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AN ENERGY-EFFICIENT DISTRIBUTED ALGORITHM FOR k-COVERAGE 

PROBLEM IN WIRELESS SENSOR NETWORKS 

by 

CHINH TRUNG VU 

Under the Direction of Yingshu Li 

ABSTRACT 

Wireless sensor networks (WSNs) have recently achieved a great deal of attention due to 

its numerous attractive applications in many different fields. Sensors and WSNs possesses a 

number of special characteristics that make them very promising in many applications, but also 

put on them lots of constraints that make issues in sensor network particularly difficult. These 

issues may include topology control, routing, coverage, security, and data management.  In this 

thesis, we focus our attention on the coverage problem. Firstly, we define the Sensor Energy-

efficient Scheduling for k-coverage (SESK) problem. We then solve it by proposing a novel, 

completely localized and distributed scheduling approach, naming Distributed Energy-efficient 

Scheduling for k-coverage (DESK) such that the energy consumption among all the sensors is 

balanced, and the network lifetime is maximized while still satisfying the k-coverage 

requirement. Finally, in related work section we conduct an extensive survey of the existing 

work in literature that focuses on with the coverage problem. 

INDEX WORDS:  Wireless sensor network, Coverage problem, k-coverage, Localized and 
distributed algorithm, Energy-efficiency, Fault-tolerance, Robustness 
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I. INTRODUCTION 

Wireless sensor networks (WSNs) have recently attracted much attention of researchers 

due to its wide ranges of applications. A sensor is a tiny battery-equipped device capable of 

sensing, communication and computation. The minuscule size, light weight,  

and portability attributes are special characteristics of a sensor that make WSNs to be the best 

and/or unique choice in many applications. However, there are also a lot of constraints on 

sensors such as limit on energy supply, on bandwidth, on computational capability, the 

uncertainty of sensed data and communicated information, the vulnerability of sensors to 

environment, etc. that require thorough and prudent researches to overcome. A WSN is a 

wireless network comprising of a huge amount of static or mobile sensors. Inside a WSN, the 

sensors autonomously collaborate to sense, collect, process data and transmit those 

sensed/processed data to some specific data processing centers. That means sensors need to be 

able to cooperatively accomplish assigned tasks without the intervention or control from outside. 

These characteristics along with self-organization and self-configuration capabilities of sensors 

make WSNs very promising for applications in many different fields. 

I.1. Constraints of sensors and WSNs. 

A sensor network is a wireless network that comprises many sensing devices scattered on 

an area as guards to record (and eventually control) surrounding environment conditions such as 

temperature, humidity, sound, vibration, and pressure. In a sensor network, sensors cooperatively 

work to sense, process and route data. Since the recent development in micro-electro-mechanical 

system (MEMS) technology, wireless communication, and digital electronics has enabled the 

low-cost, low-power, multifunction, and tiny sensor [AKY02], so that a redundant number of 
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sensors can be densely deployed to a monitored area to prolong the network lifetime and enhance 

the surveillance quality. Although a huge number of protocols has been applied to wired and 

(traditional) wireless network, those protocols cannot directly be employed to sensor network 

since sensor network possesses some special characteristics and restrictions that distinguish it 

from other types of networks. Those particular things may include: 

 The sensor nodes can only provide communication with very low quality, high latency and 

variance, limited bandwidth, and high failure-rate. Sensor’s transmission range is short and 

greatly affected by energy. In sensor network, the communications are mainly by 

broadcasting. 

 The most precious resource of a sensor is energy. In some cases, the battery is irreplaceable 

while all the sensor's operations consume specific amount of energy, therefore energy 

conservation always is the biggest requirement on designing a sensor network protocol. Also, 

a sensor consumes much more energy on communication than on computation. 

 Huge number of sensors is deployed into hostile environment under tough condition, thus it 

is very difficult to maintain and manage the network. 

 Another sensor's constraint is limitation of computational capability and memory sizes. This 

limits the types of algorithms and results processing on a sensor. 

 Sensing data is tended to be biased under the environment effects such as noise, obstacle, etc. 

 Sensor nodes may not have global ID due to the large number of sensors. 

 The topology of a WSN changes very frequently due to the movement of sensors or the 

(temporary or permanent) failure or death of some sensors or the addition of sensors to the 

network. 
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 A tiny sensor node tends to fail on operating due to numerous reasons such as depletion of 

energy, environmental interference [AKY02] and is very vulnerable to the environment (e.g., 

easy to be physically damaged).  

I.2. Protocol design requirements 

A WSN being a special kind of network which possesses lots of constraints as being 

itemized in section I.1, protocols designed for them must satisfy some special requirements to 

overcome those constraints. The most critical requirements may include: 

 Energy-efficiency. A sensor is a battery-driven device and in most cases the battery is 

irreplaceable. However, each operation of a sensor consumes a specific amount of energy. 

Thus, to lengthen network lifetime, a sensor network protocol must take energy into account 

or in other words, it must be energy-efficient. To date, the best way to energy-efficiently 

maximize the network lifetime is to balance energy consumption among all the sensors in 

the network. That is, the more energetic sensors must have more chance to be active, and the 

more exhausted ones should have more chance to go to sleep. 

 Robustness. Sensors are unreliable devices. Besides, they are usually deployed in big 

regions under tough conditions. Thus, a sensor may unpredictably die, or may be 

temporarily or permanently go out of service at any time for various reasons. The protocols 

for sensor networks must be able to cope with these situations. 

 Fault-tolerance. Sensor network is a prone-to-failure network [AKY02] and a sensor is an 

unreliable device equipped with a high failure-rate communication system and unreliable 

sensing components. Thus, to guarantee the correctness and integrity of sensed data, 

protocols designed for WSNs must provide high fault-tolerance. 
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 Distributed algorithms. Sensors have very limited computational ability and very small 

memory size. So they are not able to execute a complex algorithm. The burden of running 

any algorithm should be shared among sensors in the network. Besides, a WSN is a scalable 

network comprising of huge number of sensors and the topology of a sensor network 

changes very frequently. Thus, the converge-time of any algorithms for WSN needs to be 

small enough to keep up with the changes in the networks. For these reasons, in most cases, 

only distributed algorithms are suitable for WSNs. 

I.3. Challenging issues in WSNs and our main focus. 

Before a WSN can be brought into real life, many problems need to be carefully resolved. 

More and more problems are discovered and solved through time. In this sub-section, we itemize 

some typical ones that draw the most attention from researchers. Keep in mind that the following 

issues are needed to be attacked under the various constraints and limitation as mentioned in 

section I.1, which makes them exceedingly challenging. 

 Algorithm type: Energy is most critical resource of a sensor since every operation requires 

certain energy while sensor is battery-driven and battery is not always replaceable. Thus, 

energy-efficiency should be (and have been) foremost concern of any protocol designed for a 

WSN. Other limitations of a sensor that require thorough awareness on designing a WSN 

protocol is sensor’s limited memory size, communication and computation capability, thus 

algorithms for WSNs need to be simple but robust and fault-tolerant. That is reason why 

decentralized algorithm is always preferable (if it is not the only suitable ones) in WSNs. 

Some requirements that a “good” protocol aim to are simplicity, energy-efficiency, localized 

and distributed type, scalability and flexibility to the enlargement of the network, robustness, 

fault-tolerance, and low communication overhead. 
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 Topology control: For a prone-to-failure network as WSN, the sensors may malfunction at 

anytime or any place for various reasons. It follows that the topology of a WSN is so 

dynamic and unpredictable. For each kind of application, it needs an appropriate topology for 

it to efficiently function.  

 Routing: After sensors collect the information, enormous streams of information need to be 

made available to some data consuming centers. The question of how to efficiently, safely 

and securely route the data through a high-density network is also a big question for sensor 

networks. 

 Data Management: A WSN is supposed to frequently collect information about the physical 

world, e.g., surrounding environment or objects. Information is exchanged in multiple-

source-multiple-destination basic and the number of sensors in a WSN is in the order of 

hundreds, thousands or more. Thus, the amount of data collected by a WSN is remarkably 

huge. How to manage, process and route this data is truly a challenge. Researchers have 

considered the following sub-problems for this kind of issue: data in-network processing, 

data dissemination (multicast, unicast, broadcast) and aggregation (or convergecast). 

 Coverage: The primary function of a WSN is to watch over the physical world. To 

accomplish this function, it is compulsory to schedule, organize the network in such a way 

that it can effectively observe the world and collect information that it is desired and 

supposed to gather. This problem is thoroughly investigated in this thesis. More specifically, 

we first propose a special kind of coverage problem named SESK in section II which has 

high requirements of being energy-efficient and fault-tolerant. We later argue that SESK is 

an NP-complete problem. We further solve SESK by introducing a heuristic which satisfies 

all the requirements a sensor network protocol should have (which is shown in section III.3). 
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The correctness as well as its performance and efficiency are confirmed by providing both 

theoretical analysis and simulation results. At the end of this thesis, we give an extensive 

survey of the existing literature on the coverage problem. 

 Security: It is no use if the sensed data of a WSN is illegally modified, blocked, or redirected 

to some illegal data centers. It is the responsibility of security protocols to protect the WSNs 

from such undesired actions. Because a WSN is usually an ad hoc wireless network and is 

usually deployed to an unattended and hostile region, attacks in sensor networks are 

relatively easy to carry out, but are exceptionally difficult to defend. Also, types of attacks in 

WSN are very multiform. Some aspects of security issues in WSN are to guarantee the 

integrity, confidentiality of the data or to verify the authenticity of entities exchanging the 

data. 

 Others: Beside above issues, there are numerous other important issues that are being worked 

on such as time synchronization, localization, positioning and location tracking, sensor 

management protocol [ILY05], link-layer protocols (e.g., MAC), transport-layer protocols 

(e.g., real-time traffic, reliable transfer). 

I.4. WSNs applications 

[AKY02] gives a nice survey on applications of WSNs. Here, we briefly itemize some 

typical and promising applications of WSNs. More detail can be referred from [ILY05] and 

[AKY02]. 

 Military applications: The autonomy, self-organization, self-configuration and portability 

characteristics of a WSN make it very suitable for military applications. It can be used: 
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o For commanders to monitor the status (position, quantity, availability) of their 

troops, equipment and ammunition. 

o For battlefield surveillance or reconnaissance of opposing forces and terrain. 

o For battle damage assessment. 

o To target the enemy; to detect biological and chemical (NBC) attack. 

 Environmental applications: It can be used : 

o To monitor the condition/status of environment such as humidity, temperature, 

pressure, pollution, etc. of soil, marine, atmosphere, etc.  

o To detect a disaster that is about to happen such as forest fire, flood, etc. 

o To track the movement, health condition of animal/insects etc. 

 Health applications: It can be used : 

o To remotely monitor/track/diagnose the condition/status (position, quantity, heart 

rate, blood pressure, etc.) of doctor, patience or drug, equipment, etc. 

o To tele-monitor human physiological data (e.g., patience behavior). And the data 

will be collected and analyze to detect early symptom of a disease, to find new 

treatment, etc. 

 Home applications: It can be used to provide smart home in which all the devices can be 

autonomous or can be controlled from remote. 

 Commercial applications: It can be used to detect/track/monitor vehicles, to 

manage/control inventory/warehouse, to support interactive devices or to control 

environment of a building. 
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 Scientific exploration: WSNs can be deployed under the water or to the surface of a 

planet for scientific research purpose. 
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II. THE SESK PROBLEM 

In this thesis, we will define and solve a very special coverage problem that requires a 

certain level of fault tolerance and energy balancing. This section is dedicated to first define and 

then formulate the Sensor Energy-efficient Scheduling for k-coverage (SESK) problem – our 

main problem in this thesis. We further confirm that SESK is an NP-complete problem. The 

heuristic for this NP-complete problem is given in next section. 

Definition 1. A location in an area A is said to be covered by sensor si if it is within si's sensing 

range. A location in A is said to be k-covered if it is within at least k sensors' sensing range. Area 

A is said to be k-covered if every point within it is k-covered. 

In this text, k is called the coverage level or coverage degree. The SESK problem is 

defined as follows: 

Definition 2. Sensor Energy-efficient Scheduling for k-coverage (SESK): Given a two-

dimensional area A and a set of  N  sensors S ={s1, s2, …, sN}, derive an active/sleep schedule 

for each sensor such that: 

1. The whole area A is k-covered. 

2. The energy consumption among all the sensors is balanced. 

3. The network life time is maximized. 

Our objective is to find the maximum number of non-disjoint sets of sensors such that 

each set cover can assure the k-coverage for the whole region. In [SLI01], the "SET K-COVER" 

problem, whose goal is to discover K disjoint set covers satisfying that each set cover can 1-

cover the whole area, is proven to be NP-complete. Since disjoint set is a special case of non-



10 

disjoint set and 1-cover is also a special case of k-cover, "SET K-COVER" is definitely a special 

case of SESK. Thus, it follows that the following theorem holds: 

Theorem 1. SESK is a NP-complete problem. 

One of our optimization goals is to maximize network lifetime, which is defined as 

following: 

Definition 3. (Network lifetime) The network lifetime is the duration during which the whole 

monitored region is k-covered. 

To mathematically formulate the SESK problem, the following notations need to be 

stated: 

 m: The number of discovered non-disjoint set covers. 

 k: The desired coverage level specified by users. 

 Cj(j = 1..m): The jth set cover. 

 covj(j = 1..m): The coverage level that set cover Cj can provide for the whole monitored area. 

 Ei(i = 1..N): The initial energy of sensor i. 

 ej,i(i = 1..N; j = 1..m): The amount of energy that sensor i consumes when the set cover Cj is 

active. ej,i = 0 if set cover Cj does not contain sensor i. 

 die
ie : The residual energy of sensor i at the time the network dies. 
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The SESK problem can be mathematically formulated as follows: 

Objective: 

Max m (1) 

∑ −
N

ii

die
i

die
i eeMin

21

21
;

2)(  (2) 

 

Subject to: 

U
m

j
j SC

1=
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Formulation explanations and remarks: 

1. Eq. 1 claims that our objective is to find as many subsets as possible. Since DESK works in 

rounds, to maximize the number of subsets is to maximize the lifetime of the network. 

2. Eq. 2 is an effort to balance the energy consumption among all the sensors. 

3. Eq. 3 guarantees that all the set covers are the subsets of the set of all sensors. 

4. Eq. 4 assures that the whole region is continuously k-covered. 

5. Eq. 5 ensures that sensors cannot overspend their initially supplied energy. 

6. No relation between set covers is specified since they are non-disjoint. Furthermore, they are 

possibly identical. 
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III. THE DESK ALGORITHM 

To find an approximate solution to the SESK problem, a NP-complete problem, we 

introduce a completely localized and distributed heuristic named DESK (Distributed Energy-

efficient Scheduling for k-coverage) that a) requires only 1-hop-sensing neighbors’ information 

to b) discovers and schedules the non-disjoint subsets of sensors which can guarantee the k-

coverage over the working area where k can be changed by users. c) We as well take energy into 

consideration. d) We mathematically model the time a sensor needs to wait before deciding its 

status using parameters α , β  which can dynamically tune the algorithm corresponding to user's 

requirement on energy's priority. That is, if the energy consumption is a very critical issue, the 

user can assign α  a very high value and β  a low value. In contrast, if energy is not the major 

concern, the value of α  may be small and β  may be large. e) For the sake of evaluating the 

DESK’s efficiency, we develop a simple energy model that takes sensing, communication and 

computation energy consumptions into account.   

III.1. Main idea 

DESK operates in rounds. By that, the network is capable of automatically adjusting 

coverage level until the number of live sensors is not enough to k-cover the whole surveillance 

area. Also by working in rounds, some sensors may frequently have a chance to deactivate. Thus, 

their battery can take the advantage of the relaxation effect mentioned in [CHI99]. This helps a 

sensor to live longer than its pre-defined longevity. 

Firstly, we introduce the k-perimeter-coverage which is stated in [HUT05] as following: 

Definition 4. A sensor is said to be k-perimeter-covered if all the points on its perimeter are 

covered by at least k sensors other than itself. 
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Our work is based on the result from [HUT05] which is formally stated in the following 

theorem: 

Theorem 2. Suppose that no two sensors are located in the same location. The whole network 

area A is k-covered if and only if each sensor in the network is k-perimeter-covered. 

This theorem indicates the rule to validate the coverage levels of each sub-region of the 

monitored area. Based on that, our algorithm schedules the sensors to be active/sleep with the 

consideration of each sensor's residual energy and its contribution to the coverage level of the 

whole network. 

III.2. Assumptions 

We assume that all the sensors have a clock with a uniform starting time t0, so that their 

activities can be synchronized. This is realistic since some work has investigated the global 

synchronization and both centralized and localized solutions have been proposed ([ELS02], 

[LIR04]). The second assumption is that the initial network deployment guarantees that every 

point in the monitored area can be at least k-covered. The condition to satisfy this assumption has 

been addressed in [KUM04] and [WAN06] (see section V.3.1). In our paper, the sensing area of 

a sensor is modeled as a circle centered at the sensor with radius as its sensing range. We further 

assume that the communication range of a sensor is at least twice the sensing range, i.e., 

sc rr ×≥ 2 . Thus, the k-coverage can guarantee k-connectivity ([WAN03], [ZHA03]). Finally, we 

assume that no two sensors are located at the same position. However, we have no restriction on 

a sensor's initial energy and the sensing range.  
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III.3. Algorithm parameters 

For the sake of explanation later on, the notations, a sensor's status and message types are 

introduced as follows. 

 Sensor's attributes: 

− wi: Timer/time duration that decides the time sensor si to become active/sleep. wi 

refers to both the timer itself and the time duration. 

− Ri: Timer for sleep sensor si to wake up at the next round. 

− ni: The current number of dependent neighbors, i.e., the number of neighbors 

requesting sensor si to become active. 

− Ni: The number of neighbors of sensor si. 

− ri: Sensor si's sensing range. 

− Ei: Sensor si's initial energy. 

− ei: Sensor si's current residual energy. 

− ethreshold (Threshold energy): The minimum amount of energy that a sensor needs to be 

active in a whole round. 

 Exchanged messages: 

− mACTIVATE: A sensor informs others that it becomes active. 

− mASK2SLEEP: A sensor suggests a neighbor to go to sleep due to its uselessness. 

The concept of uselessness is explained in section III.4.1 
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− mGOSLEEP: A sensor finds itself useless, i.e., all of its neighbors ask it to deactivate 

and itself is already k-covered. 

 Sensor's status: 

− ACTIVE: Sensor is active. 

− SLEEP: Sensor decides to turn off. 

− LISTENING: Sensor has not yet decided. 

 Others: 

− L: List of non-sleep neighbors. 

− ∆ : Maximum number of neighbors that a sensor may have (or degree of the 

network). 

− Communication complexity: Estimated by the number of sent messages. 

On what follows, we discuss necessary parameters and factors used in the proposed 

algorithm. 

 DESK works in a rounding fashion with the round length of dRound, meaning that each 

sensor runs this algorithm every dRound unit of time. At the beginning of each round is a 

decision phase with the duration of W. The value of W and dRound should be chosen such as 

W<< dRound (see Figure 1). There are several advantages of working in rounds: 

− k can be dynamically changed: For some applications, such as forest fire, the value of 

k needs to be changed while the network running. For example, in the dried season, 

there is more chance of fire happening, thus the value of k needs to be high. However, 

in the rainy season, that chance is small, so the value of k needs to be small to save 
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network energy. Also, the operation of the network needs not be interrupted while k is 

being changed. 

− DESK supports robustness: At each round, there is exactly one set cover in 

responsible for sensing task. In the situation that some sensors in that set cover are out 

of service (may die, for example), then the sensing data will be effected and network 

may temporarily not provide k-coverage for some interval of time. However, this 

problem will not effect long since the new set cover will be discovered at the next 

round to take charge of sensing task. 

− Besides, DESK is an energy-efficient distributed algorithm which requires only 1-

sensing-hop-neighbor information and DESK also provide k-coverage for the whole 

network (which is a kind of fault-tolerance). Thus, DESK satisfies all the 

requirements of a sensor network protocol shown in sub-section I.3. 

 All the sensors have to decide its status in the decision phase. At this phase, each sensor 

needs to temporarily turn on to decide its status. 

 Every sensor si decides its status (active/sleep) after waiting for wi time. The value of wi may 

be changed anytime due to the active/sleep decision of any of its neighbors. Besides, the 

value of wi depends on si's residual energy ei and its contribution ci on coverage level of the 

network. Sensor's contribution ci can be defined in terms of some parameters, such as the 

perimeter coverage pi which is the summation of perimeter coverage (in radian) that si covers 

its neighbors' perimeters. However, in this thesis we define ci as the number of the neighbors 

ni who need si to be active. 
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Figure 1. DESK works in rounds 

The waiting time for sensor si can be formulated as follows: 
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Where: ηβα ,, are constants, z is a random number between [0; d], where d is a time slot, 

to avoid the case where two sensors having the same wi to be active at the same time. l(ei, ri) is 

the function computing the lifetime of sensor si in terms of its current energy ei and its sensing 

range ri. This function may be linear, quadratic or anything else. The function l(ei, ri)  will be 

discussed in detail in Section IV.2. 

ethreshold and η  are network-dependent parameters. η  is chosen to make sure Wwi ≤  and 

ethreshold guarantees that a sensor can live for a whole round: 

ethreshold satisfies l(ethreshold,ri)=W (7) 

βη dRound=  (8) 

W 

Round 1 Round i Round R . . . . . . 

Network lifetime 

Decision
phase Sensing phase 

dRound 
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III.4. The algorithm 

In this sub-section, we first show the pseudo-code of DESK and then describe it in more 

detail. To better illustrate DESK, we also present a simple example which shows DESK step by 

step at the end of this subsection. 

III.4.1. Pseudo-code 

The pseudo-code for DESK is illustrated as in Algorithm 1 (next page). 

In the pseudo-code, the term "useless neighbor" or "redundant neighbor" is used to refer 

to one that does not contribute in the perimeter coverage of the considered sensor. That is, the 

portion of the perimeter of the considered sensor overlapping with that neighbor is already k-

covered by already active sensors.  

It is worth noting that although DESK works in rounds, no interruption in executing 

sensing task exists. As being stated in section IV.2, a sensor can still sense data while being in 

LISTENING mode. Thus, by entering the LISTENING mode at the beginning of each round, 

sensors still perform the sensing job while participating in the decision phase. This guarantees 

the continuous and smooth operation of the whole network.   

Line 6 may not be necessary. However, it can help improve the algorithm’s performance 

and result. We further clarify this in the example later in the next sub-section. Notice that in line 

17, waiting time wi is updated only when the status of sensor has not yet been decided and the 

residual energy is enough for the sensor to live through the whole round. Ones may also be 

aware that the sensor continues running DESK even after becoming active. 
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Algorithm 1: DESK(si) 

1:  /* Preparation */ 
2:  Update current residual energy ei 
3:  Collect information and construct the Ni-element list L of its one-hop neighbors 
4:  Compute the waiting time wi and start the decision phase timer t 
5:  status=LISTENING 
6:  Pre-check redundant neighbors, sends mASK2SLEEP messages to them and move them out 
of      list L if any found. 
7:  ni = number of elements of list L 
8:  while Wt ≤   do 
9:  /* receive a message from neighbor sj */ 
10:  Receive(sj , MessageID) 
11:  if MessageID==mACTIVATE then 
12:   Update coverage level 
13:  Check if any sensor in list L is useless to si's coverage. If yes, send ASK2SLEEP 

message to that sensor 
14:  else if MessageID==mASK2SLEEP then 
15:   ni = ni - 1 
16:   if ni > 0 and status == LISTENING then 
17:    Update wi 
18:   end if 
19:  else if MessageID==mGOSLEEP then 
20:   Remove sj out of list L 
21:  end if 
22:  /* decide status */ 
23:  if ( iwt ≥  and status==LISTENING) or ni==0 then 

24:   if ni == 0 then 
25:    Set the timer Ri for si waking up at next round 
26:    One-hop broadcast mGOSLEEP message 
27:    status=SLEEP 
28:    Turn itself off /*Go to sleep, stop running DESK*/ 
29:   else 
30:    status=ACTIVE 
31:    Set itself to be Active /*Turn on*/ 
32:    One-hop broadcast mACTIVATE message 
33:   end if 
34:  end if 
35: end while 
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III.4.2. Description  

The algorithm works as follows: 

 All the sensors collect coordinates, current residual energy, and sensing range information of 

its one-hop live neighbors. It stores this information into a list L in the increasing order of 

Lj ,α  (for the ease of applying k-NC later). 

 Each sensor sets its timer wi with the assumption that all of its neighbors need it to join the 

network, i.e., ni=Ni. 

 When a sensor sj joins the network, it broadcasts a mACTIVATE message to inform all of its 

1-hop neighbors about its status change. Each of these neighbors then apply the k-NC 

algorithm to re-compute its coverage status. If it finds any neighbor u that is useless in 

covering its perimeter, i.e., the perimeter that u covers was covered by other active 

neighbors, it will send mASK2SLEEP message to that sensor. 

 On receiving mASK2SLEEP message, this sensor updates its ni, contribution ci and 

recalculate wi. 

 If a sensor receives mASK2SLEEP message from all of its neighbors, then it will send 

message GOSLEEP to all of its neighbor, and set a timer Ri for waking up in next round, and 

at last turn itself off (go to sleep). 

 On receiving mGOSLEEP message, a sensor removes the neighbor sending that message out 

of its list L.  
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III.4.3. Example 

Figure 2. The step by step operations of DESK. Part 1 

In Figure 2 and Figure 3, we illustrate the working of DESK with a network consisting of 

6 sensors. In those figures, the thick border rectangle is the desired monitored area and the circles 

are sensing regions of sensors. Solid circles represent active sensors; dotted circles represent 

sleep sensors; dashed circles represent listening sensors. For the sake of simplicity, we choose 

k=1. 

 At the beginning of each round, no sensors are active. All sensors are in LISTENING mode, 

i.e. all wait for the time to make decision while still doing sensing job. Notice that right at the 

beginning of the round, sensor s3 is useless to s2 (Figure 2.a). Consequently, s2 sends 

mASK2SLEEP message to s3. So, s3 accordingly decreases its n3 and updates waiting time 

w3. 

 At the time t = 5, s1 becomes active (Figure 2.b). 

s1 

s2 

s3 

s4 

s5 

s6 

a) At the beginning of round. All are listening

s1 

s2 

s3 

s4 

s5 

s6 

b) At time t=5, sensor 1 is active 
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 At the time t = 15, the waiting timer of s2 expires. Consequently, s2 becomes active and then 

notifies its neighbors about its changing status. Since s1 had already become active, it is easy 

to verify that both s3 and s4 are useless to all of their neighbors at this time. Thus, s3 and s4 go 

to sleep (Figure 3.a). 

 At the time t = 45, s6 and after that, at the time t = 50, s5 eventually become active (Figure 

3.b). After this point, the area is k-covered. 

 The discovered set cover for this round is {s1, s2, s5, s6}. 

Figure 3. The step by step operations of DESK. Part 2 

 

s1 

s2 

s3 

s4 

s5 

s6 

a) At time t=15, sensor 1 and 2 are active 

s1 

s2 

s3 

s4 

s5 

s6 

b At time t=50, sensor 1, 2, 5 and 6 are active 
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IV. DESK ANALYSIS 

IV.1. Theoretical Analysis 

To theoretically evaluate DESK, we need to give the following definition first: 

Definition 5. (sub-region [HUT05]) A sub-region in area A is a set of points that are covered by 

the same set of sensors. 

Theorem 3. When a sensor is useless to the coverage of all of its neighbors, its sensing region is 

already k-covered. 

Proof: Consider a sensor si. Without loss of generality, assume that sensor si has enough 

live neighbors to k-cover its perimeter. These neighbors partition the region inside si 's sensing 

region into some sub-regions. Each sub-region is bounded by the perimeter of one or more si 's 

neighbors. Since all these neighbors ask si to sleep, the perimeter segment, which is inside si 's 

sensing region, of each of these neighbors is already k-covered. As shown in [HUT05], each sub-

region is at least k-covered. It follows that this theorem holds.             ■ 

The correctness of DESK can be validated through the following theorem. 

Theorem 4. The algorithm ensures that the whole monitored area is k-covered. 

Proof: Without loss of generality, assume that sensor si has enough live neighbors to k-

cover its perimeter. A sensor can go to sleep only when all of its neighbors ask it to do so. 

Hence, a sensor can allow a neighbor to go to sleep only when the perimeter segment covered by 

that neighbor is already k-covered. Thus, at the end of the decision phase, a sensor allows its 

neighbor(s) to turn off only when its whole perimeter is already k-covered. Furthermore, 
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Theorem 3 has as well shown that sleep sensors are k-covered. Finally, all the sensors are k-

covered. According to Theorem 2, the whole monitored area is guaranteed to be k-covered.       ■ 

Theorem 5. The time complexity of DESK is )),(min( ∆∆
d
WO  and the communication 

complexity of DESK is )( ∆nO .  

Proof: Let us investigate the time complexity for the worst case. The length of the 

decision phase is W, and the time slot is d. If at each time slot, a sensor receives mACTIVATE 

messages from one or more neighbor(s), it may receive a maximum of 
d
W  mACTIVATE 

messages. However, a sensor has no more than ∆  neighbors; hence, a sensor may receive at 

most ),min( ∆
d
W  mACTIVATE messages each round. Besides, it needs )(∆O  time to run the k-

NC algorithm to check its perimeter coverage [HUT05]. Moreover, all the sensors 

simultaneously run DESK. Thus the time complexity is )),(min( ∆∆
d
WO .   

Since each sensor has at most ∆  neighbors and throughout the decision phase, a sensor 

sends at most one mASK2SLEEP message per neighbor and only one message to broadcast its 

status (active/sleep), so each sensor sends at most )(∆O  messages in the decision phase. This 

means that the message complexity is )( ∆nO .               ■ 

IV.2. Simulation results 

In this sub-section, we evaluate the efficiency of DESK through conducting some 

simulations measuring the number of sensors per subset, the number of messages sent by each 

sensor per round and the network lifetime with different number of sensors and different values 
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of k. We also compare the network lifetimes of the networks with different initial energy of 

sensors.  

IV.2.1. Energy model 

We now construct a simple energy model as the guideline to measure energy 

consumption. The distributed algorithm requires the consideration of various kinds of energy 

consumption including message transmission/reception, data sensing and computational energy. 

To the best of our knowledge, no work has been done to mathematically construct an energy 

model that takes all the energy consumptions into account. A detailed survey on numerous kinds 

of energy consumption in wireless sensor networks is given in [RAG02]. Based on their work, 

we develop a simple energy model for measuring DESK's performance. 

Normally, a sensor node has three major units that consume energy: the micro-controller 

unit (MCU) which is capable of computation, communication subsystem which is responsible for 

transmitting/receiving messages and the sensing unit that collects data [RAG02]. In our model, 

each subsystem can be turned on or off depending on the current status of the sensor which is 

summarized in Table I.  

Table I. Energy Consumption 

Sensor mode MCU Radio Sensor Power (mW)

Listening On On On 20.05+ f(ri)

Active On Off On 9.72+ f(ri)

Sleep Off Off Off 0.02

Energy needed to send a 2-bit-content message 0.515
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In Table I, the function f(ri) is the energy consumption related to the sensing range ri of 

sensor si. We consider two kinds of function f: 

Linear function: si rrf ×=
κ
1)(  (9) 

Quadratic function: 21)( si rrf ×=
κ

 (10) 

where κ  is an energy coefficient. 

For the sake of simplicity, we omit the energy needed to receive a message, to turn on the 

radio, to start up the sensor node, etc. We also do not consider the need of collecting sensing 

data. Thus, when a sensor becomes active (i.e., it already decides it status), it can turn its radio 

off to save battery.  

Since DESK uses only three different types of messages, two bits are sufficient for the 

payload of exchanged messages. The value of energy spent to send a message shown in Table I 

is obtained by using the equation to calculate the energy cost for transmitting messages shown in 

[RAG02]. The power consumptions when the sensors are in Listening, Active and Sleep mode 

displayed in Table I are acquired from the statistical data of MEDUSA- II node - a sensor node 

developed at the University of California, Los Angeles [RAG02].  

In our model, the remaining lifetime of a sensor is the time that a sensor can live in the 

active mode. That is, if a sensor works with sensing range of ri at a point of time, when the 

residual energy is ei, then the lifetime can be calculated as: 

modeactiveinnconsumptioEnergy
),( i

ii
erel =  (11) 

Thus, in our simulation, the equation for sensor’s lifetime function is: 

)(9.72
),(

i

i
ii rf

erel
+

=  (12) 
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IV.2.2. Network configuration 

All the parameters used for the simulation are provided in Table II. The sensors are 

randomly deployed in a fixed region of size mm 800800 × . The energy is randomly generated for 

each sensor within a range whose lower bound is 200 Joules. The sensing range of each sensor is 

as well randomly chosen between 400m to 500m. As shown in Table II, the length of a round is 

much larger than that of the decision phase. We define the network life time as the duration until 

at least one portion of surveillance area cannot be covered by at least k active sensors. 

Table II. Simulation Parameters 

Area size mm 800800 × Decision phase 2 second

Sensing range mm 500400 → Slot time 0.5 ms

Minimum power 200J Round time 20 minutes

βα ,  1 κ  8,000

IV.2.3. Simulation results 

In Figure 4, Figure 5 and Figure 6 the upper bound of a sensor's initial energy is 300J; the 

energy consumption in terms of sensing range is quadric which is shown in Eq. 10; and the 

number of the sensors range from 50 to 200. Figure 7 and Figure 8 evaluate the network life time 

of a 100-node network when the ratio between the upper bound and lower bound of sensors 

initial energy ranges from 1 to 2.5; and the energy consumption function in terms of sensing 

range f is quadratic and linear as illustrated in Eq. 9 and 10, respectively. 

Figure 4 shows how many sensors that are active each round. As DESK considers the 

balance on consuming the energy among all the sensors, it is also valid that the number of 

sensors per subset increases with the number of sensors. Due to its effort to use as many sensors 
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as possible, the number of unallocated sensors, i.e., sensors which have never become active, are 

almost equal to 0, which indicates that DESK efficiently makes almost all the sensors in a 

network to participate in the k-coverage sensing task. 

Figure 4. Number of active sensors per subset 

Figure 5 presents the number of messages that a sensor sends during each round, more 

specifically, during each decision phase. It can be seen that more messages are sent when the 

number of the deployed sensors increases. It is not surprising since a sensor may have more 

neighbors. Theoretically, with the same topology, the higher the value of k the lower the number 

of messages needed to be exchanged. However, it can be observed that the number of messages 

that each sensor sends per round are almost the same for k = 1; 2; 4; and 8. This phenomenon is 

originated from the random deployment method of our simulation. Furthermore, when 

investigating the simulation data, we find out that most part of perimeter of each sensor is k*-

covered, where k* > k. Thus the number of sleep sensors each round and the number of 

exchanged messages are not so much different for the different values of k. DESK will perform 
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better if a controlled deployment method is employed, which can balance the coverage levels of 

the boundary  parts of the monitored area and its central part.      

Figure 5. Number of messages sent per sensor each round 

In Figure 6, the network lifetime is illustrated. As shown in Figure 6, the network lifetime 

decreases when the value of k increases. This is easy to understand since the bigger the value of 

k, the larger the number of active sensors a round, hence the smaller the network lifetime. It also 

can be seen that with each value of k, the lifetime slightly fluctuates. This fact is due to the 

random nature of our method to conduct the simulation. We do not put any control on network 

deployment and we as well randomly assign the sensor properties (e.g., initial energy, position, 

sensing range) from a wide range. 
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Figure 6. Network lifetime 

In Figure 7 (the energy function f is linear) and Figure 8 (the energy function f is 

quadratic), we conduct measurements of the network lifetime with different power ratio, i.e., the 

ratio between the upper bound and lower bound of the range in that initial power for each sensor 

is randomly assigned. As illustrated in Figure 7 and Figure 8, the lifetime of network 

significantly increases as the power ratio increases. This phenomenon is relatively logical since 

some sensors are given more energy when that the power range is widened. Compared with 

linear energy model, the sensor has to consume more energy in the order of its sensing range 

when the sensor’s energy consumption is quadratic energy model. That is why the lifetimes of 

network are considerably different between Figure 7 and Figure 8.   
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Figure 7. Linear energy model: Network lifetime with different power range 

Figure 8. Quadratic energy model: Network lifetime with different power range 
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V. RELATED WORK 

In this section, we conduct an extensive survey on coverage problem in the literature 

which includes proposals from the very first work introducing this problem until the very recent 

ones. First of all, we make a classification of those work. For each category (which will be 

presented in a sub-section), we tabulate a brief comparison of work belonging to that category. 

We then discuss each work in its category in more detail. 

V.1. Classification of coverage algorithms in the literature 

V.1.1. Classification metrics 

The major objective of coverage problem is to efficiently cover an area or a set of points 

or objects (targets) under various constrains and limitations of sensors and networks such as 

energy, computational capability, memory, communication, bandwidth, high failure-rate, etc. 

while satisfying a number of requirements such as the maximum lifetime and surveillance 

quality. The fault tolerance issue has also intensively been investigating in literature. In WSN, it 

is normal to assume that the number of deployed sensors is much larger than the number needed 

to cover the whole monitored area. The common approach in the literature to solve the coverage 

problem while prolongs the network lifetime is to partition the set of the sensors into a number of 

set covers. Each set cover then successively becomes active to accomplish the sensing task while 

the others go to sleep to save energy. By that way, the lifetime of the network is extended. 

Various criteria can be used to classify both the problems and solutions into groups:  

 The coverage problems for sensor networks can be categorized into three broad types 

[CAR04] – area coverage (in which, the major objective is to monitor an area), target 

coverage (where the main objective is to cover a set of targets), and breach coverage (the 
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goal here is to minimize the numbers of uncovered targets or the ratio of uncovered portion 

to the whole area).  

 The algorithms can be centralized (where the algorithm is executed in a special station and 

usually requires the global information of the whole network) or decentralized – localized 

and distributed (where all the sensors simultaneously run the algorithm based upon only local 

information).  

 To enhance network lifetime, most of the work done to date divides the set of sensors into a 

number of subsets such that every subset, i.e., set cover, can solely accomplish the coverage 

task; each of them will then be successively activated. In some work, the sensors are 

organized into disjoint subsets, i.e., subsets that share nothing in common. On the other hand, 

dividing into the non-disjoint sets (where a sensor can belong to different subsets) is 

considered in most distributed algorithms.  

 Most of the work assumes that the sensors are randomly deployed into the monitored region. 

For a friendly and accessible environment such as a building, the deterministic deployment 

method (in which the sensor's position can be determined) can be applied to optimize the 

coverage level, connectivity and economize energy consumption. 

 Only a few works consider the p-percentage coverage. That is, cover p percent of the whole 

area as opposed to cover the whole area (100-percentage coverage). 

V.1.2. Our classification 

In this thesis we classify the existing work into following categories: 

 Pre-deployment: The algorithms concerned with the following issue (which is carried out 

prior or at the time of deploying the sensors). 
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o Coverage/connectivity conditions: Find out the conditions (e.g., the number of 

sensors, sensor’s sensing range) to provide certain level of coverage (with 

connectivity) for a sensor network. 

o Deployment schemes (deterministic deployments): Concerned with methods on how 

to place the sensors to achieve a number of optimal objectives such as the best 

coverage quality or maximum network lifetime with least number of sensors possible. 

 Sensors scheduling to achieve coverage/connectivity: To discover the schedule for a set of 

sensors to provide coverage and/or connectivity for a WSN with the assumption that the 

network has already been (randomly) deployed. 

o Centralized algorithms: Algorithms that require global information (such as sensors’ 

sensing ranges, sensors’ location, sensors’ residual energy, etc.) of the whole sensor 

network. Besides, the algorithms are always executed at a powerful center such as 

BS, after that the result is scattered to each sensor in the network. We further divide 

this type of algorithms into two smaller groups: 

− Algorithms result in disjoint sets 

− Algorithms result in non-disjoint sets 

o Decentralized (localized and distributed) algorithms: Algorithms that require only the 

local information (the fix-number-of-hop neighbors’ information, usually 1- or 2-hop 

information) to function and are run at large number of sensor nodes (usually at all 

nodes). Each sensor then makes it own decision of turning on or off (although its 

neighbors may have contribution on that decision). We further divide this type of 

algorithms into two smaller groups: 
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− Decentralized algorithms based on back-off (or off-duty) mechanism. 

− Decentralized algorithms work in rounds. 

o Others algorithms: Algorithms that are not in neither of two above sub-categories, for 

example, verification of coverage problem. 

 Quality of service (surveillance) - QoS evaluation: When a sensor network is 

deterministically or randomly deployed into monitored area, it is desirable to estimate how 

well the sensor network can cover the area or a set of objects. In literature, there are two 

well-known criteria for this issue: 

o Maximal breach/ support paths: The goal is to construct the maximal breach/ support 

path, which is the path through sensor-monitored field that an object is most/least 

likely to be detected in terms of distance from the object to the closest sensor 

o Exposure: Another parameter can be used to evaluate coverage quality is exposure 

which is integral of a sensing function. An example of sensing function is the 

intensity of the sensed signal (or observability) with the appearance of an object in 

monitored field. Informally, exposure can be explained as expected average ability 

that a moving object is observed over a period of time [MEK01]. 

V.2. Terminologies, notations and conventions 

For the sake of consistency on describing and criticizing work in literature, in this sub-

section we list notations and conventions that will be used through this thesis if they are 

otherwise clearly stated: 

 Many problems in WSN field are intrinsically graphic problems, thus the term “sensor”, 

“node” or “sensor node” are interchangeably used through this text. 



36 

 Set cover: the subset of the set of all sensors which can solely cover the whole monitored 

region. 

 Disjoint set cover (or disjoint set for short): the number of set covers who share nothing in 

common, i.e., each sensor can belong to at most one set cover. Non-disjoint set cover (or 

non-disjoint set): A sensor can belong to zero, one or more set covers. In this thesis, we call 

the approach that give disjoint set covers solution disjoint approach and the similar name for 

non-disjoint one. 

 Area coverage: the type of coverage problem of which the major goal is to cover the whole 

given region. 

 Target or Point coverage: the type of coverage problem of which the main target is to cover 

the given set of targets or set of discrete points. 

 n, m, and k is number of sensors, number of targets, and number of set covers, respectively. 

S, T is the set of sensors, targets respectively. si (small s) is sensor i, and Sj (capital S) is set 

cover j. 

 k-coverage: The problem considering to cover the whole area or set of targets satisfying that 

each point in the area or each target is covered by at least k sensors at the same time – in this 

sense, k is the coverage level or coverage degree unless otherwise explicitly stated. 

 Base Station (BS): The very special data processing center which is assumed to have 

unlimited computation and memory capacity. Thus, the centralized algorithm is usually 

executed at BS. BS can also have unlimited bandwidth to the outside world, and it usually 

works as a gateway for a sensor network to communicate with outside world. 

 rc, rs: Sensor’s communication range, sensing range, respectively. 
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V.3. Pre-deployment 

For applications that permit to manually deploy the sensors, the positions of the sensors 

can be optimized to achieve the best coverage quality, to ensure the connectivity and/or to 

maximize the total network lifetime. For applications that not permit to do so, it is desirable to 

estimate the number of sensors needed to guarantee that the deployed sensor network can 

provide several requirements (such as k-coverage, connectivity). Table III shows a comparison of 

work that will be discussed in this sub-section:  

Table III. Work in literature that considers pre-deployment stage 

Coverage 
Approach 

Problem 
solved 

Coverage 
type Approach characteristics 

[WAN06] Network 
condition Area 

Consider k-coverage with 2 kinds of deployments: 
Poisson and uniform point process; take boundary 
effect into account. 

[KUM04] Network 
condition Area Consider k-coverage with 3 kinds of deployments: unit 

square grid, Poisson and uniform point process. 

[CLO02] Nodes 
placement Target Objective is to minimize the exposure of deployed 

network; Minimize the number of deployed sensors. 

[ZOU03] Nodes 
placement Target Algorithm bases on virtual forces (as magnetized 

objects exert on each other). 

[POD04] Nodes 
placement Area 

Maximize area coverage; Algorithm bases on potential 
field; the number of neighbors of each sensor is 
required to be at least K. 

[KAR03] Nodes 
placement 

Area/ 
Target 

Consider connectivity; Assume that rc=rs and they are 
the same for all the sensors. 

[WAH05] Nodes 
placement Area Consider connectivity; The algorithm works for 

arbitrary-shaped region and with any ratio of rc/rs.  
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V.3.1. Coverage/connectivity conditions  

In [WAN06], Wan and Yi investigate the issue on how the probability that a WSN can k-

cover an area varies depending upon the sensor’ sensing radius and the number of the sensors. 

This work considers two kinds of deployments which are uniformly random deployment and 

Poisson point process deployment. Especially, this work first time takes into account the 

boundary effect which is very technically challenging to handle. Most of existing work 

concerning the similar issue uses the toroidal metric to avoid the boundary effect because the 

coverage level of border part tends to be smaller than the center part under the Euclidean metric. 

The main result of the theoretical analysis of this work is the probability for an area is (k+1)-

covered. However, the resulted formulas are not cited here due to their length and intricacy.   

Similarly to [WAN06], [KUM04] also considers the k-coverage problem for an area. 

However, the question it answers is the number of the sensors needed to provide k-coverage for 

an area under three kinds of deployments: a) nn ×  grid – where each of the n grid point hosts 

a sensor, b) random uniform – where all the sensors have the same probability to be placed at 

any location and c) Poisson point process with the rate n under the assumption that each sensor is 

active with probability p and is dependent from the others. The authors make use the concept of 

slowly growing function )(npφ  which is a monotonically increasing to infinity function (hence 

the name “growing”) and is o(loglog(np)) (hence “slowly”) for their theoretical results. Those 

results are summarized as follows: 

 If there exists a function )(npφ  that satisfies a condition (whose formula is not cited here) 

then all the points in the region are almost always k-covered (meaning the probability that 

they are k-covered reaches to 1 when n reaches to infinity). And if there exists another 
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function )(npφ  that satisfies another condition, then there may exist holes (the portion that is 

not covered) in the network. 

 For different kinds of deployments, the conditions are different but the same results (the 

coverage level of the network) are concluded.  

Although the results are really practical, the authors omit a clear guidance on how to find 

slowly growing function )(npφ  or how to verify if such function exists or not.   

V.3.2. Deployment schemes 

Used the path exposure (see section V.5.2) as the criterion to evaluate the goodness of a 

deployment scheme, the focus of [CLO02] is to determine the number of sensors needed for a 

“good” deployment. The path exposure is a metric to estimate the likelihood that an object 

(target) to be detected when it traverses through a sensor network. The concept of this kind of 

metric is to be better investigated in section V.5.2. In this work, the total energy (of signal) that 

sensor si can measure when a target is at the position u is formulated as: 

ik
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where K is the energy emitted at the target, k is decay coefficient (typically from 2.0 to 

5.0), isu −  is distance from the sensor si to the target and Ni is noise energy at si. The 

probability Dv(u) that the total ∑
=

n

i
i uE

1
)(  for all the sensors of the network greater than a 

threshold η  is the probability that the target to be detected by the network when it is at the 
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The exposure of a path can be estimated by the probability that an object is detected 

anywhere along the path, i.e., by Dv(u) . The authors divide the monitored area into a fine grid, 

and then assign each grid segment (an edge) a weight equal to the total of Dv(u) for all the points 

within that segment. To find the least exposure path, the authors utilize Dijkstra algorithm to find 

the path having minimum weight. Obviously, the precise of the solution highly depends on how 

fine the grid is. This is also the method used in [MEQ01] (section V.5.2) to find the minimal 

exposure path. 

The objective of the paper is to deploy the sensor such that the exposure of any path 

through the sensor network is minimized. The solution is to deploy sensors one at a time, and 

each time a new sensor is deployed, the least exposure path is re-calculated. This method can 

reduce the number of deployed sensors; it however consumes relatively a lot of time for 

exposure calculation and introduces communication overhead while every newly deployed 

sensor has to report its location. 

In [ZOU03], Zou and Chakrabarty propose virtual force algorithm (VFA) and target 

location query. The idea is to use the virtual force to find the “good” location for a sensor. 

Virtual force is similar to the force that two magnetized objects exert on each other – the force is 

attractive if both objects are positive or negative, and is repulsive if they are different. With the 

virtual force, several parameters can be taken into account on calculating the force imposing on 

each sensor such as the obstacles, the neighbors (which exert the repulsive force on the sensor 
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since the sensor tends to keep away from them for the better coverage and smaller number of 

necessary sensors) and preferential areas such as an area with low radio interference (which 

exerts the attractive force on the sensor since those areas can better support the coverage task of 

the sensor). Each kind of force is mathematically formulated, so it is easy to calculate the total 

force (consisting of the magnitude and the orientation) exerting on a sensor. Other parameters 

can as well be added with their own formulas. The process to find the proper position for a 

sensor is as follows. Firstly, the sensor network is randomly deployed. The virtual force for each 

sensor is then calculated based on sensors’ locations, and each sensor moves to new position by 

that force. This process of calculation the force and moving the sensor is looped for several 

times. Obviously, the bigger the number of loops, the better the coverage quality the resulted 

network can achieve but the longer the time for executing the algorithm. 

[POD04] uses the similar idea of the force as in artificial potential field to calculate the 

position for each sensor with the objective of maximizing the coverage and each sensor has at 

least K communication neighbors. To attain both the coverage and the number of the neighbors 

requirements, two kinds of forces are introduced: Fcover - the force that neighboring sensors repel 

each other to increase the coverage area (by decreasing coverage overlapping) and Fdegree – 

neighboring nodes attract each others to satisfy the constraint of at least K neighbors for each 

sensor. The total force exerting on a sensor is the summation of net force (i.e., Fcover+ Fdegree) of 

all of its neighbors. Initially, each node has more than K neighbors. Each node then calculates the 

above summation force and keeps moving under the exertion of that force until it has only K 

neighbors left.  This work bases on the assumption of uniform and isotropic-kind of sensor 

network – i.e., all the sensors have the same sensing and communication ranges and they are as 

well isotropic in both sensing and communicating – which is not always the case in practice and 
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sometime is hard to achieve. Besides, the algorithm is for mobile sensor network rather than the 

traditional wireless sensor network of which sensors are not self-movable. Moreover, the authors 

have no discussion on the boundary part of the monitored area where not every node always has 

more than K neighbors if the network is randomly deployed. 

With the objective of minimizing the number of sensors needed to provide both coverage 

and connectivity for a region, [KAR03] proposes deployment schemes for three cases: a) for 

infinite convex 2-dimentional region, b) for finite 2-dimentional region and c) for a set of targets. 

However, it only considers networks of which sensing radius and communication radius are 

equal and they are also identical for all the sensors. The proposed deployment schemes highly 

depend on this assumption which is not reasonably practical. The basic “piece” for all the 

proposed schemes is the r-strip (r is sensing/communication range) – as being shown in Figure 9 

– of which sensors are placed side by side and the distance between two adjacent sensors are r. 

For the infinite 2-dimentional region (case a), infinite number of r-strips are placed such that 

they are horizontally parallel to each others (and parallel to x-axis) and r)1
2
3( +  apart. To 

attain coverage, the two adjacent r-strips are placed r/2 vertically apart from each other. To 

achieve the connectivity, an addition vertical strip is added along the y-axis. The similar scheme 

is employed for finite region (case b) except the strip for connectivity may not be vertical; that 

strip is placed in the angle such that it intersects all the horizontal r-strips and the intersection 

points need to be inside the monitored region. For the point coverage case (case c), the minimum 

spanning tree (MST) reaching all those points is firstly constructed and the sensors are then 

deployed along the edges of that tree. 
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Figure 9. An r-strip [KAR03] 

As in [KAR03], [WAH05] also proposes a sensor placement scheme. The striking point 

of this work is that it can deal with an arbitrary shape of the monitored area as opposed to the 

assumption of an open and/or rectangular area as most of the existing work has to depend on. It 

also allows sensors to have any ratio between communication range and sensing range. The 

objective is to properly place the sensors such that both connectivity and coverage are attained 

and the number of deployed sensors is minimized. The idea is to partition the arbitrary-shaped 

region into a number of sub-regions such that each sub-region is a polygon. The problem 

becomes deploying sensor for each sub-region. In the fields of pre-deployment, the following 

fact is well and widely known: three sensors have the sensing range of rs can cover the maximum 

continuous area if they locate at the vertices of an equilateral triangle whose edge’s length is 

sr3  (see Figure 10). If ratio between communication range and sensing range is 3 , both the 

connectivity and coverage requirements are satisfied if sensors are places at those vertices. By 

that reason, the algorithm tries to optimize the number of sensors needed to fit into the sub-

region for several cases in which the relation between communication ranges rc and sensing 

ranges rs are: scscscscs rrandrrrrrrr 33;; ><<=> . The proposed algorithm works only 

with uniform sensor network. Besides, the solution is definitely not optimum since there may 

exist unnecessary coverage overlapping between neighboring sub-regions (beside these between 

sensors within the same sub-region). Also, it is not easy to place the sensors exactly at the 
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positions figured out by the algorithm. At last, it is really difficult to extend the algorithm such 

that it can function with the region having some curved portions on the border (e.g., a cone). 

Figure 10. Position of sensors to minimize coverage overlapping [WAH05] 

V.4. Sensors scheduling to achieve coverage/connectivity. 

With a centralized approach, the algorithm usually runs at a special and powerful center 

(usually a base station) where the energy, communication and computation constraints can be 

ignored. The advantages are the nearly-optimal final results and the ease in implementing the 

algorithm. Nonetheless, the usual drawbacks are the mandatory requirement of global 

information of the whole network, the slow running speed, scalability and the low adaptability to 

the changes of the network. Oppositely, decentralized algorithms share the burden of executing 

algorithm to all (or at least a number of) sensors in the networks. What are the advantages of 

centralized algorithms is the disadvantage of decentralized ones and vice versa. 

V.4.1. Centralized algorithms  

The centralized algorithms always provide nearly or close to optimal solution since the 

algorithm has global view of the whole network. However, its disadvantage is very slow speed 

for collecting the information though the network and scattering the result also through out the 

network. Another contribution to slowness of this kind of algorithms is that they have to process 
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on huge amount of information. By that reason, they have low-adaptability to the change of the 

network (for example, when a sensor died or when new sensors are added to network) and are 

not suitable for large-scalable network. Table IV itemizes work that will be considered in this 

sub-section 

Table IV. Centralized approaches for coverage problem in literature 

Coverage 
Approach 

Energy-
efficient 

Set-
cover 
type 

Coverage 
type Approach characteristics 

SET K-
COVER 
[SLI01] 

NO Disjoint Target/ 
Area Maximize the number of set-covers. 

[ABR04] NO Disjoint Area Maximize the number of times sub areas are 
covered. 

[CHE05] YES Disjoint Target Minimize breach under bandwidth constraint. 

[GAO06] NO Disjoint Area Consider k-coverage problem; Maximize the 
number of set-covers. 

[ZHO04] NO Disjoint Area k-coverage and connectivity. 

[CAT05] NO 
Disjoint/ 

Non-
Disjoint 

Target 
The ILP method produces a non-disjoint set of 
set covers. The greedy method generates a 
disjoint one.  

[CAW05] YES Non-
Disjoint Target Consider discretely adjustable sensing range 

sensor networks under energy constraint. 

[THAI05] NO Non-
Disjoint Target Minimize coverage breach/Maximum network 

lifetime under bandwidth constraint. 

[DHA06] YES Non-
Disjoint Target 

Maximize the network lifetime for smoothly 
adjustable sensing range sensor network under 
energy constraint. 

[BER04] YES Non-
Disjoint 

Area/ 
Target 

Considering partial q-coverage/ Taking 
communication cost into account. 
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A. Centralized algorithms that result in disjoint set covers 

[SLI01] is one of the first work dealing with the coverage problem. Thus, the proposed 

algorithm is relatively straightforward and inefficient. The paper formulates a decision problem 

named “SET K-COVER”, which is used by several subsequent papers, as follows: 

INSTANCE: Collection C of subsets of a set A, a positive integer K. 

QUESTION: Does C contain K disjoint covers such that each cover contains all the 

elements of A. 

The authors prove that this problem is NP-Complete by transforming from the minimum 

cover problem. Thus, a heuristic for “SET K-COVER” is provided of which the objective is to 

maximize K. Firstly, the heuristic greedily selects a critical element (the most sparsely covered 

element). And among all the sensors being able to cover this element, it then chooses the sensor 

having biggest objective function value to add to current disjoint set of sensor. The objective 

function measures the number of critical elements that chosen sensors. 

Besides, the authors suggest a method to covert from area coverage into target coverage 

as being illustrated in Figure 11. The paper first defines the concept of field which is a set of 

points that are covered by the same set of sensors. For example, the sensors in Figure 11 partition 

the monitored area (the dashed-line rectangle) into eight fields. By considering each field as a 

target, the area coverage problem is easily and accurately transformed into the target problem. In 

our own opinion, this is big contribution since it eliminates the border of two broad groups of the 

coverage problem: Area coverage and Target coverage.  
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Figure 11. Transformation from area coverage to targets coverage [SLI01] 

In [ABR04], the coverage problem is as well abstracted into a problem named “the SET 

K-COVER problem”. Although having the same name as the problem in [SLI01], the objective 

of the problem in this work is different from that in [SLI01] and also different from k-coverage 

problem. In this problem, a set of areas and another set of sensors are given. A variable k is also 

given as a user-defined parameter. Additionally, each sensor can cover some areas. The objective 

is to efficiently partition the set of sensors into k set covers such that the number of times the 

areas is covered is maximized. In reality, this objective does not make much sense in most cases. 

This paper proposes two centralized heuristics as being discussed next: 

Randomized algorithm 

This very attractive algorithm is remarkably simple. It just randomly picks a sensor i and 

puts it into set cover j, where both i and j is a random number in the range 1..n and 1..k, 

respectively. 

Despite the simplicity of the algorithm, the algorithm still guarantees the high coverage 

quality. The authors theoretically prove that an area is covered within 
e
11−  of the maximum 

number of times possible. That is, the total number of times the algorithm’s resulting set covers 

1  2 3 

4 5 

6  7 8 
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being able to cover an area is equal to or greater than 
e
11−  that of optimum solution. Moreover, 

the probability for the least covered area is covered within ln(n) of the maximum number of 

times possible is very high. Definitely, the time complexity of this algorithm is really low - O(n). 

Centralized greedy algorithm 

Consider set of sensors {si} where i=1..n and set of areas {Aj} where j=1..m. Each sensor 

si can cover a number of areas, which is denoted as | si |. In the centralized algorithm, each sensor 

maintains a table of size k x | si | whose all the entries are initially assigned 1. At a given step of 

the algorithm, each area is assigned a weight of 1)11( −− vy

k
 where yv is the number of sensors who 

can cover the area v but have not been assigned into any set cover. The pseudo-code for this 

algorithm can be shown as follows: 

Algorithm 2: Centralized Greedy Algorithm 

1: Initialize C={S1:=0, …, Sk:=0 } // set of set covers 
2: For i=1 to n 

3: Find ∑
∈∪∉∧∈

−−=
ijSisi

v

svsvv
y

k
j

:
1)11(max  

4: ijj sSS ∪=:  /* Assign sensor si to set cover Sj */ 
 

At each step, the algorithm selects a sensor having biggest summation of the weights of 

uncovered areas that it can covers to the set cover. The idea behind this algorithm is to greedily 

choose a sensor which covers the largest possible uncovered areas to add to the set covers. The 

weight of each area is a parameter measuring how likely that area will be covered in the future 

iteration. This algorithm guarantees the performance ratio of 
e
11−  in compared to the optimal 
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solution. The time complexity of this centralized algorithm is O(n) = nk| smax | where |smax| is the 

biggest number of areas that a sensor can cover.  

The objective of the problem that [CHE05] aims to is to divide the set of sensors into a 

number of disjoint set covers such that the cardinality of each set is not over a number W, which 

is the bandwidth of the network, and the possibility for any target t not being covered by any 

sensor in the whole lifetime of the network is minimized. The paper’s contributions include the 

mathematical ILP-based (Integer Linear Programming) formulation for above problem, the proof 

of its NP-Complete property and suggestion of two heuristics. The first heuristic is the widely-

used RELAXATION method. In ILP, some variables are required to get the integer values which 

make ILP to be NP-Complete problem. So the first step of this method is to relax the ILP into LP 

problem. Any available LP algorithm is then used to solve that LP problem; and finally, greedily 

convert the LP result back to ILP result. This method’s advantages are the easiness to use and the 

capability of flexibly applying to numerous problems. However, its drawbacks are inefficiency 

and very slow running time. By using the state-of-the-art LP algorithm [YYE91], the running 

time of this first heuristic is (n(n+m)/W)3. Because of that reason, Cheng et al. propose another 

heuristic named MINBREACH. Of which, instead of using LP to find the solution satisfying the 

huge number of constraints presenting in the problem formulation, this heuristic combines 

altogether the constraints into one constraint (in the form of a big-sized matrix) and solves that 

combined formulation. Thus, the running time significantly improves to O(n2m(n+m)).  

[GAO06] utilizes the k-NC rule proposed by Huang & Tseng [HUT05] to verify the 

condition for an area to be k-covered. By that rule, each sensor in the network only needs to 

check its perimeter (the border line of its sensing region) to determine the coverage level of the 

whole monitored area. If all the sensors’ perimeters are k-covered; i.e. all the points in their 
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perimeter are inside the sensing ranges of at least k other active sensors; then the whole area is k-

covered. That is the reason why the authors firstly introduce a parameter named Perimeter-

Coverage-Level (PCL) for each sensor. PCL of a sensor is the number of sensing neighbors that 

cover any point on that sensor’s perimeter. The algorithm then greedily chooses sensors into set 

cover by their PCL. That is, the algorithm greedily select sensor with the biggest PCL to add into 

set cover until all the sensors belonging to current set cover can provide k-coverage for the each 

sensor’s perimeter. However, because of greedy method, there may exist some redundant sensors 

in newly-created set cover. Thus, one more step to reduce the set cover size is carried out by 

executing a procedure named PruneGreedySelection right after a new set cover is created to 

prune any possibly redundant sensors. The running time of proposed algorithm is O(n2dlogd) 

where d is the degree of the network (maximum number of neighbors that a sensor may have). It 

is proven in this work that the number of set covers the algorithm being able to produce is 





k
K  

where K (big K) is the coverage level that the whole sensor network can provide (when all the 

sensors turn on concurrently). At last, the authors present a formula concerning the density of 

sensors close to border line of the monitored area for the algorithm to produce more set covers 

(by balancing the sensors density between the center region and border-line region).  

Besides solving the k-coverage as [GAO06], [ZHO04] also considers connectivity 

problem. This paper simultaneously attacks this combined problem by introducing the concept of 

K-Benefit path. As a definition, the K-benefit is the ratio between the numbers of “new” valid 

sub-elements (a valid sub-elements is an area covered by the same set of sensors and is inside the 

considered region). A sub-element is said to be “new” if it is currently covered by less than K 

sensors. The centralized algorithm in this paper constructs the set cover Sj by greedily adding a 
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sensor from the set of sensor SS ⊆*  which has the maximum K-benefit. The set S* here is the 

set of sensors that can communicate with at least one sensor in set cover Sj (so the connectivity is 

maintained). The authors also prove that the size of the set cover is at most 2r(log Kn)|OPT| 

where r is the maximum communication distance, in terms of number of hops, between any two 

sensors whose sensing regions overlap. 

B. Centralized algorithms that result in non-disjoint set covers 

It can be observed that non-disjoint set covers can provide better lifetime as compared to 

disjoint set covers. Let us take an example to illustrate this observation.  Figure 12 shows a 

topology taken from [CAT05]. Assume that each sensor can be continuously active for 1 unit of 

time. For disjoint approach, the optimal solution could have at most two set covers, thus the 

network life time is 2. With the non-disjoint approach, we can divide sensors into four set covers: 

S1={s1, s2}, S2={s2, s3}, S3={s1,s3} and S4={s4}. S4 activates for 1 unit of time, and the others 

activate for 0.5 unit of time. Totally, the network lifetime is 2.5, which is 25% better than the 

disjoint solution. In this sub-section, we will examine several typical recent algorithms that 

produce the non-disjoint set covers. 

Figure 12. A sample topology [CAT05] 
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s2 

s3 

s4 

t1 

t2 
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In, [CAT05] the authors abstract the objective of maximizing the network lifetime under 

Maximum Set Cover (MSC) problem. MSC is proven to be NP-Complete by a polynomial 

transformation from a well-known NP-complete problem – 3-SAT.  

The MSC problem is formulated as ILP formulation with the objective of maximizing the 

summation lifetime of all the set covers. To better illustrate the non-disjoint property of solution 

of MSC, we cite that formulation as follows: 

Maximize ktimetime ++ ...1 . //Maximize the network lifetime 

Subject to 
∑
=

≤
k

j
jijtimex

1
1for all sensor si. //Sensors’ lifetime constraint 

∑
∈

≥
lCi

ijx 1for all target tl
 and j=1,..,k. //Coverage constraint 

Where xij = 0,1 (xij=1 iif ji Ss ∈ ). 

In which Cl = { i | sensor si cover target tl} and timej is time that set cover Sj will be active 

As can easily be seen from formulation, no relation between set cover Sj (j=1,..,k) is 

specified. That allows them to share some sensors in common. 

Based on that definition, the authors propose two heuristics: 

Using LP Relaxation 

Once again, LP relaxation is used to solve ILP problem. Similar to [CHE05], this 

heuristic transforms the ILP into LP by relaxing equalities requiring integer values for variables 

into the inequalities which allow those variables to get non-integer values. Using any existing LP 

algorithm to solve the relaxed problem, and then greedily convert LP result back to ILP result. 
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Centralized greedy algorithm 

Similar to [SLI01], this work uses the idea of critical element. In this paper, the critical 

targets can be understood as the most sparsely covered targets, both in terms of the number of 

sensors being able to cover those targets and their residual energy. At each step, the algorithm 

chooses a critical target and selects the sensor having the biggest contribution to cover that 

critical target. The contribution of a sensor can be defined as the number of targets that it is able 

to cover (i.e., within it sensing region) and its residual energy. However, the authors do not 

mathematically model the concept of sensor’s contribution and critical target. 

[CAW05] may be considered as the generalization of the work in [CAT05] just 

mentioned above. In this work, the authors consider a special type of sensors which can 

discretely adjust its sensing range. Each sensor can work at the fixed number of sensing ranges, 

hence the term “discretely” as opposed to “smoothly” adjustable sensing range sensor 

investigated in [DHA06] which will be discussed shortly. The authors abstract the objective of 

maximizing the network lifetime under the Adjustable Range Set Covers (AR-SC) problem. AR-

SC is also NP-Complete problem since MSC ([CAT05]  above) is its special case.  

Three algorithms are proposed in this paper. Two of them are similar to two heuristics 

discussed in [CAT05]. In ILP-based approach, although the formulation is adapted to meet the 

sensors’ adjustable sensing ranges assumption, the solution is still similar to that of [CAT05]. In 

the centralized greedy approach, the contribution is mathematically defined in terms of energy 

consumption (corresponding with sensing range) and the number of uncovered targets that sensor 

can cover. However, the main idea of the algorithm is fairly similar. 

As another extension of [CAT05], [THAI05] in fact solves the problem of minimum 

breach with bandwidth constraint mentioned in [CHE05] using a non-disjoint approach. The 
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authors as well consider the maximum network lifetime issue under bandwidth constraint which 

is generalization of the work in [CAT05]. The authors formulate both problems as ILP problems 

and use the RELAXATION method as being used by [CAT05] and [CHE05] to solve. However, 

the algorithm can produce non-disjoint set, thus the result for the “Minimum Coverage Breach 

Problem” is better in compared with [CHE05]. 

[DHA06] is the first work dealing with a special type of sensors - sensors with smoothly 

adjustable sensing range. This type of sensors can flexibly adjust its sensing range to arbitrary 

distance within a certain max value. The authors formulate the maximum lifetime problem under 

a LP formulation. However, instead of traditionally using a LP algorithm to solve, this paper 

applies an approximate but very fast method (we call it “method” instead of “algorithm” since it 

can be used to solve problems other than packing LP) named Garg-Könemann [GAR98] to find a 

number of set covers. Following is the frame of the Garg-Könemann (GK) method: 

Algorithm 3: Garg-Könemann (GK) method 

1: Initialize the same weight for all the sensors 
2: While (true) 
3: Call f-approximation function to find a set cover 
4: Update the weight for each sensor 
5: If (the stop condition is true) break; 

In this combined algorithm, each sensor is assigned a new property, namely weight. The 

weights of all sensors are equally initialized. In this paper, the typical greedy algorithm is used as 

f-approximation function with the responsibility of finding set covers. After discovering a set 

cover, the weights are updated in order to help the greedy algorithm find the “better” set cover at 

next Garg-Könemann’s iteration. Let us describe how the greedy algorithm (f-approximation) 

works: the greedy algorithm selects a sensor with the biggest contribution (here, contribution of a 

sensor is defined as the ratio between the number of uncovered targets that it is able to cover and 
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its sensing range) along with the smallest weight to add to set cover. Theoretically, the combined 

algorithm can discover as many as 2n set covers. However, to improve the performance, this 

paper stops when it discovers n set covers. 

V.4.2. Decentralized algorithms 

With the distributed & localized algorithms, the decisive process is locally and 

simultaneously carried out at sensor nodes who need only local information (e.g., the position of 

itself and its neighbors, their sensing regions, etc.), thus being very adaptable to the dynamic and 

scalable nature of sensor networks. Obviously, the distributed & localized algorithms are 

preferred in wireless sensor network. Normally, the localized and distributed algorithms result in 

non-disjoint set covers. Table V provides a brief list of work that (not all, however) will be 

considered in this sub-section along with some of their characteristics. 

Table V. Distributed approaches for coverage problem in literature 

Coverage Approach Energy-
efficient 

Connectivity
support 

Coverage 
type Approach characteristics 

Coverage 
Configuration 
Protocol (CCP) by 
Wang et al. 
[WAN03] 

YES YES Area 

Consider k-coverage. Based on a 
new eligibility rule for a sensor to 
turn on/off. Employ SPAN 
[CHE02] to provide connectivity 
for the network. 

Localized, low 
communication 
overhead algorithm. 
[GAL06] 

NO YES Area Utilize the rule introduced by 
[HAL88]. 

[VUC06] YES NO Area Consider k-coverage problem. 

[BER04] NO NO Area 
Consider 1-coverage problem with 
the support of special data structure 
representing a monitored area. 
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Coverage 
preserving protocol 
[HUL05] 

NO NO Area 
Utilize the rule introduced by 
[HAL88]. The main idea is similar 
to that discussed in [YAN03]. 

[CAW05] YES NO Target Consider a discretely adjustable 
sensing range sensor network. 

Location-free 
coverage 
maintenance 
[ZHE05] 

Depend Depend Area 

One of inputs of this algorithm is a 
DS algorithm. So the characteristic 
of the algorithm depends on the DS 
algorithm. Also, the proposed 
algorithm is location-free if the DS 
algorithm is also location-free. 

Optimal 
Geographical 
Density Control 
(OGDC) [ZHA03] 

YES YES Area 

Choose next sensor to join the 
current set cover based on its 
position such that the coverage 
overlapping area is minimized. 

[TIA02] NO NO Area There are some flaws with the 
algorithm pointed out by [JIA04]. 

[JIA04] NO NO Area 

The eligibility rule for a sensor to 
join to or withdraw from set cover 
is a variation the one discussed in 
[HAL88]. 

[ABR04] NO NO Area The algorithm maximizes the 
number of time areas are covered. 

A. Algorithms that use back-off mechanism. 

In this type of distributed algorithm, a sensor frequently checks its validity to join the 

network by an eligibility rule specifying by the algorithm. It is difficult to take the energy into 

account with this type of algorithm. 

To the best of our knowledge, [WAN03] is the first paper investigating the relation 

between k-coverage and k-connectivity. It is proven in this paper that if a WSN has all the 

sensors with the communication range being at least twice of the sensing range then k-coverage 

also means k-connectivity. Another big contribution of this paper is an thorough discussion on a 
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very simple rule to convert from verifying the coverage levels of an area into determining the 

coverage level of all the intersection points (intersection point is the point that the sensing circle 

of a sensor intersect with those of others or with the borders of monitored region – see Figure 

13). That rule is a generalization of the rule previously introduced in [HAL88]. This rule states 

that if all the intersection points between sensors’ perimeters; and sensors’ perimeters and 

monitored region boundaries are sufficiently k-covered, then the whole region is sufficiently k-

covered. A sensor can apply this rule to check its eligibility to join/leave the network (or in other 

word, turning on/off). Besides, the authors propose an algorithm named CCP to schedule turning 

on/off the sensors in order to assure the k-coverage for the whole area while conserving the 

energy. In CCP, each sensor occasionally verifies the eligibility to join the network. The 

algorithm initializes by setting all the sensors to be active. When a sensor is in the active mode 

and receives a HELLO message, it will use eligibility rule to see if it can turn off or not. If it can, 

it turns itself off, goes to sleep mode and sets a sleep timer to turn on after certain interval. When 

that sleep timer expires, the sensor turns into listen mode. In this mode, the sensor again checks 

the eligibility to join the network or continue sleeping. If it qualifies to continue turning off, it 

again sets up the sleep timer and goes to sleep. Otherwise, it turns into active mode. The authors 

further combine the rule of CCP with that of SPAN [CHE02] (a decentralized algorithm that 

offers the different connectivity for the network) to provide both the coverage and connectivity 

for the network in the case that the communication range is less than twice sensing range. 
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Figure 13. Intersection points example  

B. Algorithms that work in rounds 

In this kind of distributed algorithm, the time line is divided into rounds and each round 

usually comprises two phases, which are the decision phase (the small interval of time as 

compared to length of the whole round for sensors to decide to turn on or turn off) and sensing 

phase (the remaining time of a round for sensors to do their sensing tasks). The algorithm is 

periodically executed at the beginning of each round. The advantage of this type of algorithm is 

that the energy consumption and some other constraints can easily be taken into account since 

the sensors can update and then exchange the information (including their residual energy) each 

time carrying out the algorithm. However, its disadvantage is that at each round, the sensors must 

consume the certain amount of energy in decision phase even when it may not join the network 

that round. In addition, this kind of algorithms usually requires time synchronization among 

sensors (at least neighboring sensors) to correctly function. 

[GAL06] uses a result from [HAL88] as [HUL05] do to verify the coverage condition. 

The algorithm achieves the low communication overhead by allowing sensors to choose a 

random waiting time before deciding their status and by limiting the messages exchanged 

between neighboring sensors. Four variants are introduced corresponding with different 

limitations in exchanging messages: 

intersection point 
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 Positive only (PO): Only active sensors send exactly one messages each after they decide to 

turn on 

 Positive and Negative (PN): Every sensor sends exactly one message notifying its decision. 

 Positive and Retreat (PR): Only active sensor sends message informing its turning on. If at 

later time, it learns that others sensors (ones that were already active) can still cover with the 

help of newly active sensors, it can change it decision (i.e., turn off). Neighbors are informed 

about this decision change by a retreat message. 

 Positive, Negative and Retreat (PNR): Similarly, a sensor may send Negative message; 

Active message or Retreat message (after Active message) notifying its decision. 

The four variants above are trade-off between communication overhead and the goodness 

of solution, i.e., the number of active sensors each round. 

At the beginning of each round, each sensor sets it own waiting timer with randomly 

chosen interval. At timeout, it then uses the coverage condition rule to evaluate the coverage 

status. If all of its intersection points with already-active sensors are covered by other active 

sensors, it can turn itself off. Otherwise, it has to turn on. After deciding its status, the sensor 

may need to inform its neighbors by following one of four above policies about exchanging 

messages. Although connectivity is also considered in the proposed algorithm, no condition on 

evaluation of the connectivity of active sensors that a sensor node can follow to verify the 

connectivity of current set cover (as that of coverage) before making decision is clearly 

specified. This makes this work less convincing.  

[HUL05] is an improvement of work in [YAN03]. The major improvement is the 

utilization of well-known rule of intersection points to check the coverage of an area as being 
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used in [GAL06]. That is, each sensor only needs to check its intersection points to decide to turn 

on or off. As most heuristic in this category, this algorithm partitions the time line into a number 

of equal intervals, called working circle (which corresponds with round in other work). Also as 

other work, each working circle is then divided into two phase: initial phase – for sensors to 

exchange information and maybe to make decision of turning on or off; and sensing phase. 

However, this work further divides sensing phase into a number of rounds of length Trnd each, 

and each sensor needs to choose on-duty time for each round (this on-duty time needs not be the 

whole round). At initial phase, each sensor si chooses a value Refi and exchanges that value 

(along with sensor’s position and sensing range) with its neighbors. Based on Ref values of 

neighboring sensors, it calculates two others value: Fronti and Backi and it will active from 

[(Refi-Fronti) mod Trnd] to [(Refi+ Backi) mod Trnd]. Following is method to calculate Fronti and 

Backi. Let P be the set of all the intersection points that are inside sensing region of sensor si. For 

each point Pp∈ , si creates a circular list Lp (meaning the last element is wrapped around to be 

right ahead of the first one) of Ref values of all the sensors who can cover that point in ascending 

order of Ref. Let prev(Refi) and next(Refi) be the previous and next element of Refi in list Lp. 

Then for each intersection point Pp∈ , the following values are to be computed: 

Frontp,i = [(Refi - prev(Refi))  mod Trnd] / 2 

Backp,i = [(next(Refi) - Refi)  mod Trnd] / 2 

At last: }{max ,ipPpi FrontFront
∈∀

=  and }{max ,ipPpi BackBack
∈∀

= .  

A variant of above algorithm which takes energy into account is also discussed in this 

paper. In this variant, sensors with more and less residual energy may choose Refi in different 
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. Above equations calculating Frontp,i and Backp,i are also 

slightly changed: 
2
1  in above equalities are changed to the ratio of residual energy of sensor si to 

total residual energy of si and those of the sensors being at previous/next position in list Lp. 

The drawback is that sensor may have to turn on/off too frequently if its active time is 

only a part of each round – which is usually the case as the result of this heuristic (note that the 

sensor need non-negligible amount of energy to turn on). 

As the title “Location-free coverage maintenance” of [ZHE05] suggests, this work deals 

with area coverage problem without the knowledge of sensors’ locations which is extensively 

required in other existing work. This work assumes all the sensors have the same sensing range 

rs, the same maximum communication range Rc but the communication range can be easily and 

arbitrarily changed. Firstly, the authors theoretically prove a result claiming the ratio (which will 

be referred later as coverage ratio) of the area that dominators of a minimal dominating set 

(MDS) can covers on the area that the whole network can cover (which may not be the whole 

area) is greater than or equal 2
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. The authors further prove another important theorem 

which states that if the sensor nodes follow Poisson point process rate ρ , then for any 0>ε  if 

set the communication range to a function ))log(,min(),,(
22

πρ
εεερ

πρπρ ss

s
eessrft
−− −+−

−==  

then the probability that any MDS has coverage ratio of 1 is at least ε−1 . Based on this result, 

the proposed algorithm just lets each sensor node estimate the node density in its area (through 

exchanging message, not by the location of sensor’s neighbors). Note that this density can be 

estimate through 1 or several hop(s) neighbors (neighbors here are the ones that sensors are able 
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to reach when they use their maximum communication range Rc). Each sensor then sets it 

communication range to function f above. Finally, any available DS (dominating set) algorithm 

can be utilized to discover a DS. This last step allows creating a suite of protocols which meets a 

number of requirements depending on the characteristic of DS algorithm such as balancing 

power consumption, maximizing network lifetime, etc. Although the result is fairly convincing, 

the authors however avoid the boundary effect on deriving that result. 

In the distributed algorithm discussed in [CAW05] (refer to section V.4.1 for the other 

part of this paper), the idea of so-called waiting time is employed. That is, each sensor maintains 

its own timer and the sensor has to make decision when this timer expires. The duration of this 

timer depends on the sensor’s residual energy and the minimum sensing range needed to cover 

all uncovered targets that it is able to cover (i.e., when it uses its maximum sensing range). Each 

time a neighbor of a sensor becomes active, the set of uncovered target is changed and thus the 

sensor’s waiting time is consequently altered. When the sensor’s waiting time expires, if all the 

targets that it is able to cover have already been covered, then it can turn off. Otherwise, it turns 

on and uses the smallest possible sensing range to cover all the uncovered targets. Hence, after 

the sensor which initially has the smallest waiting time is active, all other sensors will eventually 

turn on or off. The algorithm introduces the communication overhead since targets list 

exchanged between neighboring sensors may be relatively long.  

Based on an observation that an area is covered if there are at least two disks intersecting 

and their crossing points (or intersection point as is defined in [WAN03]) are covered, [ZHA03] 

does some trigonometric analysis to determine the most suitable positions for sensors in order to 

reduce the overlap between their sensing regions. We call such position to be “optimal position” 

(refer to section V.3.2  - Figure 10 for an example). The main idea of OGDC is to add a sensor 
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which locates at place that closest to “optimal position” corresponding with the sensors that were 

already in the set cover. The timeline is partitioned into rounds. Each round has two phases: The 

node selection phase where the algorithm is executed and the steady state phase where active 

sensors sense the data. At the beginning of node selection phase, all the sensors are in 

UNDECIDED status, which will be in ON or OFF status at the end of this phase. The algorithm 

begins with a selection for the starting node. This node can be chosen based on its residual 

energy. After a back-off timer expires without any other node becoming the starting node, that 

node will volunteer to be the starting node. It changes its status to ON and broadcasts power-on 

message, which contains the position of the sender and the direction α  to the “optimal position” 

of second working node. The procedure that a node should follow when it receives power-on 

message can be described in Figure 14. When a node receives that message, it adds this neighbor 

to its neighbors list and checks if its sensing region is covered by sensors in its neighbors list or 

not? If yes, it can change status to OFF and turn itself off after setting a timer for waking up next 

round. If no, the node can change its state to ON only if it is the one that closest to “optimal 

position”. Otherwise, it continues waiting for another power-on message. 

Figure 14. The procedure when a node receives a power-on message [ZHA03] 

Exist uncovered 
crossing? 

Exist starting 
neighbors? 

Pick the closest 
crossing 

Reset the delay timer Tc1 
if the closest crossing 
is created by the new 

neighbor 

Pick the closest 
starting neighbor 

Reset the delay timer Tc2 
if the closest starting 
neighbor is the new 

neighbor 

Pick the closest 
neighbor 

Reset the delay timer Tc3 
if the closest neighbor 

is the new neighbor 

YES YES 

NO NO
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The paper also considers the relationship between coverage and connectivity. The proof 

for the assurance of connectivity when the network is already covered in the case the sensing 

range at least twice communication range is formally provided in the paper.  

In distributed algorithm of [TIA02], the decision phase consists of two steps: a) 

exchanges position information with neighbors and b) decides its status based on that 

information. The status decision is made by a rule named off-duty eligibility rule which tells a 

sensor to turn off if its sensing region has been covered by its neighbors. Figure 15 explains the 

status transition of a sensor. When a sensor decides to turn off, it waits for random back-off time 

Td (to avoid the case two sensors may turn off at the same time, thus causing the blind point – the 

point in the surveillance area but is covered by no active sensor) and then sends SAM (Status 

Advertisement Message) to inform all of its neighbors about its new status. To further avoid any 

possible blind point, the sensor waits for Tw time after sending SAM message. If it receives no 

such message from any neighbor, it can safely turn off. 

Figure 15. The status transition graph [TIA02] 

The algorithm expressed in [TIA02] is the base for [JIA04]. It is shown in this paper that 

the eligibility rules in [TIA02] have some flaws which make the algorithm in [TIA02] not fairly 
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efficient. In this paper, a rule named effective neighbor rule is utilized for a sensor to decide to 

turn off. This rule bases on an observation that the sensing region of a sensor is covered by its 

neighbors if and only if the segment of each neighbor, which is inside the sensor’s sensing range, 

is also perimeter-covered by other neighbors. The algorithm proposed in this paper employs the 

idea of working in rounds and off-duty eligibility rules proposed in [TIA02]. After having the 

information of all of its neighbors, the sensor uses off-duty eligibility rules to decide its status. To 

avoid the blind point, the sensor waits for a random back-off time (corresponds with Tw in 

[TIA02] – see paragraph above), and then the effective neighbor rule is applied for a sensor to 

decide if it can safely turn off or not. 

V.4.3. Others 

Similar to intersection points rule introduced in [HAL88] and [WAN03], [HUT05] 

suggests another rule to evaluate the coverage degree of an area by doing a check at each sensor. 

Two rules named k-Unit-disk Coverage (k-UC) and k-Non-unit-disk Coverage (k-NC) for 

uniform and non-uniform sensing range sensor networks, respectively, are proposed in this 

paper. With the assumption that the sensing region of each sensor is a disk centered at the sensor 

with radius of its sensing range, those rules state that the whole area is k-covered if and only if 

the perimeter of sensing regions of all sensors are k-covered. In fact, k-NC is the generalization 

of k-UC and it can easily and simultaneously be applied at each sensor with the requirement of 

only 1-hop-sensing-neighbor information. 

To determine the coverage level of perimeter of a sensor si, ones can calculate the angle 

corresponding to the arch that each of its neighbors covers its perimeter. Figure 16.a illustrates 

such arches. The angles corresponding with those arches are shown in the Figure 16.b. From 
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Figure 16.b, the coverage level of sensor si perimeter can easily be calculated by traversing the 

range from 0 to 2π.  

Figure 16. Transform to perimeter coverage [HUT05] 

Surprisingly, this statement can as well be applied for sensors with irregular-shaped 

sensing regions. Figure 17 shows an example of a network comprising such sensors in which the 

number inside each sub-region is coverage level of that region. It is easy to validate that the 

whole area is perimeter-1-covered since the perimeters of some sensors are covered by the same 

level (i.e., equal to 1). Nonetheless, no further scheduling approach is proposed in this paper. 

Figure 17. Irregular sensing regions [HUT05] 
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Beside two centralized algorithms discussed in section V.4.1, [ABR04] also proposes a 

distributed one. Recall that each sensor has a unique ID. Each sensor executes the algorithm only 

one time, when the network initiates, to assign itself into a set covers. The basic idea of the 

greedy distributed approach is relatively similar to the centralized greedy one. That is, among k 

set covers, each sensor chooses the one in which it has the biggest contribution. As also was 

defined, the contribution here is the number of uncovered areas inside sensor’s sensing region 

(i.e., sensor can cover). The point of time when sensor si makes the decision is t=i, which 

guarantees that no two sensors make decision at the same time. The time complexity of this 

algorithm is nk|smax| where |smax| is the biggest number of areas that a sensor can cover. Though 

the algorithm is somewhat simple, it assures the performance ratio of 1/2 in compared with 

optimal solution. Another interesting point of this algorithm is that even though it is distributed 

algorithm, the resulting set covers are still disjoint. 

V.5. Quality of service evaluation 

It is always desirable to estimate how good or how bad a deployed network is. This 

question is however not easy to answer. In literature, the common method to estimate the quality 

of a network is as follows: 

 Firstly, finding a path through the sensor network which is best/worst observed by the 

network.  

 The resulting path is then evaluated based on some evaluation metrics. 

As mentioned before, there are two metrics which can be used to mathematically evaluate 

the goodness of a path: the distance to the closest sensor and the exposure. By that reason, this 



68 

section is divided into two sub-sections corresponding with those two metrics. Work considering 

evaluating a sensor network are listed in Table VI: 

Table VI. QoS work in literature 

Coverage 
Approach 

Algorithm 
type 

Evaluation 
metric Approach characteristics 

[MEG05], 
[MEK01] Centralized 

Maximal 
breach/ 

support path 

Use Voronoi diagram/Delaunay triangulation 
structure to find Maximal breach/support path, 
respectively. 

[LIW03] 
Distributed, 

Localized 
Best coverage 

path 
Use Relative Neighborhood Graph and Gabriel 
graph. 

[HUR05] 
Distributed, 

Localized 

Best/Worst 
coverage 

radius 

The algorithms utilize some complicate data 
structures to dynamically determine sensor radius 
such that extreme Worst/Best coverage path exists. 

[MEQ01] Centralized Exposure Calculate exposure by partitioning the monitored 
area into numbers of square grids 

[MES01] 
Distributed, 

Localized 
Exposure 

Utilize Voronoi diagram to partition the monitored 
area. The exposure path is then searched along the 
edges of this diagram. 

[XUH05] 
Distributed, 

Localized 
Worst 

coverage path 
The scheme is relatively similar to those in 
[LIW03]. 

V.5.1. Maximal breach/ support paths  

Maximal breach path (or worst-case coverage) shows the goodness of a sensor network 

in terms of coverage quality in worst case, i.e., in the case that an object is least likely to be 

detected. Or in other word, it measures the vulnerability of the network. As an informal 

definition, maximal breach path is the path that an object p moves from source s to destination t 

through the sensor network such that the distance from object p to the closest sensor is 

maximized. With the maximal support path (or best-case coverage), on the other hand, that 
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distance is desired to be minimized; that is, it measures the efficiency of the network. It can be 

seen that maximal breach/support path corresponds with the worst/best case coverage of the 

sensor network, respectively, i.e., the worst/best coverage quality on detecting a moving object 

that the network is able to provide. In literature, best-case coverage and maximal support path 

are equivalent. So are worst-case coverage and maximal breach path. Usually, there exist more 

than one maximal breach or support paths through a network. In addition to being as metrics for 

evaluating coverage quality, the constructions of those paths have several real applications such 

as intruder detection, or moving object protection. It is worth noting that although in [CHE05] 

and [THAI05], the issue of breach is also discussed (refer to section V.4.1 above for more 

detail), however, the goal of those papers is to create set covers that minimize the probability of 

undetected object in the monitored field, not to consider the quality of a deployed sensor 

network.  

[MEK01] is the very first work addressing the maximal breach/support path ([MEG05] is 

journal version of [MEK01]). In this work, the Voronoi diagram and its dual Delaunay 

triangulation structures are utilized as base structures for finding the maximal breach path and 

maximal support path, respectively. Given a set of points in two-dimensional plane 

(corresponding to the set of sensor nodes S), Voronoi region (or Voronoi tessellation) of a sensor 

si is set of points that are closer to si than any other sensors in set S. For each sensor si, Voronoi 

region is a convex polygon whose vertices are called Voronoi vertices, edges are called Voronoi 

edges. The Voronoi diagram of set S is the union of Voronoi regions of all the sensors in S. So if 

connecting each sensor node with neighbors who share common Voronoi region’s boundary, a 

dual structure of Voronoi diagram is created. This dual structure is Delaunay triangulation. If no 

three points are on the same line and no four sensors are co-circular, then each Voronoi vertex 
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has exactly three edges incident on it and thus Delaunay triangulation exists and is unique. The 

property of maximal distance to a sensor of Voronoi diagram resembles the objective of maximal 

breach path. While Delaunay triangulation can be used to find the closest neighbor by 

considering the shortest edge of triangulation. These properties could be directly applied to find 

the maximal breach/support path. It is now clear that maximal breach path must go along edges 

of Voronoi diagram while edges of maximal support path must lie on edges of Delaunay 

triangulation. The algorithms for finding those paths first assign a weight to each edge: with 

Voronoi diagram, weight of an edge is the distance from it to the closest sensor in S; with 

Delaunay triangulation, weight of an edge is its length. The algorithms then search by binary-

search for the largest weight (namely breach-weight, support-weight for maximal breach/support 

path, respectively) such that edges having weight equal or bigger than that weight (breach-weight 

or support-weight) can still make a path, i.e., can continuously connect the source s and 

destination t. The algorithms use Breadth-First-Search (BFS) to check the connectivity of edges 

qualifying for weight filtering (i.e., equal or bigger than breach-weight or support-weight). Those 

algorithm are centralized ones with worst-case complexity of O(n2logn). Although the results 

look optimal, this work lacks of theoretical analysis; or in other word, the algorithms are likely to 

base on intuition other than solid theoretical support. [LIW03] (below) provides the 

compensation for that insufficiency and shows that this theoretical deficiency actually leads to 

faulty. 

[LIW03] can be thought as the compensation and extension of [MEK01] discussed 

above. The definitions and theoretical analysis are systematically provided. However, this work 

only considers best-coverage-path and some of its extensions, which is intrinsically maximal 
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support path as in [MEK01]. To facilitate the proposed algorithms, the authors first define two 

kinds of graphs: 

 Constrained relative neighborhood graph over set of nodes V, denoted by RNG(V): RNG(V) 

has an edge (u,v) only if there is no other node in ),(),( uvvBuvuB ∩  (this intersection 

region is called lune) of which ),( uvuB  is disk centered at u and has radius of distance from 

u to v. 

 Constrained Gabriel graph over set of nodes V, denoted by GG(V), GG(V) has edge uv only 

if 1≤uv  and the closed disk with diameter uv (i.e., disk centered at central point of edge uv 

with radius of  
2
uv

) does not contain any other node. 

Based on those structure graphs, the authors propose a decentralized best-coverage-path 

algorithm and two of its extensions. The common step in all three algorithms is to create the edge 

from source s and destination t to their closest sensors; and these edges will be part of discovered 

paths. 

 Algorithm 1: Best-Coverage-Path: The objective is to find the path that minimizes the 

maximal distance to the closest sensor, which essentially is maximal-support-path. Instead of 

searching the path along Delaunay triangulation edges as in [MEK01], this work searches on 

much more smaller graph which is RNG. Each node u bases on its 1-hop neighbors list N1(u) 

to construct its local RNG graph. For each neighbor v of this local RNG, the edge uv is 

assigned a weight of uv
2
1 . The next step is to use a distributed variant of Bellman-Ford 

algorithm to discover the shortest path. The weight β  of the path is the weight of the edge 
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(belonging to that path) with maximum weight. The time and communication complexity are 

O(n2logn) and O(n logn) bits, respectively. 

 Algorithm 2: Energy-Conserving-Best-Coverage-Path: The objective is to find the path that 

the maximal distance to the closest sensor and energy consumed by that path are both 

minimized, i.e., best-coverage-path with minimum energy consumption. First, algorithm 1 is 

executed to find the value of the shortest-path weight β . Each node then constructs its local 

GG graph and prunes all the edges having weight larger than β . Each of the remaining edges 

is assigned a weight which is proportional to the total energy consumed by that edge. Then 

the distributed short-test path algorithm is applied. The path with minimum total weight will 

be the final solution. The time and communication complexity are both 

O(n logn). 

 Algorithm 3: Small-Travelling-Best-Coverage-Path: The objective is to find the best-

coverage-path that the maximal distance to the closest sensor is minimized and the total 

length of the path is not more than 5/2 of the shortest one. Firstly, algorithm 1 is run to find 

the value of the shortest-path weight β . Each node then constructs its local Delaunay graph 

(LDEL) and prunes all the edges having weight larger than β . Each of the remaining edges 

is assigned a weight of its length. Then the distributed short-test path algorithm is applied. 

The path with minimum total weight will be the solution. The authors confirm that the ratio 

between the length of best-coverage-path constructed by this method and that of the shortest 

best-coverage-path is no more than 
9
34 π  (which is smaller than 

2
5 ). This is the trade-off 

between quality of solution and communication-complexity. The shortest path can be found 



73 

by using Unit Disk Graph (UDG), the communication complexity is however larger than that 

of this method which is O(n logn). 

The authors also provide correctness proof for their proposed algorithms and a proof for 

maximal-support-path algorithm in [MEK01]. 

Also considering worst/best-case coverage issues; [HUR05], instead of finding the 

maximal breach/support paths as above work, solves the problem of determining the 

maximum/minimum sensing range of a uniform sensor network such that there are totally 

uncovered maximal breach paths or completely covered maximal support paths. Those radii are 

called worst-coverage radius (denote rworst) and best-coverage radius (denote rbest), respectively. 

Let U(r) be the region of union of coverage disks with radius of r centered at sensors, then U(r) 

should be the union of several connected regions for any fixed value of r. Let )(rU  be the 

complement of U(r). Similarly, )(rU  as well contains some connected regions. If both source s 

and destination t are in the same connected region of U(r), then there will exist a fully covered 

maximal support path. The smallest r for this to satisfy is called best-coverage radius rbest. 

Similarly, the biggest r such that s and t are in the different connected regions of )(rU  is called 

worst-coverage radius rworst. It follows that the problem of determining radius rbest and rworst is 

translated into the problem of connectivity of U(r) and )(rU , respectively. Let G(U(r)) be the 

connectivity graph whose vertices are the sensor nodes in U(r). G(U(r)) has an edge uv if the 

coverage disks of u and v overlap. The problem of best-coverage radius now becomes 

determining the radius r such that vertices corresponding with disks containing source and 

destination are connected in G(U(r)). By trial and error method on a sequence of radius ri such 

that 1−×= ii rr α , the α -approximation of optimal rbest is easily be found in log2R time where 
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R=rmax/rmin. To update rbest so as to maintain the connectivity of G(U(r)) while network topology 

changes, the kinetic data structure and the algorithm in [GUI01] is utilized. This guarantees 

)1( ε+ -approximation of rbest for any 0>ε , update cost is O(log3n) and O(logn) query cost (for 

fixed ε ). Another special data structure is used to maintain the connectivity region in )(rU . 

However, before applying that data structure, the sensor’s coverage region is transformed from 

2-norm (which is a circle) to infinity-norm (which is square). The reason for this transformation 

is that the algorithm needs to maintain only 4 points for to keep track of sensing region of each 

sensor. The proposed algorithm, by maintaining more four points, the cost for updating the 

change in topology (because of sensors’ leaving or joining the network) is limited to updating up 

to four edges. As consequent, the algorithm for worst coverage radius guarantees )2( ε+ -

approximation of rworst for any 0>ε , update cost is O(log2n) and O(1) query cost (for fixed ε ). 

At last, a centralized O(n logn) run-time algorithm to find the maximal support path is proposed 

which bases on rworst.  

V.5.2. Exposure 

Although maximal breach/support path can be used to measure the coverage quality of a 

network, they however merely base on the distance from an object to sensors as criterion to 

evaluate the quality. This metric is too simple for such evaluation. Another criterion can be used 

to evaluate coverage quality is exposure which takes into account the intensity of the sensing 

signal and the cooperation of sensors in the network on accomplishing coverage task. Exposure 

path is similar to maximal breach path except parameters it considers. Because of more involved 

metric, constructing a exposure path is much more difficult than building a maximal breach path. 
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[MEQ01] is the very first work coping with this kind of problem and is the first to 

introduce the concept of exposure of a sensor network, more specific, its objective is to calculate 

a minimal exposure path. Before giving a formula for exposure, the authors first mathematically 

formulate the concept of sensor field intensity (or observability [LIW03]). Generally, intensity is 

the strength of signal an object radiates that a sensor can measure. The intensity that a sensor s 

“senses” the object p is Kpsd )],([
λ  whereλ , K are constant and d(s,p) is Euclidean distance from 

s to p. Sensor field intensity is the intensity of signal strength from point p in field F that sensors 

can (co-operatively) measure. Two kinds of intensity are mentioned in this paper: Closest sensor 

intensity (denote IC(F,p)) – the intensity of the sensor closest to the object; and All-sensor field 

intensity (denote IA(F,p)) – the total intensity of all active sensors who can sense the object. 

Based on field intensity, the exposure of an object moving along the path p(t) in field F during 

interval (t1,t2) is formulated as following integral: 

∫=
2

1
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t

t

dt
dt
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The objective of this paper is to find a path having the smallest value of exposure. A 

simple case, of which a network consists of only a single sensor, is considered as an example of a 

solution for exposure problem. In general case, however, finding the solution is much more 

difficult. The most challenging issue in computing the exposure of a path p(t) comes from its (the 

path’s) continuous nature. To overcome this challenge, the continuous field is transformed to 

discrete one by two steps:  

1. The field (here is the whole sensor network) is first partitioned into ll ×  squares where l 

is some integer number. 



76 

2. Each square is then further divided into mm×  smaller squares, and minimal exposure 

path is restricted along edges or diagonals of those squares. See Figure 18 for an example of 

this transformation. 

By that transformation, it is easy to calculate the integral for exposure since any path p(t) 

is the union of finite numbers of straight lines. After above transformation, the algorithm then 

utilizes Dijkstra’s Single-Source-Shortest-Path algorithm to find the path with minimal exposure. 

Clearly, the precise of solution highly depends on the fineness of the transformation, i.e., the 

value of m and l.  

Figure 18. Third-order grid with l=2, m=3 [MEQ01] 

As mentioned above, it is difficult to calculate the exposure path for an arbitrary 

trajectory. Thus, the very first task that most of the work concerning exposure path needs to 

accomplish is to partition the space into parts such that the exposure can more easily be 

computed. In [MES01], the partition scheme is Voronoi diagram. The advantage of this scheme 

is that each sensor can calculate exposure based on local information (however, with a small 

error). The node si closest to the source s starts the path finding process by broadcasting 

path_request message to all the neighbors who share common Voronoi’s edges with it, namely 
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“Voronoi neighbors”. Node si also calculates and stores to profile exposure for each of its 

Voronoi’s edges. Since it is difficult to calculate the exposure for a whole edge, exposure is 

computed for discrete sample points along that edge. Node si then sends edge_update to all the 

Voronoi neighbors. Each time a node sj receives this request, it computes exposure for the 

common edge with sender of edge_update message if there is no exposure for that edge in its 

profile. It then combines its own profile’s exposure with the one attached in edge_update 

message to get the minimum exposure for each discrete point along that common edge. If 

nothing changes (meaning the message’s exposures are greater than sj profile’s exposures), sj 

sends back abort_update message (without continuing searching for the path). Otherwise, it does 

all steps exactly as node si did (e.g., broadcasting edge_update to Voronoi neighbors, calculating 

exposures for Voronoi edges) in order to expand the path finding process. Also, there is a global 

user-specified variable λ  which plays as exposure threshold, i.e., a node sends edge_update 

message to a neighbor only if there is a point in their common edge having exposure smaller than 

λ . When the path reaches destination t, the value of λ  will be updated to be the minimum of the 

current value of λ  and the exposure at t. This new value of λ  is scattered back through the 

network. A new and better exposure path is discovered by the same mechanism as just discussed 

with the new lower exposure threshold λ . The path is then traced back from t to s (the authors 

intentionally omit this step in the paper). There are several drawbacks in this work. For example, 

each sensor may have to maintain a huge exposure profile. Similarly, the edge_update message 

may be reasonably large since it contains the exposure for all the points in an edge. Besides, the 

authors do not provide any theoretical analysis to support the idea behind using Voronoi diagram 

as a partitioning method. Also, no correctness proof which guarantees that the proposed 
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algorithm is indeed able to find a path limited by the last threshold λ  (the one derived after a 

path reaches to destination t). 

As opposed to [LIW03], [XUH05] solves the worst coverage problem, i.e., finds the 

worst-coverage-path. The frame of localized algorithm represented in this paper is similar to 

FindBestCoverage algorithm proposed in [LIW03]. However, the observability [LIW03] is used 

to evaluate the path instead of distance as in [LIW03] and [MEG05]. Note that with that method 

to evaluate a path, the problem is solved in this work may be placed in Exposure section rather 

than maximal breach/support path. Because of worst coverage problem, a variant Voronoi 

diagram named aberrant Voronoi diagram is used. Aberrant Voronoi diagram is the intersection 

between Voronoi diagram and monitored area. It is proven in this paper that there exists a path 

with minimal observability on the aberrant Voronoi graph. The other difference from work in 

[LIW03] is the introduction of Vertex Selection Algorithm (VSA) which is used to find vertices 

vs, vt for source s and destination t, respectively, such that the observability of final constructed 

path is not smaller than that at s or t. To find the vs for source s, VSA starts at node us closest to 

s. us locally constructs its aberrant Voronoi region. The vertex of this local region which is 

closest to s will be chosen as vs. The time and message complexity of this algorithm is O(d logd) 

and O(d), respectively, where d is the maximum number of neighbor nodes that a sensor may 

have. 
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VI. CONCLUSION AND FUTURE WORK 

In this work, we consider the k-coverage issue in wireless sensor networks which is 

formulated as SESK problem. We further propose a completely distributed and localized 

algorithm named DESK to solve that NP-complete problem. We as well provide analysis and 

simulation to support the correctness and efficiency of the proposed algorithm. Nonetheless, we 

leave the following issues as our future work:   

 We may take network bandwidth constraint into consideration. 

 We extend out work to deal with adjustable sensing range. By giving sensors the 

ability to flexibly adjust its sensing range; they can more energy-efficiently cover the 

area.  

 We also plan to enhance our algorithm to monitor three-dimensional areas.  

 In this thesis, we assume that the communication range it is at least twice the sensing 

range. Therefore, the k-coverage also guarantees k-connectivity [WAN03]. We do not 

consider the connectivity for the general case of which a WSN having an arbitrary 

ratio between sensing range and communication range. It would be our consideration 

in the future.  

 In this thesis, we implicitly assume (as most other work in literature do) that sensor ‘s 

sensing region is isotropic and is non-attenuate, that is, a sensor can sense the same 

signal for every point within its sensing range  and the same in every direction; which 

is not really practical. For our next work, we may take the sensor’s non-isotropic and 

attenuate attribute on sensing ability into consideration. 
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 For our future work, we would also take the relaxation effect of battery into account 

in the simulation section. We assure that would give better results. 

In this thesis, we also conduct an extensive survey about coverage algorithms in 

literature. We first classify those work into groups, and give a brief comparison of work in each 

group and then discuss them in more details. We further point out advantages as well as 

drawbacks of each work which is being discussed. For papers (even are in the different sections) 

that relate, e.g., employ the same rule, we also give reference to each other. 
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