1,398 research outputs found

    Functional quantitative susceptibility mapping (fQSM)

    Get PDF
    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1 mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining “activated” voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique

    Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification

    Get PDF
    Measurement of blood oxygen saturation (sO2) by optical imaging oximetry provides invaluable insight into local tissue functions and metabolism. Despite different embodiments and modalities, all label-free optical-imaging oximetry techniques utilize the same principle of sO2-dependent spectral contrast from haemoglobin. Traditional approaches for quantifying sO2 often rely on analytical models that are fitted by the spectral measurements. These approaches in practice suffer from uncertainties due to biological variability, tissue geometry, light scattering, systemic spectral bias, and variations in the experimental conditions. Here, we propose a new data-driven approach, termed deep spectral learning (DSL), to achieve oximetry that is highly robust to experimental variations and, more importantly, able to provide uncertainty quantification for each sO2 prediction. To demonstrate the robustness and generalizability of DSL, we analyse data from two visible light optical coherence tomography (vis-OCT) setups across two separate in vivo experiments on rat retinas. Predictions made by DSL are highly adaptive to experimental variabilities as well as the depth-dependent backscattering spectra. Two neural-network-based models are tested and compared with the traditional least-squares fitting (LSF) method. The DSL-predicted sO2 shows significantly lower mean-square errors than those of the LSF. For the first time, we have demonstrated en face maps of retinal oximetry along with a pixel-wise confidence assessment. Our DSL overcomes several limitations of traditional approaches and provides a more flexible, robust, and reliable deep learning approach for in vivo non-invasive label-free optical oximetry.R01 CA224911 - NCI NIH HHS; R01 CA232015 - NCI NIH HHS; R01 NS108464 - NINDS NIH HHS; R21 EY029412 - NEI NIH HHSAccepted manuscrip

    Multiparametric measurement of cerebral physiology using calibrated fMRI

    Get PDF
    The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments

    Elimination of visually evoked BOLD responses during carbogen inhalation: Implications for calibrated MRI

    Get PDF
    Breathing a mixture of 10% CO2 with 90% O2 (referred to here as carbogen-10) increases blood flow due to the vasodilatory effect of CO2, and raises blood O2 saturation due to the enriched oxygen level. These effects both tend to reduce the level of deoxygenated hemoglobin in brain tissues, thereby reducing the potential for further increases in BOLD contrast. In the present study, blocks of intense visual stimulation (60 s) were presented amid longer blocks (180 s) during which subjects breathed various fractional concentrations (0–100%) of carbogen-10 diluted with medical air. When breathing undiluted carbogen-10, the BOLD response to visual stimulation was reduced below the level of noise against the background of the carbogen-10 response. At these concentrations, the total (visual+carbogen) BOLD response amplitude (7.5±1.0%, n=6) converged toward that seen with carbogen alone (7.5 ± 1.0%, n = 6). In spite of the almost complete elimination of the visual BOLD response, pseudo-continuous arterial spin-labeling on a separate cohort indicated a largely preserved perfusion response (89±34%, n=5) to the visual stimulus during inhalation of carbogen-10. The previously discussed observations suggest that venous saturation can be driven to very high levels during carbogen inhalation, a finding which has significant implications for calibrated MRI techniques. The latter methods involve estimation of the relative change in venous O2 saturation by expressing activation-induced BOLD signal increases as a fraction of the maximal BOLD signal M that would be observed as venous saturation approaches 100%. While the value of M has generally been extrapolated from much smaller BOLD responses induced using hypercapnia or hyperoxia, our results suggest that these effects could be combined through carbogen inhalation to obtain estimates of M based on larger BOLD increases. Using a hybrid BOLD calibration model taking into account changes in both blood flow and arterial oxygenation, we estimated that inhalation of carbogen-10 led to an average venous saturation of 91%, allowing us to compute an estimated M value of 9.5%

    Expanding the role of functional mri in rehabilitation research

    Get PDF
    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) contrast has become a universal methodology in functional neuroimaging. However, the BOLD signal consists of a mix of physiological parameters and has relatively poor reproducibility. As fMRI becomes a prominent research tool for rehabilitation studies involving repeated measures of the human brain, more quantitative and stable fMRI contrasts are needed. This dissertation enhances quantitative measures to complement BOLD fMRI. These additional markers, cerebral blood flow (CBF) and cerebral blood volume (CBV) (and hence cerebral metabolic rate of oxygen (CMROâ‚‚) modeling) are more specific imaging markers of neuronal activity than BOLD. The first aim of this dissertation assesses feasibility of complementing BOLD with quantitative fMRI measures in subjects with central visual impairment. Second, image acquisition and analysis are developed to enhance quantitative fMRI by quantifying CBV while simultaneously acquiring CBF and BOLD images. This aim seeks to relax assumptions related to existing methods that are not suitable for patient populations. Finally, CBF acquisition using a low-cost local labeling coil, which improves image quality, is combined with simultaneous acquisition of two types of traditional BOLD contrast. The demonstrated enhancement of CBF, CBV and CMROâ‚‚measures can lead to better characterization of pathophysiology and treatment effects.Ph.D.Committee Chair: Hu, Xiaoping; Committee Member: Benkeser, Paul; Committee Member: Keilholz, Shella; Committee Member: Sathian, Krish; Committee Member: Schuchard, Ronal

    Applicability of Quantitative Functional MRI Techniques for Studies of Brain Function at Ultra-High Magnetic Field

    Get PDF
    This thesis describes the development, implementation and application of various quantitative functional magnetic resonance imaging (fMRI) approaches at ultra-high magnetic field including the assessment with regards to applicability and reproducibility. Functional MRI (fMRI) commonly uses the blood oxygenation level dependent (BOLD) contrast to detect functionally induced changes in the oxy-deoxyhaemoglobin composition of blood which reflect cerebral neural activity. As these blood oxygenation changes do not only occur at the activation site but also downstream in the draining veins, the spatial specificity of the BOLD signal is limited. Therefore, the focus has moved towards more quantitative fMRI approaches such as arterial spin labelling (ASL), vascular space occupancy (VASO) or calibrated fMRI which measure quantifiable physiologically and physically relevant parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV) or cerebral metabolic rate of oxygen (CMRO2), respectively. In this thesis a novel MRI technique was introduced which allowed the simultaneous acquisition of multiple physiological parameters in order to beneficially utilise their spatial and temporal characteristics. The advantages of ultra-high magnetic field were utilised to achieve higher signal-to-noise and contrast-to-noise ratios compared to lower field strengths. This technique was successfully used to study the spatial and temporal characteristics of CBV, CBF and BOLD in the visual cortex. This technique is the first one that allows simultaneous acquisition of CBV, CBF and BOLD weighted fMRI signals in the human brain at 7 Tesla. Additionally, this thesis presented a calibrated fMRI technique which allowed the quantitative estimation of changes in cerebral oxygen metabolism at ultra-high field. CMRO2 reflects the amount of thermodynamic work due to neural activity and is therefore a significant physical measure in neuroscience. The calibrated fMRI approach presented in this thesis was optimised for the use at ultra-high field by adjusting the MRI parameters as well as implementing a specifically designed radio-frequency (RF) pulse. A biophysical model was used to calibrate the fMRI data based on the simultaneous acquisition of BOLD and CBF weighted MRI signals during a gas-breathing challenge. The reproducibility was assessed across multiple brain regions and compared to that of various physiologically relevant parameters. The results indicate that the degree of intra-subject variation for calibrated fMRI is lower than for the classic BOLD contrast or ASL. Consequently, calibrated fMRI is a viable alternative to classic fMRI contrasts with regards to spatial specificity as well as functional reproducibility. This calibrated fMRI approach was also compared to a novel direct calibration technique which relies on complete venous oxygenation saturation during the calibration scan via a gas-breathing challenge. This thesis introduced several reliable quantitative fMRI approaches at 7 Tesla and the results presented are a step forward to the wider application of quantitative fMRI.:1 Introduction 3 2 Background to Functional Magnetic Resonance Imaging 7 2.1 Magnetic Resonance 7 2.1.1 Quantum Mechanics 7 2.1.2 The Classical Point of View 10 2.1.3 Radio Frequency Pulses 12 2.1.4 Relaxation Effects 13 2.1.5 The Bloch Equations 15 2.2 Magnetic Resonance Imaging 16 2.2.1 Data Acquisition 16 2.2.2 Image Formation 17 2.2.2.1 Slice Selection 17 2.2.2.2 Frequency Encoding 18 2.2.2.3 Phase Encoding 19 2.2.2.4 Mathematics of Image Formation 20 2.2.2.5 Signal Formation 22 2.3 Advanced Imaging Methods 24 2.3.1 Echo-Planar Imaging (EPI) 24 2.3.2 Partial Fourier Acquisition 25 2.3.3 Generalised Autocalibrating Partially Parallel Acquisition (GRAPPA) 25 2.3.4 Inversion Recovery (IR) 26 2.3.5 Adiabatic Inversion 26 2.3.5.1 Hyperbolic Secant (HS) RF pulses 28 2.3.5.2 Time Resampled Frequency Offset Corrected Inversion (tr-FOCI) RF Pulses 28 2.4 Physiological Background 29 2.4.1 Neuronal Activity 30 2.4.2 Energy Metabolism 31 2.4.3 Physiological Changes During Brain Activation 32 2.4.4 The BOLD Contrast 34 2.4.5 Disadvantages of the BOLD Contrast 35 2.5 Arterial Spin Labelling (ASL) 35 2.5.1 Pulsed Arterial Spin Labelling 37 2.5.2 Arterial Spin Labelling at Ultra-High Field 41 2.6 Vascular Space Occupancy (VASO) 42 2.6.1 VASO at Ultra-High Field 44 2.6.2 Slice-Saturation Slab-Inversion (SS-SI) VASO 45 2.7 Calibrated Functional Magnetic Resonance Imaging 47 2.7.1 The Davis Model 47 2.7.2 The Chiarelli Model 50 2.7.3 The Generalised Calibration Model (GCM) 52 3 Materials and Methods 53 3.1 Scanner Setup 53 3.2 Gas Delivery and Physiological Monitoring System 53 3.3 MRI Sequence Developments 55 3.3.1 Tr-FOCI Adiabatic Inversion 55 3.3.2 Optimisation of the PASL FAIR QUIPSSII Sequence Parameters 60 3.3.3 Multi-TE Multi-TI EPI 64 4 Experiment I: Comparison of Direct and Modelled fMRI Calibration 68 4.1 Background Information 68 4.2 Methods 69 4.2.1 Experimental Design 69 4.2.2 Visuo-Motor Task 70 4.2.3 Gas Manipulations 71 4.2.4 Scanning Parameters 71 4.2.5 Data Analysis 72 4.2.6 M-value Modelling 72 4.2.7 Direct M-Value Estimation 73 4.3 Results 74 4.4 Discussion 79 4.4.1 M-value Estimation 79 4.4.2 BOLD Time Courses 82 4.4.3 M-Maps and Single Subject Analysis 82 4.4.4 Effects on CMRO2 Estimation 83 4.4.5 Technical Limitations and Implications for Calibrated fMRI 84 4.5 Conclusion 89 5 Experiment II: Reproducibility of BOLD, ASL and Calibrated fMRI 90 5.1 Background Information 90 5.2 Methods 91 5.2.1 Experimental Design 91 5.2.2 Data Analysis 91 5.2.3 Reproducibility 93 5.2.4 Learning and Habituation Effects 95 5.3 Results 95 5.4 Discussion 101 5.4.1 Breathing Manipulations 102 5.4.2 Functional Reproducibility 107 5.4.3 Habituation Effects on Reproducibility 109 5.4.4 Technical Considerations for Calibrated fMRI 110 5.5 Conclusion 112 6 Experiment III: Simultaneous Acquisition of BOLD, ASL and VASO Signals 113 6.1 Background Information 113 6.2 Methods 114 6.2.1 SS-SI VASO Signal Acquisition 114 6.2.2 ASL and BOLD Signal Acquisition 114 6.2.3 Experimental Design 114 6.2.4 Data Analysis 115 6.3 Results 115 6.4 Discussion 116 6.5 Conclusion 120 7 Conclusion and Outlook 12

    Advances in image acquisition and filtering for MRI neuroimaging at 7 tesla

    Get PDF
    Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths. First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion of the MRI experiment for use with multi-channel RF coils. It is demonstrated that in 2D MRI experiments, shimming on a slice-by slice basis allows utilization of an extra degree of freedom available from the slice dimension, resulting in significant gains in image homogeneity and reduced RF power requirements. After acceptable images are available, we move to address complications of high field imaging that manifest in the fMRI time series. In the second paper, the increased physiological noise present in BOLD time series at high field is addressed with a unique data-driven noise regressor scheme based upon information in the phase component of the MRI signal. It is demonstrated that this method identifies and removes a significant portion of physiological signals, and performs as good or better than other popular data driven methods that use only the magnitude signal information. Lastly, the BOLD phase signal is again leveraged to address the confounding role of veins in resting state BOLD fMRI experiments. The phase regressor technique (previously developed by Dr. Menon) is modified and applied to resting state fMRI to remove macro vascular contributions in the datasets, leading to changes in spatial extent and connectivity of common resting state networks on single subjects and at the group level

    Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Full text link
    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence in tissue are challenging since the spatial distribution of optical properties in tissue cannot be resolved in high resolution or with high accuracy by current methods. Spectral corruption has fundamentally limited the quantification accuracy of optical and optoacoustic methods and impeded the long sought-after goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical but still unattainable target for the assessment of oxygenation in physiological processes and disease. We discover a new principle underlying light fluence in tissues, which describes the wavelength dependence of light fluence as an affine function of a few reference base spectra, independently of the specific distribution of tissue optical properties. This finding enables the introduction of a previously undocumented concept termed eigenspectra Multispectral Optoacoustic Tomography (eMSOT) that can effectively account for wavelength dependent light attenuation without explicit knowledge of the tissue optical properties. We validate eMSOT in more than 2000 simulations and with phantom and animal measurements. We find that eMSOT can quantitatively image tissue sO2 reaching in many occasions a better than 10-fold improved accuracy over conventional spectral optoacoustic methods. Then, we show that eMSOT can spatially resolve sO2 in muscle and tumor; revealing so far unattainable tissue physiology patterns. Last, we related eMSOT readings to cancer hypoxia and found congruence between eMSOT tumor sO2 images and tissue perfusion and hypoxia maps obtained by correlative histological analysis
    • …
    corecore