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ABSTRACT

Deployment and Coverage Maintenance

in Mobile Sensor Networks . (August 2007)

Jaeyong Lee, B.S., Pusan National University, Busan, Korea;

M.S., Texas A&M University.

Chair of Advisory Committee: Dr. Suhada Jayasuriya

Deployment of mobile nodes in a region of interest is a critical issue in building a mobile

sensor network because it affects cost and detection capabilities of the system. The deploy-

ment of mobile sensors in essence is the movement of sensors from an initial position to a

final optimal location. Considerable attention has recently been given to this deployment

issue. Many of the distributed deployment schemes use the potential field method. In most

cases, the negative gradient of the potential function becomes the feedback control input

to a node. This assumes that the potential function is differentiable over the entire region.

This assumption is valid primarily when the topology of the network is fixed.

In this research, we analyze the stability of a network that uses piecewise smooth

potential functions. A gravitation-like force is proposed to deploy a group of agents and to

form a certain configuration. We use a nonsmooth version of the Lyapunov stability the-

ory and LaSalle’s invariance principle to show asymptotic stability of the network which is

governed by discontinuous dynamics.

We propose a hierarchical structure using potential fields for mobile sensor network

deployment. A group of mobile nodes first form a cluster using a potential field method

and then cluster heads are used to establish a hexagonal structure that employs a higher

level potential field.

We consider specifically the problem of deploying a mobile sensor network so that a

certain area coverage is realized and maintained. And we propose an algorithm for main-
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taining the desired coverage that assumes the availability of a stochastic sensor model. The

model reflects the decline of the sensor accuracy as the distance increases from the sen-

sor. It is further assumed that each node’s sensor has a different sensing range to represent

sensor performance deterioration due to power decay. The network deployment scheme

combines artificial forces with individual sensor ranges. The validity and the effectiveness

of the proposed algorithm are compared to the conventional methods in simulations. Simu-

lation results confirm the effectiveness of the proposed algorithms with respect to a defined

performance metric.
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CHAPTER I

INTRODUCTION

A. Mobile Sensor Networks

Recent achievements in wireless communications and electronic technologies have enabled

the development of sensor nodes in a network topology which can provide access to infor-

mation anytime, anywhere by collecting, processing, analyzing and disseminating data.

Networking these sensor nodes and providing them an ability to coordinate amongst them-

selves for larger sensing tasks can revolutionize information gathering and processing in

many situations.

This revolutionary sensor network technology has given a lot of advantages in per-

formance, flexibility, robustness, and functionality for sensor-oriented tasks such as envi-

ronment monitoring [1], fire detection [2], and other complex monitoring tasks [3]. With

the advances in technologies, the usefulness of sensor network has stimulated more appli-

cations in unpredictable, previously unknown, and even hostile environments.

A mobile sensor network comprises of a distributed collection of nodes, each of which

has sensing, computation, communication and locomotion capabilities. It is this latter ca-

pability that distinguishes a mobile sensor network from a conventional static network.

Locomotion facilitates a number of useful network capabilities, including the ability to self-

deploy; that is, starting from some compact initial configuration, the nodes in a network can

propagate by spreading out such that the area covered by the network is maximized. Due

to the inextricable relation to the physical world, the proper deployment of sensors is very

important for a successful completion of sensing tasks.

Self deployment methods using mobile nodes have been proposed to enhance net-

The journal model is IEEE Transactions on Automatic Control.
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work coverage and to extend the system lifetime by configuring uniformly distributed node

topologies from random node distributions. Since mobility itself requires energy from its

own limited energy sources, a deployment scheme should be designed carefully to mini-

mize energy consumption during deployment, while achieving certain goals, such as satis-

factory coverage and an energy-efficient node topology.

B. Sensor Network Coverage and Deployment

The sensor location problem in mobile sensor networks has similarities to the conventional

art gallery problem (AGP) studied in computational geometry [4]. AGP seeks to determine

how to use a minimal number of guards (cameras) in a polygon so that every point in the

polygon is observed by at least one guard (camera). However, the solutions of AGP cannot

be directly applied to the mobile sensor network deployment problem. First, AGP solu-

tions assumes that the model of a environment can be well constructed a priori. This is

not typical in mobile sensor network deployment. Secondly, AGP solutions suppose that a

guard can observe as long as a line-of-sight exists, while sensors usually have finite sensing

ranges. Furthermore, AGP solutions do not consider the limitations imposed by communi-

cation range.

The problems of coverage and deployment are fundamentally interrelated. In [5], the

authors have discussed the problem of location and deployment of sensors from a coverage

standpoint. The authors define the coverage problem from different points of view, includ-

ing deterministic, statistical, and the worst and best cases. The goal is to have each location

in the environment covered by at least one sensor. They argue that coverage is a primary

performance metric that determines quality-of-service (QoS) and combined computational

geometry and graph theory for their algorithms.

The concept of coverage as a paradigm for the system-level functionality of multi-
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robot systems was introduced by Gage [6]. Gage defines three basic types of coverage: (i)

Blanket, (ii) Barrier, and (iii) Sweep coverage. In Blanket coverage, the objective is to ac-

complish a static arrangement of nodes that maximizes the total detection area. The objec-

tive of Barrier coverage is to minimize the probability of undetected penetration through

the barrier. Sweep coverage is roughly equivalent to the moving Barrier coverage. Ac-

cording to this taxonomy, the deployment problem in this research is equivalent to blanket

coverage.

Autonomous mobile sensor deployment algorithms have been intensively researched.

One of the most widely used methods is to employ artificial force concept between mobile

agents. Since first presented by Khatib [7], potential field based methods have been exten-

sively used in path planning. In potential field based algorithms [8] [9] [10], a control law is

defined as the negative gradient of the potential. Popa et al. [11] deployed sensor networks

using conventional potential field method. Voronoi diagram method has also been used to

generate artificial forces [12]. On applying these algorithms, the mobile sensor nodes get

situated in the environment in a distributed manner. A Virtual force can be directly derived

to enhance network coverage for randomly placed sensors as developed by [13].

Most of the previous research, however, assumed a smooth potential field which is

differentiable over the entire region. This assumes two properties. First assumption is that

a neighboring set (a set of nodes with which a node can communicate) of a node never

changes, and the second is that a potential function is differentiable. A force field derived

from a smooth potential function becomes continuous, and the system is governed by con-

tinuous dynamics.

We remove the second assumption on the continuity of a force field. We develop

a system represented by differential equations with discontinuous right hand side, where

interactive forces between nodes are discontinuous. We followed the framework by She-

vitz and Paden [14] to prove stability. The main advantage of this work is to grant much
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freedom in designing a force field or shaping a potential field for a network formation.

C. Contributions

The main goals of this dissertation are to prove stability of the system which uses an arti-

ficial force derived from potential functions, and to develop algorithms which improve the

system performance. The proposed research was aimed at achieving goals by completing

the following objectives.

1. To develop a force model which achieve optimal placement.

2. To analyze stability of the system which has discontinuous right hand side in its dif-

ferential equation characterization.

3. To develop a deployment strategy which uses a hierarchial structure to achieve better

coverage.

4. To implement a heterogeneous sensor model to maintain better coverage compared

to a homogeneous sensor model.

5. To develop and fabricate multi purpose mobile sensor base to implement our algo-

rithms.

Our approach to achieve desirable deployment is to use potential fields which gen-

erate artificial forces. We show that a hexagonal structure formation guarantees maximal

coverage area as per our terminology. Each node is fundamentally controlled by an artifi-

cial force derived from a conventional potential field. We begin to construct the network

by distributing mobile nodes into a region of interest. The nodes deploy by interacting

with nearby sensor nodes. A hierarchical approach to achieve this hexagonal structure for

a wider area is developed without any additional complicated algorithms.

In conventional artificial force algorithms, the sensors are placed so that they keep

predefined distances between them. We implement a stochastic sensor model that redefines
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the distance to be maintained by the sensor nodes. We incorporate mobile sensor network

deployment and coverage maintenance by combining potential field based artificial forces

and stochastic sensor models. Power status of a sensor is reflected in the selection of this

sensor model so that the network can maintain the desired sensing performance. Compared

to current power level, each node determines a valid sensing range, and by exchanging this

information with a neighbor, a new optimal distance is derived. This distance information

is in turn used to generate the artificial force between two nodes.

D. Dissertation Structure

The remainder of this dissertation is organized as follows.

In chapter II, explained are the general terminologies used in this dissertation, and

a network deployment algorithm using the conventional potential field formalism. Mo-

bile nodes are deployed by artificial forces derived from potential functions. Chapter III

focusses on the stability issues of the system described by differential equations with dis-

continues right hand side. Chapter IV is concerned with the network deployment and a

hierarchical coverage control algorithm. In chapter V, explained is the coverage mainte-

nance method which enhances overall detection probability by using a time varying sensor

model. Chapter VII concludes this dissertation by summarizing our works and presenting

issues for future research.
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CHAPTER II

SENSOR NETWORK DEPLOYMENT AND STABILITY ANALYSIS OF TIME

INVARIANT SYSTEM

The stability of the time invariant system is analyzed with conventional Lyapunov theory.

A. Definitions

Definition A.1 Let us suppose that a sensor s is located at (xs,ys) and it has sensing range

r. We assume that a sensor has disk type sensing range. Then a point p is said to be covered

by a sensor s if dist(s, p) ≤ r.

Definition A.2 For the given region of interest Ai, the coverage of a sensor network is the

area Ac within which every point p is covered by at least one sensor.

Definition A.3 A vector f ield on Rn is a mapping

f : X ⊆ Rn → Rn. (2.1)

A vector field assigns to each point x in X a vector f (x) in Rn, represented by an arrow

whose tail is at the point x.

Definition A.4 A gradient f ield on Rn is a vector field

f : X ⊆ Rn → Rn (2.2)

such that f is the gradient of some (differentiable) scalar-valued function

V : X → R. (2.3)

That is f (X) = ∇V (x), at all x in X. The function V is called a (scalar) potential f unction

for the vector field f .
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B. Network Deployment

An important phase in the operation of a sensor network is the deployment of sensors in a

field of interest. It is a critical issue because it directly affects the cost and detection capa-

bility of a wireless sensor network. Sensor deployment has received considerable attention

recently. Critical goals during deployment of a sensor network include coverage, connec-

tivity, and load balancing among others.

The deployment strategy for sensor networks varies with the application considered.

It can be predetermined when the environment is sufficiently known and under control, in

which case the sensors can be strategically deployed manually.

The deployment can also be a priori undetermined when the environment is unknown

or hostile, such as remote harsh fields, disaster areas and toxic urban regions. In this case,

sensor deployment cannot be pre-planned and performed manually. For example, the sen-

sors may be airdropped from an aircraft or deployed by other means, generally resulting

in a random placement. Random placement of sensors in a target area is often desirable

especially if no a priori knowledge of the terrain is available. Random deployment is prac-

tical in military applications, where sensor networks are initially established by dropping or

throwing sensors into a desired field. However, such random deployment does not always

lead to effective coverage, especially if the sensors are overly clustered and there is a small

concentration of sensors in certain parts of the sensor field. The actual landing position

cannot be controlled due to the existence of wind and obstacles such as trees and build-

ings. Consequently, the coverage may be inadequate for specific application requirements

regardless of how many sensors are dropped.

In these scenarios, it is possible to make use of mobile sensors, which can can be

made to move to appropriate locations to provide the required coverage. Mobility can sig-

nificantly increase the capability of a sensor network by making it resilient to failures, react



8

(a) disk type sen-
sor model

(b) 2 sensors (c) 3 sensors with
coverage hole

Fig. 1. Sensor model and coverage

to events, and be able to support disparate missions with a common set of sensors. Multiple

mobile agents provide us with a flexible, robust and distributed solution for data collection

in sensor networks.

Sensor deployment is basically an optimal sensor location problem. Let us consider a

binary sensor model which is a disk model as shown in fig. 1(a), and define rs as its sensing

range. The aim of the sensor network is to maximize the area coverd by placing multiple

sensors in the environment. When there are more than 2 sensors, an optimization problem

arises. For example, we can maximize the coverage area by arranging two disks adjacent

to each other as shown in fig. 1(b). With more than 3 sensors, which is generally true in

sensor networks, there may exist a coverage hole (void) between sensors as shown in fig.

1(c) (colored area in the middle of the three sensors). To remove this void, we may overlap

sensor detection areas. In this case, we need to minimize the overlapped area to maximize

the covered area for a given number of sensors.

Let us define ds as the distance between two sensors. Then,

ds =
√

(xi− x j)2 +(yi− y j)2, (2.4)

where (xi,yi) and (x j,y j) are two sensor positions in 2-D space. In a two sensor case, it

is simply 2rs to maximize coverage area and minimize the communication range. Let us
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(a) 3 sensors with-
out hole

(b) circle packing (c) 4 sensors

Fig. 2. Optimal placement using disk packing problem

now consider the triangle shown in fig. 2(a). As every ds is the same, the triangle is an

equilateral and from simple geometry, we know ds is
√

3rs. The optimal placement of

sensors is then the traditional circle packing problem for circles whose radii are
√

3r/2

[15, 16]. A circle packing is an arrangement of circles inside a given boundary such that no

two overlap and some (or all) of them are mutually tangent. The densest packing of circles

in the plane is the regular hexagonal lattice arrangement, which has a packing density of
√

3π/6 as shown in fig. 2(b). The overlapped area (Ao) between two circle in fig. 2(a) is

2(π/6−√3/4)r2. In case of four sensors, there are 5 overlapped area as in fig. 2(c).The

optimal deployment minimizes such an overlapped area.

1. Hexagonal deployment

We have so far shown that a hexagonal structure is optimal in terms of our coverage defini-

tion. The main problem now is how one should propagate the hexagonal configuration in a

distributed manner.

To successfully reach the goal of networked systems, mobile nodes should commu-

nicate with each other. In general, a mobile sensor node has a limited range of commu-

nication. Therefore, only nodes which are sufficiently close to each other, can establish

communication, and the communication topology is strongly influenced by node motion.
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Let xi be the position vector of the i-th node in 2-D and N be the number of nodes, and

assume each node has standard second order linear dynamics. We can define ri j = |xi j| as

the distance between the i-th node and the j-th node, and we construct a potential function

V(ri j), which is a function of the distance between two nodes. The control input to a node

is the force Fi j exerted on the i-th node by the j-th node. It is useful to write the force as

the negative gradient of the potential field. Therefore, the total force on each node can be

described as

Fi =
N

∑
j 6=i

Fi j =−
N

∑
j 6=i

∇V(ri j). (2.5)

The magnitude of the force as a function of the distance is shown in fig. 3. It is

necessary to adjust the magnitude of the force to the feasible level to accommodate control

input saturation. This limit is set as Fmax, and comes into play when r ≤ r1. The force is

repulsive if r ≤ r2, and attractive if r ≥ r2. There is no force exerted if r ≥ r3. In this work,

the potential field is chosen so that the force function is of the form

Fi j =
α

rβ
i j

, (2.6)

where α and β are the parameters we can tune. Each node uses exactly the same control law

because the nodes are assumed to be identical, and are influenced only by the neighboring

nodes, i.e., those within a ball of radius r3. The global minimum of the sum of all the

potentials consists of a configuration in which neighboring nodes are spaced equally at a

distance r2 from one another as shown in fig. 3(b).

For a uniform distribution of the sensor nodes, the hexagonality of a deployment can

be measured by uniformity. Uniformity is defined as the average of the local standard

deviation of the distances between neighboring nodes [17]. Let Ni be a set of nodes which

can communicate with and be detected by the i-th node. Then, the overall uniformity of a
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deployment is

U =
1
N

N

∑
i=1

Ui

Ui = (
1
|Ni| ∑

j∈Ni

(|xi j|−µi)2)
1
2

where Ui is the local uniformity, and µ is the mean of the distances between the i-the node

and its neighbors. A smaller value of U means that the nodes are more uniformly placed,

and with our force model, the deployment has a hexagonal structure.

The main problem of this form of artificial force is that the system has discontin-

uous right hand side. The sign of the force switches at a certain distance r2. A node is

locally interacting with neighbors, and each node is governed by discontinuous differential

equations. Therefore, stability analysis is required for the overall network.

C. Stability Analysis for Time Invariant System

We define the state of the n nodes as x=(x1, ...,xn, ẋ1, ..., ẋn). Let us consider an undirected

neighboring graph, G = {V ,E}, which is composed of as a finite non-empty set of vertices,

V = {x1,x2, ...,xn}, and a finite set of edges, E = {ei j|(xi,x j) ∈ V ×V ,xi ∼ x j} (fig.

4). A vertex represents a mobile node and an edge contains unordered pairs of nodes

that depict neighborhood between the nodes. We now define a neighboring set of node i,

Ni = { j|(xi,x j) ∈ E , |xi− x j| ≤ rr,rc}, as a set of nodes which can communicate with and

be detected by node i. It is proved that if rc ≥ 2rr, complete coverage of a convex region

implies connectivity of an arbitrary network [18]. We assume the same condition here so

that connectivity is always guaranteed. First, we consider the time invariant case, where

a node can communicate with all other nodes or a set of neighboring nodes Ni does not

change. This property induces that the total potential energy of the group is differentiable

as long as the potential energy function for each node is differentiable. Then the control
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Fig. 4. Undirected graph and its spacial representation

input to a node is smooth and classic Lyapunov stability theory can be applied.

Let us consider a continuously differentiable Lyapunov function (Φ) that combines

kinetic energy and potential energy in the form

Φ =
1
2

n

∑
i=1

(
ẋT

i · ẋi + ∑
j∈N

V (xi j)

)
. (2.7)

Let us define a set Ω as

Ω = {(x, ẋ)|Φ≤ φ} ,∀ i, j ∈ {1, ...,n}, (2.8)

for a sufficiently large value of φ. The set, for φ > 0, is closed by continuity. Because of

the symmetric property of V (xi j) and V (x ji), and the property of xi j =−x ji,

∂Vi j

∂xi j
=

∂Vi j

∂xi
=−∂Vi j

∂x j
(2.9)

Therefore, the time derivative of the potential energy becomes

d
dt ∑

j∈N
V (xi j) = ∑

j∈N
(V̇i j) = ∑

j∈N
ẋT

i j∇V (xi j) = 2 ∑
j∈N

ẋT
i ·∇V (xi j). (2.10)
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And, the time derivative of Φ becomes

Φ̇ =
n

∑
i=1

ẋT
i ·

(
ẍi + ∑

j∈N
∇V (xi j)

)
. (2.11)

For simplicity, let us consider a simple unit mass dynamics system for a node.

ẍi = ui− cẋi. (2.12)

Because we are considering control input u as the negative gradient of the potential, equa-

tion 2.11 can be expressed as

Φ̇ =
n

∑
i=1

ẋT
i ·

(
−cẋi− ∑

j∈N
∇V (xi j)+ ∑

j∈N
∇V (xi j)

)
(2.13)

= −c
n

∑
i=1

ẋT
i · ẋi. (2.14)

For the positive damping coefficient c, Φ̇ is semi-negative definite (Φ̇≤ 0). Equality Φ̇ = 0

holds only when ẋi = 0. Therefore, the system with the given control law is asymptotically

stable. Let S be the invariant set in Ω

S = {(x, ẋ)|Φ̇ = 0}. (2.15)

From LaSalle’s invariance principle, we can conclude that the nodes will converge to

the largest invariant set in S . However, with nonzero c, Φ̇ is zero only when all the nodes

are at rest. We do not consider the trivial case, in which a node is at rest because there

is no node within given sensing range. Therefore, the above statement means that all the

distances of neighboring nodes are the same, where the local minima of the potentials are

achieved.
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CHAPTER III

STABILITY ANALYSIS FOR DISCONTINUOUS DYNAMIC SYSTEM

In this chapter, discussed is the stability of the discontinuous dynamic system. In section

A, we first introduce basic preliminaries about nonsmooth vector fields, and Lyapunov

stability analysis with nonsmooth Lyapunov functions. The framework used was developed

by Shevitz and Paden [14]. In the following section, we prove the stability of the system

which has a discontinuous right hand side and has a hexagonal structure as discussed in the

previous chapter.

A. Preliminaries

1. Piecewise smooth vector field

In many cases, vector fields may be smooth only over a finite number of regions. A discon-

tinuous jump may occur at the switching boundary. Let us define switching boundary B ⊂
Rn as

G = {x ∈ Rn|g(x) = 0} (3.1)

where g is a function g : Rn −→ R. (n−1) dimensional G splits Rn into two regions

G+ = {x ∈ Rn|g(x) > 0} (3.2)

G− = {x ∈ Rn|g(x) < 0} (3.3)

Figure 5 shows examples of piecewise smooth vector fields. Let us assume that g(x) is

smooth in G+ and G− but is discontinuous at G. To determine a solution trajectory for

the piecewise smooth vector fields, we will use the Filipov solution concept which will be

explained in the next subsection. For the inward flow case, the integral curve moves along
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(a) Inward flow (b) Outward flow (c) Consistent flow

Fig. 5. Piecewise smooth vector field

G, assuming the vectors inside of G point in the same direction (within the convex hull) as

the vectors on either side of the boundary. In applications, this property may lead physical

systems to oscillations around G. The outward flow case can lead to non-uniqueness if the

initial state lies in G . However, trajectories that start outside of G will not cross G , and

there will be no such non-uniqueness issues. For the consistent flow case, the vectors at G

must lie between the vectors before and after crossing G in both magnitudes and directions.

2. Lyapunov stability of nonsmooth systems

We consider the vector differential equation with discontinuous right-hand side given by

ẋ = f (x), (3.4)

where f : Rn −→ Rn is measurable and essentially locally bounded. From [19]

Definition A.1 In the case when n is finite, the vector function x() is called a solution of

3.4 in [t0, t1] if it is absolutely continuous on [t0, t1] and for almost all t ∈ [t0, t1]

ẋ ∈ K[ f ](x)

where

K[ f ](x)≡
⋂

δ>0

⋂

µN=0

co f (B(x,δ)−N) (3.5)
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⋂
µN=0 denotes the intersection over all sets N of Lebesgue measure zero. An equivalent

definition is: there exists N f ⊂ Rm, µN f = 0 such that for all N ⊂ Rm, µN = 0

K[ f ](x)≡ co{lim f (xi)|xi → x,xi /∈ N f
⋃

N}

Lyapunov stability theorems have been extended for nonsmooth systems in [14]. The au-

thors use the concept of generalized gradient which for the case of finite-dimensional spaces

is given by the following definition.

Definition A.2 Let V : Rn → Rn be a locally Lipschitz function. The the generalized gradi-

ent of V at x is given by

∂V (x) = co{lim∇V (x)|x→ x,x /∈ ΣV}

where ΣV is the set of measure zero in Rn where the gradient of V is not defined.

Lyapunov stability theorems for nonsmooth systems require the energy function to be

regular. Regularity is based on the concept of generalized derivative which was defined by

Clarke [20] as follows

Definition A.3 Let f be Lipschitz near x and v be a vector in Rn. Then, the generalized

directional derivative of f at x in the direction of v is defined

f ◦(x;v) = lim
y→x,∑

t↓0

f (y+ tv)− f (y)
t

Lemma A.4 Let f be Lipschitz near x, then

f ◦(x;v) = max{〈ξ,v〉|ξ ∈ ∂ f (x)}
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Definition A.5 The function f (x) : Rm → R is called regular if

1) for all v, the usual one-sided directional derivative f ′(x;v)

2) for all v, f ′(x;v) = f ◦(x;v)

From [14], the following chain rule provides a calculus for the time derivative of the

energy function in the nonsmooth case.

Theorem A.6 Let x(·) be a Fillipov solution to ẋ = f (x) on an interval containing t and

V : Rn → R be a Lipschitz and regular function. Then V (x) is absolutely continuous,

d/dt(V (x(t))) exists almost everywhere (a.e.) and

d
dt

V (x(t)) ∈a.e. ˙̃V

where

˙̃V :=
⋂

ξ∈∂V (x(t))

ξT




K[ f ](x(t))

1




From [14]

Theorem A.7 Let ẋ = f (x) be essentially locally bounded and 0 ∈ K[ f ](x) in a region

Q⊃ {x ∈ Rn|‖x‖< r}. Also, let V : Rn → R be a regular function satisfing

V (0) = 0

and

0 < V1(‖x‖)≤V (x)≤V2(‖x‖)

in Q for some V1,V2 ∈ class K . Then

1) ˙̃V ≤ 0 in Q implies x = 0 is a uniformly stable solution

2) If in addition, there exists a class K function ω(·) in Q with the property
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then the solution x≡ 0 is uniformly asymptotically stable.

We shall use the following nonsmooth version of LaSalle’s invariance principle to prove

the convergence of the prescribed system: From [14]

Theorem A.8 Let Σ be a compact set such that every Filipov solution to the autonomous

system ẋ = f (x),x(0) = x(t0) starting in Σ is unique and remains in Σ for all t ≥ t0. Let

V : Σ→ R be a time independent regular function such that v≤ 0 for all v ∈ ˙̃V (if ˙̃V is the

empty set then this is trivially satisfied). Define S = {x ∈ Σ|0 ∈ ˙̃V}. Then every trajectory

in Σ converges to the largest invariant set, M, in the closure of S.

B. Discontinuous Dynamic Systems

Let us again consider each node with unit mass, and define the state variable

x = [x1, ẋ1, ...,xi, ẋi, ...,xn, ẋn]T

where xi = [xi, ẋi]T . Then the agent dynamics can be given by

ẋi = ψ(x)+ τ(x) = f (x),

where ψ(x) is a friction force proportional to the velocity, and τ(x) is a control input derived

from the negative gradient of the system. For the simplest expression,

ẍi =−cẋi−∇V,

where V is the total potential at xi due to all the neighboring nodes. The equation appears

linear and same as the equation used in the constant topology case which was described in

Chapter II. However, what we are considering in this chapter is a system with discontinu-

ous right hand side. In group motion analysis, there are two possibilities that the system

has discontinuous dynamics. The first case appears where each node has discontinuous
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dynamics, while the second case presents the switching topologies where the neighboring

set of a node Ni varies as time passes. We consider the first case here, while methodology

and results of nonsmooth analysis are same for the second one. Then the agent dynamics

can be explained with a differential inclusion

ẋi ∈ K[ f ](x)i

At the points of discontinuity, x lies in the convex closure of the liming values of the vector

field. Therefore,

K[ f ](x) = [ẋi,−cẋi−Σ j∈Ni
∇Vi j]

Note that we discard sets of measure zero where the gradient of V is not defined. Figure
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(b) Force model between the nodes

Fig. 6. Force model

6 shows the changes of the force magnitude corresponding to the distance to a neighbor.

It is necessary to refine the magnitude of force to feasible level because of control input

saturation. This limit is set as Fmax, and comes into effect when r ≤ R1. The force is
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repulsive if r ≤ R2, and attractive if r ≥ R2. There is no force exerted if r ≥ R3.

F =





Fmax if r < R1

G
rp if R1 < r < R2

− G
rp if R2 < r < R3

0 if R3 < r.

Let us consider the nonnegative Lyapunov function candidate

Φ =
1
2

n

∑
i=1

(
ẋT

i · ẋi + ∑
j∈N

V (xi j)

)

We now define V =−∫
r Fdr, which is a negative form for the conventional potential

energy along the path so that control input to the system is a negative gradient of the the

potential energy. For the force shown in figure 6, we have following potential energy

V =





−rFmax if r < R1

−R1Fmax− G
(1−p)r(1−p) + G

(1−p)R(1−p)
1 if R1 < r < R2

−R1Fmax− 2G
(1−p)R(1−p)

2 + G
(1−p)R(1−p)

1 + G
(1−p)r(1−p) if R2 < r < R3

−R1Fmax− 2G
(1−p)R(1−p)

2 + G
(1−p)R(1−p)

1 + G
(1−p)R(1−p)

3 if R3 < r

First two terms in each region are negative for repulsive force whereas the last integral is

positive for attractive force. The graphical representation of the potential is shown in figure

7. There are three nonsmooth points in the potential at R1, R2, and R3. The potential values

at the discontinuities are

VR1 = −R1Fmax (3.6)

VR2 = R1Fmax +
G

(1− p)
R(1−p)

2 − G
(1− p)

R(1−p)
1 (3.7)

VR3 = −R1Fmax− 2G
(1− p)

R(1−p)
2 +

G
(1− p)

R(1−p)
1 +

G
(1− p)

R(1−p)
3 (3.8)
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Fig. 7. Potential energy derived from the force law
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If the distance between two nodes are one of those nonsmooth points (r /∈Ωv), we need to

consider the generalized time derivative of Φ. To apply the nonsmooth version of Lyapunov

stability analysis, we need to check the regularity of Φ.

Let us first establish regularities of V at distances which belong to the set of measure zero.

One sided directional derivatives are defined as

f ′(R1,v) = lim
t↓0

V (R1 + tv)
VR1

=





a < 0 if v > 0,

b > 0 if v < 0.

f ′(R2,v) = lim
t↓0

V (R2 + tv)
VR2

=





c > 0 if v > 0,

d < 0 if v < 0.

f ′(R3,v) = lim
t↓0

V (R3 + tv)
VR3

=





e = 0 if v > 0,

f < 0 if v < 0.

Now we define gradient of V where r /∈Ωv

∇V (r) =





− G
Rp

1
if r < R1

− G
rp if R1 < r < R2

G
rp if R2 < r < R3

0 if R3 < r.

Note that ∇V includes the derivative with respect to time even though it is not shown in the

expression. By combining definition of Glarke’s generalized gradient and lemma A.4, we
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have

f ◦(R1,v) =





a < 0 if v > 0,

b > 0 if v < 0.

f ◦(R2,v) =





c > 0 if v > 0,

d < 0 if v < 0.

f ◦(R3,v) =





e = 0 if v > 0,

f < 0 if v < 0.

By the definition of regular function, V is regular, and Φ is regular as a sum of regular

functions. Regularity and the property of finite sums of generalized gradients provide us

∂Φ = [Σ∂x1Vi, ẋi...,Σ∂xnVi, ẋn]T

From Clarke’s chain rule, we have the generalized time derivative of Φ

˙̃Φ =
⋂

ξ∈∂Φ(x(t))

ξT (K[ f ](x(t)))

=
⋂

Σ
[
ẋT

i Σ∂xiV − cẋT
i ẋi− ẋT

i Σ∂xiV
]

= co{−ΣcẋT
i ẋi}

≤ 0.

As we do not consider the trivial case where the graph is not connected, ˙̃Φ = 0 only when

ẋi = 0.Let S be the invariant set in Ω

S = {(x, ẋ)|Φ̇ = 0}. (3.9)

From LaSalle’s invariance principle, we can conclude that the nodes will converge to

the largest invariant set in S . However, with nonzero c, Φ̇ is zero only when all the nodes
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are at rest. We do not consider the trivial case, in which a node is at rest because there

is no node within given sensing range. Therefore, the above statement means that all the

distances of neighboring nodes are the same, where the local minima of the potentials are

achieved.
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CHAPTER IV

HIERARCHICAL NETWORK DEPLOYMENT

In this chapter, presented is the deployment algorithm using a two layered hierarchical

structure. Concepts of active and passive nodes are introduced, and the system with those

active and passive nodes is analyzed.

A. Clustering in Mobile Sensor Networks

A major approach for collaboration among those with limited capability is to organize the

mobile nodes into groups which are generally called clusters. It enables one to build useful

hierarchical structures for mobile nodes. Clustering in mobile sensor networks has been

extensively investigated because of the advantages of reduced power, increased distributed

nature, and improved adaptability to various environments [21]. Moreover, within a cluster,

much simpler protocols can be used to provide the system more efficient ways of using

limited resources [22].

In a clustering structure, mobile nodes are classified into one of three classes: head

node, gateway node or member node. A cluster head is in charge of coordinating other

nodes in its cluster. A cluster gateway is a communication link with neighboring clusters,

which forwards information between clusters. A member node is an ordinary node which

is not a head nor a cluster link. In the mobile device setting, it is appropriate to assume that

the cluster heads are located within the cluster.

1. Clustering scheme

We assume herein that a node is either a head node or a non-head node in a cluster and

belongs to only one cluster, which means clusters do not share a node. It is further assumed
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that a head node works as a gateway node so that connection links between the clusters are

established only between the head nodes. Therefore, the network has a hierarchical struc-

ture with two layers: lower layer and upper layer. Nodes at the lower layer are the ordinary

member nodes and those in the upper layer are the head nodes.

The clustering schemes have been extensively developed, and they can be classified

with different criteria. A broad survey of the schemes is presented in [23]. One criterion

used to classify the scheme is the existence of a cluster head, and the hierarchical scheme

based on the cluster head can be divided into two categories: (i) where cluster heads are

identical to member nodes, or (ii) cluster heads are superior to member nodes. In the first

category, all the nodes are assumed to have identical capabilities and energies, and some

of them are selected as cluster heads [24]. On the contrary, in the second category, a small

number of nodes are equipped with more resources than ordinary members [25].

In our scheme, all the nodes are assumed to be identical. Some of the nodes are

randomly selected as cluster heads, and form a hierarchical structure. Then cluster heads

form a certain desired formation by upper level potential fields. When they reach the goal

positions, the cluster heads become ordinary nodes, and the structure is converted to a flat

structure (one layer structure).

While the structure is hierarchical, nodes in a cluster move as a rigid body. In rigid

body motion, mobile nodes maintain fixed relative positions while their positions in space

change. These fixed relative positions form a virtual structure [26],[27]. With this struc-

ture, all the nodes in the same cluster moves as a single structure. It is easy to understand

that mobile nodes keep the same position with respect to the reference frame which is at-

tached to the cluster head. In defining potentials for the head node or non-head node, we

designate the head node as an active node, and the non-head node as a passive node, which

will be discussed in the next section.
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B. Active Nodes and Passive Nodes

1. Definitions

A Passive node is a mobile sensor unit which is affected by the potential field generated

by active nodes, and does not generate any force on an active node (see fig. 8). An active

node, on the contrary, is a mobile unit which generates a potential field which has an effect

on neighboring nodes. A node in the active nodes group generates forces on nearby nodes

in both active and passive nodes groups, while a node in the passive nodes group can only

generate a force which affects only the neighboring passive nodes.

Let us consider a mixed neighboring graph, G = {V ,E
⋃

A}, which is composed of a

finite non-empty set of vertices, V = {x1,x2, ...,xm+n}, and a finite set of undirected edges,

E = {xi j|(xi,x j) ∈V ×V ,xi ∼ x j}, and a finite set of directed arcs A . Let C = {c1, ...,cm}
and P = {p1, ..., pn} be two sets in V , with |C | = m, |P | = n, C

⋃
P = V and C

⋂
P = {}.

The undirected edge set E = {(ci,c j)
⋃

(pk, pl)|ci j = (ci,c j) ∈ C ×C , pkl = (pk, pl) ∈ P ×
P ,ci ∼ c j, and pk ∼ pl} and the directed arc set A = {aki = (pk,ci)|pk ∈ P and ci ∈ C}.

We now define two neighboring sets: N c
i for the vertices in C and N p

k for the vertices

in P . In this case, a set of neighbors of a vertex in C is

N c
i = { j|(ci,c j) ∈ E , |ci ∼ c j| ≤ rr,rc}
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and a set of neighbors of a vertex in P is

N p
k = {l, i|(pk, pl) ∈ E ,(pk,ci) ∈ A , |pk ∼ pl| ≤ rr,rc, and |pk ∼ ci| ≤ rr,rc}

The notation is illustrated in fig. 9.

For the network analysis, we describe C as the set of active nodes and P as the

set of passive nodes. From this point on, subscripts a and p denote active and passive,

respectively. For the ith active node, the control input is the sum of negative gradients of

the potentials of the neighboring active nodes

ui =− ∑
j∈Nc

i

∇Va(ci j) (4.1)

where Va is the potential of the active nodes. For the kth passive node, the control input

is the sum of the negative gradients of the neighboring active nodes and the sum of the

negative gradients of the neighboring passive nodes

uk =− ∑
i∈N p

k

∇Va(aki)− ∑
l∈N p

k

∇Vp(pkl) (4.2)
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where Vp is the potential of the passive nodes.

2. Stability analysis

Let us define the state of the m+n nodes as

x = (x1, ...,xm,xm+1, ...,xm+n, ẋ1, ..., ẋm, ẋm+1, ..., ẋm+n).

For convenience, we define xi as

xi =





active node if i ∈ {1,2, ...,m}

passive node if i ∈ {m+1,m+2, ...,m+n}

Once again, we consider the time invariant case, where a node can communicate with all

other nodes or where the set of neighboring nodes Ni does not change. At the equilibrium

states x = xeq, we can investigate the stability of the system with an appropriate Lyapunov

function.

Let us consider a continuously differentiable Lyapunov function (Φ) with kinetic

energy and potential energy which are from the given relative positioning. First, Φ is

constructed by summing functions for both active and passive groups.

Φ =
1
2

m

∑
i=1

(ẋT
i · ẋi + ∑

j∈Nc
i

Va(xi j))+
1
2

m+n

∑
i=m+1

(ẋT
i · ẋi + ∑

j∈N p
i

Va(xi j)+ ∑
k∈N p

i

Vp(xki)) (4.3)

Then, time derivative of the Lyapunov function becomes,

Φ̇ =
m

∑
α=1

ẋT
α ·

(
ẍi + ∑

j∈Nc
i

∇V (xi j)

)
+

m+n

∑
i=m+1

ẋT
i ·


ẍi + ∑

j∈N p
i

∇Va(xi j)+ ∑
k∈N p

i

∇Vp(xki)




(4.4)

Let us again consider simple unit mass dynamics system for a node xi as in eqn. 2.12.

ẍi = ui− cẋi (4.5)
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Fig. 10. Clusters and merging

Note that the above equation is applied to both active nodes and passive nodes as ui differs

based on i as described in eqn. 4.1 and 4.2. With the symmetry properties of potential in

same groups, the equation can now be described as

Φ̇ =
m

∑
i=1

ẋT
i ·

(
ui− ciẋi + ∑

j∈Nc
i

∇V (xi j)

)
(4.6)

+
m+n

∑
i=m+1

ẋT
i ·


ui− ciẋi + ∑

j∈N p
i

∇Va(xi j)+ ∑
k∈N p

i

∇Vp(xki)




= −
m

∑
i=1

ciẋT
i · ẋi−

m+n

∑
i=m+1

ciẋT
i · ẋi

= −
m+n

∑
i=1

ciẋT
i · ẋi

Therefore, with the positive damping coefficient ci for every node, Φ̇ is negative semidefi-

nite. Equality Φ̇ = 0 holds only when ẋi = 0. Therefore, the system with the given control

is asymptotically stable.
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3. Forming clusters and merging

Figure 10(a) shows the concept of forming clusters (C1 and C2). Each cluster has its cluster

head (h1 and h2) which is separated from each other by a distance dh. The deployment

scheme consists of three hierarchical steps. First, each cluster determines its head and

makes a hexagonal structure as described in the previous section. Then cluster heads estab-

lish communication between neighbors within range, and second potential field approach

is used to maintain the predefined distance (dth: threshold distance) between them. In this

stage, each cluster moves as a rigid body, and ignores the first potential field to nodes in

other clusters. Lastly, we cease the second potential, and reapply the first potential to all

sensor nodes to construct the final hexagonal structure. We consider the form of the second

potential field V2(dh) that yields an attractive force which is switched on when dh ≤ dth. If

dth is set too small, it is possible for the clusters to get tangled, which may cause a collision

because the clusters are moving as rigid bodies. If too large, the adjacent nodes between

clusters will be out of the communication range. Then, the overall hexagonal structure

cannot be accomplished in the third step. Therefore, dth is set to 2.5r2 to satisfy the above

conditions.

Initial deployment of sensor nodes in a multiple number of groups is feasible as is the

case when an airplane drops multiple groups in different places. The only condition is that

each group should be located within their maximum communication range.

C. Simulation Results

In this section, we present simulation results for the hexagonal formation via the artificial

force from potential, and for the hierarchical formation control. The main purpose of this

kind of coverage is to get maximum coverage without coverage hole.
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Fig. 11. Hexagonal structure construction

1. Hexagonal structure formation

Figure 11 shows the results from a hexagonal formation of 50 mobile sensor nodes (fig.

11(a)) and 200 nodes (fig. 11(b)). In this simulation, α and β are 500 and 2, respectively,

desired equilibrium distance r2 is 50m, and Fmax is limited to be 1. The sampling time (δt) is

0.1 sec. and the number of iterations is 6000 so that the total time for the deployment is 10

minutes. Figure 11(a) shows an example of a hexagonal formation. Note however, that the

hexagonal structure is not perfect. There are a small number of nodes lumped in the lower

right corner. The perimeter of the structure is not hexagonal. These defects are inevitable

in our potential based force model, because we are not considering a global controller

which can shape the whole system. The overall formation shows, however, well-defined

hexagons. It is noticeable that we have quite different results as α and β in equation 2.6 are

varied. The effect of different α values is shown in fig. 12. α is too low in fig. 12(a) and too

high in fig. 12(b). If α is too low, the overall performance is poor and the system does not

converge to a hexagonal structure. If too high, multiple nodes merge into one position, and
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Fig. 12. Effect of different values of α

the nodes are inseperable. The shape of the force model, more fundamentally, the shape

of the potential function determines this incompleteness or inseparability. This is because

local minima prevent the nodes making hexagonal formation.

The number of nodes also have an effect on the system performance. In terms of

overall performance (time and hexagonality), the deployment of 200 nodes shows poorer

results compared to the deployment of 50 nodes. The former case takes more time to reach

balanced force status in which each node does not move any more. This case also shows

a worse hexagonal formation. Even though it is not shown in this dissertation, it can be

proved by showing average bearing angles for 3 nodes. In an ideal formation, the angle

should be π/3.

2. Hierarchial application for deployment

The application of hierarchial structure for node deployment is shown in fig. 13. Seven

groups are randomly and uniformly scattered in the 300m×300m environment (fig. 13(a)).

Within each group, 7 mobile nodes are uniformly and randomly distributed in a 5m×5m
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square. Each group forms a cluster and a node becomes a cluster head. Cluster heads are

active nodes influenced by the potential given in eqn. 4.1, and non-head nodes are passive

nodes governed by the potentials given in eqn. 4.2. With these potentials, a cluster makes

a hexagonal structure (fig. 13(b)).

A cluster head establishes a communication link with neighboring cluster heads, and

the clusters move as rigid bodies (virtual structures). Potential field based deployment

strategy enters the second stage, where only cluster heads are under the influence of the

potential (fig. 13(c)). Threshold distance (dth) is set as 2.5r2. When cluster heads form

the hexagonal structure, the third stage strategy is employed, and every node is influenced

by the potentials used in the first stage deployment. In this third stage, all the nodes are

passive nodes, which finally form the hexagonal structure as in (fig. 13(d)). Same values

are used for the parameters.

The general shape of the deployment in fig. 13(d) is better than the one in fig. 11(a).

This is because the nodes in fig. 13(d) are more uniformly distributed in the initial posi-

tion in fig. 13(b). This more uniform initial positions reduce the probability of the system

falling into a deadlock because of the local minima of the given potential.

Performance enhancement over the conventional incremental algorithm [28] is shown

in fig. 14. For the incremental algorithm, the sensor nodes are initially deployed in

10m×10m environment. For different number of nodes, simulations are repeated 20 times

and the mean values are plotted (fig. 14). For a particular number of nodes, same run

times (and hence same number of time steps) are used for both cases. In the incremental

case, uniformity deteriorates as the number of nodes are increased, while the hierarchal

algorithm provides almost constant uniformity.



36

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

X [m]

Y
 [m

]

(a) initial deployment

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

X [m]

Y
 [m

]

(b) cluster formation

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

X [m]

Y
 [m

]

(c) second force field

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150

200

X [m]

Y
 [m

]

(d) merging

Fig. 13. Deployment sequence



37

7 14 21 28 35 42 49
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of nodes

U
ni

fo
rm

ity

incremental algorithm
hierarchical algorithm

Fig. 14. Performance comparison between the incremental and hierarchical algorithms in
terms of uniformity



38

CHAPTER V

COVERAGE MAINTENANCE FOR TIME VARYING SYSTEM

Once we have completed the initial deployment, the next mission is to maintain the cover-

age without any failure. To this end, introduced in this chapter is a stochastic sensor model

which reflects the decay in sensor performance as the distance from the sensor increases.

Also considered is a time varying sensor model with a power alert system to have adaptive

network maintenance.

A. Coverage Maintenance

1. Stochastic sensor model

A binary disk type sensor model [29] assumes that the probability of detection within the

sensor range ri is one, and zero outside. However, in reality, sensor detection accuracy

deteriorates as the distance from the sensor increases. Therefore, it is necessary to employ

a more realistic sensor model to represent this degradation. The most widely used sensor

model is an exponentially decaying function according to the distance from the sensor. We

modify the stochastic sensor model proposed in [13, 30] and [31]. We start by denoting the

sensor detection range of ith sensor (si) as ri. For a sensor si at(xi,yi), we can find a point p

inside a circular sensing area Ai which is centered at si with radius ri. If we denote d(si, p)

as the Euclidean distance between si and p, then the probability of detection Pd of si at p

for a binary sensor model can be expressed as

Pd(p,si) =





1 if d(si, p) < ri

0 otherwise
(5.1)
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Fig. 15. Sensor models

For a stochastic sensor model, we can express Pd as

Pd(p,s j) =





0 if d(si, p)≥ ri

e−λµν
if re < d(si, p) < ri

1 if d(si, p)≤ re

, (5.2)

where µ = d(si, p)− re. re is the confidence level within which the detection probability

keeps its maximum value. For the stochastic sensor model, we define the sensing range of

a sensor as ri = re + µ. ri is the maximum physical sensor range. Variable µ is introduced so

that the decaying function for every node is the same when λ and ν are fixed. λ and ν are

parameters that determine the detection probability when a target is at a distance greater

than re but within the detection range ri from the sensor. Henceforth, we simply denote

Pd(p,si) by Pd(si). The maximum detection probability is set to 1 when d(si, p) < re and

minimum 0 when d(si, p) > ri. In some types of sensors, detection probability means the

reliability of information from sensors. Detection necessarily means the identification a

movement of an intruder in the network or monitoring an event. We consider a generalized

sensor model without particular attention to the reliability of the sensor data. Figure

15 shows these binary and stochastic sensor models characterized by equations 5.1 and 5.2.
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Now, we define Pd(si,s j) as the detection probability of being observed by two adjacent

sensors si and s j at a valid position p either within Ai or A j. As shown in figure 16, cumu-

lative probability at a position p is assumed to be some summation of probabilities at that

point. Because the detection is independent of one another, for a 2 node case, we can write

Pd(si,s j) = 1− (1−Pd(si))(1−Pd(s j)), (5.3)

where (1−Pd(si))(1−Pd(s j)) is the probability that neither si nor s j covers the position p.

For ‘n’ nodes, we can generalize the detection probability to

Pd(si,s j, ...,sn) = 1−
n

∏
i=0

(1−Pd(si)) (5.4)

Next, we define Pth as a threshold we want to enforce for proper detection. It means

minPd(si,s j)≥ Pth. (5.5)

To preserve this property, we need to redefine di j between si and s j. di j is determined so that

the detection probability at any point between si and s j is larger than Pth. Let us begin with

the 2 nodes case. The specific value of di j varies with the parameters defined in equation

5.2. This redefined di j is now the new distance which should be kept between two sensor

nodes si and s j force equilibrium. For simplicity, let us begin with the case that each node

has the same power level E. We assume that λ and ν stay constant all the time. To determine

di j, we have to get µ. The minimum detection probability appears at the point where Pd

values are the same for both sensors si and s j. It means that Pd(si) and Pds j are equal at a

point where Pd(si,s j) has its minimum value. This is because (1−Pd(si))(1−Pd(s j)) is a

maximum when Pd(si) equals to Pd(s j). (Note that we are considering a 1-D case, shown

in fig. 16(a).)
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At the position p, where cumulative probability has minimum value, we have

1− (1−Pd)(1−Pd) = Pth, (5.6)

where Pd = Pd(si) = Pd(s j). After some algebra, we have two possible values for Pd of

1±√1−Pth. As Pd is smaller than 1, Pd is now 1−√1−Pth. Let us denote this value as

the modified index of probability Pm (=1−√1−Pth). To calculate the sensing range of a

sensor (ri) corresponding to Pm, we have

e−λµν
= Pm (5.7)

After some calculations, we have

µν = −1
λ

lnPm (5.8)

µ = (−1
λ

lnPm)
1
ν (5.9)

Now, d(si, p) = d(s j, p) = ri = re + µ. Therefore, the desired distance between those two

nodes (di j) becomes,

di j = d(si, p)+d(s j, p) (5.10)

= 2re +2µ (5.11)

= 2re +2(−1
λ

lnPm)
1
ν (5.12)

By maintaining this desired distance, any point on the line of sight between si and s j has

more detection probability compared to the threshold value. It is important to note that

the purpose of this algorithm is not to maintain the threshold detection probability over

the entire coverage area. The distance derived from the above equations is for the line of

sight between two nodes. In figure 16(b), a minimum detection probability does not exist

on the triangular lines made by connecting 3 sensors. The position of minimum detection
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probability is not fixed and it depends on the locations of legitimate sensor nodes. Note that

we are considering a distributed sensor network system without global information. Two

neighboring sensors si and s j are supposed to exchange their sensing range and generate

di j between them. This di j is the distance to be kept by the artificial force.To be fully

autonomous, there cannot be a central unit to adjust sensing ranges between more than 3

sensors. And that is the main difficulty in getting the best distances for more than 3 sensors.

Overall performance of the network will be discussed in a later section.

2. Unequal sensor ranges

A homogeneous sensor model has been considered, where all the sensors have identical

detection probability within a specified sensing range. Due to hardware differences, how-

ever, sensor performance may not be same for every sensor. A different detection model

is considered for each sensor node, and the detection range is typically adjusted for each

sensor. In a binary sensor model, this individual performance modification can be done by

adjusting sensing range. For a stochastic sensor model, the model described in eqn. 5.2 is

modified, because sensing range is related to the detection probability. A model modifica-

tion is made by changing re for each sensor. In eqn. 5.2, it is assumed that re is constant,

which no longer is valid to represent different sensor performances for each sensor node.

Sensing range ri is described by re and µ. For the modified probability Pm, µ is always the

same, and it reduces the complexity of the performance representation. By changing re for

each node, the overall detection probability shape can be modified. Now, di j is no longer

a constant between two sensors. Such a scenario is shown in fig. 17. For the 3 sensor

positions si, s j, and sk, we now have different sensor detecting ranges ri, r j, and rk. As

discussed in the previous subsection, we assume that the probability distribution has the

same value of λ and ν for each sensor node, and µ. Let us define re(si) as the confidence
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level of sensor si. Then the sensor model becomes

Pd(si) =





0 if d(si, p)≥ ri

e−λµν
if re(si) < d(si, p) < ri

1 if d(si, p)≤ re(si)

, (5.13)

The main difference in this nonhomogeneous case is that each sensor now has a different

value of re. As Pd(si) = Pd(s j) at p, where Pd(si,s j) is minimum, we have

e−λµν
1 = e−λµν

2 =
1
2

Pm (5.14)

Therefore,

µ1 = µ2 = (−1
λ

lnPm)
1
ν (5.15)

Now, the distance (di j) between those two nodes becomes,

di j = d(si, p)+d(s j, p) (5.16)

= re(si)+ re(s j)+µ1 +µ2 (5.17)

= re(si)+ re(s j)+2(−1
λ

lnPm)
1
ν (5.18)

(5.19)
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It should be noted that a node now has different distances to its neighboring nodes. Figure
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Fig. 18. 4 sensor nodes with 2 different ranges

18 shows an example of 4 nodes, where r1, r2 are 25m, and r3, r4 are 15m.

3. Time varying system

Let us define Ei(t) as the current energy level of a sensor node at time t. Then, re is

expressed as a function of Ei(t), i.e., re(Ei(t)). This is to incorporate various power models

into the sensor model. Each ri and r j is calculated by determining P(ri) = P(r j) = Pd . And

di j is

di j = re(Ei)+ re(E j)+2(−1
λ

lnPth)
1
ν (5.20)

The variation of the sensor model due to the change of re is shown in fig. 19, where

the energy level is directly reflected in re. A smaller re means a more dissipated energy

level of a mobile node. As re gets smaller, overall sensor detection probability shifts to the

left. Therefore, to keep the detection probability Pm constant with neighboring nodes, the

distance di j needs to be decreased in line with the energy level.
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B. Simulation Results
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Fig. 20. Mobile sensor unit with power alert

Figure 20 shows a schematic of a mobile sensor unit composed of energy supply and

energy consuming units. Central computing unit, sensors, mobile base and communication

units are all energy consuming units which are powered by the energy supply unit (bat-

tery). The status of the battery is monitored by a power alert unit. The control unit receives

signals from the power alert unit and determines the proper energy level E(t), and selects
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re(t). Figure 21 shows the deployment of the homogeneous sensor nodes. Initially, 30 mo-

bile nodes are randomly and uniformly distributed in a 10m by 10m environment (figure

21(a)). Each sensor has the same sensing range (radius of the circle surrounding a node in

the figures). The range is the distance with which detection probability can be maintained

at a given threshold value (Pm), which is set at 0.7 in this simulation. In the initial deploy-

ment, the sensors are assumed to be identical and r is set to 25m. Sensors are deployed

with an artificial force model and the deployment is completed in 200 time steps (1 time

step =10 seconds, figure 21(b)).

Figure 22 shows the sensing range, which decays randomly with the power model

which decays randomly as well. As time passes, power levels begin to diminish and sens-

ing range for each node gets smaller with regard to its power model. Those performance

deteriorations are shown in fig. 23 and fig. 24. For both figures, the same sensing range

degradation shown in fig. 22 is applied to the individual sensors. Simulation results here

are for the same initial positions and sensing ranges as those in fig. 21(b). Stages 1 and 2

are at the 100th and 150th time steps. We can see that the distance di j between si and s j is

time invariant in fig. 23, while di j becomes smaller with time in fig. 24.

Figure 25 compares the performance of two algorithms (time invariant and time

variant models). The fraction in the figure indicates how much area in the field of interest

is observed with a higher detection probability compared to the given threshold Pm. To

be consistent in evaluating performances, a new sensing area is defined at each time step.

Minimum bounding circle, which contains all the sensor nodes with minimum radius, is

chosen as the reference region and fig. 25 shows the fraction of the covered area with

respect to the reference region. As time passes, the time invariant scheme shows gradual

deterioration of the fraction of the covered area while the time varying algorithm maintains

its initial coverage fraction.
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Fig. 21. Initial deployment of the mobile nodes
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CHAPTER VI

HARDWARE DEVELOPMENT

We have developed an autonomous mobile robot system to implement our algorithms. The

robot is a 2-wheel, differential drive, intelligent robot, containing all of the basic compo-

nents for autonomous sensing and navigation in a real-world environment. The devices

include battery, drive motors, encoders and these devices are controlled via an onboard

microcontroller.

Fig. 26. Mobile robot base: Rex-12 from Zagros Robotics

A. Mobile Base

The mobile base is a Rex-12 manufactured by Zagros Robotics (fig. 26). The base has 30

cm diameter round plastic deck on which various sensor suits can be mounted. It has two

15 cm diameter rubber wheels with two 7.5 cm castor wheels. This symmetric design of

the drive wheels and castor wheels allows an in-place rotation as well as stable movement

and high maneuverability. The drive wheels are differentially driven by reversible 12VDC
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Fig. 27. System diagram for a mobile robot with power and information flows

motors. Each drive motor has a 500 pulse/rev HEDS 5500 optical quadrature shaft encoder

which enables precise positioning, speed sensing and advanced dead-reckoning.

B. Mobile Robot Control System

System architecture of the control system is shown in fig. 27 and its major components

are described in table I. All components are powered by a single 12V 2.2AH lead-acid

rechargeable battery. Voltage regulator is to provide a regulated output voltage to the com-

ponents. In this system, the regulator converts 12V to TTL/CMOS level 5V. The system

consists of two major parts: motor control part and communication part.

C. Communication Part

1. Wireless module

Wireless communication unit is composed of two parts: MCB3100 which is a serial blue-

tooth wireless module, and MCR3210P which is a RS232 Interface board. Major speci-

fications of MCB3100 is shown in table II, and its pin descriptions are illustrated in table
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Table I. Components of a mobile robot for communication and motor control

Unit Name Manufacturer Component

CPU Microchip PIC 16F877

Motor Driver Zagros Robotics MC TI SN754410

Encoder Agilent HEDS5500

Decoder Agilent HCTL-2020

Voltage Regulator STMicroelectronics L7805

Driver/Receiver Texas Instrument MAX232

Modem Dr Robot MCB3100

Table II. Communication unit (MCB3100) specifications

Specification

protocol Bluetooth (class 2)

range 15m indoor, 45m outdoor

data rate 921.6/460.8/115.2 kbps

voltage consumption 3.3V

III. The MCR3210 module is a hardware matching interface compatible with standard

RS232 electrical specifications. MCR3210 is capable of transmitting and receiving up to

1 M bits/sec with RTS/CTS handshaking. The physical connections between modules are

shown in fig. 28. Hardware flow control (RTS/CTS) is used.

2. Voltage coverter

RS-232 port uses TIA/EIA-232-F voltage level while a microcontroller uses TTL level

voltage. Max 232 is used to covert those different voltage levels. Max 232 has dual

driver/receiver lines. Each driver converts the voltage level of a signal from a microcon-
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Table III. Pin connection of MCB3100

Pin number Name Function

1 VCC PIC 16F877

2 TXD Data transmitting

3 RXD Data receiving

4 CTS Clear to send

5 RTS Request to send

6 GND Power supply ground

7 COMRST Reserved

8 BTIN Reserved

troller (TTL level) to the wireless modem (TIA/EIA-232-F level), while each receiver con-

verts TIA/EIA level to TTL level. Typical pin connections of MAX 232 are shown in fig.

29.

D. Motor Control Part

1. Controller

Regulation and tracking of the given control input is implemented through a PD controller.

The control inputs (ul,ur) to the mobile robots are the linear wheel velocities, and are given

Host
 MCR
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data stream


Fig. 28. Physical connection between the modules
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Fig. 29. Max232 pin connections

as

ul = Kpel +Kd ėl

ur = Kper +Kd ėr

where Kp and Kd are proportional and derivative gains, respectively. e denotes error at the

time step, and ė is its rate of change.

2. Interrupt

The frequency of the updating control law is determined by a interrupt routine provided by

the micro controller. PIC16F877 has 14 interrupt sources, and timer based interrupts are

used in this research. On PIC16F877, Timer 0 is an 8 bit timer/counter while Timer 1 and

Timer 2 are 16 bit timer/counter. Timer 1 is used for the interrupt and timer 2 is reserved

for PWM. Timer 1 register pair increments from 0x0000 to 0xffff and rolls over to 0x0000.

The Timer 1 interrupt occurs on overflow.



58

Timer can be set to an arbitrary value using setup timer 1 (clock source|prescaler).

The oscillator (crystal) source is either internal or external, and the prescaler determines the

timer’s resolution. Whatever the master oscillator frequency (Fosc) is, the internal (system)

clock is always the oscillator frequency divided by 4. Therefore, the duration of one count

(an overflow to next one) is given by

duration(sec.) = (number o f ticks)∗4∗ prescaler/Fosc

where the number of ticks in the timer 1 is 216 as it is a 16 bit timer. We can modify the

frequency of the interrupt using set timer1(value), where the timer begins at the value,

and overflow occurs when it reaches 0xffff.

3. Motor speed control

Pulse Width Modulation (PWM) technique is used to control the motor speed. PWM reg-

ulates the output voltage by modulating its duty cycle, and the wheel speed is proportional

to the output voltage. By switching voltage to the motor with the appropriate duty cycle,

the output of PWM will approximate a voltage level at the desired velocity.

PIC16F877 microprocessor has 10-bit resolution PWM mode. Then the duty cycle

(the amount of time the PWM signal is high) during each period is determined with a given

10 bit value as

ratio = value∗ (1/clock)∗ t2div (6.1)

where clock is oscillator frequency and t2div is the timer 2 prescaler.

4. Mapping artificial force to a real robot

The dynamic system driven by the artificial potential is based on virtual interactions be-

tween the nodes. It means that the forces on the nodes are imaginary. This virtual force
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will be mapped onto a real dynamic system composed of the real nodes. The mapping from

virtual to real system is achieved by defining control laws which convert a virtual force to

a velocity command.

Let us define u be a feedback control of the form

u =−∇V (r),

where r is the distance between the nodes. A discretized model is employed to implement

control inputs to the system. Control inputs to a mobile base are velocities for wheels in

case of wheeled vehicles. The change in velocity commands are approximated from the

above equation as

∆ẋ = (u−bẋ)/m ·∆t,

where ∆t is a sampling time. Then, a velocity command is given by ẋ(ti+1) = ẋ(ti)+ ∆ẋ,

where ti+1 = ti +∆t. Note again, that ∆ẋ and ẋ are bounded by physical system constraints.

The maximum values are restricted to |ẋ| ≤ vmax for the velocity, and |∆ẋ| ≤ amax for

acceleration.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Summary and Conclusions

We presented strategies for potential field based mobile sensor network deployment and

maintenance. Potential field based artificial force algorithms provide a simple and efficient

method to deploy large a number of sensors because the force is used as the control input

for each node without any sophisticated control algorithms. Three key ideas that were dealt

within this research are

• forming a hexagonal structure with artificial forces generated from potential fields

• developing a hierarchical structure for area coverage

• maintaining coverage using heterogeneous sensor model

With respect to coverage area, an hexagonal formation was shown to be the optimal

placement when the same sensor model is used for all nodes. It also provides better unifor-

mity that improves the system performance including load balancing and system life time.

A force law inspired by gravitational force was employed to form such a hexagonal struc-

ture. Due to the nature of the proposed force law, the stability of the system was analyzed

with discontinuous dynamics. A Lyapunov function which combines kinetic energy and

potential energy was constructed and a nonsmooth version of Lyapunov stability theory

and LaSalle’s invariance principle were used to prove stability.

The main contribution of this proof is to expand the mutual relation between the force

which is required to have a certain formation and the potential function which is used for

the stability analysis. This is because the force is derived by taking the derivative of the

potential. In other words, different formations can be achieved with different force laws.
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The line integral which becomes the potential function is then taken to analyze the stability

of the system. This procedure is the inverse of the conventional potential field methods,

which first build potential functions and then use the derivative of the potential as a control

input. Based on the proof given in this research, a stable system with a desired formation

can be achieved.

Also developed was a deployment algorithm using a two layered hierarchical struc-

ture with upper and lower layers. A group of nodes formed a cluster which comprised of a

head node and several member nodes. In forming such a cluster, the concept of active and

passive nodes was introduced. An active node is influenced only by its neighboring active

nodes, while a passive node is affected by both neighboring active nodes and passive nodes.

Cluster heads are active nodes and member nodes are passive nodes. Upper layer of the hi-

erarchical structure consists of active nodes and lower layer is composed of passive nodes.

First, a cluster forms a hexagonal structure with given active and passive nodes concepts.

Then active nodes establish communication links with neighboring active nodes, and they

form a hexagonal structure at the upper level. While active nodes are moving to make such

a hexagonal structure, a cluster takes rigid body motion in which passive nodes maintain

the same distances and bearing angles with respect to an active node. Finally, after active

nodes complete the formation, the hierarchical structure turns into a flat structure in which

all nodes become identical.

The benefit of this scheme was shown in terms of uniformity. In the conventional

incremental case, where nodes are initially placed in a small area and spread out using al-

gorithms, the uniformity deteriorates as the number of nodes are increased. The hierarchal

algorithm, meanwhile, was shown to be of almost constant uniformity. This improvement

can be considered in two directions: one is to minimize the chances of being trapped in

local minima, and the other is to reduce power consumption of the whole system. It had

been shown that the system performance of the incremental algorithm is dependent on the



62

force model. As discussed in the beginning of this dissertation, potential based control laws

induce the system to have locally minimized potential energy. Even though the force law

was proposed to have a hexagonal structure, it had to be adjusted with the given number of

nodes. In other words, global minimum is correlated with the value of α in the force law

Fi j = α/rβ
i j. The hierarchical structure reduces this troublesome tuning task by scattering

the sensors in the wider area. The other virtue of the hierarchical structure in reducing to-

tal energy consumption is straightforward as it guarantees more balanced task distribution,

and minimizes the communication load for each mobile node. Regardless of the initial de-

ployment, a hierarchical structure was shown to be more efficient than a non-hierarchical

structure.

Presented last was an autonomous maintenance algorithm for a mobile sensor net-

work. To implement a more realistic sensor model, a stochastic sensor model was proposed

to keep the desired detection reliability over the environment. The model reflects the de-

cline of the sensor accuracy as the distance increases from the sensor. In addition, a time

varying model was applied to represent sensor performance deterioration due to power de-

cay. The power supplied by batteries is checked with a power alert system, and the power

level is reflected so that the network maintains a desired detection reliability level. The

scheme was compared with a time invariant sensor model, and the performance superiority

to the time invariant model was shown by comparing the fraction covered by the network.

The main advantage of applying the described heterogeneous sensor model is to ex-

pand the potential field method not only for a regularized formation (ex. hexagonal struc-

ture) but also for a irregular arrangement of sensor nodes to achieve a certain criterion.

In this research, the objective was to maintain the desired coverage performance. Various

scenarios can be applied without changing the frame work of this research.
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B. Directions for Future Research

The deployment and coverage algorithms developed in this research used a potential field

approach to achieve a desired performance. In connection with the natural drawbacks of

the potential field approach, several directions for future research are outlined below.

The main weakness of the potential based schemes is that global optimization cannot

be achieved. This is a fundamental weakness of the potential field based method, because

only local interactions between the nodes are considered. Another major drawback of the

scheme is the existence of local minima. In some cases, a local minimum induces an

imperfect formation which reduces the uniformity if the objective is to achieve a hexagonal

structure. These global optimization and local minima problems can be approached with

the proposed hierarchical structure. Clusters are aggregated so that the overall shape of the

network tends to be convex. The effect of the cluster size also needs to be determined.

Local minima can also cause collision among the mobile nodes if multiple nodes are

lumped at a local minimum point. This phenomenon can be avoided if a potential function

is taken so that the value around the node goes to infinity. However, as explained in this

dissertation, such an approach is impractical because the force exerted on the neighboring

node would be infinite as well, which is physically impossible due to the restrictions on

the hardware. A low level controller which avoids collision with an emergency handler

can be introduced and returns back to the original algorithm after avoiding the collision.

Algorithms using computational geometry can be combined with a potential field method

as long as it does not impair the distributed nature of the potential field based schemes.

However, computational complexity has to be considered in this case.

Possible future directions include the development of power consumption models of

the network and more sophisticated sensor models that incorporate sensor noise. Developed

in this dissertation is an algorithm to maintain the coverage of the network. To predict the
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system performance more precisely, a more detailed power consumption model is required.

To be robust in the environment, sensor noise issues also need to be reflected in the system

model.
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