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Abstract

The feasibility of providing cellular connectivity in remote areas in future generations
of wireless networks depends on the availability of a reliable power grid. Similar issues
arise in emergency network deployment for rapid connectivity provisioning in disaster
areas and broadband provisioning in massive-scale social events such as sports events
and concerts, where access to a power grid is limited. Furthermore, future cellular
communication systems are expected to cut their CO2 emissions by at least 50% by
2030 as the first step to achieving net-zero networks. Grid-independent energy-neutral
(EN) communication networks that are portable and use green energy for their operation
provide a critical solution to the above.

In this thesis, we realize an EN system using an unmanned aerial vehicle (UAV)-
based power-autonomous portable access point (PAP) system in which UAVs will be
carrying radio access nodes to serve a set of ground nodes. The energy required to
recharge the UAVs is generated using an off-grid charging station (CS) comprising en-
ergy generation and storage modules. This thesis proposes a framework for energy- and
cost-efficient deployment of a power-autonomous PAP system. The proposed framework
incorporates realistic power generation, storage, and consumption models directly into
the wireless network optimization. The contributions are grouped into 3 categories.
The initial works propose stationary PAP deployment policies that maximize the num-
ber of bits or area covered per Joule of energy consumed. To start with, we determine
energy-efficient hovering altitudes for a PAP considering orthogonal and non-orthogonal
resource allocation schemes. Later, a multi-level circle packing algorithm determines
energy-efficient 3D hovering locations for PAPs deployed to serve a given region. Since
a PAP consumes less power while flying, a subset of works design energy-efficient trajec-
tories for a PAP, forming the second group. The trajectory design starts by considering
a simple fly-hover-communicate policy to serve the users in which the hovering locations,
the flying velocity of the UAV, and the battery parameters are optimized to maximize
the energy efficiency and minimize the operational cost of the system. These are then
extended to a fly-communicate protocol in the presence of intelligent reflecting surfaces
(IRS) placed on the facade of buildings to improve the channels between a PAP and
ground nodes. Then, we propose a deep-reinforcement learning-based 3D trajectory pol-
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icy that maximizes the number of bits transmitted per Joule of energy consumed while
ensuring service fairness among the users. The work considers a pragmatic non-linear
battery discharge profile of UAV batteries according to the Peukert effect. Finally, the
third group includes methodologies for a cost-efficient design of an energy-neutral PAP
system that configures a hybrid CS as a function of the load profile generated by the
PAPs. We consider two types of hybrid CS; the first uses a combination of photovoltaic
(PV) panels and batteries, whereas the second configuration harvests energy from wind
and solar and stores the excess energy in a ground battery unit. Numerical evaluations
show that the exclusion of realistic energy generation, consumption, and storage models
results in sub-optimal or obsolete solutions.



Resumé

Muligheden for cellulært netværk at levere forbindelse til fjerntliggende områder i frem-
tidige generationers trådløst netværk afhænger af tilgængeligheden til et pålideligt el
net. Lignende udfordringer opstår i nødsituations netværksimplementering, for at opnå
hurtig provision af forbindelse til katastrofeområder og bredbånds provisionering til so-
ciale begivenheder af massiv skala, så som sportsbegivenheder og koncerter hvor adgang
til et elnet er begrænset. Ydermere, fremtidig cellulære kommunikationssystemer for-
ventes at begrænse deres CO2 udslip med mindst 50% inden 2030, som det første skridt
mod at opnå netto nul netværk. Net-uafhængig energi-neutralt (EN) kommunikation-
snetværk som er transporterbar, og bruger grøn energi til deres drift, skaber en kritisk
løsning for det overstående.

I denne afhandling opnår vi et EN system, ved brug af ubemandet luftfartøj (UAV)-
baseret energi-autonom transportabel access point (PAP), hvor UAV’er bærer radio
adgangsknudepunkter til at servicere en gruppe grund noder. Den nødvendige energi til
opladning af UAV’er generes ved brug af ’off-grid’ opladningsstationer (CS), bestående
af energi generation og lager moduler. Denne afhandling foreslår en struktur for energi-
og pris-effektiv implementering af et energi-autonomt PAP system. Den forslået struk-
tur inkorporerer realistisk energi generation, lager, og konsumeringsmodeller direkte
ind i den trådløse netværksoptimering. Bidragende er opdelt i 3 kategorier. Det ini-
tiale værk foreslår stationær PAP implementeringspolitikker, som optimerer antallet
af bits eller område dækket per Joule energi konsumeret. Til at starte med, fastslog
vi energi-effektiv svævende højder for et PAP, med overvejelser af ortogonal og ikke-
ortogonal ressource allokeringsordninger. Senere, bestemmer en cirkel paknings algo-
ritme på flere niveauer, energi-effektiv 3D svæve lokationer for PAP’er implementeret
til at servicere i en given region. Siden et PAP forbruger mindre energi imens den fly-
ver, så designer en delmængde af værkerne energi-effektiv trajektorier for et PAP, som
danner den anden gruppe værker. Trajektorie designet begynder med overvejelser af en
simpel flyve-svæve-kommuniker politik til at servicere brugerne, hvoraf svæve lokation-
erne, flyve hastigheden for UAVen og batteri parametre er optimeret til at maximere
energieffektiviteten, og minimere systemets operationelle pris. Disse udvides til en flyve-
kommuniker protokol i tilstedeværelsen af en Intelligent refleksiv overflade (IRS), som
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er placeret på facaden af bygninger, for at forbedre kanalerne mellem en PAP og grund
noder. Efterfølgende foreslår vi en deep-reinforcement learning baseret 3D trajekto-
rie politik, som maksimerer antallet af bits transmitteret pr. Joule energi konsumeret,
imens serviceretfærdighed blandt brugerne sikres. Værket overvejer en pragmatisk ikke-
lineær batteri udledningsprofil for UAV batterier ifølge Peukert effekten. Endeligt, så
inkludere den tredje gruppe værker, metoder for pris-effektivt design af et energi-neutralt
PAP system, som konfigurerer en hybrid CS som en funktion af belastningsprofilen
generet af PAP’er. Vi overvejer to typer hybrid CS; den første bruger en kombination af
fotovoltaisk (PV) paneler og batterier, hvorimod den anden konfiguration høster energi
fra vind og sol og lagrer den overskydende energi i en grund batterienhed. Numerisk
evaluering viser at ekskludering af realistisk energi generation, forbrug, og lagre model
resulterer i sub-optimale, og forældet løsninger.
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Chapter 1

Introduction

1 Motivation
Various technologies are envisioned for the energy-efficient deployment of future cellu-
lar networks [1]: improving the coverage area and reducing the link power budgets by
increasing the number of infrastructure nodes per unit area, forming dense heteroge-
neous networks (HetNets) [2]; increasing the number of base station (BS) antennas to
cope with the increased service demand from the users [3]. The above solutions imply
high-deployment costs, and the availability of reliable power grids decides its possible
deployment. Many countries cannot contain the expansion of cellular networks due to
the limited power grid infrastructure. For instance, in Africa, only 10% of individuals
have access to the electrical grid [4]. Furthermore, the conventional cellular infrastruc-
ture would fail to meet the sporadic service demands from natural disaster/special event
scenarios.

A candidate cost-and energy-efficient, easily-deployable solution to overcome the
above-mentioned problems is to deploy a UAV(s)-based green and power-autonomous
portable access point (PAP) system. A PAP system contains UAV(s) that will be hov-
ering or moving over the service required area carrying radio access node(s) to serve
ground users and a ground charging station (CS) that harvests the energy needed for
the operation from renewable sources such as solar and wind. When a natural disaster
happens, UAVs can be deployed quickly to survey the area for search and rescue, de-
liver supplies for first aid, and provide emergency communications. The use of UAVs to
provide internet access in earthquake-hit regions in Japan [5] and Nokia’s F-cell tech-
nology to extend cellular coverage extension using drone-based base stations are proven
applications of portable access points [6]. Accordingly, UAVs are expected to dominate
applications in remote/under-served areas and applications requiring temporary high
bandwidth communications infrastructure. UAV use cases are booming, with recent

3
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Fig. 1.1: UAV use cases [7].

forecasts indicating a $100 billion market opportunity over the coming years [7]. The
use case varies from photography to precision farming as well as inspection and mapping
in industries. In white paper [7], Ericsson proposed the 5G use cases of UAVs shown in
Fig. 1.1.

A PAP system can achieve an efficient power-autonomous operation through a com-
bination of energy-efficient deployment of PAPs and a cost-efficient configuration of the
CS. The works linked to a conventional cellular infrastructure design consider energy
efficiency and harvesting aspects separately. The existing frameworks are unsuitable
for a PAP system due to: a) the wireless network optimization should incorporate re-
alistic power generation, storage, and consumption models; b) the network deployment
planning and the CS configuration should be done jointly. Furthermore, the limited
on-board energy of the UAV should be efficiently spent among the UAV-related and
communication-related energy consumption parts.

The quality of the air-to-ground channel from a PAP at a given position to a user
is a function of the elevation angle and the 3D distance between them [8]. The energy
consumed by the UAV is very high compared to the consumption of the on-board access
point. Hence, the PAP deployment policy should aim, for instance, at maximizing the
number of bits transmitted per Joule of energy which is distinct from maximizing the
throughput or minimizing the energy consumption separately. Furthermore, the cost
per bit can be minimized by: a) minimizing the number of UAVs through efficient PAP
deployment policies; b) minimizing the number of harvesting and storage modules by
configuring the CS as a function of the load profile generated by the PAP deployment
policy. The load profile should reflect UAVs’ charging and discharging schedules, which
is application-specific. For instance, a single PAP is enough to collect data from nodes
in a delay tolerant network, which stores the data and transmits it when a reliable
communication link is available. On the contrary, a broadband application requires one
PAP per cell where the hovering altitude of the PAP defines the cell boundary. Hence,
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the load to the CS varies largely among these two scenarios. The above-mentioned
characteristics and trade-offs associated with an efficient design of a power-autonomous
PAP system open up many challenges. We address the challenges in this thesis by
achieving the research objectives defined in Section 2.

2 Research Objectives
This thesis envisions a grid-independent network of portable access points
capable of replacing the power-grid restricted base station topologies. The
thesis objective is achieved by addressing the challenges discussed in the previous section
through the following research objectives:

[RO1]: Develop realistic power generation, storage, and consumption models, and
incorporate them directly into the PAP deployment optimization;

[RO2]: Introduce energy-efficiency metrics that represent the trade-offs between
coverage and energy, throughput and power, cost and coverage, and cost and
throughput;

[RO3]: Propose energy-efficient placement policies for a PAP system;

[RO4]: Build optimization framework that minimizes the cost of the system by
balancing the energy generation and consumption.

Since the thesis objective involves improving the system’s energy efficiency and achieving
power autonomy, accurate energy generation models of harvesting units such as PV
panels and windmills, exact energy storage model for batteries used at the CS and the
UAV, and precise energy consumption model of the UAV, are required ([RO1]). The
lifetime of a PAP system will be a critical performance indicator that is not explicitly
accounted for by the current 5G performance metrics. Accordingly, the definition of
new metrics to represent the trade-offs associated with a PAP system, such as coverage
vs. power, throughput vs. energy, and cost vs. data rate, is paramount ([RO2]). Using
the developed energy models, energy- and cost-efficient policies need to be developed
that ensure the power autonomy of the system ([RO3] and [RO4]). The objectives are
achieved through a number of submitted and published scientific papers.

The papers that share a common system setup are grouped into three groups, as
shown in Fig. 1.2:

[G1]: Static PAPs: Energy-Efficient Positioning and Communication;

• Papers A, B, and C are grouped as [G1] that propose deployment policies to
determine energy-efficient hovering locations for PAPs considering realistic
power consumption models and different multiple access schemes.
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Fig. 1.2: Grouping of scientific papers.

[G2]: Dynamic PAPs: Energy Efficient Path Planning and Resource Allocation;

• Papers D, E, and F form [G2] that develop a framework to improve the
system’s energy efficiency by moving a PAP through an optimal path while
ensuring service fairness among the users. The optimization framework in-
cludes realistic power consumption and storage models.

[G3]: Energy-Neutral System Optimization: Cost Efficient CS design;

• [G3] consists of Papers G and H that achieve energy-neutrality by configuring
the CS based on the load demanded by the PAPs. The proposed algorithms
use realistic power generation, storage, and consumption models.

In Chapter 2 of Part I, we give an extensive summary of the papers and the trade-offs
considered in each group.
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3 Thesis Outline and Assumptions
The remainder of the thesis is organized as follows. Chapter 2 describes the trade-offs
considered while developing optimal placement solutions for static, dynamic, and energy-
neutral PAP systems. It also provides an extensive summary of the scientific papers
contributing to achieving the objective of the thesis. As mentioned in the previous
section, Papers A, B, and C propose energy-efficient placement policies for a static PAP
system, whereas Papers D, E, and F offer solutions for energy-efficient trajectory design
of a dynamic PAP system. Finally, Papers G and H design an energy-neutral PAP
system. In Chapter 3, we summarize the contributions and discuss the future scope of
the work. Part II of the thesis includes the published and submitted scientific papers
that form the core part of the thesis.

The assumptions that are common to all the works that constitute this thesis are,

• The system is deployed as a stand-alone unit to serve a set of outdoor-ground
users located in areas having no cellular service from the conventional cellular
infrastructure.

• We model the air-to-ground channel by considering two propagation groups: the
first group corresponds to a favorable Line-of-Sight (LoS) condition, or near-Line-
of-Sight condition to a ground user, while the second group generally corresponds
to Non-Line-of-Sight (NLoS), but still receiving coverage via strong reflections.
This is a reasonable and justifiable model, as radio signals emitted by a PAP
propagate in free space until reaching the environment where they incur shadowing
and scattering caused by the man-made structures, introducing additional loss in
the air-to-ground link [8]. For a given elevation angle between a user and a PAP
at a given location, this additional loss has a Gaussian distribution [9], and it
depends on the building profile of the region. However, from [9], the change
in the additional path loss within a particular propagation group (LoS/NLoS)
is insignificant compared to the change in path loss value from one group to the
other: the NLoS path loss value depends on the scattering and reflections from the
surrounding buildings, which in turn rely primarily on the frequency of operation
and the building profile of the region. Since the proposed policies are used in
the planning phase of the PAP deployment, we consider the long-term channel
variation rather than short-term random behavior due to the dynamic propagation
environment.

• The optimal placement policy is developed offline at the ground station prior to the
PAP deployment. This requires the ground station to be aware of the positions
of the users, which can be done, for instance, using the new radio positioning
protocol (NRPPa).
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Chapter 2

Summary of Contributions

1 Static PAPs: Energy-Efficient Positioning and Com-
munication

This section summarizes the works considering PAP deployment policies in which the
PAPs hover at optimal locations to serve the users. Fig. 2.1 shows the architecture of
a static PAP system. As shown in the figure, the PAPs and the users are connected to
a centralized system called unmanned aerial system (UAS) traffic management system
(UTM) through orthogonal control channels. These links can be used by the pilot to
send maneuver control signals to the PAP or by the users to request the service of the
PAP. The operators will connect to the UTM to get flight approval and periodically
report the status of the flights [1]. The main motivation for such a static deployment is
from Fig. 2.2 that contains plots of the LoS probability as a function of the elevation
angle θ, for different deployment regions [2]. As seen in the figure, an elevation angle
greater than 20o guarantees an LoS link between a PAP and a user in a suburban region.
Consequently, the LoS coverage area of a PAP can be modelled as a circle of radius,

Rp = hptan(θlos), (2.1)

where hp is the hovering altitude, and θlos is the minimum elevation angle between a
user and a PAP required to guarantee an LoS link, obtained from Fig. 2.2. Thus, the
LoS coverage area increases as the hovering altitude increases, but the corresponding
link quality decreases due to a larger propagation distance. Additionally, there is an
increase in the UAV power consumption as the PAP ascents axially due to the variation
in air density and pressure. The optimal hovering locations for the PAPs, considering
the trade-offs between the coverage area, link quality, and the UAV energy consumption,
are determined through policies proposed in Papers A-C.

9
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Paper A: “Energy Efficient Altitude Optimization of an Aerial
Access Point”
This paper considers an unmanned aerial vehicle carrying a radio access node called an
aerial access point (AAP) deployed to serve a set of ground users. The objective is to
determine the optimal hovering altitude for the AAP that maximizes the total number of
bits transmitted per Joule of energy consumed, measured as the global energy efficiency
(GEE) of the system. The work considers a downlink communication between the
AAP and the users. The numerator of the GEE is estimated by assuming a uniform
distribution of the users along the line-of-sight (LoS) coverage area of the AAP. The
altitude and a minimum elevation angle, a function of the environment, determine the
LoS coverage area. The AAP serves the users through the frequency-division-multiple-
access (FDMA) scheme, where the availability of a sufficient number of orthogonal
channels is assumed. The total energy consumption (the denominator of the GEE) is
modelled as the sum of the propulsion energy consumption of the UAV and the energy
consumed by the communication equipment. With an increase in the hovering altitude,
the LoS coverage area as well as the UAV energy consumption increase, whereas the
channel gain to a user decreases. Therefore, the proposed algorithm determines an
energy-efficient hovering altitude for the AAP by exploiting this tradeoff between the
total number of bits transmitted and the total energy consumed.

The objective is translated into a non-convex optimization problem of maximizing
the GEE of the system, subject to altitude and minimum individual data rate con-
straints. The problem is solved using the sequential convex programming (SCP) opti-
mization technique. The fundamental idea of SCP is to iteratively solve a sequence of
convex approximated problems of the original non-convex problem so that the feasible
solution points converge to the KKT point of the original non-convex problem. The
initial feasible solution required to solve the problem using the SCP technique is taken
as the minimum altitude. The obtained solution using the SCP technique cannot be
claimed as the global optimum. Hence, the work compares the obtained solution to the
global optimum obtained by solving the same problem using the polyblock outer ap-
proximation (PA) algorithm. Numerical results show that the optimal altitude obtained
using the SCP technique lies close to the global optimum found using the PA algorithm.
Moreover, neglecting the communication-related energy consumption has a negligible
impact on the optimal hovering altitude.

Paper B: “Energy-Efficient Deployment of a Non-Orthogonal Mul-
tiple Access Unmanned Aerial System”
This work proposes an algorithm to determine the energy-efficient hovering altitude of an
AAP deployed to collect data from a set of ground users (uplink communication). The
algorithm maximizes a new energy efficiency metric called area energy efficiency (AEE)
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of the system. The AEE of the system is defined as the ratio between the geographical
area covered by the AAP and the total energy consumption. The system set up assumes
the AAP to be equipped with a directional antenna. The users send their collected data
to the AAP using an uplink power-domain non-orthogonal multiple access (P-NOMA)
scheme. According to the P-NOMA scheme, the users send data using the same time and
frequency resources but with different power levels. The receiver at the AAP removes
the inter-user interference from the co-channel users through the successive interference
cancellation (SIC) technique.

The SIC receiver at the AAP requires diverse received powers from the users to
decode the messages successfully, guaranteed through the proposed uplink-P-NOMA
scheme. Each user is assigned an index of the decoding order following the path loss
value: a user with a higher path loss value is assigned a higher index value. The
users then follow a power-reduction scheme for transmitting data. The scheme ensures
that the received powers from the nth and (n + 1)th user differs by a power reduction
factor δ, where n is the index of decoding order. The AEE maximization objective
is formulated as a non-convex optimization problem subject to altitude and minimum
data rate constraints. As the altitude increases, the coverage area of the AAP increases
along with the energy consumption. Hence, the numerator and the denominator of the
objective function are increasing functions of the hovering altitude. Consequently, the
optimal altitude is determined using a bisection-based algorithm. Numerical evaluations
show that the proposed P-NOMA scheme outperforms an equivalent orthogonal multiple
access (OMA) scheme in terms of the AEE.

Paper C: “Energy-Efficient 3D Deployment of Aerial Access Points
in a UAV Communication System”
While Papers A and B consider the altitude optimization of a single-UAV system, this
work proposes an energy-efficient 3D placement of multiple AAPs. The paper considers
an uplink communication from a set of users. The positioning of the AAPs is done to
maximize the GEE of the system. The users are assumed to be uniformly distributed
across the geographical region. The AAPs follow a universal frequency reuse policy,
and the total bandwidth available at an AAP is equally divided among users in its
coverage area. For an AAP hovering at a given altitude, all the users with an LoS
probability greater than a threshold value are considered covered by the AAP. This
makes the coverage region of an AAP circular in shape, for which the radius depends on
the hovering altitude and the LoS threshold value. The universal frequency reuse policy
causes inter-cell interference from the co-channel users in the neighboring cells. Finally,
each user chooses the transmit power according to the uplink power control so that the
received power values at an AAP from all the users in its coverage area are equal to a
target power value.

The GEE of the system depends on the locations of the AAPs; as the altitude



2. Dynamic PAPs: Energy Efficient Path Planning and Resource Allocation 13

increases, the coverage area and the propulsion energy consumption of an AAP increase,
thereby affecting the GEE. The proposed algorithm decouples the 3D placement problem
into vertical and horizontal positioning sub-problems. The horizontal positioning of the
AAPs determines the fraction of the total area covered by the AAPs. In the presence
of inter-cell interference, the optimal altitude that maximizes the GEE is derived as the
minimum permitted altitude. The horizontal positions of the AAPs, which maximize
the total area covered by the AAPs, are determined by modelling it as a circle packing
problem. The optimal altitude value determines the radius of the circle. The work
then proposes a novel regular polygon-based AAP placement algorithm that gives the
horizontal position coordinates of the AAPs. The algorithm allows for determining
the maximum number of non-interfering AAPs placed in the desired area. From the
numerical evaluations, it is observed that a set of AAP hovering locations, determined
using the proposed algorithm, covers around 78% of the total area on average. Also,
neglecting the energy consumption of the aerial vehicle will result in a sub-optimal
solution.

2 Dynamic PAPs: Energy Efficient Path Planning
and Resource Allocation

This section summarizes the works considering a PAP flying to serve the users. The
primary motivation to move a PAP above the region to serve the users is from Fig.
2.4. The figure has two plots showing the variations of power consumption as a rotary-
wing PAP takes a level forward flight with different payloads. As seen in the figure, a
PAP consumes less power as it starts moving from hovering up to a certain velocity,
increasing afterward: the total power consumed by a PAP has three parts, the first part
to overcome the drag of the fuselage, the second to oppose the rotor-induced drag force,
and the third to compensate the profile drag force of the rotors. The magnitude of power
required to overcome the rotor-induced drag force decreases with the PAP velocity; in
the low-speed regime, it dominates the power consumed to overcome the fuselage and
rotor profile drag forces. Hence, a flying PAP can have more air-time, defined as the
duration it remains aloft, compared to a hovering one by optimally selecting the flight
velocity.

The air-time of a PAP is a non-linear function of the power drawn from the battery. A
usual approach to estimate the air-time is to find the ratio of the initial on-board energy
to the sum of instantaneous power consumption values [3]- [5]. Mathematically, if a PAP
draws P1 Watts for T1 seconds (s), it can draw P2 W for P1T1

P2
s, which is not the case in

practice. This observation is termed the Peukert effect in the literature [7]. Practically,
a battery is useful until the terminal voltage or the remaining discharge time becomes
lower than the corresponding threshold values, whichever happens first, as shown in
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Fig. 2.5. The figure shows that neglecting the Peukert effect overestimates the air-time,
causing an early landing of the PAP without completing the mission. Therefore, the
trajectory of a PAP should be designed considering the non-linear discharge behavior
of the PAP battery. Fig. 2.3 shows the system setup of a dynamic PAP system. The
main design variables are the flying velocity of the PAP and the scheduling of users for
completing the mission. For tractability, the trajectory of the PAP is discretized in the
time/space domain. The velocity with which the PAP covers a segment of the trajectory
and the corresponding scheduling of the users are determined to maximize the system’s
energy efficiency. Papers D-F propose policies for energy-efficient trajectory design of a
PAP while considering pragmatic battery discharge profile (Papers E and F).

Paper D: “Cost- and Energy-Efficient Aerial Communication Net-
works with Interleaved Hovering and Flying”
Paper D optimizes the system for both the uplink and downlink communication between
an AAP and a set of ground users. The AAP follows a fly-hover-communicate protocol
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to serve the users. As the name indicates, it will fly from one hovering point (HP) to
another, hovers for the time needed to exchange the data packets, then moves on to the
following HP. Additionally, each user must send/receive a file of a given size to/from the
AAP. The objective is to deploy a single moving AAP in an energy- and cost-efficient
way so that all the users are served at the end of the trajectory. The system is operated
for a given duration in a day, and if the active time of the AAP is less than the service
duration, then a fully charged AAP from the ground station replaces the out-of-power
AAP. The AAP is equipped with a directional antenna of a given beamwidth, whereas all
the users have omni-directional antennas. The users in the coverage area are allocated
with orthogonal frequency bands to each other. The uplink communications from the
users follow the power control mechanism, as explained in Paper C.

Firstly, the paper models a multi-rotor UAV’s hovering and flying power consump-
tion. The power consumption model used in Papers A-C applies only to a specific UAV
type. It is then used to find the optimal number and locations of the hovering points
required to cover a given set of users. The coverage region of the AAP while hovering
at an HP is a circular region centered around the HP whose radius is a function of
the hovering altitude and the beamwidth of the AAP antenna. Similar to Paper C,
the proposed algorithm decouples the 3D HP determination problem into vertical and
horizontal positioning problems. Since the AAP serves only the set of users associated
with one HP at a time, the co-channel interference is neglected in the analysis. Through
Proposition 1, the uplink and downlink GEE are increasing functions of the hovering
altitude. Consequently, the vertical coordinates of the HPs are fixed to the maximum
altitude determined by the minimum data rate constraint. By Proposition 2, the up-
link GEE is an increasing function of the antenna’s beamwidth, whereas the downlink
GEE is neither an increasing nor a decreasing function of the beamwidth. Therefore,
the antenna beamwidth that maximizes the GEE is obtained using a ternary search
algorithm (Algorithm 1). Similar to Paper C, the problem of finding the horizontal
projection coordinates of the HPs takes the form of a circle packing problem. Recall
that the circles placed according to the regular-polygon-based algorithm proposed in
Paper C cover only 78% of the geographical region. Hence, this work presents a regular-
pentagon-based multi-level circle packing algorithm that gives the set of HPs covering
all the users (Algorithm 2). The algorithm’s first part determines the group of circles
centered at HPs covering the given geographical area entirely. In the second part, the
circles that do not cover users are discarded. The AAP serves the users taking the
shortest path through the set of HPs.

The later part of the paper determines the values of depth-of-discharge (DOD),
defined as the portion of battery capacity consumed during a discharge cycle, and hor-
izontal flying velocity, which minimize the annualized cost of the system (ACS). The
ACS is the sum of the capital, maintenance, and replacement costs. The capital cost is
contributed by the purchasing prices of the AAPs and the charging station, whereas the
maintenance cost is the cost of the electricity consumed to recharge the batteries. The
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replacement cost is incurred when we replace a battery after its lifetime. The capital
cost can be decreased by increasing the DOD since it decreases the number of AAPs by
increasing the active time of an AAP. The maintenance cost is relatively less sensitive to
the DOD and can be reduced by setting a high DOD value. Conversely, the lifetime of a
battery can be increased by setting a low DOD value. Considering these trade-offs, the
work determines the optimal DOD and horizontal flying velocity values that minimize
the ACS numerically.

Paper E: “Energy-Efficient Trajectory Design of a Multi-IRS As-
sisted Portable Access Point”
This work considers the possibility of using intelligent reflecting surfaces (IRSs) to im-
prove the GEE of a UAV-based system. The system set up considers a PAP deployed
to deliver a file of a given size to a set of ground users. The PAP is assumed to serve
the users through the time division multiple access scheme (TDMA). Paper D estimates
the active time of the PAP as a linear function of the energy available at the beginning
of the mission and the total power consumption. Unlike Papers A-D, this work consid-
ers a pragmatic battery discharge profile for the PAP’s battery unit called the Peukert
effect. Through numerical evaluations, it is observed that neglecting the Peukert effect
overestimates the active time of a PAP, which could affect the mission planning. The
work starts by proposing an algorithm to determine the available flight time of the PAP
considering the Peukert effect. Later, this is put as a constraint in the optimization
problem. The objective is to determine an efficient 2D trajectory for the PAP and al-
locate time slots to the users so that the GEE of the system is maximized, subject to
the flight time, data delivery, TDMA, altitude, and IRS phase shift constraints. The
additional phase shift values introduced by the elements of the IRSs should be selected
to maximize the GEE of the system. This makes the IRS phase shift optimization a
direct function of the trajectory. The main challenge in adding IRSs to a PAP system
is finding optimal locations for the IRSs and then determining the optimal phase shift
values introduced by their elements, considering the interdependence of amplitude and
phase values of a re-radiated wave from an IRS element. The work models the PAP and
a user channel using the probabilistic LoS-NLoS path loss model, whereas the PAP-IRS
and IRS-GN are modelled using the 3GPP air-to-ground channel model, considering the
IRSs placed at the height of 10 m.

The proposed methodology solves the GEE maximization problem in two phases.
The first phase determines the optimal locations of the IRSs using the proposed multi-
tier circle packing algorithm in which the radius of the circle is 20 m, which guarantees
an LoS link between a user located at the edge of the circle and an IRS whose horizon-
tal plane coordinates are the same as the center of the circle. The multi-tier packing
algorithm is an extension of the regular-pentagon-based multi-level circle packing algo-
rithm proposed in Paper D. In the multi-tier packing algorithm, instead of considering
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the 5- circle packing alone, each level of the packing considers all the available packing
patterns. Accordingly, each tier of the packing selects the packing that gives the least
number of circles required to cover the given area. Once the multi-tier packing algo-
rithm determines the locations of the IRSs, the PAP path is selected as the shortest
path between the locations. The flying altitude of the PAP is the one that guarantees
an LoS channel to all the IRSs. The continuous path is then segmented into smaller
segments so that the path loss values between the PAP and each GN while the PAP is
in a given path segment remain stationary. Using the segmented paths and locations of
the users and the IRSs, the expected spectral efficiency for each user while the PAP is
in a given path segment is estimated and is repeated for all the path segments.

The second phase calculates the flying velocity of the PAP and the scheduling of
the users using a novel multi-lap trajectory algorithm that maximizes the GEE of the
system. The formulated problem is convex and is solved using available solvers such
as MATLAB’s CVX. The numerical evaluation section investigates the effect of adding
more battery units on the available flight time. It is observed that increasing the bat-
tery size beyond a certain threshold reduces the available flight time since the power
consumption increases with the weight. The presence of IRSs improves the GEE of the
system by providing additional controllable channels between the PAP and the users.
Finally, the proposed multi-lap trajectory is compared with a single lap and fly-hover-
communicate (Paper D) baselines. The proposed scheme outperforms the baselines and
could improve the GEE by 30%.

Paper F: “Fairness Based Energy-Efficient 3D Path Planning of
a Portable Access Point: A Deep Reinforcement Learning Ap-
proach”
This paper optimizes the 3D trajectory of a PAP that provides wireless service to a
set of ground nodes. In contrast to Papers D and E, the proposed policy designs the
trajectory without decoupling the problem in horizontal and vertical dimensions. The
paper introduces a new energy efficiency metric called fair energy efficiency (FEE) that
puts importance on both energy efficiency and user fairness. One can maximize the
GEE metric used in Papers A and C-E by flying the PAP above a sub-set of users
to increase the sum rate (the numerator of the GEE). On the other hand, the FEE
metric is a weighted energy efficiency metric, where the weight is the fairness index
(FI). If the PAP sends an equal number of bits to all the users by the end of the
trajectory, the fairness index will be 1. To maximize the FEE, the PAP will follow a
3D trajectory that maximizes energy efficiency and per-user fairness. Similar to Paper
E, the proposed algorithm considers the Peukert effect to determine the air-time of the
PAP. The PAP returns to a destination when it has only enough energy left on-board
to fly to the destination from the latest location. Consequently, the objective function
depends on the Peukert effect, which was not the case in Paper E. The PAP serves
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the users following the TDMA scheme in which the time allocated to each user while
the PAP is in a given path segment is proportional to the respective expected spectral
efficiency. The proposed FEE metric and the heuristic TDMA scheme are optimal for
an IoT application scenario in which the PAP is deployed to deliver a file of a given size
to all the users by the end of the trajectory. Suppose the PAP flies near to a user in
a given time instant. In that instant, it is more efficient to allocate more resources to
that user since the communication channel to the user, as well as the throughput, will
improve. However, to guarantee a high long-term user fairness, the later segments of
the trajectory should be closer to the remaining users.

The paper formulates the FEE maximization objective as an optimization problem
subject to altitude, 3D movement, and the Peukert constraints. The problem takes the
form of a non-convex problem with non-tractable constraints. Therefore, it is repre-
sented as a Markov Decision Process (MDP) with continuous state and action spaces.
A state of the PAP has entries related to its 3D coordinates, the total energy consumed
up to the current position, the 3D distance to the users, and the total number of bits
transmitted to the users up to the current segment of the trajectory. The action space
represents the action taken by the PAP, which is modelled as a 3D vector representing
the velocity of the PAP. The reward space is mapped to the FEE value of the system us-
ing the reward shaping technique. Since the state and action spaces are continuous, the
proposed methodology uses the twin delayed deep deterministic policy gradient (TD3)
actor-critic deep reinforcement learning (DRL) framework to learn a policy that maxi-
mizes the FEE of the system. The actor takes the current state of the PAP as the input
and suggests an action (velocity vector). The PAP moves from the current state to the
next after taking the recommended action. The critic network takes the current state
and the action as the inputs and gives the Q-value of the action after observing the next
state and the reward. The parameters of the networks are updated in the improving
direction of the Q-value.

The work completes the training of the networks following two approaches: the
first approach is suitable for applications where the users’ positions remain stationary,
whereas the second approach generalizes the learned policy to any arrangement of users.
It does so by changing the users’ positions after each training episode. At the end of the
training, the actor can be used as a standalone unit that gives the movement commands
to the flight controller of the PAP. Numerical evaluations show that neglecting the
Peukert effect overestimates the air-time of the PAP and can be addressed by optimally
selecting the PAP’s flying speed. Moreover, the user fairness, energy efficiency, and
hence the FEE value of the system can be improved by efficiently moving the PAP
above the GNs. The proposed policy gives massive FEE improvements over stop-and-
hover baseline scenarios of up to 33.31%, 197.87%, 215.92% for suburban, urban, and
dense urban environments, respectively.
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Fig. 2.6: [G3]: The power-autonomy of the system is achieved by harvesting the required energy from
renewable energy sources.

3 Energy-Neutral System Optimization: Cost Effi-
cient CS design

This section includes summary of papers that consider the cost-efficient design of a
grid-independent PAP system. Fig. 2.6 shows the architecture of a energy-neutral PAP
system. The energy required to recharge the PAPs is derived from renewable energy
sources such as wind and solar. When a PAP runs out of the on-board battery capacity,
it flies back to the CS and enters the idle mode. Meanwhile, a fully recharged PAP
ascends to continue serving the users. The PV and the windmill modules at the CS
harvest energy from solar irradiation and wind, respectively. If there is a surplus in
energy, it is stored in a ground battery unit at the CS. The battery unit supplements
the harvesting modules when there is a deficit in the harvested energy to meet the load.

The configuration of the CS and the number of PAPs minimize the cost of the system
if they are determined as a function of the mission-related variables. For instance, Fig.
2.7 shows the load profile for three scenarios. Case 1 represents a flying PAP deployed to
collect data from a set of ground nodes, whereas Case 2 characterizes the load demand
from a set of PAPs serving the users by hovering all the time [9]. Case 2 models the
load generated by two tethered PAPs serving the users [8]. For a given load profile,
PV panels, batteries, and windmill units are selected to ensure the zero-sum balance
between energy harvested, stored, and consumed during the system’s operation. The
shape of the load profile changes according to the distribution of the users and the PAP
deployment policy, as seen in the figure. Furthermore, the power generation depends
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Fig. 2.7: Load profiles for different PAP deployment scenarios.

on the availability of solar irradiation and the wind profile of the serving region at the
time of year. Careful consideration of these factors is required to avoid over or under-
provisioning the charging station. Hence, Papers G and H minimize the cost of the
charging station by configuring it as a function of the load profile generated using the
mission-specific parameters.

Paper G: “Cost-Efficient Design of an Energy-Neutral UAV-Based
Mobile Network”
This work proposes a cost-efficient design of a grid-independent PAP system. Recall that
Paper D minimizes the operational cost of a PAP system by optimizing the flying velocity
of the PAP and the DOD value of the on-board battery. However, the cost associated
with the charging station was assumed to be a constant value. The investment cost of
the system can be reduced by imposing an energy neutrality condition, which refers to
the zero-sum balance between energy harvested, stored, and consumed for the system
operation. This work considers a hybrid charging station consisting of PV panels and
batteries. The batteries supplement the panels if the harvested energy is insufficient
to meet the load. If the panels harvest more energy than required, the additional
energy is stored in the batteries. Hence, the work minimizes the cost by configuring
the number of panels and batteries as a function of the load to the charging station.
As mentioned above, the load varies with the type of application for which the PAP is
deployed. The system set up considers the PAP deployed to harvest data from a set of
internet-of-things (IoT) nodes. The system’s cost comprises the purchase cost related
to the PV panels, the batteries, and the UAVs. The number of PAPs depends on the
time-difference-of-arrival (TDOA) of the network and the available flight time of the
PAP.
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The cost minimization problem subject to the energy neutrality, data harvesting,
TDMA, and velocity constraints cannot be solved using conventional convex optimiza-
tion tools due to a non-tractable form of the energy-neutrality constraint. The proposed
wave-based method tackles this issue by representing the load profile as a proportional
function of the required number of AAPs. The method allows representing the cost as
a function of the number of AAPs, which is minimized by designing an efficient path.
The path design uses the mean-shift clustering algorithm to identify service hotspots.
As in Paper E, the shortest continuous path between the cluster centers is discretized
to do the TDMA user scheduling. Using the trajectory variables, the time to recharge
each AAP is determined and is used to generate the load profile using the wave-based
method. A constrained search algorithm then finds the cost-efficient configuration of the
CS that meets the energy-neutrality constraint. The results indicate that the off-grid
CS is particularly advantageous in rural areas, while in urban areas, its cost is compa-
rable to that of a grid-connected alternative. Please note that the proposed framework
can also be used to configure the CS for AAP placement policies offered in Papers A-F,
using the corresponding trajectory parameters as the input to the wave-based method.

Paper H: “Sustainable Wireless Services with UAV Swarms Tai-
lored to Renewable Energy Sources”
Paper H considers an off-grid scenario in which a swarm of UAVs is deployed to serve a
region. The hovering points of the UAVs are determined based on the desired service rate
to be provided to the whole area. The proposed method models the service rate as zonal
datarate density (ZDD), which represents data rate per unit of area for an hour of the
day and for the entire region. The ZDD is modelled as a random variable for a stochastic
process whose expected value is the hourly average of the incoming traffic. The energy
required for the system’s operation is derived from two renewable energy sources, solar
and wind, and the excess generation is stored in a ground battery unit. The work
estimates the quantity of the harvested energy using the solar irradiation and wind
speed data from the European Commission’s Photovoltaic Geographical Information
System. A nearly out-of-power UAV flies back to the CS, whose battery is replaced
with a fully charged one; hence, the load to the CS is the set of depleted batteries.
The area covered by the UAV swarm can be increased by increasing the swarm size,
which implies a larger CS. The work aims to configure the system to maximize the area
covered per unit of cost.

The paper maximizes the cost-efficiency of the system by modelling it as a combi-
natorial optimization problem. It is then solved using the proposed greedy and sparse
search (GSS) algorithm, which solves the problem by solving two sub-problems. The
first sub-problem sparsely searches for a solution where the coverage per energy efficiency
is improving and drops the cases where an increase in the area does not yield an im-
provement in the efficiency. The second sub-problem finds the cost-efficient combination
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of the energy generation and storage units that meets the load generated by the UAV
swarm required to cover the coverage-efficient solution from the first sub-problem. The
best results are achieved in areas with mild wind and reliable solar irradiation; regions
with strong winds and unreliable solar intensity require higher capital expenditure.
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Chapter 3

Conclusions and Future Work

Through this thesis, we provide solutions for cost-and energy-efficient deployment of a
power-autonomous portable access point system. The system consists of UAVs carrying
radio access nodes called portable access points (PAPs) deployed to serve ground users
and a hybrid charging station that derives the energy required for the system’s operation
from renewable sources such as solar and wind. The thesis objective is achieved through
a number of scientific papers. In the following, we summarize the main takeaways.

The energy efficiency metric to evaluate the performance of the proposed PAP de-
ployment policy should be selected based on the available information. Paper A proposes
an energy efficiency metric called global energy efficiency (GEE) of the system, defined
as the ratio of the sum rate to the sum of the energy consumed by the aerial vehicle
and the communication equipment. The GEE metric, measuring bits/Joule, is ideal
for scenarios where the users’ locations are available at the planning phase of the PAP
deployment. For systems in which the user locations are unavailable, the area energy
efficiency (AEE) proposed in Paper B, which measures the area covered by a PAP per
Joule of energy consumed, is ideal. The proposed GEE and AEE metrics do not em-
phasize service fairness among the users. The fair energy efficiency (FEE), a weighted
energy efficiency metric with the weight equal to the fairness index, proposed in Paper
F encompasses both the user fairness and the system’s energy efficiency.

The system’s energy efficiency behavior varies with the underlying resource alloca-
tion scheme. For instance, Paper A considers an orthogonal frequency allocation with
the total available power for the downlink communication equally divided among the
users. The system’s downlink GEE follows a bell-shaped behavior with regard to the
hovering altitude. On the contrary, in Paper B, the uplink GEE of a multi-PAP system,
considering inter-cell interference from the co-channel users in the neighboring cells, is a
decreasing function of the altitude. The work in Paper D considers orthogonal frequency
and constant power allocation schemes subject to a total power constraint. The results

25
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show that both the uplink and downlink GEEs are increasing functions in the absence
of inter-cell interference. Hence, the energy-efficient placement policy of PAP(s) varies
with the system’s resource allocation scheme.

The numerical evaluations in the included papers show that the consideration of the
PAP energy consumption in developing energy-efficient deployment policies for a PAP
system has a significant impact, neglecting the same results in sub-optimal deployment
policies. The energy-efficient hovering altitudes from the proposed algorithms in Papers
A and C, neglecting the PAP energy consumption, are offset from the optimal altitude
by a considerable margin. In Paper D, a zero PAP energy consumption value inverted
the behavior of the GEE. Hence, the inclusion of the aerial vehicle’s power consumption
is paramount while developing an energy-efficient deployment policy for a PAP system.
Moreover, the Peukert effect, which models the non-linear discharge behavior of a PAP
battery, becomes significant if a PAP is deployed to remain aloft until its battery capacity
is sufficient to return to the charging station. A PAP deployment policy developed
neglecting the Peukert effect causes an early landing of the PAP. The effect can be
ignored for short-term deployments since there will be sufficient leftover energy in the
PAP battery.

From Papers D, E and F, a flying PAP can increase the GEE of the system compared
to a hovering PAP. But, the choice depends on the target application. For instance, a
PAP system for provisioning continuous broadband connectivity in a rural area requires
hovering PAPs, for which the policies developed in Papers A-C and H can be used. On
the other hand, if the users in the network can tolerate a delay in service, such as data
collection from a delay-tolerant IoT network, deploying a single PAP according to the
policy proposed in Paper F is a cost-and energy-efficient solution.

A cost-efficient energy-neutral PAP system is feasible in rural areas with mild wind
and a reliable solar irradiation profile. The service continuity of a PAP system beyond
the active time of a PAP can be achieved by having backup PAPs in the system, one of
which could replace an out-of-power PAP. The feasibility of such a power-autonomous
PAP system depends on the availability of power sources to meet the load from the
PAPs. The wave-based method proposed in Paper G can be used to model the load to
the charging station as a function of the corresponding PAP deployment policy. Later,
the load profile is used to find the most economical combination of the energy generation
and storage units using the algorithms proposed in Papers G and H.

1 Future Work
The non-terrestrial network (NTN) architecture containing non-terrestrial stations, in-
cluding UAVs, High Altitude Platforms (HAPs), and satellites, is envisioned to com-
plement the terrestrial infrastructures to provide ubiquitous and high-capacity global
connectivity [1]. Integrating the proposed power-autonomous PAP system as a segment
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of the NTN could be an exciting extension of the thesis. Papers A-H consider standalone
deployment of a power-autonomous PAP system with the assumption of availability of
a reliable backhaul link. Including the PAP system in the NTN architecture invites
many challenges, namely the development of efficient spectrum sharing techniques, new
physical layer procedures to compensate for the large propagation delays, mobility, and
constellation management to ensure reliable and continuous inter-module connectivity,
etc. Furthermore, dense deployment of PAP systems for different use cases requires the
development of aerial corridors for the safe flight of the PAPs.
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Abstract
In this paper, we propose an energy-efficient optimal altitude for an aerial access point
(AAP), which acts as a flying base station to serve a set of ground user equipment (UE).
Since the ratio of total energy consumed by the aerial vehicle to the communication
energy is very large, we include the aerial vehicle’s energy consumption in the problem
formulation. After considering the energy consumption model of the aerial vehicle, our
objective is translated into a non-convex optimization problem of maximizing the global
energy efficiency (GEE) of the aerial communication system, subject to altitude and
minimum individual data rate constraints. At first, the non-convex fractional objective
function is solved by using sequential convex programming (SCP) optimization technique.
To compare the result of SCP with the global optimum of the problem, we reformulate
the initial problem as a monotonic fractional optimization problem (MFP) and solve it
using the polyblock outer approximation (PA) algorithm. Numerical results show that
the candidate solution obtained from SCP is the same as the global optimum found using
the monotonic fractional programming technique. Furthermore, the impact of the aerial
vehicle’s energy consumption on the optimal altitude determination is also studied.

1 Introduction
The role of uninhabited AAP in the deployment of emergency networks such as deploying
aerial base stations to provide reliable connectivity in disaster areas [1] or in social
events such as concerts is vital. In Japan, earthquake affected areas were provided
with internet access with the help of unmanned aerial vehicles (UAV) [2]. Cellular
coverage extension using drone deployed base stations by Nokia’s F-cell technology is
another proven application of portable access points [3]. The mobility and ability of
aerial vehicles to adjust their altitude to improve the probability of line-of-sight (LoS)
communication channel to the ground UEs makes them suitable for acting as relays in
the internet of things (IoT) applications [4]. Despite all these applications, the efficiency
of an aerial communication system (ACS) is highly dependent on the limited energy
available at the aerial vehicle [5]. Any improvement in the energy efficiency of ACS
implies longer aerial vehicle hovering, hence more information bits transmitted to UEs.

Compared to the conventional cellular communication systems, the total energy
required by ACS is very high. This is because, in ACS, in addition to the communication-
related energy, the aerial vehicle consumes energy during vertical climb and hovering.
Most of the works in the literature only consider communication-related energy, which
is suboptimal in the case of an ACS. In [6], the authors present an analytical approach
to optimize the altitude of low altitude aerial platforms to maximize the radio coverage
area. The authors of [7] jointly optimize the flying altitude and the antenna beamwidth
for throughput maximization. A new 3-dimensional deployment plan for the drone-base
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station to serve the users based on their service requirements, while minimizing the
number of drones, is presented in [8]. The work in [9] proposes a new polynomial-time
complex spiral mobile base station placement algorithm in UAV-UE communications.
The works in [10], [11] find the optimal altitude for UAV-base stations that maximizes
the number of covered users using the minimum transmit power.

None of the above works consider the energy consumption of the aerial vehicle in
the optimization problem. Since the ratio of communication energy to the total energy
consumed by the aerial vehicle is negligible, the results proposed in the above works
are suboptimal for the GEE maximization of ACS. When the altitude of an AAP in-
creases, the LoS coverage area increases, the LoS channel gain decreases and the energy
consumed by the aerial vehicle also increases. With these facts, we can say that the
GEE of an ACS, defined as the ratio of the total number of data bits transmitted
to the total energy consumed, will not be maximum either at maximum or minimum
permitted AAP altitudes. We exploit this tradeoff between the total number of bits
transmitted and the energy consumed to determine an energy-efficient hovering altitude
for the AAP. Some of the works which consider the aerial vehicle’s energy consumption
include [12], [13], [14]. An energy-efficient 3D trajectory of a UAV deployed to serve a
set of IoT nodes is investigated in [15]. Optimal trajectories, which minimize the fixed
and rotary-wing UAV associated energy are designed in [13] and [14] respectively. The
authors in [12] maximizes the minimum average rate and energy efficiency through joint
optimization of trajectory, velocity, and acceleration of UAV flying at a fixed altitude.
An altitude-dependent energy consumption model is used by the authors of [16] to find
drone locations that minimize the cost while ensuring the surveillance of all the targets.

To the best of our knowledge, we are the first to determine an optimal altitude which
maximizes the GEE for an ACS considering both the energy required for communication
and energy consumed by the aerial vehicle. The rest of the paper is organized as follows.
In section 2, we model the system. The energy consumption of the aerial vehicle and
GEE are explained in section 3. Section 4 formulates the optimization problem and
solves it using SCP and MFP techniques. The numerical results are discussed in section
5. Finally, our findings are concluded in section 6.

In this paper, scalars are represented by lowercase letters. Boldface lowercase letters
are used to denote vectors and RM denotes the set ofM dimensional real-valued vectors.

2 System Model

2.1 System Model
We consider an orthogonal multiple access downlink broadcast transmission scenario
enabled by an AAP acting as a flying base station, where each user is allocated a fixed
bandwidth. We assume there is always a sufficient number of orthogonal channels (e.g.,
narrowband frequency division multiple access systems [17]). As shown in Fig. A.1,
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Fig. A.1: AAP enabled downlink broadcast transmission scenario.

we assume a uniform distribution of N UEs in the AAP coverage area Aue = πr2 such
that N = ρue ∗ Aue, where ρue and r = hAcot(φ) represent the density of UEs and the
radius of the AAP coverage area respectively, and φ represents the minimum elevation
angle required for the LoS channel between the edge UE and the AAP [6]. The AAP
is employed at an altitude of hA meters (m) with the horizontal plane coordinates the
same as the center of Aue. In addition to this, we consider the deployment of this system
in rural areas where the channel between the AAP and UE is dominated by the LoS
link. In real life, this represents the access segment of an ACS in which an AAP is
deployed for cellular coverage extension in a rural area. Given this, the LoS channel
gain between the UE located at a distance r from the center of the coverage area and
the AAP is given by

h(r) = h0

r2 + h2
A
, (A.1)

where h0 represents the channel gain at a reference distance of 1m. The signal-to-noise
ratio (SNR) γr, at the edge UE is given by

γr = PTh0

N(r2 + h2
A)σ2 , (A.2)
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where the total data transmission power PT available at the AAP is divided equally
among the N UEs and σ2 represents the variance of the zero-mean additive white
Gaussian noise at the corresponding receiver.

Hence, the total number of bits transmitted per unit Hz of bandwidth from the AAP
to the considered UE through a channel of bandwidth W in T seconds is expressed as

R(r) = T log2(1 + γr). (A.3)

Through (A.3) and (A.2), the data rate of a UE depends on distance r from the center
of the coverage area. Because of the inverse relationship between γr and r, the data rate
of any UE is lower bounded by the data rate of the edge UE. That is,

R(r) ≥ R(r) = R(hA), ∀r ≤ r. (A.4)

Since maximizing R(r) is equivalent to maximizing R(r) and for ease of explanation, we
consider the sum of minimum rate, R(r), in the definition of the GEE of the considered
ACS in Section 3. The algorithm developed in Section 4 applies to the maximization of
GEE defined in terms of the sum of actual rate R(r).

3 Global Energy Efficiency of the ACS
The global energy efficiency of the considered ACS is given by

GEE[bits/Joule.Hz] = R(hA)[bits/Hz]
E(hA, T )[Joule] , (A.5)

where R(hA) is the sum of the minimum number of data bits transmitted per Hz from
the AAP to the N UEs in T seconds; E(hA, T ) = EA(hA, T )+EC(T ) is the total energy
consumed by the AAP, in which EC(T ) is the energy required for data communication
and EA(hA, T ) given by (A.12), is the total energy consumed by the mechanical parts
of the aerial vehicle during vertical climb and hovering. We consider a climb-hover com-
municate scheme in which the AAP climbs at a specific altitude and then communicates
with N UEs while hovering.

3.1 Sum of the Minimum Number of Data Bits Transmitted,
R(hA)

Considering the uniform distribution of UEs over Aue, the sum of the minimum number
of data bits transmitted per Hz from the AAP to the N UEs in T seconds through
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orthogonal channels of bandwidth W Hz is expressed as

R(hA) = T

∫ 2π

0

∫ r̄

0
ρueR(r)rdrdθ, (A.6)

= Tρueπh
2
Acot2φlog2

(
1 + PTh0

N(r2 + h2
A)σ2

)
, (A.7)

= Tρueπh
2
Acot2φlog2

(
1 + β

h4
A

)
, (A.8)

where β = PTh0sin2φ

πρuecot2φσ2 .

3.2 Aerial Vehicle Energy Consumption
The total energy consumed by an aerial vehicle (E(hA, T )) is composed of three main
parts:

1. Energy required for data communication (EC(T ));

2. Energy consumed by the rotor of the aerial vehicle during climbing from ground
to an altitude of hA (Ecl(hA));

3. Energy consumed by rotor during hovering at altitude hA (Eho(hA, T )).

The energy required for data communication is given by

EC(T ) = (PT + PH)T, (A.9)

where PT is the total power used for the symbol transmission and PH, is the total power
consumption by all the hardware circuits in the transmitter section of the AAP. The
energy parts Ecl(hA) and Eho(hA, T ) follow the energy consumption model presented by
the authors of [18]. In [18], the authors presented different power/energy consumption
factors based on the field experiments performed on the Intel Aero Ready to Fly Drone.
Unlike fixed and rotary-wing unmanned aerial vehicles [13], [14], the energy consumed
by the rotor of a quadropter/drone during hovering is dependent on the hovering altitude
[18], [16]. According to [18], the energy consumed by the quadropter during climbing
from the ground to an altitude of hA with a constant climb rate is given by

Ecl(hA) = αclhA + βcl, (A.10)

and the energy consumed during hovering at an altitude hA for T seconds is given by

Eho(hA, T ) = (αhohA + βho)T, (A.11)



38 Paper A.

0 50 100 150 200 250 300

Altitude(m)

1

2

3

4

5

6

7

8

E
A
(h

A
,T

) 
(J

)

105

AAP Energy Consumption

Fig. A.2: Total energy consumed by the rotor of the aerial vehicle.

where the constants αcl, βcl, αho, βho are determined from the curve fitting performed
on the measured power/energy values from the field experiments.

Hence the total energy consumed by the rotor of the AAP to climb to an altitude of
hA m and hover for T seconds is given by

EA(hA, T ) = Ecl(hA) + Eho(hA, T ). (A.12)

Fig. A.2 shows the increasing nature of EA(hA, T ) with altitude for a fixed time of
operation with constants αcl=315,βcl = −211.261, αho=4.917,βho = 275.204 [18] and T =
400s. It is because as the altitude increases, the air temperature and pressure decreases.
The decrease in the air pressure reduces the upward thrust provided by the air, to
balance the downward force produced by the weight of the aerial vehicle. Hence, at
higher hovering altitudes, to balance the weight, the propeller of the aerial vehicle needs
to generate an additional force, which results in increased energy consumption.

Hence the total energy consumed by the AAP is given by

E(hA, T ) = Ecl(hA) + Eho(hA, T ) + EC(T ). (A.13)

4 Problem Formulation
Our objective is to find the optimum altitude for the AAP, which maximizes the system’s
global energy efficiency (GEE) subject to minimum data rate and altitude constraints.
By using (A.5),(A.8) and (A.13), our main objective is formulated as an optimization
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problem and is expressed as follows:

(A:P1) : maximize
hA

R(hA)
E(hA, T ) ,

s.t. hmin ≤ hA ≤ hmax, (A.14)

W log2

(
1 + β

h2
A(r2 + h2

A)

)
≥ R0, (A.15)

where (A.14) represents the permitted AAP altitude range specified by the aviation
regulatory board and R0 is the minimum data rate required by the UE in bits-per-
second (bps).

The objective function of (A:P1) belongs to the class of fractional programming
problems [19]. It can be globally solved using Dinkelbach’s algorithm [20], provided
R(hA) is concave, and E(hA, T ), (A.14), (A.15) are convex functions of hA. From
(A.13), (A.14), we find that the denominator of the objective function and AAP altitude
constraint are a convex function of hA while the numerator R(hA) in (A.8), is neither
convex nor concave in nature. Also, the minimum individual data rate constraint (A.15)
is non-convex in nature. Hence (A:P1) cannot be globally solved with polynomial time
complexity. As a means to obtain an efficient solution that fulfills the Karush Kuhn
Tucker (KKT) conditions of (A:P1), we use the polynomial-time complex sequential
convex programming (SCP) technique [21]. Besides, to obtain the global optimum of
(A:P1), we exploit the monotonic structure of the objective function in the general
framework of monotonic fractional programming (MFP) optimization [22] [23].

4.1 GEE Maximization Using SCP
In this part, we find the optimal altitude of the AAP, which maximizes the GEE of
the ACS using sequential convex programming. The fundamental idea of SCP is to
iteratively solve a sequence of convex approximated problems of the original non-convex
problem so that the feasible solution points converge to the KKT point of the original
non-convex problem [21]. Here we approximate the non-concave numerator, R(hA) of
(A:P1) as a concave function using a first-order Taylor approximation technique.

For the kth iteration, let hk be the feasible solution from the previous iteration.
Then the first order Taylor approximation of R(hA) about hk is

R(hA) ≈ R(hk) +R
′(hk)(hA − hk), (A.16)

where

R
′(hk) = Tρueπcot2φ2hklog2

(
1 + β

h4
k

)
−Tρueπcot2φ

4βhk
loge(2)

(
β + hk

4) . (A.17)
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Similarly, the non-convex nature of (A.15) is tackled with the following Taylor approx-
imation:

W log2

(
1 + β

h4
k

)
− 4Wβ(hA − hk)
hk(β + h4

k)loge2
≥ R0. (A.18)

Using (A.16) and (A.18), (A:P1) can be reformulated as

(A:P2) : maximize
hA

R(hk) +R
′(hk)(hA − hk)

E(hA, T ) ,

s.t. (A.14), (A.18). (A.19)

Algorithm A.1: GEE Maximization using SCP.

1 Initialize h1, ls1 = S(h1, h1)
E(h1, T ) , k = 1;

2 while (1) do
3 hsopt = hk;
4 Determine the optimal solution hs∗k by solving

maximize
hA

S(hA, hk)− lskE(hA, T )

s.t (A.14), (A.18);

5 lsk+1 = S(hs∗k , hk)
E(hs∗k , T ) ;

6 if ((lsk+1 − lsk)/lsk+1) < ζ then
7 break;
8 hk+1 = hs∗k ;
9 k = k + 1;

10 Output: Optimal AAP Altitude= hsopt.

Note that (A:P2) is a single ratio fractional maximization problem with a concave
numerator S(hA, hk) = R(hk) + R

′(hk)(hA − hk), convex denominator E(hA, T ) =
EA(hA, T ) + EC(T ) and convex constraints. Therefore (A:P2) can be efficiently solved
by using polynomial time complex Algorithm A.1. In every iteration of Algorithm A.1,
the optimal solution in step 4 is determined by using standard convex optimization tools
like CVX [24]. In Section 5, we show that the efficient solution of (A:P1) obtained by
solving (A:P2) through Algorithm A.1 matches the global optimum obtained using the
monotonic fractional program optimization technique.
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4.2 GEE Maximization Using MFP

Algorithm A.2: GEE Maximization using MFP.

1 Initialize h1, lm1 = R(h1)
E(h1, T ) , k = 1.

2 while (1) do
3 hmopt = hk
4 Determine the optimal solution hm∗k by solving the monotonic optimization

problem (A:P6) using Algorithm A.3

5 lmk+1 = R(hm∗k )
E(hm∗k , T )

6 if ((lmk+1 − lmk )/lmk+1) < ζ then
7 break;
8 hk+1 = hm∗k
9 k = k + 1

10 Output: Optimal AAP Altitude= hmopt

The candidate solution obtained from SCP cannot be considered as the global op-
timum of (A:P1). Therefore, to obtain the global optimum of (A:P1), we exploit the
monotonic behavior of the objective function using the monotonic fractional program-
ming technique [22] [23]. The key idea is that the global optimum of an increasing
objective function of a maximization problem lies in the outer boundary of the feasible
set formed by the constraints. Following the fundamental definitions from [23], a max-
imization problem takes the canonical form of a monotonic optimization problem, if it
can be formulated as

(A:P3) : maximize
v

f(v),
s.t. v ∈ G ∩H,

where f : RM → R is an increasing function of v, G ⊂ [0,a] is a compact normal set
with nonempty interior, and H is a closed conormal set on [0,a]. For exact definitions
of monotonicity, normal and co-normal sets please refer to [23].

The optimization problem (A:P1) fits in the class of fractional problems, which can
be globally solved by Algorithm A.2. For a given positive lmk , in every kth iteration of
Algorithm A.2, we need to solve the following maximization problem in step 4:

(A:P4) : maximize
hA

R(hA)− lmk {EA(hA, T ) + EC(T )} , (A.20)

s.t. (A.14)− (A.15). (A.21)
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It should be noted that, at first look, (A:P4) doesn’t take the canonical form of mono-
tonic optimization problem defined in (A:P3). However, (A:P4) can be expressed as
the maximization of differences of increasing functions of hA, which allows us to refor-
mulate (A:P4) as a monotonic optimization problem. For the ease of reformulation, we
equivalently represent the minimum individual data rate constraint as

hmax =

 β

2
R0

W − 1


1/4

. (A.22)

Note that (A.20) can be rewritten as

(A:P5) : maximize
hA

R1(hA)−R2(hA, l
m
k ), (A.23)

s.t. (A.14), (A.24)

where

R1(hA) = Tρueπcot2φh2
Alog2

(
β + h4

A
)
,

R2(hA, l
m
k ) = Tρueπcot2φh2

Alog2
(
h4

A
)

+ lmk (E(hA, T )), (A.25)

are monotonically increasing functions of hA, and hmax of (A.14) is given by (A.22).
In order to write (A:P5) in canonical form, we introduce the additional variable t =
R2(hmax, l

m
k )−R2(hA, l

m
k ), which allows (A:P5) to be reformulated as

(A:P6) : maximize
hA,t

R1(hA) + t, (A.26)

s.t. (hA, t) ∈ G ∩H, (A.27)

where

G =
{

(hA, t) : hA ≤ hmax,

t ≤ R2(hmax, l
m
k )−R2(hA, l

m
k ),

}
(A.28)

H = {(hA, t) : hA ≥ hmin, t ≥ 0} . (A.29)

By the monotonically increasing behavior of R2(hA, l
m
k ) we can relate

R2(hmin, l
m
k ) ≤ R2(hA, l

m
k ). (A.30)

By [Proposition 2, [22]], (A.28) defines a normal set and (A.29) defines a co-normal set
in the polyblock

[hmin, hmax]×
[
0, R2(hmax, l

m
k )−R2(hmin, l

m
k )
]
, (A.31)



5. Numerical Evaluation 43

with the vertex set V. Hence by using (A.26)-(A.29) we represent (A:P4) in the canonical
form of monotonic optimization problem with f(v) = R1(v(1))+v(2), ∀v ∈ V, which can
be globally solved by using the polyblock outer approximation algorithm as explained in
Algorithm A.3 [23]. Even though the complexity of this global optimization algorithm
is exponential in the number of variables, it is much lower compared to other global
optimization techniques, which exhaustively search over the entire feasible set. Hence
the globally optimal AAP altitude is obtained by solving (A:P1) using Algorithm A.2
in which, at each iteration, step 4 is solved by using Algorithm A.3.

Algorithm A.3: PA Algorithm [25].
1 Initialize i = 1, Vi as the vertexset of polyblock (A.31)
2 Set vmin = argmin{f(v) | v ∈ Vi}
3 Set vmax = argmax{f(v) | v ∈ Vi}
4 Set fmax = maxv∈Vif(v) and fmin = f(vmin)
5 while [(fmax − fmin)/fmax > e] do
6 Obtain vo, the intersecting point of the line drawn from vmin to vmax with

the normal region G using bisection method [Algorithm 1 [25]]
7 Update the vertex set, Vi+1 according to Lemma 2.16 of [25]
8 if f(vo) > fmin then
9 fmin = f(vo)

10 vmin = vo
11 set i = i+ 1
12 remove all v ∈ Vi with f(v) ≤ fmin + e
13 Set fmax = maxv∈Vif(v)
14 Output: hm∗k = vo(1).

5 Numerical Evaluation
In this section, we compare the optimal altitude values obtained through SCP and MFP
optimization techniques. Furthermore, the convergence behavior of the PA algorithm;
the impact of aerial vehicle’s energy consumption on GEE; the variation of GEE with
minimum data rate requirement are discussed. We consider h0 = 1.42× 10−4, PT = 10
dBm, W = 20MHz, σ2

0 = −169dBm/Hz , φ = 43◦, ρ = 0.005UEs/m2, PH = 5W,
T = 400s, Ro = 20Mbps and hmin = 10m.

Fig. A.3 shows the accurate plot of GEE with the altitude of aerial vehicle, hA,
along with the optimal points obtained through SCP and MFP techniques. From the
plot, it is observed that GEE decreases when hA is very low or very high. The reason
for this behavior is that, at low hA, the number of UEs covered (N = ρueπh

2
Acot2φ) by
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the AAP decreases with decreasing hA, leading to a decrease in the total number of bits
transmitted, thereby to reduced GEE. At high altitude regions, the LoS channel gain
between the UE and AAP decreases, the number of UEs covered by AAP increases,
and E(hA, T ) increases. In addition to this, with an increase in the number of users,
power alloted for a single UE decreases. So in the high altitude region, the increase
in the number of UEs is highly compensated by the combined effect of the decrease
in channel gain, decrease in power per UE and increase in E(hA, T ), which result in
a low GEE. Fig. A.3 also shows that the optimal AAP altitude obtained by the SCP
is very close to the globally optimal altitude obtained from the monotonic fractional
programming technique. Hence the global optimum of our objective can be obtained by
the polynomial-time complex sequential convex optimization technique.

Fig. A.4 shows the convergence behavior of the PA algorithm in the last iteration of
MFP. The converging nature of upper(fmax) and lower(fmin) bounds of the PA algorithm
guarantees the evaluation of the global optimum of GEE in a finite number of convex
evaluations; with the number of convex evaluations much greater than that required by
SCP. The optimal altitude plots of MFP and SCP says that the locally optimal altitude
value obtained using SCP is equal to the globally optimal altitude obtained using MFP.
In addition to this, Fig. A.4 shows the error in determining the optimal altitude without
considering the rotor energy consumption, EA(hA, T ). It is observed that the optimal
altitude determined with EA(hA, T ) = 0, is 18.23m higher than the actual optimal
altitude value. Hence, according to Fig. A.3, hovering at an altitude higher than the
actual optimal value yields low GEE. Therefore, to achieve the maximum GEE value, the
rotor energy consumption of the aerial vehicle should be considered while formulating
the optimization problem.

Fig. A.5 depicts the variation of GEE with the minimum data rate requirement.
The two GEE plots correspond to the variation of GEE with Ro when the aerial vehicle



5. Numerical Evaluation 45

0 500 1000 1500 2000 2500

Number of Convex Evaluations

0

0.5

1

1.5

2

2.5

3

3.5
f(

v
) 

(b
it
s
/H

z
)

106

10

20

30

40

50

60

70

80

90

A
lt
it
u

d
e

(m
)

Upper Bound-MFP

Lower Bound-MFP

optimal Altitude-MFP (E
A

(h
A

optimal Altitude-SCP(E
A

(h
A

optimal Altitude-MFP (E
A

(h
A

,T)=0)

Optimal Altitude (E
A

(h
A A

(h
A

Fig. A.4: Convergence behavior of the PA algorithm.

0 2 4 6 8 10 12

Minimum Data Rate Requirement(bps) 107

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

G
lo

b
a

l 
E

n
e

rg
y
 E

ff
ic

in
e

c
y
(b

it
s
/J

.H
z
)

GEE(h
hover

 = h
opt

(E
A

(h
A

GEE(h
hover

 = h
opt

(E
A

(h
A

,T)=0))

Gain in GEE

Fig. A.5: Global energy efficiency versus minimum individual data rate requirement.



46 References

is hovering at the optimal altitude obtained: (a) with zero energy consumed by the
rotor of the aerial vehicle(hhover = hopt(EA(hA, T ) = 0) ); (b) with non-zero energy
consumed by the rotor of the aerial vehicle (hhover = hopt(EA(hA, T ) 6= 0) ). As said
before, the GEE of the ACS with hhover = hopt(EA(hA, T ) 6= 0) is more than that
with hhover = hopt(EA(hA, T ) = 0). This gain in GEE reflects the effect of considering
the aerial vehicle’s rotor energy consumption in altitude optimization, showcasing the
novel aspect of this paper. In the plot, the value of GEE is constant for a range of
Ro and then it starts decreasing with an increase in Ro. From (A.22), the value of the
maximum allowed altitude, hmax decreases with increase in Ro. It is because a higher
minimum individual data rate is achieved by increasing the LoS channel gain obtained
by decreasing the hovering altitude of the aerial vehicle. When hmax(Ro) is greater than
the hA corresponding to the global optimum of GEE (GEEglobal), the optimal altitude
is equal to hA(GEEglobal) and GEE remains constant; for hmax(Ro) ≤ hA(GEEglobal),
optimal altitude is equal to hmax, results in decrease in GEE with increase in Ro.
The decrease in GEE with increase in Ro(decrease in hmax) shows the monotonically
increasing property of GEE which is exploited in MFP.

6 Conclusion
In this work, we found the optimal energy-efficient altitude of an aerial access point
which acts as a flying base station for an orthogonal multiple access downlink broadcast
transmission scenario. The modeled energy consumption is the sum of energy consumed
by the aerial vehicle and the energy required for the communication between the AAP
and the UEs. An efficient solution to the formulated GEE maximization problem with
individual data rate constraint and altitude constraint is obtained using sequential con-
vex programming and is compared to the global optimum achieved by the monotonic
fractional programming technique. One can see that the optimal altitude value from
the polynomial-time complex SCP matches the globally optimal altitude value obtained
from the monotonic fractional programming. Further, we observed that there is a gain
in the GEE when the aerial access point is hovering at an optimal altitude determined
by considering the non-zero rotor energy consumption of the aerial vehicle. In addi-
tion to this, the optimal altitude, and hence GEE, decrease with an increase in the
minimum individual data rate constraint. Joint altitude and power optimization in a
non-orthogonal multiple access transmission scheme with multiple AAPs is left as our
future work.

References
[1] M. Erdelj and E. Natalizio, “UAV-Assisted Disaster Management: Applications and

Open Issues,” in International Conference on Computing, Networking and Commu-



References 47

nications (ICNC), Feb 2016, pp. 1–5.

[2] “National institute of Information and Communication Technology, Japan, Develop-
ment of UAV wireless communication systems in NICT,” 13th Broadsky Workshop,
Japan, 2015.

[3] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez,
and J. Yuan, “Survey on UAV Cellular Communications: Practical Aspects, Stan-
dardization Advancements, Regulation, and Security Challenges,” IEEE Communi-
cations Surveys Tutorials, pp. 3417-3442, 2019.

[4] N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-Based IoT Platform: A Crowd
Surveillance Use Case,” IEEE Communications Magazine, vol. 55, no. 2, pp.
128–134, February 2017.

[5] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless Communications with Unmanned
Aerial Vehicles: Opportunities and Challenges,” IEEE Communications Magazine,
vol. 54, no. 5, pp. 36–42, May 2016.

[6] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP Altitude for Maximum
Coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, Dec
2014.

[7] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint Altitude and Beamwidth Optimiza-
tion for UAV-Enabled Multiuser Communications,” IEEE Communications Letters,
vol. 22, no. 2, pp. 344–347, Feb 2018.

[8] E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, “On the Number and 3D Place-
ment of Drone Base Stations in Wireless Cellular Networks,” in IEEE 84th Vehicular
Technology Conference (VTC-Fall), IEEE, pp. 1–6, 2016.

[9] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement Optimization of UAV-
Mounted Mobile Base Stations,” IEEE Communications Letters, vol. 21, no. 3, pp.
604–607, 2016.

[10] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D Placement of
an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy Efficient Maximal
Coverage,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434–437, 2017.

[11] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone Small Cells in the
Clouds: Design, Deployment and Performance Analysis,” in IEEE Global Commu-
nications Conference (GLOBECOM), IEEE, pp. 1–6, 2015.

[12] S. Eom, H. Lee, J. Park, and I. Lee, “UAV-Aided Wireless Communication Designs
with Propulsion Energy Limitations,” IEEE Transactions on Vehicular Technology,
69.1: 651-662, 2019.



48 References

[13] Y. Zeng, J. Xu, and R. Zhang, “Energy Minimization for Wireless Communication
with Rotary-Wing UAV,” IEEE Transactions on Wireless Communications, vol. 18,
no. 4, pp. 2329–2345, April 2019.

[14] Y. Zeng and R. Zhang, “Energy-Efficient UAV Communication with Trajectory
Optimization,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.
3747–3760, June 2017.

[15] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile Unmanned Aerial
Vehicles (UAVs) for Energy-Efficient Internet-of-Things Communications,” IEEE
Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574–7589, Nov
2017.

[16] D. Zorbas, L. Di Puglia Pugliese, T. Razafindralambo, and F. Guerriero, “Opti-
mal Drone Placement and Cost-Efficient Target Coverage,” Journal of Network and
Computer Applications, vol. 75, no. C, pp. 16–31, 2016.

[17] A. Goldsmith, Wireless communications. Cambridge university press, 2005.

[18] H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz, “Comprehen-
sive Energy Consumption Model for Unmanned Aerial Vehicles, Based on Empirical
Studies of Battery Performance,” IEEE Access, vol. 6, pp. 58 383–58 394, 2018.

[19] A. Zappone and E. Jorswieck, “Energy Efficiency in Wireless Networks via Frac-
tional Programming Theory,” Foundations and Trends® in Communications and
Information Theory, 11.3-4, 185-396, 2015.

[20] J.-P. Crouzeix and J. A. Ferland, “Algorithms for Generalized Fractional Program-
ming,” Mathematical Programming 52.1 (1991): 191-207.

[21] B. R. Marks and G. P. Wright, “A General Inner Approximation Algorithm for
Nonconvex Mathematical Programs,” Operations Research 26.4 (1978): 681-683.

[22] A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, “Globally Optimal
Energy-Efficient Power Control and Receiver Design in Wireless Networks,” IEEE
Transactions on Signal Processing, vol. 65, no. 11, pp. 2844–2859, June 2017.

[23] Y. J. A. Zhang, L. Qian, and J. Huang, “Monotonic Optimization in Communica-
tion and Networking Systems,” Foundations and Trendsr in Networking, 7.1: 1-75,
2013.

[24] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Program-
ming,” version 2.1." (2014).

[25] E. Björnson, E. Jorswieck et al., “Optimal Resource Allocation in Coordinated
Multi-Cell Systems,” Foundations and Trendsr in Communications and Information
Theory, vol. 9, no. 2–3, pp. 113–381, 2013.



Paper B

Energy-Efficient Deployment of a Non-Orthogonal Multiple
Access Unmanned Aerial System

Nithin Babu, Constantinos B. Papadias, and Petar Popovski

Published in
IEEE International Conference on Communications Workshops (ICCWorkshops), pp.

1-6, 2021, doi: 10.1109/ICCWorkshops50388.2021.9473727.



© 2021 IEEE
The layout has been revised.



1. Introduction 51

Abstract
In this work, we propose a methodology for the energy-efficient placement of an un-
manned aerial system (UAS) deployed to collect data from a set of ground user equip-
ments (UEs). The data-communication between the UEs and the UxNB, a radio ac-
cess node carried by an unmanned aerial vehicle (UAV), of the UAS follows a non-
orthogonal multiple-access (NOMA) scheme; in which all the UEs share the same time
and frequency resources. The receiver removes the inter-UE interference from the co-
channel UEs through joint implementation of a power-reduction technique at the UEs
and the successive interference cancellation (SIC) at the receiver. Firstly, a new energy-
efficiency metric, area energy efficiency (AEE) representing the total area covered by a
UxNB per Watt-Hour (Wh) of energy consumed, is introduced. Then, the optimal hov-
ering altitude of the UxNB that maximizes the AEE is determined using the proposed
algorithm. Numerical evaluations show that the obtained solution using the proposed al-
gorithm matches the globally optimal solution, and the proposed NOMA scheme prevails
over an equivalent orthogonal multiple access (OMA) scheme, in terms of the AEE.

1 Introduction
Next-generation wireless networks are expected to support high data rates and a larger
number of user devices [1]. Standardization bodies like the 3rd generation partnership
project (3GPP) has been considering meeting these demands with non-orthogonal mul-
tiple access (NOMA) schemes [2]. The NOMA scheme supports users by differentiating
them in power or space domains, thereby allowing them to share the same time and
frequency resources. The NOMA scheme that separates the users in the power domain,
called power-domain NOMA (P-NOMA), requires a successive interference cancellation
(SIC) receiver [4]. The SIC receiver exploits the diversity in the received signal-to-
interference-plus-noise ratio (SINR) from the user equipments (UEs): the message from
the strongest UE (highest received SINR) is decoded treating all the other UE’s messages
as noise; then, the message from the second-strongest UE is decoded after subtracting
the strongest UE’s message from the received signal. This continues until the SIC
receiver decodes the message from the UE with the lowest received SINR value.

UAV-assisted networks deployed to provide cellular service for applications having
temporary/emergency nature such as frequent data collection from a set of Internet-
of-Things (IoT) nodes or assisting the rescue operation during a natural disaster, is
considered as one of the promising application of the next-generation wireless networks
[3]. Here, we consider such a UAV-assisted network in which the UAV carries a NOMA-
based radio access node to the service-required area. The latest 3GPP report, [15], has
enlisted various technical specifications of a UAV-assisted network.

The concept of a UAV-assisted NOMA system has been considered in the works [5]-
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[14]. [4] presents a survey on the existing studies that have considered the integration
of the P-NOMA scheme with the enabling communications schemes and technologies,
which are expected to meet the various requirements of next-generation wireless net-
works. In [5], the authors study the P-NOMA scheme for the energy-efficient placement
of a UAV- base station using the user-pairing method. The individual users in a pair
will be using the same time and frequency resources; whereas, the resources allocated
to two different user pairs will be orthogonal. The placement and power allocation that
maximize the downlink sum rate of a NOMA-UAV network is proposed in [6]. The
work in [7] maximizes the minimum downlink throughput of a UAV network by jointly
optimizing multi-user communication scheduling and the UAV trajectory. The joint op-
timization problem is decoupled into two blocks (the scheduling and the UAV trajectory
blocks) and is solved using the block coordinate descent method. The authors of [8],
propose a solution to the max-min rate optimization problem of a UAV-enabled NOMA
communication system. The optimization problem is formulated subject to total power,
bandwidth, altitude, and beamwidth constraints, and is solved using the sequential con-
vex programming technique. In [9], the authors present a joint UAV trajectory design
and resource allocation algorithm that maximizes the minimum average rate among the
ground users of a UAV communication system. The formulated max-min downlink data
rate problem is solved using the penalty dual decomposition method. The work in [10]
minimizes the transmit power of a UAV-NOMA system subject to the minimum achiev-
able rate requirements; whereas, the sum rate a similar system is maximized in [11] by
jointly optimizing the UAV trajectory and the NOMA precoding. The authors of [12]
aim to maximize the system capacity of a UAV-NOMA system by jointly optimizing the
subchannel assignment, the uplink transmit power, and the flying heights of the UAVs
using the K-means clustering method and the matching theory. [13] considers a different
application scenario in which a UAV system co-exists with a set of ground users; the
authors maximize both the data rate from the UAV to the base stations and the data
rate of the co-channel ground users to their associated base stations by optimizing the
precoding vectors at the multi-antenna UAV. [14] discusses the possibility of using a
UAV as a full-duplex relay to aid the communication between a base station and two
NOMA users. Considering a simultaneous wireless information and power transfer tech-
nique, the authors aim at maximizing the sum throughput of the whole system and the
harvested energy at the UAV based on the inner approximation method.

The works in [5]- [10] consider a downlink-NOMA communication between a single-
or multi- UAV system and a set of ground users. Except [5], none of the above works
maximize the energy-efficiency of a NOMA-UAV system considering both the communi-
cation and the UAV energy consumption. Additionally, the user-pairing method consid-
ered in [5] exploits only partial non-orthogonality (between two user pairs) to maximize
the number of bits transmitted per Joule of energy consumed. However, [12] and [13]
consider an uplink data transmission between a set of users and a UAV, but the energy-
efficiency aspect remains unstudied in these works. Being an energy-limited system, we
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believe that the energy-efficient placement of a UAS is of paramount importance. In
our previous works, [18] and [19], we have considered the energy-efficient placement of
a single- and multi-UAV system, respectively. [18] considers a downlink OMA scheme,
whereas in [19], we consider an uplink OMA scheme with the universal frequency reuse
among the UAVs. The placement optimization of a NOMA-UAS that maximizes the
proposed area energy efficiency (AEE) metric considering both the communication and
the UAV energy consumption has, to the best of our knowledge, not been considered in
the literature.

Section 2 explains the system architecture and the assumptions alongside the defini-
tions of the proposed AEE metric and the power-reduction scheme. Our objective here
is to find an energy-efficient hovering altitude for the UxNB part of a UAS considering
an uplink P-NOMA scheme. As the altitude increases, the area covered by the UxNB
increases, the time taken by the ground users to complete the uplink data transmission
increases, and the power consumed by the UAV increases. Intending to capture these
effects, we introduce a new energy-efficiency metric in Section 2.3, the AEE. The AEE
of a UAS is neither maximum at a low altitude value nor at a high altitude value. In
Section 3, we determine the area energy-efficient hovering altitude for a NOMA-UAS.
All our main findings from the numerical evaluations are discussed in Section 4.

2 System Model and Definitions
We consider a UxNB, a radio access node carried in the air by a UAV, deployed to
collect independent data from a set of uniformly distributed ground UEs with a density
ρu. The UxNB with the ground controller, as shown in Fig. B.1, forms the UAS model
proposed in the latest 3GPP report [15]. The UxNB is assumed to be equipped with a
directional antenna of half-power beamwidth 2θ with antenna gain in direction (ψ, ω)
given by [20],

gu,a =
{go,a

θ2 −θ ≤ ψ ≤ θ,−θ ≤ ω ≤ θ,
≈ 0 otherwise,

(B.1)

where go,a ≈ 2.2846. All the UEs are equipped with an omnidirectional antenna. Also,
the UEs send their collected data to the UxNB using the same time and frequency
resources, but with different power levels, thereby forming an uplink P-NOMA scheme.
The transmitted data packets are successfully decoded using the successive interference
cancellation technique at the UxNB. In practice, this maps to the data-collection phase
of an IoT network.

2.1 Propagation Channel
The ground-to-air channel between a UE and the UxNB falls either to the line-of-sight
(LoS) or the non-LoS group depending on its relative position to the UxNB. The LoS
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Fig. B.1: Unmanned Aerial System Architecture.

probability of a UE-UxNB channel link is expressed as [21],

P1(φi) = 1
{1 + a exp [−b(φi − a))]} , (B.2)

where φi = (180/π)tan−1(hu/ri) is the elevation angle between the ith UE located at
a distance of ri from the center of the UxNB’s coverage area, and the UxNB hovering
at an altitude hu; a, b are the environment-dependent parameters that depend on the
building profile of the deploying area. Hence, the probabilistic mean path loss is given
by [19],

Li(hu) = P1(φi)× L1,i + P2(φi)× L2,i, (B.3)

= (r2
i + h2

u)
ho

{
P1(φi)µ2

1 + [1− P1(φi)]µ2
2
}
, (B.4)

where, µ2
1 and µ2

2 are the mean values of the additional path loss due to the long-term
random channel variations associated with the respective LoS and NLoS links; ho is the
channel gain at a reference distance of 1 m.

2.2 Uplink P-NOMA Scheme
The uplink power control mechanism in LTE systems require that the received powers
from different UEs equal the same target power, pu [22]. Hence, the power transmitted
by a UE assuming full channel-loss compensation is given by,

p(hu)=puLi(hu). (B.5)
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For successful decoding of the received messages in the presence of co-channel inter-
ference, the SIC receiver at the UxNB requires different received powers per UE. First
of all, the UEs send individual control messages to the UxNB with the same transmit
power using orthogonal control channels. The UxNB then assigns indices of the decod-
ing order to the UEs based on the corresponding path loss values: a higher index value
to a UE with a higher path loss value. That is, in an instance with N UEs in the cover-
age region of the UxNB, the closest UE to the center of the coverage region is assigned
the index 1, whereas the farthest UE the index N . Next, the UxNB informs the UEs of
their corresponding index of the decoding order through the associated control channels.
Now, the UEs follow a power-reduction scheme for the concurrent transmission of the
messages using the same frequency resource. Accordingly, the UE with the index of
decoding order i transmits its message with a power given by [16],

pi(hu)=puLi(hu)
δi−1 , (B.6)

where, δ is the power-reduction factor. (B.6) guarantees the required power diversity
at the SIC receiver of the UxNB unit. Consider the UxNB hovering at an altitude hu
covering N(hu) = ρuπh

2
utan2θ uniformly distributed UEs. Then, the received signal

at the UxNB, from the UEs transmitting the messages with the P-NOMA scheme, is
expressed as,

yu=
N(hu)∑
i=1

√
pi(hu)
Li(hu)

xi + σ2
n, (B.7)

where, xi is the message transmitted by the ith UE, and σ2
n = σ2

0W is the zero-mean
additive white Gaussian noise power with a power spectral density σ2

0 over a channel
bandwidth W . Using the diverse received power from the UEs, the SIC receiver starts
decoding the message from the first UE (the UE with the index 1) considering the mes-
sages from the remaining (N(hu)− 1) UEs as co-channel interference. Correspondingly,
the ith UE’s message is decoded only after decoding the prior (i − 1) UEs’ messages;
hence, the received SINR value from the ith UE is given by,

Γn
i (hu)=

pi(hu)
Li(hu)∑N(hu)

j=i+1
pj(hu)
Lj(hu)

+ σ2
n
. (B.8)

(B.8) assumes successful decoding of the messages from the first to the (i − 1)th UE;
an additional noise term in the denominator of Γn

i (hu) represents the co-channel inter-
ference from the remaining (N(hu) − i) UEs. In Section 3, we incorporate the above-
mentioned condition as quality-of-service (QoS) constraints: Γn

i (hu) ≥ Γm ∀i ∈ N =
{1, 2, ..., N(hu)}; Γm is the minimum SINR required at the receiver for the successful
decoding of the message from a UE. Therefore, the achievable data rate of the ith UE in
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bits-per-second (bps) assuming perfect channel modulation, coding scheme, and known
channel state information (CSI) at the transmitter is given by (B.9):

Rn
i (hu)=W log2 [1 + Γn

i (hu)] ∀i ∈ N . (B.9)

2.3 Area Energy Efficiency
We define the area energy-efficiency of a UAS as the ratio between the geographical
area covered by the UAS, and the total energy consumption:

AEEn(hu) [m2/Wh]= πr2
u(hu) [m2]

TuPt(hu)κ [Wh] , (B.10)

where, Pt(hu) = Pu(hu) + Pc is the total power consumed by the UxNB in Watts with
Pu(hu) = αuhu + βu, the power consumed by the UAV while hovering at an altitude
hu, and Pc is the communication-related power consumed by the radio-access node;
Tu is the time during which the UxNB remains aloft; κ = 2.78 × 10−4 is the Joule
to Wh conversion factor. Furthermore, the UAV’s power consumption is modelled
as an increasing function of the hovering altitude to capture the effect of increased
air pressure and temperature, which demands the UAV to generate more power to
maintain a stable hovering position at higher altitudes [17], [19]; αu, βu are the UAV-
dependent parameters obtained through the empirical study on the UAV’s hovering
energy consumption reported in [17]; ru(hu) = hutanθ is the radius of the UxNB’s
circular coverage region. The AEE, defined in (B.10), represents the trade-off between
an increase in the coverage area and the associated increase in the total energy spent to
cover the area. Since available energy-efficiency metrics like the global energy efficiency
(GEE), which represents the number of bits transmitted per Joule of energy consumed,
do not capture this trade-off, we believe that the proposed AEE metric is well suited for
energy-efficient placement of a UAS deployed for rural applications, where the coverage
area and the energy consumption factors are of great importance.

3 Optimal Hovering Altitude of the UxNB
In this section, we determine the hovering altitude of the UxNB that maximizes the
AEE subject to the altitude and minimum QoS constraints. All the UEs follow the P-
NOMA scheme to transmit D bits of data to the UxNB. The corresponding optimization
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problem can be written as;

(B:P1) : maximize
hu

πh2
utan2θ

T n
u (hu)Pt(hu)κ, (B.11)

s.t. hmin ≤ hu ≤ hmax, (B.12)
Γn
i (hu) ≥ Γm ∀i ∈ N , (B.13)

T n
u (hu) = D

min {Rn
i (hu) : ∀i ∈ N} . (B.14)

The objective function of (B:P1) is the AEE as defined in (B.10); (B.12) is the altitude
constraint with hmin and hmax, the respective lower and upper limits of the hovering
altitude specified by the regulatory board. (B.13) represents the QoS constraints that
ensure the successful decoding of the received messages from the UEs hence validating
(B.8) and (B.9). (B.14) represents the maximum time taken among the UEs in the
UxNB’s circular coverage region, to complete the uplink data transmission of D bits of
data. (B.13) can be equivalently written as,

minimum [Γn
i (hu)] ≥ Γm. (B.15)

From (B.8), the received SINR from a UE depends on both the received and the
interference-plus-noise (IN) power values. Considering the first UE, with an increase
in the number of UEs in the coverage region of the UxNB, even though the number of
interfering UEs increases, the magnitude of interference from each of the (N − 1) UEs
decreases; whereas, for the N th UE, the received power decreases exponentially. Hence,
to find minimum [Γn

i (hu)], we propose the UxNB to cover a minimum number of UEs
as reported in (B.16).

Proposition B1. For given γn = pu/σ
2
n, ρu, δ, and θ values, the inequality Γn

1(hu) >
Γn

2(hu) > ... > Γn
N (hu) is satisfied when the UxNB covers a minimum number of UEs

given by (B.16):

Nmin(h
′

min) = 1 + 1
∆ log2

(
γn

δ − 1

)
, (B.16)

where ∆ = log2δ.

Proof. Substituting (B.6) in (B.8), the SINR expression of the ith UE can be rewritten
as,

Γn
i (hu)=

γn
δi−1∑N(hu)

j=i+1
γn
δj−1 + 1

, (B.17)

= γn
γn
δ

[
1−1/δN(hu)−i

1−1/δ

]
+ δi−1

(B.18)
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From (B.18), Γn
1(hu) > Γn

N (hu) is equivalently written as,
γn

γn
δ

[
1−1/δN(hu)−1

1−1/δ

]
+ 1

>
γn

δN(hu)−1 , (B.19)

rearranging (B.19) with N(hu) on the left-hand side gives (B.16).

N(hu) = ρuπh
2
utan2θ in (B.16) gives the minimum hovering altitude of the UxNB

to cover Nmin(h′min) UEs as,

h
′

min = 1
tanθ√ρuπ

√
1 + 1

∆log2

(
γn

δ − 1

)
. (B.20)

Using Proposition B1, (B.13) and (B.14) are rewritten as (B.21) and (B.22), respectively:

Γn
N (hu) ≥ Γm, (B.21)

T n
u (hu) = D

Rn
N (hu) . (B.22)

Substituting (B.6) in (B.8), and using it in (B.21) gives,
pu

δ[N(hu)−1]σ2
n
≥ Γm, (B.23)

N(hu) ≤ 1 + 1
∆log2

(
γn

Γm

)
= Q(Γm). (B.24)

(B.24) converts the minimum QoS constraints, (B.13), into the altitude constraint,
hu ≤ 1

tanθ

√
Q(Γm)
ρuπ

= hQ
max. Hence, (B:P1) is reformulated as,

(B:P2) : maximize
hu

πh2
utan2θ[

D
Rn
N

(hu)

]
Pt(hu)κ

, (B.25)

s.t. max{hmin, h
′

min}︸ ︷︷ ︸
hmin

≤ hu ≤ min{hmax, h
Q
max}︸ ︷︷ ︸

hmax

, (B.26)

Both the numerator and the denominator of the objective function of (B:P2), AEEn(hu),
are increasing functions of the hovering altitude, hu. The optimal altitude that maxi-
mizes AEEn(hu) is determined using the bisection method as detailed in Algorithm B.1.

For a given, θ, ρu, γn, δ, and Γm values, the algorithm takes hmin and hmax as
the input parameters. Algorithm B.1 makes use of the first derivative property of
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Algorithm B.1: Optimal Hovering altitude of the UxNB.
1 Input:hmax, hmin;
2 Find: l = AEEd,n(hmin), u = AEEd,n(hmax) using (B.27); ;
3 while 1 do
4 if l > 0 & u > 0 then
5 hu,opt = hmax;
6 break.
7 if l < 0 & u < o then
8 hu,opt = hmin;
9 break.

10 m =
[
hmin + hmax

]
/2;

11 if AEEd,n(hmin)×AEEd,n(m) < 0 then
12 hmax = m;
13 else
14 hmin = m;
15 if |hmin − hmax| ≤ η then
16 hu,opt = hmin;
17 break.

18 Output: Optimal hovering altitude hu,opt.
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AEEn(hu): AEEd,n(hu,opt) = 0; AEEd,n(hu) > 0 ∀hu ∈ [hmin, hu,opt); AEEd,n(hu) <
0 ∀hu ∈ (hu,opt, hmax], where,

AEEd,n(hu) = Wπtan2θ

DκPt(hu)

[
2hulog2

(
1 + γn

δN(hu)−1

)]
− Wπtan2θ

DκPt(hu)

[
2h3

uγnπρutan2θln(δ)
ln(2)

(
δN(hu)−1 + γn

)]

− Wπtan2θαu

DκP 2
t (hu) h

2
ulog2

(
1 + γn

δN(hu)−1

)
, (B.27)

and hu,opt is the optimal altitude. The algorithm starts with a larger interval supposedly
containing the optimal altitude: hu ∈

[
hmin, hmax

]
. In every iteration, if the altitude

corresponding to the midpoint of the interval maps to an AEEn(hu) value that lies on
the falling (rising) edge of the AEEn(hu) curve, the upper (lower) limit of the interval is
changed to the midpoint. This process continues until the interval width is negligible.
The interval width after the kth iteration is (hmin−hmax)/2k; therefore, the complexity
of the algorithm is O{log2[ (hmin − h

′

max)/η ]}.

OMA-UAS

To compare the AEE performance of the NOMA-UAS with an uplink OMA scheme, we
consider that the total available bandwidth, W , is equally divided among N(hu) UEs.
Consequently, the bandwidth allocated to each UE and the noise power will be a function
of the hovering altitude. Thus, for given, hu, ρu, and θ values, the achievable data rate
of the ith UE using the OMA scheme is evaluated using the following expression:

Ro
i (hu) = W

N(hu) log2

[
1 + γnN(hu)

δi−1

]
∀i ∈ N . (B.28)

From (B.28), it is evident that for a given hu, the inequality Ro
1(hu) > Ro

2(hu) > ... >
Ro
N (hu) is satisfied. Therefore, the corresponding AEE is expressed as,

AEEo(hu) = πh2
utan2θ

T o
u (hu)Pt(hu)κ, (B.29)

where T o
u (hu) = D

Ro
N

(hu) .

4 Numerical Results and Discussion
In this section, we provide and discuss our main findings obtained through the numerical
evaluation. The considered simulation parameters are h0 = 1.42 × 10−4, µ1 = 1.0116,
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Fig. B.2: SINR vs Altitude for ρu = 10−3, δ = 1.5, γn = 10.

µ2 = 11.2202, a = 4.88, b = 0.43 [19], W = 80MHz, hmax = 300m, hmin = 10m,
Γm = 8.668 × 10−4(100Kbps), D = 1010 bits, αu = 4.917, and βu = 275.204 [17],
η = 0.5, θ = 45o, Pc = 10W.

Fig. B.2 shows the variations of the SINR values of the first, the middle, and the
last UEs, with regards to the hovering altitude of the UxNB. As proved in Proposition
B1, in the figure, the SINR value of the last UE (with the index N) is greater than
the first UE (with the index 1) up to the altitude value equal to the right-hand side
of (B.20), beyond which the inequality, Γn

1(hu) > Γn
N (hu), is satisfied. Moreover, the

h
′

min increases with the signal-to-noise (SNR) ratio value, γn, to guarantee a positive
difference between the SINR values of the first and the last UEs.

Fig. B.3 shows the variations of the achievable AEE values with the underlying P-
NOMA and OMA schemes, plotted using (B.25) and (B.29), respectively. The plots are
shown against the hovering altitude of the UxNB for δ = 1.5 and γn = 10. As expected,
the AEE is neither maximum at a lower altitude value nor at a higher altitude value.
In the low-altitude regime, the smaller area covered by the UxNB (the numerator of the
AEE) overcompensates the reduced UxNB’s energy consumption resulting in a low AEE
value. Similarly, in the high-altitude regime, the UxNB takes more time to complete
the uplink data transmission from the UEs demanding a longer UAV endurance; hence,
the increased UAV energy consumption at a higher altitude reduces the AEE value
despite the increased coverage area. As shown in the figure, the combined effect of
the above-mentioned trade offs makes the AEE function a bell-shaped curve. Also, the
optimal points obtained through Algorithm B.1, are the global optima of the AEE plots.
Furthermore, the figure shows that the maximum AEE value considering the NOMA
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Fig. B.3: AEE versus Altitude: δ = 1.5, γn = 10.

scheme is always higher than the corresponding value obtained using the OMA scheme.

The effect of the UE density over the maximum AEE value is shown in Fig. B.4. For
both the NOMA and the OMA schemes, the respective maximum AEE values decrease
with an increase in the UE density: the Tu(hu) factor increases because of the decrease
in the received SINR from the edge-UE owing to the increase in the number of the
UEs in the coverage area; this increases the energy consumption (the denominator of
the AEE) thereby reducing the respective maximum AEE values. The figure has three
sets of plots, each corresponding to a particular power-reduction factor, δ. For each
set, the maximum AEE value achieved through the NOMA scheme prevails over the
corresponding value of the OMA scheme. Also, the margin between maximum AEE
values decreases with an increase in the user density. Furthermore, the gain in the
AEE value achieved using the NOMA scheme, over the OMA scheme, decreases with
the increase in the δ value. From the above discussions, it is clear that the proposed
NOMA scheme is more energy-efficient when the power-reduction factor associated with
the edge-UE lying in the coverage region, δN−1, is relatively small. The factor either
increases with an increase in the number of UEs (ρu ) or with the δ value. Hence, the
proposed scheme is recommended to use with a low δ value in applications where the
user density is small. The lower-bound of the δ value is decided by the ability of the
SIC receiver to successively decode the messages using the diversity in power received
from the UEs.
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5 Conclusion
In this work, we determined the optimal hovering altitude of a UAS deployed for a non-
orthogonal multiple access uplink transmission scenario. The necessary power diversity
required at the SIC receiver was ensured through the uplink power-reduction scheme
that forms the basis of the P-NOMA scheme. The optimization problem maximized
the proposed area energy efficiency metric while satisfying the altitude and the QoS
constraints. The AEE-performance of the UAS with the underlying P-NOMA scheme
is compared to the OMA scheme. It is observed that the P-NOMA scheme outperforms
the OMA scheme and the corresponding achievable gain depends on the UE density
and the power-reduction factor. The gain is inversely proportional with regard to the
UE density and the power-reduction factor. The downlink-AEE analysis considering
multiple UAS is left as future work.

References
[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The Roadmap to 6G:

AI Empowered Wireless Networks,” IEEE Communications Magazine, vol. 57, no.
8, pp. 84–90, Aug. 2019

[2] Y. Chen, A. Bayesteh, Y. Wu, B. Ren, S. Kang, S. Sun, Q. Xiong, C. Qian, B. Yu,
Z. Ding, S. Wang, S. Han, X. Hou, H. Lin, R. Visoz, and R. Razavi, “Toward the



64 References

Standardization of Non-Orthogonal Multiple Access for Next Generation Wireless
Networks,” IEEE Communications Magazine, vol. 56, no. 3, pp. 19–27, Mar. 2018.

[3] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez,
and J. Yuan, “Survey on uav Cellular Communications: Practical Aspects, Stan-
dardization Advancements, Regulation, and Security Challenges,” IEEE Communi-
cations Surveys Tutorials, pp. 1–1, 2019.

[4] Maraqa O, Rajasekaran AS, Al-Ahmadi S, Yanikomeroglu H, Sait SM, “A Survey of
Rate-Optimal Power Domain NOMA with Enabling Technologies of Future Wireless
Networks,” IEEE Communications Surveys and Tutorials, 2020 Aug 3;22(4):2192-
235.

[5] M. F. Sohail, C. Y. Leow and S. Won, “Energy-Efficient Non-Orthogonal Multiple
Access for UAV Communication System,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 11, pp. 10834-10845, Nov. 2019.

[6] X. Liu et al., “Placement and Power Allocation for NOMA-UAV Networks,” IEEE
Wireless Communications Letters,” vol. 8, no. 3, pp. 965-968, June 2019.

[7] J. Sun, Z. Wang and Q. Huang, “Cyclical NOMA Based UAV-Enabled Wireless
Network,” IEEE Access, vol. 7, pp. 4248-4259, 2019.

[8] A. A. Nasir, H. D. Tuan, T. Q. Duong and H. V. Poor, “UAV-Enabled Communi-
cation Using NOMA,” IEEE Transactions on Communications, vol. 67, no. 7, pp.
5126-5138, July 2019.

[9] F. Cui, Y. Cai, Z. Qin, M. Zhao and G. Y. Li, “Multiple Access for Mobile-UAV
Enabled Networks: Joint Trajectory Design and Resource Allocation,” IEEE Trans-
actions on Communications, vol. 67, no. 7, pp. 4980-4994, July 2019.

[10] D. Hu, Q. Zhang, Q. Li and J. Qin, “Joint Position, Decoding Order, and Power
Allocation Optimization in UAV-Based NOMA Downlink Communications,” IEEE
Systems Journal, vol. 14, no. 2, pp. 2949-2960, June 2020.

[11] N. Zhao et al., “Joint Trajectory and Precoding Optimization for UAV-Assisted
NOMA Networks,” IEEE Transactions on Communications, vol. 67, no. 5, pp. 3723-
3735, May 2019.

[12] R. Duan, J. Wang, C. Jiang, H. Yao, Y. Ren and Y. Qian, “Resource Allocation
for Multi-UAV Aided IoT NOMA Uplink Transmission Systems,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 7025-7037, Aug. 2019.

[13] X. Pang et al., “Uplink Precoding Optimization for NOMA Cellular-Connected
UAV Networks,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 1271-
1283, Feb. 2020.



References 65

[14] Mu, Guangchen. “Joint Beamforming and Power Allocation for Wireless Powered
UAV-Assisted Cooperative NOMA systems,” EURASIP Journal on Wireless Com-
munications and Networking, 2020.1 (2020): 1-14.

[15] 3GPP; Technical Specification Group Services and System Aspects; Unmanned
Aerial System (UAS) support in 3GPP; Stage 1; Release 17

[16] Zhang N, Wang J, Kang G, Liu Y, “Uplink Non Orthogonal Multiple Access in 5G
Systems,” IEEE Communications Letters, 2016 Jan 25;20(3):458-61.

[17] H. V. Abeywickrama, B. A. Jayawickrama, Y. He and E. Dutkiewicz, “Comprehen-
sive Energy Consumption Model for Unmanned Aerial Vehicles, Based on Empirical
Studies of Battery Performance,” IEEE Access, vol. 6, pp. 58383-58394, 2018.

[18] N. Babu, K. Ntougias, C. B. Papadias and P. Popovski, “Energy Efficient Altitude
Optimization of an Aerial Access Point,” in IEEE 31st Annual International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2020, pp.
1-7.

[19] N. Babu, C. B. Papadias and P. Popovski, “Energy-Efficient 3-D Deployment of
Aerial Access Points in a UAV Communication System,” IEEE Communications
Letters, vol. 24, no. 12, pp. 2883-2887, Dec. 2020.

[20] H. He, S. Zhang, Y. Zeng and R. Zhang, “Joint Altitude and Beamwidth Optimiza-
tion for UAV-Enabled Multiuser Communications,” IEEE Communications Letters,
vol. 22, no. 2, pp. 344-347, Feb. 2018.

[21] A. Al-Hourani, S. Kandeepan and S. Lardner, “Optimal LAP Altitude for Maxi-
mum Coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569-572,
Dec. 2014.

[22] 3GPP, “Physical Layer Procedures,” , TR 36.213, Sep. 2015, v 10.12.0



66 References



Paper C

Energy-Efficient 3D Deployment of Aerial Access Points in a
UAV Communication System

Nithin Babu, Constantinos B. Papadias, and Petar Popovski

Published in
IEEE Communications Letters, Vol. 24, pp. 2883-2887, 2020, doi:

10.1109/LCOMM.2020.3017559.



© 2020 IEEE
The layout has been revised.



1. Introduction 69

Abstract
In this letter, we propose an energy-efficient 3-dimensional placement of multiple aerial
access points (AAPs), in the desired area, acting as flying base stations for uplink com-
munication from a set of ground user equipment (UE). The globally optimal energy-
efficient vertical position of AAPs is derived analytically by considering the inter-cell
interference and AAP energy consumption. The horizontal position of AAPs which max-
imize the packing density of the AAP coverage area are determined using a novel regular
polygon-based AAP placement algorithm. We also determine the maximum number of
non-interfering AAPs that can be placed in the desired area. The effect of the AAP
energy consumption on the optimal placement and the analytic findings are verified via
numerical simulations.

1 Introduction
The aerial coverage provided for temporary data demand events with the help of un-
manned aerial vehicles (UAVs) acting as flying base stations is considered as one of the
essential components of fifth-generation (5G) and beyond-5G wireless networks. Unlike
the conventional approach of fixed base stations, the portable feature of the UAV-based
aerial communication system not only increases the probability of line-of-sight (LoS)
links between the UEs and the AAP but also could be dynamically deployed in natural
disaster areas [1] or social events such as concerts. One of the major limitations of the
UAV communication system is it’s limited lifetime proportional to the available onboard
energy. So the UAVs should be deployed in such a way as to increase the number of
bits successfully transmitted per joule of energy consumed, defined as global energy
efficiency (GEE). The GEE of the UAV-based system depends on the 3-D coordinates
of the UAV location; as the altitude increases, the coverage area of the UAV increases
and the UAV energy consumption increases [2], thereby affecting the GEE. The hori-
zontal positioning of the UAVs determines the fraction of the total number of users in
the desired area covered by the UAV; the higher the fraction, the higher the GEE. The
authors of [3] propose an energy-efficient 3-D placement of an unmanned aerial vehicle
base station for maximal coverage under the orthogonal multiple access (OMA) scheme.
The work in [4] proposes an optimal 3-D deployment of three UAV-base stations in
a given urban area for maximum coverage under the OMA scheme. In [5], an online
method for proper 3D deployment of UAV base stations to maximize the lifetime of the
network is proposed. None of the above works consider the energy consumption of the
mechanical parts of the aerial vehicle and the co-channel interference from the neigh-
boring cells. In our previous work [6] we have determined the energy-efficient hovering
altitude for a standalone AAP deployed for orthogonal downlink broadcast transmis-
sion. The energy-efficient 3-D deployment of multiple AAPs in a given geographical
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Fig. C.1: System setup.

area considering both the communication-related energy and UAV energy consumption
in the presence of inter-cell interference has, to the best of our knowledge, not been
investigated in the literature.

In this letter, we analytically determine the optimal vertical position of AAPs by
solving the GEE maximization of identical and independent single AAP systems with
the altitude and the individual UE power constraints. Then the horizontal coordinates
of the AAPs with non-overlapping coverage areas are determined by posing it as a
problem of non-overlapping circle packing and solved using the proposed multilevel
regular polygon-based placement algorithm.

2 System Model
We consider a circular geographical area of radius R, containing a set of Nu uniformly
distributed stationary ground UEs with a density ρu, such that Nu = ρuπR

2. As shown
in Figure C.1, the given geographical area is covered by multiple AAPs positioned in
a way that their coverage areas do not overlap and the horizontal plane coordinates of
the AAP are assumed to be those of the center of the AAP coverage area. A universal
frequency reuse among the AAPs is assumed, in which the total bandwidthW is equally
divided among N ′u = ρuπR

2
a UEs lying in the circular coverage area of an AAP of radius

Ra. Since the UEs in the neighboring cells use the same set of frequencies, the receiver at
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the AAP experiences inter-cell interference from the co-channel UEs in the neighboring
cells. Let U ′ be the subset of UEs covered by the AAP, such that |U ′ | = ρuπR

2
a.

2.1 Optimal Vertical Positioning of the AAPs
Considering AAPs with non-overlapping coverage areas, the problem of finding the
optimal vertical positioning of the AAPs breaks down to identical and independent
single AAP vertical positioning problems. Hence all the AAPs will be hovering at the
energy-efficient altitude obtained by solving the independent AAP vertical positioning
problem [5]. Here we consider an orthogonal uplink communication between the UEs
and the associated AAP.

Channel Model

We consider the channel model proposed by authors in [7], in which the communication
channel between the UEs and the AAP can be modelled either as a line-of-sight (LoS)
or a non-line-of-sight (N-LoS) link. Since the planning phase of the base station deploy-
ment considers long-term channel variation rather than short-term random behavior,
we neglect the small scale channel variations due to the dynamic propagation environ-
ment [7]. The environment-dependent long-term channel variations due to shadowing
and scattering referred to as additional path loss have a Gaussian distribution [7]; how-
ever, in this letter, we only use the mean value of this distribution and not its random
behavior [3], [5], [7]. Hence ηl and ηnl are the mean value of the additional path loss for
LoS and N-LoS links. Then the path loss for the LoS and N-LoS links between a UE
located at a distance of ri from the center of the coverage area is given by

Lx = ηxd
2
i

g0
for x ∈ {l, nl} , (C.1)

where g0 = (c/4πfc)2 represents the channel gain at a reference distance of 1m; c, fc
are the velocity of light and carrier frequency of the radio signal; di =

√
r2
i + h2

a, is the
distance between the ith UE and the AAP. The LoS probability, Pl between a UE and
it’s associated AAP is given by [7];

Pl = 1
1 + a exp [−b(φi − a))] , (C.2)

where a, b are environment-dependent parameters given in [7] and φi = (180/π)tan−1(ha/ri)
is the elevation angle between the ith UE and associated AAP. Hence, the N-LoS link
probability, Pnl associated with the same UE-AAP pair is 1 − Pl(ri, ha). Because of
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the non-availability of the terrain knowledge, we consider a probabilistic mean path loss
given by

L(ri, ha) = Pl × Ll + Pnl × Lnl,

= d2
i

g0
× [ηlPl + ηnl(1− Pl)],

= d2
i

g0︸︷︷︸
FSPL

× [ηnl + Pl(ηl − ηnl)].︸ ︷︷ ︸
ηm, mean additional path loss

(C.3)

AAP Coverage Region

In this letter, we consider the GEE as the performance matrix for the AAP deployment.
Since the GEE of the considered system might not be maximum at the altitude corre-
sponding to the minimum required SNR value [7], [3], we define the coverage region of
an AAP based on the Pl threshold, δ. For a given AAP altitude, all the UEs having a
LoS probability greater than δ are considered to be covered by the AAP. This threshold
translates into a circular coverage region with radius, Ra = hacot(φ(δ)) and all the UEs
at distance ri ≤ Ra are considered to be lying in the AAP coverage area.

Uplink Power Control

Each user chooses the transmit power according to the uplink power control specified
in the 3GPP technical report [8]. Then the transmit power for the ith UE (in Watts) is
given by

Pi = min
{
Pmax, PaB(L(ri, ha))β

}
, (C.4)

where Pmax is the maximum transmit power; Pa is the target arrived power at the
AAP; B is the number of allocated resource blocks and β is the path loss attenuation
factor of fractional transmission power control (TPC) [8] [9]. The information about
the target power and the AAP location is sent to the UEs through the control signaling.
Since B and β do not depend on the AAP position, we assume they are both equal to
1. However, the algorithm developed in Section 2.2 is applicable for any B, β values.
Hence the average transmit power transmitted by the ith UE is given by

P i = PaL(ri, ha), ∀ i ∈ U
′
. (C.5)

Thus the expectation of the sum of the powers transmitted by all the UEs in the AAP
coverage area is obtained by taking an expectation over the uniformly distributed UEs
with a density ρu:
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P t = ρu

∫ Ra

0
2πPaL(ri, ha)ridri,

≤ 2πρuPaηmcot2(φ(δ))h4
a(cot2(φ(δ)) + 2)

4g0
. (C.6)

The free space path loss (FSPL) and the Pl variable of ηm, of L(ri, ha) depend on ri.
By (C.2), Pl(rj) ≥ Pl(rk) for all rj ≤ ri. Because of the complex Pl expression, for
the remaining analytical derivation, we approximate Pl for all the UEs in the AAP
coverage area to be equal to the Pl of the edge UE (ri = Ra). Assuming no interference
cancellation techniques at the AAP surrounded by M AAPs, the upper bound of the
data rate of the ith UE in bits per seconds (bps) is given by

Di = Wilog2

1 +

P i

L(ri, ha)

ΣMj=1
P i,j

L(ri,j , ha)
+ σ2

0W

N ′u

, (C.7)

= Wilog2

{
1 + PaNu′

MPaNu′ + σ2
0W

}
, (C.8)

where σ2
o is the power spectral density of the zero-mean additive white Gaussian noise at

the corresponding receiver;Wi = W/Nu′ . Since the inter-cell interference is a decreasing
function of the distance from the receiver, in (C.8), we consider the case of maximum
interference from the co-channel UEs in the neighboring cells lying close to the cell edge
UEs. Because of the uplink power control, all the UEs in the coverage region will have
the same data rate upper bounded by (C.8). Assuming optimal (capacity-achieving)
coding, we consider that these bounds will be attained. Then, the sum of the data rate
will be:

Du′ (ha) = ρuπh
2
acot2φ(δ)︸ ︷︷ ︸
Nu′

×Di. (C.9)

The sum of the data rates of the ground UEs, the data transmission energy, and the
AAP energy consumption are the three major factors affecting the GEE of the system.
The GEE of the considered system is defined as;

GEE(ha) = Su′ (ha)
E(ha) , (C.10)

where Su′ (ha) = TDu′ (ha) is the total number of data bits transmitted by the UEs
in the AAP coverage area in T seconds; E(ha) is the total energy consumed by the
AAP. The energy consumed by the AAP is the sum of the energy required for data
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communication and the energy consumed by the mechanical parts of the UAV during
climbing and hovering, and is given by:

E(ha) = (αclha + βcl)︸ ︷︷ ︸
Ea,climb

+ (αhoha + βho)T︸ ︷︷ ︸
Ea,hover

+PDT︸ ︷︷ ︸
Edata

, (C.11)

where PD = P t + PC is the total data communication power, with PC being the total
hardware circuit power consumption and where P t is given by (C.6). αcl, βcl, αho, βho
are the constants related to the UAV [2]. The aerial vehicle’s energy consumption,
Ea(ha) increases with an increase in the altitude, because the reduced air pressure at
higher altitudes demands the generation of an additional force by the propeller of the
aerial vehicle, which results in increased energy consumption [2] [10]. The problem of
determining the optimal hovering altitude of the AAP which maximizes the GEE while
satisfying the altitude and the individual UE power constraints can be formulated as:

(C:P1) : maximize
hA

GEE(ha),

s.t. hmin ≤ ha ≤ hmax, (C.12)
Pi ≤ Pmax, (C.13)

where Pmax is the maximum power available at each UE, hmin and hmax are the
minimum and maximum permitted AAP altitude specified by the aviation regulatory
board respectively. (C.13) can be equivalently translated into the altitude constraint,

ha ≤ h
′

max =
√

Pmaxg0

Paηm(1 + cot2(φ(δ)))
. (C:P1) is solved by using Proposition C1.

Proposition C1. For a given ρu, Pmax, δ, Pa, GEE(ha) is a decreasing function of the
hovering altitude of the AAP.

Proof. To prove the decreasing nature of GEE(ha), the numerator, Su′ (ha) and the
denominator, E(ha) should be a non-increasing and increasing function of ha, respec-
tively. From (C.11), E(ha) is an increasing function of ha and it remains to prove that
dSu′ (ha)

dha
≤ 0 ∀ha ∈

{
hmin,min(hmax, h

′

max)
}
, which is shown below:

dSu′ (ha)
dha
TW

= 2κ(φ(δ))halog2e

κ(φ(δ))h2
a + σ2

oW

M + 1

− 2κ(φ(δ))halog2e

κ(φ(δ))h2
a + σ2

oW

M

, (C.14)

where κ(φ(δ)) = Paρuπcot2(φ(δ)). From (C.14), since 1
TW

dSu′ (ha)
dha

≈ 0 for Pa >>

σ2
oW , the numerator of the GEE is proved to be a non-increasing function of ha. Hence
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according to Proposition C1, the solution of (C:P1), the optimal vertical position of
AAPs for maximum GEE, is the minimum altitude hmin. Then the optimal LoS thresh-
old value δo corresponding to hmin is determined numerically in Section 3. The corre-
sponding radius of the individual AAP coverage region is Ra = hmincot(φ(δo)).

2.2 Optimal Horizontal Positioning of the AAPs
In this section, we aim to determine the optimal horizontal positioning of the AAPs in
the given desired circular region of radius R so that the packing density, defined as the
ratio of area covered by the AAPs to the given desired area, is maximized. We consider
an equal coverage region for all the AAPs with optimal radius Ra = hmincot(φ(δo)).
We propose a multi-level regular polygon-based placement algorithm to determine the
optimal horizontal positioning of the AAPs in the desired area. In the first level of
Algorithm C.1, Na,1 AAPs with non-overlapping coverage areas are placed along the
boundary of the desired area. In the next level, Na,2 AAPs are placed along the bound-
ary of the void circle, of radius R2, formed at the center of the desired area after the
first level arrangement. The Na,l value is determined by Proposition C2.

Proposition C2. The maximum number of non-overlapping circles, Na,l(≥ 3), of ra-
dius Ra that can be placed along the boundary of a larger circle of radius Rl should
satisfy the following inequality:

Na,l

[
π + α(1 + secθ)2 −

√
3(π + 2α

π
)− θ

]
≤ πR2

l
R2

a
, (C.15)

where α =
(π

2 − θ
)

and θ = (Na,l − 2)π
2Na,l

are the angles associated with the polygon
whose vertices are the center of the AAPs coverage regions as marked in Figure C.1.

Proof. Consider Figure C.1; the void around a circle along the boundary of the desired
area is given by

VEdge = AABODEFA −ABFDOB,

= R2
a

[
α (1 + secθ)2 − tanθ −

√
3 (π + 2α)

π

]
, (C.16)

in which ABFDOB is the space claimed by the sector BFDOB of angle π + 2α [11]; the
void at the center of the desired area is given by

Vcenter = R2
atanθ︸ ︷︷ ︸

ABODCB

− R2
aθ.︸︷︷︸

ABODGB

(C.17)

The inequality (C.15) is based on the constraint that the sum of areas covered by Na,l
AAPs and the void area should be less than the desired area.
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Algorithm C.1: Multilevel regular polygon based AAP placement algorithm.
1 Input:Ra, R, l = 1;
2 Find Na,l using (C.15) with Rl = R;
3 while (1) do
4 l = l + 1;
5 if {[R− 2(l − 1)Ra] ≥ 2.1547Ra} then
6 Find Na,l using (C.15) with Rl = R− 2(l − 1)Ra;
7 else
8 break;

9 if (Rl ≥ Ra) & (Rl < 2Ra) then
10 Na,l = 1;
11 if (Rl ≥ 2Ra) & (Rl < 2.1547Ra) then
12 Na,l = 2;
13 Output: Obtain the horizontal coordinates of the AAP location using Na,l

value.

In each level of the AAP placement, the packing density maximization problem can
be equivalently modeled as

(C:P2) : maximize
~Rj ,j∈{1,...,Na,l}

Na,lR
2
a

R2
l

, (C.18)

s.t.
∥∥∥~Rj − ~Rk

∥∥∥ ≥ 2Ra ∀ j 6= k ∈ {1, ..., Na,l} , (C.19)∥∥∥~Rj∥∥∥+Ra ≤ Rl ∀ j ∈ {1, ..., Na,l} , (C.20)
Rl ≥ Ra = hmincot[φ(δo)], (C.21)

where ~Rj is the vector representing the location of the center of the coverage region of
the jth AAP in the given geographical area. The maximum packing density is achieved
when the AAPs coverage areas are non-overlapping and lie inside the desired area, and
the voids between the coverage area are minimized. The constraint (C.19) guarantees
the zero overlapping between the AAPs coverage areas; (C.20) restricts the center of
the AAP coverage region to be inside the void area. The constraint (C.21) restricts
the minimum geographical area to be covered greater than the coverage region of a
single AAP. (C:P2) takes the form of a circle packing problem [11] and is solved using
Algorithm C.1. In Algorithm C.1, (C.19) is satisfied by placing the center of the inner
circles of radius Ra on the vertices of a regular polygon of Na,l sides of side length equal
to 2Ra so that the tangency between the inner circles is achieved. The maximum value
of Na,l satisfying (C.15) maximizes the objective function of (C:P2) while satisfying
(C.20); Na,l ≥ 3 implies Rl ≥ Ra(1 + sec30o) = 2.1547Ra.

In step 2 of Algorithm C.1, the maximum number of non-interfering circles, Na,1,
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Fig. C.2: GEE variation with the hovering altitude.

that can be placed along the boundary of the desired area is determined using (C.15).
In step 5, if the void formed at the center of the desired area after the lth level circle
arrangement contains a circle of radius R − 2lRa ≥ 2.1547Ra, then in the next level,
Na,l+1 circles can be placed in the center, where Na,l+1 is determined using (C.15)
with Rl+1 = R − 2lRa. This multilevel circle packing continues until the maximum
radius of the void circle at the center of the desired area is less than 2.1547Ra. In
the lth level, the coordinates of the horizontal location of the AAPs, which is same as
the coordinates of the vertices of the regular polygon of Na,l sides can be obtained as[
R
′cos

(
2πm
Na,l

)
, R
′sin

(
2πm
Na,l

)]
where R′ = R− l(l + 1)Ra

2 , m ∈ {0, 1, .., Na,l − 1}.

3 Simulation Result and Analysis
In this section, we provide some representative simulation results in support of our anal-
ysis. The considered simulation parameters are g0 = 1.42 × 10−4, ηl = 0.1dB, ηnl =
21dB, a = 4.88, b = 0.43 [7], W = 20MHz,M = 6, PC = 5W, T = 500s, Pmax =
1mW, hmax = 300m, hmin = 15m, αcl = 315, βcl = −211.261, αho = 4.917, βho = 275.204
[2].

Figure C.2 contains the plots of the GEE with the hovering altitude of the AAP. The
negative slope of the plots with non-zero AAP energy consumption (Ea 6= 0) verifies
the monotonically decreasing nature of the GEE with the hovering altitude. This is
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because an increase in the number of UEs covered is highly compensated by an increase
in the communication-related and AAP energy consumption. As seen in Figure C.2, in
low signal-to-noise ratio (γ = Pa/σ

2
0W ) regions, with the energy consumed by the aerial

vehicle Ea = 0, the GEE remains constant in low altitude region and then decreases
leading to an error in determining the optimal hovering altitude. Since Ea(ha) >> Edata
in low UE density regions, the exclusion of aerial vehicle’s energy consumption while
defining the GEE will results in a non-optimal solution. On the other hand, with non-
zero Ea, the GEE is a decreasing function of altitude. This explains the significance of
Ea in the energy-efficient placement of AAPs, a novel aspect of this letter.

Figure C.3 shows the variation of the GEE with different Pl threshold δ, for a given
AAP hovering altitude. Because of the saturation of Pl, and the proportional decrease
in the number of covered UEs and the total transmit power, all the plots of Figure C.3
saturate after a particular φ(δ) value. The saturation point shifts towards the left with
non-zero Ea value, because of the additional energy term in the denominator of the
GEE.

Figure C.4 gives the maximum packing density that can be achieved for the different
radii of the desired area. It is observed that using Algorithm C.1, for R = 180.48m
(Na,1 = 6, Na,2 = 1), a packing density almost equal to the Groemer’s upper bound on
the maximum density of packing of n equal circles in a circle [11] is achieved, For the
remaining higher R values, the AAPs placed using Algorithm C.1 covers around 78 %
of the desired area.

Figure C.5 shows the sample multi-level AAP placement pattern obtained through
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Fig. C.5: Horizontal Positioning of AAPs.

Algorithm C.1 for two different values of the desired area. Considering the origin as the
center of the desired area, for R = 180.48m, the center coordinate set of the AAPs placed
in the first level, forms the vertices of a regular hexagon and the next level contains a
single AAP placed directly above the center of the desired region providing the packing
density of 78.96%. For R = 252.68m, the first level of AAP placement follows an
octagon, whereas the second level of AAP placement follows an equilateral triangle
covering 68.44% of the desired area. The packing density can be further improved by
controlled overlapping between AAP coverage regions.

4 Conclusion
In this letter, we proposed the 3-D placement of a set of AAPs deployed for an energy-
efficient uplink communication considering the inter-cell interference and AAP energy
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consumption. The energy-efficient hovering altitude of AAPs is analytically derived and
the optimal horizontal positioning problem takes the form of a circle packing problem
for maximum packing density, and solved using the multilevel regular polygon-based
placement algorithm. The extension of our analysis to a downlink UAV-communication
with non-uniformly distributed UEs along with the full coverage of the desired area by
controlled overlapping between AAP coverage regions is left as future work.
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Abstract
This work proposes a methodology for the energy-and cost-efficient 3-D deployment of an
unmanned aerial vehicle (UAV)-based aerial access point (AAP), that exchanges a given
amount of independent data with a set of ground user equipment (UE). Considering
a fly-hover-communicate transmission scheme, the most energy-efficient 3-D hovering
points (HPs) of the AAP are determined by decoupling the problem in the horizontal
and vertical dimensions. First, we derive analytically the optimal hovering altitude
that jointly maximizes the downlink and uplink global energy efficiency (GEE) of the
system. Next, we propose the multilevel circle packing (MCP) algorithm to determine
the minimal number of HPs and their associated horizontal coordinates, such that the
AAP covers all the UEs in the given geographical area. A cost analysis is carried out
to observe the variation of both fixed and variable costs; these are then minimized by
suitably selecting the AAP’s battery parameters, like the depth of discharge (DOD),
defined as the portion of battery capacity that is consumed during a discharge cycle, and
the velocity of the UAV. Simulation results show that: the UAV energy consumption has
a significant impact on the 3-D HPs of the AAP; the time spent during the substitution
swap of an out of power AAP has a major influence on the operational cost; the cost of
the system can be optimized by suitably selecting the onboard battery and the UAV flight
parameters.

1 Introduction
The use of unmanned aerial vehicles (UAVs) deployed for providing temporary telecom-
munication services in a disaster-affected area or a special situation event is considered
as an important application of the 5G and beyond technology [1], [2]. The mobile feature
of UAV-based communication systems provides opportunities for better communication
channels to the UEs as compared to conventional systems. The improved channel gain is
due to the higher line-of-sight (LoS) probability [4], shorter distance between the aerial
access point (AAP) and the pieces of user equipment (UEs), and ability to choose a
preferred link. On the other hand, the service time of a UAV-based AAP is determined
by the available onboard energy. Due to this energy constraint, the deployment of the
AAP should be done in an energy-efficient way to maximize the number of bits trans-
mitted per Joule of energy consumed, as captured by the global energy efficiency (GEE)
of the network [3]. As defined in [3], the GEE of an aerial communication network is the
ratio of the sum rate in bits per second to the total power consumed. The total power
consumed is the sum of the communication-related power and the power required by
the UAV for flying and hovering.

The placement optimization of a UAV-based base station with the objective of op-
timizing communication-related parameters, such as sum rate and coverage, is well
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investigated in the literature. For instance, the authors of [4] present an analytical
approach to optimize the altitude of a UAV-based base station for a given maximum
allowed path loss. A joint altitude and beam-width optimization for throughput max-
imization is considered in [5]. A method to find the optimal 3-D location of a UAV
base station is developed in [6], which maximizes the coverage region and optimizes the
transmission power. In [7], the authors have developed a learning-based Intent-aware
Upper Confidence Bound (IUCB) algorithm that could be used for offloading tasks in
an air-ground integrated vehicular edge computing system. Works studying the deploy-
ment of a multi-UAV system for optimal wireless coverage and throughput maximization
include [9], [10]. The work in [8] maximizes the revenue of the mobile crowd-sensing
(MCS) carrier and the UAV via a joint optimization of route planning and task assign-
ment subject to practical constraints of battery capacity and sensing latency. A 3-D
deployment plan for a flying base station that serves the users according to their service
requirements is presented in [11]. The placement optimization of dynamic standalone
drones equipped with a steerable antenna is proposed in [12].

In [13], the authors maximize the minimum average rate and individual uplink
energy-efficiency of multiple ground nodes supported by a UAV. The works [17], [18]
maximize the downlink GEE of a UAV-based communication system flying at a con-
stant altitude using the sequential convex programming-based trajectory optimization
techniques. The trajectory optimizations considered in [14], [15], and [16] maximize the
downlink throughput. In our previous work [3], we have determined the energy-efficient
hovering altitude for a standalone AAP deployed for orthogonal downlink broadcast
transmission. In another work [19], we have optimized the 3-D locations of a multi-
UAV system which maximize the uplink GEE of the system in the presence of inter-cell
interference. A detailed survey on the works that consider energy-efficient UAV deploy-
ment is available in [20].

Besides the placement optimization of the AAP, cost minimization is of great im-
portance for the effective deployment of the aerial communication network. In order
to minimize the installation cost of UAVs and charging stations, an efficient mixed-
infrastructure placing was proposed in [21]. In [22], an economic analysis aimed at
optimizing both coverage and capital cost is carried out, while [23] provides a novel
technical solution for a sensor network and provides information on the price of all its
components. However, the capital cost is just one part of the total expenses, which
depend on how the system operates: parameters such as the number of UAVs, the UAV
swap time, and the depth of discharge (DOD) need to be optimized.

The works [4]- [16] position UAVs for optimizing communication-related parameters
such as sumrate, transmit power, or coverage region without considering the energy-
consumption factors of the UAVs. [13], [17], and [18] maximize the GEE by considering
a simple line-of-sight (LoS) single UAV system. Furthermore, from [20], none of the ex-
isting works, to the best of our knowledge, have considered a UAV placement problem
that jointly maximizes the uplink and downlink GEE by considering both the com-
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munication and UAV-related energy consumption factors. Moreover, the UAV energy
consumption models used are not directly applicable to a multi-rotor UAV-based system.
In addition to this, operational cost minimization by optimizing the system parameters
of a UAV network has, to the best of our knowledge, not yet been considered in the
literature.

1.1 Main Contributions and Paper Organization
The work proposes an energy- and cost-efficient rotary-wing UAV-assisted aerial com-
munication network deployed to provide temporary service to a set of ground UEs. The
main contributions are:

• We propose and use hovering and flying power consumption models that apply
to any multi-rotor UAV. The power consumption models used in [17] cannot be
applied directly to a multi-rotor UAV since they are based on the axial momentum
theory applied to a single-rotor UAV.

• The altitude and beamwidth optimization considering both the communication-
related and UAV energy consumption factors that maximize both the uplink and
the downlink GEE has, to the best of our knowledge, not been investigated in the
literature.

• A general framework for the optimal horizontal positioning of UAV in a target area
is proposed through the polynomial-time complex multi-level circle packing (MCP)
algorithm. The algorithm applies to the maximization of different objectives in
which the coverage radius depends on the objective function to be maximized. We
consider the GEE as the performance matrix and determine the UAV coverage
radius which maximizes both the uplink and downlink GEE of the system.

• A detailed economic analysis of the aerial network is provided; furthermore, the
operational cost minimization by optimizing the number of UAVs, the UAV swap
time, the UAV flying velocity, and the depth of discharge of the UAV battery has,
to the best of our knowledge, not yet been considered in the literature.

Section 2 describes the system setup and assumptions taken for this study, while in
subsection 2.3, we derive the expression to estimate the power consumed by a multi-
rotor UAV during its hovering, horizontal and vertical movements. The optimal altitude
and beamwidth that maximize both the uplink and the downlink GEE are determined
in Section 3.1 and Section 4, respectively. Using the optimal altitude and beamwidth
determined from Section 3.1, in Section 3.2 we propose a general framework for deter-
mining the minimum number and location of hovering points (HPs) to cover all the
UEs in a given geographical region, using a polynomial-time complex MCP algorithm.
The different factors that affect the deployment and operational cost of the considered
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Fig. D.1: System setup.

network are discussed in Section 41. The annualized cost of the system is minimized
by suitably selecting the onboard battery parameter and the optimal horizontal flying
velocity of the UAV. A detailed discussion of the main findings and the future scopes
of work are provided in Sections 5 and 6. In this paper, boldface lowercase letters are
used to denote vectors.

2 System Modelling and Definitions
We consider a delay-tolerant network consisting of a set of uniformly distributed UEs
with a density of λuUEs/m2 over a circular geographical area of radius R m. We assume
that each UE needs to send/receive data bits to/from the AAP every Tn seconds (s).
Our objective is to deploy a single moving AAP in an energy- and cost-efficient way
so that all the UEs are served by the AAP once every Tn s. In order to do so, the
AAP will follow a fly-hover-communicate protocol, meaning it will fly from one HP to
another, hovers for the time needed to exchange the data packets, then moves on to the
next destination as shown in Fig. D.1. The AAP is deployed to serve the UEs for tmiss
hrs/day and, if the active time (tactive) of the serving-UAV is less than tmiss, then the
idle UAV will replace the out-of-power UAV while the latter descends to recharge.

1This work considers the GEE HPs determination problem and the DOD optimization problem not
jointly, but sequentially; the later one takes the set of energy-efficient HPs as the input to find the
cost-efficient DOD.
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We assume the AAP is equipped with a directional antenna with the antenna gain
in the direction (ε, κ, ) given by,

Ga =
{

Go

θ2 −θ ≤ ε ≤ θ,−θ ≤ κ ≤ θ,
g ≈ 0 otherwise,

(D.1)

where Go ≈ 2.2846 [5], and since the side lobe gain of the antenna is assumed very small
compared to the main lobe gain, we can also assume g ≈ 0. The half-power beamwidth
of the antenna in the elevation and the azimuth plane is 2θ. The UEs are equipped
with an omnidirectional antenna of unitary gain. Hence the coverage area of a single
AAP hovering at an altitude ha will be a circular region of radius Ra = hatanθ as
shown in Fig. D.1. In addition, we assume an orthogonal multiple access transmission
scenario between the AAP and its served UEs, where each UE in the geographical area
is allocated a fixed bandwidth (e.g., in a narrowband frequency division multiple access
system [26]).

The line-of-sight (LoS) and non-LoS (NLoS) air to ground channel links are consid-
ered to model the probabilistic mean path loss between the AAP and the UEs [4], given
by [19]:

Li = Pl(φi)×
d2
i η

2
l

go
+ (1− Pl(φi))×

d2
i η

2
nl

go
, (D.2)

= d2
i

go

[
Pl(φi)

(
η2

l − η2
nl
)

+ η2
nl
]︸ ︷︷ ︸

Lm(φi)

, (D.3)

where Pl(φi) = 1/ {1 + a exp [−b(φi − a))]} is a modified Sigmoid function that closely
represents the LoS probability between the AAP and the ith UE located at a distance
of ri from the center of the AAP coverage area, corresponding to an elevation angle
of φi = (180/π)tan−1(ha/ri) with the AAP hovering at an altitude ha; the parameters
a and b are directly linked to the environment variables such as the mean number of
buildings, their height distribution, and the ratio of built-up land area to the total
land area using the two variable surface fitting [4]; go is the channel gain at a reference
distance of 1m; di =

√
r2
i + h2

a. Since the work considers the planning phase of the AAP
deployment, we consider long term channel random variation rather than the small scale
fading component [4], [6], [19]; ηl and ηnl are the mean values of the excess loss due to
the man-made structures associated with the LoS and NLoS links, respectively.

2.1 Downlink Data Rate
Consider an AAP deployed to send independent information to a set of UEs through
orthogonal channels be hovering at the HP1 position as shown in Fig. D.1. The equiv-
alent average SNR defined as the ratio of average received signal power to the noise
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power, received by a UE located at a distance of ri from the center of the coverage
region is γd

i = GaP
d
i

Γiσ2Li
; Γi ≥ 1 represents the gap between the channel capacity and the

achievable rate due to the practical coding scheme and modulation scheme used; σ2 is
the variance of the zero-mean additive white Gaussian noise; P d

i is the power allocated
for the ith UE. Hence the corresponding achievable data rate of the UE in bits per
second is given by:

Sd
i = Blog2

(
1 + γd

i

)
, (D.4)

where B is the bandwidth allocated to each UE. The average sum rate, Sd, defined as
the expectation of the sum of the achievable rate by all the UEs in the AAP coverage
area is obtained by taking an expectation over the uniformly distributed UEs with a
density λu:

Sd = Bλu

∫ Ra

0
2πSd

i ridri, (D.5)

where Ra = hatanθ. The integral in (D.5) is difficult to evaluate because of the excess
path loss factor, Lm(φi). Since the LoS probability is a decreasing function of ri, we
approximate Pl(φi) ≈ Pl(φedge)∀i, where Pl(φedge) is the LoS probability of the edge
UE [19] with φedge = 90o − θ (in deg). Thus the average rate value evaluated using
(D.5) with Lm(φi) = Lm(φedge)∀i is the lower bound of the actual rate value expressed
as,

Sd = 2πλuB

∫ Ra

0
log2

(
1 + G

′

(r2
i + h2

a)

)
ridri, (D.6)

= B
′
(
G
′
+ h2

asec2θ
)
log(G

′
+ h2

asec2θ)

− B
′
(
G
′
+ h2

a

)
log(G

′
+ h2

a)

− B
′ [(

h2
asec2θ

)
log(h2

asec2θ)− h2
alog(h2

a)
]
, (D.7)

where G′ = GaP
d
i go

Γiσ2Lm(θ) , B
′ = Bπλulog2e.

2.2 Uplink Data Rate
A different deployment scenario in which the AAP hovering at HP1 of Fig. D.1 is
deployed to collect independent data from a set of ground UEs is considered in this
section. We consider the uplink power control implemented according to the 3GPP
technical report [24], through which each UE chooses its uplink transmit power so that
the received SNRs at the AAP from all the UEs in the coverage region are equal. Hence,
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the average transmit power chosen by a UE located at a distance of di from the AAP
location in the uplink power control scheme is represented in its basic form as P u

i = PaLi;
where Pa is the target power to be received at the AAP. Because of the uplink power
control, the received SNR from all the UEs will be the same: γu

i = GaPa

Γiσ2 and the uplink
data rate will be different from the downlink data rate:

Su
i = Blog2 (1 + γu

i ) . (D.8)

In addition to this, all the UEs lying in the coverage area of the AAP will have the same
data rate given by (D.8); hence the sum of the data rate is given by,

Su = Bπλuh
2
atan2θSu

i . (D.9)

2.3 UAV Power Consumption Model
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Fig. D.2: Forces acting on a multi-rotor UAV (NR = 4).

The UAV carrying the radio access node ascends vertically to a HP, hovers there,
and then moves horizontally from one HP to another. In this section, we provide the
general expressions to calculate the total power consumed by a UAV during its hovering,
horizontal and vertical movements. The definitions and values of all the variables used
in this section are given in Table D.1. From the free-body diagram, as shown in Fig.
D.2, of the considered multi-rotor UAV,

NR∑
n=1

Fn −W = 0. (D.10)

The total power consumed by the UAV during its horizontal flying from one HP to
another, as shown in Fig. D.1, is derived using the axial momentum theory [17], [30].
Applying (D.10) in (67) of [17], the power required for forward flight, by assuming
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Table D.1: UAV Parameters [30].

Label Definition Value
W Weight of the UAV in Newton 35.28 N
NR Number of rotors 4
Fn Upward thrust by the nth rotor -
v UAV’s horizontal flying velocity -
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.2113 m2

ρ(ha) Air density -
CD Drag Co-efficient 0.022
Ar Rotor disc area 0.083 m2

∆ Profile drag coefficient 0.012
s Rotor solidity 0.05

identical rotors (Fn = F ∀n), is given by,

Phfly(v) = NRPb

(
1 + 3v2

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2CDAfρ(ha)v3︸ ︷︷ ︸

Pfuselage

+ W

(√
W 2

4N2
Rρ

2(ha)A2
r

+ v4

4 −
v2

2

)1/2

︸ ︷︷ ︸
Pinduce

, (D.11)

where Pb = ∆
8 ρ(ha)sArv

3
tip, ρ(ha) = (1 − 2.2558.10−5ha)4.2577. Pblade and Pfuselage

are the powers required to overcome the profile drag forces of the rotor blades and
the fuselage of the aerial vehicle that oppose its forward movement, respectively, while
Pinduce represents the power required to lift the payload. The hovering power is obtained
by substituting v = 0 in (D.11):

Phov(ha) = NRPb + W 3/2√
2NRρ(ha)Ar

. (D.12)

Using (12.35) of [30], the power required by the aerial vehicle to climb vertically with a
rate vc m/s is expressed as,

Pvfly = W

2

(
vc +

√
v2

c + 2W
NRρ(ha)Ar

)
+NRPb. (D.13)

The effect of reduced air density at higher altitudes, which demands additional force to
the propeller of the UAV, is captured by modeling the hovering power as an increasing
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Fig. D.3: UAV Power consumption components.

function of the altitude, as reported in (D.12). It is known from (D.11) that the drag
forces are increasing functions of v, and are the power components that oppose them.
On the other hand, the Pinduce is a decreasing function of v; hence, there exists an
optimal velocity that minimizes Phfly(v), as shown in Fig. D.3.

3 Energy Efficient Hovering Points
In this section we find the energy-efficient 3-D HPs of the AAP in the given geographical
area which maximize the uplink and the dowlink GEE subject to minimum Quality-
of-Service (QoS), altitude, and power constraints. The corresponding downlink GEE
maximization problem is formulated as follows:

(D:P1) : maximize
{qa,j}

∑
j∈A

αj
∑
i∈U

thβ
j
i S

d
i∑

j∈A
th

(
Phov(ha) +

∑
i∈U

βjiP
d
i

)
+ tfPfly(v)

,

s.t. hmin ≤ qa
v,j ≤ hmax, ∀j ∈ A, (D.14)

Sd
i ≥ Sd

o ∀i ∈ U , (D.15)∑
i∈U

βjiP
d
i ≤ P d

max ∀j ∈ A, (D.16)∑
j∈A

βji = 1 ∀i ∈ U , (D.17)

‖qa
h,j − β

j
i q

ue
h,i‖ ≤ |qa

v,j | tanθ ∀j ∈ A. (D.18)
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The numerator of (D:P1) is the sum of the data rate of all the UEs in the given geo-
graphical area. The binary indicator variable αj is equal to 1 if the AAP is hovering at
the jth HP with coordinates (qa

h,j , q
a
v,j), or to 0 otherwise; βji is equal to 1 if the ith UE

located at (que
h,i, 0) is covered by the AAP while hovering at the jth HP; A and U are

the sets of the HPs and UEs, respectively. (D.14), (D.15), and (D.16) are the altitude,
QoS and power constraints; hmin and hmax are the minimum and maximum permitted
AAP altitudes. (D.17) expresses that each UE should be covered by the AAP while
hovering at any of the |A| HPs. (D.18) is the coverage region constraint that couples
the horizontal and vertical coordinates of a HP. The denominator of the ratio in (D:P1)
is the sum of the hovering and the flying energy consumption, with th and tf being the
hovering time at a HP and the total flying time respectively. (D:P1) has the form of a
mixed-integer non-linear fractional problem (MINLFP), which is exponentially complex
to solve due to the constraint (D.18). Considering the uplink GEE to be jointly maxi-
mized with the downlink GEE would enhance the complexity further; hence we decouple
the AAP placement problem in the vertical and horizontal dimensions [5], [19].

3.1 Optimal Vertical Coordinates of the Hovering Points
The energy-efficient hovering altitude of the AAP considering both the uplink and down-
link communication between the AAP and the UEs is analytically derived in this section.
Here we consider the instant in which the AAP is hovering at HP1 as shown in Fig.
D.1 with 3-D coordinates (qa

h,1, q
a
v,1) = (0, 0, ha). The problem that finds the optimal

altitude that maximizes both the uplink and downlink GEE of the considered aerial
communication network subject to the altitude, power, and QoS constraints can be
formulated as,

(D:P2) : maximize
ha

(GEEd,GEEu) ,

s.t. hmin ≤ ha ≤ hmax, (D.19)
Sd
i ≥ Sd

o ;Su
i ≥ Su

o ∀i : ri ≤ Ra, (D.20)
P d
t ≤ P d

max, (D.21)
P u
i ≤ P u

max ∀i : ri ≤ Ra, (D.22)

where, GEEd = Sd/P
d
t and GEEu = Su/P

u
t are the uplink and downlink GEE of the

system, respectively, with P d
t , P u

t being the respective total downlink and uplink AAP
power consumption while hovering, expressed by (D.23) and (D.24):

P d
t = πλuh

2
atan2θP d

i︸ ︷︷ ︸
Pd

com

+Phov(ha), (D.23)

P u
t = 2πλuPaLm(θ)tan2θh4

a[tan2θ + 2]
4go︸ ︷︷ ︸
Pu

com

+Phov(ha), (D.24)
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where P d
com and P u

com are the respective total communication-related power consumption
values; P u

com of (D.24), is obtained by averaging the power profile over a uniform dis-
tribution of density λu, with the approximation Lm(φi) ≈ Lm(φedge) ∀i : ri ≤ Ra [19].
(D.19) and (D.20) are the altitude and QoS constraints with Sd

o , S
u
o being the respective

minimum downlink and uplink data rates in bps; (D.21) and (D.22) are the total down-
link and individual UE uplink power constraints. Considering the edge UE (ri = Ra),
the uplink QoS constraint becomes Pa = δuΓiσ2/Ga; furthermore, the downlink QoS
constraint, (D.20), and the power constraints, (D.21) and (D.22), can be equivalently
represented as the altitude constraints in (D.25), (D.26), and (D.27):

ha ≤ hd
max,δd = cosθ

√
G
′

δd
, (D.25)

ha ≤ hd
max,P =

√
P d
max − Phov

πλutan2θP d
i

, (D.26)

ha ≤ hu
max,P = cosθ

√
goP

u
max

PaLm(θ) , (D.27)

where δd = 2Sd
o /B − 1 and δu = 2Su

o /B − 1. Hence, (D:P2) can be reformulated as

(D:P2.1) : maximize
ha

(GEEd,GEEu) ,

s.t. hmin ≤ ha ≤ min
{
hmax, h

d
max,δd , h

d
max,P, h

u
max,P

}
.

(D.28)

Proposition D.1. For given θ, Sd
o , and Su

o values;
Statement A: The GEE of the system considering the downlink communication between
the AAP and the ground UEs lying in the AAP coverage region is an increasing function
of the hovering altitude.
Statement B: The GEE of the system considering the uplink communication between the
AAP and the ground UEs lying in the AAP coverage region is an increasing function of
the hovering altitude.

Proof. The derivative of the numerator and the denominator of the downlink GEE with
respect to ha are given by:

S
′

d
2haB

′ = sec2θlog
(
G
′ + h2

asec2θ

h2
asec2θ

)
− log

(
G
′ + h2

a
h2

a

)
,

(D.29)
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P
′d
t = 2πλuhatan2θP d

i + P
′

hov(ha), (D.30)

where P ′hov(ha) = NR
∆
8 ρ
′(ha)sArv

3
tip −

W 3/2ρ
′(ha)√

8NRArρ3/2(ha)
with ρ′(ha) = −9.6.10−5(1−

2.2558.10−5ha)3.2577. Hence the derivative of the downlink GEE with respect to ha is

(
P d

t
)2(Sd

P d
t

)′
= S

′

dP
d
t − P

′d
t Sd,

> 0 ∀h ∈ {hmin, hmax} . (D.31)

The increasing nature of the uplink GEE with respect to ha can be proved using
similar steps used in the proof of Statement A with the following numerator and de-
nominator derivatives:

S
′

u = 2Bπλutan2θSu
i ha, (D.32)

P
′u
t = 2πλuPaLm(θ)tan2θ[tan2θ + 2]h3

a
go

+ P
′

hov(ha). (D.33)

Thus, by Proposition D.1, the globally energy-efficient hovering altitude for the AAP
that maximizes both the uplink and downlink GEE (the objective function of (D:P2) )
is hopt = min

{
hmax, h

d
max,δd , h

d
max,P, h

u
max,P

}
.

Optimal Beamwidth

For a given altitude, both the uplink and downlink GEE of the system vary with the
beamwidth of the antenna at the UAV. As the beamwidth increases, the coverage area
increases, the effective antenna gain given by (D.1) decreases, and the additional path
loss factor, Lm(θ), increases. Here we find the optimal beamwidth that jointly maximizes
the uplink and downlink GEE of the system.

Proposition D.2. For a given QoS constraint, the uplink-GEE is an increasing func-
tion of the beamwidth.

Proof. The derivative of the uplink sum rate is given by:

dSu

dθ
= 2Bπλuh

2
atanθsec2θlog2 (1 + δu) > 0. (D.34)

Since P u
com << Phov(ha), P u

t ≈ Phov makes the denominator of the uplink GEE an
independent function of θ. Hence, the optimal beamwidth that maximizes the uplink-
GEE of the considered system is θu

opt = θmax.
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Using (D.7) and P u
t ≈ Phov, it can be pointed out that the downlink GEE is neither

an increasing function nor a decreasing function of θ. Hence, for a given hovering
altitude, the optimal θ that maximizes the downlink GEE can be determined using the
ternary search method, as detailed in Algorithm D.1. Therefore, the antenna beamwidth

Algorithm D.1: Optimal Beamwidth.
1 Input: θmin,θmax;
2 Take any two points θ1, and θ2 : θmin < θ1 < θ2 < θmax. Calculate

GEEd(θmin), GEEd(θ1), GEEd(θ2), GEEd(θmax);
3 if GEEd(θ1) < GEEd(θ2) then
4 θopt 6∈ [θmin, θ1):θmin = θ1;
5 if GEEd(θ1) > GEEd(θ2) then
6 θopt 6∈ (θ2, θmax, ]:θmax = θ2;
7 if GEEd(θ1) == GEEd(θ2) then
8 θmin = θ1; θmax = θ2;
9 Repeat Step 2 to Step 7 until |θmin − θmax| ≤ ψ.

10 Output: θd
opt = θmin.

that maximizes both the uplink and the downlink GEE is θopt = min(θu
opt, θ

d
opt). Hence,

the corresponding radius of the coverage region is given by Ropt = hopttanθopt.

3.2 Optimal Horizontal Coordinates of the HPs
In this section, we determine the horizontal coordinates of the optimal HPs for the AAP({

qa
h,j
})

so that all the UEs in the given geographical region will be covered by the AAP
once every Tn s. The vertical coordinate of all the HPs will be equal to the optimal
altitude determined from Section 3.1, i.e. qa

v,j = hopt ∀j ∈ A. Since the coverage region
of the considered AAP is circular in shape, a full coverage of the given area is only
achievable through the controlled overlapping among the coverage regions centered at{(

qa
h,j , 0

)}
. The two main related challenges are finding the minimum number of HPs

and their horizontal coordinates so that the given area is fully covered. We propose a
MCP algorithm for doing so, using the circle packing theory. With the optimal coverage
radius Ropt from Section 3.1, the problem takes the form of a circle packing problem, in
which the given circle of radius R needs to be covered by smaller circles of radius Ropt.
A regular-pentagon-based 5-circle packing pattern is considered in the proposed novel
MCP algorithm. As shown in Fig. D.7, the 5-circle packing covers a circle of radius
ΛRopt by placing five equi-radius smaller circles of radius Ropt about the center of the
larger circle, where Λ = 1.618 is the golden ratio [25]. The smaller circles are placed
according to the solution of the 5-disks problem, which guarantees the least overlapping
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between the adjacent circles [25]. The centers of the smaller circles arranged this way
form the vertices of a regular pentagon of side length 2sin(36o)Λ Ropt, with vertices
located at

{
(xlk, ylk)

}
where,

xlk = xl−1 +Rlcos
(

2πk
5

)
for k ∈ {0, 1, ...4} , (D.35)

ylk = yl−1 +Rlsin
(

2πk
5

)
for k ∈ {0, 1, ...4} , (D.36)

with (xl−1, yl−1) as the center of the pentagon and Rl = Ropt. Thus, to cover a circular
region with R > ΛRopt, we initially place this 5-circle pattern in multiple levels as shown
in Fig. D.4, and then the radius of each circle is adjusted according to the farthest UE’s
position in the circle.

Proposition D.3. Using the multi-level 5 circle packing method, the maximum number
of HPs required to cover a given circular region of radius R by a fly-hover communicating
AAP with a coverage radius of Ropt is given by 5Mp , whereMp =

⌈
1

log2(Λ) log2

(
R

Ropt

)⌉
.

Proof. According to the multi-level 5 circle packing method, the radius of the circle to
be covered in each level is 1/Λ times the radius of the circle of the previous level. This
multi-level packing continues until the radius of the circle to be covered is less than or
equal to the coverage radius of the AAP, giving the inequality:

R
1

ΛMp
≤ Ropt. (D.37)

Thus, the total number of levels required is given by:

Mp =
⌈

1
log2(Λ) log2

(
R

Ropt

)⌉
. (D.38)

Hence the maximum number of smaller circles (HPs) of radius Ropt required to cover
the given geographical region of radius R by the 5-circle multi-level packing is 5Mp .

MCP Algorithm

The MCP algorithm given in Algorithm D.2 can be grouped into two parts: in the first
part (line 1 to line 10), the locations of the HPs are determined using the multi-level
5-circle packing method; in the second part (lines 11 to 16), the beamwidth of the
antenna at each HP is adjusted based on the UE positions in the coverage area so that
the constraints (D.17) and (D.18) are satisfied. Consider R = 733m, hopt = 102m and
θ = 70o; using (D.38), the total number of circle packing levels required to cover the
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Algorithm D.2: Multilevel circle packing (MCP).
1 Input:Ropt, R, l = 1;
2 Find the number of required levels using (D.38);
3 while l ≤Mp do
4 if l==1 then
5 Find the center of circles using (D.35) & (D.36) with (xl−1, yl−1) = (0, 0)

& Rl = R/Λ;
6 else
7 Rl = Rl−1/Λ
8 For each of the (xl−1

k , yl−1
k ), find the center of 5 circles using (D.35) &

(D.36) with (xl−1, yl−1) = (xl−1
k , yl−1

k );
9 l=l+1;

10 A =
{

(xMp

k , y
Mp

k , hopt)
}
;

11 For each j ∈ A, find the unique set of UEs covered, Uj ;
12 if isempty( Uj) then
13 A = A− {j};
14 else

15 θ(j) = arctan
(

[max(ri), i ∈ Uj ]
hopt

)
;

16 Output:A, the set optimal HPs to cover the UEs in the given geographical
area.
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Fig. D.4: AAP coverage circles positioned using the first part of the MCP algorithm for R = 733m.

given area is 2. As shown in Fig. D.4, in the first level of placement (l = 1), the location
of the centers of 5 smaller circles of radius R1 = R/Λ are determined using step 5 of the
MCP algorithm (A,B,C,D,E of Fig. D.4). In the next level, step 8 is used to determine
the location of the centers of 5 smaller circles of radius R2 = R1/Λ that cover the circle
of radius R1. This step is repeated for each of the 5 determined centers from the first
level. The centers of the smaller circles of radius R2 are the HPs that cover the given
geographical area. As seen in Fig. D.4, the determined HPs lie on the vertices of 5
smaller pentagons with circumcenters A, B, C, D, E. For any given R, this multi-level
circle packing continues until the radius of the circle to be covered is less than, or equal
to, the coverage radius of the AAP, or until l = Mp. In the second part, redundant
coverage of the same UE by multiple HPs and the HPs without any UEs in the coverage
region are removed. The coverage radius associated with each HP is readjusted as the
radial distance of the farthest UE lying in the respective coverage areas by adjusting the
antenna beamwidth using step 15. It should be noted that, with given R and Ropt, the
first part takes a total running time of O [log2 (R/Ropt)] to find the initial set of HPs,

whereas the second part needs to perform a total of
|A|−1∑
f=0

(|A|−f)(|A|−f−1) pair checks

to remove the redundant UE coverage where |A| = 5Mp . Hence the complexity of the
proposed MCP algorithm is, at worst O

[
log2 (R/Ropt) + 5ωlog2(R/Ropt)], a polynomial

quantity of the input parameters R and Ropt; where ω = 2/log2Λ. It should be noted
that this algorithm could maximize different objective functions in which the coverage
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radius of the AAP will be determined by the very objective function. Also, it can be
adapted to different packing patterns by replacing the equations in step 5 and 8.

4 Economic Analysis and Cost Optimisation
In this section, we describe the cost optimization method developed for an aerial network
and the parameters it uses. The total aerial network deployment cost consists of two
parts: a) the cost of purchasing the required number of UAVs and recharging stations,
called the capital cost; b) the maintenance and replacement cost associated with the
long-term operation of the network, represented by the operational cost. The UAV
is equipped with two TB47D LiPo Battery, for a total capacity Ebatt = 199.8 Wh.
Our objective is to minimize the network deployment cost by optimally planning the
operational parameters.

The financial analysis is based on the annualized cost of the system (ACS), defined
as the sum of the annualized capital, maintenance, and replacement costs [27]:

ACS = Ccap,a + Cmain,a + Crep,a. (D.39)

The annualization is needed in order to report different expenses to the same time inter-
val (year of reference) so that expenses happening at different times can be compared.
Ccap,a is given by (D.40), where the capital cost is multiplied by the capital recovery
factor (CRF), i.e., the portion of capital that is paid back every year to the financier:

Ccap,a = (nuCu) + (nsCs)︸ ︷︷ ︸
Ccap

· I (1 + I)lt

(1 + I)lt − 1︸ ︷︷ ︸
CRF

, (D.40)

with Cu and Cs being the purchasing cost per unit of, respectively, UAV and charging
station. The financing method is based on debt, with a duration of 15 years (lifetime of
the system), a nominal interest rate of 4% [28] and an inflation rate of 2%, meaning a
real interest rate I ≈ 2%. ns is the number of charging stations and nu, the number of
UAVs in the system (both active and idle), determined as:

nu =
(
tdead
tactive

+ 1
)⌈

min
(
|A|, tlap(v)

Tn

)⌉
, (D.41)

where tdead represents all the dead time an AAP spends recharging and ascending/de-
scending, as expressed in (D.42); tactive is the total active time of a UAV; tlap(v) is the
time needed to complete a lap, stopping at all the HPs. Given (D.40) and (D.41), for
a low Tn value, the number of UAVs, and thus the capital cost, is determined by the
number of HPs (|A|). Hence, by finding the minimum number of HPs required to cover
all the UEs (Algorithm D.2), we minimize the capital cost. The tdead value is calculated
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assuming a maximum charging power Pch,max, a DOD that can go from 5% to 95%, and
a fixed charging efficiency ηch, as follows:

tdead = EbattDOD
Pch,max

ηch + tex, (D.42)

where tex is the unproductive time spent by the UAV climbing to take its position in the
network and descending for recharge. The cost of the electricity consumed to recharge
the batteries is given by the product of the energy provided by the charging station and
the cost of electricity in the network deployment region (in the UK, Cel = 0.14£/kWh):

Cch = tmiss

tactive
Cel

EUAV(v, ha)
ηch

, (D.43)

where EUAV(v, ha) = |A|thPhov(ha)+tfPhfly(v)+texPvfly and tmiss = 2hr is the duration
of an entire mission. Cmain,a represents both the yearly maintenance cost (assumed equal
to 1% of the capital cost) and the cost of a recharge, adjusted for inflation f after n years
using Cmain,a = (Cch + 1%Ccap) (1 + f)n. The last element of (D.39) is represented by
the annualized cost of battery replacement, Crep,a, calculated using,

Crep,a = Cbat
I

(1 + I)lbat − 1
, (D.44)

with lbat being the lifetime of the battery and Cbat its replacement cost (£155). For
simplicity, the lifetime of the battery is assumed to depend solely on the DOD, and it
is simulated using the model presented in [29], reported in (D.45):

nc = 8.131e4(−0.03809DOD) + 2.151e−8(0.2433DOD). (D.45)

This returns the number of cycles nc a LiFePO4 battery can withstand at a certain
DOD, which is then converted into years using the mission duration and its frequency.

Ccap,a, Cmain,a, and Crep,a can be minimized by suitably selecting the DOD value
and the velocity of the UAV. Ccap,a can be minimized by increasing the DOD, since this
increases tactive. It can be noted that tdead also grows with the DOD, but at a slower rate,
due to the attenuation effect of tex. However, (D.41) is a step function, so the variations
in these parameters do not always affect nu. By (D.43), Cmain,a can be reduced by
increasing tactive through the selection of a high DOD value. On the contrary, since the
lifetime of the battery is increased by a low DOD value, the battery replacement cost
Crep,a can only be minimized by selecting a low DOD value. For a fixed network delay
tolerance, Tn, the UAV velocity affects both the power consumption and the number of
UAVs: though the minimum power consumption is reached at an average speed of 20
m/s (Fig. D.3), the minimum cost is expected to be achieved when the UAV is operated
at its maximum velocity because a higher velocity minimizes the capital cost by reducing
the tlap(v) value. Considering these trade-offs, the values of DOD and horizontal flying
velocity that minimize the ACS will be numerically determined in the next section.
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Table D.2: Simulation Parameters.

Parameter Value Parameter Value
go 1.42× 10−4 B 106 Hz
hmax 120m λu 0.001UEs/m2

δd, δu 9 dB hmin 10 m
Γi ∀i ∈ U 1.2 P d

max 500W
P u
max 1W Cu £2000
Cs £1000 Cbat £155
ηch 0.95 Pch,max 180W
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Fig. D.5: GEE variation with the hovering altitude.

5 Numerical Results and Discussion
In this section, we provide the results of the numerical evaluation in support of our
analysis. The considered simulation parameters are given in Table D.2.

5.1 Energy Efficient Hovering Points
Fig. D.5 shows the variation of the normalized GEE with the hovering altitude for both
the uplink and downlink communication parts, plotted using (D.7), (D.23), (D.9), and
(D.24). The (a, b, ηl, ηnl) parameters used for rural, urban, and dense-urban regions are,
respectively, (4.83, 0.43, 1.01, 11.22), (9.6, 0.16, 1.12, 10), (12.08, 0.11, 1.2, 14.12) [4]. As
proved in Proposition D.1, both the uplink and downlink GEE are increasing functions
of the hovering altitude in the three geographical regions considered. As the altitude
increases, the received SNR at each UE (downlink) decreases because of the increasing di
value. In contrast, the received SNR at the AAP from the UEs (uplink) is independent
of the hovering altitude because of the uplink power control mechanism. Nevertheless, a
higher hovering altitude demands the UEs to transmit more power to deliver the target
power (Pa) at the AAP. However, this increase in the communication-related power
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Fig. D.6: GEE variation with the antenna beamwidth.

consumption is negligible, if compared to the UAV hovering power (Phov(ha))). Both
the AAP coverage area and the UAV power consumption increase with the altitude, but
the effect of the larger area (higher number of covered UEs) is more relevant in both
cases, which makes the downlink and uplink GEE monotonically increasing functions of
the hovering altitude. It should be noted that, in both cases, if Phov(ha) is neglected, the
increase in the communication power becomes significant and the GEE becomes in fact
a decreasing function of the altitude. Thus hopt(Phov(ha) = 0) = hmin, which is not only
energy-inefficient, but also requires more HPs to cover the given area (cost-inefficient).

Fig. D.6 shows the variation of the GEE with half of the half-power beamwidth, θ, in
rural, urban, and dense-urban scenarios. As said in Section 4, the coverage radius is an
increasing function of θ; however, for a given height, Fig. D.6 shows that the downlink
GEE increases with θ up to θd

opt (obtained using Algorithm D.1), then decreases. This
is because the LoS probability is a decreasing function of θ and, after θd

opt, the high
path loss NLoS links become dominant; hence, the gain in sum rate achieved by a
greater number of covered UEs is overcompensated by a drop in the received SNR. On
the other hand, the uplink GEE is an increasing function of θ: because of the power
control mechanism, the uplink sum-rate grows with the number of UEs in the coverage
region, which is, in turn, an increasing function of θ. However, the maximum value of
θ will be decided by the P u

max of the edge UE. Furthermore, the optimal beamwidth
decreases as we move from rural to dense-urban regions due to the presence of taller
and more numerous buildings. In both the uplink and downlink scenarios, the plots
with Phov(ha) = 0 are decreasing functions of θ, forcing the elevation angle between the
UEs and the AAP to be 0o. This means that, with Phov(ha) = 0, the AAP should hover
directly above the UE locations to maximize the GEE. This would be a sub-optimal
result, as the number of HPs would be equal to that of UEs.

Fig. D.8 shows the final HP locations in the given geographical area of R = 453m,
determined using the proposed MCP algorithm of Section. 3.2. The simulation considers
10 UEs randomly distributed in the given geographical area. As explained in Section
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Fig. D.7: AAP coverage circles positioned using the first part of the MCP algorithm for R = 453m.
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Fig. D.8: 3-D HPs using the MCP algorithm for R = 453m.
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3.2 and shown in Fig. D.7, R = 455m requires one level of circle packing. Using the
HPs from the first part of Algorithm D.2 as the input, the second part removes the
redundant coverage of a UE by different HPs and then discards the HPs with no UEs
in its coverage region. As seen in Fig. D.8, each UE is covered by only one of the HPs
and one of these (HP5, in Fig. D.7), having no UEs in its coverage area, is removed,
reducing the total number of HPs from 5 to 4. In addition, the coverage radius, hence
the beamwidth, of each HP is adjusted considering the position of the farthest UE in
each coverage region.

5.2 Cost Analysis Results
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Fig. D.9: Cost evaluation with Tn = 100s and Tn = 10000s.

Fig. D.9 shows the variations of the ACS with the UAVs velocity, the DOD of their
batteries, the hovering altitude, the data packet sizes (D) to be exchanged between the
UAV and the users, and the maximum allowed time between two UAV passages Tn.
The cost analysis is carried out using the set of HPs from the previous section as input.
The hovering time at an HP is determined as the time required to complete the uplink
and the downlink transmission: th=D/S

u
edge +D/Sd

edge. The DOD value that minimizes
the annualized cost of the system described in (D.39) depends on the UAV velocity and
tex. As the curves within the lower black circle in Fig. D.9 show, with a small data size
(50 Mbits) the velocity should be kept just above 17m/s, due to the decrease of tlap(v)
in (D.41), which in turn decreases the number of UAVs. As velocity increases further,
ACS keeps decreasing, albeit with a slowing pace, due to the flying time decreasing,
while the hovering time is constant. At even higher velocity the power consumption
grows, draining the battery quickly enough to require the deployment of extra UAVs
and greater electricity consumption, affecting (D.40) and (D.43), and ultimately the
ACS. If Tn is large enough (curves with triangles in Fig. D.9), then tlap(v)/Tn < 1;
hence, the number of active UAVs does not vary with the velocity. Nevertheless, the
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first component of (D.41) is velocity-dependant, so the total number of UAVs still varies,
although by a small margin. The upper curves in Fig. D.9 show what happens with
larger data size: the hovering time increases, thus the flying time becomes negligible and
so does the velocity, resulting in horizontal curves. These curves also show the effect
of altitude: since every UAV swap represents a waste of energy and time proportional
to tex, which, in turn, has a positive relationship with the altitude, a higher altitude
negatively affects both the number of UAVs and the energy consumption, raising the
cost. This effect is more relevant if the DOD is low, as swaps happen more often. The
negative effect of higher swap frequency is represented by the gap between the black and
the red curve at different altitudes: when the altitude is low (upper black circle) a low
DOD results more advantageous, whereas the opposite is true at a higher altitude (blue
circle). Therefore, the optimal DOD becomes higher as the mission altitude rises. With
reference to (D.39), the trade-off to determine the optimal DOD is between two opposite
forces: maximization of battery lifetime (lbat in (D.44)) with low DOD; minimization
of UAV fleet (nu in (D.41)) and UAV swaps with high DOD. The latter effects become
more relevant as altitude rises, and tex with it. Still, since the two forces are comparable,
the optimal DOD is unlikely to be extremely high or low, and it must be determined as
a function of the given Tn, D, and hopt parameters. With the user distribution shown
in Section 5.1, Tn = 100s, and a data size of 50 Mbits, the overall cost is minimized
when v = 33m/s and the DOD is 50%, resulting in an ACS of £1388.
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Fig. D.10: Capital Cost evaluation with 500 Mbits.

Fig. D.10 shows the variation of Ccap,a with regards to the number of UEs for
different values of R. As seen in the figure, the capital cost depends mainly on the
delay tolerance of the network: for a high Tnvalue, Ccap,a is independent of the number
of UEs or the R-value since a single AAP could fly-hover communicate with the UEs
sequentially. Furthermore, the average number of HPs does not increase linearly with
the number of UEs because of the efficient MCP algorithm. Additionally, for a low Tn
value, Ccap,a increases with a decrease in UE density since it needs more HPs to cover
widely separated UEs. Hence the system is more cost-efficient when it is deployed to
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cover a smaller geographical region with a relatively high number of UEs. The 3-D
trajectory optimization of an AAP that communicates to a set of mobile users [31], [32]
while flying is left for future work.

6 Conclusion
In this work, we carried out a cost and energy optimization of a UAV-based aerial
communication network by taking into account both telecommunications and energy
parameters. Observing that the GEE becomes an increasing function of the hovering
altitude, the 3-D hovering locations of an AAP that maximize the uplink and downlink
GEE are determined using the proposed MCP algorithm. The coordinates generated
this way are used as input for the cost analysis, which calculates the number of UAVs
needed and how deeply they should exploit their batteries (optimal DOD) and flying
parameter (optimal velocity), in order to minimize the annualized total cost of the
system. The optimal DOD showed to have an indirect dependency with the altitude, as
this extends the UAV swap time (tex). The optimal UAV velocity was calculated for a
low data size because its effect becomes less relevant at a higher data size.
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Abstract
In this work, we propose a framework for energy efficient trajectory design of an un-
manned aerial vehicle (UAV)-based portable access point (PAP) deployed to serve a set
of ground nodes (GNs). In addition to the PAP and GNs, the system consists of a set of
intelligent reflecting surfaces (IRSs) mounted on man-made structures to increase the
number of bits transmitted per Joule of energy consumed measured as the global energy
efficiency (GEE). The GEE trajectory for the PAP is designed by considering the UAV
propulsion energy consumption and the Peukert effect of the PAP battery, which repre-
sents an accurate battery discharge profile as a non-linear function of the UAV power
consumption profile. The GEE trajectory design problem is solved in two phases: in the
first, a path for the PAP and feasible positions for the IRS modules are found using a
multi-tier circle packing method, and the required IRS phase shift values are calculated
using an alternate optimization method that considers the interdependence between the
amplitude and phase responses of an IRS element; in the second phase, the PAP flying
velocity and user scheduling are calculated using a novel multi-lap trajectory design al-
gorithm. Numerical evaluations show that: neglecting the Peukert effect overestimates
the available flight time of the PAP; after a certain threshold, increasing the battery
size reduces the available flight time of the PAP; the presence of IRS modules improves
the GEE of the system compared to other baseline scenarios; the multi-lap trajectory
saves more energy compared to a single-lap trajectory developed using a combination of
sequential convex programming and Dinkelbach algorithm.

1 Introduction
An unmanned aerial vehicle (UAV) carrying a radio access node, hereafter referred
to as ‘portable access point’ (PAP), has been envisioned as a viable solution to save
energy or improve user fairness in an Internet-of-Things (IoT) or federated learning
application [1] [3]. Moreover, significant progress has been made in the standardization
efforts of the Third Generation Partnership Project (3GPP) to define the specifications
to utilize aerial platforms for 5G and beyond [2]. The portable feature of a PAP can
improve the communication channels of the users, but it is limited by its finite on-
board available energy. Hence, the deployment of a PAP to serve a set of users should
maximize the number of bits transmitted per Joule of energy consumed, defined as
the global energy efficiency (GEE) of the system [4]. One of the goals of this study is
the maximization of the GEE, which is achieved with a combination of two sub-goals:
decreasing the energy consumption of the PAP while increasing the data rate to users.
The first goal exploits the fact that a UAV consumes less energy when flying horizontally
at an optimal velocity than when it hovers [6], [5]. The data rate to a user is increased by
improving the probability of having a line-of-sight (LoS) channel with the user by flying
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the PAP closer to it [7]. However, this strategy also increases the energy consumption
of the UAV. Moreover, the flight time is reduced further by the Peukert effect [31], [32],
according to which the voltage drop of a PAP’s on-board battery is a non-linear function
of the power output.

Another way of enhancing the received signal power is represented by intelligent
reflecting surfaces (IRSs), a key technology that provides additional paths between the
transmitter and the receiver [25]. An IRS is a two-dimensional surface of a finite num-
ber of elements made of a meta-material whose properties can be reconfigured using a
controller [26]. These elements are sub-wavelength-sized and can apply phase shifts on
the incident waves before re-radiating them to the receiver. The direction at which the
re-radiated waves add constructively can be controlled by applying suitable bias voltages
to the IRS elements using the controller. However, a recent study shows that guaran-
teeing a constructive interference of signals at the receiver might not always improve
the received signal-to-noise ratio (SNR) due to the interdependence of amplitude and
phase values of a re-radiated wave from an IRS element [30]. Consequently, the careful
addition of IRSs to a PAP system further enhances the received signal at the user end,
thereby improving the GEE of PAP communication systems. The main challenge in
adding IRSs to a PAP system is finding optimal locations for the IRSs. For instance,
a random IRS placement policy would place an IRS in the non-line-of-sight regime of
a ground user, thereby limiting its contribution to the GEE improvement. Here we
propose a method to find locations for IRSs that guarantee LoS PAP-IRS links, with
each user having at least one LoS link to an IRS.

1.1 Related Works
The placement optimization of a UAV-based system has been extensively studied in the
literature [3]- [10]. In [3], the authors consider a UAV system deployed to assist slow-
learning nodes in a federated learning application. The trajectory optimization problem,
formulated to minimize learning time discrepancy among the nodes, is solved using a
deep reinforcement learning technique and the sequential convex programming (SCP)
technique. The work in [4] finds the optimal hovering altitude of a single-UAV system
that maximizes the GEE of the system, whereas [5] considers a fly-hover-communicate
protocol to serve a set of ground IoT nodes. The authors of [6] design a trajectory for
a rotary-wing UAV that minimizes the UAV propulsion energy consumption. In [7],
the authors propose a general probabilistic LoS-non-LoS (NLoS) air to ground channel
model and determine the optimal altitude that maximizes the coverage region. The
authors of [8] propose a graph-based algorithm to improve the throughput by jointly
optimizing the user association, UAV altitude, and transmission direction. In [9] and
the references therein, the authors summarize the works that have considered UAV(s)
placement problems from an energy efficiency perspective, whereas [10] outlines the
works that position UAV(s) to maximize communication-related parameters such as
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coverage area and throughput.
Significant efforts have been dedicated by researchers to assess the performance of

IRS panels in many wireless applications, such as multi-hop integrated access and back-
hauling (IAB) [11], localization, physical layer security, and simultaneous wireless and
information power transfer (SWIPT) [12]. The works in [13]- [19] consider IRS for aiding
the communication in a UAV-based system. In [13], the effect of phase error compen-
sation on the achievable error rate and outage probability is investigated for UAV-IRS
systems, and its impact on the achievable capacity is analyzed in [14]. However, the
trajectory design of UAVs is not taken into account in these works. In [15] and [16], IRS
panels are deployed on high buildings to assist the downlink transmission from a flying
base station to a single ground user. The authors consider beamforming at IRS and
UAV trajectory design to maximize the average achievable rate and the power received
by the user, respectively. The sum-rate maximization problem is addressed in [17],
where the joint design of IRS beamforming, IRS scheduling, and UAV trajectory have
been considered. In [18], the weighted sum bit error rate (BER) achieved by multiple
IRSs is minimized by jointly optimizing the IRS phase shift matrix, the UAV trajectory,
and the scheduling of the IRSs. The UAV trajectory design for a UAV-IRS system
operating in terahertz (THz) band is considered in [19], where a single IRS panel with
ideal phase compensation is assumed. The authors of [20] propose a continuous-time
system model for multi-path channels and discuss the optimal IRS configuration with
respect to the received power, Doppler spread, and delay spread. Recent studies have
also considered the possibility of using backscattering to aid the communication between
the nodes [21] [22]. The reconfigurability of IRSs makes them suitable for a UAV-based
system.

1.2 Main Contributions and Paper Organization
The work in [3], [6]- [10] and the references therein consider either the maximization
of communication-related parameters (sum rate, coverage area), or the minimization
of the energy consumed in a UAV-based system. [4] and [5] propose UAV placement
policies to maximize the GEE that are suitable for hovering and fly-hover-communicate
scenarios, respectively. Here we allow the PAP to serve the users while it is flying.
Additionally, the works in [11]- [20] consider scenarios with either a single user with a
single IRS panel [15], a single IRS with multiple users [17], or multiple IRSs with a single
user [16, 18] to maximize the sum rate or minimize the BER. Moreover, [17] and [19]
consider the trajectory design of UAVs assisted by a single IRS operating in a wide-band
setting. However, a single IRS with ideal reflection and perfect phase compensation is
assumed. Unlike the existing literature, we consider a generalized system model with a
multi-user multi-IRS scenario to maximize the number of bits transmitted per Joule of
energy consumed. Moreover, practical limitations for IRS design are considered, such as
the phase-amplitude relation and discrete phase compensation. It is worth highlighting
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that none of the above-mentioned work considers the non-linearity introduced by the
Peukert effect on the battery discharge profile of UAVs. Additionally, the relationship
between the number of cells of the on-board battery and the maximum flight time of a
UAV has not been investigated in the literature. Here we consider the 3GPP-proposed
air-to-ground channel model to estimate the UAV-IRS and IRS-user path gains that
are later used for IRS positioning. The UAV-user path gain is estimated using the
widely accepted LoS-NLoS path loss model proposed in [7]. Our main contributions are
summarized as follows:

• A discharge characteristic for Li-ion batteries is obtained by applying a non-linear
regression analysis to the discrete data provided in the battery data-sheet. This
way, the initial and final voltage and the maximum capacity can be evaluated for
all current values with great accuracy. Such an empirical approach differs from
analytical models like those in [31] and [32].

• An algorithm to estimate the available flight time of a PAP considering the Peukert
effect of the PAP battery, which is usually neglected in studies involving UAVs.
For a given flying velocity, the estimation is done by representing the required
power as a function of the battery terminal voltage and current using the developed
discharge characteristic. Also, we investigate the trade-offs of adding more battery
cells to the PAP battery by considering its positive (larger initial capacity) and
negative effects (heavier PAP).

• IRS positioning guidelines are introduced considering the 3GPP air-to-ground
channel model with the proposed multi-tier circle packing algorithm. Moreover,
we optimize the additional phase shift introduced by the elements of an IRS,
considering the interdependence of its amplitude and phase responses.

• The estimated available flight time and the determined IRS positions are then
utilized in developing an energy-efficient path planning (E2P2) algorithm for a
PAP deployed to serve a multi-user multi-IRS system. The algorithm maximizes
the global energy efficiency of the system by considering the UAV propulsion
energy consumption and the 3GPP air-to-ground channel.

The remainder of this paper is organised as follows. In Section 2, we describe the scenario
under consideration, and explain the propagation environment and the PAP power
consumption model. Building on this, Section 3 starts by explaining the Peukert effect,
then proposes an algorithm to estimate the available flight time of a PAP as a function
of its velocity. Then, in Section 3.2, the GEE maximization problem is formulated and
solved with a two-phase approach described in Section 3.3 and Section 3.4. The main
findings of the numerical evaluation are reported in Section 4.
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Fig. E.1: PAP deployment scenario.

2 System Model and Definitions
In this work, we consider an unmanned aerial system (UAS) in which a PAP is deployed
to deliver Q bits of data to a set of N outdoor ground nodes (GNs) located at gn =
[xng , yng , 0], n ∈ N = {1, 2, 3, .., N}. In addition to the PAP and the GNs, a set of I IRS
modules are deployed. The presence of IRS modules (IRSs) could aid the communication
between the PAP and the GNs by providing additional paths for the signal from the PAP
to reach the GNs. This improves the GEE of the system by increasing the received signal
power at the GNs, thereby reducing the total mission time and energy consumption of
the PAP. The PAP is assumed to fly horizontally at an altitude hp. Additionally, we
assume the PAP to be equipped with a directional antenna, the gain of which, in the
direction (α, ε), is given by,

Ga =
{
Gm −β ≤ α ≤ β,−β ≤ ε ≤ β,
Gs otherwise, (E.1)

where Gm = 2.2846/β2, and Gs are the main and side lobe gains of the PAP antenna,
respectively [8]; the half-power beamwidth of the antenna in the elevation and the
azimuth plane is 2β. The GNs are considered to be equipped with omni-directional
antennas.

The trajectory optimization is assumed to happen offline at the ground station prior
to the PAP deployment. This requires the ground station to be aware of the positions
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of the GNs, which can be done, for instance, using the new radio positioning protocol
(NRPPa). We consider a scenario where the ground nodes are static, which relates
to practical sensor-centric IoT scenarios. Hence, the offline computed path could be
used throughout the mission. Based on the GN scheduling, the bias voltages of the
elements of IRSs are varied through control channels existing between the PAP and the
IRSs. Furthermore, we assume both the PAP and GNs to be aware of the channel state
information, and the backhaul link for the PAP is achievable with the new integration
of low earth orbit (LEO) satellites [33]. Hence, not considered in the analysis.

2.1 PAP Trajectory Model
For tractability, the total flying path of the PAP is divided intoM segments, represented
using M + 1 way points, whose locations are denoted as pm = [xmp , ymp , zmp ], m ∈ M =
{1, 2, 3, ..,M + 1}: zmp = hp ∀m. The length of each segment is constrained to be small
enough as to leave the channel between the PAP and ground modules (IRS and GNs)
unchanged, while the PAP is in a given path segment [6]:∥∥pm+1 − pm

∥∥ ≤ min {∆, Tmvmax} ∀m ∈M
′
, (E.2)

where M′ = M − {M + 1}; the segment length ∆ is appropriately chosen so that,
within each line segment, the PAP can be assumed to fly with a constant velocity vm,
and the distances between the PAP and each GN and IRS modules are approximately
unchanged: ∆ << hp; let Tm be the time which the PAP spends in the mth path
segment and vmax be the maximum horizontal flying velocity of the PAP. In any given
segment, the PAP follows a time-division multiple access (TDMA) scheme to serve the
GNs: let Tmn be the time allocated to the nth GN while the PAP is in the mth path
segment such that,

ΣNn=1Tmn ≤ Tm ∀m ∈M
′
. (E.3)

2.2 IRS Model
Each IRS is considered to be a uniform linear array (ULA) of K reflecting elements
with dimensions dx and dz, placed along the positive Z axis as shown in Fig. E.2.
The first element of each IRS is considered as the reference element and its geometric
center is having the coordinates ri = [xir, yir, zir], i ∈ I = {1, 2, 3, .., I}. Then, the
coordinates of the kth reflecting element of the ith IRS are rki = (xir, yir, (zir − (k− 1)dz))
∀k ∈ [1,K],∀i ∈ I. Additionally, while considering the channel between the PAP and
the nth GN, if either of them is located behind the ith IRS, the IRS is not considered for
transmission to the GN. Let {bm,ipr } and {bi,nrg } be the respective binary variables whose
value is 1 if the PAP at the mth segment and the nth GN are in front of the ith IRS,
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respectively:

bm,ipr =

1 if αm,ipr = arctan
[

(ymp − yir)
(xmp − xir)

]
∈ [0,−1ψπ],

0 otherwise,
(E.4)

bi,nrg =

1 if αi,nrg = arctan
[

(yng − yir)
(xng − xir)

]
∈ [0,−1ψπ],

0 otherwise,
(E.5)

in which the arctan function considers the correct quadrant of the argument. Moreover,
a semiconductor device, such as a PIN diode, is used to tune the impedance of a reflecting
element of an IRS in real-time without changing the geometrical parameters. This can
be done by controlling its biasing voltage using a controller attached to each IRS. The
amplitude and phase responses of a reflecting element are mutually dependent. In [30],
the authors have presented the relationship in a closed-form as,

µkm,i,n(θkm,i,n) = (1− µmin) ·
(
sin(θkm,i,n − %) + 1

2

)ζ
+ µmin,

(E.6)

where µmin ≥ 0, % ≥ 0, and ζ ≥ 0 are the constants related to the circuit implementation
of the reflecting element. Let

Θm,i,n
r = diag

(
µ1
m,i,n(θ1

m,i,n)ejθ
1
m,i,n , .., µKm,i,n(θKm,i,n)ejθ

K
m,i,n

)
, i ∈ I, θkm,i,n ∈ [0, π) ,

be the amplitude-phase shift matrix of the ith IRS when the PAP serves the nth GN
from the mth segment.

2.3 Propagation Environment
We consider the system to be deployed in an urban environment where the air-to-ground
link can be either LoS or NLoS, depending on the blockage profile of the environment
and the relative position of the receiver module (IRS/GN) to the transmitter module
(PAP/IRS) [7], [27]. Consequently, the mean path loss value of an air-to-ground link
has the form,

L
c2,c3
c1 = P c2,c3c1,1 × L

c2,c3
c1,1︸ ︷︷ ︸

LoS Pathloss

+ (1− P c2,c3c1,1 )× Lc2,c3c1,2 ,︸ ︷︷ ︸
NLoS Pathloss

(E.7)

in which c1 ∈ {pr, rg}, c2 ∈ {m, ik}, c3 ∈ {ik, n}, where ik represents the kth element of
the ith IRS module.
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Fig. E.2: Propagation environment considering the mth path segment, ith IRS and nth GN.

PAP-IRS Channel

From the 3GPP report [27], the LoS and NLoS path loss values between the mth path
segment and the kth element of the ith IRS can be expressed as,

Lm,ikpr,1 = 30.9 + (22.25− 0.5loghp)logdm,ikpr,3D + F , (E.8)
Lm,ikpr,2 = max{Lm,ikpr,1 , 32.4 + (43.2− 7.6loghp)logdm,ikpr,3D + F},

(E.9)

where F = 20logf , with f being the carrier frequency; dm,ikpr,3D = ‖pm − rki ‖. Given that
the IRSs are perpendicular to the ground, the azimuth angles for the waves arriving
at the reflecting elements of an IRS from the PAP are equal. The corresponding LoS
probability is expressed as,

Pm,ipr,1 =


1 if dm,ipr,2D ≤ d1,

d1

dm,ipr,2D
+ exp

[
−dm,ipr,2D

p1

][
1− d1

dm,ipr,2D

]
; else, (E.10)

where,

dm,ipr,2D =
√

(xmp − xir)2 + (ymp − yir)2, (E.11)
p1 = 233.98log10(hp)− 0.95, (E.12)
d1 = max (294.05 · log10(hp)− 432.94, 18) . (E.13)
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Also, (E.8)-(E.13) are valid when 22.5 < hp ≤ 100m and when the IRSs are located at
a height of 10m (for an urban scenario). It is worth pointing out that most of the works
in the literature, when considering the relative phase of the incident wave on the ULA
elements, assume that the reference element has a phase of 0o. However, since multiple
IRSs are considered in this work, each with different location and reference points, the
actual phase should be considered. Hence, the channel gain vector between the ith IRS
and the PAP while the PAP is in the mth path segment is represented as,

hm,ipr =
(
bm,ipr

√
Gm,ikpr 10−L

m,ik
pr /10e−j

2π
λ d

m,ik
pr,3D

)
k=1,...,K

, (E.14)

where Gm,ikpr = Gm if arctan[|((zir − (k − 1)dz)− zmp )|/dm,ipr,2D] ≤ β; else Gs.

IRS-GN Channel

Similarly to the previous sub-section, from [27], the LoS and NLoS path loss values
between the elements of the ith IRS and the nth GN are estimated using,

Lik,nrg,1 =
{
L1 if 10m ≤ dik,nrg,2D ≤ dBP ,
L2 if dBP ≤ dik,n2D ≤ 5km,

(E.15)

Lik,nrg,2 = max
(
Lik,nrg,1 , L

′ik,n
rg,2

)
for 10m ≤ dik,nrg,2D ≤ 5km,

where L1 = 32.4+21log(dik,nrg,3D)+F and L2 = 32.4+40log(dik,nrg,3D)+F−9.5log
[
(dBP )2 + 72.25

]
with dBP = 18f/c, c = 3 × 108m/s; L

′ik,n
rg,2 = 35.3log10(dik,nrg,3D) + 22.4 + 21.3log10(f).

The LoS probability is determined using,

P i,nrg,1 =


1 if di,nrg,2D ≤ 18m,

18
di,nrg, 2D

+ exp
[
−di,nrg,2D

36

][
1− 18

di,nrg,2D

]
; else.

(E.16)

The channel gain between the ith IRS and the nth GN is given by:

hi,nrg =
(
bi,nrg

√
10−L

ik,n

rg /10e−j
2π
λ d

ik,n

rg,3D

)
k=1,...,K

. (E.17)
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PAP-GN channel

The LoS and NLoS path loss values between the mth PAP path segment and the nth
GN can be expressed as [7], [5],

Lm,npg,1 = 20logdm,npg,3D + F + 20log
(

4π
c

)
+ η1, (E.18)

Lm,npg,2 = 20logdm,npg,3D + F + 20log
(

4π
c

)
+ η2, (E.19)

with dm,npg,3D = ‖pm − gn‖. The corresponding probability of existence of a LoS link
between the PAP and the GN is expressed as [7],

Pm,npg,1 = 1
1 + a exp [−b(φm,npg − a)] , (E.20)

with φm,npg = arctan
(
zmp /

√
(xmp − xng )2 + (ymp − yng )2

)
; a and b are environment-dependent

parameters; η1 and η2 are the respective additional path loss values due to long-term
channel variations. The corresponding channel gain is expressed as,

hm,npg =
√
Gm,npg 10−L

m,n

pg /10e−j
2π
λ d

m,n
pg,3D . (E.21)

where Gm,npg = Gm if φm,npg ≤ β; else Gs.
The signal transmitted from the PAP reaches a GN through two main paths, PAP-

GN link and PAP-IRS link. The received SNR value at the nth GN while the PAP is in
the mth path segment is given by,

γm,npg =
P |hm,npg +

∑
i∈I hi,nrg

HΘm,i,n
r hm,ipr |2

σ2 , (E.22)

where P is the transmitted power and σ2 is the additive white Gaussian noise power.
Assuming the availability of channel state information (CSI) at both the transmitter
and the receiver, the number of bits transmitted-per-second (bps) is given by,

Dm,n
pg = Bclog2

[
1 + γm,npg

]
∀j ∈ N ,m ∈M

′
, (E.23)

where Bc is the available channel bandwidth for each GN.

2.4 PAP Power Consumption Model
Since the energy consumed by the communication unit is much lower than that consumed
by the aerial vehicle, we neglect the communication energy part. The UAV parameters
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Table E.1: UAV Parameters [5].

Label Definition Value
W Weight of the UAV in Newton 24.5 N
NR Number of rotors 4
vm UAV’s horizontal flying velocity -
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.038 m2

ρ(ha) Air density -
CD Drag Co-efficient 0.9
Ar Rotor disc area 0.06 m2

∆p Profile drag coefficient 0.002
s Rotor solidity 0.05

used in this section are summarized in Table E.1. The power consumed by a rotary-wing
UAV while flying horizontally with a velocity vm is determined using [5] as,

Puav(vm) = NRPb

(
1 + 3v2

m

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2CDAfρ(ha)v3

m︸ ︷︷ ︸
Pfuselage

+ W

(√
W 2

4N2
Rρ

2(ha)A2
r

+ v4
m

4 −
v2
m

2

)1/2

︸ ︷︷ ︸
Pinduce

, (E.24)

where Pb = ∆
8 ρ(ha)sArv

3
tip, ρ(ha) = (1−2.2558.10−5ha)4.2577; W = Wbt +Wbody is the

total weight of the UAV, comprehensive of body and battery unit. Pblade and Pfuselage
are the powers required to overcome the profile drag forces of the rotor blades and the
fuselage of the aerial vehicle that oppose its forward movement, respectively. Pinduce
represents the power required to lift the payload. The hovering power is obtained by
substituting vm = 0 in (E.24).

2.5 Global Energy Efficiency
The global energy efficiency of a PAP system is defined as the total number of bits
transmitted per Joule of energy consumed [4]:

GEE[bits/Joule] =
∑M
m=1

∑N
n=1 TmnD

m,n
pg [bits]∑M

m=1 TmPuav (vm) [Joule]
, (E.25)

where the numerator is the total number of data bits transmitted from the PAP to
the GNs at the end of the M th path segment and the denominator is the total energy
consumed by the PAP during its flight.
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Fig. E.3: Peukert curves for a Li-ion battery cell.

3 GEE PAP Trajectory Design
In this section, we propose an algorithm to estimate the available flight time of a PAP,
considering the Peukert effect on the UAV battery. Subsequently, we design a globally
energy efficient trajectory for the PAP to deliver data to the GNs.

3.1 Available Flight Time Estimation
The available flight time requires an iterative calculation because it depends on the
battery discharge profile, which is a non-linear function of the power drawn by the
rotors of the UAV. This non-linear behavior of the UAV battery is defined by the
Peukert effect [31], [32].

Peukert Effect

Fig. E.3 portrays the voltage drop of a typical Li-ion battery (commonly used in UAVs)
during discharge, in various conditions. As shown in the figure, a battery is useful until
the terminal voltage becomes lower than a given threshold (Vcf), or the discharge curve
comes out of its linear section, whichever happens first. In the example reported in
Fig. E.3, the discharge at high current (dotted red curve) reaches the cutoff voltage
before the end of its linear section, whereas the opposite is true at low current (con-
tinuous red curve). The curves offer a clear explanation of the Peukert effect: as the
current drawn from the battery unit increases, the available capacity (time) decreases
as a non-linear function of the output current, contrary to what is often assumed in
the literature [6]. In the considered scenario, the current drawn from the battery is a
function of the power consumed by the PAP, its terminal voltage, and the number of
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Fig. E.4: Regression functions for Vb,max, Vb,min, and Emax.

the battery cells nc that form the battery unit of the PAP:

Imb = Puav(vm)
V mb · nc

∀m ∈M
′
. (E.26)

In practice, the rates at which the battery terminal voltage drops under different
conditions are determined experimentally and typically reported in the battery data
sheet, like the curves of Fig. E.3. Since data-sheets typically present a limited number
of such curves, we propose to simulate this phenomenon for a continuous range of
currents by adopting a hybrid approach between those developed in [31] and [32], but
based on data from data-sheets rather than analytical models. In particular, as shown in
Fig. E.3, we extrapolate discharge curves from the data provided in [29], in order to have
information for several current values. The coordinates of two points are registered for
each value of discharge current: the voltage and used capacity at the full charge point
(taken as a continuation of the linear segment, neglecting the initial voltage drop),
Pstart(Ib) = (Vb,max(Ib), 0), and the point where the useful capacity ends, Pend(Ib) =
(Vb,min(Ib), Emax(Ib)). The latter corresponds to the point after which the curve’s slope
cannot be considered constant anymore, as shown in Fig. E.3. Between Pstart and Pend,
the slope of change of battery terminal voltage is calculated as,

k(Ib) = Vb,max(Ib)− Vb,min(Ib)
Emax(Ib)

. (E.27)

A regression analysis is then carried out using the ‘fit’ function in MATLAB to generate
three functions of the output current: FVmax, FVmin, and FE. These are used to de-
termine the initial and final voltage points, and the maximum capacity for any current
value. As reported in Fig. E.4, the maximum voltage is a linear decreasing function
FVmax of current, while FVmin is quadratic and the capacity function FE has a rational
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Fig. E.5: Variation of available flight time with PAP velocity and cutoff voltage.

formulation. All three functions represent a great fit for the respective original data,
with values of R2 (an indicator of ‘goodness-of-fit’ ranging from 0 to 1) next to 1.

If the PAP consumes Puav Watts at all times while active, the available flight time
can be estimated using Algorithm E.1. The required power is assumed to be drawn
equally from the nc battery cells. The algorithm starts by initializing the parameters of
a cell as V 1

b = V 0
b , the rated terminal voltage of a battery cell and current I1

b determined
using (E.26). The total flight time is divided into chunks of small intervals ∆t, so that
the battery terminal voltage can be assumed constant during this interval. The first
operation is the calculation of the slope k of the discharge curve, using (E.28):

k(Ijb) = FVmax(Ijb)− FVmin(Ijb)
FE(Ijb)

. (E.28)

The parameter k(Ijb) is then used to calculate the voltage at instant (j+1), which, after
verifying it is not lower than the cutoff voltage, allows to calculate the current at the
(j+1)th time step. It should be noted that even though the power requirement from the
PAP remains the same, the current drawn from each battery cell increases after each
step due the drop in terminal voltage. This allows us to calculate the energy consumed
in the next time step Ej+1

b , the total energy consumed in the mission Etot up to the
current slot, and to re-evaluate the maximum available energy Emax(Ij+1

b ). If the total
energy consumed is greater than the maximum available energy, the loop stops and the
maximum flight time T (Puav) is obtained by multiplying the length of a time step, ∆t,
with the number of iterations, j.

Fig. E.5 shows how the available flight time of a PAP is affected by its velocity,
which is directly related to the power consumption. The flight time is maximized at
13 m/s because this velocity minimizes the UAV power consumption; then it decreases
to the hovering level at 20 m/s. Above this velocity, the flight time is lower than in
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hovering conditions; the maximum velocity considered is 25 m/s because this allows to
show this phenomenon while keeping the current under 10A per cell, the upper limit
for this kind of batteries. The figure also shows the relevance of the Peukert effect by
comparing the case where it is considered (blue curves) with one where it is neglected
(red curve). In the latter, the flight time is calculated by simply dividing the battery
capacity by the power consumption [6], [5]. Since they result from a more conservative
model, the blue curves are entirely below the red curve by a considerable margin, which
is nearly constant when the cutoff voltage Vcf is 0 (dashed blue curve). With Vcf = 3.2V
(continuous blue curve), the gap with the red curve is variable because the secondary
break condition in Algorithm E.1 (Vj < Vcf) is prevalent, causing a non-linear relation
with the power consumption. The hovering time, assuming a UAV weight of 2 kg
(excluding the battery), is estimated to be about 25 minutes, which is a sensible value
for a commercial UAV2.

Algorithm E.1: Available Flight Time Estimation.
1 Initialize Puav, j = 1, Etot, Emax(Ijb), V jb , Vcf, I

j
b, ∆t, Ejb

2 while Etot < Emax(Ijb) do
3 Calculate Slope k with (E.28);
4 V j+1

b = V jb − k(Ijb) · Ejb;
5 if V j+1

b < Vcf then
6 break;
7 j = j + 1;
8 Ijb = Puav/

(
V jb nc

)
;

9 Ejb =
(
IjbV

j
b

)
∆t;

10 Etot =
∑j
t=1E

t
b;

11 Emax(Ijb) = FE

(
Ijb

)
;

12 Output:T (Puav) = j∆t.

3.2 Trajectory Design Problem Formulation
The GEE of a PAP system can be increased by increasing the total number of bits
transmitted and/or by reducing the PAP energy consumption with an efficient trajectory
design. The flying velocity of the PAP affects: a) the PAP energy consumption; b) the
discharge profile of its on-board battery; c) the number of bits transmitted, which is a

2https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf

https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
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function of the time the PAP spends in them-th path segment, Tm. The GEE trajectory
optimization problem is formulated as,

(E:P1) : maximize
{pm},{Tm},{Tmn},{Θm,i,n

r }

∑M
m=1

∑N
n=1 TmnD

m,n
pg∑M

m=1 TmPuav (vm)
,

s.t.
M∑
m=1

TmnD
m,n
pg ≥ Q ∀n, (E.29)

−π ≤ θkm,i,n < π ∀m, i, n, k, (E.30)
pM+1 = pF; p1 = pI, (E.31)
Tm ≥ 0; Tmn ≥ 0 ∀m,n, (E.32)
bm,ipr , b

i,n
rg ∈ {0, 1}, ∀m, i, n, (E.33)

m∑
j=1

TjPuav(vj) ≤ Emax(Puav(vj)) ∀m, (E.34)

V mb (Puav(vj)) ≥ Vcf ∀m, (E.35)
(E.2), (E.3). (E.36)

The objective function of (E:P1) is the GEE of the system, the denominator of which
is the total energy consumed by the aerial vehicle. Constraint (E.29) demands that the
PAP delivers Q bits of data to the GNs by the end of the trajectory; the phase shift
constraint associated with the IRS elements is represented by (E.30), whereas (E.31)
restrains the initial and final locations of the PAP; (E.32) is the non-negative time
constraint whereas (E.34) and (E.35) summarize the Peukert effect.

The solution to (E:P1) is not trivial, mainly due to the following reasons: a) the
numerator of the objective function of (E:P1) has binary variables b) the denominator of
the objective function and constraint (E.29) are non-convex functions of the trajectory
variables; c) the optimal design of phase shifts associated with the IRS elements to
maximize the received SNR and the trajectory of the PAP are interlinked; d) the non-
tractable form of the constraints (E.34) and (E.35).

To tackle the above issues, we propose a two-phase algorithm: in the first phase,
we determine a discretized GEE path that connects a set of locations-of-interest (LoIs),
{pm} ∀m ∈M; in the second phase, the determined {pm} are used to obtain the values
of binary variables {bm,ipr }, {bi,nrg }. This allows us to accurately tune the phase shift
values of the IRS reflecting elements so as to maximize the received SNR values at the
GNs using an alternate optimization algorithm. We then propose a novel multi-lap
trajectory design method to efficiently allocate time to the GNs, while considering the
Peukert constraints.

3.3 Phase 1: PAP Path Design and IRS beamforming
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Table E.2: Packing Patterns [34].

Number of circles, u Rumax = Λ(u) ·Rsmall
1 1 · Rsmall
2 1 · Rsmall
3 2/

√
3 · Rsmall

4
√

2 · Rsmall
5 1.641 · Rsmall
6 1.7988 · Rsmall
7 2 · Rsmall
u = 8, 9, 10 [1 + 2cos(2π/(u− 1))] ·Rsmall

PAP Path Design and IRS positioning

The gain achieved by using IRSs to aid the communication between the PAP and a GN
is expected to be significant when the PAP-IRS and IRS-GN are LoS links [26]. Fig. E.6
shows the variation of LoS probabilities between the PAP and a GN, the PAP and an
IRS, and an IRS and a GN, obtained using (E.20), (E.10), and (E.16), respectively. For
the considered urban scenario, a flying altitude of 100 m always guarantees a LoS link
between the PAP and an IRS module [27]. Hence, we select the flying altitude hp = 100
m. Additionally, a LoS link between an IRS and a GN can be guaranteed by placing the
IRS module at a 2D distance of 20 m from the GN. Consequently, we cover the given
geographical area of radius Rg by placing a set of small circles of radius 20 m using the
proposed multi-tier packing algorithm.

Multi-tier Packing Algorithm: The multi-tier packing algorithm is an extension of
the multi-level circle packing algorithm that considers the packing of 5 circles only in
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Fig. E.7: a)Set of LoS circles covering the users; b) PAP path through the LoIs.

each level [Algorithm 2, [5]]. If Rg > 20, we need multiple smaller circles to cover the
given region. Let Rumax be the maximum radius of the geographical region that u small
circles of radius Rsmall can cover. With the available packing patterns, in Table E.2,
the maximum radius of the geographical region that can be covered using 10 circles
is 2.53 · Rsmall. In practice, the considered region could be very large in dimension
compared to the radius of the smaller circle (Rg >> Rsmall). Hence, our objective is
to find the minimum number of smaller circles and the corresponding locations of their
centers required to cover the given geographical area. The multi-tier packing concept
is better explained in Fig. E.7a: in the first tier of packing, 7 circles of radius Rg/Λ(7)
are placed using 7-circle packing; in the second tier, each of these 7 circles is covered by
6 smaller circles of radius Rg/[Λ(7)Λ(6)], using 6-circle packing.

Proposition E1. The optimal circle packing pattern that requires the least number of
circles of radius Rsmall to cover a region of radius Rt is determined as,

utopt = argmin
u=1,2,..,10

uµ(u), (E.37)

where µ(u) = 1
log2(Λ(u)) log2

(
Rt

Rsmall

)
, and Λ(u) is obtained from Table E.2.

Proof:

Proof. The proof is a direct extension of the proof of Proposition 1 of [5].
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Algorithm E.2: Multi-tier packing algorithm.
1 Input: t = 1 Rt = Rg, Rsmall;
2 while Rt ≤ Rsmall do
3 Find the optimal packing pattern for the tth tier using Proposition E1;
4 Store the locations of the center of the circles to lt;
5 t=t+1;
6 Update the radius Rt = Rt−1/Λ(ut−1

opt )
7 Output:L = lt−1, the set of locations of the smaller circles to cover the given

geographical area.

Algorithm E.2 gives the steps to follow to complete the multi-tier packing procedure.
To find the path for the PAP, as shown in Fig. E.7a, we first determine a set of locations
using Algorithm E.2 (center of green circles) with Rsmall = 20m: {lt−1} ≡ L, that cover
the given geographical area (red circle) entirely using the multi-tier packing method.
Next, we consider the LoIs as a subset of L: L′ ⊂ L for which each of the corresponding
circles covers at least one GN (set of solid green circles):

L
′
≡ {lt−1} s.t ‖lt−1 − gn‖ ≤ 20 for at least one GN. (E.38)

Using L′ , an energy-efficient path to cover the GNs in the geographical region is de-
termined by finding the shortest path between points {lo} ∈ L

′ , starting from pI and
ending at pF (constraint (E.31)). The continuous path is then discretized into segments
of length ∆ (constraint (E.2)), giving a set of way points {pm}, as shown in Fig. E.7b.
For a set of way points, the optimum Θm,i,n

r ∀{m, i, n} that maximizes the achievable
received SNR at a GN can be found as shown below.

IRS Beamforming Design

We consider that the additional phase shift value introduced by an IRS element is limited
to a discrete set of phase values due to practical hardware constraints. The possibility
of using the ith IRS module to aid the communication between the PAP at the mth

path segment and the nth GN is determined by the values of bm,ipr and bi,nrg . If these are
equal to one, the phase of each IRS element should be selected to maximize the GEE
value. For a given {pm}, {Tm}, {Tmn}, from (E.22) and (E.23), the optimal {Θm,i,n

r }
that maximizes the GEE is the one that maximizes the SNR. Ideally, the phases must
be adjusted to ensure constructive addition of the signals received through the direct
and indirect paths from the PAP at a GN. However, due to the interdependence of the
amplitude and phase responses of the IRS elements, as given in (E.6), an additional
phase shift introduced by an IRS element that guarantees a constructive addition of
the received signals might produce a low amplitude response. Hence, an approximate
solution can be determined by using the alternate optimization (AO) proposed in [30].
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The AO algorithm finds an approximate solution that maximizes the GEE by iteratively
optimizing the phase shift of one of the K reflecting elements with those of the others
being fixed at each time, and repeating this procedure for all K elements of an IRS
module until the GEE value converges [30]. This process must be repeated for all the
IRS modules that satisfy bm,ipr = bi,nrg = 1. Due to the considered discrete set of available
phase values, the convergence of the algorithm is guaranteed. Using the optimal phase
values obtained using AO, the value of Dm,n

pg ∀m,n can be determined using (E.22) in
(E.23).

3.4 Phase 2: Multi-Lap Trajectory Design
In this phase, using the set of way points {pm} and the determined Dm,n

pg values, we
design a novel multi-lap trajectory that maximizes the GEE, while scheduling the GNs
so that Q bits of data are delivered to each of these by the end of the trajectory. Let
us define a lap of the trajectory as the discretized path from pI to pF through all the
LoIs. The PAP takes Nlap laps to deliver Q bits of data to the GNs. For a given flying
velocity vm, the GNs can be scheduled by solving the following sub-problem of (E:P1),

(E:P1.1) : maximize
Nlap,{Tmn}

Q

Nlap
∑M
m=1 TmPuav (vm)

,

s.t.
M∑
m=1

TmnD
m,n
pg ≥ Q/Nlap ∀n ∈ N , (E.39)

Tm = ∆
vm

∀m ∈M
′
, (E.40)

Nlap + 1 ≤ Tmax(vm)
MTm

∀ ∈ M
′
, (E.41)

(E.3), (E.32). (E.42)

Tmax(vm) is obtained in Algorithm E.1 with the substitution Puav = Puav(vm), given
by (E.24). (E:P1.1) is a convex optimization problem and can be solved using any
available solvers, such as MATLAB’s CVX. In practice, the velocity resolution of a
UAV is determined by the on-board flight controller. Hence, we consider a finite set
of velocity values that a UAV can take during its mission. (E:P1.1) is solved for dif-
ferent velocity values, and the one that maximizes the objective function is selected.
Moreover, flying at a constant velocity avoids the additional power consumption linked
to acceleration/deceleration, which is neglected by (E.24). Algorithm E.3 defines the
overall energy-efficient path planning (E2P2) algorithm combining phases 1 and 2 of the
proposed solution.
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Algorithm E.3: E2P2 Algorithm.
1 Initialize the available phase set and the set of velocity values
2 Find the discretized path between the LoIs, as explained in Section 3.3: {pm};
3 Find bm,ipr , b

i,n
rg ∀i, n using {pm} and {gn};

4 Find the optimal amplitude-phase shift matrix of the IRSs ({Θm,i,n
r }) using the

AO proposed in [30];
5 Find Dm,n

pg ∀m,n using (E.23);
6 for each v ∈ V do
7 vm = v, Tm = ∆

vm
∀m, calculate Puav(vm) and estimate Tmax(vm) using

Algorithm E.1;
8 Determine the optimal solution of (E:P1.1): {Tmn}, Nlap;
9 if GEE does not improve then

10 break;

11 Output: Optimal PAP trajectory variables: {pm}, {Tm}, {Tmn},{Θm,i,n
r }, Nlap.

4 Numerical Analysis and Discussion
In this section we provide the main findings through numerical evaluation. The param-
eters used for the simulation are given in Table E.3.

4.1 Battery Design
The model and methodology described in Section 3.1 were used to study several aspects
related to the battery design, such as the effect of flight velocity, the battery size and
the relevance of the Peukert effect. As explained before, Fig. E.5 shows the relevance
of the Peukert effect by comparing the case where it is considered with one where it is
neglected.

Fig. E.8 shows how the available hovering time varies with different numbers of
battery cells. Under the hypothesis of unconstrained battery size, represented by the
dotted line, it is possible to observe the trade-off between the extra capacity and the
extra weight provided by each extra cell; the weight of a battery cell is considered as 50
g. The positive effect of a larger battery tends to provide decreasing marginal returns
as the battery size grows, until the trend is reversed and a heavier battery starts having
a negative impact on the hovering time. In reality, it is not possible to increase the
UAV weight indefinitely, because there is a maximum take-off weight the motors can
withstand, which is set at 3.6kg in this case (inclusive of UAV and battery). When such
constraint is considered, the range of possibilities is restricted to the continuous curve
in Fig. E.8, and the hovering time maximization is achieved at its upper boundary,
corresponding to 17 battery cells and an hovering time of about 25 minutes, as shown
in Fig. E.5. Under the current assumptions, the battery configuration is irrelevant, as it
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Table E.3: Simulation Parameters.

Label Definition Value
Bc Channel Bandwidth for each GN 20MHz
σ2 Noise Power -101 dBm
hp PAP’s flying altitude 100 m
β antenna beamwidth 450

vmax Maximum achievable PAP speed 20 m/s
∆ Path Discretization Interval 1 m
P Transmission Power 23 dBm
(a, b) LoS probability constants for Suburban topology (4.88,0.43)
η1 additional mean pathloss for LoS group 0.2 dB
η2 additional mean pathloss for for NLoS group 24 dB
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Fig. E.8: Hovering time as a function of battery size, with and without weight constraint.

is evident from step 8 of Algorithm E.1. Nonetheless, 17 is a prime number, so the only
way to achieve it is to put all cells either in series or in parallel, which is an unrealistic
solution. Therefore, a battery size of 16 cells is a more sensible option.

4.2 IRS Design
Fig. E.9 represents the variation of GEE as a function of the number of elements of
a single-IRS-single-user system. The user is placed in the NLoS regime of the PAP
position. The figure shows five different cases:

• Case 1: GEE achieved if the IRS phase values are optimized neglecting the am-
plitude and phase dependency;

• Case 2: The actual received GEE value with the phase optimized according to
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Fig. E.9: GEE vs Number of elements of the IRS.

Case 1;

• Case 3: Each element of the IRS can take any of the available four options:
{0, π/2,−π/2, π}, and the phases are optimized without considering the amplitude
effect using the alternate optimization algorithm;

• Case 4: Each element of the IRS has only 4 phase shift options {0, π/2,−π/2, π}
and the phases are optimized considering the amplitude effect using the alternate
optimization algorithm;

• Case 5: GEE of the system without IRS.

As expected, the GEE value improves with the number of elements of the IRSs due to an
increase in the number of PAP-IRS and IRS-GN paths. An IRS of area 0.25m2 improves
the GEE by 63% when the user is in the NLoS regime of the PAP. The figure also shows
the effect of considering the interdependence of amplitude and phase responses of the
IRS element. Optimizing the IRS phase shift values without considering the amplitude
effect could lead to an over-estimation error of 10%. This might result in a trajectory
that does not allow the PAP to reach the goal of transmitting Q bits of data to all
users, since these are scheduled based on the overestimated spectral efficiency values.
Additionally, a discrete set of 4 phase values could achieve a performance comparable
to an ideal scenario that allows the IRS elements’ phases to be tuned to any value in
the interval [−π, π).

4.3 PAP Trajectory Design
Fig. E.10 compares the total number of circles required to cover a given geographical
area according to the proposed multi-tier packing algorithm, with those using 5,7,10
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Fig. E.10: Comparison of different packing algorithms.

circles in each level of the multi-level circle packing algorithm, as proposed in [5]. As
the figure shows, the proposed method always guarantees the least number of circles,
even by a conspicuous margin when the radius of the region to be covered is three or
more times the radius of the smaller circle. The radius of the smaller circle, Rsmall, is
taken as 100 m. Now, we compare the proposed multi-lap trajectory design with two
base scenarios:

• Baseline 1: GEE obtained if the PAP follows a fly-hover-communicate protocol to
serve the GNs [5];

• Baseline 2: GEE obtained if the mission is to be completed in a single lap [6].

Single Lap Trajectory Design

In this baseline, the PAP is expected to complete the mission in a single lap. The
corresponding optimization problem can be written as,

(E:P1.2) : maximize
{Tm},{Tmn}

∑M
m=1

∑N
n=1 TmnD

m,n
pg∑M

m=1 TmPuav (vm)
,

s.t. ∆
Tm
≤ vmax, ∀m ∈M

′
, (E.43)

M∑
m=1

Tm ≤ Tmax, (E.44)

(E.3), (E.29), (E.32). (E.45)

Using (E.43) and (E.44), the Peukert constraints are equivalently represented by limiting
the PAP flying velocity to vmax, such that Puav(vmax) ≤ Puav(0). Furthermore, the total
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trajectory time is constrained to be less than Tmax; Tmax is the maximum available
time if the PAP is hovering, determined using Algorithm E.1, as marked in Fig. E.5.
Consequently, (E:P1.2) takes the form of a fractional programming problem and can
be solved using the Generalized Dinkelbach’s Algorithm if the numerator is a concave
function and the denominator is a convex function of the optimization variables [4].
Also, all the constraints have to be convex in nature.

The Puav(vm) given by (E.24) makes the denominator term of the objective function
of (E:P1.2) a non-convex function of the optimization variable Tm. We use the sequential
convex programming (SCP) approach to tackle the non-convex objective function. The
fundamental idea of the SCP technique is to solve iteratively a sequence of convex
approximated problems of the original non-convex problem, so that the feasible solution
points converge to the KKT point of the original non-convex problem [4].

Let,

E(Tm) = TmPuav

(
∆
Tm

)
, (E.46)

= C1

(
Tm + 3∆2

Tmv2
tip

)
+ C2

∆3

Tm
2

+ C3

(√
C4Tm

4 + ∆4

4 −
∆2

2

)1/2

, (E.47)

with ∆ = ‖pm+1 − pm‖ ∀m ∈M
′ . By introducing the slack variable zm such that,

z2
m =

(√
C4Tm

4 + ∆4
m

4 − ∆2

2

)
, (E.48)

where C1 = NRPb, C2 = 1
2CDAfρ(hp), C3 = W , and C4 = W 2/{4N2

Rρ
2(ha)A2

r}. By
substituting (E.48) in (E.47), (E.47) can be written in the convex form as,

E(Tm) = C1

(
Tm + 3∆2

Tmv2
tip

)
+ C2

∆3

Tm
2 + C3zm, (E.49)

such that

Tm
4

z2
m

≤
zlm

2 + 2zlm
(
zm − zlm

)
+ ∆2

C4
, (E.50)

where (E.50) is the first order Taylor expansion of (E.48) around the point zlm. Hence,
the optimization problem (E:P1.2) can be rewritten as,

(E:P1.3) maximize
{Tm},{Tmn}

∑M
m=1

∑N
n=1 TmnD

m,n
pg∑M

m=1E(Tm)
,

s.t (E.43)− (E.45), (E.50). (E.51)
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The above problem is convex and can be solved using Dinkelbach’s algorithm. To find
the optimal trajectory, steps 6-10 of Algorithm E.3 are replaced with the Generalized
Dinkelbach’s algorithm to solve (E:P1.3).
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Fig. E.11: Total energy consumed by the PAP as a function of the file size to be delivered to each
GN.

Fig. E.11 shows the amount of energy saved by having the the PAP follow the pro-
posed multi-lap trajectory, compared to single-lap and fly-hover communicate policies.
The solution is obtained after executing the E2P2 algorithm considering a set of 6 GNs
uniformly distributed over a circular area of radius 60 m. Out of the LoS coverage cir-
cles obtained using the multi-tier packing algorithm (Algorithm E.2), 3 LoIs are selected
that cover the GNs. The shortest path between them, starting and ending at (0,0,100),
is determined. In the fly-hover-communicate policy, the PAP hovers at LoIs to serve the
GNs with a file of a given size. The PAP is assumed to fly with the maximum velocity
between the LoIs. In the single-lap baseline scenario, the velocity with which the PAP
covers a path segment and the scheduling of the GNs are calculated by solving (E:P1.3)
with the Generalized Dinkelbach’s algorithm [4]. The initial feasible value zlm to solve
(E:P1.3) is taken as the solution of the fly-hover-communicate policy. The amount of
energy consumed while following a multi-lap policy is always lower than in the two other
baseline scenarios, and the gain scales with the size of the file to be delivered to the GNs.
This is because the single-lap policy involves hovering at LoIs for longer to complete
the data transmission. In contrast, the multi-lap policy allows the PAP to deliver a
file in batches over multiple laps. Since the power consumed during hovering is greater
than flying horizontally, the multi-lap policy requires less energy than the single-lap
counterpart. The fly-hover-communicate policy is the most energy-hungry, but it has
lower complexity than the other two policies.
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5 Conclusion
In this work, we proposed an algorithm to design a GEE trajectory for a multi-IRS
assisted PAP deployed to deliver a given amount of data to a set of GNs, while taking
into account the non-linear discharge behavior of the PAP battery. Furthermore, an al-
gorithm to estimate the available flight time of a PAP for different flying velocities has
been provided. The proposed two-phase GEE PAP trajectory design solution allows to
consider the interdependence of the phase and amplitude responses of the IRS modules
on the received SNR. From the numerical evaluation, it is observed that: adding more
battery cells to a PAP battery unit does not always increase the available flight time,
since it also increases the weight of the PAP; neglecting the amplitude-phase depen-
dency of IRS elements leads to an overestimation of the GEE of the system. Finally,
a fly-communicating PAP system always has a higher GEE compared to the fly-hover-
communicate counterpart. The presence of IRS modules enhances the GEE by providing
extra separate paths for the signal to reach a GN from the PAP.

The trajectory design for a multi-UAV system, with some UAVs carrying IRS mod-
ules on-board and the remaining ones configured as PAPs deployed to serve a set of
moving GNs, is left as future work. The same is true for models taking into account the
effect of variable temperature on the energy availability of the battery.

References
[1] Mozaffari, Mohammad, et al. “A Tutorial on UAVs for Wireless Networks: Ap-

plications, Challenges, and Open Problems,” IEEE communications Surveys and
Tutorials 21.3 (2019): 2334-2360.

[2] 3GPP; Technical Specification Group Services and System Aspects; Unmanned
Aerial System (UAS) support in 3GPP; Stage 1; Release 17.

[3] I. Donevski, N. Babu, J. J. Nielsen, P. Popovski and W. Saad, “Federated Learning
with a Drone Orchestrator: Path Planning for Minimized Staleness,” IEEE Open
Journal of the Commun. Society, vol. 2, pp. 1000-1014, 2021

[4] N. Babu, K. Ntougias, C. B. Papadias and P. Popovski, “Energy Efficient Altitude
Optimization of an Aerial Access Point,” in IEEE 31st Annual International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2020, pp.
1-7.

[5] N. Babu, M. Virgili, C. B. Papadias, P. Popovski and A. Forsyth, “Cost- and Energy-
Efficient Aerial Communication Networks with Interleaved Hovering and Flying,”
IEEE Transactions on Vehicular Technology, 70(9), pp.9077-9087.



142 References

[6] Y. Zeng, J. Xu and R. Zhang, “Energy Minimization for Wireless Communication
with Rotary-Wing UAV,” IEEE Trans. on Wireless Commun., vol. 18, no. 4, pp.
2329-2345, April 2019.

[7] A. Al-Hourani, S. Kandeepan and S. Lardner, “Optimal LAP Altitude for Maximum
Coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569-572, Dec.
2014

[8] W. Huang, D. M. Kim, W. Ding and P. Popovski, “Joint Optimization of Alti-
tude and Transmission Direction in UAV-Based Two-Way Communication,” IEEE
Wireless Commun. Lett., vol. 8, no. 4, pp. 984-987, Aug. 2019

[9] S. Shakoor, Z. Kaleem, M. I. Baig, O. Chughtai, T. Q. Duong and L. D. Nguyen,
“Role of UAVs in Public Safety Communications: Energy Efficiency Perspective,”
IEEE Access, vol. 7, pp. 140665-140679, 2019.

[10] C. T. Cicek, H. Gultekin, B. Tavli and H. Yanikomeroglu, “UAV Base Station Lo-
cation Optimization for Next Generation Wireless Networks: Overview and Future
Research Directions,” in 1st International Conference on UVS, Oman , 2019.

[11] M. Al-Jarrah, E. Alsusa, A. Al-Dweik and M.-S. Alouini, “Performance Analysis
of Wireless Mesh Backhauling Using Intelligent Reflecting Surfaces,” IEEE Trans.
Wireless Commun., vol. 20, no. 6, pp. 3597-3610, Jun. 2021.

[12] S Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent Reflecting Surface-
Aided Wireless Communications: A Tutorial,” IEEE Trans. Commun., vol. 69, no.
5, pp. 3313-3351, May 2021.

[13] M. Al-Jarrah, E. Alsusa, A. Al-Dweik and D. K. C. So, “Capacity Analysis of IRS-
Based UAV Communications with Imperfect Phase Compensation,” IEEE Wireless
Commun. Lett., vol. 10, no. 7, pp. 1479-1483, Jul. 2021.

[14] M. Al-Jarrah, A. Al-Dweik, E. Alsusa, Y. Iraqi, and M.-S. Alouini, “On the Per-
formance of IRS-Assisted Multi-Layer UAV Communications with Imperfect Phase
Compensation,” IEEE Trans. Commun., IEEE early access, 2021.

[15] S. Li, B. Duo, X. Yuan, Y. Liang, and M. Di Renzo, “Reconfigurable Intelligent
Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beam-
forming,” IEEE Wireless Commun. Lett., vol. 9, no. 5,pp. 716-720, May 2020.

[16] L. Ge, P. Dong, H. Zhang, J. Wang, and X. You, “Joint Beamforming and Tra-
jectory Optimization for Intelligent Reflecting Surfaces-Assisted UAV Communica-
tions,” IEEE Access, vol. 8, pp. 78702-78712, 2020.



References 143

[17] Z. Wei et al., “Sum-Rate Maximization for IRS-Assisted UAV OFDMA Commu-
nication Systems,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2530-2550,
Apr. 2021.

[18] M. Hua, L. Yang, Q. Wu, C. Pan, C. Li and A. Swindlehurst, “UAV-Assisted Intelli-
gent Reflecting Surface Symbiotic Radio System,” IEEE Trans. Wireless Commun.,
vol. 20, no. 9, pp. 5769-5785, Sep. 2021.

[19] Y. Pan, K. Wang, C. Pan, H. Zhu and J. Wang, “UAV-Assisted and Intelligent Re-
flecting Surfaces-Supported Terahertz communications,” IEEE Wireless Commun.
Lett., vol. 10, no. 6, pp. 1256-1260, Jun. 2021.

[20] Matthiesen, Bho, et al. “Intelligent Reflecting Surface Operation under Predictable
Receiver Mobility: A continuous time propagation model,” IEEE Wireless Commun.
Lett. 10.2 (2020): 216-220.

[21] Gong, Shimin, et al. “Backscatter-Aided Cooperative Relay Communications in
Wireless-Powered Hybrid Radio Networks,” IEEE Network 33.5 (2019): 234-241.

[22] Gao, Xiaozheng, et al. “Cooperative Scheme for Backscatter-Aided Passive Re-
lay Communications in Wireless-Powered D2D Networks.” IEEE Internet of Things
Journal 9.1 (2021): 152-164.

[23] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang,
“Wireless Communications Through Reconfigurable Intelligent Surfaces,” IEEE Ac-
cess, vol. 7, pp. 116753–116773, Aug. 2019.

[24] Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network
via Joint Active and Passive Beamforming,” IEEE Trans. Wireless Commun., vol.
18, no. 11, pp. 5394-5409, Nov. 2019.

[25] W. Tang et al., “Wireless Communications With Reconfigurable Intelligent Surface:
Path Loss Modeling and Experimental Measurement,” IEEE Trans. on Wireless
Commun., vol. 20, no. 1, pp. 421-439, Jan. 2021, doi: 10.1109/TWC.2020.3024887.

[26] Björnson, Emil, et al. “Reconfigurable Intelligent Surfaces: A signal Processing Per-
spective with Wireless Applications,” IEEE Signal Processing Magazine 39.2 (2022):
135-158.

[27] “Study on Enhanced LTE Support for Aerial Vehicles (Release 15),” 3GPP, Sophia
Antipolis, France, Rep. 3GPP TR 36.777, Dec. 2017.

[28] Filippone A, “Flight performance of Fixed and Rotary Wing Aircraft,” Elsevier ;
2006 May 10.



144 References

[29] 3.7V, 3200mAh, GWL Power, LG MH1, 2019 [Online]. Available:https://files.
gwl.eu/inc/_doc/attach/StoItem/5230/Datasheet_LG_MH1.pdf.

[30] Abeywickrama, S., Zhang, R., Wu, Q., and Yuen, C., “Intelligent Reflecting Sur-
face: Practical Phase Shift Model and Beamforming Optimization,” IEEE Trans.
on Commun., 68(9), 5849-5863.

[31] F. Cheng, H. Wang, and P. Cui, “Rotorcraft Flight Endurance Estimation Based
on a New Battery Discharge Model,” Chinese J. Aeronaut., vol. 30, no. 4, pp.
1561–1569, Aug. 2017.

[32] M. H. Hwang, H. R. Cha, and S. Y. Jung, “Practical Endurance Estimation for
Minimizing Energy Consumption of Multirotor Unmanned Aerial Vehicles,” Ener-
gies, vol. 11, no. 9, pp. 1–10, 2018.

[33] Soret, Beatriz, et al. “5G Satellite Networks for Internet of Things: Offloading and
Backhauling,” International Journal of Satellite Communications and Networking
39.4 (2021): 431-444.

[34] Tóth, G. Fejes, “Thinnest Covering of a Circle by Eight, Nine, or Ten Congruent
Circles,” Combinatorial and comput. geometry 52.361 (2005): 59.

https://files.gwl.eu/inc/_doc/attach/StoItem/5230/Datasheet_LG_MH1.pdf
https://files.gwl.eu/inc/_doc/attach/StoItem/5230/Datasheet_LG_MH1.pdf


Paper F

Fairness Based Energy-Efficient 3D Path Planning of a
Portable Access Point: A Deep Reinforcement Learning

Approach

Nithin Babu, Igor Donevski, Alvaro Valcarce, Petar Popovski,
Jimmy Jessen Nielsen, and Constantinos B. Papadias

Under review in
IEEE Open Journal of the Communications Society.



© 2022 IEEE
The layout has been revised.



1. Introduction 147

Abstract
In this work, we optimize the 3D trajectory of an unmanned aerial vehicle (UAV)-based
portable access point (PAP) that provides wireless services to a set of ground nodes
(GNs). Moreover, as per the Peukert effect, we consider pragmatic non-linear battery
discharge for UAV’s battery. Thus, we formulate the problem in a novel manner that
represents the maximization of a fairness-based energy efficiency metric and is named
fair energy efficiency (FEE). The FEE metric defines a system that lays importance on
both the per-user service fairness and the PAP’s energy efficiency. The formulated prob-
lem takes the form of a non-convex problem with non-tractable constraints. To obtain a
solution we represent the problem as a Markov Decision Process (MDP) with continuous
state and action spaces. Considering the complexity of the solution space, we use the
twin delayed deep deterministic policy gradient (TD3) actor-critic deep reinforcement
learning (DRL) framework to learn a policy that maximizes the FEE of the system.
We perform two types of RL training to exhibit the effectiveness of our approach: the
first (offline) approach keeps the positions of the GNs the same throughout the training
phase; the second approach generalizes the learned policy to any arrangement of GNs
by changing the positions of GNs after each training episode. Numerical evaluations
show that neglecting the Peukert effect overestimates the air-time of the PAP and can
be addressed by optimally selecting the PAP’s flying speed. Moreover, the user fairness,
energy efficiency, and hence the FEE value of the system can be improved by efficiently
moving the PAP above the GNs. As such, we notice massive FEE improvements over
baseline scenarios of up to 88.31%, 272.34%, and 318.13% for suburban, urban, and
dense urban environments, respectively.

1 Introduction
To provide seamless network connectivity, it is expected that future radio access net-
works implement much denser deployments of small cells, that imply very high deploy-
ment costs. A more cost-efficient solution for serving a set of ground nodes (GNs) is
to use an unmanned aerial vehicle (UAV) that carries a radio access node, hereafter re-
ferred to as a portable access point (PAP) [1]. The third generation partnership project
(3GPP) item [2] proposes the architecture and Quality-of-Service (QoS) requirements
for such a system. The ability to have a controllable maneuver and the presence of line-
of-sight (LoS) dominant air to ground channels [6] make it appropriate for applications
such as data collection from wireless sensor networks (WSNs), enhancing the cellular
coverage, remote sensing, emergency deployments, and so on [1]. The main drawback of
the PAP system is its limited air-time which is a function of the capacity of the onboard
battery unit and its power consumption profile. The air-time of a PAP is defined as
the duration it remains aloft. The power consumed by a PAP varies with its mode of
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flying; for instance, a PAP consumes the maximum amount of power when it climbs
vertically up, whereas the power consumption can be the least during a horizontal flight
at an certain non-zero velocity [3]. Hence, the air-time of a PAP can be increased by
suitably selecting its flying mode and velocity. Moreover, the available capacity of a
PAP battery unit is a non-linear function of the power-draw profile of the PAP [4]. Ad-
ditionally, the air to ground channel LoS probability and the path loss between a PAP
and a GN are proportional functions of the elevation angle and 3D distance between
them, respectively [6]. Consequently, the trajectory of a PAP can be used as a tool to
increase its air-time and improve the channel to a GN. Hence, in this work, we design
a 3D trajectory for a PAP that maximizes the number of bits transmitted per Joule of
energy consumed while guaranteeing a fair service to the GNs measured in terms of fair
energy efficiency (FEE) of the system.

1.1 Related Works
The works in [6]- [29] consider UAV placement optimization and trajectory design prob-
lems with main objectives as maximizing coverage area, throughput, air-time, energy
efficiency, and minimizing mission time, power consumption, e.t.c. The authors of [6]-
[10] consider the 3D placement of UAV(s) to maximize the coverage area. In [6], the
authors propose a probabilistic LoS-non-LoS (NLoS) air to ground channel model and
use it to find the optimal hovering altitude of a stationary UAV that maximizes the
coverage area. [7] and [8] find the optimal altitude that maximizes the coverage area
of a multi- and single-UAV system using circle packing theory. [9] uses a combination
of exhaustive search and maximal weighted area algorithm to propose an optimal UAV
placement method that maximizes the number of users covered, whereas [10] considers
the placement optimization of a dynamic standalone drone equipped with a steerable
antenna. The work in [11] proposes a power-efficient deployment of multiple UAVs which
are used as aerial base stations to collect data from ground Internet of Things (IoT)
devices, whereas [12] and [13] consider minimizing the total transmit power of a drone
base station by considering a downlink communication scenario.

The authors of [14]- [18] consider the average throughput of a UAV-based aerial
communication system as the performance metric. [14] and [15] maximize the minimum
average throughput by considering an uplink communication between a set of GNs and
a UAV, whereas [16], [17], [18], and [19] consider a downlink communication scenario.
In [20]- [24], the authors consider the aerial vehicle’s energy consumption while proposing
an energy-efficient UAV(s) deployment policy. In [20], the authors propose a tractable
power consumption model for a single-rotor rotary-wing UAV and use it to design a 2D
trajectory that consumes the least amount of energy. In [24], we extend the model to a
multi-rotor UAV and propose a 2D trajectory for a PAP that maximizes the number of
bits transmitted per Joule of energy consumed while following a fly-hover-communicate
protocol to serve the users. The algorithm given in [21] designs an energy-efficient
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2D trajectory for a fixed-wing UAV, while in [22], we determine a set of energy-efficient
hovering points using circle packing theory. The works [25]- [27] use a deep reinforcement
learning (DRL) technique to design a UAV(s) placement policy that guarantees fair
service to the users. [25] uses the UAV trajectory as a tool to achieve fairness in terms
of learning staleness, which reflects the learning time discrepancy among the users. The
proposed policies of [26] and [27] achieve fairness in terms of coverage and throughput,
respectively. Comprehensive lists of works that consider placement optimization of a
UAV-based system are available in [28] and [29].

1.2 Main Contributions and Paper Organization
The works in [6]- [17] propose UAV trajectory design algorithms that either maxi-
mize communication-related parameters such as the coverage area and sum or average
throughput or minimize the transmit power. The works mainly design a 2D trajectory
or represent the 3D optimal UAV(s) positioning problems as two subproblems that op-
timize the vertical and horizontal positioning of the UAV(s) recurrently. Even though
the problem formulations to maximize the energy-efficiency in [20]- [24] consider the
aerial vehicle’s power consumption, the solutions are again 2D flight trajectories. Please
note that for an energy-limited system such as a PAP, maximizing the number of bits
transmitted per Joule of energy consumed while ensuring user fairness is paramount.
Maximizing the throughput for a given energy budget is different from maximizing the
energy efficiency since each movement of the UAV should maximize the throughput and
minimizes the energy consumption simultaneously. Moreover, a UAV consumes different
power during its axial climb and forward flight modes. Neglecting this, as in [18], [19],
and [26], falsely overestimates the air-time of a UAV resulting in the initiation of the
early-landing procedure before completing the planned trajectory. Furthermore, [18]
and [26] propose trajectory planning and resource allocation schemes for high-mobility
users in which the trajectory parameters and the resources are allocated to guarantee
high instantaneous throughput fairness between all users. Even though the proposed
fairness metric is ideal for analyzing the performance of the considered scenario, it might
be sub-optimal for an IoT application such as data collection from an IoT network. For
such applications, long-term fairness metrics are more suitable. For instance, consider
a scenario in which the PAP is deployed to deliver a file of a given size to all the users
by the end of the trajectory. In this case, the service fairness could be measured at the
end of the trajectory; if all the users are delivered with an equal amount of bits on an
average by the end of the trajectory, the fairness between the users will be high.

Suppose the PAP flies near to a user in a given time instant. In that case, it is more
efficient to allocate more resources to that user since the communication channel to the
user, as well as the throughput, will improve. However, to guarantee a high long-term
user fairness, the later segments of the trajectory should be closer to the remaining users.
Finally, none of the above works consider the Peukert effect seen in Li-ion batteries that
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are typically used in UAVs. Neglecting the Peukert effect overestimates the air-time
of the PAP, resulting in initiating the early-landing procedure before completing the
planned trajectory. In practice, the PAP will be flying at different velocities resulting
in different power consumption; hence the remaining air-time of the PAP varies after
each action as a non-linear function of the power consumption. This affects the system’s
energy efficiency since the number of trajectory segments varies as a non-linear func-
tion of the power consumption profile. In essence, the 3D trajectory design of a PAP
that maximizes the fairness-based energy efficiency while factoring in the UAV power
consumption and the Peukert effect has, to the best of our knowledge, not yet been
considered in the literature. The main contributions of this work are summarized as
follows:

• We propose a method to model the non-linear Peukert effect of the PAP battery
using the data points from a data sheet;

• We additionally propose an algorithm to estimate the air-time of a PAP by con-
sidering the Peukert effect and the PAP power consumption profile;

• We introduce a user fairness-based energy efficiency metric called the fair energy
efficiency that considers user fairness, sum throughput, and the PAP propulsion
power consumption;

• Finally, we implement a twin delayed deep deterministic policy gradient (TD3)-
based 3D path planning algorithm to design a 3D trajectory for the PAP that
maximizes the FEE value of the system.

This paper is structured as follows: Section 2 explains the system setup, propagation
environment, the 3D power consumption model of the PAP, and the FEE metric. In the
section, we also detail the Peukert effect of the PAP battery and propose an algorithm
to estimate the air-time of the PAP. Section 3 includes the problem formulation to
maximize the FEE of the system and the solving methodology. Section 4 presents
the main findings through numerical evaluations, and elaborates the significance of the
results. Finally, Section 5 summarizes the main findings of this work. All the quantities
are in SI units unless otherwise specified.

2 System Model
In this work, we consider a PAP deployed to serve a set of N GNs. Each GN n ∈
N = {1, 2, 3, .., N} is located at gn = [gh,n, 0] of Cartesian space (x, y, z) with gh,n =
[gx,n, gy,n], as shown in Fig. F.1. The PAP flies along a 3D path to serve the set of
GNs. Both the PAP and the GNs are assumed to be equipped with omni-directional
antennas.
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Fig. F.1: Trajectory determination scenario.

2.1 PAP Trajectory Model
The optimal flying path of the PAP is obtained by dividing the total air time T into
M time segments of length δt each such that T = Mδt [20]. The value of δt is chosen
so that within each segment the PAP can be assumed to fly with a constant velocity,
and the change in path loss values between the PAP and each GN is insignificant, i.e.,
δtvmax ≤ ∆ where vmax is the maximum speed of the UAV and ∆ is the maximum
change in distance below which the path loss values between the PAP and each GN
remain stationary. Consequently, the path of the PAP can be represented using M + 1
points, whose locations are denoted as um = [uh,m, uz,m], m ∈ M = {1, 2, 3, ..,M + 1}
where uh,m = [ux,m, uy,m] is the projection of the PAP location on the horizontal plane.
The length of each segment and the maximum PAP velocity are constrained as,∥∥um+1 − um

∥∥ = δtvm ≤ δtvmax ≤ ∆ ∀m ∈M
′
, (F.1)

where M′ = {1, 2, ..M}. In a particular segment, the PAP follows a time-division
multiple access (TDMA) scheme to serve the GNs: let Tm,n be the time allocated to
the nth GN while the PAP is flying in the mth path segment with a speed of vm m/s,
then,

ΣNn=1Tm,n = δt ∀m ∈M
′
. (F.2)

2.2 Propagation Environment
The communication channel between the PAP and a GN at a given time can be either
LoS or NLoS depending on the relative position of the GN with respect to the PAP and
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the blockage profile of the environment. The LoS and NLoS path loss values can be
expressed as [6]- [11],

Llos
m,n = 20logd3Dm,n + 20logfc + 20log

(
4π
c

)
+ ηlos, (F.3)

Lnlos
m,n = 20logd3Dm,n + 20logfc + 20log

(
4π
c

)
+ ηnlos, (F.4)

with d3Dm,n =
√
d2Dm,n

2 + u2
z,m and d2Dm,n = ‖uh,m−gh,n‖. fc and c are the carrier frequency

and the velocity of light, respectively. The corresponding probability of existence of a
LoS link between the PAP and the nth GN while the PAP is in the mth path segment
can be expressed as,

P los
m,n = 1

1 + a exp [−b(βm,n − a)] , (F.5)

with βm,n = arctand
(
uz,m

d2Dm,n

)
; a and b are the environment dependent parameters;

ηlos and ηnlos are the mean values of the respective additional path loss values due to
long-term channel variations. For a given elevation angle, this additional path loss has a
Gaussian distribution [5], and we use its mean value in this work [6]- [8]. The mean value
depends on the building profile of the region and it is noticed that the change in the
additional path loss within a particular propagation group (LoS/NLoS) is insignificant
compared to the change in path loss value from one group to the other [5], [6]. This
allows us to model the path loss with a constant gap between the two propagation
groups as given in (F.3) and (F.4). Hence, the expected spectral efficiency to the nth
GN is given by,

Rm,n = P los
m,nR

los
m,n + (1− P los

m,n)Rnlos
m,n, (F.6)

where Rxm,n = log2

(
1 + Pt

σ210Lxm,n/10

)
∀x ∈ {los,nlos}; Pt and σ2 are the respective

transmitted signal and noise power values.

2.3 UAV Power Consumption Model
In this section, we provide the general expressions to calculate the total power con-
sumed by the PAP during a considered time slot. The definitions and values1 of
all the variables used in this section are given in Table F.1. In the mth time slot,
the PAP moves from um to um+1 in δt seconds. Then, as shown in Fig. F.2, the
PAP velocity vector in the spherical coordinates system can be represented as vm =

1https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf

https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
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Table F.1: UAV’s physical properties [24].

Label Definition Value
W Weight of the UAV in Newton 24.5 N
NR Number of rotors 4
vm UAV’s horizontal flying velocity -
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.038 m2

ρ(uz,m) Air density at uz,m -
CD Drag Co-efficient 0.9
Ar Rotor disc area 0.06 m2

∆p Profile drag coefficient 0.002
s Rotor solidity 0.05

𝜖m

Y

Z

𝛼m

X

Fig. F.2: Velocity Vector.

(vm, αm, εm), in which vm = ‖um+1 − um‖/δt is the speed of the PAP at which it
travels from um to um+1, αm = arctan [(uy,m+1 − uy,m)/(ux,m+1 − ux,m)] and εm =
arctan [‖uh,m+1 − uh,m‖/(uz,m+1 − uz,m)] are the azimuth and elevation angles of um+1
with respect to the axes located at um. In each time slot, the PAP is in one of the fol-
lowing flight conditions:

Forward Flight (vm 6= 0, εm 6= 0)

The forward flight condition contains the following PAP flying modes: 1) the PAP moves
along a plane that is parallel to the horizontal plane (vm 6= 0, εm = 90◦) commonly called
as level forward flight; 2) forward (inclined) ascent or descent mode in which the PAP
moves in the 3D space thereby changing all the 3 coordinates of its position (vm 6= 0,
εm 6∈ {90◦, 0◦}). The amount of power required to maintain this flight condition can be
determined using [24], [3],
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P fwd
uav (vm) = NRPb

(
1 + 3v2

m

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2CDAfρ(uz,m)v3

m︸ ︷︷ ︸
Pfuselage

+W


√√√√(√ W 2

4N2
Rρ

2(uz,m)A2
r

+ v4
m

4 −
v2
m

2

)
+ cosεm


︸ ︷︷ ︸

Pinduce

, (F.7)

where Pb = ∆p

8 ρ(uz,m)sArv
3
tip and ρ(uz,m) = (1 − 2.2558.10−5uz,m)4.2577. Pblade and

Pfuselage are the powers required to overcome the profile drag forces of the rotor blades
and the fuselage of the aerial vehicle that oppose its forward movement, respectively,
while Pinduce represents the induced power from the rotation of rotors.

Hover (vm = 0)

In this mode, the PAP is static and its position is the same as that in the previous time
slot. From [24], the hovering power consumption of a PAP is estimated using,

P hov
uav = NRPb + W 3/2√

4NRρ(uz,m)Ar
. (F.8)

Axial Climb or Descent (vm 6= 0, εm = 0)

Here, the PAP moves along the +/− z-direction. Using (12.35) of [3], the power required
by the PAP to climb vertically (εm = 0) is expressed as,

P vert
uav (vm) = W

2

(
vm +

√
v2
m + 2W

NRρ(uz,m)Ar

)
+NRPb.

(F.9)

Hence, the total power consumed by the PAP while it flies along the mth path segment
is calculated as,

Puav(vm) =

P
fwd
uav (vm) if vm 6= 0 & εm 6= 0,
P hov
uav if vm = 0,

P vert
uav (vm) if vm 6= 0 & εm = 0.

(F.10)
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2.4 Fair Energy Efficiency
The fair energy efficiency (bits/Joule) of the system is expressed as,

FEE (VM ) =
FI (VM )

∑M
m=1

∑N
n=1Dm,n (vm)∑M

m=1 δtPuav(vm)
,

(F.11)

where Dm,n (vm) = BTm,nRm,n is the number of bits transmitted to the nth GN while
the PAP is in the mth segment, and

FI (VM ) =

[∑N
n=1 Dn (VM )

]
2

N
∑N
n=1 D

2
n (VM )

, (F.12)

is the fairness index with Dn (VM ) =
∑M
m=1 Dm,n (vm) /M giving the average number

of bits transmitted to the nth GN by the end of the trajectory. FI (VM ) = 1 means
the PAP sends equal number of data bits to the GNs when it completes the trajectory.
B is the total available bandwidth; VM = {vm,∀m ∈ M

′}. Considering the energy
efficiency metric alone could allow the PAP to fly above a sub-set of GNs to maximize
the energy efficiency by increasing the sum rate. Furthermore, the fairness index can
be maximized either by maximizing the average number of bits transmitted to each GN
or by minimizing it. The FEE metric defined in (F.11) is a weighted energy efficiency
metric, where the weight is the fairness index. This forces the PAP to follow a 3D
trajectory that maximizes energy efficiency and per-user fairness.

2.5 The Peukert Effect
A usual approach to estimate the maximum air-time of a PAP is to find the ratio of the
initial onboard energy to the sum of instantaneous power consumption values [20]- [24].
This calculation has the fundamental assumption that the available discharge time of
the PAP battery remains the same irrespective of the power-draw profile of the PAP.
But, in practice, the battery discharge rate affects its available discharge time as shown
in Fig. F.3, called the Peukert effect [4].

Let co be the rated capacity of a cell of the PAP battery unit in ampere-hours (Ah)
and to be the rated discharge time in hours (h). This means, if the PAP draws 1A of
current from the cell, the cell will be completely discharged after to hours. However, in
practice, the current drawn by the PAP changes with time as a function of the power
required and the terminal voltage of the battery:

Puav(vm) = ibm · nb · V b
m ∀m ∈M

′
, (F.13)

where nb is the number of battery cells connected in series to form the battery unit of
the PAP with V b

m, the terminal voltage of a battery cell at the beginning of the mth
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Fig. F.3: Air-time with and without considering the Peukert effect for constant 200W power-draw
until the battery discharges completely.

time slot; also, V b
1 = Vo is the nominal voltage of the battery. Hence, the current drawn

by the PAP during the mth slot is ibm = Puav(vm)/(nb · V b
m). After the mth slot, the

battery terminal voltage drops according to,

V b
m+1 = V b

m − sb
m(ibm) · ibmδt ∀m ∈M

′
, (F.14)

where sb
m(ibm) is the rate of change of terminal voltage per Ah that changes as a function

of ibm. In addition to the drop in the battery terminal voltage, the remaining discharge
time also changes after each time slot according to,

tbm+1 = tbm

(
cbm − ibmδt
ibm+1t

b
m

)pb

∀m ∈M
′
, (F.15)

with

tb1 = to

(
co
ib1to

)pb

; (F.16)

cbm = tbmi
b
m with cb1 = co; pb > 1 is the Peukert coefficient that depends on the type

of the battery used; ibm+1 is determined by substituting the voltage determined using
(F.14) in (F.13) to guarantee a power output of Puav(vm+1). The PAP should reach the
destination either before the value of the terminal voltage reaches Vcutoff: V b

M+1 ≥ Vcutoff
or tbM+1 ≥ 0.
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Fig. F.4: Variation of battery discharge slope for different discharge current.

The slope, sb
m(ibm) depends on the type of the battery used in the PAP. For a Li-ion

battery with co = 3.1 Ah, to = 3 h, io = 1 A, Vcutoff = 2.5 V, and Vo = 3.7 V, we
perform a curve fitting over the variation of sb

m(ibm) with regards to ibm using the data
points from the data sheet [30] as shown in Fig. F.4:

sb
m(ibm) = fb

1 · ibm
fb
2 , (F.17)

where fb
1 = 0.2941, and fb

2 = 0.06888.
The Peukert effect is better explained in Fig. F.3. The figure shows the voltage

drop and the remaining discharge time of a typical Li-ion battery (commonly used in
UAVs) during discharge when the PAP draws a power of 200 W continuously. As shown
in the figure, a battery is useful until the terminal voltage or the remaining discharge
time becomes lower than the corresponding threshold values (2.9 V and 30 Seconds,
respectively), whichever happens first. The air-time of the PAP is defined as the time
elapsed from the beginning till the battery is useful. As seen in the figure, neglecting
the Peukert effect overestimates the air-time of the PAP. Thus a trajectory planned
considering the availability of air-time determined without considering the Peukert effect
will initiate the early-landing procedure before completing the trajectory. This affects
the system’s service fairness, sum rate, and energy efficiency. The PAP air-time for a
given power profile considering the Peukert effect can be estimated using Algorithm F.1.
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Algorithm F.1: PAP Air Time Estimation.
1 Initialize m = 1 Puav(vm), to, Vo, co, Vcutoff, δt;
2 while 1 do
3 if (m == 1) then
4 V b

m = Vo; find ibm from (F.13); find tbm using (F.16);
5 if (tbm ≤ 0) then
6 break;
7 find sb

m(ibm) using (F.17);
8 find V b

m+1 using (F.14);
9 if (V b

m+1 < Vcutoff) then
10 break;
11 m = m+ 1; update Puav(vm);
12 find ibm from (F.13); tbm using (F.15);
13 Output: Air-Time: Tuav = mδt.

3 Trajectory Optimization Using DRL Method
In this section, we formulate the problem and use the deep reinforcement learning tech-
nique to design an optimal trajectory for the PAP that maximizes the FEE of the
system.

3.1 Problem Formulation
The FEE of the considered system can be increased by suitably designing the 3D tra-
jectory of the PAP. The corresponding problem can be formulated as,

(F:P1) : maximize
VM

FEE (VM ) ,

s.t. V b
M+1 ≥ Vcutoff; tbM+1 ≥ 0, (F.18)
ux,m+1 = ux,m + δtvmsin εmcosαm︸ ︷︷ ︸

∆x
m(vm)

∀m ∈M
′
, (F.19)

uy,m+1 = uy,m + δtvmsin εmsinαm︸ ︷︷ ︸
∆y
m(vm)

∀m ∈M
′
, (F.20)

uz,m+1 = uz,m + δtvmcos εm︸ ︷︷ ︸
∆z
m(vm)

∀m ∈M
′
, (F.21)

uz,min ≤ uz,m ≤ uz,max ∀m ∈M, (F.22)
ΣNn=1Tm,n = δt ∀m ∈M

′
, (F.23)
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uM+1 = uF; u1 = uI, (F.24)
Tm,n ≥ 0 ∀m ∈M

′
, n ∈ N . (F.25)

The objective function of (F:P1) maximizes the FEE; (F.18) ensures that the PAP
will not run out of onboard available battery capacity at any point of the trajectory.
The x, y, and z coordinates of the PAP position are changed according to (F.19) −
(F.21), respectively. The flying region of the PAP is limited in the z-direction using
(F.22) with uz,min and uz,max as the respective minimum and maximum permitted
flying altitudes. (F.23) is the TDMA scheduling constraint. (F.24) constrains the initial
and final positions of the PAP to be uI and uF, respectively. (F:P1) is a non-convex
optimization problem with a large number of optimization variables restricting the use of
conventional convex optimization methods such as sequential convex programming [31].
Consequently, (F:P1) is equivalently represented as a Markov Decision Process (MDP)
with continuous state and action spaces, and a DRL-based algorithm is proposed to
design a 3D trajectory for the PAP that maximizes the FEE of the system.

The PAP is considered as an agent of the DRL framework; the framework takes the
state observed by the PAP, sm, and outputs an action, am. The agent receives a reward
rm after taking the action am that moves it from state sm to state sm+1. The whole
trajectory of the PAP is considered as an episode of the DRL framework; an episode
ends (i.e., m = M +1) if it runs out of the onboard battery capacity. It should be noted
that the value ofM is not constant here, and it varies according to the profile of the PAP
power consumption. Additionally, to model the FEE solely as a function of the PAP
trajectory, we schedule the data transmission to each GN for a time that is proportional
to the respective expected spectral efficiency (i.e. Tm,n = Rm,n/

∑N
n=1Rm,n, ∀m ∈

M′
, n ∈ N ).

3.2 PAP Trajectory as an MDP
Since the next state and action of the PAP depend only on the present state of the
PAP, we use a standard MDP representation as a 4-tuple (S,A,P,R) with sets: state
space S, action space A, probability of transition P, and a state-action reward map
S ×A− > R.

State Space, S = {sm}

The state of the PAP consists of 3D-coordinates of the PAP location written relative
to the destination, the PAP’s battery terminal voltage, the total energy consumed,
coordinates of the GNs written relative to the horizontal projection of the PAP position,
and the number of bits transmitted to each GN until the end of the mth time slot:

sm = {{(um − uF), V b
m, Em, {(gh,n − uh,m)}, {Dsum

m,n}},
(F.26)
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where Dsum
m,n =

∑m
j=1Dj,n(vj , Tjn) is the total number of bits transmitted to the nth GN

till the end of the mth time slot; Em =
∑m
j=1 δtPuav(vj) is the total energy consumed

until the end of the mth time slot. Hence, sm has 5 + 3 ·N dimensions.

Action Space A = {am}

Since all the state dimensions are functions of the 3D movement of the PAP, the action
am taken by the PAP is velocity-steered and can be expressed as a vector of dimension
3: am = {cxm, cym, czm} ∈ [−1, 1] such that the components of the velocity vector are
given by,

vm =
√
cxm

2 + cym
2 + czm

2 · vmax

3 , (F.27)

εm = arctan


√
cxm

2 + cym
2

czm

 , (F.28)

αm = arctan
(
cym
cxm

)
. (F.29)

Moreover, if the action takes the PAP out of the altitude boundaries, the z-coordinate
of the next state is readjusted to the corresponding boundary value.

Reward Space R = {rm}

The reward function determines how fast the PAP finds the optimal trajectory. Here,
the primary objectives are to maximize the FEE and let the PAP reach the specified des-
tination before the battery becomes obsolete by satisfying all the constraints of (F:P1).
To efficiently map the above objectives, we leverage the reward shaping technique [32].
Hence, the reward rm is expressed as,

rm = fm + pm, (F.30)

where,

pm =
{
FEE(Vm+1) if FEE improves,

0 otherwise/ifm=M+1, (F.31)

is the position reward that encourages the PAP to move in a direction that improves
the FEE of the system, and

fm =
{
κf · FEE(VM ) if m = M + 1,

0 else, (F.32)

is the terminal reward. The value of κf should be selected in a way that ensures the
sum of the position rewards is always less than or equal to the terminal reward. κf is
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needed to balance the position and terminal rewards. Otherwise, the position reward
would dominate over the terminal reward.

Since the defined MDP is deterministic, no randomness is considered and all transi-
tions follow the agent’s decisions [25]. Therefore, the next state is a direct consequence
of the current action of the agent.

Episode Termination

The FEE of the system increases when the PAP spends the maximum time over the air
to serve the GNs. Hence, an episode is terminated when the remaining air-time (Tuav) of
the PAP is equal to the minimum time required by the PAP to reach the destination from
the current position with a speed of vmax: Tmin

uav,m = ‖um − uF‖/vmax. The remaining
air-time of the PAP can be estimated using Algorithm F.1. Consequently, if an action
takes the PAP to um+1 and if Tuav < Tmin

uav,m+1, the action is discarded and the PAP
moves to the destination from um with a speed of vmax m/s. Accordingly, the GNs are
served for a maximum amount of time while ensuring a safe landing of the PAP at the
destination.

The safety check explained above satisfies (F.18) by ensuring sufficient energy avail-
able at the PAP to fly back to the destination after each action. The 3D coordinates of
the PAP after taking an action are determined by substituting (F.27)-(F.29) in (F.19)-
(F.21), satisfying the PAP movement constraints. The altitude constraint (F.22) is
satisfied by limiting the action space if such an action violates the constraint. The
proposed heuristic time allocation in which the data transmission to each GN is sched-
uled for a time proportional to the respective expected spectral efficiency satisfies the
TDMA constraints (F.23) and (F.25). Finally, all the episodes start and end at uI and
uF, respectively satisfying constraint (F.24).

3.3 TD3-Based PAP 3D Path Design
Here, the objective is to find the optimal policy π that takes the current state of the PAP
(agent) and gives an action that maximizes the expected return: Rm =

∑M
i=m γ

i−mrm,
where γ is a discount factor determining the priority of short-term rewards. The action
value of a state, Qπ(sm, am), gives the expected return for starting in state sm, taking
action am, and then acting according to the policy π forever after. The optimal action-
value function is given by the Bellman equation as,

Q∗(sm, am) =
[
rm + γ max

am+1
Q∗(sm+1, am+1)

]
.

(F.33)

In DRL, Q∗(sm, am) is approximated by a neural network Qφ(sm, am) with parameters
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Algorithm F.2: Energy Efficient 3D Path Planning.
1 Initialize the locations of GNs;
2 Initialize critic networks Qφ1 , Qφ2 , and actor network µθ with random

parameters φ1, φ2, θ;
3 Initialize target networks φ1,tgt ← φ1, φ2,tgt ← φ2, θtgt ← θ
4 Initialize replay buffer H;
5 for each episode do
6 Initialize the location of PAP to uI , m = 1, V bm = Vo, tm = to; d = 1;
7 Formulate the state of the PAP sm;
8 while the episode is not over do
9 The agent takes an action with exploration noise: am = µθ(sm) + ε,

observe the reward rm and new state sm+1;
10 store (sm, am, rm, sm+1) in the replay buffer;
11 if replay buffer is sufficient then
12 sample mini batch of |H′ | transitions from H;
13 compute target actions using (F.41);
14 compute target using (F.38);
15 update critic networks by one step gradient descent using,

∇φj 1
|H′ |

∑
ei∈H′

(
Qφj (si, µθ(si))− yi

)2

for j ∈ {1, 2};

16 if it is time to update then
17 update policy network by one step gradient ascent using,∑

ei∈H
′ ∇µθ(si)Qφ1 (si,µθ(si))∇θµθ(si)

|H′ | ;
18 update target networks using, θtgt = τθtgt + (1− τθ);
19 φj,tgt = τφj,tgt + (1− τφj) for j ∈ {1, 2}.

20 m = m+ 1;
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φ. Then the closeness of Qφ(sm, am) to Q∗(sm, am) is judged by evaluating the mean-
squared Bellman error (MSBE) function:

L(φ,H) = E
{ei}∼H

(Qφ(si, ai)− yi

)2
 , (F.34)

where

yi = ri + γ(1− d) max
ai+1

Qφ(si+1, ai+1), (F.35)

is the target value and d = 1 represents the terminal state. The expectation in (F.34)
is taken over a mini batch of experiences, {ei} = {(si, ai, ri, si+1, d)} = H′ sampled
from the experience replay buffer, H. The parameter φ is updated to minimize the
MSBE. Since the considered action space is continuous, the evaluation of the MSBE
is not trivial because of the maxai+1 Qφ(si+1, ai+1) term in the target value where the
maximization has to be done over a continuous action space. To tackle this, we use
an actor-critic framework-based twin delayed deep deterministic policy gradient (TD3)
algorithm [33]. An actor-critic framework uses an actor network that takes the state sm
as input and outputs the action am, whereas the Q-value of the taken action am at state
sm is estimated by the critic network. At the end of the training, the actor network
represents the optimal policy, π. Hence, (F.34) and (F.35) can be rewritten as,

L(φ,H) = E
{ei}∼H

(Qφ(si, µθ(si))− yi

)2
 , (F.36)

yi = ri + γ(1− d)Qφ(si+1, µθ(si+1)), (F.37)

where µθ is the actor network with parameters θ and Qφ is the critic network with
parameters φ. From (F.36) and (F.37), the target yi depends on the same parameters
we are trying to train: φ and θ which makes the MSBE minimization unstable. The
solution is to use target networks that have sets of parameters which come close to φ and
θ, but with a time delay. The parameters of the target network are denoted as φtgt and
θtgt, respectively. In order to avoid the overestimation problem of the deep deterministic
policy gradient (DDPG) algorithm [34], the TD3 algorithm proposed in [33] uses:

Clipped Double-Q Learning

in which two critic networks are used instead of one, and uses the smaller of the two
Q-values to form the targets in the MSBE functions:

yi = ri + γ(1− d) min
j=1,2

Qφj,tgt(si+1, µθtgt(si+1)), (F.38)
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where Qφj,tgt for j ∈ {1, 2} are the corresponding target critic networks. Both networks
are then trained to minimize this target:

L(φ1,H) = E
{ei}∼H

[
Qφ1(si, µθ(si))− yi

]2

, (F.39)

L(φ2,H) = E
{ei}∼H

[
Qφ2(si, µθ(si))− yi

]2

, (F.40)

that avoids the overestimation problem;

Delayed Policy Updates

through which the TD3 updates the policy (µθ) and target networks less frequently than
the critic networks (once every K critic networks update);

Target Policy Smoothing

which adds a clipped noise on each dimension of the action produced by the target
policy network. After adding the clipped noise, the target action is then clipped to lie
in the valid action range: [amin, amax],

µθtgt(si+1) = clip
(
µθtgt(si+1) + clip(ε,−c, c), amin, amax

)
,

(F.41)

where ε ∼ N (0, σ) and clip(x, a, b) = max(min(x, b), a). This avoids the problem of
developing an incorrect sharp peak for some actions by the Q-function approximator.
The steps to design a fair energy-efficient 3D trajectory for the PAP using the TD3
framework are given in Algorithm F.2.

4 Numerical Evaluation
In this section, we present our main findings obtained through numerical evaluations.
The evaluations consider a square area of 1000 × 1000 meters with 16 GNs. The values
of all the environment-related parameters are listed in Table F.2 [25]. To the best of
our knowledge, the same overall setting has not been considered in the literature yet,
hence we are comparing our results with the following two baseline scenarios:

1. Baseline 1: the first maneuver executed by the PAP is a diagonal climb from uI
up to the center of the region with coordinates (500, 500, 100); hovers there until
it only has sufficient energy to reach its destination; and flies reclined to the end
of its trajectory uF;
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Table F.2: Testing environment settings.

Label Definition Value
fc Channel carrier frequency 5.8 GHz
c Velocity of light 3 · 108 m/s
B Channel bandwidth for each GN 40 MHz
N0 Noise spectral power -174 dBm/Hz
uz,min PAP’s minimum flying altitude 20 m
uz,maz PAP’s maximum flying altitude 100 m
vmax Maximum achievable PAP speed 24 m/s
δt Time discretization Interval 1 s
Pt Transmission Power 23 dBm

Table F.3: Network Architecture.

Network(s) Layer Depth Activation
Critic Input Layer 56 −
Critic Hidden Layer 1 256 ReLu
Critic Hidden Layer 2 512 ReLu
Critic Hidden Layer 3 512 ReLu
Critic Output Layer 1 ReLu

Actor Input Layer 53 −
Actor Hidden Layer 1 256 ReLu
Actor Hidden Layer 2 512 ReLu
Actor Hidden Layer 3 512 ReLu
Actor Output Layer 3 TanH

2. Baseline 2: the first maneuver executed by the PAP is a diagonal climb from uI to
(200,200,100). It then continues through the shortest path between the locations
of the GNs until it only has sufficient energy to reach its destination. We determine
the shortest path using the well known travelling salesman algorithm.

The simulations are done considering 3 different environment scenarios namely, sub-
urban, urban and dense urban with (a, b, ηLoS, ηNLoS) parameters (4.88, 0.43, 0.2, 24),
(9.61, 0.16, 1.2, 23), and (12.08, 0.11, 1.8, 26), respectively [6].

The architecture of actor and critic networks used in the simulations are listed in
Table F.3. After an extensive experimentation, the values of various hyper parame-
ters associated with the networks that give the maximum FEE value after training the
networks for 1000 episodes are listed in Table F.4. Fig. F.5 plots the PAP power con-
sumption and air-time as a function of the speed. The vertical flying power consumption
increases with speed since the PAP requires more power to overcome the downward drag
force. When the PAP is flying horizontally, the power consumption initially decreases
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Table F.4: Network Parameters.

Label Definition Value
α Actor learning rate 10−4

β Critic learning rate 10−3

|H′ | Batch size 64
|H| Replay buffer size 2× 105

K Network update interval 2
τ Soft update factor 0.001
γ Discount factor 0.99
κf - 1000
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Fig. F.5: Variation of the PAP power consumption and air-time (endurance) as a function of the
flying velocity. H-fly represents a level forward flight at the maximum height (vm 6= 0, εm = 90◦); v-fly
represents axial climb or descent (vm 6= 0, εm = 0).



4. Numerical Evaluation 167

x

0 200
400

600
800

1000

Y

0
200

400
600

800
1000

Z

0
20
40
60

80

100

Baseline scenario
Ground nodes

Fig. F.6: Baseline1 scenario to compare the performance; the PAP starts at (0,0,20), flies to the center
of the geographical region (500,500,100), hovers there until the battery capacity reaches the threshold
value, flies back to the destination (1000,1000,20).

and then increases after 11 m/s: because the magnitude of power required to overcome
the rotor-induced drag force decreases with the PAP velocity; in the low-speed regime,
it dominates the power consumed to overcome the fuselage and rotor profile drag forces.
Correspondingly, the maximum PAP air-time, using Algorithm F.1, is obtained as 1616
seconds (s) when the PAP is flying at a speed of 11 m/s. The figure also shows the
importance of considering the Peukert effect during the trajectory planning of the PAP;
neglecting the Peukert effect overestimates the air-time of the PAP that could force the
PAP to initiate landing procedure before completing the planned trajectory.

Finally, we perform two types of RL training to showcase the effectiveness of our
approach in different scenarios. The first (offline) approach assumes the same fixed user
positions for both the training and testing part. This analysis is done to evaluate the
capability of the actor network to solve problem where all users are uniformly spaced
along the x and y directions, as shown in Fig. F.6. This fixed arrangement has very
sparse GNs which makes it difficult for the FI problem. The second approach considers
random positions, such as in a point process, where the x and y coordinates of each GN
are uniformly distributed for each training episode. In this approach the testing is done
on a set of random GN arrangements that the agent has not used for training before,
which also includes the fixed uniform positions. This is a slightly easier problem when
solving fairness problems such as FI due to the likelihood of users to cluster and/or
disperse due to the entropy of the system.
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Fig. F.7: Sample PAP trajectories obtained using the trained actor network.
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Table F.5: Improvement with respect to the baselines.

Proposed Baseline1 Improvement Baseline2 Improvement

Suburban
FEE 2.039 1.085 87.93 % 1.083 88.27%
FI 0.896 0.975 -8.1 % 0.985 -9.03%
EE 2.276 1.113 104.49% 1.098 107.28%

Urban
FEE 1.4 0.376 272.34% 0.508 175.59%
FI 0.968 0.681 42.14 % 0.971 -0.31%
EE 0.876 0.552 58.69 % 0.523 67.49%

Dense urban
FEE 0.853 0.204 318.13 % 0.329 159.27%
FI 0.902 0.617 46.19 % 0.976 -7.58%
EE 0.946 0.331 185.8 % 0.337 180.71%

4.1 Fixed Uniform User Positions (Offline RL)
The resulting trajectories following the training process of the actor network for the first
arrangement are given in Fig. F.7. We notice that in the case of suburban deployments,
the TD3 DRL method behaves very similarly to the stop-and-hover baseline deployment.
This is due to the very high likelihood of having a LoS with all users and gives less
relevance to the position of the PAP. However, opposite to the baseline case, the DRL
method performs occasional repositioning to maintain better FEE. Finally, the TD3-
DRL implementation keeps the PAP in constant movement with speeds around its most
energy efficient velocity. We note that the most energy efficient velocity varies with the
aerodynamics of the specific UAV and can thus be different with UAVs from different
manufacturers. Opposed to the suburban scenario, in Fig. F.7 we can see in the subplots
c) and e) that the PAP maintains much more dynamic movements for the urban and
dense urban scenarios respectively. This is a superior approach to the stop-and-hover
one, due to the short bursts of better LoS connectivity when the PAP travels above
each GN. However, these bursts need to be balanced over the longer period of service
and thus the PAP is always kept on the move. Finally, it is noticeable that in these two
scenarios, the PAP flies off to a position that is far from the center of the area of service.
This is significant for keeping the nodes equally serviced, and thus have improved FEE,
in the more challenging propagation environments.

Figs. F.8a-F.8d show the respective improvement in the fair energy efficiency, fair-
ness index, energy efficiency, and PAP air time as the training progresses. As seen in
the figures, initially, the agent tries random trajectories to explore the state-action space
causing relatively shorter episodes with low FEE, FI, and EE values. Later, this experi-
ence helps the ML model to converge to a better policy that improves the optimization
metric. Moreover, the testing values (the values after 1000 episodes) using the proposed
algorithm outperform the baseline scenarios in all the considered environments, as given
in Table F.5. The maximum gain over Baseline1 is achieved when the PAP is deployed
in a dense urban scenario. This is because the considered setup places a subset of GNs
in the NLoS regime of the PAP’s hovering point, thereby giving a low baseline FI value.
The proposed algorithm improves the FI value by moving the PAP around the GNs,
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Fig. F.8: FEE, FI, EE, and PAP airtime improvements as the training progresses. The training
procedure is repeated for 16 different random seeds. The shadow regions around the plots show a 95%
confidence interval across randomized repetitions.
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as shown in Fig. F.7e. The performance gain achieved by Baseline2 is competitive in
urban and dense urban scenarios, with regards to Baseline1, because the corresponding
trajectory improves the service fairness among all the GNs. Interestingly, the FEE per-
formances of Baseline1 and Baseline 2 in a suburban scenario are comparable since all
the GNs are in LoS with the PAP throughout the respective placement policy, giving
high FI values. This leads us to the conclusion that the suburban environment is not
challenging enough for the problem of trajectory with regards to the scale of our imple-
mentation. In all the trajectories, the PAP climbs to the maximum altitude after leaving
the starting point and then follows a horizontal flight during the remaining endurance:
as the altitude increases, the throughput between the PAP and a node increases due to
an improved LoS probability between them; furthermore, the PAP power consumption
during a vertical flight is much higher compared to a horizontal flight as shown in Fig.
F.5. Hence, flying horizontally at the maximum altitude increases the PAP air time as
well as the number of bits transmitted to the GNs thereby improving the FEE value of
the system. Also, the speed plots of Fig. F.7 show that the actor proposes to fly the
PAP at the optimal flying speed that maximizes the air-time of the PAP.

4.2 Randomized Uniform User Positions (Online RL)
In this section, we describe the method adopted from [35] to generalize the training
so that the trained actor network performs well for any set of user positions. The
system is trained for a fixed number of episodes Ntrain, where the x and y coordinates
of each GN are uniformly distributed for each training episode. After every 10 training
episodes, we evaluate the actor network on a total of Neval evaluation episodes with
disabled learning to assess the current performance of the actor network. We repeat
this training procedure for Nseed times, each with a different random seed. The average
FEE value after each evaluation phase is used as a metric to select the best-performing
parameter (θ) of the actor network (µθ). At the end of the training procedure, we
further evaluate the learned policy by assessing its performance in Ntest episodes, each
with a different placement of GNs that the agent has not seen during the entire training
process. Moreover, this test phase happens without exploration and learning.

Fig. F.9 shows the training and testing performances for suburban, urban, and dense
urban scenarios with Ntrain = 1000, Neval = 16, and Nseed = 8. The shadow regions
around the plots show a 95% confidence interval across randomized repetitions. In all
the scenarios, the FEE value improves with the training as seen in Fig. F.8a. The
mean and median FEE values obtained after testing the learned policy over Ntest =
512 episodes outperform the mean baseline performances. As observed previously, the
maximum and minimum performance gains are observed in dense urban and suburban
scenarios, respectively. Additionally, the test performances (with learning disabled) are
comparable with the performances at the end of the training phase. Thus the learned
policy can be used to design an energy-efficient 3D trajectory for a PAP deployed to



172 Paper F.

0 500 1000 1500 2000 2500
Episode

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

FE
E 

(M
Bi

ts
/J)

Train Test

Proposed Suburban

(a) FEE Suburban

0 500 1000 1500 2000 2500
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FE
E 

(M
Bi

ts
/J)

Train Test

Proposed Urban

(b) FEE Urban

0 500 1000 1500 2000 2500
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FE
E 

(M
Bi

ts
/J)

Train Test

Proposed Dense Urban

(c) FEE Dense urban

Fig. F.9: Training and testing FEE plots. Circles inside the box plots represent the average test FEE
values. The second and third box plots represent Baselines 1 and 2, respectively.
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serve any given distribution of the GNs while guaranteeing per-user service fairness.

5 Conclusion
In this paper, we considered a UAV in the role of a portable access point (PAP) that
aims to maximize the novel fairness-based energy efficiency metric, fair energy efficiency
(FEE). Optimizing the energy-efficiency of PAPs is important but this should not come
at the expense of service fairness. The method we propose here strikes a good balance
between both. Moreover, we defined a pragmatic non-linear discharge behavior of the
PAP battery, as the Peukert effect. As the first work to investigate the Peukert effect in
PAP 3D trajectory optimization for wireless IoT services, we initially investigated the
impact of the non-linearity of the energy storage. As such, we deducted that neglecting
the Peukert effect overestimates the PAP air time which could force the PAP to perform
an early landing. Given the non-convex FEE maximization problem with non-tractable
constraints we proposed an adapted implementation of a twin delayed deep deterministic
policy gradient deep reinforcement learning (TD3-DRL) framework. The optimal solu-
tions provided by TD3-DRL varied by the properties of the propagation environment.
The improvements of using the TD3-DRL in suburban scenarios are moderate with a
gain up to 80% in suburban over the baseline scenarios and around 200% and 300% in
the urban-and dense urban scenarios respectively. Finally, we generalize the network to
any set of GN positions. Thus, we can summarize, that our TD3-DRL implementation
provides a robust solution for PAP trajectory optimization in both strongly LoS and
strongly NLoS environments.
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Abstract
This work proposes a framework to design a cost-efficient unmanned aerial vehicle
(UAV)-based energy-neutral (EN) system deployed to harvest data from a set of internet-
of-things (IoT) nodes. The energy-neutrality refers to the zero-sum balance between en-
ergy harvested, stored, and consumed during operation, which is a game-changer when
a connection to the electricity grid is not available/feasible. This involves employing
an off-grid charging station (CS) comprising of photovoltaic (PV) panels and batteries
that provide enough energy to recharge the UAV-based aerial access points (AAPs).The
investment cost is determined by the number of AAPs, PV panels, and ground battery
units. Its minimization cannot be achieved using conventional optimization tools due
to the non-tractable form of the CS load. Therefore, a novel wave-based method is pro-
posed to represent the load profile as a proportional function of the required number of
AAPs, so as to directly relate the CS design to the trajectory optimization. Compared
to baseline scenarios, the proposed trajectory design can halve the time and energy con-
sumption; the investment cost varies with the time and season of service; the off-grid CS
is particularly advantageous in rural areas, while in urban areas its cost is comparable
to that of a grid-connected alternative.

1 Introduction
The use of unmanned aerial vehicle(s) (UAVs) provisioned with on-board next-generation
small cell radio access node as aerial access point(s) (AAPs) to harvest data from a set of
Internet-of-Things (IoT) nodes has gained much attention in the recent years [1]. A sep-
arate study item has been released by the third generation partnership project (3GPP)
detailing the architecture and link-level requirements of an AAP [2]. If the system is
deployed for a short-term event, such as data harvesting from a rural IoT network that
is widely spread geographically, deploying a grid-connected fixed infrastructure would
be cost-inefficient, since this would require a large number of telco modules with under-
utilized capacity. Additionally, a connection node to the electricity grid may not be
available in some areas, and installing one might not be feasible due to the high instal-
lation costs. A potential solution to this is to employ an off-grid system that harvests
(and stores) the required energy from the surrounding environment. In the proposed
instance, the system is a UAV-based mobile network that consists of a set of UAVs and
a ground charging station (CS). By virtue of limited on-board battery capacity, the
available service time of an active (flying) AAP is a function of the on-board battery
pack and its trajectory; consequently, in order to guarantee continuity of service beyond
the active time of a single AAP, a set of fully charged idle (not active) AAPs is needed,
so as to replace the out-of-power AAP(s), as shown in Fig. G.1. Moreover, given the
high cost of AAPs, the out-of-power AAP should be recharged while its replacement
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is active, thereby justifying the use of a CS. Hence, to guarantee 100% reliability, the
load to the CS should be modeled as a function of the UAV-and mission-related time
factors, such as the active time of a UAV, time between successive data harvesting from
an IoT node, etc. Inspired by the above facts, in this work, we model both the energy
demand and supply of an energy-neutral (EN) UAV-based mobile network as respective
functions of the mission-related time factors and the solar irradiation. These are then
used to develop a general framework that uses the trajectory of the AAP as a tool to
minimize the investment cost.

1.1 Related Works
The sizing of a photovoltaic (PV)-battery system for supplying a CS is challenging due
to factors such as the associated costs, the volatility of solar irradiation, varying load,
and physical location constraints [3]. The focus of the work in [3] - [8] is on supplying
the energy required by base stations in mobile networks through PV-battery systems.
In [3] and [4], the authors optimize the size of the energy system used to power a
fixed telecommunication infrastructure, but they do not control the load profile, which
is taken as a design requirement. The works in [5] and [6] model the performance of
renewable energy source (RES)-based base stations to size the energy system based on
Markovian models. [7] proposes a multi-objective wind-driven optimization (MO-WDO)
algorithm to size an off-grid energy system. The number of PV panels and battery cells
are optimized based on the ‘annual total life cycle cost’. In [8], a genetic algorithm-
based methodology is proposed to design a PV-battery system with the objectives of
minimizing CAPEX and OPEX. The load profile to the charging station used in [3]- [8]
is not suitable for a UAV-based mobile network, since it is not a function of UAV-related
time factors.

The articles in [9]- [13] consider an off-grid UAV-based architecture to serve a set
of users with the objective of minimizing the investment cost or maximizing the energy
storage. In [9] and [10], the authors minimize the installation cost of a UAV-based
cellular network in rural areas while considering UAV recharge over time, coverage,
and installation constraints. However, the UAVs hover while serving the users, thereby
making the proposed frameworks less efficient. The work in [11] proposes a GA-based
solution to maximize the energy stored in UAVs and the ground sites while providing
cellular coverage to the considered area; there is no attempt to minimize the investment
cost. The authors of [12] propose an energy-efficient mission planning for a UAV-based
cellular network to minimize the energy consumed by UAVs and ensure cellular coverage
to the users. However, [12] does not consider the power constraints related to the
recharging sites. Moreover, it uses the results of [10] to design the energy systems of
the UAV recharging sites. [13] proposes an optimization framework to minimize the
financial cost of a PV-battery-powered off-grid UAV-based cellular telecommunication
network by sizing the energy system using the derived power consumption profiles for
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three recharging sites. The work uses the results of optimal mission planning in [12]
as input to obtain the load profile of each recharging site. However, for real-world IoT
applications, the mission planning of the UAVs and the design of the energy system
should be investigated as a united problem.

The work in [14] - [26] consider efficient deployment of UAV-based systems to max-
imize performance metrics such as coverage area, number of covered users, sum rate,
and energy efficiency. The placement optimization of a UAV-based communication
system can be generally divided into two categories: quasi-stationary deployment and
optimal trajectory design. The first scenario determines optimal hovering position(s) of
UAV(s) [14] - [19]; in the second scenario, a set of UAVs move along a designed path that
maximizes the considered performance metric [20] - [26]. The authors of [14] and [15]
use analytical tools to maximize the coverage region of a UAV-based system by varying
the altitude of the UAV. In [16] and [17], the authors use circle packing-based algorithms
for the optimal quasi-stationary deployment of a multi-UAV system to maximize the
global energy efficiency and throughput, respectively. In [18] and [19], the authors pro-
vide multi-UAV deployment strategies based on the K-mean and mean-shift algorithms
to maximize the coverage region and the minimum achievable rate, respectively. The
authors of [20] and [21] design a UAV-enabled system based on covert wireless commu-
nications to enable the ground users to hide their transmissions from each other while
conveying critical information to the UAV. The work in [20] uses a penalty successive
convex approximation (P-SCA) scheme to jointly design the UAV trajectory and its
maximum transmit power of the artificial noise (AN), together with the user schedul-
ing strategy subject to covertness constraint, whereas, [21] uses a heuristic approach to
optimize the flying location and transmit power. The trajectory design or placement
methods proposed in [20] - [25] formulate the problem to either maximize the energy
efficiency or throughput as a mixed-integer non-linear problem (MINLP). This is then
solved using the sequential convex programming technique. A comprehensive list of
papers that consider UAV placement optimization is available in [26].

1.2 Major Contributions and Paper Structure
The work in [3] - [8] consider supplying the power required by a fixed base station
using PV and battery storage systems. The load to the energy system is modeled as
a function of the traffic demand of the base station. However, the load to the CS in
a UAV-based architecture is a function of the service demand of the users, as well as
the trajectory of the UAV. Although the works [9]- [13] tackle the cost minimization of
a UAV-based architecture, they consider a simple hovering UAV scenario. These are
sub-optimal solutions for an IoT application since they do not exploit the mobility of
UAVs as a tool to minimize the cost by reducing both their number and the load to the
CS. Moreover, the load profiles do not present an interactive formulation that allows
us to show its response to the mission and UAV-related time factors, such as the delay
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between the successive data harvesting from a node, active and charging time of a UAV,
etc. Coverage and energy-efficient UAV deployment strategies are proposed in [14]- [26].
However, the authors do not consider the presence of a ground CS, and all the missions
are set to have a duration less than or equal to the active time of a UAV. The objectives
are either to determine an optimal altitude that maximizes the coverage area or to find
the trajectory parameters that maximize the number of bits transmitted per Joule of
Energy consumed. Maximizing the coverage area/ energy efficiency might not always
minimize the cost. For instance, the energy efficiency can be improved by flying the
AAP at an optimal velocity which is not equal to the maximum velocity. This increases
the delay, which forces the system to deploy another AAP if the delay in visiting the
same user in succession is greater than the network’s time difference of arrival (TDOA),
thereby increasing the cost. Therefore the trajectory design to minimize the cost requires
further attention. In this work, the objective of cost-efficient design and deployment of
a UAV-based system in areas without access to a reliable electricity grid is pursued.
The major contributions of this paper can be summarized as follows:

• Proposing a novel wave-based method to generate the load profile of a CS in an EN
UAV-based mobile network as a function of the number of AAPs and its mission
parameters.

• Designing an efficient AAP path design based on the mean-shift algorithm that
minimizes the number of AAPs subject to data harvesting and trajectory con-
straints. This method makes it possible to solve the problem using convex opti-
mization techniques and can be tweaked to optimize any performance metric.

• Employing the above to minimize the overall cost of deploying an EN UAV-based
communication network that harvests data from a set of IoT nodes over set inter-
vals of time.

Section 2 describes the considered scenario and the applied models. Section 3 il-
lustrates the problem formulation and the wave-based load profile modeling, as well as
the mean-shift clustering-based trajectory design. The main findings of this paper are
summarized in Section 4.

2 System Model and Definitions
In this work, a delay-tolerant IoT network is considered, in which a UAV-based EN
system is deployed to collect Q bits of data from a set of ground users (GUs) every
Tperiod seconds. In practice, Tperiod is the time difference of arrival (TDOA) of the IoT
network, and is a function of the memory capacity of the IoT sensor nodes. The EN
system, as shown in Fig. G.1, consists of a flock of AAPs, and a CS on the ground to
harvest and store the required energy for the AAPs. The CS is formed by two elements:
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Idle AAP

Active AAP

Aerial access point(AAP)

AAP trajectory

Ground user (GU)

Uplink data link

User cluster

ℎ𝑎

𝜖𝑛,𝑟(𝒓𝑟)

𝒓𝑟

(𝒖ℎ,𝑛, 0)

Ground charging station(CS)

Fig. G.1: Considered application scenario: the AAP(s) is (are) deployed to collect data from a set of
ground IoT nodes; an active AAP with little energy left is replaced by a fully charged idle AAP.

• an energy harvesting PV system, consisting of a number Npv of solar panels, each
of cost Cpv €, that harvest energy from solar irradiation;

• a battery unit of Nbt units, each costing Cbt €, to store the energy harvested in
surplus and use it to supplement the PV module when this cannot sustain the
load by itself.

A flying AAP is called active AAP, whereas one at the CS, either charging or waiting to
be deployed, is called idle AAP. The system is assumed to work for an amount of time
Tservice, measured in hours, within a given time slot of a day: T ≡ [Tstart, Tstart+Tservice],
where Tstart is the time of the day, thus ranging from from 00:00 hrs to (24:00−Tservice)
hrs. For tractability, the trajectory of the AAP corresponding to one data harvesting
cycle is divided into R path segments, represented using R + 1 waypoints [23]. The
length of each segment is constrained to be small enough as to assume the channels
between the AAP and each GU to remain stationary:∥∥rh,r+1 − rh,r

∥∥ ≤ min {δ, Tr · vmax} ∀r ∈ R = {1, 2, ..R}, (G.1)

where δ is chosen so that, within each path segment, the AAP can be assumed to either
hover or fly at a constant velocity vr, which cannot be higher than the maximum AAP
velocity vmax. rh,r = (xr, yr) represents the horizontal-plane coordinates of the 3D
position of the rth path segment of the AAP rr = (rh,r, rv,r), in which rv,r corresponds
to the vertical coordinate of the AAP; the AAP is assumed to fly at a constant altitude:
rv,r = ha ∀r ∈ R. The AAP schedules one GU at a time for data uplinking, thereby
following a time division multiple access (TDMA) scheme to serve the GUs. If Tr is the
time that the AAP spends in the rth path segment, and Tn,r is the time allocated to
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the nth GU when the AAP is in the rth path segment, then THcycle =
∑R
r=1 Tr is the

time it takes the AAP to harvest Q bits of data from N GUs such that,

N∑
n=1

Tn,r ≤ Tr ∀r ∈ R. (G.2)

Also, the nth GU is located at ground level with the corresponding horizontal plane
coordinates uh,n = (xn, yn)∀n ∈ N = {1, 2, ..N}.

2.1 How is Data Harvested from the GUs?
At Tstart, a fully charged AAP ascends from the CS and follows the optimal trajectory
(designed as explained in Section 3.2). If the time it takes the AAP to complete one
cycle of data harvesting is greater than the TDOA of the network (THcycle > Tperiod),
then a second AAP from the ground station is deployed at Tstart +(Tperiod/3600) hours,
following the same trajectory as that of the previously deployed AAP1. This data har-
vesting cycle continues for Tservice hrs. The AAPs are assumed to be operating in
orthogonal frequency bands to minimize the inter-user interference (e.g., narrow-band
frequency division multiple access systems [34]). The frequency reuse technique used
in the conventional fixed-telecommunication system can be used to accommodate any
number of AAPs without increasing the available bandwidth. Additionally, at the be-
ginning of each cycle of data harvesting, the on-board battery of the AAP is checked to
guarantee that it has enough energy to complete the cycle; if not, it returns to the CS
for recharging, and it is replaced by a fully recharged AAP, as shown in Fig. G.1.

2.2 Propagation Environment
The communication channel between the AAP and a GU can be either line-of-sight
(LoS) or non-LoS (NLoS), depending on the relative position of the GU with respect
to the AAP and the building profile of the region [14]- [25]. Hence, the probability of
having a LoS channel between the nth GU and the AAP while the AAP is in the rth
path segment is determined using,

Plos
n,r(rr) = 1

1 + a · exp {−b · [εn,r(rr)− a)]} , (G.3)

where a, b are the environment-dependent parameters that are fundamentally decided by
the building profile of the region [14], and εn,r(rr) = (180/π)tan−1

[
ha

‖rh,r−uh,n‖

]
is the

corresponding elevation angle. The LoS and NLoS path loss values in dB are expressed
1In this work, we are not considering the case Tperiod = 0; when Tperiod = 0, a suitable aerial cell

planning is required to minimize the number of AAPs, as proposed in [17] and [25].
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as [14], [17], [25],

Lg
n,r(rr) = 20 · logdn,r(rr) + 20 · logf + 20 · log

(
4π
vlight

)
+ ηg, (G.4)

where g ∈ {los,nlos}, dn,r(rr) =
√
‖rh,r − uh,n‖2 + ha2 ; f and vlight are the respective

signal frequency and the velocity of light; ηlos and ηnlos are the mean values of the
additional path loss for LoS and NLoS links due to the environment, respectively. For
a given elevation angle, this additional loss has a Gaussian distribution [27], and it
depends on the building profile of the region. However, from [27], it is noticed that the
change in the additional path loss within a particular propagation group (LoS/NLoS) is
insignificant compared to the change in path loss value from one group to the other: the
NLoS path loss value depends on the scattering and reflections from the surrounding
buildings which depend largely on the frequency of operation and the building profile
of the region rather than the distance. This allows us to model the path loss with a
constant gap between the two propagation groups. Consequently, the average amount
of exchanged data in bits-per-seconds-per-Hertz (bps/Hz) is given by,

Dn,r(rr) = Plos
n,r(rr)log2

(
1 + P

σ210Llos
n,r(rr)/10

)
+ Pnlos

n,r (rr)log2

(
1 + P

σ210Lnlos
n,r (rr)/10

)
,

(G.5)

where Pnlos
n,r (rr) = 1−Plos

n,r(rr), and P and σ2 are the signal and noise power, respectively.
The principal reason for considering a probabilistic LoS-NLoS air to ground channel
model is the lack of the building map of the region. If the building map of the region
is available, the value of Plos

n,r(rr) can be determined using ray tracing methods, and
(G.5) can be modified accordingly. Hence, the mean shift clustering-based trajectory
design we propose in Section III-B can be used for several scenarios, including a channel
estimated using a deep neural network [28].

2.3 UAV Power Consumption Model
In the considered system, the AAP takes off vertically from the CS to replace an out-of-
power AAP, then the latter descends vertically for recharging; during data harvesting,
the AAP flies horizontally or hovers to collect the data from the users. The total power

Table G.1: UAV Parameters [25].

Label Definition Value Label Definition Value
W Weight of the UAV 32.34 N ρ(ha) Air density -
Nrotor Number of rotors 4 Ud Drag coefficient 0.9
vr UAV’s horizontal flying velocity - Arotor Rotor disc area 0.06 m2

∆ Profile drag coefficient 0.002 vtip Tip speed of the rotor 102 m/s
s Rotor solidity 0.05 Af Fuselage area 0.038 m2

vc ascent/descent velocity 5 m/s
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consumption of the AAP is the sum of the power consumed by the UAV and the radio
access node; since the power consumed by the radio access node is negligible compared
that consumed by the UAV (by two orders of magnitude) [17], [23], it is assumed that
the power consumption of the whole AAP is equal to that of the UAV. The UAV
parameters are summarized in Table G.1. From [25], the power required by the AAP
for flying horizontally and vertically is given by (G.6) and (G.7), respectively:

Ph(vr) = NrotorPb

(
1 + 3v2

r

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2UdAfρ(ha)v3

r︸ ︷︷ ︸
Pfuselage

+ W

(√
W 2

4N2
rotorρ

2(ha)A2
rotor

+ v4
r

4 −
v2
r

2

)1/2

︸ ︷︷ ︸
Pinduce

, (G.6)

Pv(vc) = W

2

(
vc +

√
v2

c + 2W
Nrotorρ(ha)Arotor

)
+NrotorPb. (G.7)

where Pb = ∆
8 ρ(ha)sArotorv

3
tip, ρ(ha) = (1 − 2.2558.10−5ha)4.2577. Pblade and Pfuselage

are the power levels required to overcome, respectively, the profile drag forces of the
rotor blades and the fuselage of the aerial vehicle opposite to its forward movement;
Pinduce represents the power required to lift the payload. Replacing vr = 0 in (G.6)
gives the power level required for hovering.

2.4 PV-Battery System Modeling
PV Modeling

The considered model for the PV power generation has the following expression:

Ppv(Npv, t) = Iirr(t) ·Apv ·Npv · ηpv, (G.8)

where Iirr(t) is the solar irradiance at time t on a south-oriented plane with tilt angle
of 30°, measured in W/m2; Apv is the panel area (m2), and ηpv is the panel efficiency
(assumed constant).

Ground Battery Modeling

Battery storage devices are combined with RESs, such as PV panels, to offset the
intermittency of these resources. The power needed by the CS to recharge the AAPs is
supplied by either the PV panels or the ground battery, depending on the availability of
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the solar energy. If there is a surplus of power generation, the extra power is redirected
towards recharging the batteries of the charging station, as long as their capacity allows
it. If, on the other hand, the power generation is not sufficient, the remaining power is
drawn from the ground battery. The battery model, including its boundary conditions,
is adapted from that in [32], and it is the following:

Ebt(t) = Ebt(t−∆t) + Pbt(t) ·∆t · ηbt(Pbt), (G.9)
Ebt(0) = NbtβmoduleSOCmax, (G.10)
NbtβmoduleSOCmin ≤ Ebt(t) ≤ NbtβmoduleSOCmax, (G.11)
Pbt(t) ≤ PCh,max, when Pbt(t) > 0, (G.12)
|Pbt(t)| ≤ PDCh,max, when Pbt(t) < 0, (G.13)

where Ebt(t) is the energy stored in the battery at time t; Pbt(t) is the power flowing into
the battery (negative when the battery is discharging); ∆t is the time interval considered,
and ηbt(Pbt) is the battery efficiency, which depends on the sign of Pbt because charging
and discharging efficiencies are different. As per the constraints, Nbt is the number of
battery modules, βmodule is the capacity of one battery module, SOCmin and SOCmax
are the minimum and maximum State-of-Charge (SOC) of the battery, which indicates
the level of charge relative to the capacity. Hence, conditions (G.10) and (G.11) mean
that the battery pack is initially fully charged, (SOC = SOCmax), while the battery is
considered depleted when SOC = SOCmin. Finally, (G.12) and (G.13) impose maximum
input and output powers, as specified in the battery data-sheet.

2.5 AAP Mission Breakdown
The time intervals that define the work cycle of an AAP during a mission are displayed
in Fig. G.2, and are defined as follows:

• Tactive is the active time of an AAP, i.e., the total time it spends flying before
recharging. Tactive is given by the sum of the horizontal flying time Tfly and the
exchange time Tex:

Tactive = NHcycle · THcycle︸ ︷︷ ︸
Tfly

+Tdescent + Tascent︸ ︷︷ ︸
Tex

, (G.14)

where Tfly is the product of the duration of a cycle of data harvesting and the
number of cycles, NHcycle, an AAP can withstand before running out of energy;
Tex is the time spent in the exchange process, from when the substitute AAP leaves
the CS to when the discharged AAP reaches the CS. It is obtained by summing
the descent and ascent times, Tdescent and Tascent, which are, respectively, the time
an AAP needs to return to and to leave the CS.
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Fig. G.2: Time components of an AAP work cycle.

• Tcharge is the time needed to fully recharge an AAP, which is calculated based on
the capacity of each AAP’s on-board battery βaap, its Depth-of-Discharge DODaap
(the proportion of capacity that is used during each work cycle), and its average
charging power Pcharge:

Tcharge = βaapDODaapPcharge. (G.15)

• Twait is the interval in which an AAP is charged, but it is waiting for the an active
AAP to finish its mission before being deployed. Its value is determined by using
the two definitions of TWcycle, one referring to a single AAP, and the other to a
whole flock, as follows:

TWcycle = Tactive + Tcharge + Twait = Naap

(
Tactive −

Tex

2

)
,

→ Twait = (Naap − 1)Tactive − Tcharge −Naap
Tex

2 . (G.16)

• The period TWcycle is the interval corresponding to a full AAP work cycle, given by
the sum of the time the AAP spends in each of the three states: active, charging,
and idle,

TWcycle = Tactive + Tcharge + Twait. (G.17)

3 Optimal Design of an Energy-Neutral System
In this section, it is explained how a cost-efficient EN system is achieved by optimally
designing the trajectory of the AAP and efficiently selecting the configuration of the
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CS. The corresponding optimization problem can be formulated as,

(G:P1) : minimize
Npv,Nbt,{rr},{Tr},{Tn,r}

Cinv [Npv, Nbt, Naap({Tr})] , (G.18)

Ppv(Npv, t) + Pbt(Nbt, t)ηbt ≥ Pld [Naap({Tr}), t] ,∀t, (G.19)
δ

Tr
≤ vmax ∀r, (G.20)

R∑
r=1

Tn,rBDn,r(rr) ≥ Q ∀n, (G.21)

rh,1 = rh,c(R+1) = rCS, ∀c ∈ {1, 2, ..., NHcycle}, (G.22)
(G.1), (G.2), (G.8)− (G.13). (G.23)

The objective function of (G:P1) is the total investment cost, consisting in the costs of
the PV panels, battery units, and the AAPs:

Cinv(Npv, Nbt, Naap({Tr})) = NpvCpv +NbtCbt +Naap({Tr})Caap, (G.24)

where Naap({Tr}) is the total number of AAPs, each costing Caap €; Naap({Tr}) is the
sum of idle and active AAPs, where the number of active AAPs is determined by the
TDOA of the network Tperiod and the time it takes an AAP to complete one cycle of
data harvesting:

Nactive({Tr}) =
⌈∑R

r=1 Tr
Tperiod

⌉
, (G.25)

where dxe rounds x to the nearest integer greater than or equal to x. Therefore, the
total number of AAPs required to guarantee that there is always a fully charged AAP
ready to be deployed to replace a depleted AAP is determined as [25],

Naap({Tr}) =
⌈(

Tdead

Tactive
+ 1
)
Nactive({Tr})

⌉
, (G.26)

with Tdead defined as the sum of charging and wait times, Tdead = Tcharge +Twait. Tactive
is obtained from the data-sheet 2 of the UAV used. Usually, the UAV manufacturers
specify Tactive as the hovering time for a given payload. Since the hovering power is
greater than the horizontal flying power of the UAV until a particular velocity value, the
maximum AAPs flying speed is set to be vmax in (G.20), where vmax is obtained from the
power profile of the AAP, as shown in Fig. G.3. This ensures that Tactive will be greater
than or equal to the hovering time indicated in the data-sheet. The corresponding
number of idle AAPs is then determined as Nidle({Tr}) = Naap({Tr}) −Nactive({Tr}).
Constraint (G.19) is the energy neutrality constraint, which guarantees that the CS

2https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf

https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
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load power requirement is always satisfied, regardless of whether power is provided by
the PV panels or the ground battery. One of the challenges in solving (G:P1) is the
difficulty in representing the load to the CS at a given time t as a function of Tperiod,
THcycle, Tactive, and Tdead. In Section 3.1, a novel model is developed to represent the
load, Pld [Naap({Tr}), t], as a function of the number of AAPs. (G.21) guarantees the
delivery of Q bits of data from all the GUs to the AAP within THcycles, with B being
the available bandwidth. (G.22) ensures that each data harvesting cycle starts and ends
above the charging station location, rCS.

3.1 Wave-Based Load Profile Modeling of the CS
From the point of view of the CS, an AAP can only be in two alternative states: charging
or not charging. In the previously described scenario, these two states will periodically
repeat themselves within a given period of time. Let, Kaap,i(t) be the function describing
the state of the ith AAP at time t, such that:

Kaap,i(t) ≡


= 0, when the AAP begins/finishes charging; (G.27a)
> 0, when the AAP is charging; (G.27b)
< 0, when the AAP is not charging; (G.27c)

is periodical with period TWcycle. (G.27d)

The above conditions can be met by modeling Kaap,i(t) as a function of the following
variables:

Kaap,i(t) = F (Tperiod, TWcycle, THcycle, Tactive, Tcharge) . (G.28)

The solution to model F , inspired by the modulation of power electronics, is to use
a sinusoidal function that can be converted into a square wave at a later stage, using a
comparative function. This approach allows synthetic expression for whatever number
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of cycles and even AAPs, and it is easy to implement in any programming language.
Its expression is the following:

Kaap,i(t) = α sin {ω(TWcycle) [t+ φ(Tactive, Tcharge)− ζi(THcycle, Tperiod)]}
+ γ(TWcycle, Tcharge). (G.29)

In order to meet the conditions described in (G.27a)-(G.27d), the shape of (G.29) can
be adjusted by tweaking its five coefficients, as follows:

• α is the amplitude of the wave, but in this case it is only used to specify the sign
of the function. Its value is α = −1 if the cycle starts with an already charged
AAP (or vice-versa);

• ω(TWcycle) is the period of the sine wave, which can be calculated as ω(TWcycle) =
2π

TWcycle
, as a consequence of the definition of period applied to condition (G.27d);

• φ(Tactive, Tcharge) is the phase of the wave, which establishes the shape of the
function. It is found by imposing (G.27a) at t = Tactive and t = Tactive + Tcharge,
resulting in φ(Tactive, Tcharge) = arcsin (−CA )

ω − Tactive;

• ζi(THcycle, Tperiod) is the delay between the launch of the first and the ith AAP, as
explained in Section 2.1:

ζi(THcycle, Tperiod) =


0 if i = 1,

(i− 1) · Tperiod⌈
THcycle
Tperiod

⌉ , if THcycle ≥ Tperiod,∀i,

Tactive, if THcycle < Tperiod.

(G.30)

• γ(TWcycle, Tcharge) is a constant that can shift the wave upwards or downwards
without affecting its shape. For γ(TWcycle, Tcharge) = 0, the ratio between Tcharge
and TWcycle would be 0.5, while for γ(TWcycle, Tcharge) = 1 the AAP would be
charging the whole time. Thus, the general formulation is γ(TWcycle, Tcharge) =
Tcharge

2TWcycle
− 1.

Now, all the cycle functions Kaap,i(t) are transformed into state functions Saap,i(t) of
value 1 when the AAP is charging, 0 when it is not, consistently with the convention
adopted initially:

Saap,i(t) =
{

1, if Kaap,i(t) > 0,
0, if Kaap,i(t) ≤ 0. (G.31)
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Then, the sum of all the state functions Saap provides the number of AAPs recharging
at the same time:

ld [Naap({Tr}), t] =
Naap({Tr})∑

i=1
Saap,i(t). (G.32)

The resulting curves are visualised in Fig. G.4, where three AAP curves exemplify two
cases: one where a single active AAP is enough to satisfy the delay constraint, and one
where at least two AAPs must be active at the same time. It is shown in grey the
load function defined by (G.32), i.e., the number of AAPs connected to the CS at any
given time. It can be observed how the steps of the load function correspond with the
intersection between a state function K and the Time = 0 axis. Finally, the load on
the CS can be calculated by multiplying the number of charging AAPs by the power
consumed to charge a single AAP, Pcharge

ηaap
. Hence, the RHS of (G.19) becomes:

Pld [Naap({Tr}), t] = Pcharge

ηaap
· ld [Naap({Tr}), t] + Ψ(t). (G.33)

The function Ψ represents the power consumption associated with recalculating the
optimal trajectory locally, a binary function assuming the value of computational power
when the computation is executed, and zero at all other times. Since the charging
power was assumed to be a constant, Pld [Naap({Tr}), t] will have the same shape as
ld [Naap({Tr}), t], but it will be expressed in Watts. For a given Tperiod, from (G.19),
the number of required PV panels and battery units is proportional to the load profile
on the CS; from (G.33), the load profile of the CS is in turn a function of the number
of AAPs. Therefore, the size of the AAP fleet has an impact on the number of PV
panels and battery units. Thus, from (G.19) and (G.33), minimizing the number of
AAPs means minimizing the objective function of (G:P1). Once the minimum number
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of AAPs required to harvest Q bits of data from N GUs within Tperiod is determined,
the cost-efficient combination of PV panels and battery units is directly consequential.

3.2 Minimum Number of AAPs
In this section we design a trajectory that minimizes the number of AAPs required to
harvest data from the GUs every Tperiod during Tservice. The corresponding problem is
formulated as,

(G:P1.1) : minimize
{rr},{Tn,r},{Tr}

Naap({Tr}), (G.34)

Naap({Tr}) ≥
(
Tdead

Tactive
+ 1
)
Nactive({Tr}), (G.35)

Nactive({Tr}) ≥
∑r
r=1 Tr
Tperiod

, (G.36)

(G.1), (G.20)− (G.22). (G.37)

In (G:P1.1), we have relaxed the integer constraint on the number of active and total
AAPs. After determining the trajectory variables, the values will be rounded to the
nearest greater integer. (G:P1.1) is a non-convex optimization problem due to the non-
convex form of Dn,r(rr), used in (G.21). Hence, the solution is found by dividing the
problem into two sub-problems: 1) AAP path design using mean-shift clustering; 2)
update of {Tr} and {Tn,r} for the obtained AAP path.

In practice, the number of GUs is large, or they are likely to form clusters. Thus, to
find the cluster properties of user distributions, one can exploit the mean-shift algorithm
proposed in [19] to identify the locations with the highest density of users. When the
number of users is high, the cluster centers are potential points for the AAP trajectory.
In addition, in cases where the users form clusters in advance, such as in rural areas,
referring to these centers prevents the AAP from visiting locations where there are no
GUs. The cluster centers obtained from Algorithm 1 of [19] are the potential points
through which the AAP must pass. Since the active number of AAPs can be reduced
by minimizing

∑R
r=1 Tr, the shortest path between the potential points is determined

using the traveling salesman algorithm [30]. The resulting continuous path between
cluster centers is then discretized into small segments, each of length δ, satisfying con-
straint (G.1), and providing the set of waypoints {rr}. The values of Dn,r(rr) are then
calculated using (G.5). The scheduling problem now takes the following form:

(G:P1.2) : minimize
{Tn,r},{Tr}

Naap({Tr}), (G.38)

(G.20)− (G.22), (G.35), (G.36). (G.39)

Problem (G:P1.2) is a convex optimization problem, and can be solved with solvers like
CVX.
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3.3 Cost-Efficient CS Design
In the previous section, the load to the CS was represented as a function of the number
of AAPs. Also, a trajectory was found that minimizes the number of AAPs, thereby
minimizing the load on the CS and the economic impact of purchasing AAPs. In this
section, efforts are directed towards minimizing the number of PV panels and ground
battery units of the CS, Npv and Nbt, while satisfying the power requirement of the CS.
The corresponding problem is formulated as,

(G:P1.3) : minimize
Npv,Nbt

Cinv [Npv, Nbt, Naap({Tr})] , (G.40)

Ppv(Npv, t) + PDCh(Nbt, t)ηbt ≥ Pld [Naap({Tr}), t] ,∀t, (G.41)
(G.8)− (G.13). (G.42)

Constrained Search Algorithm

Algorithm G.1: Cost-Efficient EN System Design.
1 Initialize the locations of GNs;
2 Find the user-cluster centers using the mean-shift algorithm;
3 Find the shortest path between the centers using the travelling salesman

algorithm;
4 Segment the path into R segments of length δ and find {Dn,r(rr)} using (G.5);
5 Solve (G:P1.2) to get the trajectory variables, the GU scheduling, and the

minimum number of AAPs;
6 Model the load to the CS using (G.32);
7 Use the constrained search algorithm to find the minimum number of PV and

battery units that allows to meet the load requirement.

The constrained search algorithm proposed to solve (G:P1.3) is an enhanced version
of a classic ‘brute force’ algorithm. Brute force methods, also known as exhaustive
search, offer a forthright and very accurate optimization approach of solving problems,
visiting all possible search points in the design space, in order to find the global optimum
within a given search space [33].Their main drawback is the high computational load,
but, in the present application, this is acceptable due to the simple form of problem
(G:P1.3). Since the trajectory optimization is now decoupled from the CS design, this
can be carried out by manipulating only two variables: Npv and Nbt. With a classic
extensive search, all the solutions generated from the combination of these two variables
would be simulated to evaluate their cost and power profile. The ones not satisfying
constraint (G.41) would be simply discarded, and the remaining ones compared by their
cost to find the global minimum. However, the constrained search algorithm achieves
the same result with less iterations: for each number of PV panels, the size of the battery
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Table G.2: Simulation Settings.

Label Definition Value Label Definition Value
Apv Area of PV panel 1.63 m2 ηpv Average efficiency of PV panel 17.1%
βmodule Energy capacity of a battery module 37.44 Wh ηbt Average efficiency of ground battery 90%
SOCmin Minimum battery State-of-Charge 5% Tactive Active time of an AAP 1320 s
SOCmax Maximum ground battery State-of-Charge 95% vc AAP climbing velocity 5 m/s
βaap On-board battery capacity of an AAP 100 Wh Pcharge AAP nominal charging power 180 W
DODaap Depth-of-Discharge of AAP battery 90% ηaap Average efficiency of AAP battery 85%
f Channel carrier frequency 5.8 GHz Q Data size -
B Channel bandwidth 20 MHz a P los Constant for suburban topology 4.88
N0 Noise spectral power -174 dBm/Hz b P nlos Constant for suburban topology 0.43
vmax AAP’s maximum speed 17 m/s ηloS additional mean path loss for LoS group 0.2
δ Path discretization interval 1 m ηnloS additional mean path loss for NLoS group 24
P Transmission power 23 dBm ha Flying altitude of an AAP 50 m
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Fig. G.5: Horizontal projection of a sample AAP trajectory to collect 200 Mbits of data from 10
randomly distributed users.

is progressively increased until the condition posed by constraint (G.41) is met. This
skips the simulation of several configurations that would be later discarded for their
excessive cost. Algorithm G.1 summarizes the steps involved in designing a UAV-based
cost-efficient EN system to serve a set of IoT ground units.

4 Results and Discussion
The simulation parameters used to generate the results described in this section are listed
in Table G.2. In Section 4.1, the results related to the trajectory design are discussed,
and in Section 4.2 the results of the cost-efficient system design are presented.

4.1 AAP Trajectory
Fig. G.5 shows a sample path an AAP follows to collect 200 Mbits of data from a set of
10 users, uniformly distributed over a square region of side 600m. The CS is placed at
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Fig. G.6: a)The total time and energy to collect the data is 148 seconds; and 6.9133 Wh, respectively;
b)AAP collects 200 Mbits of data from all the users by the end of the trajectory.

(0, 0, 0). The set of feasible points the AAP should pass through are determined using
the mean-shift algorithm. Fig. G.6a and Fig. G.6b show the trajectory parameters
and the user scheduling obtained by solving (G:P1.2); the flying velocity of the AAP
in each path segment shows how this AAP trajectory satisfies the maximum velocity
constraint (G.20); also, by the end of the trajectory, all the users have delivered 200
Mbits of data, thereby satisfying the data harvesting constraint (G.21). Moreover, the
horizontal projection of the trajectory starts and ends above the CS location (G.22).
Fig. G.7 shows the advantage of the suggested mean-shift method path design when
compared to two baseline scenarios:

1. the AAP flies at its maximum velocity to each user and hovers right on top of it to
complete the data transmission. This is widely known as fly-hover-communicate
protocol [23], [25];

2. the AAP hovers at the center of the coverage region (hover-communicate) [14], [15].

As seen in Fig. G.7, the proposed method outperforms the two baseline scenarios in
terms of both time and energy an AAP needs to complete a cycle of data harvesting.
The hover-communicate scenario has the worst performance because the mobility of the
AAP is not exploited to optimize the channels between AAP and users. The benefits
of user clustering are maximized when the number of users is large. Since the expected
number of user nodes in an IoT network is very large, the proposed path design is an
ideal candidate for an IoT data harvesting application.

4.2 Charging Station Design
This section explains the findings related to the design of the CS using the trajectory
information from the previous section. A Tperiod = 600s is considered, resulting in
Nactive({Tr}) = 1 from (G.25); Tdead = 600s, giving Naap{Tr}) = 3. The irradiation
data used in the simulations is obtained from the online database in [31], which refers to
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the area of Milan, Italy. This is provided with intervals of one minute, so the irradiation
was assumed to stay constant over a single interval. The solar panels3 considered in
this study have a unit price Cpv of 129.80€. Each battery unit is represented by a pack
of 4 Li-ion cells4, with a unit cost Cbt of 39.59€. The load to the CS corresponding to
Naap({Tr}) = 3, Tperiod = 2580s, TWcycle = 3900s, THcycle = 148s, Tactive = 1320s, and
Tcharge = 1800s is then modeled using the the methodology described in Section 3.3, and
the result is shown in Fig. G.8. The cost-efficient PV-battery combination that serves
the load while satisfying the battery constraints (G.9)- (G.13) is determined by solving
(G:P1.3) with the constrained search algorithm. The effect of the battery constraints
can be observed indirectly in Fig. G.8, as they produce a slightly over-sized battery,
which is not fully exploited, at least on an average day. Fig. G.8 shows the operation
of the designed CS with Tstart = 11 : 15 and Tservice = 2 hrs: as the irradiation starts
to grow, the solar panels begin to generate power, which goes all towards charging the
battery, since the load is nil until 11:00, when the optimal trajectory is computed. This
process takes one minute using an average laptop with a power consumption of 50 W,
and it does not impact the system significantly. After 11:15, when the mission starts, the
generated power is not enough to supply the load alone, so the battery kicks in, as the
drop in its SOC shows. It can be noticed in Fig. G.8 how the power consumption profile
actually extends beyond the mission duration Tservice. This is because it is assumed
that the AAPs are fully charged in the morning, so they need to be recharged in the
evening. However, this can be done slowly, so as to avoid unnecessary peaks of power
consumption. For this reason, the number of AAPs simultaneously recharging during
this phase was arbitrarily set equal to the number of active AAPs. When this ‘constant
consumption’ phase begins, the solar panels are still producing enough power to recharge
the battery. This example, representing a day when the irradiation is particularly low,
shows how power constraint (G.41) is always satisfied.

3https://www.futurasun.com/wp-content/uploads/2020/10/2020_FuturaSun_60p_260-285W_en.
pdf?x78774

4http://www.farnell.com/datasheets/3170915.pdf

https://www.futurasun.com/wp-content/uploads/2020/10/2020_FuturaSun_60p_260-285W_en.pdf?x78774
https://www.futurasun.com/wp-content/uploads/2020/10/2020_FuturaSun_60p_260-285W_en.pdf?x78774
http://www.farnell.com/datasheets/3170915.pdf
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Fig. G.8: Power profiles and ground battery SOC for a 2 hours mission starting at 11:15 in February.

The optimization of the CS design is repeated using different values of the following
variables:

• mission duration, which measures the amount of time during which the network
is continuously operated;

• starting time, which indicates at what time the network starts operating (this is
assumed to be the same every day);

• season, which is a binary variable: ‘winter’ goes from the 21st of September to the
21st of March, while ‘summer’ covers the remaining time.

These variables influence the CS design in different ways: the first modifies the power
profile shape shown in Fig. G.4, whereas starting time and season affect the irradiation
data Irr(t). This sensitivity analysis is summarized in Figs. G.9a and G.9b, which show
how the cost of the system is affected by the three aforementioned variables, respectively
for the winter and summer scenarios. The dotted line is included for comparison with the
grid-connected case in a urban scenario, which is explained in more depth in Fig. G.11.
In both seasons, the effect of the mission duration is particularly marked if the mission
starts in the afternoon. This is because, when the solar irradiation is low, the task
of satisfying the load is left to the battery pack alone, which, as a result, must be
made larger. More in general, the greater the mismatch between energy generation and
load profile, the larger the battery will need to be. The minimum point of the curves
shifts to an earlier starting time as the mission duration grows, suggesting that the cost
minimization can only be achieved as a combination of these two variables. While short
missions are feasible at almost any time of the day even in winter, longer missions at
later times make the system cost soar at a growing pace, due to the decreasing marginal
returns of designing a larger ground battery. Apart from this aspect, the curves look
similar in winter and summer, with a downward shift in the latter case. However, more
pronounced differences can be expected if the ‘summer’ season is restricted to the actual
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Fig. G.9: Cost of the whole system, with 20 users and Q = 200 Mb, compared to grid-connected
urban scenario.
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Fig. G.10: Cost of charging station and energy consumption trends as a function of variable data size
and number of users.

summer, instead of half a year. Fig. G.10 shows how the cost of the system and the
energy spent per data harvesting cycle change according with the number of ground
users and the amount of data to be received from each of these. Both variables have
similar effects: the energy spent by an AAP to complete a data harvesting cycle grows at
a quasi-constant pace, whereas the charging station cost grows intermittently, together
with the number of active AAPs. The latter represents the main voice of expense for
the system.

A cost comparison is presented in Fig. G.11 between the off-grid system described in
this work and a grid-connected scenario with the same modes of operation (UAV-based,
mission of 2 hours, starting at 11:15). The left hand side of the histogram shows the
cost breakdown of the energy-neutral CS, while the right hand side shows the voices of
expense for the grid-connected scenario, namely the cost of connecting to the electricity
grid and that of the consumed energy. The cost of the UAVs is the same on both
sides, so the y-axis is cut to improve readability. The cost of energy was calculated
as a cumulative sum on 10 years, assuming a fixed cost of 0.17€/kWh (average cost
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Fig. G.11: Cost comparison between EN system designed for summer or winter and a grid-connected
one in urban or rural area.
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Fig. G.12: Load profiles comparison between the proposed method and the two baselines.

of electricity in the UK). The cost of connecting the system to the electricity grid
was estimated using an online tool provided by an electricity provider in the UK5,
assuming a distance from the substation of 10 meters both in the rural and the urban
scenarios. It can be deduced that the installation of a PV-based off-grid charging station
is particularly advantageous in rural areas, while the two options have comparable costs
in urban areas. It can be observed in Fig. G.9 how short missions taking place during
the day make the off-grid option less expensive than a grid-connected urban scenario.
For longer missions, or when these start later in the day, the EN charging station is
only advantageous when compared to the rural scenario, which would be feasible for
continuous or nearly-continuous service.

A cost comparison is carried out between the proposed method and two baseline
5https://www.northernpowergrid.com/quick-calculator

https://www.northernpowergrid.com/quick-calculator
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Table G.3: Numerical comparison between proposed methodology and two baseline scenarios.

Naap Npv Battery capacity [Wh] Total cost [£]
Proposed 3 2 936 13,814.85
Baseline 1 4 3 1273 18,489.46
Baseline 2 3 3 1498 14,538.50

scenarios considering the same target area, UAV type, and mission duration:

• Baseline 1: The load profile is formed by considering UAVs hovering all the time
[12];

• Baseline 2: The CS is designed considering a constant power consumption, corre-
sponding to 2 tethered UAVs [11].

The resulting load profiles can be observed in Fig. G.12: the green and orange curves
represent the load profiles from Baselines 1 and 2, respectively. In Baseline 1, the UAVs
are hovering all the time, thereby reducing their active time, with higher peaks of power
consumption and the need for an extra UAV; As reported in the figure, the proposed
solution has the lowest value of energy consumption by a margin of over 50%, which
could be even higher for longer missions. Furthermore, as reported in Table G.3, the
higher load profiles clearly affect the initial cost, either due to the larger CS or to the
larger fleet of UAVs. However, the effect of the latter is prominent due to the high cost
of UAVs. This explains why, despite consuming less energy than Baseline 2, Baseline 1
is by far the most expensive option.

5 Conclusion and Future Work
In this article, a holistic design methodology was proposed for a cost-efficient UAV-
based EN system for the data harvesting of IoT nodes. This methodology minimizes
the investment cost by acting on the planning (how), scheduling (when), and energy
supply of the AAP mission.

The main engineering insights derived from the results of this study are listed below:

• The clustering protocol adopted in this study reduces the time and energy an
AAP needs to complete a cycle of data harvesting, compared to other benchmark
protocols. This gap gets wider for higher numbers of users, up to a 50% energy
and time saving in our simulation setups. The same is true for the cost of the
system, which has a linear relation with the data exchange.

• For short missions (30 minutes) the investment cost of the system is minimized
when the mission starts in the late morning in winter, or in the early afternoon in
summer. Earlier times are preferred with longer missions. These cost variations
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between seasons are mainly due to the PV size required, while mission duration
and time mostly affect the ground battery size. However, the larger portion of the
investment cost is represented by the AAPs.

• In an urban setting, an EN UAV-based system has an investment cost comparable
to that of a grid-connected one, whereas it is much cheaper in rural areas, even
for long missions.

The optimal solution is highly dependant on the aforementioned time variables, and
the EN option becomes anti-economical when long missions are planned, especially in
winter or at night. These issues could be tackled by diversifying the energy sources,
which would complicate both the system design and operation, thus representing an
interesting topic for future work.
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Abstract
Unmanned Aerial Vehicle (UAV) swarms are often required in off-grid scenarios, and
require balancing of the energy expenditure. Considering a main battery fed from two
renewable sources, wind and solar, we scale such a system based on the financial budget,
environmental characteristics, and seasonal variations. We maximize the cost efficiency
of coverage in the area as a combinatorial optimization problem with a multivariate en-
ergy generation system under a non-convex criteria. We devised a customized algorithm
by lowering the processing complexity and reducing the solution space through sampling.
Evaluation is done with real-world data on wind, solar energy, traffic load, and vendor
provided prices. Since UAV hovering becomes more laborious in strong winds, the energy
source is correlated with the energy expenditure. Therefore, best results were achieved
in areas with mild wind and reliable solar irradiation, while areas with strong winds and
unreliable solar intensity require higher CAPEX.

1 Introduction
The use of UAVs, in particular the multi-copter drones, has been praised for the ability of
providing modular, adaptable and scalable wireless communications services as they can
easily be redeployed, target specific users and load balance existing cellular architectures,
[1, 2]. However, safety, privacy and noise concerns are diminishing the vision of having
UAV-mounted small base stations (UAVSBSs) as a replacement to traditional base
stations. In addition, multi-copter UAVs are generally extremely power hungry, and
require a lot of energy (usually stored in the form of a lithium battery) in order to
maintain their aerial position. Due to this, UAVSBSs cannot be considered as a viable
alternative for upgrading the local cellular infrastructure. Nonetheless, UAVSBSs are
crucial in scenarios that result in service outages such as war-torn or disaster struck areas
[3, 4] and traffic surges in weakly serviced areas [5]. In these cases, it should be expected
that the existing infrastructure is unable to support the energy requirements of the
UAVSBS system. Moreover, to satisfy the service constraints of the area, that generally
vary during the day [6], the deployments require multiple UAVs (a.k.a. swarm). Thus,
the goal of this work is to provide a financially feasible deployment of a UAV swarm to
enable long-term persistent (uninterrupted) communications in an area. Moreover, we
maximize the coverage area in off-grid areas that rely entirely on renewable energy.

1.1 Literature Overview
The effects of using UAVSBSs that are positioned to offer service to ground customers
has already been well investigated in [2, 7–14]. In [7–9] the focus is on improving spec-
tral efficiency when exploiting the temporal and spatial mobility of UAVs for servicing
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user hotspots. In our previous works [10, 11], we demonstrated the benefit of horizon-
tally positioning a standalone UAVSBS, equipped with a tilting directional antenna.
Moreover, the work in [12] focused on the energy efficiency for UAVSBS deployment,
while the authors in [15] and [16] studied the problem of placement optimization of a
single cell and interference-limited multi UAVSBS deployments, respectively. While the
aforementioned works are concerned with optimizing deployment locations of the UAVs
once they are in the air, they generally ignore the problem of short service durations.

Ever since the proliferation of drones into the mass market there has been a strive
towards persistent UAV services [17, 18] with several methods. The most prominent
method assumes automated battery swapping [19]. In [20] the authors solve the optimal
trajectory for patrolling UAVs that exactly exploit the battery swapping mechanism
that is connected to the grid mains. In [21] the authors consider a mothership-like
UAV that houses and orchestrates the deployment of a swarm of smaller UAVs, where
the mothership ensures that the energy requirements for the entire system is satisfied.
While such mothership systems are genuinely useful for achieving unlimited mobility,
the creation of one is complex and assume technical innovation on several fronts which
would become very costly to implement. On the other hand, the authors of [22] consider
a ground based central unit that serves as a backbone to the UAVs and has solar
panels to manage the energy requirements on the ground. In [23] the authors propose a
cost efficient UAV system for data harvesting from IoT systems. In [24] we previously
investigated the optimal arrangement for UAVs that need to provide persistent service
by interleaved recharging at a ground station.

We note that per [2], UAV Base Stations are able to alleviate capital and operating
expenditures (CAPEX & OPEX) of telecom operators up to 52% and 42% respectively,
through only diminishing site management costs and complexity that can become par-
ticularly overwhelming in developing countries. For such investigations to be applicable
to disaster struck, remote, or underdeveloped areas, we focus on works that involve
dimensioning sustainable energy generation systems for wireless communications. As
such, the authors of [25] and [26] proposed alleviating the energy requirements of multi-
tier cellular implementations supported with renewable energy. The work of [27] comes
the closest to our goal of providing cellular connectivity in rural zones. Moreover, the
authors consider an architecture composed of UAV-based BSs to provide cellular cover-
age, ground sites to connect the UAVs with the rest of the network, Solar Panels (SPs)
and batteries to recharge the UAVs. And finally, the work [28] follows a similar ground-
work for a mothership-orchestrated UAV swarm for wireless communications, where the
goal is to minimize the overall weighted distance traveled by the mothership when the
UAVs come back to the housing area to recharge.
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Fig. H.1: Schematic of the energy system at the central station (CS) that consists of wind turbines
(WT), photovoltaic (PV) panels, a central circuit (CC), ground battery (GB) and a UAV battery charger
(UAVBC) that represents the load. The service scenario illustrates a deployment in a mountainous
region.

1.2 Off-grid Redeployable UAV Communications System
The communications system that we propose is shown in Fig. H.1 and inspired by [27].
Though in Fig. H.1 it is illustrated in a remote mountainous region its utility extends
to rural, suburban and low-rise urban settings, especially if such areas have an ongoing
humanitarian crisis. It is envisioned to provide persistent service by deploying a central
station (CS) that coordinates and manages the UAV deployment process, while it also
serves as a recharging station for the UAVs. Upon placing the CS, a swarm of UAVs is
deployed, and position themselves in designated hovering points to provide the desired
service rate to the whole area. When a UAV nearly depletes its battery, it flies back to
the CS for recharging. As in [29], we consider an automatic battery swapping mechanism
that replaces the depleted battery for a full one, after which the UAV can immediately
fly back to the designated hovering position.

To ensure a long-term persistent deployment of the service-providing UAVs, the sys-
tem needs to compensate the power requirements for operation of the entire system. As
Illustrated in Fig. H.1, our considered implementation of a CS has five energy modules.
The wind turbine (WT) and photovoltaic (PV) panels generate energy to be stored into
a ground battery (GB) that acts as a central energy storage module. The system is
interconnected by a central circuit (CC) module that directly links the load from the
energy management components. The load of the system is an automatic UAV battery
charger (UAVBC) that charges the hot-swappable UAV batteries, where the system au-
tomatically queues a full battery to be swapped for the depleted one on a landed UAV.
Finally, we assume that the CS acts as a sink/middlehaul for the wireless service that
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the UAVs offer, and that the backhaul link is overprovisioned and thus not included in
the analysis that follows. This is achievable with the new integration of low earth orbit
(LEO) satellites [30]. Finally, we note that the system is sensitive to stormy weather
which would cause a total outage altogether.

1.3 Main Contributions & Paper Outline
This work provides a fresh perspective on UAV swarm implementations for persistent
wireless service such as:

• We consider long-term standalone deployment of UAVs for remote areas by having
a realistic model of the impact of wind intensity on the energy consumption of the
UAVs. As such, we consider the hourly wind intensity as a function of elevation
and terrain roughness, and account for its impact on long duration UAV hovering.

• We model the system as totally self-sustainable and including PV- and WT-based
energy generation modules, where the WTs have the capability of offsetting the
UAV’s energy expenditure due to wind strength.

• We formulate the problem as CAPEX efficient coverage area maximization, which
is a multi-variate optimization problem for solving the load profile based on real
world data, where the energy generation comes from two sources, wind and solar,
that are also modeled on real world data.

• We propose a computationally light algorithm that uses greedy sampling and
binary search to find the optimal configuration that is a combination of wind
turbines, PV panels, cells in the ground battery, and UAVs in the swarm.

The rest of the paper is organized in the following manner. In Section 2 we describe
the communications service environment, the UAV orchestration, and the energy cost
of satisfying the aforementioned service. This is followed by a detailed elaboration of
the energy generation and management system in Section 3. We define both the formal
problem and the proposed algorithmic solution in Section 4. The simulation analysis,
and the results of the implementation are contained in Section 5. Finally, in Section 6
the work is summarized and future directions are drawn.

2 Modeling UAV Service and Energy
The coverage area (CA), a circle with radius Dmax, contains an arbitrary number of
users that we model in terms of zonal datarate density (ZDD). The ZDD is defined
as λh which represents the requested datarate per unit of area, for hour of the day
h = 1, 2...24, that is uniform for the entire area and can be described in unit Mbps/m2.
The goal for modelling the traffic in terms of area instead of per user is to properly scale
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it for larger time-lengths in the order of hours such as in [6, 31], and to easily adapt
the traffic requirements depending on the residency type of the area in question. Note
that we do not consider different rates between days of the year i = 1, 2, ..365, since
such a metric is strongly dependent on the area in question and such data is private
and difficult to request in advance of a deployment. Therefore, we consider the data
requested per unit of area as a random variable for a stochastic process with expected
data rate of λh. Moreover, since the goal of the work is coverage maximization through
Dmax, ZDD helps us scale the traffic demand for different Dmax, without having to
assume a stochastic point process. As a result, the minimum datarate requested for the
entire CA Rh,min, for hour h, scales with its area as:

Rh,min(Dmax) = λhπD
2
max. (H.1)

Considering a fleet of available drones nUAV, a swarm size of kh ≤ nUAV UAVs is released
so that each UAV j is given an equal amount of area to serve with rate R(kh, Dmax).
We can thus linearly scale the traffic load on each UAV with the swarm size, so that it
satisfies:

Rh,min(Dmax)
kh

≤ R(kh, Dmax) ∀h, (H.2)

under the condition that maxh (Rh,min) ≤ nUAV · R(nUAV, Dmax) is satisfied. We note
that the serviced data rate is a function of both kh and Dmax. This is due to the radius
of coverage for each UAV 0 < D(kh, Dmax) ≤ Dmax being dependent on the number of
UAVs we deploy for the entire hour h as well as the size of the cell that the UAVs need
to cover.

2.1 UAV Hovering Locations
The coverage region for each UAV in the swarm is a circle of radius D(kh, Dmax) which
is derived from a packing algorithm [32]. In order to avoid leaving any part of the area
without service, the circles of individual UAV coverage are packed in an overlapping
manner that fully covers the CA. Making each UAV j ∈ {1, 2, .. kh} equally relevant,
we assign the same radius D(kh, Dmax) = Dj ∀j. Thus, as per the packing provided
in [32], the radius D(kh, Dmax) occupies discrete values and is given in Table H.1.

Setting the center of the CA as the center of our coordinate system (0,0), the centers
of the kh = {3, 4, 5, 6} circles are located at {pj(kh, Dmax) = (xj , yj)} where,

xj = D(kh, Dmax)cos
(

2π(j − 1)
kh − 1

)
∀ j ∈ {1, 2, ...kh} , (H.3)

yj = D(kh, Dmax)sin
(

2π(j − 1)
kh − 1

)
∀ j ∈ {1, 2, ...kh} . (H.4)

For the case of 7, the centers of the smaller circles of radius D(7, Dmax) that cover the



214 Paper H.

Table H.1: Packing Patterns [32].

kh D(kh, Dmax)

1 Dmax

2 Dmax

3 Dmax
1.1547

4 Dmax√
2

5 Dmax
1.641

6 Dmax
1.7988

7 Dmax
2

kh = 8, 9, 10 Dmax

1+2cos
(

2π
kh−1

)
region have coordinates {pj(7, Dmax) = (xj , yj)} where,

xj = D(7, Dmax)
√

3cos(2π(j − 1)
6 ) ∀ j ∈ {1, 2, ...6} , (H.5)

yj = D(7, Dmax)
√

3sin(2π(j − 1)
6 ) ∀ j ∈ {1, 2, ...6} , (H.6)

(x7, y7) = (0, 0). (H.7)

As such, the horizontal distance from the CS can be calculated as dj(kh, Dmax) =√
x2
j + y2

j . Finally, for kh = {8, 9, 10}, one circle is concentric with the region and the
centers of the other circles are situated in the vertices of a regular (n − 1)-gon at a
distance of dj(kh) = 2sin( π

(j−1) ) for j ∈ {1, 2, ...(kh − 1)} from the center of the region.
The circle packing formations are shown in Fig. H.2. In order to achieve coverage
regions with radiusD(kh, Dmax) we adjust the UAV hovering heightH(kh, Dmax), which
is dependent on the propagation environment in the CA and it is covered below.

2.2 Propagation Characteristics with a Directional Antenna
UAV based communication links discriminate two propagation groups, users with direct
line-of-sight (LoS) or no-LoS (NLoS). As such, the path loss ` is a sum of the free space
path loss (FSPL) and the additional large-scale shadowing coefficient for each one of
the propagation groups. The mean large scale fading coefficients for each propagation
group are ηLoS and ηNLoS and come as a consequence of the typology’s features [13].
Thus, the path loss between a user at horizontal distance D and a UAV with altitude
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Fig. H.2: Different packing patterns used in this paper. The blue circles represent UAV coverage
regions of radius D(kh, Dmax) whereas the red circles represent the CA with radius Dmax.

H can be expressed as:

`LoS = −10 log(Gt) + 20 log(
√
D2 +H2) + C + ηLoS, (H.8)

`NLoS = −10 log(Gt) + 20 log(
√
D2 +H2) + C + ηNLoS, (H.9)

where, Gt is the antenna gain, log is a shortened version of the common logarithm
log10, and the term C is a substitute for the carrier frequency fc constant in FSPL
C = 20 log ( fc4π

c ). Finally, averaging the two propagation groups by the probability of
a LoS occurring gives:

10 log[L] = `LoS · PLoS (H.10)
+ `NLoS · PNLoS (H.11)
= PLoS(ηLoS − ηNLoS) + `NLoS, (H.12)

where the LoS probability is given by the s-curve model [14]:

PLoS = 1
1 + a exp(−b[arctan

(
H
D

)
− a])

, (H.13)

where a and b are constants dependent on the topological setting.
Each UAV has a downwards facing antenna with gain Gt = Aeff10 log(GI), where

the ideal conical antenna has gain:

GI = 2
1− sin (θ π

180 ) , (H.14)
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where θ = arctan(HD ) is the elevation angle at the cell edge and Aeff is the antennas’
effectiveness in fitting an ideal conical beamwidth. This results in the final path loss
expression:

10 log(L) = ηLoS − ηNLoS
1 + a exp {−b[θ − a]} + 20 log

(√
D2 +H2

)
−Aeff10 log

[
2

1− sin (θ π
180 )

]
+ C + ηNLoS. (H.15)

In order for all the users within the area with radius D to be served, we optimize the
elevation angle of θ = arctan(HD ) from the perspective of a user located exactly at
distance D. Thus, as in [10] we can extract an optimal ratio of D and H, through the
angle θ, by solving:

0 =
π tan (θ π

180 )
9 log(10) + a b(ηLoS − ηNLoS) exp(−b(θ − a))

a exp(−b(θ − a) + 1)2

−Aeff
π cos (θ π

180 )
18 log(10)(1− sin (θ π

180 )) . (H.16)

This makes it easy to calculate the hovering height as H = D tan(θ), which formulates
the pathloss only as a function of the horizontal distance L(D). Finally, the serving
rate for a user at distance D = D(kh, Dmax) becomes:

R(kh, Dmax) = B log2

[
1 + Pt

BN0L(D(kh, Dmax))

]
, (H.17)

where Pt is the transmission power that is assumed to be identical at both user and UAV
side, while N0 is the noise spectral density linearly scaling the noise with the channel
bandwidth B. Since the packing is done in an overlapping manner, we must account for
a total available spectrum of Btot ≥ 3 ·B to avoid inter-UAV-cell interference. Finally,
we note that even though the coverage circles of two UAVs using the same bandwidth
may overlap, such overlap occurs outside both coverage regions, and is thus not harmful
towards the spectrum reuse in the packing algorithm, as it can be seen in Fig. H.2.

2.3 UAV Power Consumption Model
Most of the UAV’s power consumption is absorbed by its rotors, while the power dedi-
cated to the communications is negligible. Initially, the UAV ascends vertically with a
velocity of vc to the designated height H(kh, Dmax), and flies horizontally with a velocity
of vhfly to reach position pj(kh, Dmax) that is at horizontal distance dj(kh, Dmax). Once
the UAV reaches the hovering spot, it maintains its position for a designated amount of
time, and then returns to the CS. Since the UAV may have to counteract the wind speed
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Table H.2: UAV Flight Parameters.

Label Definition Value
W Weight of the UAV in Newton 23.84 N
NR Number of rotors 4
Fn Upward thrust by the nth rotor -
vhfly UAV’s horizontal flying velocity -
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.038 m2

ρ(H(kh, Dmax)) Air density -
CD Drag Co-efficient 0.9
Ar Rotor disc area 0.06 m2

∆ Profile drag coefficient 0.002
s Rotor solidity 0.05

vwindh,i , for hour h at day i to achieve net zero speed, the hovering process is remarked
as flying horizontally with non-zero velocity. Here we differentiate the wind intensity
with regards to the daily variations since such data is readily available, and has very
strict seasons. We also expect that the horizontal speed required to counteract the wind
speed increases with altitude [33]:

vhov,h,i = vwindh,i

[
H(kh, Dmax)

H0

]Ew

, (H.18)

where H0 is the measurement altitude of the wind velocity vwindh,i , and Ew is the empir-
ically measured indicator derived from the roughness of the surface in the area. There-
fore, we note that sometimes the maximum tolerable wind speed is exceeded, forcing
all active UAVs to return to the CS, or to decrease their flight altitude until the wind
speed is within a tolerable range. Finally, the UAV descends with the same (but nega-
tive) vertical speed as it ascended vc to represent negative velocity with regards to the
coordinate system.

All the parameters used in the following equations are defined in Table. H.2, and
with the goal to reduce equation clutter swarm size dependent variables H(kh, Dmax)
and dj(kh, Dmax) are reduced to H and dj respectively. The power consumed by the
UAV when flying horizontally with speed v is derived using the axial momentum theory,
while assuming identical rotors [24], and is given by,

Phfly(v) = NRPb

(
1 + 3v2

v2
tip

)
︸ ︷︷ ︸

Pblade

+ 1
2CDAfρ(H)v3︸ ︷︷ ︸

Pfuselage
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+ W

(√
W 2

4N2
Rρ

2(H)A2
r

+ v4

4 −
v2

2

) 1
2

︸ ︷︷ ︸
Pinduce

, (H.19)

where Pb = ∆
8 ρ(H)sArv

3
tip, ρ(H) = (1 − 2.2558.10−5H)4.2577. Pblade and Pfuselage

are the powers required to overcome the profile drag forces of the rotor blades and
the fuselage of the aerial vehicle that oppose its forward movement, respectively, while
Pinduce represents the power required to lift the payload.

The power required by the aerial vehicle to climb vertically with a rate vc m/s is
expressed as,

Pvfly(vc) = W

2

(
vc +

√
v2

c + 2W
NRρ(H)Ar

)
+NRPb.

(H.20)

The energy consumption for the entire flight of UAV j occuring at hour h, day i, is
Ej,h,i(kh, Dmax) and can be thus segmented into the three parts, ascent, hovering, and
descent:

Ej,h,i(kh, Dmax) = Pvfly(vc)
H

vc
+ Phfly(vhfly) dj

vhfly︸ ︷︷ ︸
ascent

+Pvfly(−vc)
H

vc
+ Phfly(vhfly) dj

vhfly︸ ︷︷ ︸
descent

+Phfly(vhov,h,i) ·
(
τfly − 2

(
H

vc
+ dj
vhfly

))
︸ ︷︷ ︸

hover

, (H.21)

where τfly is the designated flight time that the UAV must complete. For convenience,
we use a flight duration τfly of half an hour, which is reasonable for state-of-the-art UAV
models, since our wind, solar and traffic data are quantized at each hour of the day.
This means that at hour h on day i the UAV consumes a total energy of:

EUAVs,h,i(kh) = 1
τfly

kh∑
j=1

Ej,h,i(kh). (H.22)

Finally, we note that some of the flight time is spent on flying to and back from
designated hovering positions. The UAVs are made to hover instead of glide/course in
order to maintain stable coverage regions and avoid drastically increasing user handover
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overhead. In order to avoid service outage in such cases, we assume that the process
of positioning occurs at different times for each UAV, which also serves as additional
leeway in the duration of the process of battery swapping. Such system needs to account
for one spare UAV to afford the mobility.

3 Energy Generation and Management at the Cen-
tral Unit

Since the CS is not connected to the electrical grid, it relies on two sources of energy:
wind harvested by WTs and solar harvested by PV panels. The productivity of each
source is tied to the geographical location of the CS and the time of year. Therefore,
we use measurement-driven data provided by the European Commision’s Photovoltaic
Geographical Information System1 to extract the annual measurements, sampled per
hour. Moreover, we expect solar irradiation and wind speed to be inversely correlated,
as per the study in [34]. The electricity generated and stored in this system is pro-
portional to its size, and therefore financial budget. The service availability detailed in
the previous section thus becomes a function of the CAPEX budget, which is spent on
energy generation and storage systems for the CS.

Load

Once the UAV lands on the CS, after spending τfly time in the air, it releases its depleted
battery through an automated battery exchange system and receives a new, fully charged
one. The old battery is then charged until full, when it becomes ready to be swapped
back into a UAV. Thus, each recharge cycle duration is driven by the supported charging
rate of each UAV battery and its size as:

τcharge = Cbat

Pcharge
, (H.23)

where Cbat is the battery capacity, and Pcharge is the charger power. These are lithium
polymer (commonly referred as LiPo) batteries, which have a predominantly linear
charging behaviour [35]. Therefore, the power drawn by a single battery unit is as-
sumed to be constant, and the overall load profile will look like a step function directly
dependent on the number of batteries recharging at the same time. The time required
for each battery to be guaranteed operational for a full half hour must satisfy:

max (Ej,h,i(kh, Dmax)) ≤ Cbat ∀ j, h, i. (H.24)

Since carrying extra weight in the form of extra battery capacity is unnecessary, we
aim to have the lowest Cbat possible that satisfies the boundary with some margin.

1https://re.jrc.ec.europa.eu/pvg_tools/en/#MR
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Therefore, the number of UAV batteries per single UAV that are required by the system
is defined by the τcharge/τfly ratio. The maximum number of UAV replaceable batteries
is:

bmax =
⌈
nUAV

(
τcharge
τfly

+ 1
)⌉

. (H.25)

It is essential for the price of spare batteries to be reflected in the purchasing price per
UAV in the fleet. For this reason, we assume that the sufficient amount of batteries per
UAV are purchased at the time of purchasing the UAVs.

PV

One of the energy generation units is represented by a set of photovoltaic (PV) panels
placed in parallel, all of the same type [36] and with the same working conditions. All
parameters used in these equations are summarized in Table H.3. Their behaviour is
simulated using a simplified version of the 5 parameters model [37], which neglects the
shunt resistance and allows to calculate the maximum power voltage (Vm) and current
(Im) provided at any irradiation (Girr) and ambient temperature (Ta) conditions. This
is made possible using the conservative assumption of a maximum power point tracker
(MPPT) with average efficiency εMPPT = 95% [38].

Vm,h,i = Vm,ST − β (TC,h,i − TST) + Vt,h,i log
Girr
h,i

Girr
ST
, (H.26)

Vt,h,i = ncells
kbnITC,h,i

q
, (H.27)

Im,h,i = Im,ST

(
Girr
ST

Girr
h,i

)
+ α (TC,h,i − TC,ST) , (H.28)

TC,h,i = Ta,h,i + TC,NOC − Ta,NOC

Girr
NOC

Girr
h,i. (H.29)

Knowing Vm and Im from (H.26) and (H.28), as well as the cell temperature TC, allows
to calculate the output power as:

PPV,h,i(nPV) = nPV · Vm,h,i · Im,h,i · εconv · εMPPT. (H.30)

In the above equations, the subscript ST means standard test conditions (Girr
ST =

1000W/m2, Ta,ST = 25◦C), whereas NOC stands for nominal operating conditions
(Girr

NOC = 800 W/m2, Ta,NOC = 20◦C). The cell temperature at standard test con-
ditions TST, was calculated using (H.29), but using Ta,SC and Girr

ST instead of Ta and G.
The list price for a single panel, pre-VAT, is €202 resulting in a PV system cost that
scales linearly with the number of solar panels nPV, as FPV = 202 · nPV.



3. Energy Generation and Management at the Central Unit 221

Table H.3: PV Parameters from [36].

Label Definition Value
α Thermal coefficient of SC current 0.0474 %/°C
β Thermal coefficient of OC voltage -0.285 %/°C
εconv Converter efficiency 95%
ncells Number of PV cells 60
nI Diode ideality factor 1.5
kb Boltzmann constant 1.380649 · 10−23 J/K
q Electrical charge of an electron 1.602176634 · 10−19 C
Girr
NOC Irradiation at NOC 800 W/m2

Girr
ST Irradiation at ST 1000 W/m2

Im,ST Maximum power current at ST 8.85 A
Ta,NOC Ambient temperature at NOC 20°C
TC,NOC Cell temperature at NOC 45°C
TC,ST Ambient temperature at ST 25°C
Vm,ST Maximum power voltage at ST 31.8 V

Wind

The power output of a wind turbine is not calculated using an analytical model, but the
interpolation of power curves found in the data sheet [39]. This choice is justified by the
improved precision. The result is a series of linear segments that cover the non-integer
values of velocity that are not provided in the data sheet, as shown with blue in Fig.
H.3. Two types of wind turbines are considered and treated as distinct elements of the
system:

• A vertical axis small WT with standard power output of 500W (unit cost FW500 =
€1, 429.95);

• A vertical axis mediumWTwith standard power output of 1kW (unit cost FW1000 =
€2, 738.76);

The list prices displayed above are pre-VAT, and were provided by Aeolos Wind Energy
Ltd [39], and include a 9m pole, as well as a rectifier and control system. Finally, the
total power output of the system is scaled to:

PWT,h,i(nW500, nW1000) =
∑
a

naPa(vw,h,i), (H.31)

where a ∈ {W500,W1000} depicts the type of the turbine out of the two suggested
ones, and na is the number of turbines of each type, giving a total financial cost of
FWT =

∑
a Fa · na.

Ground Battery

In order to provide continuous service, an energy storage system with capacity Ecap is
needed. The load is powered by the generation elements when possible, with the storage
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Fig. H.3: The wind power curves for two types of horizontal-axis WTs and UAV power consumption
for hovering at different altitudes.

elements receiving any excess energy and providing back-up when the generation rate
is too low. Therefore, at the end of the timeslot the net energy in the system is:

Enet,h,i = [PPV,h,i(nPV) + PWT,h,i(nW500, nW1000)] δt − EUAVs,h,i(k), (H.32)

where δt = 2τfly is the length of the time interval. Thus, in case of net positive or
negative energy, the battery capacity at the next time step E(h+1)%24,i+(h+1)/24 (where
% is the modulo operator and / is integer division) will increase or decrease by:

min(Ecap(ncell), Eh,i + εb,h,iEnet,h,i), (H.33)

with,

εb,h,i =
{
εconv, Enet,h,i ≥ 0;

1
εconv

, Enet,h,i < 0; (H.34)

where, Ecap is the total capacity of the battery as a function of the number of cells
in the system ncell, and εb,h,i is the overall efficiency of the storage system, which, as
shown in (H.34), can be lower or higher than 1, depending on whether the battery is
being charged or discharged. The Li-ion battery cells are cylindrical LG MJ1, with unit
cost of €5.75 and capacity of 12.6 Wh. The choice of such a small incremental step was
made to improve the precision when the budget is low. A maximum ground battery
(GB) capacity equal to Ecap = 12.6 · ncell requires an expense of FE = 5.75 · ncell.
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4 Problem Definition and Methodology
The goal of this paper is to find the best value for providing as much coverage as
possible in a geographical region, where the cost of the system comes from three separate
sub-systems: the communications load, the energy generation, and the energy storage.
Therefore, in this section we consider the problem of sizing the entire system as a
combination of six variables: 1) number of communication UAVs in the fleet nUAV; 2)
number of 500W WTs nW500; 3) number of 1kW WTs nW1000; 4) number of PV panels
nPV; 5) number of battery cells in the GB ncell; and 6) the radius of the circular CA
Dmax. In order to evaluate the quality of the system, we use the area πD2

max, in which
the guaranteed communications rate is satisfied, and the total upfront cost F for the
system needed to provide that service.

Given that accurately calculating the total cost of the system is crucial, we note that
the size and cost of the UAV swarm plays a big role. The price per UAV can vary vastly
between manufacturers. However, since we use the DJI matrice 100/200 models as a
reference, we take a reference price of €4000 per UAV, resulting in a total cost for UAV
equipment of FUAV = 4000 · nUAV. Moreover, this budget also covers spare batteries
bmax that are required for battery swapping. Finally, to guarantee operability in case
of defects in one of the UAVs in the fleet, and to offer better interleaving for battery
swapping [24], there needs to be one spare UAV in the fleet nUAV ≥ 2.

Since the eligibility of the entire system depends on the financial capital available
for spending, we chose an optimization criteria that maximizes the coverage potential
of the deployment normalized by the CAPEX of such a system.

(H:P1) : maximize
{nPV,nW500,nW1000,ncell,nUAV,Dmax}

πD2
max
F

,

s.t. R(kh, Dmax) ≤ Rmin,h(Dmax), (H.35)
11 ≥ nUAV ≥ 2, (H.36)
nUAV ≥ max

h
(kh) + 1, (H.37)

Eh,i ≥ 0, (H.38)
F = FPV + FWT + FUAV + FE ≤ Fmax, (H.39)
Dmax ≥ Dlb, (H.40)
Dmax ≤ Dub. (H.41)

The (H:P1) objective function maximizes the coverage of the deployment normalized
by its CAPEX; (H.35) guarantees the quality of service for the whole area; (H.36)
maintains eligibility of the number of UAVs in the swarm; (H.37) defines the size of
the swarm; (H.38) guarantees no system outage due to lack of energy; (H.39) defines
the financial budget; (H.40) and (H.41) define the minimum and maximum required
coverage. We note that if the problem is infeasible, the system is inadequate for the
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application scenario. Finally, as per (H.35) and (H.38) the system does not account for
any outage tolerance given the yearly evolution for sun, wind and data traffic for that
location. This is because a mismanagement of energy allocation will not result in total
outage but reduced QoS. Since our goal is to provide average service, accounting for
outage would not be aimed towards constraining outage for that hour altogether, but a
separate problem of QoS maximization instead of coverage maximization (i.e. missing
the QoS target at nighttime or daytime should not be equally weighted). So, assuming
non-average performance of the system, the system will still operate in best-effort QoS
for that hour and equalize over the span of a whole year.

Given a fixed coverage area, the problem can be separated into two sub-problems
that construct the CAPEX efficient coverage maximization and thus solution-searching
can be done iteratively. The easier problem of the two is searching for the minimum
energy load (MEL).

(MEL) : minimize
{kh}

min
kh

EUAVs,h,i(kh, Dmax) ∀h, i,

s.t. R(kh, Dmax) ≤ Rmin,h(Dmax), (H.42)
10 ≥ kh ≥ 1. (H.43)

The MEL problem guarantees coverage for a specific area by satisfying the lower QoS
bound. In this way, QoS is guaranteed for any user on the ground. Extracting the load
profile of the entire system for a single area size is a constant complexity operation,
since the number of hours and days for coverage are fixed. As such, the search of the
entire space of eligible coverage areas has linear complexity where the complexity of
that operation scales with the size of the eligible space between both boundaries (H.35)
and (H.36).

The second sub-problem is finding the cheapest combination of energy elements
(CCEE) W500 and W1000 WTs, PVs, and battery cells that satisfies the load profile.
An exhaustive search on the CEEE problem has quartic complexity, which, summed with
an exhaustively searched MEL, create an unreasonably complex problem. In addition,
checking the MEL + CCEE sub-problems for every possible coverage multiplies the
complexity by the size of the space Dlb ≤ Dmax ≤ Dub. Therefore, it is necessary
to find a more efficient way to solve (H:P1). We approach this by performing greedy
sparse search to reduce the solution space, and simpler algorithms to find near-optimal
solutions. Approximate methods, such as Genetic Algorithms implemented in [40], did
not yield a satisfying performance and are thus left out of this work.

4.1 Greedy and Sparse Search (GSS) Algorithm
We define a search algorithm that uses sparse searching of coverage areas where max-
imum coverage per unit cost is likely to occur, and uncover a simplified way to solve
CCEE. Specifically, we investigate the energy efficiency of annual coverage (EEAC) for
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Algorithm H.1: GSS.
1 IMPORT: {MEL, BINARY-SEARCH, SAMPLE-mono,

SAMPLE-2ndder , SAMPLE-comb}
2 Input: all-constants, all-data, Dlb, Dub max_budget;
3 j=0
4 Dmax = Dlb
5 step_size=1;
6 while Dmax ≤ Dub && kh ≤ nUAV do
7 j=j+1
8 (loadh,i [j] ,FUAV [j])
9 =MEL(EUAVs,h,i(kh, Dmax) ∀h, i)

10 EEAC [j]= πD2
max/

∑
h,i loadh,i [j]

11 Dmax = Dmax + step_size
12 SAMPLE-mono (EEAC,EEAC*):
13 EEACmnt ← monotonic samples
14 SAMPLE-2ndder (EEACmnt,EEAC*):
15 Dmax_sparse, addr← positive 2nd derivatives
16 j=0
17 for Dmax in Dmax_sparse do
18 j=j+1
19 loadh,i = loadh,i [addr[j]]
20 FUAV = FUAV [addr[j]]
21 Fcomb = 0
22 F =max_budget
23 solutions = []
24 flag==True
25 while flag==True do
26 (nPV, nW500, nW1000), flag ← SAMPLE-comb
27 Fcomb = FPV + FWT + FUAV
28 ncell = b(F − Fcomb)/5.75c
29 if Eh,i(ncell, nPV, nW500, nW1000, load) ≥ 0 then
30 BINARY-SEARCHminimize ncell s.t.
31 Eh,i(ncell, nPV, nW500, nW1000, load) ≥ 0
32 Fcomb = FPV + FWT + FUAV + FE
33 APPEND (Dmax, ncell, nPV, nW500, nW1000, nUAV, Fcomb)
34 TO solutions
35 F = Fcomb

36 fin_sols[j] = minFcomb(solutions)
37 Output: fin_sols
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Fig. H.4: EEAC for servicing coverage area, at a suburban/remote setting, in the presence of weak
wind with expected velocity of 3.6 m/s, overlay.

each size of coverage area as a proxy-heuristic metric:

EEAC = πD2
max∑

h,iEUAVS,h,i
, (H.44)

where EUAVS,h,i is given by the MEL problem. Looking at Fig. H.4, it is noticeable
that EEAC is not a monotonic nor a convex function of the coverage area, but it
has an increasing trend nonetheless. Therefore, it is convenient to sparsely search for a
solution where the coverage per energy efficiency is improving, and drop the cases where
an increase in the area does not yield an improvement in the efficiency. Furthermore,
we can use a greedy approach to shrink the number of samples that will be searched for
optimal combinations to the ones that offer the best improvement with regards to the
last sample. Thus we select only the samples whose second order derivative is larger
than zero. In this way we still solve the MEL problem for the whole Dlb ≤ Dmax ≤ Dub
space beforehand with the goal of reducing the search space for the multi-variate CCEE
sub-problem by a significant factor ranging between 100-1000, depending on the scenario
we investigate.

The CCEE problem is harder to simplify. However, we can exploit the fact that
the leftover budget can be dedicated to two different purposes: energy generation and
storage. We can easily reduce the complexity of searching the viability of storage once
we have sufficient energy generation supporting the system. Thus, we decrease the
dimensionality of the space by increasing the budget until battery storage becomes
relevant, i.e. the power generation profile is able to keep up with the load profile. And
since we are looking to minimize the financial cost, the first eligible solution where
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Fig. H.5: Daily evolution of traffic data requested.

battery storage becomes relevant becomes our new and smaller space. A simplified
representation of the algorithm is shown in Alg. H.1.

The GSS approach guarantees finding the global minimum for the combination of
WTs, PVs, cells, and nUAV given a coverage radius of Dmax. It however does not
guarantee to always find the global maximum for the coverage area due to the sampling
of Dmax. Nonetheless, GSS managed to find the global optimum for all the scenarios
that we tested.

5 Numerical Results and Case Analysis
In order to investigate the feasibility of the system, we perform an analysis onto several
locations for different deployment scenarios. Although we aim for a realistic represen-
tation of a period spanning seasons or years, the data for the traffic requested by the
local population is only reflected on a daily cycle. This is due to the unavailability
of the sensitive data, especially spanning different locations across different countries.
Therefore, we follow the hourly average of incoming traffic λh as presented in [6, 31] and
shown in Fig. H.5. Moreover, we distinguish two possible types of areas that may need
coverage: Suburban and Urban. These have the (a, b, ηLoS, ηNLoS) parameters of values
(4.88, 0.43, 0.2, 24) and (9.61, 0.16, 1.2, 23), respectively [13]. We omit the usability of
this deployment in more densely populated areas, such as Dense Urban or High-Rise
locations, because the traffic demand might be too high for a UAV based system, and
these are usually already served by reliable networks and the electricity grid. This is
even more true for long term solutions in such environments, where our system would
compete with the electricity grid, local MNOs, and internet service providers (ISPs).

Both solar irradiation and wind speed data are taken from the European Commi-



228 Paper H.

Table H.4: Simulation Parameters. [41, 42]

Label Definition Value
fc Channel carrier frequency 5.8 GHz
c Velocity of light 3 · 108 m/s
B Channel bandwidth 80 MHz
H0 Nominal height for wind measurements 10 m
Ew Environment roughness coefficient 0.335
Btot Available spectral width 480 MHz
N0 Noise spectral power -174 dBm/Hz
Pt Transmission Power 23 dBm
Dlb Lower bound of coverage size 0 m
Dub Upper bound of coverage size ∞ m
Pcharge Power of the charger 180 W
Fmax Total expendable budget €100000

sion’s Photovoltaic Geographical Information System. The data are divided in yearly
blocks, from which we use the 2015 measurements for four specific testing locations.
Two locations are in regions that are prone to grid and system failures, like the earth-
quake ridden region around the Italian town of Amatrice and the fjord/floodplains of
Western Denmark. We also suggest the placement of the system in common off-grid
locations, such as sparsely populated areas in Western Texas and the touristic region
of the Faroe Islands. The four locations represent very diverse environments for both
wind speed and solar irradiation.

The testing parameters are included in Table H.4. We consider antenna directivity
as a split variable and not just another variable in the optimization problem, since
mounting an antenna would impact the aerodynamics of the UAV in ways that the
power consumption model cannot predict. To elaborate, we expect that one would have
a choice to choose between several different antennas to mount on the UAV. Therefore,
finding the optimal Aeff would not really matter and would be a waste of computational
resources, when the system integrator can just input the directivity as a system variable.
In Fig. H.6 we illustrate the coverage efficiency across the four different testing scenarios
for 4 different antenna directivity coefficients Aeff. In this analysis it is obvious that there
is a trade-off in mounting better antennas to UAV BSs when maximizing coverage in a
packed area. This relationship is a product of the packing algorithm that also decides
the altitude of the swarm. More efficient antennas expect higher optimal altitudes, thus
consuming more energy for vertical flights and expecting higher wind velocities. Larger
areas of coverage expect denser deployments, which decrease the flying altitude of the
UAVs. As discussed in the previous section, thanks to the aerodynamics of the UAV,
the presence of horizontal wind reduces the power consumption for hovering and proves
beneficial for the flying swarm. This effect provides interesting results in the case of the
more windy locations, such as the Faroe Islands, which present a distinct improvement
in energy efficiency for the coverage of areas with 3500m ≤ Dmax ≤ 4250m. We note
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Fig. H.7: Implementation feasibility of the off-grid system in a suburban environment.

that this is under the assumption that the downward facing antenna has negligible
impact to the UAVs’ aerodynamics.

We start the testing of the off-grid system by segmenting the four testing locations
in the group of windy places, Faroe Islands and Western Denmark, and Sunny Places,
Amatrice and Western Texas. As per Fig. H.7 there is an obvious advantage of having
the setup in an area where the use of solar panels is feasible. In the sunny locations,
the cost-feasibility of the system is massively improving by being better at allocating
the available budget, which in turn allows for exploiting the improved packing efficiency
when using bigger swarms. The most cost efficient deployments are found in the Texian
planes where energy can be captured through both wind and solar. Namely, bigger
deployments in this setting do not need as much PV panels nor wind turbines as the
other three locations, to satisfy the energy requirements of the UAV deployment. Both
windy locations do not find use for PV panels and only use the bigger 1000W turbines.
We note that even though the 1000W gives the impression of just providing double the
power output than the 500W WTs, the behaviour is in fact not linear (it has a specific
profile) and can operate efficiently in higher winds, as it was presented back in Fig. H.3.

As we can see in Fig. H.7 the results are not so clear in the case where the UAVs
have antennas with high directivity Aeff = 0.9. In accord, deployment efficiency between
the windy and the sunny locations is much closer, highly due to the better wind effects
on the higher altitudes of the UAVs. Nonetheless, UAV swarm deployments are more
costly in windy locations and generally require much higher budget than the €100000
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Fig. H.8: Implementation feasibility of the off-grid system in an urban environment.

to achieve coverages bigger than 2700m or 3200m when using Aeff = 0.6 or Aeff = 0.9
respectively. We note that this is an already high cost and thus we do not recommend
the use of UAV swarm wireless communications for covering big areas. In contrast, the
scenario in Western Texas is not limited by the upper limit on CAPEX but the size of
the swarm, which is limited to a total of 11 UAVs. This is due to the mild wind present
in the area in addition to the strong and reliable solar irradiation.

Moving over to the Urban environment, Fig. H.8 shows that the implementations’
efficiency between the windy and sunny locations are much closer in non-swarm deploy-
ments (nUAV = 2). However, the budget of scaling the system to a bigger coverage area,
takes a great toll on our CAPEX and exceeds the initial allocation of F = €100 000.
Thus, serving windy urban areas sees no use for the case of Aeff = 0.6. Again, as seen in
Fig. H.8 the performance for the windy location improves when using better antennas
and allows for bigger swarms. We note that due to the increased user density and the
worse propagation environment, the coverage for the urban implementations usually
have much smaller coverages of radius between 2000− 2700m.

6 Conclusion
In this paper we considered deploying a UAV swarm that offers persistent wireless
services in an entirely off-grid setting. We formulated the problem as CAPEX efficient
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coverage area maximization, which is a multi-variate optimization problem for solving
the load profile based on real world data. We considered energy generation from two
sources, wind and solar, that are also taken from real world data. In this paper we have
emphasized the importance of accounting for the impact of wind onto the deployment.
Moreover, we consider the hourly wind intensity as a function of elevation and terrain
roughness, and account for its impact on UAV deployments for long duration hover.
We have proposed the GSS algorithm that is computationally easy, combining greedy
sampling and binary search to find the optimal combination of wind turbines, PV panels,
cells in the ground battery, and UAVs in the swarm. Using GSS we have calculated the
feasibility of the system in four different locations where the deployment would have
to balance wind or solar power generation. This work opens a plethora of directions
for future works such as investigating the feasibility in very specific areas, specific short
term periods, and different types of UAVs.
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