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Abstract
We consider the problem of coverage in Robotic Networks: developing an efficient algo-
rithm which is able to perform a deployment in static-obstacle-structured environments
is our main idea. We are interested on the trade-off between local communication and
optimal coverage, therefore we are going to present an algorithm based on article: “Sen-
sor Coverage Robot Swarms Using Local Sensing without Metric Information” (2015),
using its same scenario types. The particular aim and tasks we chose are 1. the max-
imization of local communication: we reformulated the algorithm in order to remove
the assumption of a centralized server which collects local information from individual
robots and performing the distributed approach as far as possible; 2. the definition of
an expansion policy when we have multiple source of robot swarms; 3. the insertion
of the possibility to detect small non-convex features in the environment which usually
result “blind-spots” for some obstacles, assuming a space structure model for robots
(e.g. giving them a round shape) in order to define the limitation of smallest non-convex
coverable features; 4. the possibility of event detection and focusing by sending a group
of robots.
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1
Preliminaries

Sensor coverage of indoor environments using teams of mobile robots is a well-studied
problem in robotics. In this framework, we will focus on unknown complex indoor en-
vironments that are typically hard to cover because there are no a priori information
about the space structure and there is not an optimal strategy to reach the complete
coverage.
We would like to perform the task using the lowest number of agents and cheap mobile
robots. In particular the aim of the thesis is to develop an efficient algorithm to de-
ploy mobile a sensor network, which consists of a collection of sensing devices that can
coordinate their actions through wireless communication and aim at performing tasks
such as event detection, reconnaissance, surveillance, target tracking, monitoring over a
specific region or exploration of environments that are hazardous to human operators.
The advantages of this type of applications are the possibility of visiting and monitoring
every point of the given space in a automatic and distributed way, the robustness to
failures of single robots, the ability of the agents to adapt their disposition and dynam-
ics considering the obstacles in the environment, the reliability of a connected sensor
network and the maximization of the sensing information utilizing the lowest amount of
available local resources.

1.1 Problem description

We consider the problem of efficiently exploring an unknown indoor environment with
a rapidly expanding swarm of robots with limited and noisy local sensing with no
global localization or sensing capabilities (see Fig. 1.1). In particular, the only sensory
capabilities that we assume on each robot are those of an omni-directional camera with
a limited radial range of vision and a touch sensor to detect contact/collision with ob-
stacles and other robots. We call the disk around a robot, representing a sensing radius
of the omni-directional camera, the robot’s disk of visibility, within which the bearing to
the neighbouring robots and their identities can be detected. However, the camera does
not provide a range measurement due to projection of the 3D world on to the camera
plane. Thus, obstacles are detected through touch sensors near the base of the robots,
and cannot be detected using the camera. The robots can also communicate with each
other and can be driven in arbitrary direction.

The particular aim and tasks we chose are

1. the maximization of local communication: we reformulated the algorithm in [2]
in order to remove the assumption of a centralized server that collects local infor-
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mation from individual robots and performing the distributed approach as far as
possible;

2. the definition of an expansion policy when we have multiple source of robot swarms;

3. the insertion of the possibility to detect small non-convex features in the envi-
ronment which usually result “blind-spots” for some obstacles, assuming a space
structure model for robots (e.g. giving them a round shape) in order to define the
limitation of smallest non-convex coverable features;

4. the possibility of event detection and monitoring by sending a group of robots, as
shown in the example in Fig. 1.2.

Figure 1.1.: Illustration of a swarm of robots entering an environment and attaining coverage.
The hole shown on the right figure is something we would like to avoid.

Figure 1.2.: Illustration of monitoring during a blaze (a possible example of event): the closest
robots start to surround the fire in order to delimit its perimeter. Then, a fireman,
helped by a previously attained coverage, can choose the quickest and safest way
to extinguish the flames.
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In this chapter, we continue the introduction providing an overview that touches upon
different topics concerning engineering control systems, the current state of art for the
problem we have already described, our new contributions and, finally, the outline of the
reminder of the thesis.

2.1 Overview

In the recent decades researchers focused their attentions in engineering systems com-
posed by a large number of devices that can communicate and cooperate to achieve a
common goal. Although complex large-scale monitoring and control systems are not
new, as for example air traffic control or smart grids applications, a new architectural
model is emerging, mainly thanks to the adoption of smart agents i. e. devices that are
capable of cooperating and of taking autonomous decisions without any supervisory sys-
tem. In fact, traditional large-scale systems have a centralized or at best a hierarchical
architecture, as in [3], which has the advantage to be relatively easy to be designed and
has safety guarantees. However, these systems require reliable sensors and actuators and
in generally are very expensive. Another relevant limitation related with centralized sys-
tems is that they do not scale well, due to communication and computation limitations.
The recent trend, in order to avoid these problems, is to substitute costly sensors, actua-
tors and communication systems with a larger number of devices that can autonomously
compensate potential failures and computation limitations through communication and
cooperation. Moreover, it is preferable to use a decentralized approach in order to offer
more robustness and efficiency in terms of energy cunsumption.

2.1.1 Coverage Control

Deploying multiple agents to perform tasks is advantageous compared to the single agent
case: it provides robustness to agent failure and allows to handle more complex tasks.
The single, heavily equipped vehicle may require considerable power to operate its sensor
payload, it lacks robustness to vehicle failure and it cannot adapt its configuration to
environmental changes. A cooperative network of sensors and vehicles equipped with
sensor, has the potential to perform efficiently and reliably tasks in a more flexible and
scalable way than single better-equipped agents. Therefore, distributed control can be
employed by groups of robots to carry out tasks such as environmental monitoring, au-
tomatic surveillance of rooms, buildings or towns, search and rescue as shown in the
applications presented by [4].
The performance of multi-robot and sensor network in distributed area exploration is
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sensitive to the location of agents in the mission space. In particular, sensors must be
deployed so as to maximize the information extracted from the mission space. The goal
is therefore to drive the sensors/ agents to the position such that a given region is opti-
mally covered by sensors. This causes the network to spread out over the environment
while aggregating in areas of high sensory interest, see Fig. 2.1. Furthermore, robots do
not know beforehand where areas of major interest are located: the network is required
to learn this information online from sensors measurements.
The problem of optimizing sensor locations in fixed sensor networks has been extensively
studied in the past, and are still open. In such problems, the solution is a Voronoi par-
tition, shown in [5], where the optimal sensor domain is a Voronoi cell in the partition
and the optimal sensor location is a centroid of a Voronoi cell in the partition.
In this work, we consider a mobile sensing network composed of vehicles which are
dynamic agents, equipped with sensors to sample the environment; the problem of de-
ploying agents is referred to as the Coverage control problem. Moreover, the robots we
use are not provided by a localization systems, indeed they exploit only bearing angles
measurements.

Figure 2.1.: Coverage Control: the network spread out over the environment, while aggregating
in areas of high sensory interest.

2.1.2 Event detection

According to [6], event detection in wireless sensor networks is a sophisticated method
for processing sampled data directly on the sensor nodes, thereby reducing the need for
multihop communication with the base station of the network. In contrast to application-
agnostic compression or aggregation techniques, event detection pushes application-level
knowledge into the network. In-network event detection – especially the distributed form
involving multiple sensor nodes – has thus an exceptional potential to increase energy
efficiency, thus prolonging the lifetime of the network.
The most basic approach is local event detection. In this approach, each node gathers
data from its local sensors and employs local algorithms to decide whether a specific
event has occurred. Data of neighbouring nodes is not taken into account, and all signal
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processing is performed on the local node itself. If an event is detected, each node or a
cluster of nodes signals the results directly to the base station of the sensor network as
shown in Fig. 2.2.

Figure 2.2.: The three green nodes form a cluster that signals the presence of a detected event
(yellow area); furthermore, the cluster communicates with some of its neighbouring
nodes to exchange information.

2.1.3 Dispatch of robotic agents

Given a set of events and a set of robots, the dispatch problem is to allocate one robot
for each event to visit it. In a single round, each robot may be allowed to visit only one
event (matching dispatch), or several events in a sequence (sequence dispatch problem).
The distributed version of the problem is embedded into a sensor network field, where
each event is discovered by a sensor and reported to a robot. Existing centralized and
distributed solution based on stable marriage problem suffers from the presence of long
robot paths. The other existing solution, based on k-means clustering and traveling
salesman tour, suffers from the design goal of allocating the same number of events to
each robot. Anyway, one of the most use approach is shown in Fig. 2.3: a previous
coverage of the are is followed by the dispatch operations, i.e. sending robots.

Figure 2.3.: Approached used in [1] is very common nowadays: before a network of agents is
deployed (left picture); then, dispatch algorithms start to run (right picture) in
order to design trajectories for sending robots.

In particular, as shown in the approach of [7], robot models follow dynamics of physical
vehicles (e.g. front-wheeled cars) that need a path planning algorithm to be sent.
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2.2 State of art

Old coverage applications are based on centralized localization for each robot (e.g. GPS)
in order to accomplish Voronoi partition of the environment and the minimization of a
coverage functional as shown in [5]. However, such approaches need a priori information
about the environment where the robots would have deployed. Lately complete sensor
coverage of indoor environments using swarms of robots have been studied modelling the
known sensor network as a graph, robots are assumed to have global localization and
can navigate independently from one location to another in a global coordinate frame.
In all of these lines of research, global localization of the robots, a priori knowledge of
the environment (obstacle configuration), availability of metric information and ability
to control the robots from one point in the environment to another have been assumed.
This approach and its results can be found in [8].
First distributed versions of coverage algorithms for robot swarms come with very limited
theoretical guarantee because coverage purely based on graph theory does not ensure
sensor coverage nor optimality; furthermore, these kind of approaches inherently assume
availability of some metric information.
In recent years coverage by sensor network is studied more formally using simplicial com-
plex theory described in [9], [10] and [11] and homological tools from algebraic topology.
Such approaches are completely topological and require little to no metric information,
as solution proposed in [12]. In general, homology computation is extremely useful in
detecting holes in sensor network coverage.
Closely related to our work is the literature of exploration of unknown environment
using simplicial complex without global localization. Those similar studies about the
maximization of coverage area with a limited number of robots equipped with restricted
local sensors are discussed in [13] where the authors assume some metric information
and the coverage task boils down to a Maximum Area Triangulation Problem (MATP),
that is the maximal sets of non-overlapping triangles with vertices in the given points
whose union is the convex hull of the point set.
The latest research from which our work draws inspiration is [2]: this article offers new
prospectives and improves the previous studies using a different approach based on three
aspects. Firstly their method is robust to robot failure and can start from an arbitrary
configuration of the robots, since the computations at every iteration are purely based
on the current state only. Secondly their approach of pushing the robots through the
graph in order to expand the frontier to the unknown regions, instead of navigate a
robot from the source to the frontier, has a lower execution time at each cycle, and does
not require any restriction on the minimum distance between two neighbouring robots.
Lastly, their proposed algorithm does not require the workspace to be simply-connected
as they demonstrate through experimental results in complex indoor environment.
The authors use simplicial complex representation (Vietoris-Rips complex, see [14]) to
solve the problem of deploying robots in an unknown environment without global lo-
calization. Since their approach is fundamentally topological, the proposed method is
highly robust to sensor noise. Assuming sufficient numbers of available robots they
attain complete sensor coverage of the entire finite environment.
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2.3 Contributions

Starting from the good aspects described in [2] the main focus of the thesis is on the
following topics.

• A completely distributed approach that requires local communication only:
each robot needs to share with its neighbours just the information about measured
bearing angles and neighbourhoods. In particular when we search useless robots
instead of computing cycles in the whole graph we just compute angles between
neighbours. This makes more efficient and completely distributed the computation
of redundant robots which implies a faster distributed execution.

• A realistic physical model for the robots that have been assumed as circular
homogeneous shapes. This fact leads us to take into account collisions between
robots and between a robot and environment; hence we developed a model for
robot-environment interactions.

• Since robots have been provided by a model, we even adopt an overlapping
avoidance protocol between each agent which permits to well attain deployments
without position overlapping.

• We define an expansion protocol when robots invading the environment are gen-
erated from different sources. In particular we analyse the difference between
the situation in which the sources can or cannot share information (i.e. there is or
there is not a graph connection between them) and the opposite circumstance.

• A robot that is not involved in the coverage expansion, since it is located far
from the extending frontier, does not need to be taken into account during the
deployment process of new agents. Thanks to this observation, we introduced a
forgetting factor methodology. For this kind of robots, sharing information is
not necessary: this allows to save energy in a real scenario and make more efficient
our algorithm.

• When coverage is finally attained, we guarantee the possibility of focusing on
an event. This consists in: detect the presence of the event, localize the robots
around it and, in conclusion, perform a dispatch, i.e. to send agents close to the
event with a feedback control law.

2.4 Outline of the work

The remainder of the thesis is organized as follows.

• Chapter 3 presents the Graph Theory explained in [15] we need to use for describing
connections between robots: graphs are the basis for representing robotic networks
because they allow to schematize agents as nodes and links as edges;

• Chapter 4 shows two important topological tools to perform Coverage: the classical
Voronoi’s tessellations attained using the well-known Lloyd’s algorithm (see [5])
and the latest approach of Vietoris-Rips Complex Theory (see [14] and [16]);
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• Chapter 5 deals with theoretical coverage bounds we found for rectangular scenar-
ios, base stations, providing some useful estimations for understanding the best
ways to deploy robots in this framework;

• Chapter 6 copes with some concepts taken from [17] about the controllability for
nonlinear systems we need to examine in order to model agents as front-wheeled
cars, in particular the Manifold Theory and the Lie Brackets will be exploited;

• in Chapter 7 all models employed in this work are presented: scenarios, robots,
robotic networks, environment interactions, the front-wheeled car model and the
events;

• Chapter 8 describes how the coverage and event detection algorithm works and
shows several ad hoc simulations in order to explain to the reader what are the
basic goals we reached;

• Chapter 9 shows different kind of simulations in complex structure scenarios;

• Chapter 10 illustrates simulations showing the part regarding event detection and
dispatch;

• Chapter 11 concludes the thesis and describes directions for future works.
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3
Graph theory

A graph is a way of representing relationships that exist between pairs of objects (see
[15]). That is, a graph is a set of objects, called vertices, together with a collection
of pairwise connections between them. Graphs have applications in a host of different
domains, including mapping, transportation, electrical engineering and robotic networks.
The latter application will be the main topic studied in the next chapter.

3.1 Definitions

Viewed abstractly, a graph G is simply a set V of vertices and a collection E of pairs
of vertices from V, called edges. Thus, a graph is a way of representing connections
or relationships between pairs of objects from some set V. Incidentally, some books use
different terminology for graphs and refer to what we call vertices as nodes and what we
call edges as arcs. We use the terms “vertices” and “edges”.
The set Nu = {vi|(u, vi) ∈ E , i = 1, 2, 3, ...} is called neighborhood of u. This gathers
all vertices which are connected to u by a single edge.
A weighted graph is a graph that has a numeric (for example, integer) label w(e)
associated with each edge e, called the weight of the edge e.
Edges in a graph are either directed or undirected. An edge (u, v) is said to be directed
from u to v if the pair (u, v) is ordered, with u preceding v. An edge (u, v) is said to be
undirected if the pair (u, v) is not ordered. Undirected edges are sometimes denoted
with set notation, as u, v but for simplicity we use the pair notation (u, v), noting that
in the undirected case (u, v) is the same as (u, v).
If all edges in a graph are undirected, then we say the graph is an undirected graph.
Likewise, a directed graph, also called digraph, is a graph whose edges are all directed.
A graph that has both directed and undirected edges is often called a mixed graph.
Note that an undirected or mixed graph can be converted into a directed graph by
replacing every undirected edge (u, v) by the pair of directed edges (e, v) and (v, u). It
is often useful, however, to keep undirected and mixed graphs represented as they are,
for such graphs have several applications.
The two vertices joined by an edge are called the end vertices (or endpoints) of
the edge. If an edge is directed, its first endpoint is its origin and the other is the
destination of the edge. Two vertices u and v are said to be adjacent if there is an
edge whose end vertices are u and v. An edge is said to be incident on a vertex if the
vertex is one of the edge’s endpoints. The outgoing edges of a vertex are the directed
edges whose origin is that vertex. The incoming edges of a vertex are the directed
edges whose destination is that vertex. The degree of a vertex v, denoted deg(v), is
the number of incident edges of v. The in-degree and out-degree of a vertex v are
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the number of the incoming and outgoing edges of v, and are denoted indeg(v) and
outdeg(v), respectively.
The definition of a graph refers to the group of edges as a collection, not a set, thus
allowing for two undirected edges to have the same end vertices, and for two directed
edges to have the same origin and the same destination. Such edges are called parallel
edges or multiple edges. Parallel edges can be in a flight network, in which case
multiple edges between the same pair of vertices could indicate different flights operating
on the same route at different times of the day. Another special type of edge is one that
connects a vertex to itself. Namely, we say that an edge (undirected or directed) is a
self-loop if its two endpoints coincide. A self-loop may occur in a graph associated with
a city map, where it would correspond to a "circle" (a curving street that returns to its
starting point).
A path is a sequence of alternating vertices and edges that starts at a vertex and ends
at a vertex such that each edge is incident to its predecessor and successor vertex. A
cycle is a path with at least one edge that has its start and end vertices the same. We
say that a path is simple if each vertex in the path is distinct, and we say that a cycle
is simple if each vertex in the cycle is distinct, except for the first and last one. A
directed path is a path such that all edges are directed and are traversed along their
direction. A directed cycle is similarly defined.
A graph is said connected if for each (u, v) ∈ E there exists a path which connects u to
v. A forest is a graph without cycles. A tree is a connected forest. A spanning tree
is a tree which covers all the vertices of a graph.

3.2 Shortest path problem

Let G be a weighted graph. The length (or weight) of a path P is the sum of the weights
of the edges of P . That is, if P = ((v0, v1), (v1, v2), ..., (vk−1, vk)), then the length of P ,
denoted w(P ), is defined as

w(P ) =
k−1∑
i=0

w((vi, vi+1)) (3.1)

The distance from a vertex v to a vertex u in G, denoted d(u, v), is the length of a
minimum length path (also called shortest path) from v to u, if such a path exists.
People often use the convention that d(v, u) = +∞ if there is no path at all from v to
u in G. Even if there is a path from v to u in G, the distance from v to u may not be
defined, however, if there is a cycle in G whose total weight is negative.
There is an interesting approach for solving this single-source problem based on the
greedy method design pattern. Recall that in this pattern we solve the problem at
hand by repeatedly selecting the best choice from among those available in each iteration.
This paradigm can often be used in situations where we are trying to optimize some cost
function over a collection of objects. We can add objects to our collection, one at a
time, always picking the next one that optimizes the function from among those yet to
be chosen.
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3.2.1 Dijkstra’s algorithm

The main idea in applying the greedy method pattern to the single-source shortest-path
problem is to perform a weighted breadth-first search starting at v. In particular, we
can use the greedy method to develop an algorithm that iteratively grows a “cloud” of
vertices out of v, with the vertices entering the cloud in order of their distances from v.
Thus, in each iteration, the next vertex chosen is the vertex outside the cloud that is
closest to v. The algorithm terminates when no more vertices are outside the cloud, at
which point we have a shortest path from v to every other vertex of G. This approach
is a simple, but nevertheless powerful, example of the greedy method design pattern.
Applying the greedy method to the single-source, shortest-path problem, results in an
algorithm known as Dijkstra’s algorithm. When applied to other graph problems,
however, the greedy method may not necessarily find the best solution. Nevertheless,
there are a number of situations in which the greedy method allows us to compute the
best solution. In the next section, we discuss one of this situations: computing shortest
paths.
In order to simplify the description of Dijkstra’s algorithm, we assume, in the following,
that the input graph G is undirected (that is, all its edges are undirected) and simple
(that is, it has no self-loops and no parallel edges). Hence, we denote the edges of G as
unordered vertex pairs (u, z).
In Dijkstra’s algorithm for finding shortest paths, the cost function we are trying to
optimize in our application of the greedy method is also the function that we are trying
to compute the shortest path distance, see (3.1). This may at first seem like circular
reasoning until we realize that we can actually implement this approach by using a
bootstrapping trick, consisting of using an approximation to the distance function we
are trying to compute, which in the end will be equal to the true distance.

3.2.2 Edge relaxation strategy

Let us define a label D[u] for each vertex u in V, which we use to approximate the
distance in G from v to u. The meaning of these labels is that D[u] will always store
the length of the best path we have found so far from v to u. Initially, D[v] = 0 and
D[u] = +∞ for each u 6= v, and we define the set C, which is our cloud of vertices, to
initially be the empty set t. At each iteration of the algorithm, we select a vertex u not
in C with smallest D[u] label, and we pull u into C. In the very first iteration we will,
of course, pull v into C. Once a new vertex u is pulled into C, we then update the label
D[z] of each vertex z that is adjacent to u and is outside of C, to reflect the fact that
there may be a new and better way to get to z via u. This update operation is known
as a relaxation procedure, for it takes an old estimate and checks if it can be improved
to get closer to its true value. (A metaphor for why we call this a relaxation comes from
a spring that is stretched out and then relaxed back to its true resting shape.) In the
case of Dijkstra’s algorithm, the relaxation is performed for an edge (u, z) such that we
have computed a new value of D[u] and wish to see if there is a better value for D[z]
using the edge (u, z). The specific edge relaxation operation is as follows:

31



3. Graph theory

Edge relaxation:

if D[u] + w((u, z)) < D[z] then
D[z]←− D[u] + w((u, z))

Pseudo-code for Dijkstra’s algorithm:

Algorithm: ShortestPath(G, v)
Input: A simple undirected weighted graph G with nonnegative edge weights, and
a distinguished vertex v of G
Output: A label D[u], for each vertex u of G, such that D[u] is the length of a
shortest path from v to u in G

Initialize D[v]←− 0 and D[u]←− +∞ for each vertex u 6= v

Let a priority queue Q contain all vertices of G using the D labels as keys.
while Q is not empty do

{pull a new vertex in the cloud}
u←− Q.removeMin()
for each vertex z adjacent to u such that z is in Q do

{perform the relaxation procedure on edge (u, z)}
if D[u] + w((u, z)) < D[z] then

D[z]←− D[u] + w((u, z))
Change to D[z] the key of vertex z in Q.

return the label D[u] of each vertex u

Some illustrations of Dijkstra’s algorithm are shown in the following Fig. 3.1 and Fig.
3.2.
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Figure 3.1.: An execution of Dijkstra’s algorithm on a weighted graph. The start vertex is
BWI. A box next to each vertex v stores the label D[v]. The symbol • is used
instead of +∞. The edges of the shortest-path tree are drawn as thick blue arrows,
and for each vertex u outside the cloud the current best edge for pulling in u is
shown with a blue solid line.
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Figure 3.2.: Continued from Fig. (3.1): an example execution of Dijkstra’s algorithm.
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Coverage and robotic networks
Coverage is the task of determining a path that passes over all points of an area or
volume of interest while avoiding obstacles. A Robotic Network is a system composed
of robotic agents connected to a communications network such as the Internet or LAN,
like in Fig. 4.1.
In many applications we have to consider the topological space in order to construct an
optimized network, for instance when we are interested to capture an object using
cameras as sensors. This is the reason why coverage techniques are so relevant for
exchanging information when we are dealing, in general, with controlled interconnected
dynamic systems (see [18]).
In the next sections, we are going to discuss about two well known topological tools
to perform coverage: the Voronoi tessellations and the Vietoris-Rips Complex Theory.
The former is the classical method used to perform coverage, while the latter is an
approach applied in the recent years. Although we will use the Vietoris-Rips complex
in our algorithms, we will also compute the Voronoi tessellation as a final result for
comparison.

Figure 4.1.: Here, an example of an outdoor application. In order to be attained, coverage
needs a sensor network. Once the latter is automatized, it is called robotic network.
This means that coverage is performed automatically by the agents which deploy
themselves and provide connection into the network and communicate with each
other and the base station.
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4.1 Voronoi tessellations

Given an open set Ω ⊆ RN , the set {Vi}ki=1 is called a tessellation of Ω if Vi ∩ Vj = ∅
for i 6= j and

⋃k
i=1 V i = Ω (see [5]). Let | · | denote the Euclidean norm on RN . Given

a set of points {zi}ki=1 belonging to Ω, the Voronoi region V̂i corresponding to the point
zi is defined by

V̂i = {x ∈ Ω | |x− zi| < |x− zj | for j = 1, ..., k, j 6= i}

The points {zi} are called generators. The set
{
V̂i
}k
i=1

is a Voronoi tessellation or
Voronoi diagram of Ω, and each V̂i is referred to as theVoronoi region corresponding
to zi. (Depending on the application, there exist many different names for Voronoi
regions, including Dirichlet regions, area of influence polygons, Meijering cells, Thiessen
polygons, and S-mosaics.) The Voronoi regions are polyhedra. These tessellations, and
their dual tessellations (in R2, the Delaunay triangulations), are very useful in a variety
of applications. Given a region V ⊆ RN and a density function ρ, defined in V , the mass

Figure 4.2.: On the left, the Voronoi regions corresponding to 10 randomly selected points in a
square; the density function is a constant. The dots are the Voronoi generators and
the circles are the centroids of the corresponding Voronoi regions. Note that the
generators and the centroids do not coincide. On the right, a 10-point centroidal
Voronoi tessellation. The dots are simultaneously the generators for the Voronoi
tessellation and the centroids of the Voronoi regions.

centroid z∗ of V is defined by

z∗ =
∫
V yρ(y)dy∫
V ρ(y)dy

Given k points zi, i = 1, ..., k, we can define their associated Voronoi regions V̂i, i =
1, ..., k. On the other hand, given the regions V̂i, i = 1, ..., k, we can define their mass
centroids z∗, i = 1, ..., k. Here, we are interested in the situation where

zi = z∗i , i = 1, ..., k
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i.e., the points zi that serve as generators for the Voronoi regions V̂i are themselves
the mass centroids of those regions. We call such a tessellation a centroidal Voronoi
tessellation. This situation is quite special since, in general, arbitrarily chosen points
in RN are not the centroids of their associated Voronoi regions. See Fig. 4.2 for an
illustration in two dimensions.
One may ask, how does one find centroidal Voronoi tessellations?
Consider the following problem. Given

• a region Ω ⊆ RN ,

• a positive integer k,

• a density function ρ, defined for y in Ω,

find

• k points zi ∈ Ω,

• k regions Vi that tessellate Ω,

such that simultaneously for each i,

• Vi is the Voronoi region for zi,

• zi is the mass centroid of Vi.

Figure 4.3.: Two centroidal Voronoi tessellations of a square. The points z1 and z2 are the
centroids of the rectangles on the left or of the triangles on the right.

The solution of this problem is in general not unique. For example, consider the case
of N = 2, Ω ∈ R2 a square, and ρ ≡ 1. Two solutions are depicted in Fig. 4.3; others
may be obtained through rotation. Another example is provided by the three regular
tessellations of R2 into squares, triangles, and hexagons.

4.1.1 Lloyd’s algorithm

Here, we discuss a deterministic approach for the determination of centroidal Voronoi
tessellations of a given set: the Lloyd’s Method.
Given a set Ω, a positive integer k, and a probability density function ρ defined on Ω,
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1. select an initial set of k points {zi}ki=1, e.g., by using a Monte Carlo method;

2. construct the Voronoi tessellation {Vi}ki=1 of Ω associated with the points {zi}ki=1;

3. compute the mass centroids of the Voronoi regions {Vi}ki=1 found in step 2; these
centroids are the new set of points {zi}ki=1.

4. If this new set of points meets some convergence criterion, terminate; otherwise,
return to step 2.

Lloyd’s algorithm may be viewed as a fixed point iteration. For example, consider the
case of Ω ⊂ RN . Let the mappings Ti : RkN −→ RN , i = 1, ..., k, be defined by

Ti(Z) =
∫
Vi(Z) yρ(y)dy∫
Vi(Z) ρ(y)dy

where
Z =

[
z1 ... zk

]T
and Vi(Z) = Voronoi region for zi, i = 1, ..., k .

Let the mapping Ti : RkN −→ RkN be defined by

T =
[
T1 ... Tk

]T
Clearly, centroidal Voronoi tessellations are fixed points of T(Z).

4.2 Vietoris-Rips Complex Theory

In topology, the Vietoris-Rips complex, also called the Vietoris complex or Rips complex,
is an abstract simplicial complex that can be defined from any metric space K and
distance ε by forming a simplex for every finite set of points that has diameter at most ε
(see [14]). Thus, we need to introduce before the concept of “simplex” and then explain
simplicial complexes and their relations with graphs.

4.2.1 Simplexes

In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion
of a triangle or tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a k-
dimensional polytope which is the convex hull of its k+1 vertices. More formally, suppose
the k+1 points u0, . . . , uk ∈ Rk are affinely independent, which means u1−u0, . . . , uk−u0
are linearly independent. Then, the simplex determined by them is the set of points

C =
{
δ0u0 + · · ·+ δkuk|δi ≥ 0, 0 ≤ i ≤ k,

k∑
i=0

δi = 1
}

(4.1)

For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-simplex is a
5-cell (see Fig. 4.4). A single point may be considered a 0-simplex, and a line segment
may be considered a 1-simplex. A simplex may be defined as the smallest convex set
containing the given vertices. A regular simplex is a simplex that is also a regular
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4. Coverage and robotic networks

Figure 4.4.: Some simplexes: point (0-simplex), segment (1-simplex), triangle (2-simplex),
tetrahedron (3-simplex) and 5-cell (4-simplex).

polytope. A regular n-simplex may be constructed from a regular (n − 1)-simplex by
connecting a new vertex to all original vertices by the common edge length.
In topology and combinatorics, it is common to “glue together” simplices to form a sim-
plicial complex. The associated combinatorial structure is called an abstract simplicial
complex, in which context the word “simplex” simply means any finite set of vertices.

4.2.2 Simplicial complexes

A simplicial complex is a set K of finite sets such that if σ ∈ K and τ ⊆ σ, then
τ ⊆ K. For every τ ⊆ σ ∈ K, we say τ is a face of σ, its coface. The (-1)-simplex ∅ is a
face of any simplex. A simplex is maximal if it has no proper coface in K. If σ ∈ K has
cardinality |σ| = k + 1, we call σ a k-simplex of dimension k, dim(σ) = k. This name
stems from our ability to realize a k-simplex geometrically as a k-dimensional subspace
of Rd, d ≥ k, namely, the convex hull of k + 1 affinely independent points. Given this
view, a k-simplex is called a vertex, an edge, a triangle, or a tetrahedron for 0 ≤ k ≤ 3,
respectively. A simplicial complex may be embedded in Euclidean space as the union
of its geometrically realized simplices such that they only intersect along shared faces..
In other terms, as stated by [16], a finite collection K of such simplices that maintains
closure with respect to faces (i.e. σ ∈ K implies that all faces are included in K) is
called a simplicial complex, see Fig. 4.5.

Figure 4.5.: A simplicial complex of order 3.

39



4. Coverage and robotic networks

A subcomplex is a subset L ⊆ K that is also a simplicial complex. An important
subcomplex is the k-skeleton consisting of simplices in K of dimension less than or
equal to k.

A filtration of a complex K is a sequence of nested subcomplexes ∅ = K0 ⊆ K1 ⊆
· · · ⊆ Km = K.
A complex with a filtration is a filtered complex.

Suppose we are given a finite set of d-dimensional points S ⊆ Rd, such as the set of
13 points in the plane in Fig. 4.6. The Vietoris-Rips complex (VR complex) Vε(S)
of S at scale ε is

Vε(S) = {σ ∈ S|dist(u, v) ≤ ε, ∀u 6= v ∈ σ}

where d is the Euclidean metric. In other words, each simplex σ in Vε(S) has vertices
that are pairwise within distance ε.

4.2.3 Vietoris-Rips neighborhood graph

Associating the simplicial complexes to a neighborhood graph, it is possible to construct
a Vietoris-Rips complex using an algorithm called “Two-phase construction”. We do not
enter in details of this method, illustrated in Fig. 4.6, such as the combinatorial process
of expanding. However, it is useful to underline the relation between a Vietoris-Rips
complex and a graph.

Figure 4.6.: Construction of the Vietoris-Rips complex in a 3D space. Our input (a) is a set of
points S. First phase: the geometric process of going from (a) to a neighborhood
graph(b). Second phase: the combinatorial process of expanding from the graph(b)
to the Vietoris-Rips complex(c).

A neighborhood graph is (G), w, where G(V, E) is an undirected graph,and w : E −→ R
is its weight function, defined on its edges. The 1-skeleton of the VR complex is a neigh-
borhood graph.

In particular, given S ⊆ Rd and scale ε ∈ R, the VR neighborhood graph is a
neighborhood graph (Gε(S), w), where Gε(S) = (S, Eε(S)) and
Eε(S) = {{u, v} |dist(u, v) ≤ ε, u 6= v ∈ S}, w({u, v}) = dist(u, v), ∀ {u, v} ∈ Eε(S).
Fig. 4.6 shows a VR neighborhood graph with 18 edges, where w is the length of the
edges. We may expand any neighborhood graph up to a weight-filtered complex.
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5
Theoretical coverage bounds

Some theoretical bound estimates about coverage in a rectangular scenario are well-
known. Defined the rectangle with dimensions a × b, we analyzed the two following
types of coverage. We decided to set random dimensions in order to better show the
behaviours in our simulations. For instance, a = 99.1700 and b = 65.2236 have been
randomly chosen. Moreover, in this chapter, agents are modelled as a point with a
sensing radius r. It has been set a sensing radius of r = 10, chosen in a proportional
way to a and b.

5.1 Optimal coverage

This is a non-connected theoretical coverage which can allow to cover a rectangle with
the minimum number of agents. In this type of coverage it is not necessary that robots
are neighbours: they just have to cover all points of the given space with their visibility
disks, see figures 5.1 and 5.2.
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Figure 5.1.: Optimal coverage performed in a rectangle: 31 robots are needed.

It is possible to obtain an estimate of the minimum number of robots NM utilized to
accomplish an optimal coverage (i.e. a lower bound). These formulas have been found
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Figure 5.2.: Optimal coverage performed in the same rectangle with a swap of dimensions: 32
robots are needed. This simulation has to be discarded at light of Fig. 5.1, because
a larger number of robots has been used.

trying to minimize the number of barycentres for each local1 triangular structure created:

NM =



⌈
2a+ r

3r

⌉⌈
b√
3r

⌉
− 1 a > r, b > r⌈

a√
4r2 − b2

⌉
a > r, b ≤ r⌈

b√
4r2 − a2

⌉
b > r, a ≤ r

1 otherwise

(5.1)

Note that, in order to apply (5.1), one must repeat twice the calculations swapping
the dimension a and b and keeping NM = min(NM1, NM2). For instance, in simulations
shown in figures 5.1 and 5.2 we respectively obtain NM1 = 27 and NM2 = 29. Therefore,
at least NM = 27 agents are needed to cover the rectangle (actually 31 agents have been
deployed).

5.2 Optimal connected coverage

This is a theoretical coverage which can allow to cover a rectangle with the minimum
number of connected agents. In this type of coverage it is necessary that robots compose
a connected network. They also have to cover all points of the given space with their
visibility disks, see figures 5.3 and 5.4. Even here, it is possible to obtain some for-
mula about an estimate of the minimum number of robots NMC utilized to accomplish
an optimal coverage. These formula have been found trying to minimize the number

1in terms of proximity over the given space
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Figure 5.3.: Optimal connected coverage performed in a rectangle: 72 robots are needed.
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Figure 5.4.: Optimal connected coverage performed in the same rectangle with a swap of di-
mensions: 67 robots are needed. The previous simulation has to be discarded at
light of Fig. 5.3 because a larger number of robots is used there.

of intersections which are generated by the circumferences with radius r during the
deployment:

NMC =



⌈
2a−

√
3r√

3r

⌉⌊
b

r

⌋
+ 1 a > r, b > r⌊

a

r

⌋
a > r, b ≤ r⌊

b

r

⌋
b > r, a ≤ r

1 otherwise

(5.2)
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Note that, in order to apply (5.2), one must repeat twice the calculations swapping the
dimension a and b and keeping NMC = min(NMC1, NMC2). For instance, in simulations
shown in figures 5.3 and 5.4 we respectively obtain NMC1 = 67 and NMC2 = 64. There-
fore, at least NMC = 64 agents are needed to cover the rectangle (actually 67 agents
have been deployed).
Important observation: one can immediately realize that in the context of optimal con-
nected coverage more robot are needed to well attain the task than in the optimal
coverage background, that is NM ≤ NMC . Since our algorithm works using connections,
we will use (5.2) only to build up some comparisons. Moreover, we will often set up
scenarios where the sensing radius is negligible with respect to the room dimensions
(r � a, b); therefore, (5.2) boils down to

ÑMC
∼=
⌊

2ab√
3r2

⌋
=
⌊

2πAscenario√
3Asensing

⌋

which can be understood as an approximate estimate of theoretical lowest bound for
rectangular scenarios (A indicates the area of a surface).
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6
Controllability for nonlinear

systems
In this chapter we introduce some elements of Non-linear System Theory (see [17]): this
will be used in order to obtain a proper dynamic model for agents which need to move
independently for attaining a complete coverage on a surface.

6.1 Basic concepts

Consider a system, fully characterized by a finite number of real variables x1, x2, ..., xn,
satisfying a given set of equality or inequality constraints. If our system is to represent
a vehicle or a rocket, these real variables might specify its position and orientation in
space, but also more delicate matters, such as the amount of remaining fuel or covered
distance, might occasionally be suitable to consider. These real numbers are called state
variables or generalized coordinates. It is convenient to think about the state of
the system as a point x = (x1, x2, ..., xn) in an n-dimensional space. A point that fulfills
all the constraints on the state variables is called an admissible state. The set of all
admissible states is called state space and denoted X . Next, we shall introduce the state
dynamics and the control. The state dynamics, is a prescribed set of rules that governs
the time evolution of the state variables. It indicates how the state variables will change
over time, given a current state and current input. It is mathematically appealing and
physically motivated, to focus our attention on systems whose behavior are governed by
nonlinear ordinary differential equations (ODEs)

ẋ(t) = f(x(t), u(t)) (6.1)

where f(x, u) ∈ C∞ is the system dynamics and u = (u1, u2, ..., um) is the control
vector that can be thought of as a point in an m-dimensional space, the control space.
More generally, we shall assume that the control u, belongs to a prescribed subset U ∈ Rm

and that the control manifold, U , is constant, i.e. independent of current state x and
time t. In most control problems, the constraints on the control u, commonly arise from
technological limitations. For instance, a rocket’s thrust magnitude as well as a car’s
turning radius, are bounded. This type of limitations typically restrict the control space
to polyhedra or polyhedral cones in Rm. One (often overlooked) way of handling such
control constraints, is replacing U by a non-constrained control space. Not seldom, one
encounters the following type of control constraint

|ui| ≤ 1, i ∈ 1, 2, ...,m
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6. Controllability for nonlinear systems

Then by defining ui = cos ũi, we have moved the control into a space in which ũi ∈ R,
thus unconstrained. The price that one has to pay for using this transformation trick, is
that, apart from the obvious redundancy, any possible intuitive or physical interpretation
of the control input might be lost. Another restriction imposed on the control is that
u(t) has to be a piecewise continuous function. A control that fulfills both of the criteria
mentioned, i.e. belongs to the control manifold U , and is piecewise continuous, is called
an admissible control. Assuming that the system dynamics is a smooth function, i.e.
belongs to C∞, specifying an admissible control on a time interval [ti, tf ], corresponds
to fully determining the time history of the state vector in that time interval. The time
evolution of x(t) is called the path or state trajectory, along which the system moves. The
state trajectory is denoted x(·) while the corresponding control function u(t), t ∈ [ti, tf ],
is denoted as u(·). If the path stays within the system’s state space X , we call it an
admissible path. Concerning the system dynamics particularized by equation (6.1), we
shall pay extra attention to systems, governed by control affine system dynamics of
form

ẋ = f(x(t), u(t)) = Υ(x(t))u(t) + Υ0(x(t)) (6.2)

where Υ0(x(t)) ∈ Rn is called the drift and Υ(x(t)) ∈ Rn×m is a matrix with vector
fields Υi, i = 1...m, as its columns. A vector field Υ , is a function that, with each point
x in the state space X , associates a vector belonging to that point’s tangent space, TxX .

6.2 Definitions

Some basic definitions on Manifold Theory according to [17] follow.

6.2.1 Tangent space and Tangent Bundle

The tangent space at a point x, TxX , is defined as the space of all possible velocities of
trajectories, passing through the point x. Throughout this report, the tangent space is
identical with the space Rn of column vectors.
Originating from this, we define the tangent bundle as

TX =
⋃
x

TxX

This object is needed to understand the virtual directions where the state can evolve.

6.2.2 Vector Field

A vector field Υ, on a manifold X , is defined as a map Υ : X ∈ x 7−→ Υ(x) ∈ TxX .

Notice that f(x, u) ∈ TxX , is a special vector that for a fixed u, represents the possible
infinitesimal change in the state variables with respect to time. It will be convenient to
define the set f(x,U) of all vectors f(x, u), u ∈ U . This set spans a subspace of TxX .

46



6. Controllability for nonlinear systems

6.2.3 Distribution

A distribution is an assignment ∆(x) of a subspace of TxX for each x ∈ X . Given the
set of vector fields Υ1,Υ2, ...,Υm, the distribution ∆ ∈ Tx(X ) is defined by

∆ = span {Υ1,Υ2, ...,Υm}

The rank of a distribution at a point, equals the maximum number of linearly indepen-
dent vectors among Υi, i ∈ 1, 2, ...,m at this point.

A distribution ∆, can thus be considered to assign a vector space to each point x,
namely the space of all accessible velocities at the configuration represented by x.
From definition (6.2.3), it follows that any vector field in ∆, can be expressed as a linear
combination of the Υis, which, when independent, serve as a basis for ∆.

The subspaces ∆(x), typically do not join or fit together in a coherent manner to form
the tangent bundle of a smooth submanifold of X .
The distribution is then not the tangent bundle of a state submanifold. In such cases, if
the task is to transfer the system between two prescribed configurations Xi and Xf , it is
possible to reach final points Xf in a set of higher dimension than dim∆(Xi). To study
this more formally, one of the most fundamental operations than can be performed on
vector fields, namely the Lie bracket, has to be introduced.

6.2.4 Lie brackets

Given two vector fields X and Y , another vector field, called the Lie bracket and denoted
by [X,Y ], can be defined. The Lie bracket is computed by

[X,Y ] = DY ·X −DX · Y

where DX and DY are the Jacobian matrices of X and Y respectively, i.e.

DX =


∂X1
∂x1

. . .
∂X1
∂xn... . . . ...

∂Xn

∂x1
. . .

∂Xn

∂xn


Lie brackets have the following two basic properties

1. [X,Y ] = −[Y,X] (skew-symmetric)

2. [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (the Jacobi identity)

Lie Brackets are the key mathematical tool used for understanding the controllability of
a non-linear system: with some computations it will be possible to determine a base in
a Control Lie Algebra.
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6.2.5 Control Lie Algebra

The Control Lie Algebra associated with a distribution ∆, is denoted CLA(∆) and is the
smallest distribution containing ∆ that is closed under the Lie bracket operation.

Finding a basis of the CLA, is generally a tedious process. There exist however several
systematic approaches for generating such a basis, one of which is called the Phillip-
Hall basis. The reason why we need to seek for a base in a CLA is to compute the
Lie-Algebraic Condition, which tells whether an Affine Drift-less Symmetric System is
controllable or not.
We may now proceed to define the concepts of reachability, accessibility and controlla-
bility. In each case, three different types will be considered, viz. exact-time, small-time
and finite-time. In addition, each of these concepts will appear in a more restricted
version (termed local), where we, not only pay attention to what points are reachable,
accessible or controllable, but also restrict the corresponding state trajectory x(·) to stay
in a prescribed neighborhood of the point.

6.2.6 Lie-Algebraic rank condition

The Lie-Algebraic rank condition is denoted by

dim(CLA(∆(x))) = dim(X )

which is equivalent to require dim(TxX ) = dim(X ).

LARC is the main condition that must hold in order to prove the validity the propositions
about Locally Exact-time Accessibility, Small-time Controllability, Controllability and
Controllability of Affine Drift-less Symmetric Systems presented on the next section.

6.2.7 Reachability

The set of exact-time reachable points from x, is defined as

R∗(x, T ) = {x̂ ∈ X |∃u(·) : x(0) = x and x(T ) = x̂}

Originating from this definition, we have:
set of small-time reachable points from x R(x, T ) =

⋃
t≤T R∗(x, t)

set of finite-time reachable points from x R(x) =
⋃
t∈R+ R∗(x, t)

6.2.8 Local reachability

The set of locally exact-time reachable points from x, is defined as

R∗(x, T ) = {x̂ ∈ N |∃u(·) : x(0) = x, x(T ) = x̂ and the corresponding trajectory x(·) ∈ N}
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where N is a prescribed neighborhood of x.

Originating from this definition, we have:
set of small-time reachable points from x R(x, T,N) =

⋃
t≤T,N R∗(x, t)

set of finite-time reachable points from x R(x,N) =
⋃
t∈R+ R∗(x, t,N)

6.2.9 Accessibility and controllability

Here follows a recap of the previous definitions in Table 6.1. Now, we can proceed by

Exact-time Small-time Finite-time
Reachability R∗(x, T ) = {x̂ ∈ X |∃u(·) : R(x, T ) =

⋃
t≤T R∗(x, t) R(x) =

⋃
t∈R+ R∗(x, t)

x(0) = x and x(T ) = x̂}
Local R∗(x, T ) = {x̂ ∈ N |∃u(·) : R(x, T,N) =

⋃
t≤T,N R∗(x, t) R(x,N) =

reachability x(0) = x, x(T ) = x̂ and the
⋃

t∈R+ R∗(x, t,N)
corresponding trajectory x(·) ∈ N}

Table 6.1.: Definition of reachability.

defining accessibility and controllability. Because of the similarities in the formulation
of these definitions, they will be presented by means of Table 6.2.

Accessible for all x ∈ X , R∗(x, T ) for all x ∈ X , R(x, T ) for all x ∈ X , R(x)
contains a non-empty contains a non-empty contains a non-empty
open set for all T > 0. open set for all T > 0. open set.

Locally for all x ∈ X , for all x ∈ X , for all x ∈ X , R(x,N)
accessible R∗(x, T,N) contains a R(x, T,N) contains a contains a non-empty

non-empty open set for non-empty open set for open set for any
all T > 0 and any all T > 0 and any prescribed neighborhood N .
prescribed neighborhood N . prescribed neighborhood N .

Controllable for all x ∈ X , R∗(x, T ) for all x ∈ X , R(x, T ) for all x ∈ X , R(x)
contains a full neighborhood contains a full neighborhood contains a full neighborhood
of x for all T > 0. of x for all T > 0. of x.

Locally for all x ∈ X , for all x ∈ X , for all x ∈ X ,
controllable R∗(x, T,N) contains a full R(x, T,N) contains a full R(x,N) contains a full

neighborhood of x for all neighborhood of x for all neighborhood of x for any
T > 0 and any prescribed T > 0 and any prescribed prescribed neighborhood N .
neighborhood N . neighborhood N .

Table 6.2.: Definition of accessibility and controllability.

6.3 Propositions

Some relevant propositions on Manifold Theory according to [17] follow.

6.3.1 Locally Exact-time Accessibility

If an affine control system satisfies CLA(∆) = TX , then the system is locally exact-time
accessible.
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6. Controllability for nonlinear systems

The simplest approach to show small-time controllability for the special important case
of affine systems is by studying the linearized system. It should be noted that small-time
controllability naturally implies controllability and even (small-time) accessibility.

6.3.2 Small-time Controllability

If an affine system of form (6.2), is drift-free at x̂ (i.e. Υ0(x̂) = 0) and the linearization
at x̂ and u = 0

ż = ∂Υ0
∂x

(x̂)z + Υ(x̂)u

is controllable (i.e. satisfies the Kalman rank condition), then the system is small-time
controllable from x̂.

However, no conclusion can be drawn about the controllability properties of the non-
linear system, if the linearized counterpart fails to be controllable. In such cases, the
following preposition can be exploited.

An affine system with no restriction on the size of the control is small-time control-
lable if the rank of the control Lie algebra CLA(∆) equals n (the dimension of X ), for
all x ∈ X , i.e. LARC holds.

6.3.3 Controllability

A drift-less affine system remains controllable (but not necessarily small-time control-
lable) if
a) CLA(∆) = TX and
b) the convex hull of the control set U contains the origin in Rm

By virtue of the foregoing two propositions, checking the controllability properties of
a system requires the analysis of the Control Lie Algebra associated with it. Checking
the LARC, on a control system, is a very fundamental and useful tool for determining
a systems controllability properties. In section (7.5.3), the controllability analysis of a
free-wheeled car will be carried out by means of LARC.

6.3.4 Controllability of Affine Drift-less Symmetric Systems

If the vector fields of a drift-less symmetric control system of form

ẋ = Υ(x)u

have LARC at all x ∈ X , then it is locally controllable.

This is the proposition we need to use during the continuation to prove the controllability
of the front-wheeled car: the model we adopted to describe the robots’ dynamics.
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7
Models

In this chapter we present notation, preliminaries and models assumed.

7.1 Scenario

A scenario is a virtual space where actions take place and in our case it is modelled as
a set of S > 2 segments: these can be designated as walls or inner barriers. A segment
has to be simply understood as a couple of two vertices. Each vertex is represented by
a couple of two coordinates (xs, ys), s = 1...V on the plane, where V is the number of
vertices which can be arbitrary decided: a closed scenario, that is forcing S = V for the
external polygon structure, is the unique constraint for guaranteeing a coverage problem
which makes sense.

7.1.1 Base station

A base station is the point from which all robots depart during coverage. It also
represents the first agent. Base station coordinates (x0, y0) must be chosen in the inner
part of the scenario for guaranteeing a coverage that can be terminated in a finite time.
We assume that base station cannot be removed during the research for redundant
robots.
A scenario can have one ore more base stations.

7.2 Robots

A robot or agent is an automatic device which has to be deployed in a hypothetical real
coverage. In our algorithm it is modelled by a circle with radius R, diameter φ and centre
C. Robots are also provided with a camera installed on the centre C with a sensing
radius rv. These are used to measure angles a robot creates with its neighbours. Two
robots a1, a2 are neighbours if and only if the two following statements hold:

1. their centres are distant less than the visibility radius, i.e. ‖Ca1 − Ca2‖2 < rv, see
Fig. 7.1;

2. there is no barrier between them, i.e. Ca1Ca2 does not intersect any segment of
the scenario.

Two robots can be neighbours even though between them another robot has already
been placed, that is robots do not occlude each other.
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Figure 7.1.: (a) Robots can’t see each other, and hence have no way of detecting that their
disks of visibility overlap. (b) Robots can see each other, and hence know that
their disks of visibility overlap. Visibility is represented by the dotted magenta
line.

7.2.1 Angle measurements

Angle measurements are performed by cameras installed on the robots. Let θkij ∈
[−π, π) be the angle ik̂j, where i, j are neighour of k. Then, we define θkij = θkj − θki
measured in a clockwise direction from i to j. See Fig. 7.2.

Figure 7.2.: Local bearing angle measurement

7.2.2 Local Bearing-Based Controller

The robots are controlled usinga bearing-based visual homing controller. This controller
utilizes a gradient descent approach where desired bearing angles to landmarks are used
to drive robots. The distances between a robot and its respective landmarks are not
known. The only known information is the bearing angles. With the proper selection
of the cost functional for the optimization process, the gradient of the path from start
to goal (the velocity control command for robot i) is given by vi = K

∑
j∈N i

(
θij,des − θij

)
where, N i is the list of robots that are neighbors of i, and which can be used as land-
marks, θij,des is the desired bearings with landmark j, and K is a gain. Note that this
velocity can be computed in the local coordinate frame of robot i. This controller con-
verges to the goal configuration when the number of landmarks is greater than or equal
to two and not co-linear with the goal location. In our implementation, the controller
incorporates adaptive gain scaling in order to obtain faster convergence. We also use
adaptive landmark detection depending on a robot’s neighbor list while moving.
In our simulations we assume that controllers always work properly without any virtual
implementation of the velocities.
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7.2.3 Contacts and touching sensors

Each robot is equipped by Ns touching sensors which allow to understand if a contact
occurs and provide a rough estimate of the impact direction (within an angle error of
π

Ns
).

Figure 7.3.: The touch/contact sensors (grey protrusions) at the base of a robot (red). Contact
with an obstacle or another robot triggers only one touch sensor providing a rough
estimate of the direction of contact.

7.3 Robotic network

A robot can be pushed, in order to be deployed, by following one of the shortest paths
from the base station to the fence, which is defined as the set of most external frontier
robots already placed. Thus, a graph G = (N , E) is very useful in order to cope with
the covering robotic network structure. Each node ν ∈ N represents a robot and an
edge e ∈ E between two robots (ν1, ν2) is created if only if (ν1, ν2) are neighbours.

7.3.1 Coverage policy

We adopt an hexagonal-packing-based coverage policy discussed in [19] because
it is the best approach in an obstacle-free planar environments. For this reason and
since we use robots described above, we decided to apply the Vietoris-Rips Complex in
order to achieve deployments. This theory is based on assembling simplicial complex:
geometrical structures that allow us to build up a good strategy to create the graph G.
Simplicials used here are:

• type 0: a point, which represents a node on a plane;

• type 1: a segment, which represents an edge on a plane;

• type 2: a triangle, in particular equilateral triangles to guarantee hexagonal pack-
ing policy.

Geometrical structures made up by simplicial of order less or equal to m are called Hm

homology. A simplicial complex is an homology with a metric. In our case the latter is
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imposed to be rv, the radius of visibility, so we need to work using a particular simplicial
complex, say Rrv , over the H2 homology.

Figure 7.4.: Nine robots, their disks of visibility and the corresponding abstract simplicial com-
plex, Rrv

.

7.4 Environment interactions

An important issue in this framework is managing impacts between two robots and
between scenario and a robot.

7.4.1 Impacts between a robot and a wall

Impacts between a robot and a wall can be modelled by intersections between a segment
AB with coordinates (xA, yA), (xB, yB) and a circumference given a precise trajectory
vector v = λu such that λ ≥ φ, u ∈ R2, ‖u‖2 = 1, of the translation of the centre C of
the latter. As Fig. 7.5 shows we need to solve this geometrical problem:

Figure 7.5.: T is generally the impact point of a robot centred on C moving towards a wall
(segment AB) along a vector v, but, if the projection T ′ of T does not belong to
AB, then the impact point becomes one of the vertices A or B, in particular the
closest one to the circumference.

• find T as the tangent point to the circumference according to the closest parallel line
to AB and secondly the distance dist(T, T ′), even though the projection T ′ /∈ AB;
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• compute solutions of this system of equations for each vertex v ∈ {A,B}:
‖C −Q‖2 = R

v = Q+ µvu

µv ≥ 0
(7.1)

in order to find the minimum distance point Q∗ = argmin
v∈{A,B}

µv between the circum-

ference and a vertex and the minimum distance µ∗ = min(µv) between Q∗ and the
circumference;

• compute the maximum translation along v as the minimum of dist(T, T ′) and µ∗.

In conclusion, an important observation should be done. When points T and T ′ or A,B
and Q∗ are coincident, one has to be careful in deciding whether a robot can move or not
along v during the computations. In fact, one must verify if the destination, head of the
trajectory vector v, can be reached in a geometrical locus of the plain where movement
of the robot starting from C is permitted. See Fig. 7.6 for analysing the case1 T = T ′. In

Figure 7.6.: Head of vector v can lays on red, light blue, green areas, purple lines or segment
AB. Over and between red zone and light blue zone movement of robot in C is
not allowed. Otherwise, a test drive for deployment can be performed.

order to correctly understand the possibility of movement from C, simply linear equation
systems have to be solved. Say D the head of the given trajectory vector v and z the
extension of the segment AB as a straight line. Firstly, we check if dist(D, z) < R. If
last statement holds then movement is not allowed. Secondly, if the previous assertion
doesn’t occur, we check for another condition: vector v, understood as a segment CD,
must not intersect z in order to have movement. Finally, in the rare case that D belongs
to the purple line passing through C, we decide to accomplish movement.

7.4.2 Impacts between robots

Impacts between robots can be modelled by intersections between three circumferences
and a precise moving direction of the centre of one of them, see Fig. 7.7. Let S, D, C

1We describe this case only because it is more difficult and interesting than the one about vertex
coincidences. In order to solve the latter, one should verify if (7.1) has two particular solutions in
µv: if µv,1 = 0 and µv,2 > 0 exist then movement from C along v is not allowed.
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Figure 7.7.: Collision between two robots: the one centred in D, expanded from the stating
position S, impacts on the one centred in C. The distance l should be less than
the diameter d: in order to obtain this, we have to compute a new distance L′ < L
which permits to get l′ ≤ d.

be respectively a source, a destination and an already-deployed robots. Define algebraic
vectors lu = D − C and Lv = S − D such that l, L > 0 and ‖v‖2 , ‖u‖2 = 1. We
need to solve this geometrical problem in order to find L′ < L that guarantees l′ = φ.
To do that, we set ‖S − C − L′v‖2 = φ. Finally we compute the new optimal distance2

L∗ = min(|L′1| , |L′2|), which is the destination robots should keep from its source in order
to avoid collisions between other robots. Remember that L∗ greater than the diameter
d has to be guaranteed, otherwise destination robot collides with its same source.

7.5 Front-wheeled car model

In this section we introduce a dynamic model adopted for the robots. In particular, we
chose the front-wheeled car model which is the evolution of the car-like robot model.
Before starting, we need to add two important hypotheses:

1. Rolling without slipping: it is a customary to assume that the robot wheels do
not slip. This assumption is legitimate in all moderate-speed scenarios.

2. Maximum steering angle: we further assume that we have a limitation on the
maximum steering angle |δ| ≤ δmax, meaning that the turning radius for our car
is lower bounded.

7.5.1 Car-like robot

From a driver’s point of view, a vehicle has two control possibilities: the accelera-
tor/brake pedal and the steering wheel. The accelerating factor is the linear velocity
v, while the steering wheel specifies the angle between the front wheels and the main
direction of the vehicle. We define this as the steering angle γ, which is our second
control variable (see figure 7.8). In practice, the two front wheels are seldom exactly

2Two solutions for L′, say L′1 and L′2, can be found.
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parallel, why we might set γ to be the average of these two angles. Augmenting the
steering angle, obviously captures the characteristics of a car even better. The car-like

Figure 7.8.: The car-like robot model.

robot model, has the same state variables as a unicycle robot, i.e. x = (x, y, θ). The
task is to find a set of differential equations f1, f2 and f3, that properly describes the
kinematics of the car.
Since the “rolling without slipping” assumption is valid even in this case, the motion
in the R2-plane is dictated by the same equations as before, so that ẋ = v cos θ and
ẏ = v sin θ. Proceeding to the time evolution of the orientation angle θ̇, let’s denote
the distance traveled by the vehicle. Then ṡ = v, which is the speed of the car. As
shown in figure, r represents the radius of a circle that will be traversed by (x, y), when
the steering angle is fixed. Consequently ds = rdθ. From simple trigonometry, we have
tan γ = L

r
, which implies

dθ = tan γ
L

ds

Dividing by dt and using the fact that ṡ = v, yields

θ̇ = v

L
tan γ

Thus the dynamic for the car-like robot is
ẋ = v cos θ
ẏ = v sin θ
θ̇ = v

L
tan γ

(7.2)
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Since the linear velocity appears in the time evolution of all the state variables, this car
model does not have the possibility to make arbitrary rotations while standing still in
R2. It is only able to follow paths that are at least continuously differentiable.

7.5.2 Front-wheeled car

In the car-like robot model (equation (7.2)), we had the steering angle as an input and
assumed to have direct control over its value. This corresponds to being able to move
the front wheels instantaneously, which obviously contradicts our intuition about cars in
general, and in many real-life applications this assumption is an unrealistic one. When-
ever the value of γ changes discontinuously, the path traced out in the plane by (x, y),
will have a discontinuity in its curvature. To put this right and make a car model that
only generates smooth paths (i.e. belongs to C2), we might add the steering angle as an
extra state variable and consider its derivative to be one of the input signals. Introducing
this integrator-chain, results in a delay in the lateral control, such that γ is only allowed
to change its values in a continuous manner.
We thus have to consider a four-dimensional state space, in which each state is rep-
resented as x = (x, y, γ, θ) ∈ X ⊆ R × R × S1 × S1. The system dynamics for the
front-wheeled car model then becomes

ẋ = v cos θ
ẏ = v sin θ
γ̇ = ω

θ̇ = v

L
tan γ

(7.3)

where, as usual, v represents the linear velocity, while ω is the angular velocity of the
steering angle. By setting

Υ1 =


cos θ
sin θ

0
tan γ
L

 Υ2 =


0
0
1
0


we may rewrite equation (7.3) as

ẋ = Υ1v + Υ2ω = Υ · u (7.4)

where, as before, u =
[
v ω

]T
and Υ has Υi as its i-th column. Although it holds

true that the method of introducing the former input signal γ, as a state variable and
rather consider its time derivative to be the new control input, gives a more realistic
model for describing a real car, one should ask weather such approach is justified, as
long as we do not take similar action for the linear control, v. Is it reasonable to consider
that we are able to dictate the instant value of the linear velocity of a car? Because of
its weight, the inertia along the platform’s main axis, is generally orders of magnitude
larger than the resistance existing in the steering device, why it may be motivated to
introduce an integrator-chain in the linear direction as well. But on the other hand,
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allowing the steering angle to change instantaneously, corresponds to matter moving in
a discontinuous manner in X , which is physically offensive.

7.5.3 Controllability analysis of the front-wheeled car

Using manifold theory, we can provide some results on the controllability of the front-
wheeled car by starting from equations (7.3) and (7.4). Using Lie Brackets seen in section
6.2.4, we have that

[Υ1,Υ2] = DΥ2 ·Υ1−DΥ1 ·Υ2 = −


0 0 0 − sin θ
0 0 0 cos θ
0 0 0 0

0 0 1 + tan2 γ

L
0




0
0
1
0

 = −


0
0
0

1 + tan2 γ

L


and

[Υ1, [Υ1,Υ2]] = −


0 0 0 0
0 0 0 0
0 0 0 0

0 0 2(tan γ + tan3 γ)
L

0




cos θ
sin θ

0
tan γ
L

+


0 0 0 − sin θ
0 0 0 cos θ
0 0 0 0

0 0 1 + tan2 γ

L
0




0
0
0

1 + tan2 γ

L

 =



− sin θ
(

1 + tan2 γ

L

)

cos θ
(

1 + tan2 γ

L

)
0
0


In order to check the linear dependency of the four vectors Υ1, Υ2, [Υ1,Υ2] and [Υ1, [Υ1,Υ2]],
we calculate

det



cos θ sin θ 0 tan γ
L

0 0 1 0

0 0 0 −1 + tan2 γ

L

− sin θ
(

1 + tan2 γ

L

)
cos θ

(
1 + tan2 γ

L

)
0 0


= −

(
1 + tan2 γ

L

)2

which is different from zero, for all configurations (x, y, γ, θ) ∈ X . Thus, the system
in (7.4), fulfills LARC in every point in the state space, and is thereby small-time
controllable. Moreover, for the same reasons and by proposition (6.3.4), the front-
wheeled car is globally controllable.
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7.6 Events and dispatch

Now we see how to model events (relevant situations that appear after accomplished
coverage, e.g. a blaze inside the scenario) and the main actions to take in order to per-
form a final dispatch around an event.
Firstly, we show how a mathematical function called event function can model an
event, explaining how the sensing task is performed.
Secondly, we present a computation of the target points to reach around an event ex-
ploiting the unitary circle in a complex plane.
Finally we introduce a suitable nonlinear control law for attaining the dispatch that
try to minimize a time cost functional.

7.6.1 Event function

An event E can be associated to a real function fE : R2 −→ R of the coordinates (x, y)
of the plane such that:

1. takes positive or null values;

2. has a centre µE =
[
xE yE

]T
belonging to the plane already covered by the

agents that represents the place of the event: this centre must be the unique
global maximum (we prefer a maximum because it is physically consistent and
mathematically regular);

3. defined as FE the minimum amplitude for which the event E can be detected, if
fE(x, y) < FE for some displaces (x, y) then the event cannot be detected from
those displaces;

4. lays on a bounded (compact, if we choose f without singularities) support D ⊂ R2

because of the previous observation, it is zero in R2 \ D and different from zero
otherwise;

5. is a smooth function on D: fE ∈ C1(D).

The values of f(x, y) represent the intensity of the event.
Define z =

[
x y

]T
. We choose

fE(z) =


√

detAE
2π exp

(
−1

2(z − µE)TAE(z − µE)
)

if z ∈ D

0 otherwise
(7.5)

where AE =
[
a11 a12
a21 a22

]
∈ R2 is a positive definite matrix which gives the amplitude of

the event E. The maximum peak is reached for z = µE and its value is
√

detAE
2π . It is

possible to show that if we take AE = λEI2 (as we will assume) with λE > 0 we obtain
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a contour set of fE made of circumferences centred in µ with a maximum radius of

RE =

√√√√− 2
λE

ln
(

2π
λE

min fE(z)
z∈D

)

Indeed, if AE = λEI2 holds then (7.5) becomes

fE(z) = fE(r) =


λE
2π exp

(
−1

2λEr
2
)

if r ≤ RE

0 otherwise
(7.6)

by using polar coordinates (r, ϕ) centred in µE . See Fig. 7.9 to better understand the
described event function.
As concerned the gradient of f(z): it can be shown that

∇fE(z) = fE(z)
[
2a11(x− xE) + a12 + a21
2a22(y − yE) + a12 + a21

]

and choosing AE = λEI2 we obtain

∇fE(z) = 2λfE(z)
[
x− xE
y − yE

]

which is zero if and only if z = µE : this is a useful condition for searching the maximum
µE if one decide to use some gradient-descent based optimization algorithms.

Figure 7.9.: fE(z) from (7.6) for a value of λE = 1: out of RE = 2 the function is null.
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7.6.2 Dispatch technique

The dispatch is the action of sending robots to a predetermined position after they have
been selected during an event detection.
Firstly, we compute a target position for all robots belonging to a set called A: these
locations are disposed circularly around the event. If, for instance, 6 robots are involved
in the dispatch then targets ideally aim at forming an hexagon centred on the event.
Secondly, we design a trajectory to follow for the robots which have to move. These
trajectories can be followed by an agent using a feedback control law as long as the
communication with the leader robot, defined as A0, persists.
Here, at the moment, we assume the hypothesis to manage coordinates of locations:
since our robots are limited in sensing, actually, we need a localization strategy to obtain
coordinates at least local, i.e. expressed with respect to a reference frame of a robot.
This strategy will be explained later in section 8.3.2 regarding the algorithm design.

Target computation

In order to delimit a good region around the event we try to send robots close to it in
a circular way. If we manage LA robots for the dispatch then we try to form a regular
polygon around the event.
This strategy is attained as follows:

1. consider d0 = dist(µE , A0), θ0
E and E = E0, already computed and measured in

the previous sections, where with the 0 superscript we intend that an object is seen
from the reference frame attached to A0;

2. for each robot Ak, k ∈ [1,M ] in A \A0 compute

zk = d0 ∗ exp
(
j

(2πk
LA
− θ0

E

))
+ Ex + jEy

where j is the imaginary unit;

3. obtain the target coordinates A0∗
k w.r.t. the r.f. attached to A0 taking

A0∗
k = (Re(zk), Im(zk))

Control law

Here we describe the algorithm used to compute the control law for the dispatch of the
front-wheeled car: see table 7.1 to read the meaning of each variable.
Our aim is computing these control inputs: the velocity v of the vehicle (necessary for
the dynamics of x, y, θ) and the angular velocity of the steer γ̇ = ω.
The criterion we adopted to find such v and ω is based on a time minimization for the
trajectory that a robot vehicle is going to accomplish. Say t the instant of time in which
we have to compute new inputs to control our nonlinear system and say T the time
needed to reach the target. Obviously, T depends on the current position, orientation,
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steering angle and instant t. So, our goal is obtaining v and ω as stated in (7.7):

[
v(t)
ω(t)

]
= argmin

x,y,θ,ẋ,ẏ,θ̇

T (x, y, θ, γ, ẋ, ẏ, θ̇, γ̇, t) (7.7)

Unfortunately, we have not found any proof yet that shows our control law minimizes
cost functional in 7.7: this will be object of future studies. However, on the next lines
we present a good attempt of a control law, followed by simulations in section 8.4 that
prove its validity.

Parameter Meaning

d current distance between the vehicle and the target
(x, y) current position of the vehicle

(x∗, y∗) target position
s sign of direction (forward = 1, backward = -1)
θ planar orientation of the vehicle w.r.t. the world r.f.
θ∗ desired planar orientation for aligning the vehicle to the target

vMAX
BACK/FOR maximum backward/forward speeds

v vehicle speed
kv proportional velocity constant
L length of the car trolley
b numeric constant: b ∈ (0, 1)

(ẋ, ẏ) velocity of the vehicle
wveh unit vector of the direction of the vehicle w.r.t. the world r.f.
w∗ unit vector of the direction taken from the vehicle to the target
p scalar product factor between the two previous directions
p′ p corrected in function of a reverse movement of the vehicle
c converging factor (important heuristic function)
ε numerical constant: 0 < ε << 1
θ̇∗ desired angular velocity w.r.t. to the world r.f.
θ̇ angular velocity w.r.t. to the world r.f.
ko proportional angular velocity constant
ω input for the dynamics of the steering angle γ

Table 7.1.: Parameters involved in the control law for the front-wheeled car and their meaning.

Velocity control:

1. d =
√

(x∗ − x)2 + (y∗ − y)2

2. s = sign
(
|∆θ| − π

2 −
(

1 + vMAX
BACK

vMAX
FOR

)
π

2

)
, with ∆θ = θ∗ − θ, ∆θ ∈ (−π, π]

3. v =

skvd if d ≥ L
(1− b)

√
ẋ2 + ẏ2 if d < L

Angular steering velocity control:
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1. wveh =



 1
tan θ


∥∥∥∥∥∥
 1

tan θ

∥∥∥∥∥∥
|θ| 6= π

2

 0
±1

 θ = ±π2

2. w∗ = 1
d

[
x∗ − x
y∗ − y

]

3. p = 〈wveh, w∗〉

4. p′ =

0 if p < 0 && s = −1
p otherwise

5. c =



1
ε

if p′ = 0

4 if |p′| > 1
21

|p′2 − |p′||
otherwise

6. θ̇∗ =


c

d2 (ẋ(y∗ − y)− ẏ(x∗ − x)) if d ≥ bL

0 otherwise

7. ω = ko
(
θ̇∗ − θ̇

)
For other details (like heuristics, proofs and choices) of this control law, we refer to
appendix A.

7.7 Summary about models

So far, we discussed about many model used in this thesis, as scenarios, robots, mea-
surements, coverage policy adopted, environmental interactions, dynamics and event
detection and dispatch.
The main aspects one should keep in mind are the following:

• we use closed random-preselected scenarios;

• robots that accomplish coverage are generated by one or more base station(s);

• robots have a sensing radius rv to communicate each other, they can take mea-
surements of the bearing angles θkij and the intensity of the event function fE(x, y)
(by which the distance between an agent and an event can be computed);

• robots are provided by touching sensors used to manage environmental interac-
tions;
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• hexagonal packing is the coverage policy adopted: to perform it, Simplicial Com-
plex Theory is needed;

• coverage is attained using a robotic network; therefore, Graph Theory is needed;

• events are modelled by an event function with a Gaussian shape for the intensity
and appear in a point of the plain after the coverage is totally accomplished;

• the robot dynamics adopted is the front-wheeled car: by the Nonlinear Control
Theory we can state that this model can reach any point of the plane using a
suitable control law in order to perform the dispatch around an event.
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8
Algorithm and illustrative ad

hoc simulations

Here we present a coverage algorithm based on [2] and show some ad-hoc simulations to
better explain the results.

8.1 Coverage algorithm

Simulations are executed in an environment defined by the user in function Scenario: it
gives the vertices of each segment that represents a wall of the room or an obstacle inside
the room. The algorithm starts by initializing the parameters and by deploying the base
station, that is the first robot (1) in a specific point of the environment and it has been
initialized as a fence robot. Then we start our deployment cycle: by pushing the robots
in the scenario, with the attention of remove the useless robot first. For this purpose we
run the function called removeUseless if the useless subset is not empty. Secondly we
use computeRipsComplex function which returns the set Rrv that is the union between
Rrv 0, Rrv 1 and Rrv 2 subsets which contains respectively all the 0-simpleces, 1-simpleces
and 2-simpleces of the graph structure. Then we update frontier set F (where F =
F0 ∪ F1) and obstacle set O (where O = O1 ∪ O0). After that we check for the exit
condition of the cycle: if the Fence subset F is empty, we break the cycle otherwise we
compute the useless subset through the function findRedundant and we deploy a new
robot in the environment thanks to deployNewRobot.
Once out of the loop, we remove all the unnecessary robots remained: during the main
cycle only one robot per cycle is removed, because if one removes a robot then it couldn’t
be true that other robots identified as useless still are unnecessary.
The tabular flowchart1 below gives an idea of the main actions executed during coverage
task.

1whose subroutines are presented in sections 8.1.1-8.1.4.
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Algorithm 1 Main (coverage part)

Deploy basestation; n← 1
while F 6= ∅
if useless 6= ∅
removeUseless (useless); n← n− 1

end if
Rrv = computRipsComplex(G)
[F, O] = fenceSubcomplex(G, Rrv)
if F= ∅

break
end if
useless = findRedundat(Rrv)
G = deployNewRobot(F,Rrv); n← n+ 1

end while
while useless 6= ∅
Rrv = computeRipsComplex(G)
removeUseless (useless); n← n− 1

end while

8.1.1 Compute the Vietoris-Rips complex

The function named computeRipsComplex has to construct the set Rrv composed by
the 0-simplex subset Rrv 0 that contains all the robots in the environment, the 1-simplex
subset Rrv 1 that contains all the couples of neighbour robots and the 2-simplex subset
Rrv 2 which contains all the 3-tuple of neighbour robots. The input of the function is
the graph structure G but the function just need the information about the neighbours
of each robot to simulate a distributed behaviour.

Algorithm 2 [Rrv ] =computeRipsComplex(G)
Input: Local graph structure G
Output: Rrv

Rrv = ∅
for robot = 1,...,n do
Rrv 0← Rrv 0 ∪ {i}
for robot j ∈ Ni do
Rrv 1← Rrv 1 ∪ {i, j}
for robot k ∈ Ni do
if j 6= k and j ∈ Nk then
Rrv 2← Rrv 2 ∪ {i, j, k}

end if
end for

end for
end for
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8.1.2 Compute the Fence and the Obstacle subsets

This function computes the fence F and the obstacle O subcomplexes given as input the
subsets of Rrv and the graph structure G. We say that an edge is a fence edge if it has
not completed the 2-simplices in both its side as shown in Fig. 8.1; it is an obstacle edge
if it has not completed the 2-simplices in both its sides but it can’t due to the contact
with an obstacle, the collision with another agent or because there is not enough space
for a new robot.

Figure 8.1.: In the left figure the edge {ij} has all the 2-simplices lying on the same side so it
is marked as a fence edge,; in the right one both side of {ij} are covered with at
least a 2-simplex so it is marked as a normal edge.

In this algorithm at first the exceptions have been computed thanks to the function
computeException that finds all the exceptional edge that can not be expanded. Thus,
for each edge that is not an exception, we search its uncovered side, so we can have two
situations: there is not uncovered side or there is at least one uncovered side. In the
first situation we understand {ij} as a normal edge2, in the second situation we call the
function isObstacle that tells us which of the three {{i}, {j}, {ij}} has to be included
in the obstacle set O or if we have to insert them in the fence set F .

Algorithm 3 [F,O]=fenceSubcomplex(Rrv )
Input: G, Rrv

Output: F , O

F ← ∅
O ← ∅
E = computeException(Rrv)
for {i, j} ∈ Rrv \ E do
unCovij = uncovered(Rrv , i, j)
if unCovij 6= ∅ then
if isObstacle(G, i, j)
O ← O ∪ {{i} , {j} , {ij}}

else
F ← {{i} , {j} , {ij}}

end if
end for

2as shown in the right part of Fig. 8.1
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8.1.3 Find the redundant robots

With this function we find redundant robots that can be removed without losing any
coverage capability. We say that a robot is useless when it lays inside a 2-simplex or it is
the vertex in a degenerate 2-simplex; both the situation are shown in Fig. 8.2. We say
those kinds of robot are useless because they increase the complexity of the Vietoris-Rips
complex without providing a significant growth of coverage capability.

Figure 8.2.: In the left figure robot q can be removed because it lays inside a 2-simplex; on the
right robot j is the vertex of a degenerate 2-simplex because i and k are neighbours.

We manage to detect all those situations in a complete distributed way: in the first case,
using the collection of the 2-simplices Rrv 2 we search for a common neighbour called q
of the trio in Rrv 2 that measures the angle β = θqij + θqjk + θqki. If β = 2π we understand
that q lays inside the trio {i, j, k} and we mark it as redundant. The other situation
can be easily detected when in a trio {i, j, k} of Rrv 2: one of the robot measures an
angle between the two others of π; if this occurs the robot is marked as redundant. This
situation usually happens when the three robots are in contact with the same wall.
The only information that robots must exchange to find those redundant robot is local,
in particular, a robot must know the neighbourhood of his neighbours and the angles
that they measure. In every iteration, If there is a useless robot , we remove it with a
probability prim.

8.1.4 Deployment of the new robot

We have just discriminated simplices belonging to the fence or to the obstacle subset.
Now we have to add a new robot in order to expand the network and increase the
coverage capability.
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Algorithm 4 [G] =deployNewRobot(G,F,Rrv )
Input: G, F , Rrv

Output: G

shortestPath = findPath(G,F );
i← last node of shortestPath;
if ∃ j : {i, j} ∈ F1
try to expand from {i, j}

else (i ∈ F0)
try to expand from {i}

end if
if can expand

push robots through path in the network G;
activate contacts of robots if needed;
add new robot close to the base station; n← n+ 1

end if

Expansion policy

Our expansion strategy is based on searching the shortest path3 between the base station
and the fence subcomplex; then the new robot is deployed by pushing all the robots
through the path and creating a new robot in the base station as shown in Fig. 8.3.
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Figure 8.3.: In cyan blue the base station and in yellow the path for the pushing; finally in
magenta the expanded new position.

In order to optimize the algorithm we decide not to consider the robots that are close
to the base station and far from the fence subcomplex. In particular, let fdistance be the
length of the shortest path from the base station to an element in the fence subcomplex,
we say that an edge is a fictitious exception if its nodes are both at a distance δ ≤
fdistance − 2. In this way we avoid the computation test of the fence subcomplex for

3a distributed research algorithm method for the shortest path can be found in [20]
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8. Algorithm and illustrative ad hoc simulations

edges that are far from the expanding frontier.
To avoid the possibility of losing coverage capability due to failure of single robots, we
periodically compute the fence subcomplex in the whole graph in order to deploy a new
robot if it has been broken down. In this way we do not let uncovered areas after a robot
loss. Let pfailure be the probability of a random robot in the network fails during each
iteration.

Expansion from {i, j} ∈ F1

Expanding from a fence edge {i, j} firstly requires a computation of the uncovered direc-
tion σ ∈ {+1,−1}. Now we need to find, in the local coordinates of i and j, the location
for the new robot position. Figure 8.4 illustrates the uncovered side of 1-simplex {i, j} in
i’s local coordinate. Our strategy for choosing the position to deploy next robot is to try
and achieve a hexagonal packing (which is the most optimal packing on an obstacle-free
plane) of robots as much as possible, only to be interrupted by the presence of obstacles
or control’s error. This essentially boils down to sending robots at an angle of 60Âř with
respect to ij into the free region. Using deploymentAngle function we determine the
closest other fence 1-simplices attached to i and j (e.g., {i, k}. If there is no other fence
1-simplex attached to i, we set θinew + σij

π

3 the 60◦ angle for deployment in a hexagonal
packing. Otherwise we set the angle to the minimum between the one for hexagonal
packaging π

3 and the the one that bisects θijki
. Likewise for θjnew.

Figure 8.4.: On the left: the free side of {i, j} where sign(θi
j,new) = σ. On the right: the bearing

to the new location, θi
j,new = min{(π3 ,

θi
j,k

2 )}, in i’s local coord.

Expansion from {i} ∈ F0

If i is not attached to a frontier 1-simplex (e.g., i is a frontier robot in a narrow passage
with a single file of robots), then we simply choose a random angular direction away da,0
from i for the deployment of the new robot k. Then a test drive from i is implemented:
k tries to leave away until its visibility from i holds. If this movement is not allowed
due to lacking of space then another leaving direction d′ is tried with the following law:
d′ = d + 2π

Na
, Na ≥ 4, see Fig. 8.5. This procedure is repeated Na times, so the value of

n-th computed direction is da,n = d + n
2π
Na

Thus we can attempt an expansion in every

direction with a angular sensitivity of 2π
Na

.
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8. Algorithm and illustrative ad hoc simulations

Figure 8.5.: Expansion strategy for i ∈ F0: α = 2π
Na

.

Pushing new robots from the base station

Our strategy to attain deployment is based on moving the frontier robot i towards the
new location and nodes between base station and i one step-ahead through the path.
Finally, a new robot is generated upon base station location by the latter. This procedure
is shown in Fig. 8.6.

Figure 8.6.: Robot 2,6,10,12 are pushed along the path and robot 13 is generated upon the
base station.

8.1.5 Multiple base station coverage protocol

In the case multiple base stations are placed in the environment we adopt the following
coverage protocol. Sources can’t share information because there is not an effective
connection between them4; thus, each of them realizes coverage independently, which, in
this phase, is faster. If between the base stations in the environment there are not narrow
passages, at a certain point the covered areas will overlap and there will be a possible
connection between the base stations. In this situation sources can share information
and the following protocol will be adopted: the path through which the new deployment
takes place will be the one generated thanks to the closest5 source. In this way fence
nodes that are closer to one of the sources will have expansion priority.

4There is not a path between base stations through deployed robot
5In terms of number of robots between base station and frontier
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8. Algorithm and illustrative ad hoc simulations

8.2 Simulations in absence of events

Now we analyse the performances of the algorithm presented in section 8.1. The ex-
periment has been performed using MATLAB as numeric platform. If not specified:
pfailure = 0, prim = 0.8.
In diagrams we are going to show we do not choose any unit of measurement to intend
that simulations could be thought with any scale of length. However, chosen a unit of
measurement for an axis, the other one has the same unit.

8.2.1 Rectangular scenario with theoretical analysis

We start by presenting a fundamental result: as Fig. 8.7 shows, hexagonal packing in
normal conditions is achieved all over the space environment that is not influenced by
border effects. These are inevitable effects which appear while deployment is attaining
close to a wall of the scenario and prevent an ideal hexagonal packing not only in these
zones but even in areas where coverage is going to be accomplished. As one can see,
Voronoi partitions in Fig. 8.8 arrange hexagons in the middle of the room only, since
the base station has been placed there.
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Figure 8.7.: Simulation in a rectangular environment without noise nor robot failures. Chosen
scenario is a rectangle a× b with a = 25, b = 20. Sensing radius used is rv = 5. 45
robots have been deployed.

In this context a theoretical comparison between bounds obtained in section 5.2 and
deployment performed by our algorithm can be made. Here we get NMC = 21, ÑMC =
23 as estimates of lowest bound. The real lowest bound of the number of robot to deploy
is NMC,real = 20 (obtained by simulations about lowest bound as figures in section 5.2
show) and the number of the robots actually deployed by our algorithm is Ndep = 45; see
Fig. 8.9 for more details. One should notice that Ndep > 2NMC,real: this is due to the
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Figure 8.8.: Corresponding Voronoi partition of simulation in Fig. 8.7.

border effects which should be taken into account. Indeed our algorithm needs to expand
the frontier of the sensing network as much it can since scenario is never known a priori;
thus, another comparison can be made: since 23 robots in Fig. 8.7 are in touch with
walls, then, we can consider them as an attempt for “identifying” scenario’s shape by our
algorithm. Therefore, we can roughly state the task of performing hexagonal packing is
actually carried out by the other 22 robots inside the boundary of the rectangle, which
is a result very close to the lowest estimated theoretical bound NMC of agents to deploy.
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Figure 8.9.: Comparison with theoretical bound of simulation in Fig. 8.7. Here NMC,real = 20,
NMC = 21, ÑMC = 23.
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By introducing a zero mean Gaussian white noise with variance r2
p : 0 < rp � rv while

deployments6 of new robots are carrying out we notice that hexagonal structures are
distorted. The higher is rp with respect to rv the less hexagonal packing on Voronoi
partitions is reached. However, the robustness of the network connectivity is assured
and coverage can be usually performed in a standard finite time if rp is sufficiently small.
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Figure 8.10.: Simulation in a rectangular scenario with noisy placement. rv = 5, φ = 0.5,
rp = 0.05.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Figure 8.11.: Corresponding Voronoi partition of simulation in Fig. 8.10.

6In a noisy framework deployment coordinates are computing with this law: newPlace = targetP lace+
x where x ∼ N (0, I2r

2
p). Note that there is the possibility that new robots can lose connections with

the sensor network created since that moment.
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In a real background it can happen that a robot fails the deployment or stops working.
Thus, its node in the network disappears and it can occurs a disconnection of the whole
graph. An important simulation, provided in Fig. 8.12, proves the robustness to robot
failures. As one can see in Fig. 8.13, Voronoi partition tells us that a perfect hexagonal
packing cannot be guaranteed in this case.
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Figure 8.12.: Simulation in a rectangular noise-free environment with possible robot failures.
rv = 5, φ = 0.5, pfailure = 1
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Figure 8.13.: Corresponding Voronoi partition of simulation in Fig. 8.12.
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8.3 Event detection and dispatch algorithm

The event detection and dispatch operations start when all coverage is concluded. Two
operation are needed to know how many robots are involved in the dispatch and where
they are located before starting it, respectively: detection and localization. See the
next tabular scheme to understand how our entire algorithm works.
Detection function detect selects some robots of the graphG close to the event and groups
them in a set call A. If the cardinality of this set is at least 2 then the localization
procedure starts with localize in order to get the poses and the target positions of
all the agents involved in the dispatch. After that, the dispatch begins: the function
controlV ehicles sends robots towards they targets and, finally, the connections in graph
G are reconstructed with reconstruct.

Algorithm 5 Main (global)

Main (coverage part);
A = detect(G);
if cardinality(A) > 1

[A0, Targets] = localize(A);
G = controlVehicles(G,A0,Targets);
G = reconstruct(G);

end if

8.3.1 Detection

The detection is the common action of the robots that consists in pinpointing the event
and creating a good localization strategy that allows to perform the dispatch.
More in details, the detection procedure is the following:

1. consider all robots Ai, i ∈ [1, N ] already deployed on the plane: all of them can be
potentially involved in the detection, so we say that set A contains the detected
robots and, at the moment, A = {Ai|i ∈ [1, N ]};

2. all robots compute the distance from the event knowing the function fE(x, y): if
there exist robots Aj , for some j ∈ [1, N ], whose event function value is null then
A← A \

{
Aj |j ∈ [1, N ], fAj

E (x, y) = 0
}
;

3. find robot Aī, ī ∈ [1, N ], that maximizes fE(x, y) i.e. minimizes the distance from
the event: call it A0 = Aī and say d0 = dist(µE , A0);

4. exclude the robots Al from A which do not respect the inequality d0 + kdl > rv
with 0 < k < 1 where dl = dist(µE , Al) and k is a constant decided by the user7:
in the end we get A← A \ {Al|l ∈ [1, N ], d0 + kdl > rv};

7We set k = 1
2 . It’s important to keep the value of k < 1, otherwise, in the reality, during the dispatch

phase we may have communications problems between robots, loosing the distributed behaviour. We
will recall this issue later, in the conclusions.
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5. redefine the rest of the indexes8 for the elements in A from 0 to M , 0 ≤ M ≤ N ,
getting robots Ai, i ∈ [0,M ] ready for the next point (note thatM could be fixed by
the user, if, for example, one prefer not to involve too many robot in the dispatch
and discard some of them);

6. since A0 is the closest robot to the event then it becomes the “leader” robot: in
other terms A0 will be the agent from which the dispatch of the other agents of
the current set A starts; thus, it is necessary to translate the coordinates of the
other robots in A with respect to the reference frame attached to A0 through a
localization procedure.

8.3.2 Localization

This is a crucial procedure that allows as to reconstruct all the poses of the robots in
the set A with respect to (w.r.t.) the reference frame (r.f.) attached to agent A0 and
to compute the target points to reach during the dispatch. The reason why we have to
perform this method before dispatch is the lack of information about the location (x, y)
of the robots: we recall that our robot are not provided by maps and only use bearing
angle and event sensing measurements to move in the environment.

Figure 8.14.: Localization of the event E and the robot Ai. The poses are expressed with
respect the reference frame attached to the closest robot A0 to the event. Just
in this case, for the sake of simplicity, the picture shows an angle Θ0 = 0.

Note that we use subscripts to indicate at which robot (or event) a geometrical object
belongs and the superscript to recall the reference frame from where a geometrical object
is seen and indicate local properties.
Before starting to read the procedure, we recall that a generic robot Aj has a status which

8keep index 0 for the robot which minimize dist(µE , Ai)
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is described by the four variables Aj = (xj , yj , θj , γj) we discussed in section 7.5.2. Since
variable γ here is not relevant, we let the status reduce into Aj = (Xj , Yj ,Θj); moreover,
here we write in capital letter and without superscript what is expressed w.r.t. the world
r.f.. So, just in this framework, we use a state of dimension 3 (e.g. A0

j = (X0
j , Y

0
j ,Θ0

j )
for local states), capital letters for variables expressed in a global context and lowercase
letters to indicate axes.
See Fig. 8.14 for helping the reading of the procedure that follows:

1. consider the r.f. {O0, x0, y0} located9 in O0 = (X0, Y0), tilted with an angle of
Θ0 and attached to the robot A0 s.t. A0 = (X0, Y0,Θ0): set the local status
A0

0 = (X0
0 , Y

0
0 ,Θ0

0) = (0, 0, 0);

2. by the knowledge of the distance between O0 and µE (acquired using the inverse
of the event function) and the measurement of the bearing angle θ0

E , using simple
trigonometric formulas, we can construct a vector E0 and obtain the position
E = E0 of the event w.r.t. the r.f. attached to A0;

3. repeat step 2 for the robot Ai in order to get the angle θiE and the vector Ei;

4. using the bearing angles θ0
E and θiE measure other two angles in absolute value

|α0| and |αi|; then, compute |αE | = π − |α0| − |αi|;

5. apply Carnot’s theorem for computing the length of the vector O0
i∥∥∥O0

i

∥∥∥ =
√
‖E0‖2 + ‖Ei‖2 − 2 ‖E0‖ ‖Ei‖ cos |αE |

and measure the bearing angle θ0
i to obtain the vectorO0

i =
[
X0
i

Y 0
i

]
=
∥∥O0

i

∥∥ [cos(θ0
i )

sin(θ0
i )

]
that expresses the position of Oi w.r.t. the r.f. of A0;

6. compute the angle Θ0
i of the i-th frame w.r.t. the r.f. attached to A0, paying

attention to understand the correct sign10 of αE :

Θ0
i = θ0

E + αE − θiE (8.1)

7. gather the state A0
i = (X0

i , Y
0
i ,Θ0

i ) and repeat points 2-7 for all the other robots
belonging to set A;

8. compute the targets for each robot A0
i as explained in 7.6.2.

8.4 Simulations on the control law for dispatch

Now we would like to show some important results about the control law employed for
the dispatch. This section offers some pictures that illustrate how one robot can move
from a starting point (◦) to a final one (◦) trying to converge to a preselected target
point (◦).

9We use coordinates X,Y to indicate a position expressed w.r.t a world r.f.
10in (8.1) αE is taken from the vector Ei to the vector E0 in counter-clockwise direction
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On the first set of images depicted in Fig. 8.15 one can understand the reason why we
need a control law with some heuristics like the reverse movement and the converging
factor: the trajectories of the vehicle are often too long and expensive (in matter of
time cost) and the convergence is sometimes not guaranteed. The plots depict a control
performed with a “rough” law reported in appendix A.2.
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Figure 8.15.: Trajectories of a vehicle in functions of different initial angles θ(0). Here the con-
trol law is “rough”: in this attempt no reverse movements have been implemented
and converging coefficient (see c in section 7.6.2) has not been used. One can im-
mediately recognize that the convergence highly depend on θ(0) and sometimes
is not ensured, like in cases (8.15d)-(8.15f).
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On the second set in Fig. 8.16, instead, we show the improvements that heuristic pro-
vides: the implementation of the reverse and the converging factor helps the vehicle to
find a better way to reach the targets.
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Figure 8.16.: Trajectories of a vehicle in functions of different initial angles θ(0). Here the
control law is improved with some heuristics (see, for instance, c function in the
control law). Note that reverse movements are actuated in Fig. 8.16f.
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9
Complex structured scenarios

In this chapter we use different scenarios in order to show properties and limits of our
proposed algorithm. These are the structures we adopted:

• type A structure (SA), employed in three frameworks:
– SA1 scenario: for showing the completeness of the attained coverage;
– SA2 scenario: used for underling different robot models;
– SA3 scenario: employed in the simulation with multiple base station;

• type B structure (SB): this scenario well illustrates some limits of our algorithm
regarding narrow passages;

• type C structure (SC): the last scenario used to prove that the coverage policy
(hexagonal packing) is guaranteed also in multiple base station frameworks and
for exhibiting a lesser time cost with the multiple sources approach.

The three types of environment are represented in Fig. 9.1.

(a) Structure type SA (b) Structure type SB (c) Structure type SC

Figure 9.1.: The three structures used in the following simulations.

9.1 Completion of the attained coverage

Now, we show how the algorithm works in a complex scenario. Figures 9.2 and 9.3
demonstrate that coverage is well accomplished respecting the constraints given by the
environment SA1. As one can see, expansion starts from the base station (robot 1, in
cyan). Every node represents an agent with a visibility disk (yellow circles). Fence
edges and nodes, in red, compose the current frontier which is expanding and magenta
node displays the robot just deployed. Nodes in blue are evaluated as obstacles when
robots touch walls. Edges in blue are set as obstacles when an expansion from two nodes
cannot be attained in general: when their nodes are obstacle with the same touch sensor
or when a corner of the scenario blocks communication. Green nodes and black edges
exhibit the part of the network in which no computations occur.
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Figure 9.2.: Scenario SA1. Step by step expansion coverage with different number of robots.
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(a) Complete coverage in a structured environment
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Figure 9.3.: Scenario SA1. It can be seen the final configuration of the coverage shown on Fig.
9.2. rv = 1, φ = 0.05
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9. Complex structured scenarios

9.2 Differences on physical model used for robots

Here, we show how robot model influences coverage capability through scenario SA2. In
particular in the first simulation shown in Fig. 9.4 a complete coverage is reached; on
the other hand, in the second one illustrated in Fig. 9.5, robot size and the dimension
of its visibility disk cause failure in coverage task.

0 2 4 6 8 10 12 14 16 18 20 22

0

2

4

6

8

10

12

1

2

3

4

5

6

7
8

9

10

11

12

13

14
15

16

17

18

19
20

21

22

23

24

25

26

27
28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49
50

51

52

53

54

55

56

57

58

59

60
61

62

63

64

65

66

67

68

69

70

71

72 7374 75

76
77

78

79

80

81

82

83

84

85

86

87

88
8990

91

92

93

94
95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114
115

116

117

118
119

120

121
122123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144145

146

147

148

149

150

151

152

153

154

155

156157

158

159

160

161

162

163
164

165

166

167

168

169

170

171

172
173

174

175
176

177178

179

180

181

182
183

184

185

186187

188

189
190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214
215

216

217

218

219

220

221

222

223

224

225

226

227

228229
230

231

232233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260
261

262

263

264

265

266

267

268

269

270

271

272

273

274

275276

277

278

279

280
281

282

283

284

285

286

287

288

289

290291

292

293

294 295

296

297

298

299

300

301

302303

304

305

306
307

308

309

310

311

312

313

314

315

316

317
318

319

320

321

322
323

324

325
326

327 328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346
347

348 349

350
351

352

353

354

355356

357

358

359

360 361

362

363

364

365
366

base station
normal nodes
obstacle nodes
expanded node
normal edges
obstacle edges

Figure 9.4.: Scenario SA1. Simulation with R = 1
6 and rv = 1.
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9. Complex structured scenarios

9.3 Narrow passage limits

Our algorithm does not guarantee coverage in environment’s parts connected to the base
station through a narrow passage which dimensions are less than rv +φ, where rv is the
sensing radius of a robot and φ its diameter. In this section we adopt the scenario SB
for showing these limits. A lucky situation is presented in Fig. 9.6 and an example of a
failed coverage completion is shown in Fig. 9.7. Here, the room has four narrow passages
(left, right, up, down) respectively of 3, 4, 2, 5 and we recall that rv = 3.
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Figure 9.6.: Scenario SB . Complete coverage luckily achieved. rv = 3, d = 3
20
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9. Complex structured scenarios

9.4 Multiple sources scenarios

In the following simulations multiple sources are employed and the environment SA3 is
covered starting from two different location using protocol described in section 8.1.5.
In the first situation presented in Fig. 9.8 the number of robots provided by the two
base stations is more or less the same because an effective connection between sources
is established after the deployment of a total of 144 robots.
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Figure 9.8.: Scenario SA3. Step by step expansion with far multiple sources. rv = 1.5, φ = rv

20

In the case SC , shown in Fig. 9.9, two base stations are close each other and after 93
robots have been deployed, a connection is established. It is important to notice that
after this connection, sources start to cooperate and all the robots deployed in the right
and bottom part of the environment are generated by base station in (15, 10) because
frontier robots are further from base station in (2.5, 10). Another important observation
is that hexagonal packing is not guaranteed in the junction where different graphs merge.
This can be solved by adopting a mesh/graph relaxing policy.

91



9. Complex structured scenarios

0 5 10 15 20

0

5

10

Initial situation with 2 sources

0 5 10 15 20

0

5

10

Coverage with 50 robots

0 5 10 15 20

0

5

10

Coverage with 100 robots

0 5 10 15 20

0

5

10

Coverage with 150 robots

0 5 10 15 20

0

5

10

Coverage with 200 robots

0 5 10 15 20

0

5

10

Full Coverage

Figure 9.9.: Scenario SC . Step by step expansion with close multiple sources. rv = 1, φ = rv

20

Another important aspect to consider is the time cost, in terms of steps of computation,
to deploy agents. In presence of one source, a step is intended as the operation to
deploy another robot. Instead, with two sources, it is meant differently: if two robots
are deployed by different sources there are no transient steps because, in reality, base
stations can work simultaneously. In this case a step is counted only if two consecutive
deployments are managed by the same base station.
Using scenario SC , we report some results on the taken steps to attain complete coverage
in figures 9.10 and 9.11: as one can expect, the more base stations we use the faster
coverage is.
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Figure 9.10.: Scenario S3, 86 steps were needed in this simulation to cover it using 1 base
station in (1, 2). rv = 4, φ = rv

5 , prim = 0.9.
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Figure 9.11.: Scenario S3, 52 steps were needed in this simulation to cover it using 2 base
stations in (1, 2) and (1, 10). rv = 4, φ = rv

5 , prim = 0.9.
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10
Event scenarios

We have already seen that after coverage, when a communication sensor network has
been created, robots can advise an event detecting it.
In this chapter two types of simulations are shown:

• robots that, after coverage is accomplished, detect an event and perform a dispatch;

• limits about the current control law: if an agent encounters a barrier or a wall
between its trajectory, at the moment, it is not able to avoid it and bypass the
mentioned obstacle.

10.1 Dispatch around an event

In this section, one can appreciate how agents pinpoint a randomly appeared event and
how the dispatch is performed. See Fig. 10.1: here, a total coverage of the area has been
accomplished and a graph shows that a sensor network has been created in a rectangular
room.
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Figure 10.1.: Completely attained coverage in a rectangular room before the appearance of an
event.

Then, with the fundamental hypothesis that robots have enough space to move, i.e.
no obstacles impede maneuvers to reach the selected target points, we can observe which
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10. Event scenarios

trajectory the robots choose for dispatching1 around the event arisen in the point (20, 10).
See Fig. 10.2: in this case, two robots have been selected for moving and forming a
equilateral triangle that has the event as its baricentre.
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Figure 10.2.: Agent 17 coordinates agents 4 and 7 to form an equilateral triangle around the
event arisen in (20, 10). Note that 7 connections between the triangle and the
reminder of the network are still active.

The next picture illustrated in Fig. 10.3 shows different choices of the number of robots
for the dispatch: this number is set to be 6 at maximum in our algorithm, otherwise,
with many attempts, we observed that the network could loose its connectivity at the
end of the dispatch operations. In this case, forming a pentagon, we pass from 7 left
connections to 5.
It is very clear that the more robots are employed to perform the dispatch the less the
connectivity of the communication sensor network will be in the end. The reason why we
set a maximum of 6 robots is well explained by Fig. 10.4: here only one connection holds
on between the dispatched hexagon and the network. This is an important aspect if one
wants to keep a distributed approach, since robots have to communicate via multi-hop
passages of information.

1In this chapter we use the control law presented in section 7.6.2 for sending robots.
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Figure 10.3.: Pentagonal formation of the dispatched robots around the event: 5 connections
with the reminder of the network are still active.

-5 0 5 10 15 20 25 30
-5

0

5

10

15

20

25

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

2829

30

31

32

33

34
35

36

37

38 39

40
41

42
43 44

base station
normal nodes
obstacle nodes
expanded node
normal edges
obstacle edges

Figure 10.4.: Hexagonal formation of the dispatched robots around the event: 1 connection
with the reminder of the network is still active.

However, studies on which is the real maximum number of dispatching agents are matter
of future works: in this thesis we can just state that more than 6 robots sent close to
the event may cause a failure of the distributed communications.
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10.2 Dispatch control law limits

A remarkable limit of the dispatch operation is the impossibility of avoiding to break
into walls and bypass barriers in the environment. This is due to the control law that, in
this thesis, does not consider barriers yet. See Fig. 10.5 to better understand the fact.
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Figure 10.5.: Hexagonal formation of the dispatched robots around the event. The computed
trajectories do not take into account the presence of a squared obstacle in the
middle of the scenario.

Improving the current control law by considering also the environment constraints will
be object of future studies.
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11
Conclusions

In this thesis we proposed a coverage algorithm based on the article in [2]. We developed
a strategy which is able to perform a deployment in static-obstacle-structured environ-
ments in a context of trade-off between local communication and optimal coverage.
The particular aim and tasks we chose are

• the maximization of local communication: we reformulated the algorithm in order
to remove the assumption of a centralized server which collects local information
from individual robots and performing the distributed approach as far as possible;

• the definition of an expansion policy when we have multiple source of robot swarms;

• the insertion of the possibility to detect small non-convex features in the envi-
ronment which usually result “blind-spots” for some obstacles, assuming a space
structure model for robots (e.g. giving them a round shape) in order to define the
limitation of smallest non-convex coverable features;

• the possibility of event detection and focusing by sending a group of robots.

11.1 Guarantees and limits

These are guarantees of our proposed algorithm.

• Algorithmic distributed completeness. Algorithm never gets stuck in an
infinite cycle because in every new placement coverage area expands. Before each
deployment we check the possibility of a creation of a hole inside the graph due to
robot failure, noise or error accumulation. In this situation a new robot is placed
for filling lacking area. The algorithm uses local information only and terminates
only when the fence subcomplex F is empty. This always happens if the area we
are covering is finite and we have sufficient number of robots.

• Optimal local coverage. Far from obstacles hexagonal packing is obtained;
therefore, we ensure local optimal coverage. Finding and removing redundant
robots allows us to use the minimum number of agents the environment needs to
be covered, with this kind of algorithm.

• Robustness to failure: if a single robot fails and it is close enough to the ex-
panding frontier then the sensor network is able to adapt to this lack. In the case
that a robot failure occurs far from the expanding frontier the hole can be detected
from a periodic check of the whole graph connections between agents.
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11. Conclusions

• Collision avoidance. Two robots neither lay on the same place nor crash to
each other, according to the collision policy adopted. When robots hit walls they
respect the interaction model described in section 7.4. The collision avoidance
protocol is adopted only during deployments.

• Multiple source improvement. If two or more base stations are used then
coverage speed greatly increases until networks connect the sources.

• Focusing on an event. If a robot has enough space of maneuver, it easily can
be sent in a target point near an event for monitoring.

The main limitations of our work follow.

• Without using an accurate inspection of obstacle edges, basic part of the algorithm
does not guarantee coverage in feature with dimension smaller than rv + φ, where
rv is the sensing radius and φ is the diameter of a robot body.

• During the dispatch operations, barriers and walls cannot be avoided because the
control law does not take into account obstacles yet;

11.2 Future developments

Several developments should be studied in the future. Here some examples are written.

• Finding features smaller than rv +φ is still an open challenge. During some recent
collateral works, we thought about a solution that could be a starting point for
the inspection of inlets in a highly complex structured scenario. See Fig. 11.1:
sending a “probe” of robots could be a good idea to complete coverage in all areas
belonging to an environment.

• In this thesis, measurements have been considered 100% reliable in terms of errors.
In a real context, we should think about noisy measurements of the bearing angles
and the event intensity and start to imagine a good strategy to perform deploy-
ments and moving robots. This fact is important, because if one wants to use real
robots, for instance, dispatch around an event could fail since target positions are
not computed correctly.

• We did not prove rigorously1 the validity of the control law yet. We should move
in two directions for verifying it and to be sure that our law is optimal:

– prove the asymptotic (or, at least, simple) stability with Lyapunov methods,
as described in [21] and [22]: this aspect is very important because a robot
should not leave too far away from its “leader” during the dispatch operation,
otherwise it could loose signal, information and communication could not be
exchanged and feedback could not be used to fulfill the task;

– try to find optimal trajectories that minimize (7.7) and make some compar-
isons with our developed control law;

1however, its formal derivation is explained in appendix A
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• Improve our collision avoidance protocol in every situation, from coverage to dis-
patch operations. In particular, we should insert the model of obstacles in the
control law and ensure the robots are able to reach a target point, even tough
impacts occur.
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Figure 11.1.: Simulation with φ = 0.2 and rv = 4: a “probe” (in red) has been used to discover
the upper room in this scenario with four inlets.
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A
Control law for a

front-wheeled car robot
The control law used for front-wheeled car robots is obtained by a combination of two
elements. The first part is derived by a basilar control law for car-like robots we have
taken from [23]; however, since the latter model is not the one we use, we had to
manipulate it. The second part is made by heuristics formulas that help1 to find a
convergence to targets and improve the stability of the controlled model.

A.1 Formal derivation

According to [23], there exists a simple control law for the car-like robot model. We
recall that its dynamics is described by nonlinear system in (A.1):

ẋ = v cos θ
ẏ = v sin θ
θ̇ = v

L
tan γ

(A.1)

where v and γ are respectively the input velocity (more precisely speed with sign) and
input steering angle. The mentioned control consists in the following algorithm.
Velocity control:

1. d =
√

(x∗ − x)2 + (y∗ − y)2 (distance between current position and target);

2. v = kvd.

Steering angle control:

1. θ∗ = arctan
(
y∗ − y
x∗ − x

)
(desired planar angle of the vehicle);

2. γ = kγ(θ∗ − θ) where kγ is a positive proportional constant.

The velocity control has just to be modified as regarding the sign because kv is a positive
constant: on the next section we will show how to design reverse movements.
The steering angle control is radically modified, since, for a font-wheel car model, this

1in section 8.4 we showed some problems related to a control law without heuristics
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A. Control law for a front-wheeled car robot

input becomes a state. Indeed, we have to think about its dynamics described by (A.2):

ẋ = v cos θ
ẏ = v sin θ
θ̇ = v

L
tan γ

γ̇ = ω

(A.2)

Here, we have to design ω, which is the input steering angular velocity. In this case we
assume that

ω = ko
(
θ̇∗ − θ̇

)
similarly to point 2 in the previous steering angle control. Then, assuming that variable
θ̇ is observable, we try to compute θ̇∗: the desired planar angular velocity for the vehicle.
What follows seems to be a valid idea, since simulations showed in section 8.4.
From point 1 of the steering angle control:

θ∗ = arctan
(
y∗ − y
x∗ − x

)
that is equal to

tan θ∗ = y∗ − y
x∗ − x

(A.3)

Differentiating both sides of (A.3) we get

(1 + tan θ∗)θ̇∗ = −ẏ(x∗ − x) + ẋ(y∗ − y)
(x∗ − x)2 (A.4)

and substituting (A.3) in (A.4) we obtain

θ̇∗ = ẋ(y∗ − y)− ẏ(x∗ − x)
(x∗ − x)2 + (y∗ − y)2

therefore
θ̇∗ = 1

d2 (ẋ(y∗ − y)− ẏ(x∗ − x))

A.2 Heuristic corrections

So far, the control law we have got is the following.
Velocity control:

1. d =
√

(x∗ − x)2 + (y∗ − y)2 (distance between current position and target);

2. v = kvd.

Angular steering velocity control:

1. θ̇∗ = 1
d2 (ẋ(y∗ − y)− ẏ(x∗ − x));

2. ω = ko
(
θ̇∗ − θ̇

)
.
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A. Control law for a front-wheeled car robot

This is the control law we said to be “rough” in section 8.4.
As regards the heuristic corrections, we proposed two improvements:

• introducing reverse movements, i.e. compute a sign s = ±1 to insert in the velocity
control v = skvd;

• introducing a converging function c that helps to turn the steer when the vehicle
is not aligned with the target or it is moving backward.

The sign we choose to compute in section 7.6.2 is provided by (A.5):

s = sign
(
|∆θ| − π

2 −
(

1 + vMAX
BACK

vMAX
FOR

)
π

2

)
(A.5)

where the meaning of the quantities is explained in table 7.1. Note that the term

η = 1+ vMAX
BACK

vMAX
FOR

is a positive coefficient lesser than 1 because vMAX
BACK is a negative or null

speed and
∣∣∣vMAX
BACK

∣∣∣ < vMAX
FOR . Since we have 0 ≤ η < 1 then we are making a comparison

with the angle |∆θ| and the critic angle θs = (1 + η)π2 ≤ π. If, in this comparison |∆θ|
is the minor angle, we state that the vehicle is “bad-oriented”, in the sense that the
direction of the vehicle falls into a blind cone of non-visibility for reaching the target, as
shown in Fig. A.1.
As second aspect for corrections, we consider the c function because it is linked to the
convergence to the target: c is a non linear function of p, which, basically, is the scalar
product between the unit vector of the direction of the vehicle wveh and the unit vector
representing the desired direction to reach the target w∗. In Fig. A.1, it is illustrated by
using different colors which values of c modify the first equation for the angular steering
angle control.

Figure A.1.: Blind cone of non-visibility in red, contribution of η for describing the angle θs

(taken from the blue line) in orange. The arrow indicates the desired direction for
the target. If one decides not to set reverse movements in general, i.e. vMAX

BACK = 0,
the non-visibility cone becomes wide as both red and orange parts, since θs would
be equal to π

2 .
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