1,913 research outputs found

    An Energy-Efficient Distributed Algorithm for k-Coverage Problem in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) have recently achieved a great deal of attention due to its numerous attractive applications in many different fields. Sensors and WSNs possesses a number of special characteristics that make them very promising in many applications, but also put on them lots of constraints that make issues in sensor network particularly difficult. These issues may include topology control, routing, coverage, security, and data management. In this thesis, we focus our attention on the coverage problem. Firstly, we define the Sensor Energy-efficient Scheduling for k-coverage (SESK) problem. We then solve it by proposing a novel, completely localized and distributed scheduling approach, naming Distributed Energy-efficient Scheduling for k-coverage (DESK) such that the energy consumption among all the sensors is balanced, and the network lifetime is maximized while still satisfying the k-coverage requirement. Finally, in related work section we conduct an extensive survey of the existing work in literature that focuses on with the coverage problem

    Wireless coverage using unmanned aerial vehicles

    Get PDF
    The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civilian application domains including real-time monitoring, search and rescue, and wireless coverage. UAVs can be used to provide wireless coverage during emergency cases where each UAV serves as an aerial wireless base station when the cellular network goes down. They can also be used to supplement the ground base station in order to provide better coverage and higher data rates for the users. During such situations, the UAVs need to return periodically to a charging station for recharging, due to their limited battery capacity. Given the recharging requirements, the problem of minimizing the number of UAVs required for a continuous coverage of a given area is first studied in this dissertation. Due to the intractability of the problem, partitioning the coverage graph into cycles that start at the charging station is proposed and the minimum number of UAVs to cover such a cycle is characterized based on the charging time, the traveling time and the number of subareas to be covered by a cycle. Based on this analysis, an efficient algorithm is proposed to solve the problem. In the second part of this dissertation, the problem of optimal placement of a single UAV is studied, where the objective is to minimize the total transmit power required to provide wireless coverage for indoor users. Three cases of practical interest are considered and efficient solutions to the formulated problem under these cases are presented. Due to the limited transmit power of a UAV, the problem of minimizing the number of UAVs required to provide wireless coverage to indoor users is studied and an efficient algorithm is proposed to solve the problem. In the third part of this dissertation, the problem of maximizing the indoor wireless coverage using UAVs equipped with directional antennas is studied. The case that the UAVs are using one channel is considered, thus in order to maximize the total indoor wireless coverage, the overlapping in their coverage volumes is avoided. Two methods are presented to place the UAVs; providing wireless coverage from one building side and from two building sides. The results show that the upside-down arrangements of UAVs can improve the total coverage by 100% compared to providing wireless coverage from one building side. In the fourth part of this dissertation, the placement problem of UAVs is studied, where the objective is to determine the locations of a set of UAVs that maximize the lifetime of wireless devices. Due to the intractability of the problem, the number of UAVs is restricted to be one. Under this special case, the problem is formulated as a convex optimization problem under a restriction on the coverage angle of the ground users and a gradient projection based algorithm is proposed to find the optimal location of the UAV. Based on this, an efficient algorithm is proposed for the general case of multiple UAVs. The problem of minimizing the number of UAVs required to serve the ground users such that the time duration of uplink transmission of each wireless device is greater than or equal to a threshold value is also studied. Two efficient methods are proposed to determine the minimum number of UAVs required to serve the wireless devices

    Strategies for coverage and focus on event for robotic swarms with limited sensing capabilities

    Get PDF
    We consider the problem of coverage in Robotic Networks: developing an efficient algorithm which is able to perform a deployment in static-obstacle-structured environments focusing on events is our main idea. We are interested on the trade-off between local communication and optimal coverage, therefore we are going to present an algorithm based on article: "Sensor Coverage Robot Swarms Using Local Sensing without Metric Information", using its similar scenario types

    Optimization strategies for two-tiered sensor networks.

    Get PDF
    Sensor nodes are tiny, low-powered and multi-functional devices operated by lightweight batteries. Replacing or recharging batteries of sensor nodes in a network is usually not feasible so that a sensor network fails when the battery power in critical node(s) is depleted. The limited transmission range and the battery power of sensor nodes affect the scalability and the lifetime of sensor networks. Recently, relay nodes, acting as cluster heads, have been proposed in hierarchical sensor networks. The placement of relay nodes in a sensor network, such that all the sensor nodes are covered using a minimum number of relay nodes is a NP-hard problem. We propose a simple strategy for the placement of relay nodes in a two-tiered network that ensures connectivity and fault tolerance. We also propose two ILP formulations for finding the routing strategy so that the lifetime of any relay node network may be maximized.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .B37. Source: Masters Abstracts International, Volume: 45-01, page: 0348. Thesis (M.Sc.)--University of Windsor (Canada), 2006

    Energy-Efficient Self-Organization Protocols for Sensor Networks

    Get PDF
    A Wireless Sensor Network (WSN, for short) consists of a large number of very small sensor devices deployed in an area of interest for gathering and delivery information. The fundamental goal of a WSN is to produce, over an extended period of time, global information from local data obtained by individual sensors. The WSN technology will have a significant impact on a wide array of applications on the efficiency of many civilian and military applications including combat field surveillance, intrusion detection, disaster management among many others. The basic management problem in the WSN is to balance the utility of the activity in the network against the cost incurred by the network resources to perform this activity. Since the sensors are battery powered and it is impossible to change or recharge batteries after the sensors are deployed, promoting system longevity becomes one of the most important design goals instead of QoS provisioning and bandwidth efficiency. On the other hand the self-organization ability is essential for the WSN due to the fact that the sensors are randomly deployed and they work unattended. We developed a self-organization protocol, which creates a multi-hop communication infrastructure capable of utilizing the limited resources of sensors in an adaptive and efficient way. The resulting general-purpose infrastructure is robust, easy to maintain and adapts well to various application needs. Important by-products of our infrastructure include: (1) Energy efficiency: in order to save energy and to extend the longevity of the WSN sensors, which are in sleep mode most of the time. (2) Adaptivity: the infrastructure is adaptive to network size, network topology, network density and application requirement. (3) Robustness: the degree to which the infrastructure is robust and resilient. Analytical results and simulation confirmed that our self-organization protocol has a number of desirable properties and compared favorably with the leading protocols in the literature

    Efficient Algorithms for Distributed Detection of Holes and Boundaries in Wireless Networks

    Get PDF
    We propose two novel algorithms for distributed and location-free boundary recognition in wireless sensor networks. Both approaches enable a node to decide autonomously whether it is a boundary node, based solely on connectivity information of a small neighborhood. This makes our algorithms highly applicable for dynamic networks where nodes can move or become inoperative. We compare our algorithms qualitatively and quantitatively with several previous approaches. In extensive simulations, we consider various models and scenarios. Although our algorithms use less information than most other approaches, they produce significantly better results. They are very robust against variations in node degree and do not rely on simplified assumptions of the communication model. Moreover, they are much easier to implement on real sensor nodes than most existing approaches.Comment: extended version of accepted submission to SEA 201

    Resource Allocation and Positioning of Power-Autonomous Portable Access Points

    Get PDF

    Deployment and coverage maintenance in mobile sensor networks

    Get PDF
    Deployment of mobile nodes in a region of interest is a critical issue in building a mobile sensor network because it affects cost and detection capabilities of the system. The deployment of mobile sensors in essence is the movement of sensors from an initial position to a final optimal location. Considerable attention has recently been given to this deployment issue. Many of the distributed deployment schemes use the potential field method. In most cases, the negative gradient of the potential function becomes the feedback control input to a node. This assumes that the potential function is differentiable over the entire region. This assumption is valid primarily when the topology of the network is fixed. In this research, we analyze the stability of a network that uses piecewise smooth potential functions. A gravitation-like force is proposed to deploy a group of agents and to form a certain configuration. We use a nonsmooth version of the Lyapunov stability theory and LaSalle’s invariance principle to show asymptotic stability of the network which is governed by discontinuous dynamics. We propose a hierarchical structure using potential fields for mobile sensor network deployment. A group of mobile nodes first form a cluster using a potential field method and then cluster heads are used to establish a hexagonal structure that employs a higher level potential field. We consider specifically the problem of deploying a mobile sensor network so that a certain area coverage is realized and maintained. And we propose an algorithm for main taining the desired coverage that assumes the availability of a stochastic sensor model. The model reflects the decline of the sensor accuracy as the distance increases from the sensor. It is further assumed that each node’s sensor has a different sensing range to represent sensor performance deterioration due to power decay. The network deployment scheme combines artificial forces with individual sensor ranges. The validity and the effectiveness of the proposed algorithm are compared to the conventional methods in simulations. Simulation results confirm the effectiveness of the proposed algorithms with respect to a defined performance metric
    corecore