During Hurricane Barry, wind changed direction from the northern quadrants to southern
quadrants. Therefore, the volume flux changed its sign after Barry’s landfall on 13 July 2019, flowing into
the bay through Barataria Pass, Pass Abel, and Quatre Bayou at first, then flowing out of the bay
through these inlets afterwards. Note that Caminada Pass had the opposite condition: water was
flowing out of the bay and then into the bay after Barry’s landfall. This pattern is not included in
any mode in cold front-induced flows [50]. Obviously, the mode of hurricane-induced flows can be
different from that due to cold fronts. Before Barry’s landfall, Pass Abel had the largest inward flux
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under northerly wind, and after Barry’s landfall, Barataria Pass had the largest outward flux with a
magnitude reaching 2500 m3/s, which was about 4 times of that induced by the cold front.

Figure 8. Volume flux through four inlets. (a) are fluxes in four passes during cold front, (b) are fluxes
in four passes during Hurricane Barry.

5. Conclusions

Cold fronts and hurricanes have different wind patterns, and temporal and spatial characteristics:
cold fronts usually have abrupt changes in wind direction (from southern quadrants to northern
quadrants) before and after the frontal passage, with several hours to 3 days in duration, and 2000–3000 km
length of front and a narrow width (less than 10 km) of the front. However, a hurricane has a radius of
maximum wind (30–50 km) larger than the width of the frontal zone, and with a longer impact period
of about a few days to a week, stronger maximum wind, and a rotating wind. Due to these differences,
a cold front is more likely to result in a trough in water level post front, while hurricane tends to
produce a more significant storm surge even severe inundation. The maximum of the variation in
water level caused by Hurricane Barry was about 3 times of that caused by a cold front. The ratio is
variable at different locations relative to the location of landfall.

Surface and bottom flows inside the Barataria bay have unidirectional movement except that
surface flow has a larger magnitude. Currents tend to flow in the direction of wind in the shallower
water region, but against the direction of wind in the deeper water region, resulting in a returning
flow in the middle of bay. Water is transported out of the bay after a cold front passage. However, it is
transported into the bay after Hurricane Barry’s landfall. Volume flux through four inlets of Barataria
Pass follows two EOF modes found by Li et al. [50] under a cold front event, in which water tends to
be transported out of (into) the bay through Barataria Pass and Pass Abel during southerly (northerly)
wind and into (out of) the bay through Caminada Pass and Quatre Bayou under southerly (northerly)
wind. However, the volume flux through the four inlets of Barataria Bay shows different pattern under
Hurricane Barry: water is flowing into (out of) the bay through Barataria Pass, Pass Abel, and Quatre
Bayou under northerly (southerly) wind. The flux is the opposite through Caminada Pass, which is
flowing out of (into) the bay during southerly (northerly) wind. The maximum water volume flux
induced by hurricane is about 4 times that induced by a cold front event, indicating that the influence
of four cold fronts is comparable with one hurricane event.
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Abstract: Turbidity currents deliver sediment rapidly from the continental shelf to the slope and
beyond; and can be triggered by processes such as shelf resuspension during oceanic storms;
mass failure of slope deposits due to sediment- and wave-pressure loadings; and localized events that
grow into sustained currents via self-amplifying ignition. Because these operate over multiple spatial
and temporal scales, ranging from the eddy-scale to continental-scale; coupled numerical models
that represent the full transport pathway have proved elusive though individual models have been
developed to describe each of these processes. Toward a more holistic tool, a numerical workflow was
developed to address pathways for sediment routing from terrestrial and coastal sources, across the
continental shelf and ultimately down continental slope canyons of the northern Gulf of Mexico,
where offshore infrastructure is susceptible to damage by turbidity currents. Workflow components
included: (1) a calibrated simulator for fluvial discharge (Water Balance Model - Sediment; WBMsed);
(2) domain grids for seabed sediment textures (dbSEABED); bathymetry, and channelization;
(3) a simulator for ocean dynamics and resuspension (the Regional Ocean Modeling System; ROMS);
(4) A simulator (HurriSlip) of seafloor failure and flow ignition; and (5) A Reynolds-averaged
Navier–Stokes (RANS) turbidity current model (TURBINS). Model simulations explored physical
oceanic conditions that might generate turbidity currents, and allowed the workflow to be tested for
a year that included two hurricanes. Results showed that extreme storms were especially effective
at delivering sediment from coastal source areas to the deep sea, at timescales that ranged from
individual wave events (~hours), to the settling lag of fine sediment (~days).

Keywords: turbidity current; suspended sediment; numerical model; Gulf of Mexico
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1. Introduction

The Gulf of Mexico continental margin generates >1.7 million barrels of oil per day, through >3500 oil
platforms. The northern Gulf of Mexico houses >45,000 km of underwater pipes that may be exposed
to structural damage from extreme oceanic events. During the passage of a hurricane, storm waves
can exceed 10 m in height, resuspending seafloor sediment and potentially liquefying the seafloor.
Both of these mechanisms may induce sediment turbidity currents, and in fact, ~5% of the underwater
petroleum pipes appear to be broken or damaged by sudden powerful turbidity currents (BOEM pers.
comm. 2015). For example, in 2004, a large sediment failure in the wake of Hurricane Ivan toppled an
oil platform offshore of the Gulf of Mexico and moved it ~0.17 km downslope, initiating oil and gas
leaks at a water depth of 140 m [1]. Leakage from such offshore oil and gas infrastructure puts at risk
about 40% of the USA’s coastal and estuarine wetlands, which are vital to recreation, agriculture, and a
$1B/y seafood industry [2].

Turbidity currents are important transport mechanisms in submarine canyons [3,4], such as the
Mississippi and the De Soto Canyons, which incise the continental slope offshore of the Mississippi
Delta. Several processes have been shown to have the potential to generate turbidity currents,
including physical oceanographic mechanisms. Internal wave breaking on the upper slope may
mobilize seafloor sediment [5]. Wave-current interactions on continental shelves during large oceanic
storms can initiate wave-supported gravity flows [6]. Continental slope deposits may experience
sediment failure triggered by sediment loading and over-steepening, and aided by excess pore pressure
brought on by ground accelerations [7,8]. Localized events may grow into sustained currents via a
self-amplifying ‘ignition’ process with accelerating erosion and entrainment of sediment from the
seafloor [9,10].

While the relative importance of these mechanisms in the northern Gulf of Mexico remains to
be seen, evidence points to the potential for oceanic storms to mobilize sediment there, either during
the passage of moderate storms [11] or more extreme events such as hurricanes [12]. Analysis of
sediment deposits indicated that most (~75%) of the sediment budget of the Mississippi Canyon
could be attributed to delivery during major hurricanes, likely through gravity-driven transport [13].
Several processes affect the seafloor during short-lived hurricane passages, including sediment mass
failures, erosion, and suspension. For example, mudflows in the Mississippi Delta area, triggered
by the 1969 Category 5 Hurricane Camille, destroyed the offshore platform SB-70B. The seafloor at a
depth of about 90 m moved more than 1000 m downslope with soil flows up to 30 m in thickness [14].
Seafloor shear stresses from waves and currents of up to 1 N/m2 were monitored at a depth of 90 m
during the 2004 Category 5 Hurricane Ivan, reaching the critical shear stress for fine gravel [15].
The Ivan event lifted suspended sediment as high as 25 m in the water column and eroded the seafloor
up to 0.30 m vertically over more than 500 km2, thus removing hundreds of millions of tons of sediment
with deposits at the shelf edge and upper slope [16], and additionally causing apparent damage to oil
infrastructure [1]. Evidence of the effects of large storms at great depth in the Gulf of Mexico has been
seen in conjunction with other hurricanes, such as Hurricane Georges in the Mississippi Canyon [12];
Hurricane Frederic in the De Soto Canyon [17]; and Hurricane Allen [18]. Rapid loading of sections of
the seafloor locally enhances the prospects for gravitational slope failures, given the associated rapid
increase in pore pressures and reduction in effective sediment strengths [7]. Process-based numerical
modeling offers a way to study such ephemeral high-energy processes.
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Studies of sediment dispersal on continental margins, including the northern Gulf of Mexico,
have typically focused on an individual component of the transport path such as gravity-driven
transfer via canyons, shelf resuspension, or flood plume dispersal. For example, numerical models for
suspended sediment transport have been developed and applied to the northern Gulf of Mexico [19–22],
but these types of suspended transport models have not been directly linked to turbidity current
models. This paper describes a numerical capability to simulate the transport of sediment, from fluvial
sources, to the continental shelf, the deeper continental slope, and ultimate depocenters. Accounting
for these sediment transport pathways, and the hazards that they present, is a problem of multi-scale
physics, ranging from continental-scale drainage basins that deliver sediment to the sea, to shelf-wide
storm systems that mobilize and redistribute sediment, to small-scale turbulent motions that affect
turbidity current generation and structure.

This paper describes a loosely coupled numerical workflow that has been developed to address
land-sea pathways for sediment routing of terrestrial and coastal sources, across the continental shelf,
and ultimately down the continental slope and canyons of the northern Gulf of Mexico. Few studies
have attempted to integrate the various transport mechanisms into a single comprehensive framework,
accounting for the multi-scale physics that are relevant to the full sediment transport pathway.
The workflow was used to explore conditions that may trigger episodes of sediment transport onto the
continental slope and to evaluate two hypotheses: (1) episodic sediment transport down a submarine
canyon is fed by sediment input at the canyon head from wave and current resuspension, and (2)
turbidity currents are triggered by failures near the shelf-slope break and are likely to pass into the
canyons of the continental slope. Simulation results were based on oceanographic and meteorological
conditions that could impact the generation of turbidity currents. The workflow (Figure 1) includes
modules that:

(1) Simulate the fluvial delivery of water and sediment into the Gulf of Mexico with the Water
Balance Model-Sediment (WBMsed) and as augmented by USGS (US Geological Survey) and USACE
(US Army Corps of Engineers) gauged river data;

(2) Develop domain grids and bathymetry for ocean circulation and sediment transport models;
(3) Compute spatial griddings of seabed sediment texture from dbSEABED, and of topographic

channelization from the bathymetry, for use in sediment transport and seabed failure models;
(4) Employ a high resolution (10 km) spectral wave action model (WaveWatch III®) driven by

GFDL-GFS (Geophysical Fluid Dynamics Laboratory–Global Forecast System) winds for use in the
ocean and sediment transport models;

(5) Calculate hourly-timescale ocean circulation at a spatial resolution of a few kilometers via the
Regional Ocean Modeling System (ROMS) forced with ECMWF (European Centre for Medium-Range
Weather Forecasts) ERA (ECMWF Re-Analysis) winds;

(6) Represent seafloor resuspension and transport at the same resolution as ROMS’ hydrodynamics
using the Community Sediment Transport Modeling System (CSTMS);

(7) Apply seabed mass-failure and a sediment suspension model (HurriSlip) to determine failure
and ignition locations, and the conditions to be used as input to the turbidity current model;

(8) Develop and deploy a Reynolds-averaged Navier–Stokes (RANS) model (TURBINS) to route
sediment flows down the Gulf of Mexico slopes and canyons, providing estimates of bottom shear
stress needed for ascertaining possible damage to offshore infrastructure.
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Figure 1. Workflow showing models employed and boundary data usage. Models and data systems
discussed in detail in the text. The white text identifies whether the models ran were Point models,
2D horizontal plan-view; 2D vertical transect or 3D.

2. Materials and Methods

Section 2.1 describes the northern Gulf of Mexico, where the model workflow was applied.
Section 2.2 provides descriptions and methods for each component of the workflow, noting how the
various components can interact with one another. Section 2.3 outlines the implementation of the suite
of models used to evaluate sediment routing in the northern Gulf of Mexico.

2.1. Environmental Setting

The Mississippi River drains 41% of the continental United States before entering the northern
Gulf of Mexico (Figure 2). The discharge of the Mississippi River is regulated so that approximately
70% of it enters the Gulf through its main Mississippi River channel, while the remaining 30% enters
through the Atchafalaya River channel [23]. Average modern-day sediment loads of the Mississippi
and Atchafalaya Rivers are 115 and 57 Mt/yr, respectively [23]. Sand is deposited near the river
mouths while most of the remaining suspended silts and muds are dispersed more widely [19,24,25].
Rapid delta progradation during the Holocene has narrowed and steepened the continental shelf
(~20 km wide, ~0.4◦ gradient). The Mississippi Canyon, which cuts into the continental slope to
the west of the bird-foot delta has been implicated as a conduit for shelf sediment during large
storms [12,26].

A fair amount is known about suspended sediment dispersal on the Gulf of Mexico continental
shelf. Frontal systems that occur frequently during winter months can create energetic waves and
currents that cause significant sediment transport [27,28]. Wave contributions dominate the bed
stresses on the continental shelf offshore of the Mississippi Delta, but fairweather waves are typically
capable of mobilizing the seabed only in the surf and nearshore zones [19]. During extreme oceanic
storms, however, deep-water wave heights exceed 10 m, with nearshore waves east of the bird-foot
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delta reaching 9 m in 15 m of water during Hurricane Ivan [29]. Storm waves, either from moderate
storms or intense but infrequent hurricanes, have been shown to mobilize sediment mass failures on
the Mississippi River Delta Front at water depths of ~75 m [11]. Sediment trap data and allied mooring
and camera data from deep-water locations (~1000 m) have indicated that frequent, small magnitude
resuspension events driven by inertial currents contribute to sediment transport there [30]. Less is
known, however, about the mechanisms that drive shelf–slope sediment exchange or transport down
the continental slope or canyons.

Figure 2. Study area identifying locations of bird-foot delta and Southwest (SW) Pass of Mississippi
River; Atchafalaya River and Bay; Mobile Bay; Tarbert Landing (site of commonly used river gauge).
Satellite image of Mary 17, 2011 from MODIS on NASA’s Aqua satellite.

2.2. Workflow Components

Sections 2.2.1–2.2.6 describe individual workflow components, each developed to quantify a
different component of the sediment dispersal pathway, from delivery of sediment to the norhtern
Gulf of Mexico from river discharge, to turbidity current transport in deep water.

2.2.1. River Discharge Modeling Results and Observations

Few rivers that discharge into the Gulf are adequately gauged, with only the Mississippi and
Pearl Rivers having associated sediment flux determinations. Therefore, a global WBMsed [31,32]
was used to estimate daily discharge and sediment flux from rivers into the northern Gulf of Mexico.
WBMsed combined the Water Balance Model (WBM) with the BQART and Psi models. Specifically,
BQART simulates long-term (30+ years) average suspended sediment loads for a basin outlet and
is based on individual upstream basin properties for each distributed pixel, including geographical,
geological and human factors [33]. The Psi variability model resolves the suspended sediment flux on a
daily time step from the long-term sediment flux estimated by BQART, able to capture the intra-annual
and inter-annual variability observed in natural river systems [34]. Skill assessment of WBMsed was
based on a comparison to daily USGS observations of water and sediment discharge [35]; and daily
discharge predictions compared favorably to both ground-based gauging stations and satellite-based
observations [31,36]. Sixteen rivers that discharge to the northern Gulf of Mexico (Figure 3A) were
simulated using observed conditions for 1995–2011.
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Freshwater discharge to the northern Gulf of Mexico peaks seasonally in February through March
(Figure 3B). The combined Mississippi–Atchafalaya Rivers supply 81% of the freshwater discharge
into the northern Gulf; other significant riverine sources are identified in Figure 3A. The combined
Mississippi and Atchafalaya flow averages 20,874 m3/s with a standard deviation of 11,211 m3/s (USACE
observations). The WBMsed estimate of the combined Atchafalaya–Mississippi discharge for the same
period was 18,300 m3/s, with a standard deviation of 12,400 m3/s. The total predicted (1995–2011)
discharge for all northern Gulf rivers was 22,800 m3/s, with a standard deviation of 15,400 m3/s.
The merged discharge of non-Mississippi rivers was 4540 m3/s or 19% of the total flow into the northern
Gulf of Mexico, with a standard deviation of 4730 m3/s (Figure 3C). The 17 y one-day high of these
non-Mississippi sources was 30,000 m3/s (8 March 1998), highlighting a potential issue of studies
that solely consider the Mississippi River discharge. On 13 November 1997, these non-Mississippi
sources accounted for 66% of the total freshwater input into the Gulf (of 15,500 m3/s), a 17 y one-day
maximum contribution.

The USGS observations (1995–2011) of Mississippi River sediment load indicate a mean value of
170 Mt/y. Sediment discharge to the northern Gulf of Mexico is seasonal but with peak loads of short
duration (Figure 3D). On average, the Mississippi River supplies 88% of the fluvial sediment load to
the northern Gulf, although its contribution varies from more than 99% to less than 15% on any given
day. Based on WBMsed, the 14 non-Mississippi Rivers identified in Figure 3A supplied 16.2 Mt/y of
sediment to the northern Gulf of Mexico during the same period.

Figure 3. (A) WBMsed model: color shows discharge rates for March 1, 2005; numbers identify river
outlets: (1) Apalachee, (2) Apalachicola, (3) Conecuh, (4) Choctawhatchee, (5) Escambia, (6) Mobile,
(7) Pascagoula, (8) Mississippi and Atchafalaya, (9) Pearl, (11) Grand, (12) Sulphur, (13) Sabine,
(14) Neches, (15) Trinity, and (16) Conroe. (B) Total daily water discharge (m3/s) entering the northern
Gulf of Mexico (WBMsed simulation). The 2011 flood season (partly shown) was amongst the most
devastating floods in the continental US history. (C) The percentage of non-Mississippi freshwater
discharge entering the northern Gulf of Mexico study region (WBMsed simulations). (D) Total suspended
load (Kt/d) entering the northern Gulf of Mexico (WBMsed simulations).
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2.2.2. Ocean Hydrodynamic and Wave Model

ROMS is a mature numerical framework that represents ocean dynamics over a wide range
of spatial (coastal to basin) and temporal (days to inter-annual) scales. A three-dimensional,
free-surface, terrain-following ocean model, ROMS resolves the primitive momentum and continuity
equations modeling large-scale ocean circulation using the hydrostatic vertical momentum balance and
Boussinesq approximation [37,38]. The dynamical kernel includes accurate and efficient algorithms
for time-stepping, advection, pressure gradient [38,39], subgrid-scale parameterizations to represent
small-scale turbulent processes [40,41] and various bottom boundary layer formulations to determine
the stress exerted on the flow by the sediment bed.

For our implementation, two nested ROMS grids were run. The larger-scale coarser model
represented hydrodynamics over the entire Gulf of Mexico (Figure 4, black box; hereafter, Grid-g) and
provided boundary conditions to a finer-scale model that calculated higher-resolution hydrodynamics
and sediment transport (Figure 4, red box; hereafter, Grid-f). The initial and lateral boundary conditions
for Grid-g were derived from the northwestern Atlantic ROMS 50-year solution (courtesy E. Curchitser,
Rutgers U.) and the Simple Oceanic Data Assimilation (SODA) global reanalysis 50-year dataset (stored
as 5-day averages). The annual and monthly temperature and salinity climatology for Grid-g were
objectively analyzed from the 1998 World Ocean Atlas. The tidal amplitude and currents (S2, M2, K1,
O1 semidiurnal and diurnal components) forcing for Grid-g’s open boundaries were derived from the
Oregon State University Tidal Prediction Software (OTPS). Both Grid-g and Grid-f included river runoff,
and their forcing atmospheric fields were obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim, 3-hour dataset available since 1 January 1978, to the present.

Figure 4. Gulf of Mexico bathymetry showing grid domains from the full coarse grid (Grid-g,
black box), and the northern nested grid (Grid-f, red box). Black dashed lines mark approximate tracks
of Hurricanes Gustav and Ike. Locations of De Soto and Mississippi Canyons also noted.

The bathymetric grids used by ROMS were melded between ETOPO2 (2 arcminute resolution) and
15arcsecond resolution for the shelf and canyons. Apparent in the bathymetry is the narrowing of the
continental shelf near the bird-foot delta, and the presence of both the Mississippi and De Soto Canyons.
ROMS has terrain-following vertical coordinates, preferred for modeling suspended sediment transport.
The bathymetry was smoothed to suppress computational errors in the discretization of horizontal
operators (pressure gradient, advection, and diffusion) using a method [42] that allows constraints in
the smoothing minimization like preserving the bathymetry in specific grid cells (e.g., on the continental
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plateau), maximal amplitude modification, desired slope and steepness (r-factor), land/sea masking,
and preservation of volume.

Spatial and temporal wave data are required to parameterize bottom stress due to wave-current
interactions, which affects seafloor sediment transport. ROMS requires several wind-induced
wavefields to compute bottom stresses from the various bottom boundary layer sub-models
available [43]. These fields include significant wave height, wave direction, surface wave period,
bottom wave period, bottom orbital velocity, and wave energy dissipation rate. The required fields
were processed from the NOAA/NCEP WaveWatch III®dataset (WW3; [44]). They were available at
three-hour intervals on a grid having a ten arc-minute resolution, and driven by GFDL-GFS winds.
The WW3 data were processed from 1 January 2006, to 31 December 2012. Figure 5A,B show wave
height and the period during Hurricane Gustav, which impacted the study area during the late summer,
2008. Near-bed wave orbital velocity and near-bed wave periods were estimated from the surface
wave characteristics (calculated followng [45]). Figure 5C,D show a sample of bottom wave period
and bottom orbital velocity during Hurricane Gustav.

y g

Figure 5. Top row: estimates of wave properties for September 1, 2008 during Hurricane Gustav.
(A) wave height (m), and (B) wave period (s) from NOAA-NCEP Wavewatch III®model. Black box
indicates the location of ROMS hydrodynamic Grid-f, and contours show Grid-f bathymetry (m).
Bottom row: calculated estimates of (C) bottom wave period (s) and (D) bottom orbital velocity (m/s)
(calculated following [45]). Transects show locations of flux calculations shown in Figure 9A (MW:
Mississippi West); Figure 9B–E (MC: Mississippi Canyon), and Figure 9F–I (DC: De Soto Canyon).

2.2.3. Spatial Seabed Datasets

The dbSEABED facility [46–48] supplied information on the spatial distributions of seabed sediment
type based on interpolations of more than 105 individual data records gleaned from numerous published
and unpublished sources. The database provides 0.01-degree resolution mappings of mean grain
size (Figure 6A), as well as sorting (Phi), gravel, sand and mud fractions (%), exposure of rock (%),
and sediment carbonate percent. Local patchiness results from the presence of deep cold-water
coral banks [49], low-stand shelf-edge delta remnants [50], and methanogenic carbonate rock and
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rubble [51]. The shelf areas have important occurrences of gravel, shell, and hard grounds colonized
by skeletal-benthos [52].

Sediment stabilities and sediment dispersal patterns are strongly determined by the seabed
geomorphology, especially the slope and curvature. To assist the modeling of the generation and then
the fate of the turbidity currents, derivative layers were computed from the SRTM30+ bathymetry,
including slope gradients, and location and dimensions of the channelizations. Channel locations are
well-discriminated using integration methods such as contributing area; here, the PyDEM package [53]
was used for such procedure (see background on Figure 6B). On those features, channel-floor dimensions
like widths and gradients were computed using operations on the original gridded bathymetry [54],
and their values were mainly supplied to the RANS/TURBINS turbidity current models.

 

 

Figure 6. (A) The background shows the region’s bottom-sediment grain sizes, blue-yellow-red for
the range 10 to -8 phi (clay-sand-cobble) from dbSEABED. The superimposed points show locations of
modeled turbidity current ignitions for Hurricanes Gustav and Ike. Purple points near Mississippi
Canyon and Delta mark locations that are particularly prone to ignitions based on density-stability
and energy-balance (Knapp–Bagnold, ‘KB’) measures. The blue points show locations that may also
be prone to ignitions. This analysis makes no determination on whether flows will persist over
distances. (B) The background shows channelized structures (integrated contributing area) for the
region, with dark traces marking the most pronounced channels. (Note: The shelf area indications
of channeling are dominated by noise in this mapping.) The purple to blue points mark locations of
modeled surficial mass failures for Hurricanes Gustav and Ike. The Factors of Safety (FoS) indicate the
potential for wave-induced mass failure and hence possibly, turbidity currents: purple—very high,
blue—high, pale blue—significant. Bathymetric contours shown with depth (m) labeled.
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2.2.4. Suspended Sediment Transport Model (CSTMS)

The Community Sediment Transport Modeling System (CSTMS) has been coupled to the ROMS
hydrodynamic kernel to represent suspended and bed sediment using user-defined sediment classes;
to date, most published CSTMS simulations use the non-cohesive routine (see [43]). Each sediment
class has attributes of grain diameter, density, settling velocity, and an erosion rate parameter. These are
specified in an input file and held constant for the model run. The erodibility of non-cohesive sediment
depends on the critical shear stress for erosion (τcr), specified for each sediment type in an input file.
Suspended transport is estimated by assuming that each sediment class acts independently of the others,
and travels along with the ambient current velocities, with the addition of the sediment class’ settling
velocity. The contribution of suspended sediment to water column density is included in the equation
of state, and allows for gravitationally driven bottom-boundary layer flows [55,56]. Net exchange of
sediment between the seabed and suspended load are estimated by assuming simultaneous erosion,
and deposition via settling [43].

We implemented suspended sediment transport simulations for the northern Gulf of Mexico using
CSTMS on the three-dimensional Grid-f (see Figure 4) from 1 October 2007, through 30 September
2008. This included periods of energetic waves, elevated fluvial discharge, and also Hurricanes Gustav
and Ike (Figure 7). Transport and deposition was calculated for seven sediment classes, representing
fluvial and seabed sources (Table 1). Fast- and slow-settling sediment was simulated for riverine
sediment from the Mississippi, Atchafalaya, and Mobile Rivers. Discharge and sediment concentrations
were derived from USGS gauges. Model calculations included estimates of suspended sediment
concentration and flux at each location in the three-dimensional ROMS Grid-f, and sediment deposition
and erosion at each of the horizontal grid points. While the model timestep was 20 s, the output data
was saved at hourly intervals.

Figure 7. Observed Mississippi River discharge (USGS), and wave height (NOAA’s NDBC Buoy #42889)
during the modeled period. Hurricanes were in the Gulf of Mexico between 30 August–1 September
(Gustav) and 10–13 September (Ike), 2008.

Table 1. Parameters for the suspended sediment transport model. Three sediment classes represented
the initial seabed, two sediment classes were discharged by the Mississippi River, and two sediment
classes were discharged by the Atchafalaya and Mobile rivers. Critical shear stress and settling velocity
for these were based on previous studies [19,20].

Sediment Class Source Sediment Type D (mm) Tcr (Pa) ws (mm/s)

1
Seabed

Mud 0.063 0.11 1.0
2 Sand 0.125 0.13 10.0
3 Gravel 10.0 10.0 70.0

4 Mississippi River Small Mud 0.015 0.11 0.1
5 Larger Mud 0.063 0.11 1.0

6 Atchafalaya/Mobile Rivers Small Mud 0.015 0.03 0.1
7 Larger Mud 0.063 0.03 1.0
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2.2.5. Turbidity Current Ignition Models

A package of one-dimensional, time-dependent, process-numerical modeling modules was used
to investigate conditions for wave-induced sediment resuspension and mass wasting, which could
potentially lead to turbidity current ignitions. Turbidity currents are known to be generated during
events of intense sediment resuspension and mass failure, especially over sloping seafloor [57,58].

The inputs to the modeling package HurriSlip included a three-hourly spatially-gridded wave
climate based on WaveWatch III®data, surficial seabed material properties from dbSEABED, and slope
calculations derived from the SRTM30+ bathymetry. Whereas the CSTMS suspension model uses
the significant orbital velocity to calculate bed stresses, the implementation of HurriSlip relied on
a more energetic member of the wave spectra (H1/10) to represent resuspension by extreme waves.
The predicted sediment failure and ignition events were passed to the RANS/TURBINS model-suite,
which could simulate the subsequent turbidity current flows down the continental slope. For the
predicted cases, the starting flow height, suspended sediment concentration and grain size, and flow
velocity were provided. The focus of the work with HurriSlip was on the scale of 0-20 m above the
seabed with a horizontal resolution of about 1 km.

Sediment resuspension sources: The primary sub-module, SuspendiSlip, tested for a likely
distribution of turbidity flows arising from wave-induced resuspension of surficial bottom sediment.
Most sediment suspension in the continental shelf is thought to be from wave activity during
storms [19]. Under significant wave action, bottom-water layers hold significant suspended sediment
and turbulent kinetic energy. The module computed several criteria about the ignition of flows.
That is, the transformation from bottom waters having significant sediment loading and density to
self-sustaining, downslope density-flows undergoing an auto suspension process [59], which allows
them to travel for long distances at high speeds. The sediment-laden bottom-water layers were tested
from a reference height corresponding to the wave boundary layer thickness up to a height of significant
suspension in a Rouse profile. Sediment pickup was modeled using the excess-over-critical bed shear
stress for the sediment, using different formulations for muds [60] and sands [61]. Those published
formulations focus on granular erosion at low velocities (mostly <0.5 m/s). However, fine sediments
under extreme bed shear during storms are known to erode by bulk-failure [62,63]. The fine sediment
erosion rates were capped at the values reported in the publications for the highest bed shear stresses
to allow for this.

The bulk, densiometric, Richardson Number (Ri, non-dimensional) divides layers between
subcritical (>1.0) and supercritical (<1.0) on the value of Ri = (g R C h)/U2 , which depends on
gravitational acceleration (g, m/s2), sediment grain immersed specific gravity (R, non-dimensional),
suspended sediment concentration (C, ppm v/v), flow thickness (H, m), and flow velocity (U, m/s).
Flows in supercritical disequilibrium are observed to form sustained turbidity currents [64].
The turbulence-supporting flow velocity of layers is reported, based on bottom orbital velocity and
ambient currents. For the wave characteristics, Airy linear wave theory was employed. Water properties
were not relevant to this calculation; the work of the gravity flow is based on density contrasts due to
the suspended sediment.

The primary criterion for ignition was the Knapp–Bagnold criterion (Equation (14)b from [59]),
which approximately relates the necessary energy balance (US)/ws > 1, formulated with the seabed
gradient (S, non-dimensional) and the grain settling velocity (ws, m/s). Note that other criteria involving
sediment and water entrainment (Equation (16) from [59]) apply to later flow-stages and are less
relevant to initial ignition. The modeled events which satisfied the criteria were logged with their
associated parameters, and collated onto a mapping (Figure 6A).

Mass failure sources: Large-scale mass failure events are also known to yield or transform into
turbidity currents that can travel much further and faster than the original failure structure or debris
flow [65,66]. The WaveSlip submodule tested for a wave-induced mass failure of seabed sediment
during storms based on the circular failure approach [67]. It proved an array of plausible failure arcs,
depths, and footprints. Cyclic force moments for each wave period were combined with gravitational
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moments, and those driving forces were balanced against resisting ones (e.g., gradient shear strength)
to test for mass failure. The complex interplay between wave-induced pressures, the footprints of
loadings, sub-bottom depths of possible failure arcs, and the gravity-driven and wave-driven moments
was integrated into a seafloor Factor-of-Safety (FoS) where values less than unity imply instability—the
situation of interest.

The possibilities of mass failure were explored for three particular seabed conditions: (i) static
undrained conditions of intact shear strength; (ii) remolded shear strengths considering cyclic
wave-induced shear strains in the bottom; and (iii) in the presence of liquefaction, especially in shallow
waters under long-period surface-waves. For (i), the static shear strengths were calculated using
look-up values for the Mississippi Delta area [67]. Remolded values (ii) were computed from those
based on wave-induced strains (after [68]). They were scaled linearly against a full remolding to 30% of
the intact strengths occurring at 15% cumulative strain. To assess liquefaction potential (iii), a dedicated
submodule LiquiSlip compared results using previous analytical solutions i.e., [69,70]. Significant wave
heights and periods (Hs, m; Tp, s) were assumed to hold for more than 100 wave cycles, and were
extracted from WaveWatch III® data for each modeled location and time. (Cases of breaking waves
were excluded from the analysis; see [70]). Required values for seabed porosity, cohesion, permeability,
and relative density (after [71,72]) were calculated based on surface sediment type from dbSEABED.
The sediment thickness, for which only sparse sub-bottom data exists, was assumed to be effectively
infinite. Note that this assumption will not apply in areas <30 m water depth where a “basal, erosional
unconformity” at approximately 10 m sub-bottom marks the presence of a firm foundation under
Holocene sediments (see [73]). Our study excluded such shallow areas. Time-series of the essential
parameters were plotted (not shown) for selected sites in the area to monitor the WaveSlip and LiquiSlip
modeling components.

After the modeling, which took place through the approximately 9 million cell spatial-temporal
domain of the project, events at the lowest slope-stability FoS were collated and plotted, culminating in
the mapping of failure predicted events (Figure 6B). All modeled mass failure events were indicated
as potential sites of associated turbidity current ignitions, and their details were passed to the
RANS/TURBINS component.

2.2.6. RANS/TURBINS: a RANS Sediment Gravity Flow Model

TURBINS [74,75] solves the incompressible Navier–Stokes equations in the Boussinesq limit with
a convection-diffusion equation for the sediment concentration of small, polydisperse particles whose
density significantly exceeds fluid density [76,77]. As a three-dimensional, time-dependent model,
TURBINS provides spatially and temporally resolved information about the turbulent velocity and
sediment concentration fields, conversion of potential into kinetic energy, and the dissipation of this
kinetic energy neglecting the effects of rotation. The dispersed phase is assumed to be sufficiently
dilute so that the momentum equation governs the two-way coupling between the fluid and particles;
the effect of particle loading in the continuity equation is neglected, as are particle interactions such as
hindered settling. Particles are assumed to have an aerodynamic response time much smaller than
typical fluid flow time scales [78]. Hence, the particle velocity is given by the sum of the fluid velocity
and the constant settling velocity. Polydisperse distributions are implemented by considering different
particle size classes, each assigned a settling velocity, and contributing to the overall fluid density
distribution. Though there is a potential for non-Newtonian dynamics in the dense suspension region
near the seafloor, TURBINS includes Newtonian fluid dynamics enabling the erosion and resuspension
boundary conditions used within the gravity flow module.

An empirical formula to represent the resuspension flux of sediment into the current [79] has been
used to estimate erosion in low Reynolds number simulation of turbidity currents [10]. A variation of
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this was implemented in the non-hydrostatic RANS/TURBINS code. The sediment flux due to erosion
was introduced into the current as a diffusive flux from the bottom wall.

− 1
Sc Re

∂c
∂η

= usEs (1)

where c is the non-dimensional concentration of the sediment, η is the coordinate along the direction
normal to the boundary, us is the settling velocity, Es is the resuspension flux, Sc is the Schmidt number,
and Re is the Reynolds number. Based on [79], the resuspension flux, Es, was evaluated using

Es =
1

C0

aZ5

1 + a
0.3 Z5 ; (2)

with a = 1.3 × 10−7, C0 is the initial volume fraction of the sediment, and Z is the erosion parameter.
A maximum of 0.3/C0 caps the resuspension flux. The erosion parameter, Z, is calculated as

Z = 0.586 u∗
us

Re1.23
p if Rep ≤ 2.36;

Z = u∗
us

Re0.6
p if Rep > 2.36;

(3)

where u* is the shear velocity at the bottom wall,

ut
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=
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κ
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(ηu∗
ν

)
+ B; (4)

and ut is the tangential velocity at the first grid point off the wall, η is the wall-normal distance of
the first grid point from the bottom wall, ν is kinematic viscosity, and constants κ = 0.41 and B = 5.
Using dp as the particle diameter, ρp as sediment density, ρ0 as water density, and g as gravitational
acceleration; the particle Reynolds number, Rep, is defined as:

Rep =
dp

√
gdp
(
ρp − ρ0

)
/ρ0

ν
. (5)

As a proof-of-concept, TURBINS was used to represent a turbidity current generated by a
lock-release (results in Section 3.3). The lock-release type simulation extended over a 21 km long
domain in the streamwise (along the pathway) direction. In the vertical direction, the water depth
varied from 130 m to 300 m. Dictated by a minimum resolution criterion of at least ten grid nodes
over the current height, along with the condition that the grid spacing is similar in all directions,
the simulation employed a grid spacing of 3 m in all directions. Consequently, the computational grid
applied 7000 nodes in the streamwise direction, 100 nodes in the vertical direction, and 10 nodes in the
spanwise direction. A time step of 0.6 s was used, based on a modified CFL (Courant–Friedrichs–Lewy)
condition (CFL <0.5) involving both convective and viscous terms.

2.3. Modeling Approach

To account for the multi-scale physics of sediment delivery from rivers to the Gulf of Mexico,
and subsequent mobilization by oceanic flows, the workflow was designed to operate as follows.
Each model component was designed to deliver needed model inputs to the “downstream” models
in a one-way coupling framework (Figure 1). Phasing of model development required coordination
among the subject matter experts who developed various components of the workflow. The river
discharge model (WBMsed) can provide values needed as input to the hydrodynamic ocean model.
ROMS can use these discharges as point sources of freshwater and sediment, distributing the output
from WBMsed for individual rivers onto the three-dimensional grid of the hydrodynamic model.
For example, WBMsed provided Mississippi River discharges that were distributed to 39 Mississippi
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River discharge grid cells that were spread around the bird-foot delta of the ROMS Grid-f. Then,
using input winds and open boundary conditions from the lower resolution Gulf model (Grid-g),
the local model (Grid-f, see Figure 4) was used in the CSTMS to estimate the dispersal and deposition of
sediment delivered from the rivers. The bed stresses calculated by ROMS accounted for wave-current
bed shear stress, and along with WaveWatch III® data, could be employed by the HurriSlip modules to
identify times and locations of sediment mass-failure and density-flow ignition. These events detected
by HurriSlip, could be used to trigger a turbidity current calculation via RANS/TURBINS; which would
also be informed by topographic gradients, the sediment properties from dbSEABED, and near-bed
current velocities and sediment depositions calculated by the ROMS/CSTMS.

3. Results

The sections below describe model calculations from components of the workflow to demonstrate
their capabilities.

3.1. Suspended Sediment Transport

The ROMS/CSTMS ocean model calculated current velocities, bed stresses, suspended sediment
fluxes, and erosion/deposition from October 1, 2007, through September 30, 2008. CSTMS results for
2007–2008 indicated that the overall signature of sedimentation calculated from suspended sediment
was deposition near fluvial sources, with patchy erosion and deposition elsewhere (Figure 8A).
Sediment delivered by the Mobile River was largely retained within Mobile Bay. The Atchafalaya River
sediment was deposited near the delta, but resuspension events on the inner shelf (depths < 30 m)
created westward sediment transport along the coast. Mississippi River plumes more widely dispersed
sediment around its bird-foot delta with some of the river load deposited in deeper water (>200 m).
The model indicated that the deep sea experienced strong intermittent currents capable of mobilizing
sediment, termed benthic storms [80].

Analysis of suspended sediment delivery to the continental slope indicated that about 70%
resulted from delivery during low-intensity storms such as frontal systems, and fallout from the
Mississippi River plume. The remaining 30% of the year-long delivery of suspended sediment to the
continental slope occurred rapidly, during the days surrounding the passage of Hurricanes Gustav and
Ike. This supports our first hypothesis, that episodic sediment transport down a submarine canyon is
fed by sediment input from wave and current resuspension. Shelf erosion during non-hurricane times
accounted for a small fraction of the cumulative erosion seen for the year (Figure 8B). The patchiness
of erosion seen in the deep sea (Figure 8B) corresponded to the sediment texture assumed by the
model (see Figure 6A). Hurricanes Gustav and Ike created widespread erosion on the shelf, and this
material contributed disproportionately to sediment delivery from the shelf to the slope, compared
to other resuspension events during the preceding eight months when elevated Mississippi River
discharge also occurred (Figure 8). Bed shear stresses during the hurricanes were sufficient to suspend
fine-grained sediment across the shelf break. Hurricanes Gustav and Ike produced distinct patterns of
erosion and deposition (Figure 8C,D), mainly due to their differences in strength, duration, and storm
track (see Figure 4). In general, Ike created higher bed stresses, sediment concentrations, and erosion;
but in some locations, Gustav had more impact.

Suspended sediment fluxes along three cross-slope transects (locations shown on Figure 5D)
were analyzed to evaluate the phasing and magnitude of hurricane-driven sediment delivery to the
continental slope and beyond. The size of sediment flux generally decreased with water depth across
the continental slope (Figure 9). While peak fluxes on the continental shelf coincided with the passage
of hurricanes, there was often a lag of several days before suspended sediment reached deeper waters.
Along the western continental slope, suspended sediment fluxes were larger for Hurricane Ike than
Gustav and decreased in the deeper waters (Figure 9A). The peak suspended sediment fluxes at depth
(~1300 m) occurred several days after the peak fluxes calculated for the shelf–slope break (~128 m).
For the De Soto Canyon, the model estimated net downslope flux towards the south to southeast during
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the hurricanes (Figure 9F–I). Suspended sediment flux actually increased offshore there between depths
of ~650–1115 m during and after the passage of the hurricanes, suggesting that suspended sediment
transported over the sides of the canyon settled to the bottom boundary layer and contributed to the
suspended sediment fluxes calculated within the canyon (Figure 9F–I).

Figure 8. Net erosion (<0) and deposition (>0) calculated for suspended sediment transport for
(A) entire model run (1 October 2007–20 September 2008); (B) prior to hurricanes: time-integrated
from 1 October 2007 up until 25 August 2008; (C) during Hurricane Gustav; (D) during Hurricane Ike.
Bathymetric contours (in black) drawn for depths of 10, and every 100 m up to 1500 m.

Sediment fluxes down the Mississippi Canyon lagged behind the passage of the storms,
being delayed by 1–5 days relative to the occurrence of peak wave energy on the shelf (Figure 9B–D).
The model results showed that these lags corresponded to the time needed for nepheloid layers
generated by cross-shelf transport of storm resuspension to be carried to, and settle into, continental
slope depths. For example, Hurricane Gustav made landfall on 1 September 2008. For the Mississippi
Canyon transect, the model indicated that Gustav created peak sediment fluxes on the outer continental
shelf (water depth 98 m) around 2–3 September; while offshore, sediment fluxes did not peak until
4 September (688 m depth) and 8 September (1008 m depth) (Figure 9B,C). The distance along the
Mississippi Canyon transect from the 98 m deep site to the 1008 m deep site is about 66 km, so the
~4.5 day lag in delivery to the 1008 m site can be explained by an average horizontal transport
velocity of about 0.16 m/s. Similarly, vertical settling delays a storm’s impact on deep-sea locations.
The fine sediment classes used in the model would settle about 10 or 100 m per day, so that fall
out from nepheloid layers would require days to weeks to reach the near-bed continental slope and
deeper. This process is illustrated using modeled suspended sediment concentrations along the
Mississippi Canyon when Gustav was centered over the Lousiana shelf (Figure 10A), and five days
later, the nepheloid layer was delivered to, and settled into, continental slope depths (Figure 10B).
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Figure 9. Time-series of depth-integrated suspended sediment flux (kg m−1 s−1) calculated along
three cross-shelf transects for summer, 2008. Suspended sediment flux across the (A) western slope,
(B–E) Mississippi Canyon (red vectors), and (F–I) De Soto Canyon (green vectors). Vector angles
correspond to flux direction in accordance with map conventions (down means southward flux).
Water depth, latitude, and longitude of each calculation provided as text on figure panels. Locations
of transects shown in Figure 5D. Dashed lines mark landfall times of Hurricanes Gustav (9/1) and
Ike (9/13).

Figure 10. Suspended sediment concentrations calculated along the Mississippi Canyon transect during
and after Hurricane Gustav show that sediment delivery to the mid-Canyon lagged several days behind
peak storm conditions on the shelf. Model estimates for (A) 1 September 2008, and (B) 6 September 2008.
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3.2. Density Flow Ignitions

Results from the HurriSlip model suggest that during extreme storms, bed stresses are large
enough to create conditions suitable for the ignition of turbidity currents from near-bottom layers
of suspended sediment, especially in areas near the shelf break (Figure 6A). The modeling also
suggests that small-thickness sediment mass-failure events, which may evolve into turbidity currents,
are widespread around the shelf-slope transition under hurricane conditions (Figure 6B). There is some
association between predicted ignitions’ locations, and the geomorphic channelizations of the upper
continental slope (Figure 6B).

Sediment resuspension sources: The results on the resuspension of sediments into bottom waters
(SuspendiSlip) indicated suspended sediment concentrations (SSC) during times of wave activity
averaged ~300 ppm v/v, up to ~5000 ppm v/v (5% v/v) at levels 1 m above the bottom. During the storm
events, in shoreface areas including at the delta front, some wave-induced bottom orbital velocities
>4 m/s were indicated. At depths of 20–40 m this was reduced to >2 m/s. As modeled, wave-induced
resuspensions occurred down to water depths of 189 m (at surface wave periods >13 s) in areas not
sheltered from the storm wave effects.

Numerous density-flow ignition events were indicated. They were overwhelmingly in the
bottom 1–2 m of the water column, but occasionally occupied water masses as thick as 8 m or more.
Bulk densimetric Richardson Number values for the bottom flows ranged widely, but during the storm
events were <<1.0 near-bottom i.e., were supercritical states susceptible to the onset of density flow [64].
The Knapp–Bagnold criterion discriminated events more closely and with the gravity influence of
slope, identified locations of plausible density flow ignition (Figure 6A). There is some indication that
suspension events in the waxing and waning of a storm are more likely to ignite because of the balance
between densities and velocities.

Mass failure sources: In agreement with the extensive evidence of mass sediment failures in the
region [11,81], the modeling indicated a potential for seafloor failures due to the combined effects of
intense storm wave activity, shallow depth, and significant slope. The present prediction with WaveSlip,
however, also extends over sandy areas not only the mudslide province at the Mississippi Delta front.
There seems to be an increased potential for the failure to transform into turbidity current in sandy
sediments [82].

Wave-induced liquefaction was predicted in the modeling for conditions of <30 m water depth,
somewhat sandy sediments, surface wave wavelengths of >150 m, and significant wave heights
of 10 m. Developed (residual and momentary) normal pore pressure increases to exceed normal
overburden pressure were modeled down to subbottom depths of 10 m and more at some locations.
In those circumstances, effective shear strength was reduced to near zero. The possibility of cyclic
strain reduction of shear strengths was also investigated. However, the cumulative strains induced by
waves, even during extreme events, were insufficient to produce significantly lowered (remoulded)
shear strengths, the strains being at most of order 10−2 cumulative (10−4 to 10−6 per cycle).

The circular-slip analyses indicated mass-failure instabilities (FoS <<1.0) over broad areas of
sloping seafloor in the top 0.5 m of the seabed (Figure 6B). More deeply-seated failures, down to 20 m
sub-bottom, were predicted at a small number of locations at about 30 m water depth. Still, all had a
FoS >>2 and, therefore, apparently limited potential for actual failure. (They are also at the limits of the
analysis in terms of wave-breaking and infinite sediment column.) HurriSlip results appear to suggest
that without liquefaction or remoulding, probably very few significant wave-induced mass failures
would occur in the region. However, the smaller occurrences which are also predicted, remain as
candidates to release turbidity flows. They include particularly, many locales with a high likelihood of
failure (FoS <<1) during storms, in seabed areas down to 100 m water depth, with a significant slope,
and often near to the shelf edge.
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3.3. Turbidity Currents

As a proof-of-concept for simulating turbidity currents in the northern Gulf of Mexico, we employed
TURBINS for a lock-release type simulation for a narrow slice along a specific pathway in the failure
location. Initially, the normalized sediment concentration, a proxy for excess density due to suspended
particles, was set to one in the lock-region and zeroed elsewhere (Figure 11A). When the lock was
released, a gravity-flow with a height of 30 m started to travel down the slope, so at 4 h past the lock
release, the current was about 10 km downslope (Figure 11B). The current became diluted as a result of
entrainment of ambient ocean water, and its height was reduced below the original height of 30 m as it
traveled down the slope. Within about 8 h, the current had traveled 15 km down-slope (Figure 11C).

 

Figure 11. Contours of sediment concentration at (A) 0 h, (B) 4 h, and (C) 8 h. Sediment concentration
normalized to values between 0 and 1; 0 indicates clear water without any sediment.

The velocities resulting from the momentum balance are shown in Figure 12 for different stages of
the turbidity current. With time, as the turbidity current traveled downslope, thinned and became
diluted; its velocities decreased (Figure 12). At 4 h post-ignition, the turbidity current had speeds
exceeding 1 m/s, but by 8 h post-release the velocities were much lower. As the current traveled
along the bed, it generated a counter-flowing current above that moved in the opposite direction
(Figure 12A,B). The calculated velocity at the front of the turbidity current decreased from over 1 m/s
to about 0.75 m/s over a period of 10 h (Figure 12C).
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Figure 12. Horizontal velocity (m/s) calculated by TURBINS downslope at (A) 4 h, and (B) 8 h.
Note change in color scale between panels (A,B). (C) Time history of the front velocity of the current.

Figure 13 displays the modeled bed shear stress at two instants in time. A substantial level of
bed shear stress exists along the current length as a result of the turbidity current created by the
suspended sediment, which drives the flow. As the current decelerated, the bed shear stress value
decreased. These levels of bed stress exceeded the critical shear stress levels for the seabed assumed by
the suspended sediment transport model (~0.1 Pa, Table 1), indicating that the gravity flows could be
auto suspending, though this process was neglected in this version of the modeling workflow.
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Figure 13. Bed shear stresses (Pa) generated by a simulated down-canyon flowing turbidity current at
(A) 4 h, and (B) 8 h after flow initiation at the shelf-slope break.
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4. Discussion

Our results offer estimates of northern Gulf of Mexico sediment delivery and oceanic transport
conditions, including locations for gravity flow; and routing of riverine and shelf sediment into
submarine canyons. With efforts such as these, that treat multiple time- and space-scales, modeling
tools can be developed to deepen our understanding of how sediment is carried from riverine sources
to various oceanic sinks. The challenges of integrating various modeling approaches across different
spatial and temporal scales are substantial and require further research and code development.
Both physical aspects (the implementation of erosion, resuspension of complex sediments into
large-scale simulations), as well as numerical challenges (two-way coupling, temporal and spatial
interpolation at the boundaries between models) require an additional community effort. The treatment
of physical phase-transitions, such as between wave-supported suspended sediment flows and actual
turbidity currents, requires more fundamental research.

The models developed for the workflow operated over a broad range of spatial and temporal
scales. For example, the RANS/TURBINS model represented relatively thin (tens of meters) turbidity
currents at higher temporal (<1 s) and spatial (~3 m) resolution than afforded by ROMS’ hydrodynamic
and suspended sediment transport model. As a first step toward multi-scale modeling at the
spatial level, our workflow follows sediment routing from the watershed scale via WBMsed, to the
continental shelf scale via ROMS, to specific sediment gravity flows via the HurriSlip modules and
RANS/TURBINS. Likewise, the processes encompassed in our workflow operate over a range of
temporal scales, from that of hours for the TURBINS model, to the timescale of storm fluctuations for
riverine delivery, flow ignition, and suspended transport. Changes in sediment transport that operate
at seasonal and interannual timescales are likewise built into our workflow by using forcing functions
for weather that represent variations in winds, precipitation, and air temperatures that operate at
these timescales. Barriers in applying our methods to longer timescales (i.e., longer than decadal)
include both computational limits, and difficulties in assuring that subtle biases in the models and
their parameterizations do not cause the calculations to drift from realistic conditions.

The model workflow presented here is sequential, with limited two-way coupling. A fairly
straightforward step is to link the riverine discharge model (WBMsed) to the oceanic ROMS and
CSTMS models. It would facilitate studies aimed at quantifying oceanic dispersal of fluvial sediments
for poorly gauged river systems [83]. Future efforts should explore a more direct model coupling
between the suspended sediment transport and gravity flow mechanisms. Within this workflow,
ROMS estimates the bed shear stresses, which can be used for the flow ignition model (HurriSlip).
Locations of a slope failure can trigger simulation of a gravity current (e.g., Figure 11), which moves
sediment downslope. More direct coupling between these modules would account for sedimentation
via suspended sediment transport within the slope failure module, and for net erosion and deposition
via gravity currents within the regional scale (ROMS) resuspension model.

Regional modeling in the northern Gulf of Mexico is not trivial. Sediment transport modeling
requires high-spatial-resolution models to resolve the complex and steep bathymetry. The intense
coastal circulation, eddy shedding from the Gulf Loop Current [84], and sporadic strong forcing from
storms and hurricanes can affect sediment transport pathways across the continental shelf and slope.
Therefore, a telescoping grid approach, from coarse (kilometers) to fine (10s of meters) horizontal
scales, is required to obtain viable long-term (1–10 years) and affordable computations. Within our
implementation, this was realized by using a low-resolution model for the entire Gulf, telescoping to
finer-resolution for the region surrounding the bird-foot delta (Figure 3A). A similar approach has
been employed to represent decadal-scale sediment transport in the northern Gulf of Mexico [22].

Joint modeling and field experiments are needed to develop reliable sediment transport models
for the Gulf of Mexico continental shelf and slope. Sediment depositional data with which to
compare the model calculations are severely lacking, especially at the spatial scales considered
here. Recent observational efforts, some motivated by the response to the Deepwater Horizon event,
have shown that sediment can be mobilized in deep Gulf of Mexico locations [30,85]. Many of our
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workflow’s sediment transport routines were based on parameterizations for other continental shelf
systems, or on laboratory measurements. To improve and gain confidence in the models developed for
this workflow requires allied field and modeling studies of sediment processes for the northern Gulf of
Mexico continental shelf and slope. Because field sampling during and immediately after storm events
is inherently challenging, coupled models that are consistent with observed transport processes and
sedimentation are needed to characterize conditions during the extreme events most likely to lead
to large sediment fluxes in the deep Gulf of Mexico, and which can damage offshore infrastructure
(e.g., [1]).

5. Conclusions

A model-data workflow was developed to numerically represent sediment fluxes from fluvial
sources on the inner continental shelf to the continental slope. The workflow is perhaps one of
the more complex ever attempted for the problem of routing sediment from coastal sources to
deep-sea sinks. The range of components (Figure 1) included: (1) database frameworks for sediment
texture and bathymetry of the continental shelf and slope environments; (2) hydrology framework to
simulate the discharge of water and sediment for multiple (fifteen) rivers geographically distributed
along the northern Gulf of Mexico; (3) an ocean modeling framework that combined output from a
spectral wave-action model with ocean circulation simulations, as driven by winds, tides and solar
radiation; and tuned to the seafloor environments where bottom boundary layer dynamics can be
sufficiently represented including the resuspension, transport and deposition of sediment; (4) a seafloor
geotechnical modeling framework able to capture the strengthening and weakening of seafloor deposits,
under both ambient ocean conditions, and high intensity, short-lived hurricanes; (5) a gravity flow
generator able to determine the location(s) and sediment volume(s) displaced; and (6) a high-resolution
CFD model able to simulate the development of a turbidity current, including the bottom shear stresses
likely to impact offshore infrastructure. The immersed boundary RANS approach, in conjunction with
the multiple successive streamwise modules, appears to be well suited to perform the Gulf of Mexico
turbidity current simulations over the realistic length and time scales.

The workflow was exercised to explore the conditions that trigger episodes of sediment flux on
the continental slope where gas and oil infrastructure exist. Several one-way nested grids from coarse
to fine were developed to simulate the hydrodynamic circulation, sediment transport, sediment failure,
sediment liquefaction, and turbidity currents in the northern Gulf of Mexico. A full Gulf of Mexico
ROMS domain was run to provide boundary conditions to a higher-resolution grid that better resolved
bathymetric features, river runoff, and sediment transport. Ocean hydrodynamic simulations covered
the period from 1 January 2000, to 31 December 2005 (spinup), and from 1 January 2006, to 31 December
2012. It allowed us to characterize sediment transport scenarios during diverse forcing events (river
discharge, storms, and multiple hurricanes). We ran focused suspended sediment transport solutions
from 1 October 2007, to 30 September 2008, a time period that saw very active tropical storms and
major hurricanes crossing the study area.

The suspended sediment model indicated that episodic suspended transport down the Mississippi
and De Soto Canyons was fed principally by sediment fluxes generated by wave resuspension on
the shelf. During the two hurricanes modeled (Ike and Gustav), suspended sediment fluxes were
predominantly seaward in the vicinity of the Mississippi and De Soto Canyons. Peak suspended
sediment fluxes coexisted with the occurrence of the highest wave-induced bed stresses on the
continental shelf, but showed increasingly long delays relative to this timing with distance down the
canyon or continental slope. While hurricane conditions only lasted for two brief episodes during the
one-year model run, they accounted for about 30% of the sediment delivered from the continental
shelf to the slope. Delivery of sediment directly from settling from the freshwater river plume at the
canyon head or over the continental slope provided a more gradual source of sediment delivery for
the study period from 1 October 2007, to 30 September 2008. Plume delivery and transport during
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moderate-intensity frontal passages accounted for 70% of the total sediment delivered to the continental
slope during the study period.

The workflow applied a newly developed ignitions model, which was used to explore some
particular mechanisms for creating turbidity currents as an additional, and perhaps the major,
transportation of sediments to the slope and into channelized features there. Modeling of the flows
explored physical constraints on the flow velocities and forces.

On the continental slope, turbidity currents can be triggered by slope failure when storm-driven
supply forces accumulation of sediment in deeper water and steeper slopes. These appeared intense
enough to both erode sediment along the path of the turbidity current and to damage offshore
infrastructure. Modeling efforts in the future should explore more two-way coupling along with
workflows such as developed here, and take advantage of observational methods for developing
model parameterizations and confirming model estimates.
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Abstract: The oceanography sub-initiative of Canada’s Oceans Protection Plan was tasked to develop
high-resolution nearshore ocean models for enhanced marine safety and emergency response, fitting into
the multi-scale, multi-level nested operational ocean forecasting systems. For decision making on eventual
24/7 operational support, two ocean models (a structured grid model, NEMO (Nucleus for European
Modelling of the Ocean); and an unstructured grid model, FVCOM (Finite Volume Coastal Ocean Model),
were evaluated. The evaluation process includes the selection of the study area, the requirements for
model setup, and the evaluation metrics. The chosen study area, Saint John Harbour in the Bay of
Fundy, features strong tides, significant river runoff and a narrow tidal-river channel. Both models were
configured with the same sources of bathymetry and forcing data. FVCOM achieved 50–100 m horizontal
resolution in the inner harbour and included wetting/drying. NEMO achieved 100 m resolution in
the harbour with a three-level one-way nesting configuration. Statistical metrics showed that one-year
simulations with both models achieved comparable accuracies against the observed tidal and non-tidal
water levels and currents, temperature and salinity, and the trajectories of surface drifters, but the
computational cost of FVCOM was significantly less than that of NEMO.
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1. Introduction

In 2016, Canada launched the CAD 1.5 billion Ocean Protection Plan (OPP) [1] to protect the world’s
longest coastline and support cleaner, healthier and safer waters. Under the oceanography sub-initiative
of the OPP, Fisheries and Oceans Canada (DFO) was tasked to develop high-resolution operational
nearshore ocean models for enhanced marine safety and emergency response, specifically electronic
navigation and the prediction of oil spill drift trajectory. The nearshore models will eventually fit
into the multi-scale, multi-level nested operational ocean-forecasting systems of the Government of
Canada, through the collaborative development by Environment and Climate Change Canada (ECCC)
and DFO under the Canadian Operational Network of Coupled Environmental Prediction Systems
(CONCEPTS) [2] Memorandum of Understanding. The current phase of this OPP sub-initiative focuses
on six pilot ports/waterways: Kitimat, Port Metro-Vancouver, Fraser River Port, the St. Lawrence River,
Port Hawkesbury, and the Port of Saint John, with plans to extend modelling to other ports in the future.
In 2017, during the first year of OPP, a significant effort was made to develop configurations for the
Port of Saint John using two widely used, open source, ocean models and evaluate their suitability for
OPP applications. The two models, NEMO (Nucleus for European Modelling of the Ocean) [3,4] and
FVCOM (Finite Volume Coastal Ocean Model), [5,6] were selected due to their existing applications
in Canada.

NEMO is a finite difference model that runs on structured horizontal grids. It was first developed
for global and basin-scale applications, and subsequently for coastal applications. Prior to this study,
NEMO had not been used for near-shore, port-scale applications. Under CONCEPTS, DFO and ECCC
developed a series of operational ocean and sea-ice prediction systems using NEMO, covering the
global ocean (with a horizontal resolution of 1/4-degree in longitude/latitude, [7]), regional ocean
basins (North Atlantic, Arctic and North Pacific, with 1/12-degree resolution, [8]), and the Great Lakes
(with 2 km resolution; [9]). The development of prediction systems for the shelf and coastal oceans off
the western and eastern coasts of Canada (with 1/36-degree resolution) is ongoing. These systems run
operationally with 24/7 support at ECCC’s Canadian Centre for Meteorological and Environmental
Prediction (CCMEP).

FVCOM uses finite volume numerics on unstructured horizontal grids. In Canada, and particularly
within DFO, there are extensive applications of FVCOM for coastal, near-shore and lake waters.
FVCOM is used for simulating both barotropic tides (without including density variations) (e.g., [10,11]),
and full baroclinic dynamics (e.g., [12–15]). The use of unstructured grids enables very high horizontal
resolution, reaching a couple of metres in nearshore waters in some cases (e.g., [16,17]) while maintaining
coarser resolution for offshore areas with larger scale dynamics. Many applications make use of
FVCOM’s wetting/drying scheme to simulate processes in the intertidal zone (e.g., [17,18]). Under a
previous DFO project, FVCOM was used to develop port scale models for five of the six OPP pilot
ports, including a baroclinic configuration for the Port of Saint John (without atmospheric forcing).

Several studies have compared different configurations of the same root model, but few have
compared fully baroclinic, structured and unstructured models with similar resolution over the same
domain. Huang et al. [19] compared FVCOM with a structured grid model, ROMS (the Regional
Ocean Modelling System), [20] but the study focused on idealized test cases and used barotropic
configurations only. Trotta et al. [21] examined the use of NEMO and the Shallow Water Hydrodynamic
Finite Element Model (SHYFEM) [22], in a downscaling context for a relocatable ocean platform for
forecasting, but they did not directly compare the two models. More recently, and most relevant to
our study, Biastoch et al. [23] performed a comprehensive comparison of a nested configuration of
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NEMO and the unstructured Finite Element Sea Ice-Ocean Model (FESOM) [24], but this was for global
configurations and focused on large scale ocean circulation.

The models developed for OPP applications will eventually be run with 24/7 operational support,
but amongst the Canadian government agencies, the capacity to do so only exists within the ECCC.
ECCC currently uses NEMO for operational ocean forecasting. To add the operation of FVCOM
to ECCC would entail additional resources (and cost) compared to utilizing the existing NEMO
infrastructure. Hence, ECCC required the assessment of the performance of both NEMO and FVCOM
for consideration in decision making. To achieve this, DFO and ECCC jointly developed an evaluation
process, summarized here, to objectively compare both the predictive accuracy of the key parameters
required for OPP applications, and the efficiency in terms of computational cost, between NEMO
and FVCOM.

This paper describes the principles and factors that were considered in designing the evaluation
process (Section 2), and application to the Port of Saint John including the metrics and sample results
of the evaluation (Section 3). The selected examples do not cover the full results of the NEMO/FVCOM
evaluation, and do not demonstrate the full strength of either model. The evaluation guided on-going
research in the development and improvement of both models. More comprehensive descriptions of
the configurations and results of both models are or will be documented elsewhere, e.g., the NEMO
configuration by Paquin et al. [25]. Finally, the proposed process and metrics can be generalized and
modified to evaluate the configurations developed for other regions, and with models other than
NEMO and FVCOM, for research and operations.

2. Factors Considered for Evaluation

The evaluation process includes the selection of the study area, the requirements for the model
setup, and the metrics for evaluating the models. The evaluation was designed to objectively
(quantitatively) assess the accuracy and efficiency of NEMO and FVCOM for operational forecasting at
port scales for parameters of interest to the OPP applications. Here, the term accuracy pertains to the
models’ ability to reproduce the observations, and efficiency refers to the computer resources that are
required to run the models in an operational context. The objectives of OPP are to improve electronic
navigation and to predict oil spill drift, thus the parameters of interest for the evaluation were water
level, currents, water temperature and salinity (density), and surface drifter trajectories. As with any
experimental design, it is important to consider the ability of the evaluation to detect contrasts in the
models and to force the strongest contrast possible. Thus, the evaluation was designed to challenge
the models with respect to accuracy and efficiency. Consequently, the evaluation helped gain a better
understanding of the strengths and weaknesses of the models, and although the evaluation focused on
one port, the results can be reasonably expected to extend to other ports.

Of the six OPP pilot ports, one was selected for the evaluation process. The selection of the study
area was based on (1) the regional oceanography being sufficiently complex to include key dynamic
processes; (2) the availability of forcing data (from atmosphere, rivers, and open ocean) to drive the
port models; and (3) the availability of sufficient observational data to assess the predictive accuracy of
the models with respect to the parameters of interest. The parameters of interest at Canadian ports are
typically influenced by complicated coastlines, bathymetry, tides, river runoff, the open ocean, and,
in some cases, the presence of sea-ice. Due to the urgent timeline of the OPP (i.e., the evaluation was
to be completed within the first year of OPP), the explicit inclusion of sea-ice and the simulation of
the intertidal zone (with a wetting/drying scheme) were not required, but to ensure that FVCOM was
used to its full potential, the use of the wetting/drying scheme was encouraged. At the time of the
evaluation, a wetting/drying scheme was not available in NEMO. Forecasting the surface waves at
port scales was not considered for the current phase of the OPP.

Various aspects of the model setup were built into the process of evaluation, including spatial
resolution, the inclusion of dynamic processes, forcing fields, the duration of the simulation,
computational cost, and the variables, frequencies and format of the model output. The required
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horizontal grid spacing of the models was 100 m or less to resolve the horizontal gradients of currents
and the presence of eddies due to nonlinear processes. The required vertical grid spacing was 1 m or
less near the surface, to resolve the currents in the upper layer that are important for navigation and oil
spill drift. The models included the full baroclinic dynamics to simulate the variations due to surface
momentum and buoyancy fluxes, river runoff, and open ocean forcing into the port. The models
were subjected to the same forcing, which included atmospheric forcing from the operational weather
forecasting system, large-scale oceanic forcing from the operational regional ice-ocean forecasting
system, and available tidal and river runoff. At the current stage of the OPP, the port models did
not include any data assimilation, partly due to the lack of sufficient real time observational data.
A common time frame for the simulation was determined by the available observations. The duration
of the simulation was 15 months to allow for a spin-up of the models and the evaluation of a full
annual cycle. For the proper evaluation of model efficiency, both models were run on the same
high-performance computer facility of the Government of Canada. For operational applications,
the required run-time of the models was 0.5 h (or less) for a 48 h simulation. The frequency of the
model output was minimally 0.5 h for the proper evaluation of tidal variations.

The metrics for the model data comparison were defined based on the existing expertise of the
team, and through expert consulting and literature research. The metrics were defined for the tidal
and non-tidal components of sea level and currents, vertical profiles of water temperature and salinity,
time series of sea surface temperature (SST) at fixed stations, and the trajectories of surface drift.
The quantitative metrics are statistically robust to measure the discrepancy between the model solution
and observational data. Prior to performing the statistical comparison, the model results were extracted
from the grid node nearest to the locations of the observations. Time series analysis also included a
comparison of the energy spectrum. Because the domains of both models cover the area beyond the
port, the evaluation was carried out for the “inner harbour” (port) and “outer harbour” separately,
with an emphasis put on the inner harbour. In addition to the quantitative evaluation, the models
were evaluated qualitatively based on known features of the regional oceanography, e.g., the presence
of the river plume, tidal fronts, eddies, etc.

Finally, when possible, the models were compared to existing operational products that are used
in Canada. This includes the Scotia-Fundy-Maine WebTide (hereafter referred to as WebTide) solutions
for tidal elevation and currents [26], and the regional ice-ocean prediction system (RIOPS) that covers
the North Atlantic, Arctic and North Pacific with 1/12-degree resolution [8]. Note that neither WebTide
or RIOPS were developed for near-shore operational applications and are not high-resolution port
solutions, but were the existing operational products for the area at the time of this evaluation.

3. Results

This section describes how the evaluation process, outlined in Section 2, was applied to the NEMO
and FVCOM models for the Port of Saint John. Samples of the evaluation results are based on the
model solutions near the end of the evaluation process (December 2017). The evaluation identified
some deficiencies or errors in both models, and the subsequent work beyond this evaluation process
led to improved model solutions, e.g., documented in Paquin et al. for NEMO [25].

3.1. Regional Oceanography

The Port of Saint John was selected as the study site, in part because of its complicated regional
oceanography. The port is in Saint John Harbour (hereafter SJH) located in the Bay of Fundy (Figure 1).
The area presents tides among the largest in the world, with a maximum range reaching 16 m in the
upper Bay of Fundy [27]. The tidal range in SJH can exceed 8 m at spring tide [28,29]. SJH receives
significant freshwater influx from the Saint John River (hereafter SJR) which ranges from about
500 m3 s−1 during summer low-water conditions [29] to a maximum of about 10,000 m3 s−1 during the
spring freshet [30]. The combination of tidal flow and river runoff generates sharp density fronts which
propagate through the vicinity of the port. Due to the large tidal amplitudes in the SJH and throughout
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the Bay of Fundy, there are significant inter-tidal zones (tidal flats) in the area. The local geography also
leads to a complex flow system in the estuary. As SJR discharges into the harbour, water flows over a
shallow sill into the Reversing Falls (see inset in Figure 1), a gorge in which rapids usually reverse in
direction. Above the sill, the river expands into a river system that receives fresh water input from
a large watershed that includes many lakes, hereafter called the river estuary. The Reversing Falls
sill, between the harbour and the river estuary, constrains the upstream propagation of tides into the
river estuary [28]. The flow conditions in the Reversing Falls change dramatically over the course
of a tidal cycle, with the flow alternating between upstream and downstream. Typically, during the
flood tide, the sea level in the harbour rises above the water level in the river estuary and there is a
strong flow of saline water into the river system [31]. During the ebb tide, the sea level in the harbour
drops to a lower level than in the river estuary and a mix of river and sea water flows back out into
the harbour [31]. During freshet conditions, if river levels are sufficiently high, the river discharge
dominates the flow through the Reversing Falls, such that there is no reversal of the flow. In the river
estuary, a two layer system of fresher surface water and brackish bottom water, with a salinity of up
to 20 ppt [28], is established in Long Reach (shown in Figure 1) and is present for most of the year,
except during the spring and fall freshets when it may be flushed away [28,32]). In winter, the ice is
present on the river estuary, but only thin ice appears near the shore in the harbour [28].

Figure 1. Map of the study area including the locations of the ocean observations, and the boundaries
of the inner harbour and outer harbour.

3.2. Available Ocean Observations

A reason for choosing the Port of Saint John as the study area was the quantity and quality of
available ocean observations during a one-year window, from 1 May 2015 to 30 April 2016, which was
subsequently set as the time period for the model simulation and evaluation. The types and locations
of the available observations are shown in Figure 1. The map also divides the study area into three
sub-areas: the inner harbour, the outer harbour, and the greater Bay of Fundy. Table 1 provides a
summary of the observations, including the variables that were measured by each instrument and
the number of observations in each of the three sub-areas. Note that extensive effort was put into
collecting and carrying out the quality control on the observational data by various DFO projects.
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Table 1. A summary of the observations that were used for the evaluation.

Instrument Variable
Number of Observations

Inner Harbour Outer Harbour Greater BoF

SmartAtlantic Buoy Sea Surface Temperature 0 1 0

Tide Gauge Water Level 1 0 1

Historical Tide Gauges Tidal Constituents 1 1 46

Moored ADCP
Currents

6 5 0
Water Level

CTD Profiles
Temperature

23 25 32
Salinity

Drifters Surface Drifter Trajectories 0 134 0

All tide gauge and tide station data were obtained from the Canadian Hydrographic Service
(CHS). The “constituent only” stations provided the harmonic constants for sets of tidal constituents
based on the analysis of past water level time series observations, but did not provide observational
time series during the evaluation period. The time series of water levels were available from two
real-time tide gauges in the study area: one in the inner SJH and one at Yarmouth. The SJH gauge
was critical for evaluating the tidal and non-tidal components of the modelled water level in the inner
harbour. The Yarmouth gauge, located near the mouth of the Bay of Fundy, was used to assess the
lateral open boundary condition and large-scale performance of the models.

DFO provided observations from 11 moored Acoustic Doppler Current Profilers (ADCPs) that
were deployed between August 2015 and February 2016: six in the inner harbour and five in the
outer harbour. The ADCPs were either moored a few metres off the bottom or within tripod bottom
mounts and recorded the velocity in 1 m bins. To ensure confidence in the observations, a minimum
of 75% ping return cut-off was used to define the valid observations. The ADCPs were also set to
record the bottom pressure. The bottom pressure data were converted into variations of water level.
The “inverse barometric” effect, accounting for the water level variations due to surface atmospheric
pressure, was computed from the forcing data and added to the water level derived from the bottom
pressure measurement.

Conductivity-temperature-depth (CTD) profiles were also provided by the DFO and were used to
evaluate the modelled temperature and salinity fields. There were 80 CTD casts collected at 35 stations
in and around SJH between June 2015 and April 2016. Although it is difficult to fully evaluate the
large-scale models with point measurements, the locations and timings of the CTD casts made it
possible to evaluate the seasonal changes in both the water properties and the depth of the mixed layer
at representative locations in the three sub-areas. A SmartAtlantic [33] buoy located just outside the SJH
provided the only time series measurement of the sea surface temperature. The buoy data, provided
by the Fisheries and Marine Institute of the Memorial University of Newfoundland, were essential for
evaluating the seasonal cycle of SST. Monthly mean SST and SSS (sea surface salinity) over the Bay of
Fundy were evaluated in a qualitative manner to identify any large-scale discrepancies between the
two models.

Lastly, the DFO deployed 134 surface drifters near SJH (in the outer harbour) between July
2015 and January 2016. Four different types of surface drifters were used: Seimac Accurate Surface
Tracker barrel-shaped drifters (hereafter referred to as Barrel), MetOcean iSphere spherical drifters
(hereafter referred to as Sphere), MetOcean CODE/Davis drifters (hereafter referred to as Davis),
and Oceanetic Surface Circulation Tracker drifters (hereafter referred to as Sponge). The drifters
provided records of drift trajectories over short periods of time (typically only one day). They were
used to evaluate the drifter simulations based on the modelled surface current and the influence
of surface winds (described in Section 3.7), and more generally, the models’ ability to predict drift,
which is one of the primary applications of the models under OPP.
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3.3. Setup of NEMO and FVCOM Models

The models are based on NEMO version 3.6 and FVCOM version 3.2.1. Both models solve
the 3D equations controlling the variations of ocean currents, water levels, temperature and salinity.
The hydrostatic and Boussinesq approximations are applied. The minimum water temperature was
set to freezing temperature. This is a simplified approach to account for sea-ice formation in winter,
without turning on the sea-ice modules in either model.

The setup of the model domains considered the large-scale ocean forecasting system for providing
the lateral open boundary condition (OBC). At the time as the evaluation, the available large-scale model
was RIOPS which has a nominal horizontal resolution of 1/12-degree longitude/latitude, about 7.5 km
in the study area. The finer coastal ocean prediction system for the east coast of Canada, at the nominal
resolution of 1/36-degree, was still in the planning stages.

To take the OBC from RIOPS, FVCOM had the advantage of using a single unstructured-grid with
variable horizontal resolution. Based on previous experience, the FVCOM domain was set as shown in
Figure 2a, which encompasses the Bay of Fundy and Gulf of Maine, and extends offshore to include
the Scotian Shelf and the shelf break. The horizontal cell size ranges from 14 km offshore to 48 m in
SJH (Figure 2b). There are 21 geometrically spaced vertical sigma-levels resulting in layer thicknesses
ranging from centimeters at the surface, to hundreds of meters at depth in the shelf break area.

Figure 2. (a) Bathymetry over the FVCOM (Finite Volume Coastal Ocean Model) grid and the outlines of
the Bay of Fundy and the western Scotian Shelf model component with a nominal horizontal resolution
of 1/36-degree (BoFSS1/36) (solid line), the Bay of Fundy model component with an approximate 500 m
resolution (BoF500) (dash-dot line), and the inner and outer Saint John Harbour model component with
an approximate 100 m resolution (SJAP100) (dashed line) model domains. (b) Colormap showing the
variable resolution of the FVCOM (as element side length in m) with the outline of the SJAP100 model
domain (dashed line). Location of the river boundary, where the open boundary condition (OBC) is
applied, is shown for the FVCOM (circle) and NEMO (Nucleus for European Modelling of the Ocean)
(inverted triangle). Yarmouth (triangle), Saint John (diamond) and Oak Point (square) are marked
for reference.

The structured-grid of NEMO does not have the flexibility to vary the horizontal grid size greatly
with a single design. Instead, the approach taken was to develop three configurations (shown in
Figure 2a) that are connected with one-way nesting. The grids of the three components are all aligned
with the tri-polar ORCA grids created by the DRAKKAR Group [25,34]. The outer component covers
the Bay of Fundy and the western Scotian Shelf with a nominal horizontal resolution of 1/36-degree,
hence referred to as BoFSS1/36. The intermediate component covers the Bay of Fundy with an
approximate 500 m resolution (hereafter BoF500). The inner component covers the inner and outer
harbour with an approximate 100 m resolution (hereafter SJAP100). Note that the Saint John river
estuary system, including the Reversing Falls, is included in SJAP100, roughly represented in BoF500,
but totally excluded in BoFSS1/36. The one-way nesting is achieved by the larger domain component
providing the OBC forcing to the next level smaller domain component successively, i.e., from RIOPS to
BoFSS1/36, from BoFSS1/36 to BoF500, and from BoF500 to SJAP100. NEMO uses z-levels in the vertical
space, with “bottom partial cells” for the accurate representation of the varying bathymetry, and the
“variable volume level” scheme [35] to allow for the stretching and compression of the level thickness

47



J. Mar. Sci. Eng. 2020, 8, 484

according to the changing water levels. Regarding the set-up of vertical levels, BoFSS1/36 uses the
same 50-level setup as RIOPS but only has 28 active levels because its domain does not reach the deep
ocean; BoF500 and SJAP100 have the same setup with 41 and 35 active levels, respectively, due to the
difference in the maximum water depth between the two domains. The finest vertical resolution is
near the surface, 1 m for all three components.

A high-resolution coastline dataset provided by the CHS was used to define the coastline
represented in FVCOM and each component of NEMO. The model bathymetry within the Bay of
Fundy and part of the Gulf of Maine was interpolated from a high-resolution dataset constructed from
CHS and the Ocean Mapping Group, University of New Brunswick (OMG) data sources. Over the
area not covered by the CHS/OMG data, NEMO used the global high-resolution SRTM30 bathymetry
product [36] and FVCOM used bathymetry from the Scotia-Fundy-Maine grid of WebTide. As a
wetting/drying scheme is unavailable in NEMO version 3.6, several modifications were made to the
coastline and bathymetry, mainly in the upper Bay of Fundy and in the SJH which has large intertidal
areas. Part of the intertidal zone was excluded, and part had the water depth increased to avoid drying
and to maintain numerical stability. The modifications ensured the good representation of the M2 tides
in and near the SJH [25].

Except for the river estuary system, which was initialized with the same data as the NEMO
BoF500 simulation, the FVCOM model was initialized with the 3D temperature and salinity from the
RIOPS solution on 1 February 2015, and was ramped up from rest (zero sea level and velocity) over a
period of 36 h. The outer component of NEMO (BoFSS1/36) was initialized with the RIOPS solution
on 1 February 2015, including 3D temperature and salinity, sea levels, and currents. BoF500 was
initialized with the BoFSS1/36 solution on 1 April 2015, but with the temperature and salinity in the
river estuary system taken from the solution of a separate 1-year simulation. Finally, SJAP100 is
initialized on 10 April 2015, from the BoF500 solution. The simulations prior to 1 May 2015 (the start
of the evaluation duration), are treated as the spin-up of the models. For FVCOM, the model spin-up
occurs between 1 February and 30 April 2015. This spin-up period is considered sufficient for the
winter conditions of the study area [25].

Input data for the lateral OBC included tidal and non-tidal components. For the FVCOM model
and the BoFSS1/36 of NEMO, the non-tidal water levels for the OBC, at hourly intervals, were obtained
from the de-tided RIOPS solution. The NEMO OBC also included non-tidal depth-averaged velocity
from RIOPS. De-tiding is necessary because the RIOPS tidal solution contains significant errors in
the Bay of Fundy. The input for OBC also included the daily averaged 3D temperature and salinity
(without de-tiding) from RIOPS. The tidal water levels (and depth-averaged velocity for NEMO only)
were computed from the harmonics of five major tidal constituents (M2, N2, S2, K1 and O1) from
the WebTide solution [26]. Other tidal constituents will be included in the future development and
operational application of the models. The BoFSS1/36 obtained a sufficiently accurate tidal solution
near the open boundary of BoF500, and hence, BoF500 used both the tidal and non-tidal forcing for
OBC from the solution of the BoFSS1/36, at 0.5 h intervals. Consequently, the SJAP100 took the full
OBC forcing from the BoF500, also at 0.5 h intervals. Regarding the setup of the OBC, NEMO applied
a “radiation” scheme for the barotropic (depth-averaged) current normal to the open boundary [37],
and a “flow relaxation” scheme for temperature, salinity and the baroclinic current over a “relaxation
zone” [38]. FVCOM enforced the water level, temperature and salinity at the open boundary nodes.
A sponge layer was implemented at the open boundary with a radius of 25 km. Within the sponge
layer, the longitudinal and latitudinal velocities, u and v, were reduced by a factor of u/(1+ Cspg u2)
and v/(1+ Cspg v2). The friction coefficient, Cspg, was specified to be 0.002 at the open boundary
nodes and linearly decreases to zero over the radius of the sponge layer.

The Saint John River runoffwas included in FVCOM, and the BoF500 and SJAP100 components
of NEMO. For both the NEMO and FVCOM configurations, the open boundary of the river was placed
upstream of the Long Reach and below the Spoon Island (see Figure 2). This location is close to the
upstream extent of the salt wedge intrusion and limits the inclusion of complicated river morphology.
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The river forcing was not included in the BoFSS1/36, but this did not cause a significant error in the
BoFSS1/36 solution at the lateral open boundary of the BoF500. Although both models have the ability
to include river discharge, suitable input data were not available, and thus the entry of the SJR was
treated as an open boundary forced with the observed water levels at the Oak Point station in the river
estuary system (Figure 2). A constant value of 0.7 m was subtracted from the observed Oak Point water
levels prior to using them for OBC forcing. This constant is the estimated difference in the reference
levels between the Oak Point station and the model [21].

At the sea surface, the models were forced using the forecast fields from the High-Resolution
Deterministic Prediction System of the CCMEP, with a horizontal resolution of 2.5 km [39]. The forecast
variables included hourly winds at 10 m height, air temperature and specific humidity at 2 m
height, sea-level air pressure, precipitation, and surface incoming longwave and shortwave radiation.
In NEMO, the surface wind stress, the sensible and latent heat fluxes, and the rate of evaporation
were calculated using the forecast variables and the bulk formulae of the Coordinated Ice-Ocean
Reference Experiments [40]. In FVCOM, the corresponding calculations were based on the Coupled
Ocean-Atmosphere Response Experiment (COARE) version 3.0 algorithm [41], which was modified to
use the specific humidity (instead of the relative humidity) as the input. Note that for the solutions
provided for evaluation, the forcing of surface freshwater flux, due to evaporation and precipitation,
was included in NEMO but not in FVCOM. According to the evaluation results (presented in the
following sections), this difference was not a main factor for the difference in the model solutions.

Finally, both NEMO and FVCOM include parametrizations for unresolved sub-grid processes.
The parameterizations used by the two models are similar but with some subtle differences, and are
tuned separately to improve the performance of the models. NEMO uses a partial slip scheme for
velocity near the lateral solid boundary, and the variable horizontal mixing for momentum computed
with the scheme of Smagorinsky [42,43]. FVCOM specifies a zero normal component of the velocity on
the lateral solid boundary and also uses the Smagorinsky eddy parameterization for the horizontal
diffusion [44]. Both models adopt high-order closure schemes to compute the vertical mixing for tracers
and momentum [45]: the k-ε configuration of the generic length scale scheme for NEMO and the
2.5 level scheme of Mellor-Yamada for FVCOM. Both models adopt the quadratic law for bottom drag
parameterization but with different tuning of the drag coefficient to maintain the numerical stability
and improve the tidal solutions. For NEMO, the drag coefficient has background values of 2.5 × 10−3,
4 × 10−3 and 5 × 10−3 for the BoFSS1/36, BoF500 and SJAP100 components, respectively. In BoF500 and
SJAP100, the drag coefficient was locally increased in the upper Bay of Fundy and in the Reversing
Falls [46]. In FVCOM, the coefficient Cd is calculated by fitting a logarithmic bottom boundary
layer to the model at a specified height zab above the bottom with a bottom roughness scale of z0,
Cd =max(k2/ln(zab/z0)2,Cdmin) where k is the von Karman constant, z0 = 0.001, and Cdmin = 0.02.
To obtain stable runs and simulate the strong dissipative effects of the rapids in the Reversing Falls,
the sponge layer feature of FVCOM was used to reduce the horizontal currents in the Falls and
approximately 1 km downstream using a damping coefficient of 0.015 m and a sponge radius of 500 m.

3.4. Evaluation of the Tidal Water Level and Currents

The tides dominate the variations of water levels and currents in the BoF and are a major concern
for navigational safety in SJH. The tidal currents have a direct impact on the drift of spilled and other
hazardous materials in the water.

The evaluation of the tidal water level and currents was based on their harmonic constants using
the following metrics:

Difference in amplitude and phase:

D = Xm −Xo (1)
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Percent difference in amplitude:

D% =
Xm −Xo

Xo
× 100% (2)

Vector difference for water level:

Dv =
∣∣∣Aoeiϕo −Ameiϕm

∣∣∣ (3)

Vector difference for currents:

Dv =
1
T

∫ ∣∣∣Qo(t) −Qm(t)
∣∣∣dt (4a)

with:
Q(t) = u + iv = M[cos(ωt−ψ) + εi sin(ωt−ψ)]eiθ. (4b)

In the above equations, the subscript “o” denotes the observations and “m” denotes the model results.
All the variables are defined for a single constituent. In Equations (1) and (2), X represents either
the amplitude or phase. In Equation (3), A and ϕ denote the amplitude and phase of water level,
respectively [26]. In Equations (4a) and (4b), Q is the 2D tidal flow (u, v) represented in complex
form (with i =

√−1), t is the time and T is the period of a specific tidal constituent with frequency ω.
The other symbols are related to the tidal current ellipse: M is the length of the semi-major axis, ε is the
eccentricity (defined as the ratio of the minor axis to the major axis), θ is the orientation, and ψ is the
phase of the complex current [46].

For an area like the BoF, where there is significant spatial variability in the tides, percent difference
is a more useful metric than the absolute difference. Vector difference (Equations (3) and (4)) combines
the errors in amplitude and phase into one metric. Vector difference was the primary metric for
evaluating the models’ overall skill in reproducing the tides, but evaluating the amplitude and phase
separately was useful for understanding the root of the errors.

Harmonic analysis on the water level and currents used the t_tide package for [47] with the
Rayleigh criteria equal to 1. For stations with water level observations during 1 May 2015–30 April
2016, which include the real-time gauges and the moored ADCPs, the model output was extracted
for the same time period as the observations. We also obtained harmonic constants derived from
historical observations at the “constituent-only” stations. At these stations, the harmonic constants
of the model solutions were obtained by performing the analysis on the full 1 year model output,
regardless of the length of observations that were used to compute the observed constituents. For tidal
currents, the model output was interpolated to the observed depths. Constituents (major and minor
axis, inclination and phase) were computed for each depth bin of the observations. The evaluation
focused on selected depths: the “surface”, and 5, 10 and 20 m from the surface. Here, the “surface” is
the uppermost bin with >75% ping return for the entire time series.

The polar plots in Figure 3 visually report the tidal water level metrics for each station in the inner
harbour (Figure 3a) and outer harbour (Figure 3b), for the M2 constituent. The tidal ellipses in Figure 3
are representative examples of the M2 current at the surface from one station in the inner harbour
(Figure 3c) and one station in the outer harbour (Figure 3d). Table 2 summarizes the evaluation results
for the M2 constituent, for several selected metrics: D% (amplitude), D (phase) and Dv for water
levels; and D (major axis), D (phase), and Dv for currents. The mean and the standard deviation of the
mean for each metric, across the stations in the inner harbour and outer harbour, separately, are listed.
Note that the means and standard deviations were computed using the absolute value of the metric
so that the values reflect the average error in the model, regardless of whether the error was positive
or negative. Similar tables were produced for other tidal constituents, but, for brevity, they are not
presented here.
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Figure 3. (a,b) Polar plot of the amplitude (m) and phase (degrees) of the observations (black circles)
versus the model results in the inner harbour (a) and outer harbour (b). The size and direction of the
vectors (NEMO, red; FVCOM, blue; and WebTide, purple) indicate the difference in the amplitude and
phase between the observations and the model. Regional ice-ocean prediction system (RIOPS) results
were omitted from these plots. (c,d) Observed and modelled M2 tidal ellipses for the surface currents
from one station in the inner harbour (c) and one in the outer harbour (d). Position of the arrow on the
ellipse indicates the phase, and the direction of the arrows indicates the counter-clockwise rotation of
the complex current.

Table 2. The evaluation metrics for the M2 tidal water level and currents (see definitions in
Equations (1)–(4) and in the text), averaged for the stations in the inner and outer Saint John Harbour
(SJH). Numbers in brackets are the standard deviations across the stations. The metrics are computed
for the NEMO, FVCOM, RIOPS and the WebTide solutions, separately. Note that for D and D%,
the mean and standard deviations are calculated using the absolute values of the D and D% values at
each station.

NEMO FVCOM RIOPS WebTide

Water Level (M2)

In
ne

r
H

ar
bo

ur

D% (amplitude) 7.68 (1.59) 2.48 (1.20) 21.78 (2.38) 0.93 (0.94)
D (phase, degrees) 5.15 (2.69) 1.03 (0.67) 56.31 (0.80) 2.48 (1.09)

Dv (m) 0.38 (0.12) 0.09 (0.04) 2.61 (0.01) 0.14 (0.04)

O
ut

er
H

ar
bo

ur

D% (amplitude) 6.99 (1.17) 1.89 (1.08) 21.85 (2.55) 1.43 (1.21)
D (phase, degrees) 6.03 (2.80) 0.72 (0.88) 55.58 (0.82) 2.07 (0.97)

Dv (m) 0.40 (0.14) 0.08 (0.04) 2.60 (0.07) 0.12 (0.04)

Tidal Current (M2)

In
ne

r
H

ar
bo

ur

D (maj. axis, m s−1) 0.04 (0.03) 0.03 (0.02) - 0.15 (0.16)
D (phase, degrees) 38.77 (36.40) 13.21 (6.19) - 72.05 (46.56)

Dv (m s−1 ) 0.08 (0.03) 0.07 (0.03) - 0.18 (0.09)

O
ut

er
H

ar
bo

ur

D (maj. axis, m s−1 ) 0.16 (0.10) 0.04 (0.03) - 0.25 (0.09)
D (phase, degrees) 7.65 (4.04) 7.95 (4.77) - 23.40 (8.11)

Dv (m s−1 ) 0.13 (0.06) 0.08 (0.03) - 0.21 (0.06)
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For the tidal water levels, according to Dv, FVCOM performed the best overall, followed by
WebTide, NEMO, and then RIOPS. The performance of the models was not significantly different
between the inner harbour and the outer harbour. Compared to WebTide, FVCOM had a slightly
larger error in amplitude but a smaller error in phase. The larger error in NEMO was due to an error
in the input files that was identified toward the end of the evaluation and corrected afterward [25].
RIOPS significantly underperformed compared to the other models, mainly due to the coarse spatial
resolution that cannot capture the resonance characteristics of the M2 tide in the Bay of Fundy and
uncalibrated tides in general.

For tidal currents, according to the Dv metric, FVCOM and NEMO performed similarly in the
inner harbour, but FVCOM performed slightly better than NEMO in the outer harbour. FVCOM had
smaller errors in the phase in the inner harbour, and smaller errors in the major axis in the outer
harbour. Both FVCOM and NEMO significantly outperformed WebTide, mainly because the WebTide
does not include the baroclinic dynamics. The errors for the RIOPS currents were not quantified but
were expected to be significantly larger.

3.5. Evaluation of the Non-Tidal (Residual) Water Level and Currents

The non-tidal (or residual) component of the water level is important for predicting extreme water
level events like storm surges. Residual currents dominate the net (after averaging out tidal excursions)
evolution of the drift trajectory and contribute to extreme events of concern for navigational safety.

The residual water level and currents were computed by removing the tidal component
(as determined by t_tide) from the observations and model output. An additional filter was applied to
remove the energy in the tidal period bands (22–28 h, 11–14 h, 5–7 h). For the currents, all energy at
periods < 7 h was removed.

The following metrics were used to evaluate the residual water level and the currents at each
station (and depth for currents):

Mean bias:
D = Xm −Xo (5)

Root mean square error:

RMSE =

⎧⎪⎪⎨⎪⎪⎩
1
N

N∑
i=1

(Xm −Xo)
2

⎫⎪⎪⎬⎪⎪⎭
1/2

(6)

Relative average error:

RAE = 100%

∑N
i=1(Xm −Xo)

2

∑N
i=1

(∣∣∣Xm −Xo
∣∣∣2 + ∣∣∣Xo −Xo

∣∣∣2) (7)

Correlation:

R =

∑N
i=1

(
Xm −Xm

)(
Xo −Xo

)
[∑N

i=1

(
Xm −Xm

)2(
Xo −Xo

)2] 1
2

(8)

Skill:

Skill = 1−
∑N

i=1|Xm −Xo|2∑N
i=1

(∣∣∣Xm −Xo
∣∣∣+ ∣∣∣Xo −Xo

∣∣∣)2 (9)

In the above equations, X denotes the time series of the water level or a velocity component, and the
overbar denotes its time mean. The other notations are consistent with those used in Equations (1)–(4).
In conjunction with the above metrics, we also compared the power spectra of the time series.
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Figure 4 presents the observed and modelled time series of the residual water level at the Saint
John tide gauge location and the associated spectra. The shaded areas in Figure 4a–c highlight the time
frame of the Fall freshet (September 2015) and the Spring freshet (April 2016), which are shown in
detail in Figure 4d,e, respectively. NEMO and FVCOM obtained consistent results for the two freshet
events, including the deficiencies after the peak water levels. That is, the modelled water levels were
lower than those observed after the peak of the fall freshet, and higher than that observed after the
peak of the spring freshet. The causes of these discrepancies were not further explored. The three
models (NEMO, FVCOM and RIOPS) all captured the main characteristics of the observed variations
of residual water level over a full year period, including similar spectral distributions.

 

Figure 4. (a–c) One year time series of the residual water level at the Saint John tide gauge location
from (a) the NEMO, (b) the FVCOM, and (c) the RIOPS. Observations are shown in black in each panel.
The shaded areas in (a–c) highlight the time frame of the Fall freshet (September 2015) and the Spring
freshet (April 2016), and are expanded in (d) and (e), respectively. (f) The spectra for the time series in
(a–c) in variance-conserving form. The legend in panel (f) applies to all panels. The residual water
level was computed by removing the tidal component (as determined by t_tide). An additional filter
was applied to remove the extra energy in the tidal period bands (22–28 h, 11–14 h, 5–7 h).

Table 3 summarizes the results as the mean and standard deviation across all stations (and the
depths for currents) for each metric. For the residual water level, the metrics were computed on the
demeaned times series. The mean bias for the water level across all the stations (including the ADCP
measurements) was not computed. NEMO, FVCOM and RIOPS showed very similar values for the
three metrics (RMSE, RAE and correlation) listed. There are also no significant differences in the skills
between the inner and outer harbours. The correlation of both models with the observed water level
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was high; on average, 0.74 in the inner harbour, and 0.78 in the outer harbour, but as much as 0.9 at
some stations. The metrics showed no significant difference in model performance between the inner
harbour and the outer harbour, but the spectra from the Saint John tide gauge indicates that, in the
inner harbour, the NEMO model had better representation of the energy in the 5–10 day period band,
and the FVCOM captured more of the high-frequency (<6 h) energy.

Table 3. The evaluation metrics for the residual water level and currents (see definitions in
Equations (5)–(8) and in text), averaged for the stations in the inner and outer SJH, separately.
Numbers in brackets are the standard deviations across the stations. RMSE, RAE, R and Skill are
defined in Equations (6)–(9). Note that for the water levels, the mean bias is not computed and the
other metrics are computed for the demeaned time series. Water level metrics are computed for NEMO,
FVCOM and RIOPS. Current metrics are computed for NEMO and FVCOM only.

NEMO FVCOM RIOPS

Residual Water Level

In
ne

r
H

ar
bo

ur RMSE (m) 0.08 (0.02) 0.08 (0.02) 0.08 (0.02)
RAE (%) 26.60 (14.85) 27.78 (13.33) 29.41 (12.32)

R 0.74 (0.15) 0.74 (0.13) 0.73 (0.12)
Skill 0.85 (0.09) 0.84 (0.08) 0.82 (0.08)

O
ut

er
H

ar
bo

ur RMSE (m) 0.09 (0.03) 0.09 (0.03) 0.10 (0.03)
RAE (%) 26.66 (17.83) 28.57 (18.28) 28.17 (17.13)

R 0.78 (0.12) 0.78 (0.12) 0.77 (0.12)
Skill 0.85 (0.11) 0.83 (0.12) 0.84 (0.11)

Residual Currents

In
ne

r
H

ar
bo

ur

u

Mean Bias (m s−1) −0.05 (−0.05) −0.04 (0.04) -
RMSE (m s−1) 0.08 (0.02) 0.07 (0.03) -

RAE (%) 77.68 (13.46) 73.33 (17.19) -
R 0.42 (0.19) 0.47 (0.23) -

Skill 0.51 (0.10) 0.51 (0.10)

v

Mean Bias (m s−1) 0.04 (0.07) 0.02 (0.05) -
RMSE (m s−1) 0.08 (0.04) 0.07 (0.02) -

RAE (%) 68.75 (14.28) 74.12 (10.71) -
R 0.53 (0.17) 0.49 (0.20) -

Skill 0.58 (0.10) 0.55 (0.05)

O
ut

er
H

ar
bo

ur u

Mean Bias (m s−1) −0.04 (0.02) −0.08 (0.02) -
RMSE (m s−1) 0.07 (0.01) 0.10 (0.02) -

RAE %) 80.82 (11.85) 88.69 (10.08) -
R 0.26 (0.12) 0.32 (0.14) -

Skill 0.52 (0.08) 0.50 (0.06)

v

Mean Bias (m s−1) 0.06 (0.03) 0.00 (0.02) -
RMSE (m s−1) 0.07 (0.02) 0.04 (0.01) -

RAE (%) 95.08 (7.22) 82.45 (9.33) -
R 0.15 (0.10) 0.23 (0.11) -

Skill 0.38 (0.06) 0.49 (0.06)

Figure 5 presents examples of the observed and modelled residual current at the surface from
representative ADCPs in the inner harbour (a,b) and the outer harbour (c,d). As reflected in the
figures, both NEMO and FVCOM captured the timing of large-scale events but underestimated the
magnitude of the currents in the inner harbour. The magnitude of the currents was better predicted by
the models in the outer harbour. The metrics in Table 3 indicate that both NEMO and FVCOM showed
a better performance in the inner harbour (with average correlations in u an v between 0.42 and 0.53,
respectively) compared to the outer harbour (average correlation between 0.15 and 0.32). We did
not evaluate the models against RIOPS because its coarse horizontal resolution poorly represents the
spatial variations of currents in SJH.
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Figure 5. Observed (black) and modelled (NEMO, red; FVCOM, blue) time series of the u and v
components of the residual currents, at the representative stations in the inner harbour (a,b) and outer
harbour (c,d). The residual currents were computed by removing the tidal component (as determined
by t_tide). An additional filter was applied to remove the extra energy in the tidal period bands
(22–28 h, 11–14 h) and all energy at periods < 7 h.

3.6. Evaluation of the Temperature and Salinity Fields

Variations in the water temperature and salinity cause changes in density, density-driven currents,
the stratification of the water column, and the chemistry (which subsequently influences the fate and
behavior of spilled oil) of the water.

Variations in the temperature and salinity in SJH were first evaluated qualitatively for three
cases: low water, spring freshet and fall freshet. Salinity variations are mainly attributed to the input
of freshwater from the Saint John River and the mixing of freshwater and seawater in the harbour.
Because NEMO and FVCOM were forced by the observed water level at Oak Point station (in the river
estuary system), we first qualitatively diagnosed the freshwater flux (river runoff) across a section
a few kilometers downstream of Oak Point and determined that the diagnosed fluxes were similar
in both models. Figure 6 presents the surface density fields from NEMO and FVCOM, as well as
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satellite-derived images of suspended particulate matter (provided by E. Devred, DFO), during two
different phases of the tide. These figures show that the models obtained a similar extent of the river
plume, consistent with the interpretation of satellite images.

 
Figure 6. Snapshot of the surface density (kg m−3) from the NEMO (a,d), and the FVCOM (b,e) within
15 min of the satellite-derived images of suspended particulate matter (c,f) provided by E. Devred,
Fisheries and Oceans Canada (DFO). The dates and times of the satellite images, as well as the modelled
surface density field are indicated.

The SmartAtlantic Buoy provided the only time series measurement of SST in SJH and was
essential for evaluating the annual cycle of the SST. Figure 7 presents the comparison of the observed
and modelled SST from the NEMO and FVCOM. The mean bias, RMSE, RAE, correlation and skill
(as described in Equations (5)–(9)) were computed for the time series of SST from NEMO, FVCOM and
RIOPS, and are presented in Table 4. Because the temperature fields from RIOPS were only available
as daily means, the metrics for RIOPS were computed using the daily mean of the observations.
Both NEMO and FVCOM captured the observed seasonal cycle as well as the high-frequency variations,
but there was a warm bias in the FVCOM model. FVCOM performed slightly better than NEMO in
terms of correlation (0.96 for FVCOM and 0.94 for NEMO), and both models outperformed RIOPS
across all metrics except mean bias.

Figure 8 compares the observed vertical profiles of temperature and salinity from the CTD casts
with the model simulations at two representative stations: one in the inner harbour (a,b), and one in
the outer harbour (c,d). The temperature and salinity profiles fluctuate significantly with the phase of
the tide in SJH, particularly for salinity due to the interaction of river runoff, tidal flow, and mixing.
The observed profiles were compared to the nearest model output in time (t) and space. The figures
also include shaded areas that represent the profiles within t − 3 h and t + 3 h which show how
the modelled profiles varied over a 6 h period. As expected, the figures show more variation in
the modelled T and S profiles in the inner harbour than in the outer harbour. For the qualitative
evaluation of the profiles, the model results were “acceptable” if the observed profile fell within the
shaded area. Generally speaking, NEMO showed a better representation of the vertical stratification.
FVCOM obtained more uniform temperature and salinity profiles, probably due to too strong vertical
mixing that needs to be tuned.
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Figure 7. Time series of the sea surface temperature (SST) from (a) the NEMO, (b) the FVCOM,
and (c) the RIOPS compared to the observed SST at the SmartAtlantic Buoy. RIOPS times series is
based on daily output.

 
Figure 8. Observed (black) and modelled (NEMO, red; FVCOM, blue; RIOPS, cyan) temperature (a,c)
and salinity (b,d) profiles from the representative stations in the inner harbour (a,b) and outer harbour
(c,d). The model profiles are taken at the nearest hour to the observations, h. The shaded area around
the NEMO and FVCOM profiles (light pink for the NEMO and light blue for the FVCOM) represents the
profiles within t − 3 h and t + 3 h to show how the modelled profiles vary over a 6 h period. Where the
areas overlap, the shading appears more purple.

The mean bias, RMSE, and RAE were computed for each profile, and the correlation and
skill were computed using all the profile data in the inner harbour and outer harbour, separately.
Table 3 summarizes the results, listing the mean and standard deviation across all stations in the inner
harbour and outer harbour, separately, for mean bias, RMSE, and RAE. According to the correlation
metric, NEMO and FVCOM performed better in the inner harbour than the outer harbour. With respect
to salinity, the summarized metrics indicate that the errors for NEMO were lower than FVCOM,
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but a t-test shows no significant difference. The correlation metric indicates that NEMO had a slight
advantage over FVCOM in the inner harbour, while the opposite was true in the outer harbour.

Table 4. Evaluation metrics for the time series of the SST (compared to the observations from the
SmartAtlantic (SA) Buoy), and the water temperature and salinity (compared to the observed CTD
profiles). See the definitions of the metrics in Equations (5)–(9) and in the text. The mean bias (D),
RMSE and RAE are averaged for the stations in the inner and outer SJH. Numbers in brackets are the
standard deviations across the stations. Correlation and skill were computed using all the profile data
in the inner and outer harbour, separately.

NEMO FVCOM RIOPS

SST (time series)

SA
Bu

oy

D (◦C) 0.08 0.84 0.00
RMSE (◦C) 1.05 1.23 1.63

RAE (%) 5.62 7.82 11.81
R 0.94 0.96 0.89

Skill 0.97 0.96 0.94

Water temperature

In
ne

r
H

ar
bo

ur D (◦C) 0.22 (0.55) 1.62 (0.72) 0.06 (1.91)
RMSE (◦C) 0.70 (0.32) 1.76 (0.90) 1.64 (1.36)

RAE (%) 43.03 (38.76) 82.12 (20.20) 90.23 (9.08)
R 0.98 0.96 0.80

Skill 0.98 0.91 0.89

O
ut

er
H

ar
bo

ur D (◦C) 0.21 (0.45) 1.47 (0.34) 0.86 (0.59)
RMSE (◦C) 0.50 (0.44) 1.56 (0.27) 1.13 (0.48)

RAE (%) 55.28 (30.08) 90.75 (16.47) 93.35 (7.17)
R 0.99 0.99 0.98

Skill 0.99 0.95 0.98

Salinity

In
ne

r
H

ar
bo

ur D (psu) −0.89 (1.70) −2.04 (3.04) 5.80 (7.33)
RMSE (psu) 2.28 (1.46) 3.28 (3.15) 7.48 (7.01)

RAE (%) 29.00 (31.49) 44.13 (36.87) 98.80 (1.12)
R 0.97 0.93 0.08

Skill 0.98 0.96 0.44

O
ut

er
H

ar
bo

ur D (psu) −0.06 (0.96) 0.76 (0.94) 0.72 (1.17)
RMSE (psu) 1.31 (1.32) 1.45 (1.30) 1.92 (1.82)

RAE (%) 39.54 (30.47) 50.65 (31.13) 97.35 (3.45)
R 0.75 0.79 0.33

Skill 0.86 0.86 0.32

The high-variability of temperature and salinity in Saint John Harbour, particularly when close to
the mouth of the river, was difficult to evaluate with point measurements, but nonetheless, the analysis
revealed the presence of a warm/salty bias in the FVCOM model. The warm/salty bias in FVCOM
has since been corrected and was due in small part to a technical issue in the implementation of the
COARE 3.0 algorithm that was identified toward the end of the evaluation, and in large part due to
the placement of the outer boundary extending past the shelf break. That being said, both models
performed better than RIOPS due to the inclusion of the freshwater flux from the Saint John River.

3.7. Evaluation of Drifter Simulations

Improving drift prediction is one of the primary objectives of the oceanography component of
the OPP. Hence, our evaluation process includes a simulation of the surface drift trajectories and a
comparison with the observed trajectories of the four types of surface drifters deployed in the SJH.

Drifter simulations were performed using the Canadian Oil Spill Modelling Suite (COSMoS) [48].
COSMoS is a Lagrangian displacement model that solves the equations of motion for drift using surface
currents and surface wind. It takes surface currents from the results of models on the structured or
unstructured native grids. Note that currents are computed at the centre of the FVCOM grid elements
so that the solutions had to be interpolated to the nodes. The computation of the drifter trajectories
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uses a fourth order Runge-Kutta scheme. The simulations were run with surface currents from the
NEMO (SJAP100 and BoF500), FVCOM, and WebTide. A simulated drifter was “released” at the
same time and location of each observed drifter, and the simulation was terminated at the end of the
observed drifter release. The drift evaluation was restricted to the smallest common domain, which is
the SJAP100 domain. Even though BoF500 has a lower resolution in this area, the drift simulations
were completed using currents from both SJAP100 and BoF500 to help understand the influence of
increased resolution on drift prediction accuracy.

The inclusion of surface wind in the drifter simulations is to account for supplemental wind effects
on the drifting object that are not included in the surface currents. However, the true wind effects
may differ for different types of drifters. Simulations were run with 0% and 3% of the wind speed
(10 m winds from HRDPS) to evaluate the effect. The results consistently showed that adding 3% of
wind to the drifter simulations slightly improved the overall skill of the NEMO-based trajectories,
but degraded the FVCOM-based solutions. Thus, the results presented here focus on the solutions
with no added wind effect.

The first aspect of the drift evaluation was to qualitatively compare the distributions of
surface velocities derived from the observed and modelled drifter trajectories. Drifter velocity
is approximated as a forward Euler difference between the successive positions and reported in
along-shore (241 ◦T positive) and cross-shore (151◦T positive) components. Note that without
including the wind effect, the “drifter velocity” from the models are very close to the surface currents.
Figure 9a–e shows the distributions of drifter velocities for the Davis drifters, but the results were
similar for all drifter types. The mean and RMS speeds derived from these distributions were within
a few percent of each other for all cases, and the shapes of the distributions were generally similar.
However, the distribution of the observed drift velocities appears to have heavier tails than the
modelled drift velocity distributions, which is consistent with the underprediction of currents noted in
Section 3.5. As expected, the distributions based on WebTide were more bi-modal (consistent with ebb
and flood tide) in the along-shore direction and more peaked around 0 in the cross-shore direction.
They showed no mean speed, and underpredicted the variability in the drift speeds. Such consequences
of WebTide having no baroclinic flow was evident here, as well as across all the evaluations of the
drifter trajectories (panels d, i, n, s, w, aa of Figure 9). Therefore, the WebTide-based results are not
discussed further in this paper.

The second aspect of the drift evaluation was to compare the absolute dispersion of the observed
and modelled drifters by plotting distributions of along-shore and cross-shore drifter displacements as
a function of time lag, τ. Mathematically:

ΔX(τ) = X(t− τ) −X(t) (10)

where ΔX is the change in along-shore or cross-shore displacement during time lag τ. To account for
all the possible displacements in the area sampled by the drifters, all non-overlapping segments of
drifter tracks were used in the analysis. This is equivalent to assuming homogeneous and stationary
absolute dispersion statistics.

Figure 9f–o shows the dispersion of the observed and modelled Davis drifters for up to 24 h.
Displacements in the along- and cross-shore directions (y axis) are binned at hourly intervals (x axis)
and the density of the observations in each bin is plotted to visualize the temporal evolution of
the drifter ‘cloud’. The statistics of along-shore dispersion display a clear ‘tidal’ character, that is,
the expansion and contraction of the ‘displacement cloud’ on a ~12 h cycle. This is superimposed on
a mean down-coast (along-shore positive) drift. Oscillations were not as evident in the cross-shore
displacements. These characteristics were consistent across all four drifter types.

Generally, the distributions of displacement produced by the NEMO and the FVCOM were
similar to the observed statistics, though extreme displacements vary slightly between models and
observations. Both FVCOM and NEMO retained the general shape of the tracks, but on average the
modelled along-shore displacements were lower than the observed values, indicating that the motion
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was characteristically similar but occurred closer to Saint John in the models than was observed. In the
cross-shore direction, both the FVCOM and the NEMO predicted a larger mean displacement than was
observed, indicating that the modelled drifters travelled further offshore than the observed ones.

Figure 9. Results of the drifter analysis for the simulated drifters using the FVCOM (left column),
SJAP100 (second from left), BoF500 (middle), WebTide (second from right), and observations where
applicable (right column). Distributions of along-shore (blue) and cross-shore (red) drifter velocity
(for the Davis drifters) are shown in the first row (a–e). Absolute dispersion in the along-/cross-shore
directions (for the Davis drifters) is shown in the second and third row (f–o) with the mean drift
superimposed on the density of the simulated/observed positions in each direction. Separation rate
between the simulated drifters and the corresponding observations is shown in the fourth row (p–s) for
all four drifter types. Instantaneous skill corresponding to the various model predictions is shown in
the fifth row (t–w) for all drifter types, and the cumulative skill for the prediction of the Davis drifter
trajectories is shown in the sixth row (x–aa), with the mean cumulative skill as a function of time is
shown as a solid blue line.

The third aspect of the drift evaluation was to quantitatively assess the simulations using the
following metrics:
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Separation rate:

vsep =
Δ
(→

x mod −→x obs
)

Δt
(11)

Instantaneous skill:

Skillins = 1−min
(

di
Si

, 1
)

(12)

Cumulative skill:

Skillcum = 1−min
( ∑

di∑
Dobs,i

, 1
)

(13)

Separation rate is defined as the relative rate of change between the modelled drifter position
→
x mod

and the observed drifter position
→
x obs. This is a basic metric for trajectory model performance that

allows for the simple interpretation of the quality of future forecasts. It is visualized here by plotting
the separation between the modelled and observed trajectories as a function of time (Figure 9p–s).
The 0FVCOM-based trajectory predictions showed the slowest separation rate, though the results
varied based on the drifter type. The FVCOM performed best when predicting the tracks of the
CODE/Davis drifters, which suggests that the modelled currents averaged over the upper meter of
the ocean correspond best with currents at 0.5 m depth (the approximate centroid of the subsurface
portion of the CODE/Davis drifters). Separation rates from SJAP100 and BoF500 were mostly similar,
but BoF500 performed slightly better at longer time scales.

Instantaneous skill (adapted from Molcard et al. [49]) aims to answer the question, ‘To what
extent can the model help us locate a drifting object given a last known position and associated time?’.
It defines the model’s skill as a function of absolute separation from the initial location at an instant
in time, denoted by the ith discrete time interval. In Equation (12), di is the separation between the
observed and modelled trajectories at a given point in time (denoted by subscript i), and Si is the
linear distance between the observed drifters’ position and its deployment location. The normalization
by Si ensures that skill is assigned based on the accuracy of the prediction relative to the magnitude
of the observed displacement. For example, a prediction that is within 500 m of the corresponding
observation is assigned a higher skill if the observed drifter has travelled 5 km than if it has travelled
1 km. This implies that the model skill can increase with time if Si increases more rapidly than di.
This behaviour is clearly evident in the results for Sponge drifters, which exhibited a large down-coast
displacement. A non-zero instantaneous skill score indicates that the model improves our knowledge
of the drifting object’s position from the guess that it is still at the last known position. Therefore,
all non-zero skill scores indicate that the model is useful, with higher skill scores indicating a narrower
margin of error. FVCOM simulations had the highest instantaneous skill score, and perform best when
simulating the tracks of the CODE/Davis drifters.

Cumulative skill (taken from Liu and Weisberg, [50]) answers the question, ‘How well can the
observed trajectory be reproduced when all the aspects of the trajectory evolution are considered?’.
It quantifies the skill of the model using cumulative sums to account for the model’s ability to reproduce
the magnitude, direction, and timing of drift events, and the range of spatial scales in the flow that
are encountered by a drifter along its trajectory. In Equation (13), di is as defined above, and Dobs,i
is the distance travelled by the observed drifter during the time i. Cumulative skill is a demanding
test of the model’s ability to reproduce the timing, magnitude, and direction of drift events, and any
skill score above zero was considered an indication of useful model predictions. Figure 9x–aa shows
the cumulative skill scores for the prediction of Davis drifter trajectories. Upon close inspection,
the FVCOM model slightly outperforms SJAP100 with the solutions indicating non-zero skill for
the forecasts up to (and slightly exceeding) 6 h for all drifter types. Again, the FVCOM’s increased
performance for the CODE/Davis drifters is evident in the cumulative skill scores (Figure 9x–y).
We note that both models showed no cumulative skill for >50% of the observed trajectories, however,
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this might be expected for a highly dynamic region such as SJH where small differences in predictions
near the start of the trajectory can lead to substantial deviations at later times.

Interestingly, across all metrics, simulations using BoF500 outperformed the SJAP100 configuration,
and according to the cumulative skill scores, BoF500 produced the longest skillful forecast overall—a
significant non-zero skill up to 19 h for the CODE/Davis drifters (Figure 9z). This suggests that increased
spatial resolution does not necessarily improve the representation of the currents in the uppermost
layer of the water column, and a smoothed solution may provide better trajectory predictions. This is
related to the unconstrained turbulence in the higher resolution configuration, explained further in
Jacobs et al. [51].

3.8. Evaluation of Model Efficiency

The evaluation of model efficiency included a comparison of (1) the number of cores and run-time
required to run the models, and (2) the scalability of the models which describes the model’s ability
to run faster on more cores. The performance of the two models can be directly compared because
both were run on the same high-performance computing platform of the Government of Canada.
Both the NEMO and FVCOM models for Saint John Harbour met the operational requirement (a 48 h
simulation in less than 30 min), but the FVCOM model had much less computational cost overall.
For a 48 h simulation, the FVCOM used eight slots (24 cores per slot) with a run-time of 19.5 min; and
the three-level nested NEMO model used 31 slots with a run-time of 29.1 min. The high computational
cost of NEMO was mainly due to the 100 m configuration (SJAP100). Figure 10 shows that the run time
of SJAP100 rapidly decreased when the number of slots increased from 10 to 18, and then gradually
decreased with an increasing number of slots. For the FVCOM, the rapid decrease in run time occurred
as the number of slots increased from 5 to 8. The scalability curve for the 500 m configuration of the
NEMO (BoF500) is closer to that of the FVCOM. The requirements on the number of computer slots are
related to the difference in the numbers of computed nodes (grids) among different models: the FVCOM
has 56,635 nodes and 108,301 elements, while SJAP100, BoF500 and BoFSS1/36 have 466,718, 161,670
and 39,600 grid points, respectively. This demonstrated a major computational efficiency in using the
unstructured grid FVCOM over the structured NEMO for nearshore applications. Despite having a
higher resolution in SJH, the FVCOM ran faster than SJAP100.

Figure 10. The run time for a 24 h simulation versus the number of slots on the General Purpose Science
Computing platform of Shared Services of Canada, with the FVCOM (solid blue curve), the NEMO’s
500 m (BoF500, dashed red curve) and 100 m (SJAP100, solid red curve) configurations.

4. Conclusions

This paper represents a significant collaborative effort that took place during the first year of a
major Canadian research and development program, the Oceans Protection Plan. The oceanography
sub-initiative of the OPP was tasked to develop port-scale models to fit into the multi-scale operational
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ocean prediction systems in Canada, i.e., to extend the prediction capability from global, basin and
coastal scales to nearshore waters. The work included three components: (1) the development of
an evaluation process, (2) the development of model configurations with two state-of-the-art open
source community models, and (3) the evaluation of the performances of the two model configurations
including the comparison of each with the existing operational models. Note that the second and
third components were carried out simultaneously, and both model configurations were constantly
improved and fine-tuned with the guidance of the evaluation.

The evaluation process includes (1) the selection of the study area, (2) the requirements for the
model setup, and (3) the metrics for evaluating the models. The selection of the study area was specific
to the nature of the OPP project in that one of the six OPP pilot ports was selected, but the choice of port
enabled a general assessment of the models for near-shore port-scale applications. The requirements
for the model setup were quite general for evaluating the performance of different source models
under the same setting, but by ensuring that both models were configured using the same sources
of input data for the model setup and forcing, the differences in the model performances can be
mostly attributed to the differences in grid structure, model numerics, and software technology. Thus,
the results of this study are valuable for further improvements of the models. The metrics can be
used for evaluating any model. They were selected to assess the various aspects of the model results,
and collectively, they were able to detect minor contrasts between the two models.

The chosen study area, Saint John Harbour in the Bay of Fundy, features the presence of strong
tides, significant river runoff and a narrow tidal-river channel (Reversing Falls). The complicated
regional oceanography posed challenges to both the NEMO and FVCOM configurations with the
full baroclinic dynamics included. The common challenge was to ensure that the models ran stably,
particularly in the narrow channel with strong currents and spatial gradients of temperature and
salinity. For this purpose, both models included local treatment of bottom drag parameterization.
Previous configurations of the FVCOM model for the Saint John Harbour area did not include
atmospheric forcing. Adding atmospheric forcing, particularly the surface heat-flux, was a challenge,
but the issue was later attributed to the previously mentioned bug in the code. A challenge for NEMO
was the lack of experience in creating a multiple-level nested configuration for nearshore waters.
Despite the urgent timeline, both configurations were created and improved during the first year
of OPP.

The evaluation metrics were defined based on the existing expertise of the team, through expert
consulting and literature research, as well as the available ocean observational data. Evaluation with
these metrics led to continuous improvements of both models, that is, errors in model settings
(bathymetry, model parameters and forcing) were constantly identified and corrected. The evaluation
results presented in Sections 3.4–3.8 were based on the model results obtained toward the end of the
first year of OPP. In terms of model accuracy, compared to the observational data, NEMO and the
FVCOM achieved comparable metrics for the tidal and non-tidal components of sea level and currents,
seasonal variation of the sea surface temperature, vertical profiles of water temperature and salinity,
and the trajectories of surface drift. Note that for the evaluation of the drifter trajectories, the impacts of
winds were not fully considered. This aspect needs to be included in future work. A major difference
identified was that the FVCOM required less computer resources and ran faster than the NEMO.
One possible solution to reduce the required number of the computer slots is to reduce the domain size
of the finest model configuration (SJAP100), and using the two-way nesting approach to ensure the
dynamic interaction across different configurations are properly simulated. Initial testing on two-way
nested configuration was achieved after the completion of the evaluation in the first year (results not
shown). The results of the model efficiency evaluation suggest that both the NEMO and FVCOM
meshes could be further refined, but in doing so, the NEMO model would not meet the operational
requirement for runtime due to the limitations of the model numerics and computer efficiency.

Finally, the evaluation of the models was limited by the existing observational data. With increasing
resolution, the models are reaching the limits to which the ocean is observed in terms of small scale,
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rapidly varying, and nonlinear processes. To support the envisaged future of port-scale operational
e-navigation systems, we need to reassess what observational capacities are required to support this,
both from a monitoring point of view (i.e., real-time and high spatial resolution data), as well as for
model development (e.g., delayed-mode data such as moorings).
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Abstract: Extreme atmospheric wind and precipitation events have created extensive multiscale
coastal, inland, and upland flooding in United States (U.S.) coastal states over recent decades, some
of which takes days to hours to develop, while others can take only several tens of minutes and
inundate a large area within a short period of time, thus being laterally explosive. However, their
existence has not yet been fully recognized, and the fluid dynamics and the wide spectrum of
spatial and temporal scales of these types of events are not yet well understood nor have they been
mathematically modeled. If present-day outlooks of more frequent and intense precipitation events in
the future are accurate, these coastal, inland and upland flood events, such as those due to Hurricanes
Joaquin (2015), Matthew (2016), Harvey (2017) and Irma (2017), will continue to increase in the future.
However, the question arises as to whether there has been a well-documented example of this kind of
coastal, inland and upland flooding in the past? In addition, if so, are any lessons learned for the
future? The short answer is “no”. Fortunately, there are data from a pair of events, several decades
ago—Hurricanes Dennis and Floyd in 1999—that we can turn to for guidance in how the nonlinear,
multiscale fluid physics of these types of compound hazard events manifested in the past and what
they portend for the future. It is of note that fifty-six lives were lost in coastal North Carolina alone
from this pair of storms. In this study, the 1999 rapid coastal and inland flooding event attributed
to those two consecutive hurricanes is documented and the series of physical processes and their
mechanisms are analyzed. A diagnostic assessment using data and numerical models reveals the
physical mechanisms of downstream blocking that occurred.

Keywords: downstream blocking; compound flooding; coastal storm surge and inundation; explosive
lateral flooding; hurricane inland and upland flooding

1. Introduction

Compound hazards are those events that occur simultaneously or successively whose combination
and interaction with underlying conditions amplify the hazardous impacts from individual events [1],
creating storm surge and thus seawater inundation. The storm’s heavy rainfall, on the other hand,
causes surface runoff, sub-surface flow and river flooding. These two flooding processes can have
dependence [2] and complex interactions. A higher downstream coastal water level changes the
river’s downstream boundary conditions, and thus affects upstream river flow dynamics and inland
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freshwater flooding [3–7]. Simultaneously, the flow of river flow into the ocean can affect coastal
sea level changes [8], which, in turn, can act as a feedback effect to further impact the river flooding.
Jay et al. [9] and Guo et al. [10] analyzed and documented the relative importance of tides and river
flows at different locations along the river channel to coastline at several floodplain wetlands.

An example of a compound hazard occurred in 1999. From late August to early September in 1999,
Hurricanes Dennis and Floyd passed along and across the eastern coastal region of North Carolina
(NC), and together deposited about 1000 mm of precipitation. The pair created extreme coastal, inland
and upland flooding. The combined effects of the hurricanes resulted in massive property damage
and led to 74 (56 in NC) human fatalities, due principally to the ensuing flooding. The net cost of the
damage ascribed to the flood event was in excess of $6.5B in 1999 and 10.166B in 2019 dollars. The
flood event extended from the coast to New Bern NC and Washington NC, well inland and upland. At
the time, the flooding inland and upland were not associated with the downstream blocking of the
Neuse and Tar-Pamlico Rivers, but rather directly with Floyd’s 600 mm of rainfall.

Hildebrand [11] found that from 1887 up to 1999, NC had experienced 83 named tropical storms
and 31 hurricanes, but none had resulted in the massive flooding associated with these two 1999
events. However, Pietrafesa et al. [12] further documented the revelation that flooding, instead of
winds, was responsible for nominally 65% of hurricane-related property damage in NC. More recently,
heavy precipitation events such as hurricanes Joaquin (635 mm rainfall) and Matthew (457 mm rainfall)
in South Carolina (SC) in 2015 and 2016, respectively, hurricane Harvey in 2017 in Texas (1828 mm
rainfall), and hurricane Florence in 2018 (914 mm rainfall) in NC and SC, are examples of these kinds of
heavy precipitation events. Hurricane Matthew resulted in $10.3B in damage in 2016 ($10.92 in 2019)
dollars in SC alone. Rivers inland in SC crested to unprecedented levels of 5–6 m over mean water
levels (NCEI), such as the Waccamaw River at Freeland and the Congaree River in Columbia, well
up to the foothills of the Appalachian Mountains. Following Florence (2018), the Waccamaw River
crested at 0.9 m above the level reached during the passage of Matthew (2016). There are wide ranges
of spatial and temporal physics scales and thus in reported impacts (p.c. from M. McClam of the South
Carolina State Guard), from several kilometers to several tens of kilometers downstream, and hours to
days downstream to tens to many hundreds of kilometers upstream and days to weeks and back to
tens of minutes upstream. To reduce the risks from these kinds of seemingly hidden and then often
explosive flooding events in the future, we need to understand the fluid mechanics of these events that
are temporally extensive and spatially massive, often transitioning to short period, laterally explosive
from inland to upland and from the coasts to the mountains.

This study discusses the 1999 Dennis-Floyd event and the nonlinear fluid physics that ensued,
and presents this case as a precursor to future events in-kind. First proposed by Pietrafesa and Dickey
at an Eastern Carolina University (ECU) Hurricane Flood Workshop, in the study reported on below, it
is found that in 1999, while Hurricane Floyd was attributed solely for the inland flood damage [13],
Hurricane Dennis actually set the stage for the massive inland and upland flooding by changing the
downstream boundary conditions. This study documents the events that preceded, were present
during, and followed the passages of Dennis and Floyd and offers the possibility of an improved model
prediction scheme for inland and upland flooding in coastal states. Moreover, the need to properly
initialize the water levels in prognostic numerical models of incoming heavy precipitation events is
suggested as both proof of concept and as a warning for the future. The Dennis-Floyd scenario is
described in the section to follow, because of the comprehensive data set that is available to study that
combined event. A numerical modeling scheme is envisioned and should be developed and employed
in the future, if forecasts of coastal, inland and upland flooding are to improve from present-day
mathematical architectures.

2. Data and Study Area

The study area, which encompasses eastern NC, and the points of in situ observations, are
presented in Figure 1. Data used in this study (cf. Figure 1) include time series of atmospheric winds,
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precipitation, water levels and water currents. Atmospheric data is from the National Weather Service
(NWS) first order stations. River discharge and water level data for Little Washington NC are from the
U.S. Geological Survey (USGS). Open ocean coastal sea level and sound-side water level is from the
National Ocean Service (NOS). Wind data time series are from the NC Coastal-Marine Automated
Network (C-MAN station) located along the coast downstream from Ocracoke Inlet where the + sign
is shown, and the Kinston, NC Airport and precipitation data are from the National Weather service
(NWS). Sea surface temperature (SST) data are from NOAA’s polar orbiting satellite. Sea surface and
cloud color data are from the NASA SeaWifs and Infrared Imager satellites. All data, including the
hurricane tracks, are available from the National Center for Environmental Information (NCEI) at:
https://www.ncei.noaa.gov/.

Figure 1. Tracks of 1999 hurricanes Dennis and Floyd. The insert is the eastern NC study area. Triangles
represent NWS and USGS data collection sites, and stars represent NOS data collection sites. Data are
provided by the NCEI: https://www.ncei.noaa.gov/.

3. Analyses

In Figure 1, we see that Hurricane Dennis entered the region of the NC coast on 30 August and
became stationary for 6.5 days off the NC coast east of Cape Hatteras, finally leaving the area on
06 September.

In Figure 2a,e, we see that when the winds blew from the north and northeast, on the western or
shoreward side of Dennis’ eye, water levels rose within several hours on the open ocean side of the
coast at the Duck, NC. The water level (tide gage) data has been low-pass filtered using a 40-hour half
power point Lanczos-Cosine filter [14]. Within the sound system, water levels fell in the northeastern
end or upper Pamlico Sound, and rose in the upper Tar-Pamlico River, all within three hours. On
August 30, water levels rose at Duck by 98 cm, rose at Washington by 21 cm and fell at the Marina by
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22 cm. What this indicates is the quick response time of the entire Pamlico Sound to an axial wind,
consistent with [15], who reported that water levels respond fully to strong along-sound axial winds
within 2 h and 45 min. Thus, water levels in the southwest end of Pamlico Sound set up or rose, and
water levels in the northeast end of the sound set down or dropped. The water level at the Marina was
out of phase with the water levels at both Duck and Washington over the entire period extending from
August 25 to September 20. The rises and falls (Figure 2a–c) and the subsequent differences (Figure 2d)
coupled tightly to the NE/SW component (Figure 2e) of the total wind-field (not shown). The difference
in water levels was most dramatic from August 30 to September 06, which is coincident with the
presence and eventual passage of Dennis. This also had the effect of driving coastal waters towards the
three inlets, Oregon, Hatteras and Ocracoke and of driving waters away from them on the Pamlico
Sound sides of the inlets. This effected a double suction of water through the inlets, convergence on the
outside and divergence on the inside, a process previously reported on by [14]. We show below that
this set up in the SW corner had the effect of blocking the flows at the mouths of both the Tar-Pamlico
and the Neuse Rivers, so water levels had to rise upstream consequently, filling the water basins to
near capacity.

Figure 2. Time series of water level at Duck, NC (a), Oregon Inlet (b), Washington, NC (c), and their
difference (d). The alongshore wind at Cape Lookout is shown in (e) with the positive sign indicating
northeastward wind and the negative sign southwestward. Time period is from 08/25 to 09/20, 1999,
which encompassed Hurricanes Dennis and Floyd.

Hurricane Dennis then wobbled somewhat off the coast, so at any location the relative wind field
changed in intensity with time, while about 280 mm of rain was deposited over the coastal region and
the water levels fluctuated. On September 05, Duck water levels peaked at 196 cm higher than they
were prior to Dennis’ incursion and Washington water levels reached 109 cm higher than they were
prior to Dennis’ arrival. Inshore Marina water levels were 177 cm below coastal water levels and 85
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cm below Washington water levels. Then, as Dennis moved across and finally departed the state on
September 06, offshore coastal and upstream river water levels began to return to their prior state.

3.1. Water Transport through the Inlets

The Nichols and Pietrafesa [14] study showed that for periods in excess of a day, the axial flow
through Oregon Inlet and sea level slope, are tightly coupled in a 43 cm/sec/meter relationship. Using
this stable transform function, we can compute the volumetric flux of water through the inlet. We
note that the three inlets from the coastal ocean to Pamlico Sound, Oregon, Hatteras and Ocracoke, are
but several km in width, and thus are very spatially narrow. Using 7000 m2 [14] as the nominal cross
section of Oregon Inlet, and an amount in kind for Ocracoke and Hatteras Inlets taken together, we
compute the time series of volumetric flux, the cumulative flux of water either in or out of Pamlico
Sound is shown in Figure 3. Here we see that following the onset of Dennis, coastal waters began to
flood Pamlico Sound via Oregon, Ocracoke and Hatteras Inlets on 30 August and continued doing so
until 06 September. During this period, the flux of shelf water into the sound occurred at non-tidal
speeds occasionally reaching nearly 1.5 m/s, and the added amount of water that entered Pamlico
Sound via Oregon Inlet alone reached the volumetric value of 1.4 × 109 m3. Ocracoke and Hatteras
added another 1.25 × 108 m3. The salt concentrations of the water masses entering the sound reached
30 parts/1000 or ppt (not shown).

Figure 3. Volumetric Fluxes of water during the passages of Dennis and Floyd (30 August–20 September)
through: Hatteras and Ocracoke Inlets (a) and Oregon Inlet (b). Positive (Negative) is into (out of)
Pamlico Sound.

Using the NOS water level records and the estimates of the size of the sound proper [15], we
calculate the amount of water that was present in Pamlico Sound at the end of August, prior to the
arrival of Dennis, was approximately 1.86 ×109 m3. Thus, the amount that entered the Sound over the
6.5-day period when Dennis was present increased the total amount of water in Pamlico Sound by 75%
to 3.26× 109 m3 of water. This additional water flooded the low-lying perimeter of Pamlico Sound.
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Following Dennis’ departure, the Pamlico Sound system began to drain, through all three barrier
island inlets. The total volume of water decreased by about 0.8×109 m3, but as the M2 tide and weak
axial pressure gradient flows were present to drain waters through the inlets (acting as outlets) the
sound still retained 2.46×109 m3 by September 13. However, on September 14 the waters began to
rise again as Floyd approached, bringing more precipitation (cf. Figure 4a,b and Figure 2b), along
with winds favorable for additional incursions of coastal waters into the sound. By September 16, the
additional amount of 0.1×109 m3 of water added to the system, reached 2.56 ×109 m3 by September 16.
This water level was still 38% higher than prior to the arrival of either Dennis or Floyd. Subsequently,
the water level gradually fell when the system drained out of the inlets. By September 21, the volume
of water in Pamlico Sound proper had declined to 2.25×109 m3 or 22% more water than was present
on 30 August. As can be seen in Figure 1, Hurricane Floyd was present from September 15–17.

Figure 4. Rainfall bands across NC associated with (a) Dennis and (b) Floyd in 1999.

3.2. The Water Level Blocking Effect and Subsequent Flooding

The data and the imagery presented show that when Hurricane Dennis sat off the NC coast, it
created conditions favorable for the flooding of the Pamlico Sound with coastal waters for 6.5 days.
The enormous amount of highly saline coastal water that entered the system added 75% more water to
what was already present in Pamlico Sound. Following Dennis’ departure, all three sound inlets began
to drain using the increased pressure gradient forces from inside to outside the sound along the three
narrow inlet axes, as the driving forces. The time series of water levels at the Marina, inside the sound
and near Oregon Inlet, and the upper Tar-Pamlico River (Figure 2b,c) and the differences between
the two (Figure 2d) offer further evidence for this scenario, which indicates that Pamlico Sound was
filled to capacity and thus blocked the mouths of the river-estuary tributaries, specifically the Neuse
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and Tar-Pamlico Rivers. Then while the system was still backed up, or rather was in a storage mode,
and while the region’s soils and vegetation were still highly saturated, along came Hurricane Floyd,
dropping a then historic record amount of rain over a large swath of NC’s coastal and eastern middle
interior, inland and upland (Figure 4). The waters in the sound proper were not able to drain to the sea
quickly enough as there were no driving forces other than inlet, along river axes pressure gradients.
Subsequently the rivers swelled over their banks, drowning the coastal plain and the inshore areas
laterally. Moreover, the lateral movement occurred explosively in tens of minutes. The September
23 NASA SeaWifs image of the sound region (Figure 5) strongly suggests that the highly turbid river
waters had not yet reached Pamlico Sound proper, though they are clearly present in the rivers.

Figure 5. NASA September 23 SeaWifs satellite image showing surface color following the passage of
Hurricane Floyd. Notice the waters in the sound are visually different from those in the Neuse and
Tar-Pamlico Rivers.

To assess this possible scenario, we look at the actual daily time series of stream-flow data from
both the Neuse and the Tar-Pamlico Rivers. In Figure 6a, following August 30, the flows in both
rivers actually dropped until 04 September 04. In Figure 6b, when the flux began to accelerate until
September 16–17 when the flows rapidly intensified. By September 19, the total discharge from the
two rivers reached the amount of water that entered the sound from offshore during the oceanic flood
caused by Dennis. Therefore, Dennis and Floyd acted in concert to cause the extensive flooding. The
flooding was so extensive that it reached Greenville, Washington, Kinston and New Bern, NC, cities
(not shown) all of the order of tens and hundreds of kilometers inland and upland from Pamlico Sound
and the Outer Banks, NC.
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Figure 6. Daily stream volumetric flows in the Tar-Pamlico and Neuse Rivers for the period of (a) August
25 to September 04 and (b) September 04 to September 20, 1999.

4. Numerical Model Testing

To understand the mechanism of the hydrological process caused by two continuous hurricanes, an
idealized one-dimensional hydrological model based on the Saint-Venant (S-V) equations (Equations (1)
and (2)), is designed. While a state-of-the science sophisticated three-dimensional model could be
applied to reveal the total physics of the compound flooding phenomena in the eastern NC setting,
we employ the S-V model to provide simplified, yet revealing foundational physics to the compound
flooding phenomena.

∂A
∂t

+
∂Q
∂x

= qlat (1)

∂Q
∂t

+
∂
(
Q2/A

)
∂x

+ Ag
∂h
∂x

+ AgS f = 0 (2)

A is the flow area of cross-section. Q is flow rate. qlat is lateral inflow rate into the channel from
rainfall and surface runoff. h is water surface elevation. S f is friction slope, defined as S f = (Q/K)2

where K is conveyance from Manning’s equation, defined as K = 1
n AR2/3, where n is Manning’s

roughness coefficient, R is hydraulic radius R=A/P, P is wetted perimeter. The first two terms of the
momentum equation (Equation 2) were ignored; therefore, the momentum equation was simplified as
a diffusion wave equation. This implementation of the St. Venant equations is similar to the one used
in the WRF-hydro model [16].

Ag
∂h
∂x

+ AgS f = 0 (3)

The idealized 1-D model employed a 10 km linear river channel with a bed slope of 0.0002. The
initial river water depth is set at 1 m. It is assumed that the vertical dimension of the river channel is
effectively infinite [16]. Two downstream sea levels were used: 1 m (Control Experiment) as the normal
condition, which is the same as the normal river surface height, and 1.5 m (Δ-Sea-Level Experiment),
as the condition after the hurricane-induced storm surge. An idealized rainfall amount was added to
the river channel. Here we add a lateral discharge with value of 30 m3/s to model one example of the
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rainfall process. This rainfall has a duration of 30 min. The rainfall line shown in Figure 7 illustrates
where the rainfall occurs (3 to 4 km from the river mouth). Results of this model are shown in Figure 7.
About half hour after the rainfall was deposited onto and into the river channel, the surface water
height in the Δ-Sea-Level Experiment was higher than the Control Experiment up to 2 km from the
downstream boundary, and its discharge was slightly less than the Control Experiment 3 h after the
rainfall, the higher surface water level intrudes further toward inland reaching up to 4 km from the
downstream boundary. The surface water slope in the Δ-Sea-Level Experiment is lower than the
Control Experiment, resulting in slower water flow speed (V). However, the higher water surface
in Δ-Sea-Level also created a large river cross-section area (A); therefore, the simulated streamflow
discharges (Q = V ×A) in the Control Experiment and the Δ-Sea-Level Experiment converge after 3 h.
Note in this idealized experiment the vertical dimension of the river channel is assumed to be infinite,
meaning the increased water can be stored in the river channel. However, in real-world conditions,
this increased water will move laterally and become flood waters.

Figure 7. One-dimensional idealized river channel simulation results: (a) 30 min after the rain event;
and (b) 3 h after the rainfall was added to the river channel. The black line is the constant riverbed.
The blue lines are the water surface height in the river channel. The red lines denote the streamflow
in m3/sec. The bold solid lines show the results from the simulation with normal sea level as the
downstream boundary condition, and the dashed lines are those with increased sea level as the
initial condition.
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Based upon the 1-D idealized numerical experiment, the Princeton Ocean Model (POM), developed
by [17] was also used to simulate the above hypothesis. The model incorporates the Mellor–Yamada
turbulence scheme, has a free surface to handle tides, sigma vertical coordinates (i.e., terrain-following)
to handle complex topographies and shallow regions, a curvilinear grid to better handle coastlines. We
employed the POM community model to emulate Pamlico Sound with lateral topography similar to
eastern NC and applied it multiple times and by raising the initial water level at the mouths of the two
rivers in sequential model runs. In Figure 8a, the initial water level affects the subsequent Hurricane
Floyd induced storm surge when the storm surge rises linearly and then becomes highly nonlinear. In
addition, in Figure 8b, the initial water level played an even larger role in the lateral flooding of land,
with the lateral flooding increases at an increasing rate shown as a nonlinear power law. At zero initial
water level, the lateral flooding encompassed about 250 km2. However, at 2 m above zero, the POM
computed lateral flooding rises nonlinearly to 1700 km2, a 7-fold physics-based nonlinear increase.

Figure 8. Raising the initial water levels (referred to as the “Existing Flood Level” along the horizontal
axis) incrementally for the Pamlico Sound System and then employing the POM model to compute the:
(a) resulting storm surge; and (b) the lateral inundation of the domain.

This simple rendering suggests that when coastal rivers, that is, coastal watersheds, can no longer
rise upwards and their carrying capacity to relieve themselves downstream is compromised, additional
amounts of rainwater and land runoff will initiate an explosive lateral flooding event. The word
‘explosive’ is employed because many of the 56 NC casualties occurred on the highways, suggesting
that the roads suddenly, within tens of minutes, were inundated with several feet of water and the
cars were washed off of the roads and went down the embankments. This phenomenon must be
addressed in future diagnostic and prognostic numerical modeling architectures. In fact, the National
Water Model (NWM) presently used by the NOAA does not connect to coastal waterbodies on any U.S.
coastline, including the Great Lakes. Furthermore, groundwater sources of rainwater can reappear
days to weeks following an event or series of events and amplify the unforeseen explosive floods, well
upstream, both inland and upland. River water levels may be rising because water is flowing upstream
or simply rising in place. Coastal watersheds can transition into storage modes due to downstream
blocking; a non-local forcing effect.
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5. Discussion, Conclusions and Recommendations

In this study, a 1999 rapid coastal and inland flooding event attributed to two consecutive
hurricanes Dennis and Floyd is documented. In summary, the series of physical processes and their
mechanisms are the following. (1) Dennis delivered 381 mm of precipitation. (2) Dennis’ translational
speed slowed to near zero and Dennis hovered off the NC coast for 6.5 days. (3) Dennis’ winds
mechanically drove coastal waters towards the coast, and within 8 h of onset built up a wall of
water along the offshore side of the NC Outer banks coast. These same winds simultaneously drove
inshore sound waters from the northeast end of Pamlico Sound towards the southwest end within
3 h. (4) Pamlico Sound was flooded by relatively salty coastal ocean waters. (5) The amount of ocean
water which entered the sound system during Dennis’ presence was equivalent to 75% of the amount
of water already present in Pamlico Sound. (6) The excessive amount of water in Pamlico Sound
blocked the flows from the Neuse and Tar-Pamlico rivers, causing the two rivers to go into relative
storage modes and thus backed waters up towards the heads of the rivers, filling the watersheds to
near capacity, thereby creating the conditions for explosive lateral flooding. (7) Following Dennis’
departure, the waters in the sound began to discharge through the three barrier island inlets but
before the waters could drain, along came another wet hurricane. (8) Hurricane Floyd deposited a
then-record 609 mm rainfall onto already saturated soils. (9) When Floyd arrived, river waters were
still blocked at their mouths, and river waters expanded laterally over their banks, thereby flooding the
watersheds to record levels many tens to hundreds of kilometers inland and upland. (10) Following
Floyd’s departure, the entire sound system began to drain through its three barrier island inlets, now
functioning as outlets, and continued doing so for several months.

Unfortunately, although the phenomenon of compound flooding has been recognized qualitatively
on the conceptual level, the skills of quantitatively predicting such events using numerical models
remain poor. The deficiency has been due to the following two reasons. First, traditionally compound
events have been treated via a “top-down” perspective, which typically only considers one event
and its hazard at a time, potentially leading to an underestimation of risk, as the processes that cause
extreme events often interact and are spatially and/or temporally dependent [18]. Such a perspective
has led to the fact that in the U.S., flood hazard assessment practices are typically based on univariate
methods. Thus, hydrology and oceanography modelers often concentrate only on their own respective
domains. For example, procedures for rivers often treat oceanic contributions (e.g., storm surges)
using static base flood levels, and do not consider the dynamic effects of coastal water levels. Similarly,
flood hazard procedures for coastal storm surge and seawater inundation do not account for terrestrial
factors such as river discharge or direct precipitation into urban areas [3,19–21]. Additionally, the
National Water Model (NWM), the main tool for the National Weather Service (NWS) to forecast
flood events and to issue flood warnings, currently runs on a national domain that cover a majority
of the country with gaps along coastal estuaries [22]. Therefore, in order for the coastal and inland
flooding attributed to events like hurricanes Dennis (1999) and Floyd (1999) to be predicted in the
future, what is required is an atmospheric-oceanic-land-hydrology-hydraulic coupled model system
with downstream boundary condition and initial condition properly represented.

The multiscale, multi-physics aspects of this study are considerable and highly informationally
provocative. Coastal storm surges are on the order of a meter or more in the vertical and extend
alongshore for coastal distances of several kilometers, with a persistence of over several hours to
several days. Coastal water level spin-up times are 8 h [23,24]. These wind-driven conditions ride
atop semi-diurnal and diurnal tides. Those joint conditions can then ride atop elevated coastal water
levels of order kilometers from any prior events, which have left elevated water levels at the mouths of
rivers, harbors and estuaries. These conditions then ride atop North Atlantic Ocean Basin seasonal,
3 to 6 months, steric adjustments of a up to 30 cm, over tens to hundreds of kilometers to annually
adjusted global sea level rise. All of these are initial conditions and coastal boundary conditions.
Then we demonstrated that by elevating initialized sea level at the coast, the storm surge rises but
then oscillates in non-stationary and non-linear physics over the periods of hours, while the lateral
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inundation expands from several kilometers to hundreds of kilometers over collapsing periods down
to several tens of minutes. The nonstationary and non-linear fluid multi-scale physics are revealed in
this study.
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Abstract: Changes in the eustatic sea level have enhanced the impact of inundation events in the
coastal zone, ranging in significance from tropical storm surges to pervasive nuisance flooding events.
The increased frequency of these inundation events has stimulated the production of interactive web-map
tracking tools to cope with changes in our changing coastal environment. Tidewatch Maps, developed
by the Virginia Institute of Marine Science (VIMS), is an effective example of an emerging street-level
inundation mapping tool. Leveraging the Semi-implicit Cross-scale Hydro-science Integrated System
Model (SCHISM) as the engine, Tidewatch operationally disseminates 36-h inundation forecast maps
with a 12-h update frequency. SCHISM’s storm tide forecasts provide surge guidance for the legacy
VIMS Tidewatch Charts sensor-based tidal prediction platform, while simultaneously providing an
interactive and operationally functional forecast mapping tool with hourly temporal resolution and
a 5 m spatial resolution throughout the coastal plain of Virginia, USA. This manuscript delves into
the hydrodynamic modeling and geospatial methods used at VIMS to automate the 36-h street-level
flood forecasts currently available via Tidewatch Maps, and the paradigm-altering efforts involved in
validating the spatial, vertical, and temporal accuracy of the model.

Keywords: hydrodynamic; modeling; sea level rise; mobile application; app; crowdsourcing; SCHISM;
Tidewatch; StormSense; Catch the King

1. Introduction

Inherently, hydrodynamic models are best validated with water level sensors, due to the precision
afforded by defining the timing and depth of inundation at a location in an automated manner [1–4].
As a result of decreased technological costs, low-cost low-energy networks of water level sensors
leveraging the Internet of Things (IoT) are beginning to dramatically densify the flood data available in
urban environments in coastal areas throughout the world [5,6]. Hampton Roads, VA, USA, hosts one
of these IoT networks called StormSense. The network functions as a flooding resiliency partnership
between the Virginia Commonwealth Center for Recurrent Flooding Resiliency (CCRFR) and several
coastal cities in Hampton Roads [7]. The network’s primary goal is to monitor and transmit automated
flooding alerts in real time when inundation occurs [8,9] However, an additional function of these
sensors is the integration with federal sensor data from the US National Oceanic and Atmospheric
Administration (NOAA) and the US Geological Survey (USGS) to validate and improve the Virginia
Institute of Marine Science’s (VIMS) flood forecast models [7–9].
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However, when it comes to logistical considerations and the high cost of maintenance involved in
deploying traditional in situ or remote water level observing systems, these factors can limit sensor
density when even finer scale data are needed, and therefore impede these systems’ ability to accurately
monitor fine-scale environmental conditions [8,10]. In recent years, the combination of youth who
are increasingly globally connected to the internet, and a growing population of retired professionals,
poses an opportunity to create a wide-ranging and diverse network of citizen scientists with the
capacity to span multiple societal themes [11,12]. Citizen science is public participation in conducting
scientific research by non-professional scientists, typically following some form of informal training
on data collection. While not a panacea for all inundation monitoring needs, citizen scientists can
augment and enhance traditional research and monitoring. Their interest and engagement in flooding
resiliency issues can markedly increase spatial and temporal frequency along with an effective duration
of sampling. This can reduce time and labor costs, provide hands-on science, technology, engineering,
and mathematics (STEM) learning related to real-world issues, and increase their public awareness
and support for the scientific process. Naturally, a lack of sufficient professional oversight in citizen
science endeavors can introduce caveats to overcome before wide-scale inclusion in an established
coastal observing system, yet progress in this underutilized resource is promising [4].

First seeing significant adoption in the US in the aftermath of 2012 Hurricane Sandy, citizen science
flood monitoring efforts first became useful through mobile phone pictures capturing inundation
with a time-indexing landmark in view, such as a clock tower or local bank clock [13,14]. These
pictures gave credence to the digital medium with the advent of enhanced-GPS, which leverages
the Global Positioning System’s (GPS) satellite constellation along with nearby cell towers to better
triangulate a user’s position on the ground. These tools have now begun to rival the utility of
government-sponsored post-event flood monitoring efforts, such as the USGS’ high water marks [15].
While the latter approach affords confidence for model validation through a trusted agency for superior
accuracy, the former possesses a greater capacity to document everywhere flooding occurs, with the
inherent risk of potentially less accurate validation data. Regardless, collection of data at the local
scale in public spaces where flooding is prevalent, such as streets, public right-of-way access spaces,
and parks, can improve model prediction by properly resolving flow around small-scale features in the
built environment [12]. Additionally, the model’s predictive acumen can be enhanced via improved
calibration of assumptions, such as: (1) Better friction parameterization of different land cover types,
(2) improved aerial elevation estimates of occluded roadway overpasses, and (3) identification of
tidally-susceptible subterranean drainage infrastructure junctions (where tidal waters can enter city
streets several blocks from the water’s edge). Thus, quality assurance of flood validation data near
these fine-scale features can become valuable model improvement assets through the proper training
of a citizen scientist network [16].

Through technological progression, many effective methods for mapping inundation and flood
depths have been developed using GPS, photo tagging, Augmented Reality (AR) image landmark
recognition, and Quick Response (QR) codes [7,11,13]. Naturally, the emergence and growing necessity
of smart phones in modern living has popularized the prominence of these recording methods.
Additionally, the ease of access afforded by mobile applications for making insurance claims, verifying
flooding for municipal government attention, and greater scientific aspirations has increased the
intrinsic value of personal flood mapping [17,18]. Thus, flood-observing mobile applications, like
“MyCoast” [19] and “Sea Level Rise” [12], or crowdsourcing web data geo-forms, like those implemented
at the state [20,21], country [22,23], and international level [24], have emerged for myriad resiliency
purposes. Typically, these applications exist to verify claims of flooding, validate flood forecast
models, or inform long-term flood planning efforts [19–24]. Mobile flood mapping platforms and
applications have recently become information repositories that provide a living data archive of flood
observation data with sufficient recording frequency and data density in urban areas where flooding
is prevalent [25]. However, these tools have been shown to be of less utility in rural coastal areas,
where statistically, less people are present and motivated to vigilantly monitor inundation, and where
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enhanced-GPS signal strength is diminished due to less reliable cellular broadband coverage [26].
Yet, over time, these data sets can even become their own autonomous data-driven flood prediction
models via sea level trend extrapolation when combined with Digital Elevation Models (DEM) [16].
Thus, high-resolution street-scale hydrodynamic models have recently found a new way to validate
their predictions, and a cost-effective method for correcting erroneous elevation assumptions from
aerial lidar surveys. This includes occluded areas in heavily canopied flood-prone areas and built
infrastructure, such as box culverts, highway overpasses, and bridges that impact proper hydrologic
drainage in flooding conditions [27].

A proactive and safe way to leverage these technological advances in citizen science flood
monitoring methods without waiting for a major storm to elucidate inaccurate model assumptions is
to map the incidence of “nuisance flooding.” This approach takes advantage of mapping inundation in
places where it frequently occurs with minimal danger to the reporter, and can identify issues with
modeled flood forecasts without waiting for a major tropical or extratropical storm event to identify
them first [12]. Hampton Roads, VA, USA experiences tidal nuisance flooding 12 to 18 times a year [28].
This is a frequency that amounts to no less than one cumulative week per year that low-lying streets
in the region are inundated [29,30]. This chronic flooding fatigue can make it easy to forget that
intermittent tidal flooding events cost cities and their residents time and money [30,31]. Of these tidal
inundation events, the highest astronomical tide of the year has become known as the king tide [20].
While not a scientific term, a king tide is a name that refers to an exceptionally high tide, without the
consideration of atmospheric amplification from wind or waves [21,23]. These predictable king tide
events can be estimated far in advance and make coordinating and mobilizing a volunteer effort to
track their inundation extent easy, while maximizing the opportunity for local weather impacts to
potentially amplify the inundation observed [20].

This manuscript describes methods employed at VIMS to disseminate automated inundation
forecasts called Tidewatch Maps. The forecasts function as an operational flood forecast model, which
leverages the open-source Semi-implicit Cross-scale Hydro-science Integrated System Model (SCHISM)
to automatically compute storm tide simulations throughout the entire US East and Gulf Coasts
(Figure 1). SCHISM then translates those water level outputs to 220 localized lidar-derived sub-grid
modeled sub-basins ranging from 1 to 5 m resolution to calculate 36 1-h geospatial flood depth layers
covering all of Tidewater Virginia. SCHISM and the Tidewatch Map currently download inputs
and update mapping outputs twice daily, every 12 h. Reliable inundation prediction depends upon
accurate simulation of large-scale inundation of the tidal long wave during a king tide to successfully
propagate from the ocean, through the continental shelf, estuarine systems, into creeks, and ultimately
city streets, and rigorous conservation of fluid momentum and mass as flood waters permeate the
built environment. These Tidewatch forecast maps were benchmarked in Hampton Roads by >100,000
GPS-reported high water marks collected by citizen scientists during two king tide flooding events
occurring in 2017 and 2018.

The following sections highlight how coastal communities are being meaningfully engaged in
coastal ocean observing mechanisms and the research efforts they support. What follows is a description
of: (1) A citizen science flood mapping project called Catch the King based in Hampton Roads, VA,
(2) effective volunteer training methods using cell phones to provide meaningful GPS observations for
effective model validation, (3) hydrodynamic modeling approaches used for expediently simulating
and publicly mapping near-term inundation, along with (4) a summary of the results. The paper
concludes with an identification of the modeling and monitoring challenges and potential solutions for
modeling and citizen science efforts in the future.
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Figure 1. The SCHISM Hydrodynamic model grid used to drive the Tidewatch storm tide prediction
model, and inset at right, are some example city-scale sub-grid model sub-basins for Norfolk (top) and
Portsmouth (bottom) driven by SCHISM using Dirichlet boundary conditions.

2. Methods

2.1. Citizen Science Flood Monitoring Data Collection

Catch the King is a citizen science GPS data collection effort centered in Hampton Roads, VA,
which aims to map the king tide’s maximum inundation extents, with the goal of validating and
improving predictive models for future forecasting of increasingly pervasive nuisance flooding [16].
The aptly-named effort is the world’s largest simultaneous citizen science GPS flood data collection
effort, and it is aimed at benchmarking the highest astronomical tide of the year, the king tide. Certified
by Guinness World Records for having ‘the most contributions to an environmental survey’ on the
planet, Catch the King was effectively publicized and promoted by the local news media, in Hampton
Roads, VA [27,32]. High citizen engagement during a king tide inundation event resulted in an average
of 572 GPS-reported high water marks being recorded per minute during the hour surrounding the
king tide’s peak [12]. Time-stamped GPS flood extent measurements and photographic evidence were
reported via the free ‘Sea Level Rise’ mobile application, coinciding with the king tide, observed at 13:32
UTC (Universal Time, Coordinated) on 5 November 2017, in Hampton Roads, VA. Ultimately, Catch
the King surveyed a total of 59,718 high water marks and 1582 photographs through 722 individual
volunteers in its inaugural year [32,33].

Following 2017′s success, Catch the King was repeated during the highest astronomical tide of
2018 on 27 October. This event was less attended as it immediately followed a strong nor’easter in a
day prior, on 26 October. Still, significant response from the event’s many volunteers, fueled by the
local media partners’ coverage leading up to the event, and 42 separate volunteer training events held
all over Hampton Roads, resulted in 347 participants collecting 33,847 time-stamped GPS maximum
flooding extent measurements and 458 geotagged photographs during the event [34]. There were 141
additional volunteers who collected 3881 GPS data points during the nor’easter’s peak flood period
coinciding with the high tide the night before the king tide. Combined, those totals are 488 participants
and 37,728 GPS points during the 2018 Catch the King and nor’easter event, with 431 of those being
unique volunteers and 57 having mapped the king tide on both the 26 and 27 October 2018 [35].
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As the sea level rise and tidal flooding increasingly impact coastal Virginia, Catch the King offers
residents a chance to crowdsource vital information about the tides’ reach. Thus, time-stamped GPS
data points and photographs were collected by volunteers to effectively breadcrumb/trace the high
water line by pressing the ‘Save Data’ button in the ‘Sea Level Rise’ mobile app every few steps along
the water’s edge during the king tide’s peak in 2017 and again in 2018. Initial responses collected by the
free ‘Sea Level Rise’ mobile application were relayed to the event’s dedicated volunteers via the local
news media event’s volunteer coordination Facebook page. In the days following each event, several
people provided additional GPS data points they collected through Esri’s Geographic Information
System (GIS) Collector App and crowdsourcing geo-forms through ArcGIS Online that were missing
from the initial cited statistics (Figure 2). This occurred as a few volunteers noticed their data initially
missing from the interactive map as it was published in the Daily Press and The Virginian-Pilot among
other media sources, and were later included in the final event totals and added to the final data
map [27]. These updated totals were ultimately reported back to the community a month after each
inundation event in 2017 and 2018 through a volunteer thank you and data review event [16,35].

 
Figure 2. Catch the King (CtK) citizen engagement time series chart corresponding to major news
releases used to garner successful volunteer training participation and support leading up to the king
173 tide on November 5, from July 30–November 10, 2017. According to ArcGIS Online’s data metrics,
the volunteer invitation story map received 10,137 page views, in little over 3 months for an average of
93 page views per day. Story Map at: http://arcg.is/1f8W1q.

2.2. Volunteer Coordination for Flood Extent Validation

The volunteer coordination effort involved a hierarchical scheme led by an adept volunteer
coordinator, Qaren Jacklich, from the Chesapeake Bay Foundation who has successfully led the ‘Clean
the Bay Day’ litter and debris removal initiative in Chesapeake Bay for several years prior to Catch
the King. Below the volunteer coordinator were over 120 volunteer “Tide Captains,” who led smaller
organized groups of volunteers. In many cases, these tide captains were knowledgeable school teachers,
volunteer organization leaders, and enthusiastic users of the Sea Level Rise mobile app, who trained
neighbors, friends, and family in their community over a series of separate volunteer training events
held all over Hampton Roads, VA, USA [16]. Citizen scientists were trained in the use of the ‘Sea Level
Rise’ mobile application to capture three types of flood data useful for model validation:

(1) GPS locations for mapping high water contours during flooding (Figure 3);
(2) Taking field notes for important observations or denoting errata; and
(3) Uploading time-stamped, geo-tagged pictures, including directional facing information.
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Figure 3. Comparison of GPS maximum flood extent observations (depicted as blue dots) in Hampton,
VA, following debris lines remaining after Hurricane Irene 2011, used to geospatially verify model
performance at (A) 00:00 UTC and (B) 01:00 UTC on 28 August 2011. GPS data collected by volunteers
effectively illustrate the challenge with temporal matching for model comparison.

Training volunteers in proper, uniform data collection and appropriate geospatial filtering for
these three data types is critical to recording an accurate location history for mapping tidal flooding
and ensure the most effective approach for collecting error-free data for model validation. More than
45% of the volunteers were directly trained in a training session in 2017′s event, while nearly 60%
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attended a training in 2017 [35]. However, in both years, many volunteers were still able to register as
users and meaningfully map flooding in their community through Catch the King without any formal
training, partially owing to the relatively intuitive interface of the app.

The ‘Sea Level Rise’ mobile app streamlined data collection and made model validation easier
through a hierarchical internal quality assurance mechanism. This allowed the Catch the King event
coordinator to limit participation to certain trusted registered users, and filter data permissions, such as
photo uploads and GPS data collection, only to certain trained users (labeled as ‘Champions’ in the app
interface). Post-event, tide captains and the volunteer coordinator could download their event data as
csv files after the specified time window for their flood monitoring event expired, and even retroactively
flag volunteer’s data where consistently erroneous data points were measured. The resulting maps
shown in the results and discussion sections present these dense data maps surveyed during the 2017
and 2018 king tide inundation events, and present the mean horizontal distance difference (MHDD)
comparative spatial calculations between the modeled maximum flood extent contours and citizen
science flood validation data sets for each king tide flood event, followed by the lessons learned.

2.3. Tidewatch Storm Tide Modeling

Each year, prior to the king tide flood event, researchers at VIMS and the CCRFR design a web
map to direct volunteers to public places that are forecasted to flood during the King Tide using VIMS’
hydrodynamic models. This method proved impactful, as the 2017 Catch the King volunteer recruitment
story map reached over 10,000 page views before the king tide in less than 3 months (Figure 2).
Thus, the story map effectively conveyed the value of inundation forecasting by showcasing flooding
impacts during the last major storm event in the region, 2011 Hurricane Irene, and the importance of
time-stamped GPS data for tidal calibration and event calibration of models for improvement purposes
(Figure 3). This was valuable to visually explain the value of accurate data collection both temporally
and spatially to the citizen scientists.

As Figure 3A shows, on 28 August 2011 at 00:00 UTC after Hurricane Irene, 30 min before the storm
surge peak was observed at the nearest sensor, the 14 GPS points that comprise this maximum extent
contour compare well with an MHDD of 4 m to the nearest model grid cell center point. However, the
model’s prediction from an hour later, 30 min after the storm surge peak was observed at the nearest
sensor shown in Figure 3B, the maximum flood extent compares less favorably, changing the MHDD to
6.5 m, and illustrating the burden of timing for reliable model comparison. Thus, during the king tides
in 2017 and 2018, GPS data points were collected by each year’s event’s many volunteers to breadcrumb
maximum inundation extents in public spaces and time-stamped (Figure 4). This approach was used
to coordinate and validate the flooding extents across 17 coastal cities and counties in Virginia, USA,
by enlisting the aid of over 1000 volunteers for approximately an hour once a year to walk outside and
press the ‘Save Data’ button in the ‘Sea Level Rise’ app every few steps along the water’s edge near
them during the king tide.

The approach to presenting time series information and inundation areas for a flood model at
the street-level can be a difficult task for development and comprehension. To simplify the approach,
the open-source SCHISM model was developed at VIMS and used to compute Tidewatch’s temporal-spatial
inundation maps [36]. SCHISM is an open-source community-supported modeling system, designed for
the effective simulation of 3D baroclinic circulation across ocean-to-creek scales. The model incorporates
a wide range of physical and biological processes in a comprehensive modeling system that has been
validated in many world-wide applications, ranging from general circulation [37], tsunami inundation [38],
storm surge inundation [39], ecology [40], sediment transport [41], and oil spills [42]. The model is
uniquely capable of accurately representing physical structures (both nature-based and engineered) in an
inundated area in the model computations, not simply in the output displays. Furthermore, the outputs
from this model can be nested with other hydrodynamic grids to provide street-level (1–5 m scale) urban
inundation predictions for individual land parcels [43]. The results may be presented as high-resolution

87



J. Mar. Sci. Eng. 2019, 7, 242

movies of flooding scenarios over multi-day periods, including tidal cycle variations, or translated and
converted into GIS mapping applications, as seen here with Tidewatch for added utility.

 
Figure 4. Comparison map of Catch the King citizen science king tide data collection between 2017
(blue dots) and 2018 (green dots); points are aggregated by density. Yellow polygons illustrate a public
spaces inventory, where volunteers were encouraged to map, while green-labelled park polygons were
places where official Catch the King volunteer training events occurred. There were 35 such training
events in 2017 and 43 in 2018: http://arcg.is/1vK8ru.

SCHISM is used to drive VIMS’ Tidewatch’s storm tide inundation maps, and the automated
workflow to accomplish this is sub-divided into three tasks: (1) Preprocessing of the model grid and
retrieval of the hydrodynamic model inputs, (2) SCHISM model simulation, and (3) post-processing
retrieval of SCHISM inundation model outputs for GIS mapping, as illustrated in Figure 5:

(1) Retrieval of SCHISM Hydrodynamic Model Inputs

a. Atmospheric data: The SCHISM hydrodynamic model is used to automate storm tide
simulations based upon atmospheric wind and air pressure data available from the 05:00
UTC and 17:00 UTC updates of the US National Weather Service’s NAM-nest 5 km
atmospheric forecast model. For the 2017 and 2018 king tide flooding events, the 17:00
UTC, atmospheric forecast update from the previous night was used.

b. Flux boundaries: Riverine boundaries defined at waterfalls and key discharge points at the
fall lines of Chesapeake Bay’s major estuaries were driven by flow rates predicted by the
national water model and obtained at intervals similar to the atmospheric data.

c. Open boundaries: Inputs for tidal open boundary grid nodes were harmonically computed
and estimated for the amplitude, phase, and frequency for 16 tidal constituents.

(2) 2D SCHISM Model Simulation

a. Initiate simulation after archiving the previous run, and complete a successful check for all
input files.
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b. Hydrodynamic model simulation along the US East Coast and Gulf of Mexico used a
geometric model mesh consisting of 2,348,351 nodes and 1,565,567 elements (Figure 1).

c. Post-processing to combine multi-core parallel outputs into binary model outputs, and then
into ASCII text for geospatial translation via Python scripts using the raster calculator in
GRASS GIS.

d. Extraction of results at Tidewatch charts stations for surge guidance and key points for
Tidewatch Maps at 220 Hydrologic Unit Cells (HUCs) throughout tidewater Virginia.

(3) Retrieval of SCHISM inundation model outputs for GIS post-processing

a. Extraction of source data from the station output from the 2D hydrodynamic forecast
simulation.

b. Clear the previous run’s data to archive, and import new simulation data to differentiate
each day’s morning and evening simulation updates,

c. Construct a web-enabled time-aware street-level GIS map from SCHISM grid outputs.
d. Publish the output map of 37 time-aware rasters overlaid with Tidewatch Station time

series data.

 
Figure 5. Automation flowchart for SCHISM model initiation and simulation for every 36-h forecast.
The Tidewatch model updates twice daily, outputting mapping outputs at AdaptVA.org at noon and
midnight local time (05:00 and 17:00 UTC).

Upon completing these steps, model and visualization performance metrics indicated, on average,
that step one requires 1 h to complete pre-processing, step two requires 1.5 to 2.5 h to run the simulation
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(variable based upon volume of inputs), using 72 nodes on VIMS’ high performance computing
cluster, and step three requires 2 to 3 h in post-processing to combine the model’s binary outputs,
and translate/index them to hourly geospatial outputs to a convenient interactive web-map presentation
format. The SCHISM model consumes approximately 2.40 GB of input data to model the US East and
Gulf Coasts for every simulation, twice daily (1.75 TB annually). Comparatively, the SCHISM model
outputs the mosaicked results of over 200 combined sub-grid sub-basin rasters to form the Tidewatch
Map’s composite 36 h. time aware layer cache at 16 zoom-level pyramids for a 21.25 GB product after
each simulation (15.48 TB annually). These steps allowed users to interact with flood data from the
global scale to street-level in a single web map (Figure 6).

 
Figure 6. (A) Overview of study region in Hampton Roads, VA, featuring the 2017 king tide maximum
inundation forecast from the Tidewatch Map in blue, GPS citizen science observations as blue dots, and
water level sensors from the Tidewatch Charts as red dots. (B) Inset shows a high-density concentration
of flood validation data in the historic Hague region of Norfolk, VA, USA, where the model had
favorable agreement with the citizen science observations. Here, the model yielded a 94% spatial match,
and a 4.2 m MHDD. See the map online: http://arcg.is/1HLOPS.

3. Results

Spatial data collected for each king tide event were aggregated through the Sea Level Rise mobile
app and shared online using interactive web maps, so that volunteers with minimal GIS experience
could visualize their own GPS observations populate the Tidewatch model’s predictions in near-real
time (Figure 6). This level of data accountability implemented an open interaction where users could
conduct their own analyses and make their own mean difference calculations through ArcGIS Online’s
distance and area measuring tools from their data in a web browser while viewing the public map.
This data interactivity spurred high engagement and participation for students involved in STEM
research or related educational classes. Figure 6A shows an aggregated point map of 59,718 high
water marks superposed with the Tidewatch Maps throughout the greater Hampton Roads region and
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showcases the extent of areas not covered by automated sensors that were surveyed through Catch the
King in 2017 (Table 1).

Comparatively, 2018 surveyed an even broader area than was monitored in 2017, but with less
density (Figure 4). For example, Figure 6B shows Norfolk’s Hague, where thousands of GPS data were
collected in both years. In areas where a significant point density is reported, data points can form
more than simple flood contours when combined with digital elevation survey data. With sufficient
point density, one can form their own observation-driven interpolated flood model for comparison
with hydrodynamic simulation results. In this case, the areal extent of The Hague shown in Figure 6B
yielded a 94% match with the raster polygon built from the interpolated GPS points, with the Tidewatch
model slightly erring on the side of over-prediction. The cursory overview of the Greater Hampton
Roads Region shown in Figure 6 shows the Tidewatch Map in blue, GPS citizen science observations
as aggregated blue dots, which render and dis-aggregate based upon the zoom level, and water level
sensors from the Tidewatch Charts as red dots. This legend theme will persist through the next several
spatial comparison figures, and was designated through the Sea Level Rise app for the observation
data, and for the model via a meeting of the CCRFR with emergency managers [44].

Table 1. A tabulated table of quantities mapped by Catch the King volunteers in coastal Virginia, USA,
where the SCHISM-Driven Tidewatch storm tide model provided inundation forecasts.

Year Distance (Unique km) Distance (Total km) GPS Points Photographs

2017 104.28 416.66 59,718 1582
2018 69.36 277.77 37,728 458

TOTAL 173.64 694.43 97,446 2040

Given that flood impacts for king tides are simply tidal calibration data that are likely to be aligned
along similar elevation contours without intervening atmospheric conditions, linear distance metrics
can be useful to compute spatial differences in relatively flat areas. The standard distance formula
may then be computed by GIS software to calculate the difference between each GPS data point to
the nearest predicted inundated space. To compute this, the modeled geospatial flood depths served
through VIMS’ Tidewatch Maps were converted into vector data polygons, with the maximum flood
extent representing the 0 m flood contour. As the volunteers were instructed to map inundation in their
communities by dropping time-stamped digital GPS breadcrumbs, the citizen scientists’ data should
ideally represent the observed GPS flood extents, and in most places, the model had an overwhelmingly
favorable agreement. Figure 7 shows an example in Norfolk’s Larchmont neighborhood adjacent to a
dog park, where flooding is frequent, and the 112 points were used to compare with the light blue
modeled flood extents as a linear distance, and averaged to form a mean horizontal distance deviation
(MHDD) metric, which yielded an average deviation of 2.67 m for this site during the 2018 king tide.

Likewise, several other areas, ranging from residential, commercial, and industrial land uses,
during the 2017 king tide are featured in Figure 8. Since Tidewatch Maps provide more than simply
a maximum inundation extent, unlike tidal depths estimated from a bathtub model or a sea level
rise topographic flood elevation viewer, temporal accuracy can also be assessed through the GPS
timestamps reported on each user’s measurements through the Sea Level Rise app. Figure 8A,C,E,G,
shows a model distance comparison of forecasts and data from 13:00 to 13:59 UTC. Figure 8B,D,F,H
show observation data and model forecasted depths for the same sites an hour later from 14:00 to 14:59
UTC. These figures are used to show varying flooding conditions during the king tide on 5 November
2017, which occurred at 14:30 UTC, similar to those noted in Figure 3 during 2011 Hurricane Irene.
Figure 8 shows individual sites where monitoring efforts took place in 2017 and ultimately contribute
to the overall figure of +/−5.9 m in horizontal difference between the maximum extents predicted via
the Tidewatch Maps and the 59,718 high water marks measured through Catch the King.
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Figure 7. Illustrative comparison of mean distance difference of 112 GPS data points collected in
Larchmont, Norfolk (2.67 m), compared with the 2018 king tide peak inundation forecast in blue.

Figure 8A shows data from the 2017 king tide for the same area as Figure 7 in Larchmont, Norfolk
for 44 high water marks collected by 2 citizen scientists from 13:32 to 13:52 UTC to yield a MHDD =
4.18 m. The same site from an hour later is shown in Figure 8B, comprised of 61 high water marks
collected by 1 volunteer from 14:30 to 14:39 UTC to yield a less favorable MHDD = 6.92 m during the
peak inundation period in Catch the King 2017. Figure 8C depicts inundation during the 2017 king
tide along the south bank of the Lafayette River near the Haven Creek Boat Ramp in Norfolk by 73
high water marks collected by 2 citizen scientists from 13:35 to 13:59 UTC to yield an MHDD = 4.67 m.
The same site an hour later is shown in Figure 8D, this time featuring 136 high water marks collected
by 3 people from 14:30 to 14:47 UTC to yield a less satisfactory MHDD = 6.29 m during the peak
inundation period on 5 November 2017. Figure 8E showcases GPS data from Catch the King 2017 for the
Lafayette Shores neighborhood, nestled in the east bank of the Lafayette River, through six high water
marks collected by a citizen scientist from 13:49 to 13:52 UTC to yield an MHDD = 2.15 m. The same
site from an hour later is shown in Figure 8F, comprised of 29 high water marks collected by 2 people
from 14:30 to 14:47 UTC to yield a less favorable MHDD = 4.70 m during the peak inundation period.
Figure 8G depicts inundation during the 2017 king tide along the north bank of Little Creek in the East
Ocean View neighborhood of Norfolk via 93 high water marks collected by 2 citizen scientists from
13:44 to 13:56 UTC to yield an MHDD = 9.81 m. The same site from one hour later is highlighted in
Figure 8H, now featuring 68 high water marks collected by 1 person from 14:40 to 14:45 UTC to yield
an improved MHDD = 4.06 m during the peak inundation period during Catch the King 2017.

While the areas shown in Figure 8 were surveyed by few citizen scientists, the area shown in
Figure 6B is one of the most frequently monitored areas in the Sea Level Rise app’s history. During
2017’s Catch the King, the area featured in Figure 6B was monitored by 27 different volunteers at
different times (not all during the flood peak period) to form 27 king tide inundation contours for The
Hague. These were mosaicked into a composite maximum extent contour map comprised of 1134 GPS
points stretching 2.17 km to form a maximum extent contour for VIMS to compare with its Tidewatch
Maps modeled inundation. The total distance walked and recorded using the Sea Level Rise app by all
27 volunteers for The Hague alone in 2017’s Catch the King was 22.58 km (Figure 6B). This is 10.39×
the composite’s distance at this king tide inundation site, meaning >10× the actual effort, or about a
10× greater distance was walked than represented by the composite 0 m flood depth contour. As a
result, these distances along the waterways that were travelled as effort expended by volunteers was
significantly greater than needed to efficiently validate the flooding extents (by 10×), and this is not
counting a volunteer’s travel to and from each reported flood site.
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Figure 8. Model comparison of forecasts and data from 13:00 to 13:59 UTC at left, and 14:00 to 14:59
UTC used to show varying flooding conditions during the 2017 king tide at four sites ranging from
residential, commercial, and industrial land uses throughout Norfolk, VA.
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For perspective, the grand total for over 1000 volunteers to map inundation distances across both
Catch the King years was 631.35 km, with the total number of unique king tide contours travelled in
Hampton Roads across both years adding up to 173.65 km (Table 1). Therefore, significantly more
effort was used than needed to effectively map the site, with Norfolk’s Hague experiencing the greatest
duplicated effort. This was also indicative of overlapping efforts among other high-density monitoring
areas at public beaches in Norfolk, Virginia Beach, and Hampton representing the other greatest density
GPS data density areas with >6× overlap. As noted previously, the increased density of GPS data
proved to be a boon towards supporting the development of data-driven area maps, which was useful
in The Hague, but were less useful on public coastal beaches where the water was not surrounded by
land, with transient sand elevations that may vary from those embedded in the hydrodynamic model
via the latest lidar elevation surveys. Thus, in 2018′s Catch the King, greater emphasis was placed on
coordinating volunteers at registration to commit to mapping unique locations when communicating
with volunteers via training events, and through print and social media to best value their time
commitment and most efficiently validate the model.

Aside from the horizontal GPS surveys reported through Catch the King, Tidewatch is routinely
validated through automated water level monitoring sites. An overview of the water level sensor data
extracted from sensors through Tidewatch Charts during Catch the King 2018 across all data points
revealed a favorable average vertical accuracy assessment of 3.7 cm via the root mean squared error
(RMSE). This metric was drawn from 28 StormSense water level sensors, and 16 tidal USGS Sensors and
4 NOAA sensors. Six of these sensors, including three NOAA, two StormSense, and one USGS sensor,
are shown in Figure 9 from VIMS’ Tidewatch Charts, as an example comparison of hydrodynamic model
performance during 2018′s Catch the King. These charts from 2018 are labeled in Figure 6A with their
four-character station abbreviations, for spatial reference, with their time series data shown in Figure 9.

Figure 9. Time series of six Tidewatch Charts’ water level sensors’ observations (red), astronomical
tidal estimations (blue), and computed residual difference (green), compared with SCHISM model
predictions (pink) from Tidewatch Maps during Catch the King at 10:30 on 27 October 2018; UTC-5.
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The region had 16 less water level sensors in 2017, and Catch the King in 2017 took place during
a king tide with no additional amplifying wind or rainfall effects. The aggregate RMSE comparison
in 2017 across 32 sensors was 3.5 cm, resulting in a slightly better agreement with the model than
the 3.7 cm RMSE value reported in 2018 [27,35]. As a result of the “blue sky” conditions, 722 citizen
scientists collected data in 2017, but their data was less dynamically interesting than 2018, which had
less volunteers (431), due in part to a mild nor’easter that occurred on the night before Catch the King,
making the weather less favorable for volunteers. The nor’easter brought 11.17 m/s (25 mph) sustained
winds for nearly 3 h from 03:00 to 06:00 UTC on 27 October 2018 (yet contributed negligible rainfall),
as seen in the residual fluctuations represented by the green line of each automated monitoring gauge’s
measurements in Figure 9.

4. Discussion

As citizen scientists contribute significant amounts of their time to collect these intricate geospatial
data sets, care is taken by the custodians of those data to perform quality assurance and quality control
on those data before subjecting them to rigorous scientific analysis. The raw volunteer data for each
Catch the King survey in 2017 and 2018 were modified after initial statistics were reported to filter
out and otherwise minimize bias in this study. This was in an effort to provide the most meaningful
model validation statistics, which were reported in the results section, and were honed to validate
three important factors for model validation: Duration, depth, and degree of inundation:

Duration

(1) Points with a reported timestamp more than an hour outside of the time window in which the
king tide occurred at that location were not included in the comparison.

(2) Those points within the window were rounded to the nearest hour to split them into comparative
groups for each hourly model output for comparison (as depicted in Figure 8).

Depth

(3) Surveyed points were merged with the topobathymetric DEM used to build the model, developed
by the USGS and published in [45], to append elevation values.

(4) Any points >0.91 m (3 ft) elevation above the North American Vertical Datum of 1988 (NAVD88)
were not included in the model comparison, as the king tide from neither year exceeded this
height at any water level sensor in the region (Figure 7).

Degree

(5) Points with an appended photograph were collected back away from the water’s edge (for
land marking and visual perspective), and thus were not included as part of the flood contour
comparison. If included, these would over-predict the degree of flooding.

(6) Points with a radial accuracy metric >10 m (32 ft) were too inaccurate to include, as they
misrepresent the degree an area was inundated, favoring over-prediction (Figure 10).

The extent that duration of inundation was addressed and timing of when a flood event will
arrive dictates the potential mitigating actions that may be taken. Tidal inundation events can easily
be predicted through harmonic algorithms, and hydrodynamic models can improve upon this by
informing citizen scientists, community planners, and emergency managers alike when the flood
waters will arrive. This information is useful for personal preparation of one’s home and assets that
may be in low lying areas, route planning and guidance for personal and emergency response vehicles,
and for scheduling road closures to minimize vehicular loss. Figures 4 and 8 illustrate the difference
an hour makes in terms of accuracy on model validation, and in the future, the recommendation
for more frequent spatial mapping has already been recommended for the future development of
Tidewatch Maps to eventually shift to 30 min time steps for the online time-aware layers for depicting
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more temporally-resolute flood mapping beyond hourly updates. However, presently, Tidewatch
Maps are used to map all of Virginia’s coastal floodplain via SCHISM’s model outputs at a 1 to 5 m
resolution (depending upon the accuracy of lidar point spacing for the model’s underlying digital
elevation assumptions). A 36-h Tidewatch forecast already consists of 37 state-wide coastal flood
maps being automatically produced every 12 h. Thus, doubling that number to 72 iterative Tidewatch
Maps per cycle is both computationally expensive for the model’s post-processing, and impractical
for users loading its flood forecasts via the web without newer technology to enhance loading times.
Since users have most frequently accessed Tidewatch Maps using their smart phones to view its flood
predictions during periods of significant power and internet outages, greater temporal resolution for
30-min update intervals is not likely to be implemented soon, as additional loading times are even
more cumbersome for mobile devices.

 
Figure 10. Map of radial positional accuracy (in meters) reported by the Sea Level Rise mobile app in
Norfolk’s Hague during Catch the King 2017. Points in red were not included in the spatial comparison.

Aside from depths being directly validated via amplitude comparisons with automated water
level sensors, surveyed points collected through Catch the King were merged with a DEM to translate
the collected data to contours. While most modern smart phones have an altitude sensor, its error on
accuracy is not sufficient to accurately report flood depths or meaningfully report heights above a
reference datum. The Sea Level Rise app does display one’s altitude in the app interface and records
this with each point, but not all phone models share these data with the app or possess the internal
hardware to report this. Thus, for the most reliable elevations, the GPS high water marks were merged
with the topobathymetric DEM used to build the SCHISM model and the Tidewatch Maps, developed
by the USGS [45]. Many citizen scientists were likely to test the app before venturing out to collect
data, and several data points that were nowhere near water were collected. Instead, these points
appeared in houses, apartment complexes, or traced around isolated puddles in parking lots that
were non-contiguous with neighboring estuaries. These locations were flagged for use in storm water
studies, and removed from this tidal inundation model validation analysis for any points >0.91 m (3 ft)
elevation above NAVD88 were not included in the model comparison, as the king tide from neither
year exceeded this height at any water level sensor in the region, and there was no significant rainfall
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(>2 cm) accumulated during or preceding either Catch the King tidal flood mapping event. In other
cases, users mapped tidal-connected drainage ditches that became inundated during the king tides
and these points were included in the analysis (Figures 11 and 12).

The context through which the degree of inundation was monitored by citizen science data is
made more useful through following proper training for data collection and appropriate data filtering.
Data were collected by 722 volunteers in 2017 and 431 volunteers in 2018. These data were collected by
over 20 different smart phone models, which each vary in terms of relative accuracy due to the number
of antennae included in each phone model to aid in triangulation of positional accuracy and for general
clarity of cellular broadband communications through the device. As such, citizen science surveys are
inherently less precise than those conducted by professional scientists using industry-standard GPS
receivers capable of real time kinematics (RTKs). Since the high variation in phone models introduces
variable accuracy, as does the number of GPS satellites in range, an estimated radial error metric is
reported by the Sea Level Rise app for each GPS measurement by assessing the incoming signals from
the global navigation satellite systems along with a correction stream. However, unlike professional
survey equipment operated by trained professionals, smart phones are presently unable to achieve the
1 cm positional accuracy that RTK GPS tools can. Thus, points with a radial accuracy metric >10 m
were not included in the spatial comparison (Figure 10).

Figure 11. Examples of obtaining aerial elevations from lidar and conducting hydro-correction to
assure unobstructed ditch and creek channels persist for hydrologic transport of king tide inundation
in the City of Hampton, VA. Red highlighted boxes correspond to areas depicted in Figure 12A,B.
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Figure 12. Ditches extracted and represented at the sub-grid DEM pixel level for effective representation
of drainage ditches leading to (A) the west edge of Tabbs Creek and (B) the south edge of the creek
draining the fairways of Eaglewood Golf Course, both identified for hydro-correction in Hampton,
VA, USA.

Upon filtering for these three things, it was found that the Tidewatch Map comparisons on 5
November 2017 during Catch the King 2017 had an overall MHDD of 5.9 m (19.3 ft). This statistic was
calculated from 57,986 of the 59,718 total high water marks collected after less than 3% of the citizen
scientists’ measurements were filtered out for any of the six reasons previously noted for relative error
on duration, depth, or degree of flooding. In a similar fashion, comparisons between the high water
marks collected by citizen scientists during Catch the King 2018 observed a slightly less favorable overall
MHDD of 6.2 m (24.6 ft), likely attributed to the winds from the mild nor’easter that occurred in the
hours leading up to the event. This MHDD was calculated from 30,920 of the 33,847 total high water
marks collected after 8.6% of the citizen scientists’ measurements were filtered out of the surveyed data.

In the interest of improving future forecasts, it was found that less than 1% of the filtered GPS
high water marks were still not within 50 m of the Tidewatch Map’s predicted inundation raster.
Further investigation into these sites identified two reasons for the discrepancy, both related to errors
in hydrologic correction of the model’s DEM calculated water depth assumptions. Figure 11 outlines a
series of above-ground drainage ditches in Hampton VA, that occasionally become inundated when
the water table rises with extra high tidal waters. Connection through these narrow drainage ditches
can be obscured by thick canopied trees adjacent to the narrow tidal creeks and mostly non-tidal
ditches that feed those creeks (Figure 12). The model’s elevations are attributed to averaged digital
elevations from aerial lidar surveys to source the DEM that the model uses to represent reality. Thus,
the depths of the bottoms of these fine scale ditches (<1 m wide) were not likely to be correct unless the
point spacing is extremely high. Naturally, this is acceptable, since the model was scaled to (at best)
1 m spatial resolution, and cannot accurately represent the slopes of such detailed drainage features
without scaling to a 0.33 m resolution. Yet, these ditches were found to become tidal conduits for
fluid movement capable of causing inundation far from the shoreline during king tides [46]. In other
places, bridges over typically non-tidal creeks were not removed from the aerial survey data used to
build the DEM, and removal of the occluding feature aided hydro-correction to correct the model’s
incorrect volume displacement in areas where entire creeks were shown to be dry due to the artificial
dam imposed by a bridge, constricting proper fluid flow (Figure 13). Thus, one of the most important
and immediately noticeable achievements that Catch the King accomplished for the hydrodynamic
model’s validation was the aid of hydro-correction for several small streams that were obscured in
the aerial lidar surveys informing the Tidewatch Maps. In the case of several ephemeral creeks that
temporarily became tidal during the king tide, the citizen scientists’ survey identified locations where
these ditches needed to be corrected (Figure 14) [47].
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Figure 13. Conceptualization of macro-roughness features in an urban environment resolved within
the street level inundation forecasts. In the example shown in (A), a bridge artificially obstructs flow
from passing through to the hydrodynamic model grid cell below the one shown. With hydrologic
correction provided by the citizen scientists via Catch the King (B) shows the grid opened, where a
nearby flood contour can be extracted and applied to translate the inundation underneath the bridge
and open flow to the opposite side, no longer impeding fluid flow.

 
Figure 14. Citizen Science flood extent observations aided in hydrologic correction for an ephemeral
stream feeding Wolfsnare Creek in Virginia Beach, VA. (A) Citizen scientists mapped the tidal
inundation extent approximately an hour before the king tide’s peak. (B) Hydrologic correction fixed
the lidar-derived DEM to permit flow through the small box culvert beneath the bridge to enhance the
model’s spatial accuracy via better estimation of cross-sectional flow and volume conservation.

For example, a typically non-tidal creek feeding Wolfsnare Creek in Virginia Beach was inundated
during the king tide in 2017. Catch the King volunteers mapped the king tide approximately an hour
before the king tide’s peak, and the large initial mean horizontal distance difference from this cluster
of points drew researchers’ attention to investigate the hydrodynamic model’s under-prediction of
inundation. The error was traced back to a faulty elevation assumption attributed to obstructed flow
underneath a bridge. VIMS researchers hydro-corrected the landscape to open flow using neighboring
elevations from the DEM through the box culvert underneath the bridge and corrected ground
elevations impacted by thick tree canopies surrounding a creek bed with low aerial lidar-point-spacing.

5. Conclusions

A large-scale flood monitoring citizen science data collection effort was used to favorably validate
an automated browser-based flood mapping service driven by a cross-scale hydrodynamic model
predicting storm tide inundation in coastal Virginia, USA. The operational modeling effort for predicting
tidal flooding can be mapped using multiple methods, yet the most effective method was found to be the
automated implementation of a street-level hydrodynamic model. The Tidewatch Maps implemented
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by the Virginia Institute of Marine Science (VIMS) leveraged their SCHISM hydrodynamic model
with inputs of: atmospheric wind and pressure data, tidal harmonic predictions at the open boundary,
and prevailing ocean current inputs, such as the Gulf Stream. This information was successfully
computed from a large scale model and translated to the street-level via SCHISM’s computationally
efficient non-linear solvers, and semi-implicit numerical formulations aided by a sub-grid geometric
mesh with embedded lidar elevations.

Validation in the vertical scale found that the SCHISM model outputs via the Tidewatch web
mapping platform compared well in Hampton Roads among the 32 extant water level sensors during
the highest astronomical tide of the year on 5 November 2017, a king tide, yielding an aggregate
RMSE of 3.5 cm. The region expanded its sensor base to 48 through an IoT sensor project, StormSense,
to compare well again during the king tide on 27 October 2018, resulting in an RMSE of 3.7 cm.
Horizontal validation was aided by time-stamped GPS flood extent data collected by citizen scientists
through the world’s largest environmental survey (in terms of the most contributions in the least
amount of time), Catch the King. The citizen science flood mapping survey was established in Hampton
Roads in 2017 and recruited volunteers through local, print, and social media outlets. The survey’s
organizers then trained the citizen scientists in the use of the free Sea Level Rise mobile flood mapping
application at frequently inundated public spaces in the months leading up to each king tide event.

The citizen scientists’ flood monitoring data formed time-indexed GPS breadcrumbs to form
contours that were successfully aggregated and compared with the maximum inundation extents of
the same time interval from VIMS’ Tidewatch Maps. The data were filtered to minimize bias attributed
to errors related to observing flooding duration, depth, and degree. Once the Catch the King survey data
were filtered for these three things, it was found that the Tidewatch Map comparisons on 5 November
2017 had an overall mean horizontal distance difference of 5.9 m (19.3 ft). The model comparison with
the observations collected during the king tide on 27 October 2018 were found to be less favorable,
yielding an average distance deviation of 6.2 m (24.6 ft), likely attributed to the winds from the mild
nor’easter that occurred in the hours leading up to the event. In each spatial validation effort, less than
9% of the surveyed data were excluded from the analysis.

Lessons learned from citizen science surveys have improved the model through cost-effective
hydrologic correction of mission conduits for fluid flow. These were identified by filtered GPS
observations that the model missed in its initial automated forecast, but were corrected in hindcast,
in preparation for the next significant inundation event. Errors in hydro-correction did not relate
to errors in friction parameterization of the model, but were more associated with flow pathways
that were occluded from aerial lidar surveys. These areas included bridges, culverts, and stormwater
drainage systems without tidal backflow prevention valves, which formed artificial dams in the digital
surface model embedded in the forecasted Tidewatch Maps. Many of these identified areas have been
corrected and have recently been used alongside the successful model validation in Hampton Roads to
expand the forecast area of the Tidewatch Maps beyond southeast Virginia to include the entire coastal
zone of Virginia in 2019.

As king tides are currently simply nuisance floods, which primarily inundate streets and driveways
without significantly damaging infrastructural assets, the issues are presently geared towards traffic
and transportation issues. Common concerns from citizen scientists involved in the Catch the King
mapping events involved concerns regarding whether their vehicle could be safely street parked or if
their vehicles needed to be safely moved into a garage during king tides. Others questioned whether
they should take an alternate route to work or school or the store due to potential street flooding.
As technology progresses, these questions will become more prevalent as we aim to ascertain whether
modern route guidance mobile applications will be intelligent enough to account for intermittent
inundation, or unintentionally lead vehicles down flooded streets simply because there is no traffic
detected on them while an adjacent elevated street is congested. Some navigation applications, such as
Waze, have aimed to crowdsource all road hazard data through their “Connected Citizens” program,
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but this method is only a temporary solution, as a model cannot currently automate road hazard flags
for flooded locations where those particular app users are not or have not logged data.

Naturally, adeptly answering these questions becomes increasingly difficult once self-driving
vehicles are involved. Thus, the outcomes of inundation modeling efforts for this tidal calibration
effort will more significantly be realized once this trained citizen scientist army is deputized into
post-hurricane surveys. Since 2011 Hurricane Irene was the last hurricane to significantly impact
Virginia’s Hampton Roads region, the Tidewatch automated mapping model has yet to demonstrate
widespread accuracy amidst a significant inundation event since the Sea Level Rise app’s advent in
2014. The goal is to continue to improve the model with each Catch the King tidal calibration and train
volunteers so they will be aware of where to find the latest flood forecast information, and how to collect
meaningful flood validation data. Thus, this monitoring coordination approach with hydrodynamic
modeling provided a novel procedural release of information to depict predicted maximum inundation
extents for expediently effective model validation through the use of an overwhelming quantity of
quality event data with relatively low risk to volunteer citizen scientists.
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Abstract: One of the modern fields in mathematical modelling of water areas is developing hybrid
coastal ocean models based on domain decomposition. In coastal ocean modelling a problem to
be solved is setting open boundary conditions. One of the methods dealing with open boundaries
is variational data assimilation. The purpose of this work is to apply the domain decomposition
method to the variational data assimilation problem. The method to solve the problem of restoring
boundary functions at the liquid boundaries for a system of linearized shallow water equations is
studied. The problem of determining additional unknowns is considered as an inverse problem and
solved using well-known approaches. The methodology based on the theory of optimal control and
adjoint equations is used. In the paper the theoretical study of the problem is carried out, unique and
dense solvability of the problem is proved, an iterative algorithm is proposed and its convergence is
studied. The results of the numerical experiments are presented and discussed.

Keywords: open boundaries; domain decomposition; variational data assimilation; inverse problems;
shallow water equations; boundary conditions; mathematical modelling; coastal ocean modelling;
computational methods

1. Introduction

At the present time, one of the rapidly developing fields is mathematical modelling of water areas
of particular interest (seas, bays, open ocean areas) and open coastal regions. The relevance of this
topic is justified by the need to assess anthropogenic impacts on marine areas and the consequences
of such impacts. Moreover, a number of problems connected to the climate changes for a selected
water area over several decades gain increasing interest. In order to simulate coastal ocean processes,
involved with various types of physical phenomena occurring at a wide range of spatial and temporal
scales, special approaches are required. To provide the correct representation of coastal ocean flows,
regional models are created.

Regional ocean modelling has one unavoidable challenge relative to its global counterpart:
open boundary conditions (OBC). By definition, a regional ocean model includes open boundaries
over at least a part of its perimeter [1]. The “outer liquid” (open) boundary means the “water-to-water”
boundary separating the considered area from an ocean. The result obtained both in long-term
simulations and in operational forecasting directly depends on the method of setting the OBC.
According to [2], in flow problems dominated by advection and/or wave motion, the OBC should allow
phenomena generated in the domain of interest and coming from outside to pass through the boundary
without undergoing significant distortion and without influencing the interior solution. One of the
difficulties in setting such conditions is that there is no accurate information on external energy and
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mass flows. If open boundaries are located in dynamically active areas, inaccurate accounting for
this information leads to inconsistency of the results obtained with the observed fields of physical
parameters. For the long-term climate modelling, the appropriate setting of boundary conditions at
liquid boundaries is of particular importance.

There are different known methods [3–5] dealing with open boundaries in limited-area models.
In a number of studies [6,7] the models are previously set up for a larger area and the results of
the preliminary (diagnostic) simulations with these models are used to determine OBC. One-way
and two-way grid-nesting techniques are devised to exchange information at the interface between
fine-mesh regional models and coarse-mesh large-domain models. The use of averaged data for flows
across the open boundary is also acceptable in some cases [8]. A large number of OBC have been
proposed in the literature (see [9], for a review). The adaptive algorithm described in [3] is used in
many recent studies. It is also possible to use sequential [1] or variational [5] data assimilation methods
in order to reduce model-data misfit caused by unsatisfactory OBC. While there are many suggested
methods, it is still a question of debate which methodology is suitable for a particular problem.

One of the approaches used for modelling multiphysics and multiscale coastal ocean processes
is developing of hybrid models based on domain decomposition. The use of domain decomposition
method (DDM) allows to reduce the solution process in the original domain to alternate solving
the problem in subdomains, possibly having a simpler form, or apply different models in them (for
example, the coupling of first and second order equations [10]). Particularly, it is possible to use DDM
to combine models developed for individual phenomena at specific scales. For example, in [11,12] the
idea of coupling a geophysical fluid dynamics model and a fully 3D fluid dynamics model in order
to simulate multiphysics coastal ocean flows is presented and discussed. Implementation of DDM
often requires “inner liquid” boundaries, separating the subdomains. In these subdomains one can
obtain the results of simulations using meshes of different scales to achieve better approximation of
boundary, bottom topography, etc. At the present time, the development of new algorithms and their
effective implementation on multiprocessor computer systems can be attributed to the main goals of
the domain decomposition. This makes DDMs be promising in mathematical modelling of processes
in the oceans and seas [11–13]. Most studies on application of data assimilation (DA) together with
DDM are related to developing parallel algorithms. Some studies [14–17] demonstrate the scalability
of the domain decomposition approach and its mathematical consistency when applied in variational
DA. Besides, DDM in variational DA problems is suitable not only for creating high-performance
algorithms. Particularly, observational data could be available not in the whole modelling area but
only in some subdomain in which variational DA procedure may be considered. In those cases the
application of DDMs may be effective. This topic is a relatively new field in ocean modelling.

The approach described in this paper is based on [13,18–21]. In [18] the model based on primitive
equations written in spherical σ-coordinates with a free surface in the hydrostatic and Boussinesq
approximations is considered. For time approximation of the model the splitting method is used [22,23].
For this purpose the whole time interval is divided into subintervals; at each subinterval, the following
subproblems named the steps of the splitting method are solved:

Step 1. The heat transfer problem.
Step 2. The salt transport problem.
Step 3. The problem of hydrological fields adaptation. It is solved in 3 substeps: (a) calculation
of density and finding corrections to the velocity; (b) solving the problem of baroclinic adaptation;
(c) solving the problem of barotropic adaptation (i.e., the system of linearized shallow water equations
is considered).

The steps of the splitting method are formulated in [18]. The splitting method allows to consider
the DA problem as a sequence of linear DA problems. In [19–21,24,25] an investigation of some of
them is given. In [25] an iterative algorithm for solving the problem of variational assimilation of
the temperature corresponding to the step 1 of the splitting method is considered. The numerical
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experiments on the efficiency of the algorithm in the Baltic Sea area are carried out. In [19] an inverse
problem of determining an unknown boundary function in the OBC for the simplest model of tides
is studied. The results of the work are used in [21], where the algorithm for solving the problem of
variational assimilation of the sea level anomaly at the liquid boundary corresponding to step 3 of the
splitting method is considered and tested in the Baltic Sea circulation model. In [13] a new approach
to formulation of DDM is discussed. This approach was applied to a convection-diffusion problem.
The method described in [13] was implemented in the heat transfer block (step 1) of the Baltic Sea
dynamics model.

The purpose of this work is to apply DDM to the variational DA problem. The method for solving
the problem of restoring boundary functions at the “outer” and “inner” liquid boundaries based
on the methods of variational DA and domain decomposition for the subproblem corresponding to
a system of linearized shallow water equations (step 3-c) is studied. The problem of determining
additional unknowns (“boundary functions”) in the boundary conditions is considered as inverse and
solved using well-known approaches [26,27]. The major problem in coastal ocean modelling is the
reconciliation of model results with observational data. The approach described in the paper may
be applied to regional ocean models in order to reduce a model-data misfit and the dependence of
the results upon the unsatisfactory OBC. The choice of the approach to formulate the DDM in the
present work is justified by a possibility of generalization, since the models in the subdomains may
differ. Therefore, the results of this paper may be promising for multiscale and multiphysics coastal
processes simulation.

2. Problem Statement

2.1. Notations and Preliminary Notes

Let us consider geographical (geodesic) system of coordinates (λ, θ, r), where λ ∈ [0, 2π] is the
geographical longitude increasing from West to East, θ ∈ [−π/2, π/2] is the geographical latitude
increasing form South to North (θ = φ − π/2, φ ∈ [0, π]), r is the distance from the center of the
Earth to a given point, the mean Earth radius is RE. Instead of r it is often convenient to introduce
the coordinate z = RE − r of the axis Oz, directed along the normal to the center of the sphere SR
of radius RE, along the direction of the gravity force. The unit vectors in λ-, θ- and z-directions are
denoted by eλ, eθ , ez, respectively. In this case the velocity vector in the ocean is written in the form:
(u1, u2, u3)

T = u1eλ + u2eθ + u3ez ≡ (�u, w)T .
Let Ω denote the connected manifold on the sphere SR, which is called the “reference surface” [18].

Below we consider the case when Ω does not include polar points. The ocean surface elevation is given
by the equation z = ξ(λ, θ, t), z = H(λ, θ) is the bottom topography function, where (λ,θ,RE) ∈ Ω,
t ∈[0, T] is time variable (T<∞), H(λ, θ)>0. Moreover, suppose that there exists ε > 0, so that H ≥ ε.
Considering these notations, the total depth of the ocean is expressed as Htot_depth = H − ξ

Below we use the following notations of differential operators:

grad Φ =

(
m

∂Φ
∂λ

, n
∂Φ
∂θ

)T
, div Φ = m

∂Φ
∂λ

+ m
∂ [(n/m)Φ]

∂θ
,

where m = 1/(RE cos θ), n = 1/RE. By�n we denote the unit vector of outer normal to ∂Ω. Let l denote
the Coriolis parameter, g is the gravitational acceleration. Let us introduce the following notation for
the depth-averaged horizontal velocities:

�U =
1
H

H∫
ξ

�u dz.
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In the current study we consider the subproblem corresponding to a system of linearized shallow
water equations (Step 3-c of the splitting scheme introduced above) on the time subinterval (tj−1, tj),
Δt = tj − tj−1, t0 = 0, tJ = T, j = 1, . . . , J [18]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Ut +

[
0 −�

� 0

]
�U + R f �U − g · grad ξ = �f , in Ω × (tj−1, tj),

ξt − div
(

H�U
)
= 0, in Ω × (tj−1, tj),

�U(tj−1) = �Uj−1, ξ(tj−1) = ξ j−1, in Ω,

(1)

where �f is a given function, R f is the linear drag coefficient. Solving the problem on (tj−1, tj),
we consider the functions �Uj−1, ξ j−1 to be known. Detailed description of the notations and
simplifications can be found, for example, in [18]. In the present work we consider the boundary
condition for System (1) of the form [19]:

H�U ·�n + mop
√

gHξ = mop
√

gHds, on ∂Ω × (tj−1, tj), (2)

where mop is the characteristic function of the “outer liquid” (open) boundary Γop, i.e., mop = 1 if
(λ, θ, RE) ∈ Γop, mop = 0 otherwise. If the function ds is defined, Systems (1) and (2) are well posed.
This boundary function will be considered below as an additional unknown.

Considering Systems (1) and (2) on (tj−1, tj), we introduce the following implicit scheme for time
approximation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�Uj

Δt
+

[
0 −�

� 0

]
�Uj + R f �Uj − g · grad ξ j = �f j +

�Uj−1

Δt
, in Ω,

ξ j

Δt
− div

(
H�Uj

)
=

ξ j−1

Δt
, in Ω,

H�Uj ·�n + mop
√

gHξ j = mop
√

gHdj
s, on ∂Ω.

(3)

Hereafter the “semi-discrete” System (3) is the subject of the investigation, so for convenience the

indices j will be omitted, i.e.: �U ≡ �Uj, ξ ≡ ξ j, ... We also introduce vectors �̃f = ( f j
1 + (�Uj−1)1/Δt, f j

2 +

(�Uj−1)2/Δt)T , f̃3 = ξ j−1/Δt, �̃f ≡ ( f̃1, f̃2). Finally, System (3) can be written in the form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�U
Δt

+

[
0 −�

� 0

]
�U + R f �U − g · grad ξ = �̃f , in Ω,

ξ

Δt
− div

(
H�U

)
= f̃3, in Ω,

H�U ·�n + mop
√

gHξ = mop
√

gHds, on ∂Ω.

(4)

2.2. Variational Data Assimilation and the Domain Decomposition Method

We assume that the boundary ∂Ω of the domain Ω is Lipschitz and piecewise C2–smooth. We also
assume that Γin ⊂ Ω is a hypersurface of class C2 [28] and divides the domain Ω into two subdomains
Ω1 and Ω2 without overlap, Ω ≡ Γin ∪Ω1 ∪Ω2 (see Figure 1), Γ̄in ≡ (∂Ω1 ∩ ∂Ω2), Γin ⊂ ∂Ω1 is open in
∂Ω1, Γin ⊂ ∂Ω2 is open in ∂Ω2. We suppose that ∂Ω1 and ∂Ω2 are Lipschitz and piecewise C2–smooth.
Suppose that Γop (“outer liquid”, open boundary) does not intersect with Γin (“inner liquid” boundary).
Moreover, the essential assumption is that ρ(Γin, Γop) = inf

x∈Γin , y∈Γop
‖x − y‖R2 	 √

gH · Δt.

Below we use the index i = 1, 2 to indicate the solutions in subdomains (i = 1, 2). The problem (4)
can be written for the functions �U(1), ξ(1) in the subdomain Ω1, for the functions �U(2), ξ(2) in the
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subdomain Ω2. Suppose�ni is the outer normal to the boundary ∂Ωi of the domain Ωi, i = 1, 2. We will
require the fulfillment of the boundary conditions on the inner liquid boundary Γin:

ξ(1) = ξ(2), HU(1)
n = −HU(2)

n , (5)

where U(i)
n = �U(i) · �ni, i = 1, 2.

Figure 1. Domain with “inner” Γin and “outer” Γop liquid boundaries.

An additional unknown function v is defined as:

HU(1)
n =

√
gHv, on Γin.

We obtain the following form of the boundary conditions for the problem in the subdomain Ω1:

H�U(1) ·�n1 + mop
√

gHξ(1) = mop
√

gHds + min
√

gHv, on ∂Ω1, (6)

and for the problem in the subdomain Ω2:

HU(2)
n = −min

√
gHv, on ∂Ω2. (7)

Suppose there are preprocessed data of sea level anomaly measurements ξobs along Γop. Such data
can be obtained from observations or direct measurements (satellite altimetry data, “in-situ” data),
or from the simulation using a global model with a coarser grid. In any cases, these data contain errors,
so we cannot use ξobs directly in the OBC. We introduce an additional condition (closure condition):

ξ = ξobs, on Γop. (8)

From System (4) in each subdomain (i = 1, 2) we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�U(i)

Δt
+

[
0 −�

� 0

]
�U(i) + R f �U(i) − g · grad ξ(i) = �̃f , in Ωi,

ξ(i)

Δt
− div

(
H�U(i)

)
= f̃3, in Ωi,

H�U(1) ·�n1 + mop
√

gHξ(1) = mop
√

gHds + min
√

gHv, on ∂Ω1,

H�U(2) ·�n2 = −min
√

gHv, on ∂Ω2.

(9)

We formulate the inverse problem of restoring the boundary functions on the “outer” and “inner” liquid
boundaries as follows: find the vector functions of solutions in the subdomains Φ(i) = (�U(i), ξ(i))T ,
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i = 1, 2, and additional unknown boundary functions v, ds, satisfying the systems of Equation (9) and
additional conditions of Equations (5) and (8).

Consider the Hilbert space H
(i)
0 of vector functions Φ(i) = (�U(i), ξ(i))T , �U(i) ∈ (L2(Ωi))

2,
ξ(i) ∈ L2(Ωi) with the scalar product:

(Φ(i), Φ̂(i))
H

(i)
0

=
∫
Ωi

[H(�U(i) · �̂U(i)) + gξ(i) ξ̂(i)] dΩ.

By W(i) we denote a space of vector functions Φ ∈ (L2(Ωi))
2 × W1

2 (Ωi). Let ξobs ∈ L2(Γop),
�̃f ∈ (L2(Ω))2, f̃3 ∈ L2(Ω), H ∈ C1(Ω).

The scalar product of (9) and Φ̂ ∈ W(i) in H
(i)
0 , i = 1, 2 is:

a1(Φ(1), Φ̂(1)) = f1(Φ̂(1)) + bop(ds, Φ̂(1)) + b1(v, Φ̂(1)), (10)

a2(Φ(2), Φ̂(2)) = f2(Φ̂(2))− b2(v, Φ̂(2)), (11)

where

a1(Φ(1), Φ̂(1)) =
∫

Ω1

[
H�U(1) �̂U(1)+gξ(1) ξ̂(1)

Δt + R f �U(1) �̂U(1) + lH((�U(1))1(�̂U(1))2 − (�U(1))2(�̂U(1))1)

]
dΩ+

+
∫

Ω1

(gH�U(1) grad ξ̂(1) − gH�̂U(1) grad ξ(1)) dΩ +
∫

Γop

gξ̂(1)
√

gHξ(1) dΓ,

a2(Φ(2), Φ̂(2)) =
∫

Ω2

[
H�U(2) �̂U(2)+gξ(2) ξ̂(2)

Δt + R f �U(2) �̂U(2) + lH((�U(2))1(�̂U(2))2 − (�U(2))2(�̂U(2))1)

]
dΩ+

+
∫

Ω2

(gH�U(2) grad ξ̂(2) − gH�̂U(2) grad ξ(2)) dΩ,

bop(ds, Φ̂(1)) =
∫

Γop

√
gHdsgξ̂(1) dΓ,

bi(v, Φ̂(i)) =
∫

Γin

√
gHvgξ̂(i) dΓ, i = 1, 2,

fi(Φ̂(i)) =
∫
Ωi

[H�̃f · �̂U + g f̃3ξ̂] dΩ, i = 1, 2.

Let us introduce the Hilbert space Hc of vector-functions u = (ds, v)T , ds ∈ LW
2 (Γop), v ∈ LW

2 (Γin),
with the norm ‖u‖Hc =

√
‖ds‖2

LW
2 (Γop)

+ ‖v‖2
LW

2 (Γin)
, where LW

2 (Γ) is the space of functions from

L2(Γ) with the “weighted” scalar product: (·, ·)LW
2 (Γ) = (

√
gH·, ·)L2(Γ). We also introduce the space

Hob = LW
2 (Γop)× LW

2 (Γin).
We formulate the problem in a weak form: find Φ(i) ∈ W(i), u ∈ Hc satisfying the conditions of

Equations (10) and (11) and also the conditions of Equations (5) and (8) (in the sense of equality almost
everywhere on Γin, Γop, respectively) ∀Φ̂ ∈ W(i).

In order to formulate problems in operator form to study the problem theoretically the weak
formulation should be modified. To execute this, we use the procedure similar to that described in [19].
From Equation (9) we receive:

(�U)1 = g
∂ξ

∂x
ϑ

ϑ2 + l2 + g
∂ξ

∂y
l

ϑ2 + l2 + ˜̃f1,

(�U)2 = g
∂ξ

∂y
ϑ

ϑ2 + l2 − g
∂ξ

∂x
l

ϑ2 + l2 + ˜̃f2,
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where
ϑ = 1/Δt + R f , ˜̃f1 = f̃1

ϑ

ϑ2 + l2 + f̃2
l

ϑ2 + l2 , ˜̃f2 = f̃2
ϑ

ϑ2 + l2 − f̃1
l

ϑ2 + l2 .

By matrix M we denote:

M =

[
a b
−b a

]
,

where
a =

ϑ

ϑ2 + l2 , b =
l

ϑ2 + l2 .

Substituting �U in the weak formulation of the problem we receive:

ã1(ξ
(1), ξ̂(1)) = f̃1(ξ̂

(1)) + b̃op(ds, ξ̂(1)) + b̃1(v, ξ̂(1)), (12)

ã2(ξ
(2), ξ̂(2)) = f̃2(ξ̂

(2))− b̃2(v, ξ̂(2)), (13)

where

ã1(ξ
(1), ξ̂(1)) =

∫
Ω1

[
ξ(1) ξ̂(1)/Δt + gH · M grad ξ(1) · grad ξ̂(1)

]
dΩ +

∫
Γop

ξ̂(1)
√

gHξ(1) dΓ,

ã2(ξ
(2), ξ̂(2)) =

∫
Ω2

[
ξ(2) ξ̂(2)/Δt + gH · M grad ξ(2) · grad ξ̂(2)

]
dΩ.

b̃op(ds, ξ̂(1)) =
∫

Γop

√
gHds ξ̂(1) dΓ, (14)

b̃i(v, ξ̂(i)) =
∫

Γin

√
gHvξ̂(i) dΓ, i = 1, 2, (15)

f̃i(ξ̂
(i)) =

∫
Ωi

[ f̃3ξ̂ − HM�̃f · grad ξ̂] dΩ, i = 1, 2.

Let us introduce the following notation:

W1
2 (Ωi) ≡ V(i)

The bilinear forms ãi(ξ
(i), ξ̂(i)), i = 1, 2 are bounded and positive definite for functions ξ(i),

ξ̂(i) ∈ V(i). Equations (12) and (13) can be formulated in the following form [26]:

L1ξ(1) = f̂1 + Bopds + B1v, (16)

L2ξ(2) = f̂2 − B2v, (17)

where the operators Li : V(i) → (V(i))′, Bi : LW
2 (Γin) → (V(i))′, Bop : LW

2 (Γop) → (V(i))′ (the space
(V(i))′ is the dual of V(i)) are introduced using the bilinear forms ãi(ξ

(1), ξ̂(1)), b̃i(v, ξ̂(i)), b̃op(ds, ξ̂(i)),
i = 1, 2, respectively [29], f̂i ∈ (V(i))′. The adjoint operators may also be introduced, so that the
following identity is satisfied (i = 1, 2):

ãi(ξ
(i), ξ̂(i)) = (Liξ

(i), ξ̂(i)) = (ξ(i), L∗
i ξ̂(i)). (18)
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Note, that (Liξ
(i)) ∈ (V(i))′, ξ̂(i) ∈ V(i) and (·, ·) means their scalar product. We obtain the same

equalities for the bilinear forms bi(v, ξ̂(i)), bop(ds, ξ̂(i)):

bi(v, ξ̂(i)) = (Biv, ξ̂(i)) = (v, B∗
i ξ̂(i))LW

2 (Γin)
, bop(ds, ξ̂(i)) = (Bopds, ξ̂(i)) = (ds, B∗

op ξ̂(i))LW
2 (Γop)

. (19)

It could be shown that the operators Bi, Bop are bounded, there exist operators L−1
i which are bounded

(i = 1, 2) [13,29].
The closure conditions of Equations (5) and (8) are formulated in the form:

Cobsξ(1) = ξobs, (20)

C1ξ(1) = C2ξ(2), (21)

where Cobsξ = ξ|Γop ∀ξ ∈ V(1) is a trace operator on Γop, Cobs : V(1) → LW
2 (Γop), Ciξ

(i) = ξ(i)|Γin

∀ξ(i) ∈ V(i), i = 1, 2, are trace operators on Γin, Ci : V(i) → LW
2 (Γin).

Now the weak formulation of the inverse problem is equivalent to the following: find ξ(i), ds, v
satisfying Equations (16), (17), (20) and (21).

The system of Equations (16), (17), (20) and (21) can be rewritten in the operator form:

Au = ϕ, (22)

where

A =

[
CobsL−1

1 Bop CobsL−1
1 B1

C1L−1
1 Bop C1L−1

1 B1 + C2L−1
2 B2

]
,

ϕ =

[
ξobs − CobsL−1

1 f̂1

C2L−1
2 f̂2 − C1L−1

1 f̂1

]
.

Finally, the original problem is reduced to a single operator Equation (22), for which many results of the
general theory of operator equations [26,27,30] are applicable. In the current study the methodology
based on the methods of optimal control and adjoint equations is used [26].

2.3. Optimal Control Problem

Note that the operator A is bounded: ‖Au‖Hob ≤ cA‖u‖Hc , cA = const < ∞. However
Equation (22) may be ill-posed, since the non-smooth observational data ξobs ∈ L2(Γop) are used
in setting the function ϕ, so ϕ /∈ R(A). In this regard let us move on to a generalized formulation of
Equation (22): find u ∈ Hc minimizing J0(u) = 1/2‖Au − ϕ‖2

Hob
.

We formulate the class of optimal control problems [26]: find boundary functions u = (dt, v)T ∈ Hc,
minimizing the functional Jα(u):

Jα(u) =
1
2

α‖u‖2
Hc

+
1
2
‖Au − ϕ‖2

Hob
, α ≥ 0. (23)

Note that the necessary condition for the minimum of the functional Jα(u) has the form of
an equation in terms of Tikhonov regularization method, where α is a regularization parameter.
Henceforth, we will call α the regularization parameter. If α > 0, functional defined in Equation (23) is
strictly convex, strongly convex and has a unique global minimum J∗ = J∗α (u∗(α)). If ϕ ∈ R(A) and
the solution of the inverse problem is unique, u∗(α) tends to the solution when α → +0. Note also that
for α = 0 the optimal control problem is equivalent to the generalized formulation of Equation (22).
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3. Uniqueness of the Solution

Let the kernel of the operator A consist of not only a single zero element. In this case, there exists
u = (ds, v)T �= 0 and Au = 0. This condition is equivalent to the existence of a nonzero weak solution
of the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̃U(i)

Δt
+

[
0 −�

� 0

]
�̃U(i) + R f �̃U(i) − g · grad ξ̃(i) = 0, in Ωi,

ξ̃(i)

Δt
− div

(
H�̃U(i)

)
= 0, in Ωi,

H�̃U(1) ·�n1 + mop
√

gHξ̃(1) = mop
√

gHds + min
√

gHv, on ∂Ω1,

ξ̃(1) = 0, on Γop,

H�̃U(2) ·�n2 = −min
√

gHv, on ∂Ω2,

where i = 1, 2. Note that the functions ξ̃ = {ξ̃(i) in Ωi, i = 1, 2}, �̃U = {�̃U(i) in Ωi, i = 1, 2} are
the solution of a homogenous boundary-value problem in Ω with mixed boundary conditions. So,
we obtain: ξ̃(i) = 0, �̃U(i) = 0 and ds = 0, v = 0. Hence, u = 0 and ker(A) = {0}, i.e., the problem
considered may have only a unique solution.

4. Optimality Condition

The necessary optimality condition for the functional Jα can be written in the form:

αu + A∗Au = A∗ϕ, (24)

where A∗ is the adjoint to A:

A∗ =
[

B∗
opL∗−1

1 C∗
obs B∗

opL∗−1
1 C∗

1
B∗

1 L∗−1
1 C∗

obs B∗
1 L∗−1

1 C∗
1 + B∗

2 L∗−1
2 C∗

2

]
.

Introduce the following adjoint problem:

L∗
1q1 = C∗

obs(Cobsξ(1) − ξobs) + C∗
1 (C1ξ(1) − C2ξ(2)), (25)

L∗
2q2 = C∗

2 (C1ξ(1) − C2ξ(2)). (26)

The optimality Equation (24) takes the form:

{
αds + B∗

opq1 = 0,

αv + B∗
1 q1 + B∗

2 q2 = 0.
(27)

We compute the scalar product of vector function û = (d̂s, v̂)T ∈ Hc and Equation (27) in Hc.
Using Equations (14) and (15) and representations of the bilinear forms of Equation (19), we receive
the integral analogue of the optimality Equation (27):

α
∫

Γop

√
gHdsd̂s dΓ +

∫
Γop

√
gHq1d̂s dΓ +

+α
∫

Γin

√
gHvv̂ dΓ +

∫
Γin

√
gH(q1 + q2)v̂ = 0 ∀û = (d̂s, v̂)T ∈ Hc.

Similarly, integral relations for adjoint Equations (25) and (26) can be obtained.
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Adjoint Equations (25) and (26) in differential form (ξ∗,(1) = q1, ξ∗,(2) = q2) are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�U∗,(i)

Δt
−
[

0 −�

� 0

]
�U∗,(i) + R f �U∗,(i) + g · grad ξ∗,(i) = 0, in Ωi,

ξ∗,(i)

Δt
+ div

(
H�U∗,(i)

)
= 0, in Ωi,

− H�U∗,(1) ·�n1 + mop
√

gHξ∗,(1) = mop
√

gH(ξ(1) − ξobs) + min
√

gH(ξ(1) − ξ(2)), on ∂Ω1,

− H�U∗,(2) ·�n2 = min
√

gH(ξ(1) − ξ(2)), on ∂Ω2.

(28)

The optimality conditions take the form:

αds + ξ∗,(1) = 0, on Γop, (29)

αv + (ξ∗,(1) + ξ∗,(2)) = 0, on Γin. (30)

So, the functions ds, v minimizing Jα, α ≥ 0, satisfy the optimality Equations (29) and (30), where
ξ∗,(i), i = 1, 2 are the weak solutions of Equation (28), i = 1, 2, in which ξ(i) are the weak solutions of
the systems of Equation (9).

5. Dense Solvability

Now we consider the following problems:

ã1(ξ̂
(1), ξ∗,(1)) =

∫
Γop

√
gHwξ̂(1) dΓ +

∫
Γin

√
gHhξ̂(1) dΓ, ∀ξ̂(1) ∈ V(1)

ã2(ξ̂
(2), ξ∗,(2)) =

∫
Γin

√
gHhξ̂(2) dΓ, ∀ξ̂(2) ∈ V(2)

with some (possibly non-trivial) functions h ∈ L2(Γin), w ∈ L2(Γop). Let the functions ξ∗,(1), ξ∗,(2)

satisfy additional conditions

ξ∗,(1) = 0, on Γop,

ξ∗,(1) + ξ∗,(2) = 0, on Γin.

Note that the functions ξ∗ = ξ∗,(i) in Ωi, i = 1, 2, are the solution of a homogenous
boundary-value problem in Ω [13] and ξ∗ = 0 in Ω. So, we obtain: ξ∗,(i) = 0 in Ωi, i = 1, 2 and w = 0,
h = 0. Hence, ker(A∗) = {0}, and this means the dense solvability of the problem [26].

6. Iterative Algorithm

As it was shown in the Sections 3 and 5, the problem to find Φ(i) = (�U(i), ξ(i))T , i = 1, 2 and the
additional boundary functions v, ds is uniquely and densely solvable. Therefore the functions Φ(i)(α),
v(α), ds(α) satisfying Equations (9) and (28)–(30) could be taken as an approximation to the solution of
the original problem [26]. An approximation to Φ(i)(α), v(α), ds(α) could be found with the following
iterative algorithm.
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1. Let uk = (dk
s , vk)T be found. Solve the problems in each subdomain Ωi, i = 1, 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�U(i),k

Δt
+

[
0 −�

� 0

]
�U(i),k + R f �U(i),k − g · grad ξ(i),k = �̃f , in Ωi,

ξ(i),k

Δt
− div

(
H�U(i),k

)
= f̃3, in Ωi,

H�U(1),k ·�n1 + mop
√

gHξ(1),k = mop
√

gHdk
s + min

√
gHvk, on ∂Ω1,

H�U(2),k ·�n2 = −min
√

gHvk, on ∂Ω2.

(31)

2. Solve the adjoint problems in Ωi, i = 1, 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�U∗,(i),k

Δt
−
[

0 −�

� 0

]
�U∗,(i),k + R f �U∗,(i),k + g · grad ξ∗,(i),k = 0, in Ωi,

ξ∗,(i),k

Δt
+ div

(
H�U∗,(i),k

)
= 0, in Ωi,

− H�U∗,(1),k ·�n1 + mop
√

gHξ∗,(1),k = mop
√

gH(ξ(1),k − ξobs) + min
√

gH(ξ(1),k − ξ(2),k), on ∂Ω1,

− H�U∗,(2),k ·�n2 = min
√

gH(ξ(1),k − ξ(2),k), on ∂Ω2.
(32)

3. Find new uk+1 = (dk+1
s , vk+1)T by:

dk+1
s = dk

s − τk(αdk
s + ξ∗,(1),k), on Γop, (33)

vk+1 = vk − τk(αvk + (ξ∗,(1),k + ξ∗,(2),k)), on Γin. (34)

Using assertions of [26] we obtain the validity of the following theorem:

Theorem 1. (I) If ξ
(0)
obs – exact data, ξobs – measured data of observations (possibly containing errors),

‖ξobs − ξ
(0)
obs‖L2(Γop) ≤ δobs, δobs > 0, ξ(1)(α) and ξ(2)(α) are the solutions of the optimality systems of

Equations (9) and (28)–(30), i = 1, 2, then the following assessment is valid:

(
‖ξ(1)(α)− ξobs‖2

LW
2 (Γop)

+ ‖ξ(1)(α)− ξ(2)(α)‖2
LW

2 (Γin)

)1/2 ≤ cα

√
α + cδδobs, (35)

where cα = const > 0, cδ = const > 0.
(II) If ϕ ∈ R(A), then the inverse problem of Equation (22) has a unique normal solution u0 = (ds,0, v0)

T.
In that case for enough small τk = τ > 0 vector function uk(α) = (dk

s(α), vk(α))T tends to u0 in Hc, when
k → ∞, α → +0.

When the stopping criterion of iterative algorithm is satisfied, the functions dk
s , vk, ξ(i),k, �U(i),k

are taken as an approximate solution of the considered Equations (5), (8) and (9) in Ωi, i = 1, 2.
Suitable stopping criterion should be chosen depending on the iterative parameters of the algorithm,
size of the modelled region, numerical method, and a given accuracy. More often it is chosen as
a limitation of iterations or of residual value. Equations (31)–(34) converge for the small enough
parameter τk = τ = const > 0. However, τk may be chosen as follows [26]:

τk =
Jα(uk

α)

‖J′α(uk
α)‖2 =

1
2

∫
Γop

√
gH(ξ(1) − ξobs)

2 dΓ +
∫

Γin

√
gH(ξ(1) − ξ(2))2 dΓ

∫
Γop

√
gH(ξ∗,(1))2 dΓ +

∫
Γin

√
gH(ξ∗,(1) + ξ∗,(2))2 dΓ

. (36)

This choice of the parameter τk could be helpful to reduce the number of iterations required.
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7. Numerical Experiments and Discussion

The described approach to domain decomposition and variational DA is applied to the system
of shallow water systems of Equation (4). Here Ω is a domain on the plane, and (x, y) are
Cartesian coordinates.

To set initial conditions, a preliminary calculation without the domain decomposition and
variational DA methods is carried out. In this case the domain is represented by the rectangular
[−L, L] × [0, L] with L = 100 m. The value of the physical parameters are g = 9.81 m/s2, l = 0,

R f = 0 and H = −0.7x/L + 1 (m). The forces �̃f and (�F)3 are equal to 0. The boundary conditions are
H(�U ·�n) = 0. For this preliminary problem the conditions at t = 0 are given by (p is a subscript for
the preliminary results):

up = 0, vp = 0,

ξp = 10 exp

(
− (x − 25)2 + (y − 30)2

100

)
.

To discretize in time, an implicit scheme is used. The time step is 0.5 s. The finite difference method
with the first order space discretization is applied. The spatial grid is uniform, the spatial grid steps are
1 m. The results of simulation after 25 s are taken as initial conditions to the next series of numerical
experiments.

To set the observational data on Γop, the preliminary experiment is continued on the next
5 s. At each time step after the first 25 s the observational data are chosen as ξobs = ξp(0, y) ·
(1 + 0.1a − 0.1b), where a and b are random numbers in the range [0, 1). The numbers are received by
pseudo-random generators for the uniform distribution law. Thus, the obtained observational data are
artificially noisy (noise level is 0.1).

So, we get the initial conditions and the observational data for the next experiments with
previously described approach of application of DA and DDMs.

For the numerical experiments the domain Ω is the square [0, L]× [0, L]. It is decomposed into
the two subdomains Ω1 = [0, L/2]× [0, L] and Ω2 = [L/2, L]× [0, L] without overlap. We denote the
“inner” boundary by Γin = L/2 × [0, L] and the “outer” boundary by Γop = 0 × [0, L]. Here L = 100 m.
The value of the physical parameters are g = 9.81 m/s2, l = 0, R f = 0. The depth of the modelling

domain is H = −0.7x/L + 1 (m). The forces �̃f and (�F)3 are equal to 0.
To discretize in time, an implicit scheme is chosen. The time step is 0.5 s. The finite difference

method with the first order space discretization is applied. The spatial grid is uniform, with grid steps
1 m. The described algorithm of domain decomposition and variational DA is implemented at each
time step.

Table 1 gives the residual value depending on the noise level and the stopping criterion (the
number of iterations less than 10 or less than 50). The residual value here is defined by

Res =

⎛
⎜⎝∫

Γop

√
gH(ξ(1) − ξobs)

2 dΓ +
∫

Γin

√
gH(ξ(1) − ξ(2))2 dΓ

⎞
⎟⎠

1/2

From Table 1 one can see that the noise level has a significant impact on the residual value at the
50th iteration and has almost no affect at the 10th iteration.

Table 1. The residual value (Res) depending on the stopping criterion and noise level

Noise Level 0 0.05 0.1

10 iterations 3.65 × 10−1 3.66 × 10−1 3.68 × 10−1

50 iterations 8.80 × 10−5 5.58 × 10−3 1.47 × 10−2
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Further in this section the stopping criterion is the number of iterations less than 50. Figure 2
shows the results of modelling for the preliminary problem and the results of modelling using domain
decomposition and variational DA. The “inner” boundary is presented as a white line. As seen in
Figure 2a,b, the results differ from each other. It is connected with the application of variational DA on
the open boundary, because the observational data ξobs used as closure condition Equation (8) have
some additional noise and the results reproduce it (as can be seen in Figure 3).

(a) (b)

Figure 2. Sea level function (m) at t = 5 s after the preliminary simulation: (a) Part of the preliminary
calculation. (b) Simulation with domain decomposition and data assimilation (DA) methods.

Figure 3. Sea level function on Γop and observational data (1—observational data; 2—results of
simulation; 3—results of the preliminary calculation).

The iterative algorithm converges with the chosen parameter τk from Equation (36). Figure 4
shows the results of sea level functions at the first, the ninth and the last iterations. For clarity,
the observational data are also presented.
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Figure 4. Sea level function on Γop at different iterations and observational data (1—observational data;
2—the first iteration; 3—the last iteration; 4—the ninth iteration).

In order to analyse the impact on the simulation results of the DDM, the comparison of sea level
function results at the first and the last iterations on Γin is presented in Figure 5. We could note that
ξ(1) almost coincides with ξ(2) on the “inner” boundary at the last iteration.

Figure 5. Sea level function on Γin at different iterations (1—ξ(1) at the first iteration; 2—ξ(2) at the first
iteration; 3—ξ(1) at the last iteration; 4—ξ(2) at the last iteration).

In addition, we study the dependence on the regularization parameter α. According to the
theory [27], an increase in the regularization parameter α leads to a decrease in the influence of
additional noise on the solution. Table 2 provides the error

‖ξ(1) − ξp‖LW
2 (Γop) =

⎛
⎜⎝∫

Γop

√
gH

(
ξ − ξp

)2 dΓ

⎞
⎟⎠

1/2

depending on the regularization parameter α and the stopping criterion (the number of iterations less
than 10 or less than 50). As expected, the error increases at the beginning, because the accuracy of the
method is not sufficient to reproduce the additional noise (see Figure 4 and Table 1). When the stopping
criterion is the number of iterations less than 50, the regularization parameter smooth the result.
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Table 2. The error ‖ξ(1) − ξp‖LW
2 (Γop) depending on the stopping criterion and regularization parameter

α.

α 10−5 10−4 10−3 10−2

10 iterations 3.52 × 10−1 3.51 × 10−1 3.71 × 10−1 3.92 × 10−1

50 iterations 1.70 × 10−1 1.67 × 10−1 1.60 × 10−1 1.41 × 10−1

Thus, application of DDMs in variational DA problem is considered. The time required to solve
DA problem with using DDM slightly increases (by 5%) in contrast to one required to solve only DA
procedure. The developing of a parallel algorithm based on the described approach may decrease the
computation time.

8. Conclusions

The algorithm of DDM in the problem of variational DA is considered. The theoretical study
of the problem has been carried out, including the study of the unique and dense solvability of the
inverse problem. The iterative algorithm is proposed and the theorem concerning its convergence
has been formulated. To illustrate the theoretical results the numerical experiments for the linearized
shallow water equations have been carried out. The results of the numerical experiments show that
the iterative algorithm converges with the parameter τk described in this paper. The DDM does not
significantly affect the modelling results. The result of the simulation with variational DA method fits
the observational data. However, the additional noise in the observational data yields a noise in the
solution results. Experiments show that the effect of a noise may be mitigated by the regularisation.
It is worth to be noted that the regularisation parameter and the iteration parameter should be chosen
depending on a problem to be solved. These parameters affect the accuracy, convergence and rate
of convergence.

In this paper we focus on the theoretical study of the inverse problem for the linearized
system of shallow water equations. To illustrate the theoretical results the simplified example was
considered. To estimate the approach, its quality and the possibility of application to realistic problems,
more experimental results should be provided. We are going to continue the study and test the
algorithm in the regional ocean models (e.g., [22,31]). In this case the algorithm will be implemented
at each time step to the problem corresponding to step 3-c of the splitting method (mentioned in
Section 1). The general approach outlined here may be extended to other regional ocean models.
However, for each special problem, boundary conditions on the inner and outer liquid boundaries
should be formulated depending on chosen simplifications and the corresponding theoretical study
should be carried out. It is worth noting that the methodology based on the theory of optimal control
and adjoint equations (used in this paper) may be applied to nonlinear problems. In addition, it may
become possible to use meshes of different scales in subdomains. Moreover, the general approach may
be improved to become suitable for modelling multiphysics and multiscale coastal ocean processes.
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Abstract: The General Curvilinear Coastal Ocean Model (GCCOM) is a 3D curvilinear, structured-mesh,
non-hydrostatic, large-eddy simulation model that is capable of running oceanic simulations.
GCCOM is an inherently computationally expensive model: it uses an elliptic solver for the dynamic
pressure; meter-scale simulations requiring memory footprints on the order of 1012 cells and terabytes
of output data. As a solution for parallel optimization, the Fortran-interfaced Portable–Extensible
Toolkit for Scientific Computation (PETSc) library was chosen as a framework to help reduce the
complexity of managing the 3D geometry, to improve parallel algorithm design, and to provide
a parallelized linear system solver and preconditioner. GCCOM discretizations are based on
an Arakawa-C staggered grid, and PETSc DMDA (Data Management for Distributed Arrays)
objects were used to provide communication and domain ownership management of the resultant
multi-dimensional arrays, while the fully curvilinear Laplacian system for pressure is solved by the
PETSc linear solver routines. In this paper, the framework design and architecture are described
in detail, and results are presented that demonstrate the multiscale capabilities of the model and
the parallel framework to 240 cores over domains of order 107 total cells per variable, and the
correctness and performance of the multiphysics aspects of the model for a baseline experiment
stratified seamount.

Keywords: high performance computing; HPC; PETSc; parallelization; scalability; parallel
performance; streams; curvilinear; non-hydrostatic; ocean modeling; GCCOM

1. Introduction

As computational modeling and its resources becomes ubiquitous, numerical solutions to
complex equations can be solved with increasing resolution and accuracy. At the same time, as more
variables and processes are taken into account, and spatial and temporal resolutions are increased
to model real field-scale events, models become more complex yet resource efficiency remains an
important requirement. Multiscale and multiphysics modeling encompasses these factors and relies
on High-Performance Computing (HPC) resources and services to solve problems effectively [1].
The models used for atmospheric and ocean studies are examples of such applications.

In atmospheric and ocean studies, one of the major challenges is the simulation of coastal ocean
dynamics due to the vast range of length and time scales required: tidal processes and oceanic currents
happen in fractions of days; wavelengths are scale lengths of kilometers; mixing and turbulence
events need to be resolved at the meter or submeter scale; and time resolution is in terms of years to
minutes or seconds. Consequently, field scale simulations need to cover both sides of the time/space
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spectrum while preserving accuracy, forcing the use of highly detailed grids of considerable size.
The General Curvilinear Coastal Ocean Model (GCCOM) is a 3D, curvilinear, large-eddy simulation
model designed specifically for high-resolution (meter scale) simulations of coastal regions, capable of
capturing nonhydrostatic flow dynamics [2].

Another major challenge is the need to solve for nonhydrostatic pressures. Ocean and climate
models are generally hydrostatic, limiting the physics they are able to capture, and large scale, so that
they are computationally efficient enough to make forecasts in reasonable run-times. Historically, these
models have opted to solve the more computationally efficient, but less accurate, hydrostatic version
of the Navier–Stokes equations because simulating nonhydrostatic processes using the Boussinesq
approximation is computationally intensive, as these models require solving an elliptic problem [3–5].
However, advances in HPC systems and algorithms have enabled the use of nonhydrostatic solvers
in ocean models including GCCOM [6], MITgcm [7], SUNTANS [8], FVCOM [9], SOMAR [10],
and KLOCAW [11].

A differentiating feature of these models is the method used to solve the nonhydrostatic pressure:
the pressure can be either solved in the physical grid after taking the divergence of the momentum
equation (Boussinesq), or reconstructed from the equation of state when density is chosen as the main
scalar argument. In GCCOM, the pressure is solved on a fully 3D (not 2D plus sigma coordinates)
computational grid (a normalized representation of the physical grid) that is created after applying
a unique, general 3D curvilinear transformation to the Laplacian problem [2]. All computations are
performed on the computational grid, which increases the accuracy of the results. The curvilinear
coordinates formulation enforces the computational grid to be unitary and orthogonal, thus simplifying
the boundary treatment and ensuring minimal energy loss by transforming any boundary geometry to
an unitary cube, which in practice reduces the application of boundaries to a plane (or edge) of this
cube. In contrast, the typical approach of approximating the grid cell to the problem geometry loses
energy in the boundary proportional to the grid resolution. A detailed comparison of the GCCOM
model with other non hydrostatic ocean models functionalities can be found in [12].

One other defining characteristic of some of these nonhydrostatic models is the HPC framework
used: many use the Message Passing Interfae (MPI) framework (in some cases enhanced by using
OpenMP, or accelerated using GPU resources), parallel file IO, and have large teams developing
advanced multiphysics modules. Typically, these models are often nested within large, global, weather
prediction models such as those used in disaster response situations, which is a long-term goal of
this project. GCCOM is a modern model: written in Fortran 95; modular; employing NetCDF to
manage the data. The first parallel version of an earlier GCCOM model (UCOAM) used a customized
MPI-based parallel framework that scaled to a few hundred cores [13]. The UCOAM model has also
been used for nesting inside the California ROMS global ocean model [14,15]. Having demonstrated
the multiscale and multiphysics capabilities of GCCOM [12], the next phase of development requires a
more advanced HPC framework in order to speed up development and testing and allow us to work
with more realistic domains and algorithms. These factors motivated the decision to migrate the model
to a more advanced HPC framework.

One additional factor in our project is the size of the team, and the level of effort needed to
produce and support this type of model. Often the larger model projects are optimized for specific
hardware that may not be portable. These models often require large development teams. One of the
goals of the GCCOM project is to deliver a portable model that can run in a heterogeneous computing
environment and proves useful to smaller research teams, but would someday scale to run inside of
larger models. As the GCCOM model evolved, the PETSc (Portable-Extensible Toolkit for Scientific
Computing) model was chosen to improve the scaling and efficiency of the model and to improve
access to advanced mathematical libraries and tools [16–18]. The results presented in the paper justify
the time and effort required to accomplish these objectives.

In this paper, the outcome of this approach is presented. The background of the model, motivation
for parallelization, the parallel approach, and the choices for the underlying software stack are
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described in Sections 2.1, 2.2, and 2.4. The methodology and specifics of the test case used to validate the
parallel framework are described in Section 2.5 and the validated results showing that the parallelized
model produces correct results are presented in Section 3.1. The parallel performance is presented in
Section 3.2 with results showing that the prototype model scales with the PETSc framework and to
the maximum size of the HPC system used for these tests. Section 3.3 contains results demonstrating
the multiscale and multiphysics capabilities of the model. Conclusions and future work are discussed
in Section 4.

2. Materials and Methods

2.1. The General Curvilinear Coastal Ocean Model (GCCOM)

The General Curvilinear Coastal Ocean Model (GCCOM) is a coastal ocean model that solves
the three-dimensional Navier–Stokes equation with the Boussinesq approximation, a Large Eddy
Simulation (LES) formulation is implemented with a subgrid-scale model, capable of handling
strongly stratified environments [12]. GCCOM features include: an embedded fully 3D curvilinear
transformation, which makes it uniquely equipped to handle non-convex features in every direction
including along the vertical axis [2]; a full 3D curvilinear Laplacian operator that solve a 3D
nonhydrostatic pressure equation that accurately reproduces features resulting from the interaction
of currents and steep bathymetries; and ability to calculate solutions from the sub-meter to the
kilometer ranges in one simulation. With these key features, GCCOM has been used to simulate coastal
ocean processes with multiscale simulations ranging from oceanic currents and internal waves [15]
to turbulence mixing and bores formation, all in a single scenario [19], as well as the use of data
assimilation capabilities [20], including thermodynamics and turbulence mixing on high-resolution
grids, up to meter and sub-meter scales. Additionally, a key goal of the GCCOM model is to study
turbulent mixing and internal waves in the coastal region, as a way to bridge the work of regional
models (e.g., ROMS [21] or POP [22]), and global models (e.g., MPAS [23], HYCOM [24]), all the way
to the sea–land interface.

GCCOM was recently validated for stratified oceanographic processes in [12] and has been
coupled with ROMS [15] using nested grids to obtain greater resolution in a region of interest,
using approaches that are similar to the work of other coupled ocean model systems. In [25], an overset
grid method is used to couple a hydrostatic, large scale, coastal ocean flow model (FVCOM or
unstructured grid finite volume coastal ocean model) with a non-hydrostatic model tailored for
high-fidelity, unsteady, small scale flows (SIFOM or solver for incompressible flow on overset meshes).
This method presents a way to offset the computational cost of a single, comprehensive model capable
of dealing with multiple types of physics. GCCOM is similar to SIFOM in the curvilinear transformation
and multiphysics capabilities, but they differ in the basic grid layout (staggered vs. non-staggered
grids) and in the numerical methods each one applies to solve the Navier–Stokes equations. In addition,
GCCOM has been taking strides in its development so it does not need to couple with a large-scale
model to capture multiscale processes. Instead, GCCOM includes the entire domain in the curvilinear,
nonhydrostatic, multiphysics capable region, where we handle thermodynamics, hydrostatic and
nonhydrostatic pressure and equation of state density distributions at the same time. In this sense,
GCCOM is a model capable of supporting both multiphysics and multiscale calculations at high
computational costs. Recently, the PETSc-based GCCOM model has been coupled with SWASH [26] to
simulate surface waves and overcome the limitations of the rigid lid [27]. SWASH is a numerical tool
used to simulate free-surface, rotational flow and transport phenomena in coastal waters, we used the
hydrostatic component to capture and validate surface wave heights in a seamount testcase.

GCCOM development began with [28] introducing the 3D curvilinear coordinates transformation,
along with practical applications including the Alarcon Seamount and Lake Valencia waters [29,30].
Later, the model was revised by [2] to add thermodynamic processes, the UNESCO Equation of
State, and use of a simple Successive Over–Relaxation (SOR) algorithm to solve the non-hydrostatic
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pressure [31] on an Arakawa-C grid [32], and an upgrade of the model to Fortran 95. In order to
accelerate convergence, the authors in [33] implemented an elliptic equation solver for pressure that
used the Aggregation-based Algebraic Multigrid Library (AGMG) [34]. Additionally, an MPI-based
model with the SOR solver was also developed around the same time by [35]. All of these development
efforts demonstrated improvements in model accuracy and speedup, but there were still limitations
running GCCOM because of the amount of time spent in the pressure solver.

After studying options available for parallelizing the pressure solver, the Portable Extensible
Toolkit for Scientific Computing, PETSc [16–18] was chosen because of its ability to handle the
complexities of the Arakawa-C staggered grid, its large collection of iterative Krylov subspace methods,
and its ability to interface with other similar libraries. An additional benefit is that PETSc has been
selected be part of the DOE Exascale computing project [36], which will allow our model to scale to
very large coastal regions at high resolutions, and model developers can expect that the PETSc libraries
will have long-term support.

A prototype PETSc hybrid model was developed by [37], in which the pressure solver was
parallelized and inserted into the existing model. As expected, the implementation had performance
limitations: the rest of the model was solved in serial and was not PETSc based, which has documented
performance issues; and the Laplacian system vectors needed to be scattered at each iteration, solved,
and then gathered back to the main processor where the rest of routines were runing. The approach,
although not optimal, presented promising results: the computational time of the floating point
operations performed inside the pressure solver routine scaled by the number of processors on a
single node. Total run-time was dominated by the time required to transfer data between processors
before and after the floating operations. A scatter and gather call at each iteration drove up the
communication time, and the decrease in computation time inside the pressure solver routine did not
offset it. To address these issues, a full parallelization strategy was developed by [38] through the use
of PETSc DM/DMDA (Data Management for Distributed Arrays) objects [18]. DM/DMDA objects are
domain decomposition tools that distribute arbitrary 3D meshes among processors. By using proper
domain decomposition, and linear system parallel solving, full PETSc-based parallelization of the
model has been completed (see Section 2.4).

2.2. The PETSc Libraries

PETSc is a modular set of libraries, data structures, and routines developed and maintained by
Argonne National Laboratory and a thriving community around the world. Designed to solve scientific
applications that are modeled by partial differential equations, PETSc has been shown to be particularly
useful for computational fluid dynamics (CFD) problems. PETSc libraries support a variety of different
numerical formulations, including finite element methods [39], finite volume [40] or finite difference
as is the case for the GCCOM model. The wide array of fundamental tools for scientific computing, as
linear and nonlinear, solvers and the parallel domain distribution and input/output protocols native
to it, make it one of the strongest choices to port a proven code into a parallel framework. PETSc makes
also possible to use GPUs, threads and MPI parallelism in a same model for different effects, further
optimizing code performance. As of today, PETSc is supported by most of the XSEDE machines many
large-scale NSF and DOE HPC systems in the US and it has become a fundamental tool in the scientific
computing community.

The PETSc framework is designed to be used by large scale scientific applications. In fact, it is
one of the software components that is on the list of the Department of Energy’s Exascale Computing
Roadmap [36]. Part of the exascale initiative is to develop “composable” software tools, where
different PDE-based models can be directly coupled. PETSc will be developing libraries that will
couple multiphysics models at scale. When properly implemented, PETSc applications will be capable
of running multilevel, multidomain, multirate, and multiphysics algorithms for very large domains
(billions of cells) [41,42]. Our expectation is that, by using PETSc for the parallel data distribution
model and MPI communications, the parGCCOM model will be capable of scaling to very large
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numbers of cores and problem sizes and to support a wide variety of physics models via the PETSc
libraries. In addition, PETSc supports OpenMP and GPU acceleration, which will be useful for
application optimization.

In this paper, the strategies used to parallelize the GCCOM model using the PETSc libraries are
presented, with the result that the model attains a reasonable speed up and scale in MPI systems up to
240 processors so far (the max number of processors on the system where these tests were run), while
demonstrating preservation of the solution by testing with baseline experiments such as stratified
seamount as seen in Section 3.1. In this manner, we want to emphasize the effort saved by using an
established HPC toolkit, while still preserving the unique features of our model.

2.3. PETSc Development in GCCOM

A prototype PETSc-GCCOM hybrid model was developed by [37], in which the pressure
solver was parallelized and inserted into the existing model. As expected, the implementation had
performance limitations, since the rest of the model was solved in serial, and the Laplacian system
vectors needed to be scattered at each iteration, solved, and then gathered back to the main processor
where the rest of routines were running. The approach, although not optimal, presented promising
results: the computational time of the floating point operations scaled by the number of processors
inside the pressure solver routine. The total run-time was dominated by the time required to transfer
data between processors before and after the floating operations. A scatter and gather call at each
iteration drove up the communication time, and any decreases in the computation time inside the
pressure solver routine did not offset the gather-scatter increases.

To address these issues, a full parallelization strategy was developed by [38] that utilizes the
PETSc DM/DMDA (Data Management for Distributed Arrays) objects [18,43]. Data Management (DM)
objects are used to manage communication between the algebraic structures in PETSc (Vec and Mat)
and mesh data structures in PDE-based (or other) simulations. PETSc uses DMs to provide a simple
way to employ parallelism via domain decomposition using objects known as Data Management for
Distributed Arrays ( DMDA objects [43]. DMDAs control parallel data layout and communication
information including: the portion of data belonging to each processor (local domain); the location
of neighboring processors and their own domains; and management of the parallel communication
between domains [16].

In the GCCOM model, DMDA objects are used for all domain data decomposition and linear
system parallel solving. This approach towards parallelization of the model is described below
(in Section 2.4).

2.4. Model Parallelization

In this section, we describe the key aspects of the model that impact the parallelization of the
model. This includes the use of the DMDA objects to manage data decomposition and message passing,
the location of the scalars and velocities on the Arakawa-C grid, the hydrostatic pressure-gradient
force (HPGF) and its impact on the data decomposition, the pressure calculations which dominate
the computations.

GCCOM uses finite difference approximations to solve differential equations on curvilinear grids
and are operated on via stencils. These grids need to be distributed across processors, updated
independently, and require special cases to handle the data communication where the local domain
ends. This set of operations are referred to as domain decomposition. Throughout the GCCOM code,
specific DMDAs are created to manage the layout of multidimensional arrays for the velocities (u,v,w)
and the temperature, salinity, pressure, and density (T,S,P,ρ) scalars. Each of the velocity components
and the scalars are located at positions in the staggered grid that require special treatment in order to
be distributed and updated correctly, and is described in more detail in Section 2.4.1.

Another key PETSc component that is utilized in the GCCOM model is the linear system solver.
PETSc provides a way to apply iterative solvers for linear systems using MPI. At the same time, the most
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computationally intensive part of the GCCOM model involves solving a fully elliptic pressure-Poisson
system. This approach is unique among most CFD models because it embeds the fully 3D curvilinear
transformation in the solver. Details of this Laplacian are discussed in Section 2.4.4. The strength
of using the PETSc libraries to solve linear systems lies in the ability to experiment with dozens of
different iterative solvers and preconditioners. Another advantage of using PETSc is being able to
use PETSc with well known external packages such as Trilinos, HYPRE and OpenCL [44–46] with
minimal changes.

These key PETSc elements, domain decomposition and linear system solvers, provide the
foundations needed to develop the core parallel framework of the GCCOM model, and help to
keep development effort to a minimum. This proved to be very helpful for the small development
team involved in this effort.

2.4.1. The Arakawa-C Grid

GCCOM defines the locations of its vectors and scalars on an Arakawa-C grid, where the
components of flow are staggered in space [32]. In the C-grid, the u-velocity component of velocity
is located at the west and east edges of the cell, v-velocity is located at the north and south edges,
and pressure and other scalars are evaluated at cell centers (see Figure 1). Similarly, the w component
will be in the front face of the 3D cube, going inwards. This staggered grid arrangement becomes the
first challenge of the parallel overhaul because, for the DMDA objects, every component is regarded as
co-located and are referenced by their lower-left grid point.

Figure 1. Diagram of the Arakawa C-grid, in which the velocity components u, v, and w are staggered
by half a grid spacing. Scalars such as salinity S or temperature are located in the center.

The grid staggering results in different array layouts which depend on each variable position
(u, v, w, p), which in turn creates different sizes for each layout. For example, there is one more
u-velocity point in the horizontal direction than the v-velocity. Similarly, there is an extra v-velocity
in the vertical direction compared to the u-velocity. Even though the computational ranges differ for
each variable in the serial model, the arrays used by the parallel model were padded so that they
would be the same dimensions. Note that this method is also used in the Regional Ocean Modeling
System (ROMS) [47]. Table 1 describes the computational ranges and global sizes of each variable.
The variables gx, gy, gz correspond to the full grid size in x,y,z and the fact the interior range is not the
full array size counts for the number of ghost rows in each direction (e.g., gx − 2 has two ghost rows in
that direction).
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Table 1. Sizes and computational ranges of variable layouts on domain Ω = [gx × gy × gz] where
gx, gy, gz are the total grid dimensions in each direction.

Variable Size Interior Range

Velocity u (gx)× (gy − 1)× (gz − 1) 0 : gx − 1, 0 : gy − 2, 0 : gz − 2
Velocity v (gx − 1)× (gy)× (gz − 1) 0 : gx − 2, 0 : gy − 1, 0 : gz − 2
Velocity w (gx − 1)× (gy − 1)× (gz) 0 : gx − 2, 0 : gy − 2, 0 : gz − 1
Pressure (gx − 1)× (gy − 1)× (gz − 1) 0 : gx − 2, 0 : gy − 2, 0 : gz − 2

Temperature (gx − 1)× (gy − 1)× (gz − 1) 0 : gx − 2, 0 : gy − 2, 0 : gz − 2
Density (gx − 1)× (gy − 1)× (gz − 1) 0 : gx − 2, 0 : gy − 2, 0 : gz − 2

One of the main features of the GCCOM model is the embedded fully 3D curvilinear
transformation, capable of handling any kind of structured grid (i.e., rectangular, sigma, curvilinear)
to be solved in the computational domain by these transformation metrics (a partial discussion
of the transformation metrics is discussed in Section 2.4.4). The downside of this approach is
a significant increase in memory allocation, since full sized arrays need to be stored for each of
the transformation metrics. In GCCOM, the metrics arrays are associated with the location of the
aforementioned variable layouts. This provides an opportunity to minimize overhead: the model
arrays are grouped by variable layouts and similar functions inside the code. Similarly, other GCCOM
modules such as Sub–Grid Scale (SGS) calculations and stratification (thermodynamics) handling,
follow the same parallelization treatment. Table 2 shows the total number of DM objects (layouts) used
by GCCOM and the associated variables.

Table 2. GCCOM Data Managment Objects (DMs) and variable layout used.

Name Number of DMs Variable Layout

daGrid 3 p
daSingle 1 p

daConstants 6 p
daSgs 1 p

daLaplacian 3 p
daMetrics 3 u,v,w
daCenters 3 p

daPressureCoeffs 10 p
daDivSgs 3 u,v,w

daDummy 1 p
daVelocities 3 u,v,w

daScalars 1 p
daDensity 1 p

Each of these DMs control the domain distribution independently, and each spawn the full sized
arrays that become the grid where the finite difference calculations are carried out. In total, more than
100 hundred full sized arrays are used inside the model on different occasions, but around 60 of them
remain in active memory because they are part of the core calculations, and all of them are distributed
thanks to the use of these structures.

2.4.2. Domain Decomposition

Domain decomposition refers to dividing a large domain into smaller subdomains so that it can
be solved independently on each processor. However, Grid operations with carried dependencies
from one grid point to the next (self recurrence) are difficult to parallelize on distributed grids, thus
truncating parallel implementation in this direction. In GCCOM, there are two such reasons that
prevent domain decomposition in arbitrary directions: grid size and the calculation of the hydrostatic
pressure-gradient force (HPGF) algorithm. For some of the experiments in GCCOM, the number of
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points in the y-direction is the minimum 6, used to simulate 2D processes, which in turn makes it too
small to partition. The case of the parallelization of the HPGF is discussed next.

2.4.3. Hydrostatic Pressure-Gradient Force

The hydrostatic pressure-gradient force (Equation (1)) is calculated as a spline reconstruction
and integral along the vertical (z-direction), which is updated at every time step as a fundamental
step in the main GCCOM algorithm [12]. The requirement for vertical integration enforces a recursive
computation inside the loop, i.e., subsequent values depend on previously calculated vertical levels,
as can be seen in Equation (5) in which h is dependent of the whole column above itself. This set of
Equations (1)–(5) describe a spline reconstruction of the hydrostatic pressure pH over the z-column
using a fourth-order approximation for fk(ξ) = ∂ρ(ξ)/∂x, by a series of coefficients (Δk, dk) defined by
the local change in vertical coordinate h = zk+1 − zk:

∂pH
∂x

=
∂

∂x

∫ 0

z
gρdz̃, (1)

f (ξ) = f (0) + f (1)ξ + f (2)
ξ2

2
+ f (3)

ξ3

6
, (2)

f (0) = fk, f (1) = dk, (3)

f (2) =
6Δk − 2dk − 4dk

h
, f (3) =

6dk + 2dk+1 − 12Δk
h2 , (4)

h = zk+1 − zk, Δk =
fk+1 − fk

h
, dk =

2ΔkΔk−1
Δk + Δk−1

. (5)

As seen, the self-recurrence lies inside the algorithm and thus cannot be automatically detected
by PETSc, resulting in a crash. The solution applied is not to partition data in the z-direction, which
is easily done in PETSc by the command line -da_processors_z 1, another strength of the library.
The result is that each processor stores and calculates the pressure-gradients on their respective
sub-domain, effectively a vertical column. While this strategy enables the use of the HPGF, it also
limits the parallelism available to solve the equations, a limitation that we will need to overcome in
future developments of the model.

2.4.4. Laplacian Transformation

GCCOM solves the full nonhydrostatic 3D Navier–Stokes equations as follows:

∂�u
∂t

+ �u · ∇�u = − 1
ρ0

∇p − gρ

ρ0
�k −∇ ·��τ, (6)

∂T
∂t

+ �u · ∇T = ∇ · (kT∇T), (7)

∂S
∂t

+ �u · ∇S = ∇ · (kS∇S), (8)

∇ · �u = 0, (9)

ρ = ρ(T, S, p). (10)

Here, �u = (u, v, w) are velocities, gρ
ρ0
�k is gravity acceleration, ��τ our stress tensor solved by Large

Eddie Simulation, ρ is a equation of state and kT,S diffusivity constants for temperature and salinity.
The Boussinesq approximation [48] is applied to Equation (6) by taking the divergence and

substituting ∇�u as in Equation (9). This step cancels every term other than the pressure p from
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Equation (6), leaving a homogeneous Laplacian problem to solve as in Equation (11), which by itself is
computationally expensive to solve, as we will discuss in the rest of this section:

∇2 p =
∂2 p
∂x

+
∂2 p
∂y

+
∂2 p
∂z

= 0, (11)

∇2 p = L(p)− L(x)

[
ξx

∂p
∂ξ

+ ηx
∂p
∂η

+ ζx
∂p
∂ζ

]

− L(y)

[
ξy

∂p
∂ξ

+ ηy
∂p
∂η

+ ζy
∂p
∂ζ

]
(12)

− L(z)

[
ξz

∂p
∂ξ

+ ηz
∂p
∂η

+ ζz
∂p
∂ζ

]
.

The GCCOM Laplacian in curvilinear coordinates is formulated in [29]; note that we are following
notation from [31], the operator L() is defined in Equation (13), where a, b, c, d, e, q are coefficients
related to the curvilinear transformation [12] that are defined in terms of the Jacobian J and generalized
in two sets of coordinates by their even commutation: {x, y, z} as {1, 2, 3}, and {ξ, η, ζ} as {A, B, C},
a general rule for the derivatives can be defined as in Equation (14), where we have adopted a compact
differential representation, i.e., A1 = ∂ξ

∂x ,

L() = a
∂2()

∂ξ2 + b
∂2()

∂η2 + c
∂2()

∂ζ2 + 2

[
d

∂2()

∂ξ∂η
+ e

∂2()

∂ζ∂η
+ q

∂2()

∂ξ∂ζ

]
, (13)

A1 =
∂ξ

∂x
= J(2B3C − 2C3B). (14)

By applying these elements to the transformed Laplacian operator and discretizing using
2nd-order finite difference, Equation (15) becomes the discretized transformed Laplacian operator in
general curvilinear coordinates [33],

∇2 p = − 1
2(Δ2

ξΔ2
ηΔ2

ζ)

{
4α(i, j, k)p(i, j, k)

+[β1(i, j, k) + β2(i, j, k)]p(i + 1, j, k)

+[β1(i, j, k)− β2(i, j, k)]p(i − 1, j, k)

+[λ1(i, j, k) + λ2(i, j, k)]p(i, j + 1, k)

+[λ1(i, j, k)− λ2(i, j, k)]p(i, j − 1, k)

+[τ1(i, j, k) + τ2(i, j, k)]p(i, j, k + 1)

+[τ1(i, j, k)− τ2(i, j, k)]p(i, j, k − 1)

−τxy(i, j, k)(p(i + 1, j + 1, k) + p(i − 1, j − 1, k))

+τxy(i, j, k)(p(i + 1, j − 1, k) + p(i − 1, j + 1, k))

−τyz(i, j, k)(p(i, j − 1, k − 1) + p(i, j + 1, k + 1))

+τyz(i, j, k)(p(i, j − 1, k + 1) + p(i, j + 1, k − 1))

−τxz(i, j, k)(p(i − 1, j, k − 1) + p(i + 1, j, k + 1))

+τxz(i, j, k)(p(i − 1, j, k + 1) + p(i + 1, j, k − 1))
}

,

(15)
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where α, β1, β2, λ1, λ2, τ1, τ2, τxy, τyz, τxz are transformation coefficients found after algebraic
manipulation.

Now, the pressure can be solved entirely as a system of linear equations in the form Ax = b,
where A is the system matrix constructed by the position coefficients, b is the known pressure on each
point (Right Hand Side, or RHS), and x is the solution vector for pressure.

A peculiarity of this system is the inherent lexicographical ordering: the points of the 19-point
stencil follow a specific positioning pattern in the program memory, as seen in Figure 2: on each
xy-plane, points are sorted in the y-direction before the x-direction, then the points are sorted by planes
on the bottom z-axis first; this is the same as a front-to-back, bottom-up, ordering in the 3D stencil.
This bookkeeping is crucial to obtain the right dynamics out of the Laplacian.

Figure 2. Lexicograpical ordering of the 19-point stencil. Here, element 10 is the current point of
the stencil [38].

It is important to note that the coefficient matrix, A is large
(
[gx, gy, gz]× [gx, gy, gz]

)
, sparse,

and in general not singular, and non-symmetric [33]. This automatically eliminates methods that
directly invert the matrix to solve x = A−1b for large problem sizes. In GCCOM, this equation is
solved with the Generalized Conjugate Residual (GCR) method preconditioned with block Jacobi.
At this point, we are able to take advantage of the PETSc linear solver system which includes
a long list of solvers and preconditioners that can be accessed via command line arguments:
-ksp_type [solver] -pc_type [precond].

2.4.5. External Boundary Data

External boundary conditions are generated outside of GCCOM and stored separately in ASCII
files. They contain velocity data at the boundaries for planes in the x-direction (west and east) and
z-direction (north and south). Processors located on these boundaries read boundary condition data
into local memory. As we work with higher resolution meshes, this external file reading becomes
an obstacle to overcome and adds to the I/O overhead. Part of the required future work includes
updating these routines to read parallel NetCDF files.

2.5. Test Case Experiments

In this section, we describe the experiments used to validate the parallel framework of GCCOM.
The Seamount experiment was chosen for being the most comprehensive for the model, using most—if
not all—of the model capabilities at once.
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2.5.1. Test System

Timings for test cases were primarily conducted on the Coastal Ocean Dynamics (COD) cluster at
the Computational Science Research Center at San Diego State University, a Linux based cluster with
the following features:

• 352 Intel Xeon Processor E5-2640 v4 (2.40 GHz) across 19 nodes,
• 7 nodes comprised of 16 processors each with 65 GB RAM per node,
• 12 nodes of 20 processors and 263 GB RAM per node,
• 40 GB/s Infiniband network interconnect,
• High Performance GPFS file system.

GCCOM is a memory intensive model: there are over 100 matrices that must be held in memory.
For the “small” test case run in these experiments, 6 × 107 cells per array, the model requires on the
order of 2 × 102 GB of storage plus the run-time overhead. Consequently, the test cases used for
this research were run on the large-memory nodes of the Coastal Ocean Dynamics (COD) system.
The COD system hosts 12 large memory nodes with 263 GB per node and 20 cores per node, for a total
of 240 available cores. The total memory is 20 × 263 GB ≈ 104 GB.

The rest of the machine nodes were not able to run a problem of this size because of the memory
requirements of the model. As mentioned before, the scope of the research reported in this paper was
to validate the PETSC-based implementation of the model physics, and to defer optimizations to later
research. Of future interest will be to profile the memory consumed by the framework. Most of the
timing data was recorded using the built-in PETSc timers, which have been shown to be to be fairly
accurate and to have little or no overhead [16].

In addition, the model has been ported to the XSEDE Comet machine at the San Diego
Supercomputer Center, in preparation for running larger jobs and as a test to check the portability of
the model [49]. Comet currently has 1944 nodes with 320 GB/node, four large memory nodes with
1.5 TB of DRAM and four Haswell processors with 16 cores per node. Future plans include exploring
how the model performs on this type of system.

2.5.2. Stratified Seamount

Seamount experiments are regarded as a straightforward way to showcase an oceanographic
models’ capabilities and behavior. We carried out our timing and validation tests on a classical
seamount, using continuous stratification with temperature ranging between (10 ◦C to 12 ◦C from the
bottom to the top in the water column) and equivalent density for seawater, while maintaining the
salinity constant at 35. The bathymetry for this experiment is defined by Equation (16),

D(x, y) = L(−1 + a ∗ e−b(x2+y2)), (16)

where L = 1000 m is the maximum depth and characteristic length, and the parameters a = 0.5 and
b = 8 control the seamount shape. The experimental domain is (x, y, z) = 3.6 km × 2.8 km × 1 km.
The experiment is forced externally with a linearly increasing u−velocity on the vertical column from
0 at the bottom to 0.01 m/s at the top, coming from the east direction.

The grid was created with cell clustering at the bottom, along half the domain in each horizontal
direction as seen in Figure 3; this created a 3D curvilinear grid with the point distribution seen in
Equation (18), where Li is the dimension length, D is the horizontal clustering position (D = Li/0.5)
and β varies between {1,5} uniformly along the vertical, β = 5 at the bottom where the cell clustering
is most and β = 1 at the surface where there is no clustering. This grid is based in the work of [2],
expanding it to be able to use continuous stratification and simplifying the curvilinear implementation:
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xi = D{1 +
sinh[β(ξi − A)]

sinhβA
}, (17)

A =
1

2β
ln[

1 + (eβ − 1)(D/Li)

1 + (e−β − 1)(D/Li)
]. (18)

Three grids were generated where each would have enough resolution to be able to show strong
scaling on the test cluster (see Section 3.2). The grid sizes are (x, y, z) = 1500× 100× 50 for the smallest
one, with 7.5 million cell points per variable (our lowest resolution problem), a second grid with sizes
(x, y, z) = 2000× 100× 100 having 20 million points per variable, and a high resolution problem of size
(x, y, z) = 3000 × 200 × 100 yielding around 60 million cell points per variable. The simulation was
run for five main loop iterations which in turn is 5 s of simulation, creating and writing a NetCDF file
as output. This I/O operation happens twice and is removed from the parallel timing and performance
analysis since it is not yet parallelized.

Figure 3. Seamount grid of size x = 3000, y = 200, z = 100. Point agglomeration can be seen along each
half horizontal direction with parameter β = 5, gradually decreasing onto the top to be uniform (β = 1).

3. Results and Discussion

3.1. Model Validation

This section shows how the parallelized model produces correct results for our stratified seamount
experiment. Correct in this context means replicating the same results obtained by the serial version of
the model which was recently validated for non-hydrostatic oceanographic applications [12]. We also
discuss the strategy applied to compare the models output and how much the results differ when
adding more processors. Comparison is presented against the serial and parallel outputs for a
single processor, to give a rounded picture on how communication errors are propagated in the
parallel framework.

3.1.1. Validation Procedure

The Stratified seamount experiment is run for five computational iterations, or cycles of solving
Equations (6)–(10) inside the main computational loop. The goal of this exercise is to define the
consistency of the whole computational suite in the parallel framework, compared to the same set of
equations being solved in serial. Each iteration represents a second of simulation time for a total of
5[s]. This validation process is carried out in the high resolution problem (3000 × 200 × 100).
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NCO operators [50] were used to obtain the root-mean squared (RMS) error of the output directly
from the NetCDF output files, comparing each parallel run with the single processor serial run as seen
in Table A1 and also with the single processor parallel run, visible in Table A2. The RMS is obtained
for each main variable (p,u,v,w,T,D) by (1) subtracting each parallel output from the single processor
output, (2) applying a weighted average with respect to time in order to unify the records obtained
in a single time-averaged snapshot, and (3) obtaining the RMS error using the ncra operator. For the
results, we report the maximum absolute value of the RMS, minimizing boundary errors by reading
the 50th X-Y plane out of the vertical column of 100 planes.

3.1.2. Comparison with Serial GCCOM Model

Here, we present in table form the values of the maximum RMS along the half point of the vertical
column for each of the parallel runs obtained while comparing with the serial output of the identical
experiment of the Serial GCCOM. Note that we will refer to the comparison of parallel results to serial
as vs. serial for the rest of the document.

As can be seen models are in agreement for every practical purpose, with exception of the pressure
(which is the result of solving the linear system and depends of a krylov subspace solver method,
and therefore can be refined) placing the biggest error at around 10−5. The velocities readings are all of
them between 10−7–10−8 and the scalars D, T are close to machine error. Additionally, from Table A1,
errors are virtually equal across all parallel runs. This tells us the solutions we obtain from the parallel
model are in very close agreement with the serial model. This comparison brings confidence to the
robustness of the PETSc implementation we have achieved, yielding the same degree of error beyond
the data partitioning used. Nonetheless communication and rounding errors exist and the number of
processors used are affected by them as we will explain next.

3.1.3. Error Propagation

In this section, we examine how solution errors grow along with number of processors/nodes
when running the exact same experiment. Often, these errors are a consequence of halo communication
and rounding errors. The results can be seen in Table A2 and Figure 4. Note that, for these tests, where
we are comparing parallel model output for one processor vs. N processors, we will refer to this as
vs. parallel. In every case, the vs. serial RMS error is below 10−5 and would be unable to influence the
dynamics of our experiment, effectively transferring the physics model validation obtained at [12].
In addition, in the case of vs. parallel, RMS error is in every case orders of magnitude smaller than
vs. serial; as this is the case, we can confidently conclude that using as many as 240 processors (and
presumably more) won’t affect the solution because of rounding or communication errors that may
otherwise be introduced by a large data distribution layout. This finding brings confidence in our
parallel-enabled model.

In this section, we have shown that the PETSc based parallel GCCOM framework preserves the
solutions obtained by the validated serial GCCOM model for different mesh sizes of the Seamount test
case. We have also shown here that the communication errors PETSc introduces are small enough not
to be a problem with the 240 processors/12 nodes we have used.

Finally, the trend we show points that for the communication errors (vs. parallel error) to catch up
with the parallel framework migration error (vs. serial error) we would need to double the processor
count with a properly sized experiment, something that would be impractical to run in the serial
model. In short, we have attained a new range of problem sizes we can solve in this new parallel
framework, while carrying out the physics validation obtained in the serial version of the model.
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Figure 4. Error comparison between serial and parallel models for one processor output, the parallel
error is consistently orders of magnitude smaller than the serial comparison, which in turn is small
enough to carry the physics validation of the model. Comparison with Serial GCCOM Mode.

3.2. Model Performance

Model performance can be assessed and measured in different ways, but in general should
improve with number of resources allocated, up to the limit of where the problem size and other
factors make it limit or even degrade performance. This is known as scalability or scaling power.

In order to analyze the parallel performance of the PETSc-based GCCOM model, it is important
to first validate the results as was done in Section 3.1. Once the model is validated, and the algorithmic
approach has been verified, the next step is to identify critical blocks and bottlenecks in order to
determine what elements of the model can be optimized. In the case of GCCOM, key factors include
problem size and resolution, time step resolution, numerical methods and solvers, file IO, the PETSc
framework, and the test cluster. The multiscale/multiphysics non-hydrostatic capabilities of the
GCCOM model are demonstrated using the stratified seamount test case using different meshes and a
3D lock exchange test case. The impact and results of these factors are presented below.

3.2.1. PETSc Performance

The PETSc framework has its own performance characteristics, and basically defines an upper
limit that we can expect from any model using the framework. The performance of PETSc is measured
using its streams test, which outputs the speedup as a function of the number of cores [16]. Streams
measures the communication overhead and efficiency that is realistically attainable in a system. The test
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probes the machine for its maximum memory speed, and becomes an alternative way to measure
the maximum bandwidth, speedup and efficiency. The Streams tests are done as part of the PETSc
installation process and is regarded as an upper limit of the speedup attainable on the system, limited
by the memory bandwidth. More information can bee seen the PETSc user guide (see [16] Section
14—Hints for Performance and Tuning).

The speedup is defined as the ratio of the runtime of the serial model (T1) to the time, Tn, taken by
the parallel model as a function of the number of cores (n). The ideal speedup of an application would
be a perfect scaling of the serial (or base) timing to the number of processors used, or Sideal = T1/n.
The measured speedup of a model is defined as follows SN = T1/Tn.

The PETSc streams speedup is a diagnostics test for our system. As we will see in Section 3.2.3 it
shows as a linear trend, which indicates that the bandwidth communication capacity grows linearly
across the system, in this case up to 240 processors on 12 nodes. Note also that the PETSc framework
shows no sign of turning over, indicating that it is capable of scaling to a much larger number of cores.

In practice, most distributed memory applications are bounded by the memory bandwidth
allocation of the system, which is measured in PETSc by the streams test. For every test performed
in our analysis, we have used the streams’ speedup estimate as an upper bound on the speedup that
can be obtained as a result of the memory bandwidth constraint. For the GCCOM model, we have
determined that, for large enough problem sizes, this speedup threshold can be surpassed, effectively
offsetting this performance limit by some margin.

3.2.2. Profiling the GCCOM Model

To profile the GCCOM model, we analyze the three phases that are typical of many parallel
models: initialization, computation, and finalization. Initial wall-clock profiling timings show that
the time spent in the finalization phase is less than 1% of the wall-clock time, independent of problem
size and number of cores. Consequently, it will not be part of further analysis discussed in this section.
Timings also show that approximately 15–35% of total wall-clock time is spent in the initialization
phase, where the PETSc arrays and objects are initialized, memory is allocated, initialization data
are loaded in from files, and the curvilinear metrics are derived. The remainder of the execution
time is spent in what we refer to as the "main loop", in which a set of iterative solutions to the
governing equations are computed after the startup phase. In general, as the number of cores increases,
the percentage of time spent in the main loop goes down, while the time spent in the initialization
phase increases.

An explanation for the impact on scaling due to the startup phase may have something to do with
the strategy employed to initialize and allocate the arrays used in the serial model. First, the model
uses serial NetCDF to read and write data, effectively loading external files onto one master node and
then scattering the data across the system. Similarly, when writing output data, the whole array is
gathered onto one node, and then results are saved serially to a NetCDF file. Thus, the model is both
IO and memory bound. This is a well known issue, and moving to parallel IO libraries is an important
next step for this model.

In order to quantify the roles that these processes play in the total run time, we measured the
partitioning of the total wall clock time as a function of the number of processors for three key
functional areas: the main loop, or computational time; the I/O time; and the MPI communication time.
The results can be seen in Figure 5, which shows a stacked histogram view of the functional area timings
for the 3000 × 200 × 100 problem. The figure plots the percentage of time used by each component as a
function of the number of cores. In this figure, we see three trends: the computational time (the bottom,
or blue, group of datum) dominates the run-time for small number of cores, and appears to scale well;
the MPI communication time increases with the number of cores, which is expected and is a function of
the model and the PETSc framework. The figure also shows clearly that I/O is impacting the run-time,
and increasing with the number of processors. This would explain why the model is not scaling well
overall. Stacked plots for the lower resolution grids are presented in Figure 6, here the overtaking of
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communication and I/O times over computation time is evident. These problems are too small to take
real advantage of the MPI framework over the 240 processors system and are capped by the I/O and
memory bandwidth speeds.

Figure 5. The histogram above shows a stacked normalized plot of the time partitioning between
computation, I/O operations and estimated communication times as a function of processors for the
high resolution problem.

Figure 6. Stacked normalized plot of the time partitioning for the lower resolution grids.

As mentioned above, the primary goal of this paper is to report on advances made to the GCCOM
model using the PETSc framework, to validate the results of the parallel version of the serial model
(which is done in Section 3.1, and to show that the computational aspect of the model scales. Based
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on these goals, we will focus our scaling analysis primarily on the computational time required to
solve the flow processes (knowing that we would be addressing parallel file I/O in future research).
Thus, for the rest of this section, we will analyze the performance of the computational time, which is
calculated as follows:

Tcomp = Tmain_loop − TIO_main_loop. (19)

3.2.3. Parallel Performance Analysis

Ideal parallel performance is usually described as a reduction in execution time by a factor of
the number of processors used. However, this is seldom achieved. Several factors can limit model
speedup, some of which are discussed here, but a more generalized overview can be found in several
well-known textbooks [51,52]. Examples include loop calculations that cannot be unrolled because
the statements are dependent upon previous steps in the calculation, collecting information on all
processors before computing the next step (a self-recurrent loop). In addition, the hardware of the
system could potentially impact speed, including chip memory bandwidth or the network. Despite
these factors, speedup can be achieved by splitting up the work between multiple processors, which
reduces the calculation time.

Model performance can be assessed and measured in different ways, but in general should
improve with number of resources allocated, up to the limit of where the problem size and other
factors make it limit or even degrade performance. This is known as scalability or scaling power.

Figure 7 compares the speedup of the PETSc Streams test with the speedup of the GCCOM
computational work done in the main loop, for the Seamount test cases, as function of the number of
cores. The plot shows a linear trend, which is a consequence of the maximum memory bandwidth
allocation, which increases with the growing number or processors. We can see that the bandwidth
communication capacity grows linearly across the system, in this case up to 240 processors in 12 nodes.
Interestingly, the high resolution seamount experiment speedup (3000 × 200 × 100) is consistently
better than the streams test speedup. This is explained by the size of the high resolution problem
benefiting from internal PETSc optimizations that occur within the DM and DMDA objects, which
dynamically repartition grids and adjust the MPI communicators during the computations [43]. This is
not the case for the lower resolution cases: for these, we see that the speedup trend follows the streams
test closely, but it never surpasses the PETSc limit. In fact, we see the lower resolution trends being
bogged down by too much data distribution and hence more message passing, and the speedup ends
up being worse than the streams test with more processors added.

The measurement of the parallel efficiency indicates the percentage of efficiency for an application
when increasing the number of available resources. Efficiency is defined by Equation (20):

En =
T1

n ∗ Tn
, (20)

where T1 and Tn are the execution times for one and n processors, respectively, and n is the number of
processors. Ideal efficiency would be the case, for example, where doubling the number of processors
halves the run time. Efficiency is expected to decrease when too many processors are allocated to a
specific problem size. The optimal number of processors to use, from an economical perspective, can
be determined from this metric. It is important to keep in mind that the application can show speedup
while still decreasing its efficiency. The most common causes for decreasing efficiency are usually
related to memory bandwidth speed limits and sub-optimal domain decomposition. As we will see
later in this section, when these factors are taken into account, the scaling performance behavior can
be explained.

Figure 8 shows efficiency for the GCCOM seamount test cases and the PETSc Streams test,
calculated using Equation (20). From this, we can see that the PETSc Streams efficiency levels off at
around 30%. This efficiency is typically regarded as the realistic efficiency of the system, limited by
memory bandwidth, and as such we see that for the highest resolution problem (3000 × 200 × 100)
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we are obtaining a better than streams efficiency across all nodes used, hinting at our parallelization
overcoming the memory bandwidth overhead up to 240 processors. This efficiency is expected to
decrease with a higher number of processors, something we don’t yet see happening for the highest
resolution case but does happen for the lower resolution experiments. Once again and as we saw
with the speedup chart, these problems are still too small to take real advantage of the parallelization;
although they present some speedup, the efficiency of resources allocated hardly justifies using more
than a few nodes to run these problems.

Figure 7. Speedup scaling for stratified seamount experiments of different resolutions compared to
the Portable, Extensible Toolkit for Scientific Computation (PETSc) streams test results for the test
system [16]. The theoretical ideal is shown for reference.

Figure 8. Efficiency for stratified seamount experiments of different resolutions compared to the PETSc
streams test results for the test system [16]. A theoretical ideal is shown for reference.

Finally, given the restrictions imposed on the model in the form of self-recurrent algorithms
and forced data distribution by HPGF algorithm, and keeping in mind that we have left out the I/O
and initialization processes (since they have not been parallelized), we regard this version of parallel

140



J. Mar. Sci. Eng. 2019, 7, 185

implementation to be a success. The model demonstrates efficiencies that are better than the streams
test estimates for our stratified seamount experiment, yet preserving the solution to any practical
threshold even when partitioning the problem across 200 processors and 12 nodes.

3.3. Multiscale/Multiphysics Capabilities

This section describes how GCCOM is capable of handling complicated fluid behavior by means
of two different methods. First, the multiple physical processes simulated inside the model, such as
hydrostatic and non-hydrostatic pressure, sub-grid scale turbulence, thermodynamics and the density
equations of state for seawater work together to capture complex processes. Second, the grid resolution
we use will have a major impact on the detail level and richness of the physics we obtain. In this
section, we present results of comparing the output of two different resolutions in the Seamount case
to better illustrate the point of the multiple physics and multiple scales GCCOM can capture.

Figures 9 and 10 show the velocity flow along the horizontal axis. The images compare and
contrast the High (left) vs. Low (right) grid resolution details for both side and bottom views of the
domain. The rows of images show a series of zoomed-in details, represented by the rectangular boxes.
The bars to the right of each image depict the scale values.

A side view comparison between the seamount test case of 3000 × 200 × 100 (high resolution, left
side) and 1500× 100× 50 grid points (low resolution, right side) is shown in Figure 9 for the horizontal
velocity, being forced on the right side of this figure. The high resolution has twice the resolution in
each direction and eight times the number of grid points.This snapshot was taken at the mid-section of
the domain after t = 6000 s of simulation. Each problem has been run with the same conditions and
shows similar behavior.

In the top row of images, the kilometer scale is depicted along the horizontal axis. The image
shows an accumulation of contours at the base of the seamount, and somewhat uniform velocities
over the rest of the domain for both of the resolutions. The difference between the two plots resides
in the density and locations of the contour lines. For the high resolution, there are significantly more
contour lines around the seamount bathymetry than for the low resolution plots. Row 2 of Figure 9
shows a zoomed in detail of these structures. Here, the images show marked differences between the
high and low resolution cases. In this frame, we see that the features developed in the high resolution
panel (left) are not captured in the low (right) resolution case. At the same time, the richness of the
higher resolution case can be explored further, as is shown in the bottom left panel. The increased
magnification reveals a series of eddies, while in the lower resolution counterpart no special behavior
is seen. These results demonstrate that the GCCOM model is capable of capturing more information
as the grid resolution increases: an increase in the number of points translates to capturing richer and
more complex phenomena across the domain; and the multiscale processes, ranging from kilometer to
meter scale lengths.

The ability of the GCCOM model to capture both high and low resolution flow features is seen
once again in Figure 10, where the view is from the bottom plane of the domain, where the velocity
flows from East to West. Again, the flow is captured at t = 6000 s. We can see structures developing
widely in the high resolution problem, while the low resolution only shows them happening in specific
spots and in a broader distribution, but we see no sign of high resolution fluid structures in the rest
of the domain. The middle rows in Figure 10 show an important difference in contour details: while
the low resolution grid shows a structure that is similar to that of the high resolution grid, the high
resolution grid captures the meandering waves of low velocity fields on the bottom of the seamount,
something we could see if we were modeling the shape of a sandy sea bottom. The details and number
of eddies behind the seamount peak are also richer in the high resolution grid, while only one broad
eddy-like structure is seen in the low resolution case (bottom panels). The results shown in this
section demonstrate that GCCOM is capable of capturing different types of phenomena including fluid
flow, nonhydrostatic pressure and thermodynamics, over scales that range from 100 to 103 m, thus
establishing that GCCOM is both a multiphysics and a multiscale model.
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Figure 9. Figures depict zoomed-in details of the High (left) vs. Low (right) resolution side views of
the stratified seamount experiment at t = 6000 s.

Figure 10. Figures depict zoomed-in details of the High (left) vs. Low (right) resolution bottom plane
view for the stratified seamount experiment at t = 6000 s.

4. Conclusions

We have successfully implemented a parallel framework based on the serial GCCOM model,
using domain decomposition and parallel linear solver methods from the PETSc libraries. The model
has been validated using the seamount test case. Results show that the parallel version reproduces
serial results to within acceptable ranges for key variables and scalars: around 10−5 for the Krylov
subspace pressure solver; 10−7 to 10−8 for the velocities; and the scalars D and T are on the order of
32-bit machine precision.

Measured performance improvement tests show that detailed simulation run-times follow the
scaling of the core PETSc framework speed tests (Streams). In some cases, the GCCOM model
outperformed the streams test because the problem size is big enough to offset the communication
overhead. For the experiments run in this study, the speedup was improved by a factor of 80 for
240 cores, and follows closely (or is better than) the speedup of the PETSc Streams test. Additionally,
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the gain in speedup shows that we can expect the model will be capable of additional improvement
when it is migrated to a larger system with more memory and cores.

Utilization of the PETSc libraries has proven to be of significant benefit, but using PETSc has
its pros and cons: We found that there was significant savings in the time needed for HPC model
development, which has immense value for our small research group, but that the learning curve
requires significant effort. For example, the complexity of representing the Arakawa-C staggered grid
using Fortran Matrices and MPI communications schemes was extremely complex. This was more
effectively achieved by employing the PETSc DM and DMDA parallelization paradigm for the array
distribution and linear solvers. In addition, once completed, the model scaling improved, while adding
and defining new scalars, variables, or testing different solvers was greatly simplified. We note that
the development and testing of those objects was challenging, and eventually became the topic of a
masters thesis project. Recently, PETSc has started offering staggered distributed arrays, DMSTAG
(which represents a “staggered grid” or a structured cell complex), which is something we will explore
in the future.

Based on our experiences, we strongly recommend PETSc as a proven alternative to obtain
scalability in complex models without the need to build a custom parallel framework. As stated
above, with PETSc, there is a learning curve: the migration of the model from an MPI based model
to the current PETSc model required more than two years. However, based on the improvement
of the GCCOM performance, our team feels that the adoption of the PETSc framework has been
worth the effort.

Additionally, we find the PETSc based model to be portable: we recently successfully completed
a prototype migration to the SDSC Comet system. The model ran to completion, but there is still much
work to be done as we explore the optimal memory and core configuration. Another motivation to
move GCCOM to a system like Comet is that they have access to optimized parallel IO libraries and
file systems (such as the parallel NetCDF, and the Lustre system).

The current version of the parallel framework can be improved in several ways. Domain
decomposition can be modified to take advantage of full partitioning in all three dimensions. However,
this would require changing, or replacing, the existing pressure-gradient algorithm, which forces
a vertical-slab decomposition because of self-recurrence in the spline integration over the column.
The parallel model would also benefit from the use of parallel file input and output and improvements
in memory management. We plan to explore how the adoption of exascale software systems such
as ADIOS, which manages data between nodes in parallel with the computations on the nodes, will
benefit the GCCOM model [53].

In conclusion, the performance tests conducted in these experiments show that the PETSc-based
parallel GCCOM model satisfies several of its primary goals, including:

• Produce results that agree with the validated serial model,
• Decrease the time to solution while showing strong scalability,
• Deliver reproducible results that are not affected by data distribution across multiple nodes

and cores,
• Maintain an efficiency that scales to several hundred cores without showing any signs of slowing

down, and
• Establish a model that is portable and can operate in heterogeneous environments.

The results shown in this paper also show that GCCOM is a parallel and scaleable, multiphysics,
and multiscale model: it scales to hundreds of cores (the limit of the test system); it can capture
different types of phenomena, including fluid flow, nonhydrostatic pressure, thermodynamics, sea
surface height; and it can operate over physical scales that range from 100 to 103 m.
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Appendix A

Table A1. Max Root-mean-squared (RMS) error per variable when comparing Serial GCCOM vs.
Parallel GCCOM Model from 1 to 240 processors across 12 nodes.

Max RMS error per Variable
Nodes Processors D [g/cm3] T [◦C] p [bar] u [m/s] v [m/s] w [m/s]

12 240 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

11 220 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

10 200 1.22 × 10−13 7.15 × 10−10 1.03 × 10−05 7.45 × 10−08 7.47 × 10−08 1.33 × 10−07

9 180 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

8 160 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.48 × 10−08 1.33 × 10−07

7 140 1.22 × 10−13 7.16 × 10−10 1.04 × 10−05 7.46 × 10−08 7.48 × 10−08 1.33 × 10−07

6 120 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

5 100 1.22 × 10−13 7.16 × 10−10 1.04 × 10−05 7.46 × 10−08 7.48 × 10−08 1.33 × 10−07

4 80 1.22 × 10−13 7.15 × 10−10 1.04 × 10−05 7.55 × 10−08 7.47 × 10−08 1.33 × 10−07

3 60 1.22 × 10−13 7.15 × 10−10 1.04 × 10−05 7.42 × 10−08 7.46 × 10−08 1.33 × 10−07

2 40 1.22 × 10−13 7.14 × 10−10 1.04 × 10−05 7.41 × 10−08 7.46 × 10−08 1.33 × 10−07

1 20 1.22 × 10−13 7.15 × 10−10 1.04 × 10−05 7.42 × 10−08 7.45 × 10−08 1.33 × 10−07

1 1 1.22 × 10−13 7.13 × 10−10 1.04 × 10−05 7.35 × 10−08 7.44 × 10−08 1.33 × 10−07

Table A2. Max RMS per variable when comparing Parallel GCCOM Model outputs from 20 to 240
processors across 12 nodes vs. Parallel GCCOM output in a single processor.

Max RMS per Variable
Nodes Processors D [g/cm3] T [◦C] p [bar] u [m/s] v [m/s] w [m/s]

12 240 1.88 × 10−15 9.96 × 10−12 6.32 × 10−08 2.73 × 10−09 1.36 × 10−09 7.91 × 10−10

11 220 1.88 × 10−15 9.98 × 10−12 2.45 × 10−08 2.76 × 10−09 1.37 × 10−09 8.16 × 10−10

10 200 1.88 × 10−15 1.00 × 10−11 5.43 × 10−08 2.78 × 10−09 1.36 × 10−09 8.01 × 10−10

9 180 1.88 × 10−15 1.03 × 10−11 3.61 × 10−08 2.49 × 10−09 1.38 × 10−09 8.53 × 10−10

8 160 2.04 × 10−15 1.04 × 10−11 4.82 × 10−08 2.64 × 10−09 1.39 × 10−09 8.69 × 10−10

7 140 2.04 × 10−15 1.07 × 10−11 2.49 × 10−08 2.46 × 10−09 1.42 × 10−09 9.22 × 10−10

6 120 2.04 × 10−15 1.04 × 10−11 6.56 × 10−08 2.64 × 10−09 1.39 × 10−09 8.57 × 10−10

5 100 2.04 × 10−15 1.07 × 10−11 5.00 × 10−08 2.72 × 10−09 1.41 × 10−09 9.06 × 10−10

4 80 1.57 × 10−15 8.07 × 10−12 2.73 × 10−08 2.12 × 10−09 1.22 × 10−09 6.93 × 10−10

3 60 1.10 × 10−15 5.46 × 10−12 1.66 × 10−08 1.54 × 10−09 8.34 × 10−10 4.57 × 10−10

2 40 9.42 × 10−16 4.13 × 10−12 3.88 × 10−08 1.05 × 10−09 5.47 × 10−10 3.47 × 10−10

1 20 4.71 × 10−16 1.84 × 10−12 4.72 × 10−08 1.54 × 10−09 5.96 × 10−10 1.68 × 10−10
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Table A3. Parallel performance of the high resolution stratified seamount experiment (3000× 200× 100)
in the COD system.

Nodes Processors WTime [s] I/O Main Loop [s] WTime − I/O [s] Speedup Efficiency Streams Eff.

12 240 2.95 × 1002 1.19 × 1002 1.75 × 1002 8.82 × 1001 3.67 × 10−01 3.17 × 10−01

11 220 3.04 × 1002 1.15 × 1002 1.88 × 1002 8.21 × 1001 3.73 × 10−01 3.16 × 10−01

10 200 3.23 × 1002 1.15 × 1002 2.08 × 1002 7.43 × 1001 3.72 × 10−01 3.13 × 10−01

9 180 3.43 × 1002 1.13 × 1002 2.30 × 1002 6.74 × 1001 3.74 × 10−01 3.15 × 10−01

8 160 3.68 × 1002 1.12 × 1002 2.56 × 1002 6.04 × 1001 3.77 × 10−01 3.16 × 10−01

7 140 4.01 × 1002 1.14 × 1002 2.86 × 1002 5.40 × 1001 3.86 × 10−01 3.14 × 10−01

6 120 4.51 × 1002 1.14 × 1002 3.37 × 1002 4.59 × 1001 3.83 × 10−01 3.16 × 10−01

5 100 5.10 × 1002 1.10 × 1002 4.00 × 1002 3.87 × 1001 3.87 × 10−01 3.12 × 10−01

4 80 5.67 × 1002 1.02 × 1002 4.65 × 1002 3.33 × 1001 4.16 × 10−01 3.11 × 10−01

3 60 7.40 × 1002 9.80 × 1001 6.42 × 1002 2.41 × 1001 4.02 × 10−01 3.14 × 10−01

2 40 9.57 × 1002 8.41 × 1001 8.73 × 1002 1.77 × 1001 4.43 × 10−01 3.10 × 10−01

1 20 1.78 × 1003 8.23 × 1001 1.70 × 1003 9.12 × 1000 4.56 × 10−01 3.07 × 10−01

1 1 1.55 × 1004 3.96 × 1001 1.55 × 1004 1.00 1.00 1.00

Table A4. Parallel performance of the medium-sized stratified seamount experiment (2000× 100× 100)
in the COD system.

Nodes Processors WTime [s] I/O Main Loop [s] WTime − I/O [s] Speedup Efficiency Comm. Time I/O Time [s]

12 240 1.05 × 1002 5.60 × 1001 4.91 × 1001 7.02 × 1001 2.93 × 10−01 8.63 × 1006 1.11 × 1002

8 160 1.24 × 1002 5.08 × 1001 7.33 × 1001 4.70 × 1001 2.94 × 10−01 4.03 × 1001 1.07 × 1002

4 80 1.77 × 1002 4.27 × 1001 1.34 × 1002 2.57 × 1001 3.21 × 10−01 1.08 × 1001 1.12 × 1002

2 40 2.57 × 1002 2.25 × 1001 2.34 × 1002 1.47 × 1001 3.68 × 10−01 3.59 × 1000 9.68 × 1001

1 1 3.46 × 1003 1.22 × 1001 3.45 × 1003 1.00 1.00 1.00 × 10−05 8.64 × 1002

Table A5. Parallel performance of the low resolution stratified seamount experiment (1500 × 100 × 50)
in the COD system.

Nodes Processors WTime [s] I/O Main Loop [s] WTime − I/O [s] Speedup Efficiency Comm. Time I/O Time [s]

12 240 3.54 × 1001 2.31 × 1001 1.23 × 1001 6.84 × 1001 2.85 × 10−01 6.84 × 10−04 3.54 × 1001

8 160 3.79 × 1001 2.12 × 1001 1.67 × 1001 5.05 × 1001 3.16 × 10−01 5.05 × 10−04 3.79 × 1001

4 80 5.00 × 1001 1.76 × 1001 3.24 × 1001 2.60 × 1001 3.25 × 10−01 2.60 × 10−04 5.00 × 1001

2 40 7.43 × 1001 8.58 × 1000 6.57 × 1001 1.28 × 1001 3.21 × 10−01 1.28 × 10−04 7.43 × 1001

1 1 8.46 × 1002 3.34 × 1000 8.43 × 1002 1.00 1.00 1.00 × 10−05 8.46 × 1002
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Abstract: Coastal ocean flows are interconnected by a complex suite of processes. Examples are inlet
jets, river mouth effluents, ocean currents, surface gravity waves, internal waves, wave overtopping,
and wave slamming on coastal structures. It has become necessary to simulate such oceanographic
phenomena directly and simultaneously in many disciplines, including coastal engineering, environ-
mental science, and marine science. Oceanographic processes exhibit distinct behaviors at specific
temporal and spatial scales, and they are multiscale, multiphysics in nature; these processes are
described by different sets of governing equations and are often modeled individually. In order to
draw the attention of the scientific community and promote their simulations, a Special Issue of
the Journal of Marine Science and Engineering entitled “Multiscale, Multiphysics Modelling of Coastal
Ocean Processes: Paradigms and Approaches” was published. The papers collected in this issue
cover physical phenomena, such as wind-driven flows, coastal flooding, turbidity currents, and mod-
eling techniques such as model comparison, model coupling, parallel computation, and domain
decomposition. This article outlines the needs for modeling of coastal ocean flows involving multiple
physical processes at different scales, and it discusses the implications of the collected papers. Addi-
tionally, it reviews the current status and offers a roadmap with numerical methods, data collection,
and artificial intelligence as future endeavors.

Keywords: multiscale; multiphysics; model coupling; domain decomposition; data collection; ma-
chine learning

1. Background and Necessities

As a consequence of environmental change and ever-expanding human activities,
it has become urgently needed to investigate many emerging oceanic flow problems.
Three examples manifest such needs. An anthropogenic example was the 2010 Gulf of
Mexico oil spill, which started as a jet at the seafloor and rose to become floating oil patches
that led to an environmental disaster [1]. Overbank compound flooding by two North
Carolina coastal rivers provided an example of a complex suite of natural hazards that
resulted from ocean surges, fluvial waters, and inland runoff, plus their interactions, during
hurricanes Dennis and Floyd [2]. An engineering example is illustrated by the fast-growing,
worldwide practice of power generation from ocean current energy, in which both local
flows at turbines and the background tides play a role [3]. The study of these problems has
significant impacts on advances in sciences, engineering, and resilient coastal communities.
Towards the study, various programs have been established, such as Southeastern Uni-
versities Research Association (SURA), Coastal Ocean Observing and Prediction Program
(SCOOP), and the NOAA Coastal and Ocean Modeling Testbed program [4].
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The three example problems listed above have differing characteristics, but all of
them bear a similar feature: they are multiscale and multiphysics in nature and present
challenges to today’s modeling capabilities. For instance, the BP oil spill in the Gulf
of Mexico started as a fully three-dimensional (3D), high-speed jet with intense mixing,
at scales on the order of 10 m, and later it evolved into drifting patches of oil film, with
scales on the order of 100 km horizontally. Currently, many models have been developed in
the ocean science community for applications such as circulation, surges, and waves [5–8].
However, these models lack appropriate capabilities to directly account for multiscale,
multiphysics phenomena, particularly those fully 3D, local, complex phenomena, such as
the dynamic processes in the initial jet in the BP oil spill and water splashing as shown
in Figure 1. Without a multiscale and multiphysics approach, these models could only
partially simulate critical processes in those emerging problems. For instance, there is
currently no single model or software package that can directly simulate the whole process
from the jet all the way to the floating oil in the BP oil spill case.

 
(a) (b) (c) 

Figure 1. Simulated collapse of a water column, on the left, and its slamming on a plate, in the
middle, and its splashing at a wall, on the right [9]. The simulation is produced by a solver for the
Navier–Stokes equations.

For many years, oceanographers have worked towards simulating multiscale coastal
ocean flows, and now it has become a common practice within the ocean science com-
munity [10–12]. For these simulations, meshes are refined locally, either via stretched
meshes or nested meshes at local regions, so that not only the background large-scale flow
patterns are captured, but also fine-scale, local motions are resolved. However, this is not
the case for multiphysics simulations, which in general cannot be realized merely by local
mesh refinement. Traditionally, multiphysics refers to a system with multiple phenomena,
for instance, thermal diffusion, fluid flow, and phase change [13,14]. Even though these
phenomena are interdependent, they are described by different governing equations. In
the ocean, it is typical for a flow problem to involve multiple processes that exhibit distinct
physical behaviors, e.g., a jet at the seafloor and floating oil at the water surface in the BP
Deepwater Horizon Oil Spill. These processes are better described by different governing
equations, and frequently they are multiscale in nature owing to a vast range of spatial and
temporal scales. Therefore, they are referred to as multiphysics flows [15–17], although
such terminology is not generally recognized in the ocean science community.

2. A Discussion of the Collected Papers

In order to promote the simulations of multiscale and multiphysics coastal ocean
flows, a Special Issue of the Journal of Marine Science and Engineering entitled “Multiscale,
Multiphysics Modelling of Coastal Ocean Processes: Paradigms and Approaches” was ini-
tiated [18]. This Special Issue collected several papers, each of which focused on a specific
topic. Their topics included flooding, effects of scales and wind fields, model assessment,
model coupling, parallel computation, and computational methods. Although small in
numbers, the collected papers exemplified recent main efforts in the simulations of multi-
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scale, multiphysics flow problems. The research papers are reviewed in the paragraphs
that follow.

It is common to conduct multiscale simulations by increasing mesh resolution and
downscaling to resolve small-scale flow events such as flooding in the streets. When such a
simulation goes into local regions, it is crucial to assure its accuracy and reliability because
hydrodynamic phenomena and their interaction with the environmental settings, such
as buildings, become very complicated. An indispensable step is to validate the models
via abundant data that characterize the local region. Spatial complexity near the coast
could be much greater than in the deep ocean where data coverage from observations and
satellites requires less spatial detail. However, it is challenging to collect sufficient data
during extreme coastal events, such as street-level data for swift-flowing water during
storms. An innovative effort to collect street flooding data (e.g., high water marks) during
two consecutive storms involved observations over a thousand local residents at Hampton
Roads, VA in an activity called ‘Catch the King’ [19]. ‘Catch the King’ was well received
among residents, who were educated and trained on data collection. After being processed,
the data were used to calibrate the model for the VIMS’ Tidewatch storm tide inundation
maps. Such work is not only novel and effective to better capture local flooding but also
increases the awareness of residents, bearing on a broader social impact.

In a simulation to resolve local flows, adopting appropriate models has been another
critical issue besides mesh refinement along coastlines. As a result, a comparison of model
performance has become necessary [20]. Driven by the need for improved marine safety
and emergency response, the performance of NEMO and FVCOM was tested through
scientific collaboration with multiple teams [21]. NEMO and FVCOM are two distinct types
of models; the former uses a finite difference method on a structured mesh, while the latter
adopts a finite volume method on an unstructured mesh. The study area is the Saint John
Harbor in the Bay of Fundy, which features a complex flow system of waters from the ocean
and rivers. The system exhibits intricate patterns at different scales, and its simulation is
a nontrivial test for both models. The mesh resolution at the coast is as fine as about 100
m, but the authors anticipated that both models may reach their limits if it gets further
fined. The authors concluded that overall, the two models performed similarly in accuracy
compared to field observation, and FVCOM has a smaller computational cost. Generally
speaking, an unstructured-grid model requires more computational time, but FVCOM can
deal with irregular coastlines with a smaller number of grid nodes and, which may lead
to a lower computational cost. This feature has been exploited to support wave energy
survey along vast portions of the coastal ocean [22].

The multiscale, multiphysics nature of coastal ocean flows is attributed to various
factors, and wind fields are among those that play an essential role. With the aid of
FVCOM, a comparison study was made on effects from cold fronts in 2014 and Hurricane
Barry in 2019 on flow patterns inside Barataria Bay [23]. In general, these fronts and the
hurricane’s wind fields exhibited distinct differences not only in temporal and spatial scales
but also in directions. Such differences lead to an interesting disparity in behaviors of the
hydrodynamics in the bay. For instance, after the passage of a cold wind front, the water
surface inside the bay presents a trough, while it exhibits surges after the hurricane. As a
result, the study showed that water was transported out of the bay after a cold front of
winds passes, whereas it is pushed into the bay after Hurricane Barry’s landfall. This study
also indicated that FVCOM was able to capture flow patterns inside a bay driven by wind
fields at different scales.

Various complex flow behaviors result from the multiscale, multiphysics nature of
coastal ocean flows. Extreme atmospheric wind and precipitation have contributed to
unusual flooding along two rivers located along the NC coast during Hurricanes Dennis
and Floyd [2]. The compound flooding events resulted from storm surges and heavy
rainfall. They are each complicated phenomena but exacerbated by the simultaneous
impact of the two hurricanes, resulting in interactions that contributed to dangerous
flooding events. Based on data from observation and their 1D modeling, the authors
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delved into surface elevation and flow rates in the rivers, surge heights in the ocean, etc.
They presented a clear description of the mechanism of the downstream blocking during
the flooding. Importantly, this paper indicated that, due to strong interaction among
phenomena at different scales, existing modeling approaches are not appropriate because
they are typically based on univariate methods and coarse resolution. This work revealed
limitations in modeling and the need for multiscale and multiphysics modeling in coastal
flooding, and it concluded that approaches based on coupling of multiple models should
be adopted.

Simulation of flooding events through model coupling is becoming a trend, and re-
search related to flows along the Gulf of Mexico’s continental margin represents an effort
across temporal scales, where the researchers coupled models and form a holistic modeling
framework to capture turbidity currents at the seabed during storms [24]. The simula-
tion involved various physical processes, such as fluvial flows, estuary currents, surface
waves, and sediment transport, which behave differently and happen at different scales.
The framework assembled component models for point, 2D, and 3D processes, primarily in
the one-way coupling. It simulated these processes with resolution as fine as less than 1 s
in time and 3 m in space. Based on a series of simulations and analyses of their results and
actual data for hurricanes Gustav and Ike, a turbidity current problem as a representation
of those in the Gulf of Mexico was formulated and simulated. The simulation revealed
that hurricanes could bring a substantial amount of sand from coastal to deep waters.
The authors’ work dealt with complex processes, and it was more complicated than earlier
studies on model problems, such as the motion of sand dunes due to surface waves [25].

Due to the inherent limitations in conventional coastal ocean models’ governing
equations, such as the hydrostatic assumption and parameterization, they cannot handle
many complex local events, especially fully small-scale, 3D phenomena. Adoption of the
Navier–Stokes equations is a remedy to overcome this problem [26], since, in principle,
such equations can resolve all phenomena at different scales that are of interest. However,
solving these equations is very expensive, and efficient computation is a huddle for moving
forward. With such motivation, a full Navier–Stokes solver on a structured mesh was
developed [27]. In this solver, the Fortran-interfaced Portable–Extensible Toolkit for Scien-
tific Computation (PETSc) library equipped with domain decomposition techniques was
utilized for parallel computation of the solver, particularly its Poisson equation for pressure.
Because of the adoption of such parallelization, the increased speed of computation is
substantial. The work demonstrates that enough mesh resolution is desired in capturing
complex flow structures at a seamount, while the resolution can be reduced in the region
far away from it. This paper provided a valuable addition to the sparse number of works
on domain decomposition techniques for ocean flows.

In a broader sense, domain decomposition is an indispensable approach to achieving
multiscale and multiphysics simulations. A theoretical study on domain decomposition and
data assimilation in the computation of a linearized version of the shallow water equations
was demonstrated for Baltic Sea circulation [28,29]. In this study, assimilation data with
randomness (to mimic observation data) was imposed at an open boundary of a subdomain
that was linked to another subdomain. Its computation was formulated into an inverse
problem, whose objective function was built on the governing equations and boundary
conditions with a term of the Tikhonov regularization [28]. Additionally, a discussion on
uniqueness and computational steps was presented. In a numerical experiment on a model
problem, the search in the optimization converges in a few steps to the assimilation data at
the open boundary. Note that simplification, such as linearization or omitting the advection
terms, is made, and the scenario of this study differs from realistic situations. Nevertheless,
this work is particularly valuable since its topic and methods are novel, and publications
on domain decomposition for ocean flows are infrequent.

The above-collected papers provide a perspective of typical current efforts to simulate
multiscale, multiphysics flow problems. However, they only reflect a portion of the past
efforts. For a more complete view on the current status of such simulation, a brief but
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more comprehensive review is presented about additional work on the theme in the
following section.

3. Current Status

Many coastal ocean models have been built on geophysical fluid dynamics (GFD)
equations in the past few decades. These models have successfully simulated various
applications relevant to acoustics, ocean currents, surface waves, thermoclines, etc., and ex-
amples of them are POM, ADCIRC, ROMS, WAVEWATCH [5–8]. However, they cannot
handle many emerging problems involving small-scale, complicated flows, such as the
examples listed at the beginning of this article, which have largely been considered as
secondarily important in the ocean science communities in the past decades. At the same
time, many models have been developed in the engineering communities based on dif-
ferent equations, e.g., the Navier–Stokes equations. In principle and practice, they can
directly simulate these small-scale, complex, local ocean flows of our interest, including
those in the three examples mentioned above. Figure 1 shows samples of modeling of
these small-scale, complex flows. Here, “directly” means without or with minimal simpli-
fications and parametrizations that are commonly adopted in coastal ocean models,(e.g.,
drag coefficients of winds over water surfaces or at the seabed). Since the computation
of the equations for the local flows, e.g., the Navier–Stokes equations, is very expensive,
applying these engineering models to a large area of oceans could become prohibitive. In
addition, such an approach may not be as efficient as coastal ocean models, for instance,
for surface waves.

For more than a decade, simulations of multiscale ocean flows have been popular
among the ocean science community. Within the frame of a conventional coastal ocean
model, a general approach situation is to adopt multiple grid resolutions at different zones
in the domain of computation. In attempts to simulate global ocean currents, simulations
obtained with different mesh resolution indicate that finer resolution is indeed helpful to
better resolve observed flow patterns, such as water surface elevation and flows through
straights [30,31]. Fine resolution is frequently applied to nearshore regions to resolve vari-
ous events there. For instance, to search best sites for marine kinetic hydrodynamic energy
near coastlines, grid spacing less than 10 m is applied along the entire coast, while that over
10 m is used in open waters [32]. Three sets of nested grids with 3-arcminute resolution as
the fine resolution are adopted in a wave energy survey in Indonesia waters [33]. Another
event with high resolution in nearshore regions is coastal flooding, and grid spacing as fine
as 3 m is adopted to resolve floods in streets [34]. A comparison is between a structured-
grid model with nested-grids and an unstructured-grid with local mesh refinement, and it
is concluded that the latter is more expensive in terms of computation [35]. It has become a
common practice in the ocean science community to capture multiscale flow phenomena
via local mesh refinement. Because of the complexity of the flows and their multiscale
nature, it is not always straightforward to design multi-resolution meshes. For instance,
a dense mesh at a tidal inlet could add dissipation to the solution there [36], and thus
discretion is needed to achieve the desired accuracy there.

Multiphysics flows present more challenges, and the development of new modeling ca-
pabilities becomes necessary. Such flows tend to be associated with multiple temporal and
spatial scales. However, they cannot be resolved simply by multi-resolution, or local mesh
refinement, in the aforementioned conventional coastal ocean models. A direct approach is
to build models on the basis of the Navier–Stokes equations or their variants in the whole
computational domains [26,27]. In principle, such models, e.g., Fluidity-ICOM [26], are able
to handle multiphysics flows beyond the reach of the conventional coastal ocean models,
such as water slamming in Figure 1. However, like the aforementioned Navier–Stokes
solvers developed in engineering communities, these models face difficulties, such as high
computational cost, in application of ocean flows. Given the fact that models for individual
phenomena at specific scales, e.g., large-scale ocean circulations and small-scale wave
breaking, have become mature, and, as the most feasible and promising approach, it is
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natural to combine these models into a single framework to capture multiple physical
phenomena, and such efforts start over a decade ago [15,37,38].

During the past decade, substantial research has focused on coupling the equations
for surface waves and GFD equations (e.g., shallow water equations) for ocean currents,
two typical oceanic phenomena. Examples cover the interaction between surface waves and
ocean currents [39,40], wave-current-sediment motion [41], wave-driven morphology [25],
effects of ocean currents on waves [42], and ice-induced wave attenuation [43]. It should
be noted that waves and currents differ in temporal and spatial scales, and time steps
for their computation are also distinct due to stability requirements [25,41]. Another
type of coupling is between models for coastal ocean flows. Examples are coupling
of a model for narrow tributaries with vertically 2D flow patterns to a model for 3D
flows [44], a 2D Godunov-type model simulating local flooding across traffic roads to
FVCOM for the background ocean currents [45], a shallow water flow solver and the
Navier–Stokes solver to resolve local flows [46], and a 3D ocean model with fine grids on
the order of a meter to ROMS with coarse grids [47]. As a most recent effort, solvers for
the Navier–Stokes equations are coupled with FVCOM to simulate local, complex flows
in high fidelity [48,49]. Figure 2 presents an example of this kind of coupling. In this case,
the Navier–Stokes solver and FVCOM are state-of-the-art models used respectively by the
engineering community and the ocean science community. Additional types of coupling
include ocean circulation and sea ice [50], atmosphere, ocean, and biomaterials [51], storm
surges and turbidity currents [24,46], and ocean surge and land runoff [52]. Other relevant
efforts include the Earth System Modeling Framework (ESMF), which integrates many
distinct geophysical models [53].

   
(a) (b) (c) 

Figure 2. Simulation of thermal effluents discharged from a diffuser on seabed by coupling of a
Navier–Stokes solver and FVCOM [16,48]. In the simulation, the former resolves local flows, and the
latter captures the background currents, and the two models are coupled in two-way and march
in time simultaneously. (a) Mesh of FVCOM. (b) Mesh of the Navier–Stokes equations solver. (c)
Simulated thermal effluent at flood tide.

In general, coupling models to simulate multiphysics flows is a challenging complex
task. Currently, the coupling is usually one-way, which is implemented by programs
or manually, e.g., [24]. The one-way coupling may not only miss the feedback between
solutions of different models but may also introduce substantial errors and uncertainties
when passing solution data between models [54,55]. For instance, as in [55], a European
group concluded that it is required to resolve 3D flow structures in near fields and the
interaction between near and far fields to reduce such inaccuracy and uncertainty in tidal
power development. As a result, efforts have been made to achieve two-way coupling,
e.g., [45,48,49,56]. However, the bidirectional coupling is not yet widespread because it is
challenging to realize and expensive to compute.

Efforts have been made on algorithm development and computational analysis to pro-
mote multiscale and multiphysics simulations. As another approach, the hybrid methods
have been investigated, which merge different algorithms within a same model, rather
than coupling different models as discussed above. For instance, equations for wave,
current, and morphology are discretized and computed in a single system [25]. It is pro-
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posed to adopt a hybrid of continuous and discontinuous Galerkin methods to compute
a generalized wave-continuity equation in ADCIRC [57]. In capturing internal waves, a
method is proposed to combine a hydrostatic simulation on a grid and a non-hydrostatic
simulation on another grid, plus a technique to switch between the two solutions [58].
A method that allows different time steps in different zones of the computational domain
is presented to solve the shallow water equations [59]. Within ROMS, techniques are
presented to realize two-way nesting to resolve local flows [60].In the past year, attempts
have been made to analyze methods and computation, although such analyses are difficult
and progress is limited due to the complexity of involved governing equations and also
ocean flows. Research examples include optimal interface conditions to couple hydrostatic
and nonhydrostatic ocean models [61], variational data assimilation [28], computational
algorithms [62], and interface algorithms and stability analysis [63]. In a broad sense,
all of these efforts fall into heterogeneous domain decomposition methods for coupling
and computation with different partial differential equations, distinct numerical methods,
and even dissimilar meshes [12].

4. Future Efforts

To move forward, important aspects that deserve efforts are mathematical foundation,
algorithms, and computational power. In coupling different models, a crucial issue is to
develop algorithms for computations at interfaces. Currently, interface treatments are ad
hoc in theoretical foundations and crude in numerical methods. For instance, as a com-
mon practice, the coupling is one-way and implemented by linear interpolation [24,46,48].
The one-way coupling, i.e., from a far field to its near field, ignores the feedback from
the other direction. While it captures physical phenomena in limited situations, the cou-
pling may introduce substantial uncertainties and errors, e.g., during storms in which
the flows are complex and highly transient. Linear interpolation is 2nd-order accurate
locally, while frequently flow solvers, e.g., FVCOM, adopt second-order accurate schemes,
and thus their solutions are 3rd-order accurate locally. As a result, the accuracy of the
numerical solution degenerates at the interfaces. In the case of two-way coupling, the
coupling issue becomes more complicated and challenging to study. Additional issues are
stability, convergence, acceleration of computation, etc. In the past, only minimal efforts
have been made on analysis on these issues, e.g., interface conditions, algorithms, opti-
mal Schwarz iteration [61,62,64]. These issues present a great challenge to us in practical
computations. Examples include numerical oscillations, delay of response in solution,
and even non-physical solutions occurring at interfaces [64]. Domain decomposition is
a broad framework for coupling of different models, and its research has been extensive
in the mathematics community, e.g., [12,14], but with very sparse efforts for problems of
interests to the ocean science community, e.g., references [27,28] collected in this Special Is-
sue. Therefore, advances of domain decomposition methods are yet to be made directly for
ocean flows. Sufficient research on all of these issues with rigorous foundations and better
ways is indispensable before multiscale and multiphysics simulations become widespread
within the oceanography community and reach the capability levels of directly dealing
with real-world problems like the example problems illustrated in Section 1.

Another indispensable aspect of future efforts is the measurement of data in laboratory
experiments and field observations. Due to various uncertainties and shortages in models,
measured data play a crucial role in model validation and calibration, assuring they
work correctly and reliably. Besides regional data primarily associated with conventional
large-scale modeling approaches, measurements that reflect multiscale and multiphysics
features, particularly those for small-scale, local flows, are highly desirable. For example,
in an attempt to model correlations between background ocean currents and mixing flows
generated by an offshore floating windmill farm, simultaneous observations in the far
fields as well as in the near fields of each floating device are needed. In some situations,
e.g., storm surge impinges coastal infrastructures, special data for engineering purposes,
such as those on impinging pressure on the infrastructure, are desired, e.g., in simulations
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of the impact loads. In the past, numerous measurement programs have focused on
revealing large-scale phenomena and their interaction, such as ocean tides, estuarine
circulation, and offshore upwelling [65,66]. However, there is lack of measurements for
local phenomena, especially those in conjunction with those for background flows, and data
archives that characterize multiscale, multiphysics features are minimal. For instance,
although an intensive experimental study has been made to understand the impact of
tsunamis on coastal structures in recent years, they are focused on local flows without
consideration or with substantial simplification for actual real background far-field flows,
e.g., [67]. As a result, mostly the newly developed models with multiscale, multiphysics
capabilities, such as the modeling system used to produce the simulation in Figure 2,
have not fully be validated and tested by data with multiscale, multiphysics information.
Therefore, obtaining sufficient measurement data for modeling multiscale and multiphysics
processes remains a key priority and requires improved instrument networks [68,69].

As a potential direction for future development, efforts on data-driven methods and
artificial intelligence are expected to grow rapidly, which could lead to new avenues to
simulations of multiscale and multiphysics ocean flows. Since such flows result from
various factors (e.g., wind, tide, bathymetry), their interactions, and associated uncer-
tainties (e.g., randomness of wind), it has been a challenging task to reliably to take all
of them into consideration using conventional physical and deterministic approaches as
discussed above. Artificial intelligence is based on datasets that contain the info of such
factors, and data-driven methods could overcome the challenges. The ideas to study
ocean flows via a data-driven approach started a long time ago, such as using artificial
neural networks to identify ocean currents with satellite images [70], predict storm surge
with data of wind, air pressure, and tidal level [71], simulate ocean-water overtopping at
structures [72], estimate waves using observed and modeled data [73], track ocean drifters
according to their motion histories [74]. Now, it has been recognized in the ocean science
community that data-driven artificial intelligence will be a future direction [75]. In recent
years, the progress in artificial intelligence is encouraging on topics of resolving complex
physics and rigorous foundations; they cover reproducing flow patterns [76], solving the
Navier–Stokes equations [77], constructing turbulence closures [78], and exploring the
mathematical foundation of machine learning [79]. Figure 3 shows the prediction capability
of machine learning for a cavity flow. In this example, 20 images of the velocity field (verti-
cal velocity, w) at different Reynolds numbers Re = 300, . . . , 390, 410, . . . , 500 (without
that at Re = 400) as training data are used to train neural networks. The trainingusesthe
velocity at the upper and lower parts as input and velocity in the middle zone, an interface
zone, as output. It is seen that then the trained networks satisfactorily predict the velocity
at Re = 400 in the interface zone. Note that, at the same time, machine learning tools
have become mature, such as Tensorflow [80], Pythoch [81], and Matlab [82], and they are
open-source for application to various problems. Very recently, it is proposed to couple
differential equations and flows using machine learning [83,84]. For instance, it is shown
in [84] that, after being trained by solutions of partial differential equations with an initial
condition, neural-network-based interface algorithms work well in solving the equations
with another initial value condition. This manifests that machine learning does not just
repeat its training data but also exhibits a certain prediction capability. Although it has
not been realized yet, all of these indicate that machine learning could lead to avenues to
simulations of multiscale and multiphysics ocean flows.

In efforts towards simulations of multiscale, multiphysics coastal ocean flows to meet
the emerging needs in practice, such as the example problems described in Section 1,
a multidisciplinary effort is dispensable. As described above and recognized by many
researchers [85,86], collaboration among different communities such as ocean science,
mathematics, and engineering lead to innovation. In addition, since such simulations cover
various data, models, and applications, teamwork and collaboration across institutions
are essential [14,86,87].
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(a) (b) 

Figure 3. Example of machine learning for an unsteady, 3D cavity flow (The fluid inside a cubic box
in size of 1 × 1 × 1 is initially stationary and then starts to flow due to motion of the top wall at
speed of cos(2πt)). Re = 400, and t = 0.25. Solid lines—data, dash lines—prediction. Tensorflow is
used [80]. (a) Training data. (b) Data and prediction.

5. Concluding Remarks

Development in simulations of multiscale and multiphysics coastal ocean flows will
promote research on many emerging problems resulting from changing coastal environ-
ments. This paper presents a review and discussion of such simulations, and it leads to the
following conclusions:

1. Multiscale simulation has become widespread, while the multiphysics simulation
remains in the preliminary stages of research

2. Model coupling is considered the most feasible and promising approach to realizing
multiscale, multiphysics ocean flows for the foreseeable future, given the status of
techniques and interests of funding programs.

3. Future multiscale and multiphysics research efforts will be based on rigorous founda-
tions and methods, field data collection, and data-driven artificial intelligence.

Advances on topics such as machine learning will lead to new opportunities and
breakthroughs in simulations of multiscale and multiphysics coastal oceans. Besides, the
increasing needs from the communities and further development in relevant areas, e.g.,
computer power, will also promote the simulations. Optimistically we anticipate that
understanding of multiscale and multiphysics coastal ocean phenomena will progress
substantially in the coming decade.
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