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Abstract

Performing magnetic resonance imaging at high magnetic field strength promises many
improvements over low fields that are of direct benefit in functional neuroimaging. This
includes the possibility of improved signal-to-noise levels, and increased BOLD functional
contrast and spatial specificity. However, human MRI at 7T and above suffers from unique
engineering challenges that limit the achievable gains. In this thesis, three technological
developments are introduced, all of which address separate issues associated with

functional magnetic resonance neuroimaging at very high magnetic field strengths.

First, the image homogeneity problem is addressed by investigating methods of RF
shimming — modifying the excitation portion of the MRI experiment for use with multi-
channel RF coils. It is demonstrated that in 2D MRI experiments, shimming on a slice-by
slice basis allows utilization of an extra degree of freedom available from the slice
dimension, resulting in significant gains in image homogeneity and reduced RF power

requirements.

After acceptable images are available, we move to address complications of high field
imaging that manifest in the fMRI time series. In the second paper, the increased
physiological noise present in BOLD time series at high field is addressed with a unique
data-driven noise regressor scheme based upon information in the phase component of the
MRI signal. It is demonstrated that this method identifies and removes a significant portion
of physiological signals, and performs as good or better than other popular data driven

methods that use only the magnitude signal information.

Lastly, the BOLD phase signal is again leveraged to address the confounding role of veins in
resting state BOLD fMRI experiments. The phase regressor technique (previously
developed by Dr. Menon) is modified and applied to resting state fMRI to remove macro
vascular contributions in the datasets, leading to changes in spatial extent and connectivity

of common resting state networks on single subjects and at the group level.
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Preface

Magnetic resonance imaging, or MR], is an incredibly versatile set of technologies that has
had huge impact in diagnostic medicine, psychology, and neuroscience. The utility and
popularity of MRI can be attributed to the wide variety of image contrasts that can be
realized by changing the manner in which the MRI experiment is performed. MRI is a very
safe imaging methodology, employing no ionizing radiation, and thus lends itself well to
longitudinal studies and investigations of healthy volunteers. In the realm of neuroscience
research, these properties make MRI particularly useful for investigating both structure

and function of the brain.

The strength of the main magnetic field (B, -- measured in Tesla) affects many of the
imaging properties in MRI. Several important imaging parameters scale with the strength
of the main magnetic field due to the underlying physics of the MRI experiment, and can
result in distinct performance improvements in attainable image resolution and functional
contrast. Specifically, image signal-to-noise ratio scales with the field strength, allowing for

great improvements in image quality, differing contrast, and/or a reduction in scan times.

Clinically, 1.5 Tesla has become the incumbent standard with newer clinical systems
transitioning to 3.0 Tesla. Even higher field strengths are available but are still very much
in the research domain, mainly due to the technological challenges of imaging at high field.
These challenges arise from several effects that also scale with magnetic field strength.
Addressing some of these challenges for human neuroimaging is the focus of this thesis. In
this work, all imaging is performed on a research-oriented 7.0 Tesla imaging system.
Application work is focused on functional imaging of the brain, based heavily on BOLD fMRI

-- techniques which will be described in more detail later in the background material.

This neuroimaging-focused system brings the promise of improved imaging resolution and
sensitivity for functional imaging studies. As alluded to above, there are some benefits to
performing MRI at high field strengths, however, these are tempered by several associated
phenomena that make high field MRI very challenging. One such troubling effect arises

from the wavelength of the radio-frequencies (RF) involved, resulting in non-uniformities

Xiv



in the image brightness and contrast. Another confound arises from the increased levels of
energy deposition, resulting in tissue heating and making high duty cycle, large flip angle
sequences difficult to perform. Heightened sensitivity to magnetic field susceptibility
gradients can lead to image distortions and greater contamination from physiological

sources.

This thesis addresses three such confounds, proposing new methods to help mitigate their
influence. They are (in order of exposition): image inhomogeneity due to RF wavelength
effects, the increased contamination of physiological noise in fMRI, and the signal biasing

effects of veins in resting state fMRI.

The following chapters are organized to explain these phenomena, and to provide

background for the subsequent research papers.

Chapter 1 contains an overview of the excitation phase of the MRI experiment. We review
signal excitation in the context of the RF inhomogeneity artifacts present in human
neuroimaging at 7 Tesla. This includes exploring the role of multi-channel RF coil arrays,
methods for mapping of the transmit RF fields, and the role of multi-transmit technology
for homogenizing the RF excitation and thus image contrast. The concept of RF shimming,
the process of controlling these multi channel coil arrays to better control the RF excitation
is also introduced, and the process we have developed for fast, robust day-to-day operation
is reviewed. This groundwork is then leveraged to modulate the " B;+ shim" for every
excitation in the pulse sequence, allowing for marked improvements in homogeneity and
power efficiency. This new work serves as background for the first research paper (Ch 2),
which is fairly technical with minimal introduction of its own. Chapters 3 and 4, also
introduced below, are more applied in nature and were published as methodology papers
in Neurolmage. As such, they have significant amounts of self-contained introductory

material for the reader.

Chapter 2 presents a method for RF shimming for the ubiquitous multi-slice acquisitions
used in MRI. Itis demonstrated that in 2D MRI experiments, performing RF shimming on a

slice-by slice basis allows utilization of an extra degree of freedom available from the slice
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dimension, resulting in significant gains in image homogeneity and reduced RF power
requirements when compared to using fixed shim solutions for the whole brain. This

contribution is published in Magnetic Resonance in Medicine.

Chapter 3 describes a method for addressing one of the complications of high field imaging
that manifest in the fMRI time series: the increased physiological noise present in BOLD
time series at high field. This is addressed with a unique data-driven noise regressor
scheme based upon information in the phase component of the MRI signal. It is
demonstrated that this method identifies and removes a significant portion of physiological
signals, and performs as well or better than other popular data driven methods that use

only the magnitude signal information. This work is published in the journal NeuroImage.

Chapter 4 presents a method for dealing with another complication of BOLD-fMRI at high
field. Here, the BOLD phase signal is again leveraged to address the confounding role of
veins in resting state experiments. The phase regressor technique is modified and applied
to resting state fMRI to remove macro vascular contributions in the datasets, leading to
changes in spatial extent and connectivity of common resting state networks on single

subjects and at the group level. This work is published in the journal NeuroImage.

Chapter 5 serves as a conclusion, summarizing major results and discussing continuing

and future research questions.

The field of MRI is mature enough to have many excellent textbooks available. The
background material presented in this thesis is not meant to provide an exhaustive nor
complete description of MRI. For readers looking for additional detail, the author has found
two texts particularly helpful: Haacke's Magnetic Resonance Imaging: Physical Principles

and Sequence Design, and de Graff's In Vivo NMR Spectroscopy.

Xvi



1. MRI Background

Magnetic resonance imaging is based on the nuclear magnetic resonance
phenomenon. Atoms with a non-zero nuclear spin angular momentum--an intrinsic,
quantized property--exhibit a magnetic moment and respond to externally applied
magnetic fields, demonstrating a splitting in energy levels of the different spin
states. In MRI the predominant nuclei of interest is the single proton in hydrogen,

1H, a spin-% particle, with quantized spin ms= +%.

Three magnetic fields are utilized to perform MR imaging. The strong static main
field, Bo, and two time-varying fields: the radiofrequency (RF), or B field,
responsible for signal excitation and reception, and the gradient fields used for

spatial encoding of the image.

In the uniform external magnetic field produced by the MRI machine (B, oriented
along the z-axis by definition), the proton nuclear magnetic moments lead to
discretized energy values for the two spin states, sometimes referred to as spin-up
and down, or parallel and anti-parallel. Parallel and anti-parallel configurations have
slightly different a potential energies that scale with the external magnetic field
strength and a characteristic scaling factor called the gyromagnetic ratio, y /2m

(42.57 MHz/T for Hydrogen). Given B, in the z direction, the energy levels E are:

h _
E = _.u'B = —Uz 'BZ = _ymsﬂBO = +§YhBo-

There is then a small energy difference between the spin up and down states given
by AE = hw,. For an ensemble of spins, the drive to lower energy (ground state) is

offset by the thermal energy of the system, resulting in an equilibrium where a



surplus of the spin population is in the ground state, given by the Boltzmann
distribution:
—4E
AN = eksT
where kgis the Boltzmann constant and T is the temperature of the system. It is this
population excess that is the basis for signal in MRI. Summed over the population of

spins in a sample, the magnetic moments add vector-wise, and the resultant is

referred to as the net magnetization of the sample, My, with a magnitude:

M. = Po}’ztho
0 4kpT '

where p, is the proton density. While NMR is fundamentally a quantum mechanical
phenomenon, the behavior of the MRI experiment for hydrogen, when expressed in
terms of the bulk magnetization behaves in a manner that is completely described
by a classical vector model. At equilibrium, My is aligned parallel to By, the direction
of which defines the z or longitudinal axis, and is normal to the transverse, or x-y
plane. Once excited away from the z axis, these magnetic moments will precess
about By at a frequency w, = yB,, called the Larmor frequency, roughly 300 MHz for
hydrogen at 7 T. Only the component of the magnetization in the transverse plane

generates detectable signal.

Excitation

In order to acquire signal for imaging, the bulk magnetization must first be excited
away from equilibrium. Spin excitation is attained by application of a time-varying
radiofrequency magnetic field, B1, at the Larmor frequency. Because the application
of this B1 field is typically of a short duration, with a shaped envelope, it is
commonly referred to as an RF pulse. The result of this RF pulse is the net

magnetization vector experiencing a rotation, or flip, down into the transverse



plane. The x and y -axes in the transverse plane are defined by the phase of the
initial RF excitation pulse. The angle that the magnetization vector is rotated away
from the z-axis is referred to as the flip angle, a. For instance, a 90-degree flip angle
about the x axis results in the magnetization vector being rotated completely from

the z-axis down into the transverse plane, along the y axis.

The RF amplitude in Hz, w; at a point in space, r, is controlled by two parameters,
the driving amplitude, w, and the spatially varying local magnetic field produced by

the transmitting element:
w1 (f) = wyB{ ().

For a constant RF pulse at the Larmor frequency of amplitude w; = yB; (ignoring
the spatial behaviour for now) and duration 7, the flip angle experienced by the

magnetization vector is:
a = (UlT

More generically, for a pulse with a time varying envelope:

a= ftwl (tdt

The system elements responsible for transmitting RF pulses and receiving the MRI
signal are known as RF coils. These are typically resonant loop structures that are
designed and tuned to be sensitive to the magnetic field fluctuations generated by

spins at the Larmor frequency.

The magnetic fields generated by RF coils are vector valued in space, with their
magnitude typically reported in micro-Tesla, and can be decomposed in terms of

their x and y components:

B, = B.6, + B2,



However, it is much more useful to express these fields in a circularly polarized

basis with co- and anti- rotating basis vectors e1 and e;. We can express:
B1 == Bil—él + Bl_éZ'

Here the scaling for the co-rotating and counter-rotating fields B;+ and B;- can also

be written in terms of the original Cartesian components:

BY =~ (B, +iB,), and

— 1 .
By =~ (B, —iB)).

These decompositions are useful because the co- and anti- rotating (or right and left
polarized) components are recognized as being responsible for excitation during

transmission, and reception of signal, respectively.

RF Inhomogeneity

The simplest coil element in use in MRI is the venerable loop coil, a building block
from which larger coil arrays may be constructed. An example of the transmit B;+
field distribution produced by a loop surface coil in the human head at 7 T is
displayed in Figure 2-1. The B; field generated by such coil falls off very quickly,
limiting the imaging region. As such, individual surface coils are rarely used for
signal transmission, except in specialized circumstances. The spatially localized
fields generated by surface loop coils have advantages when combining multiple
loops to increase volume coverage. Such designs are commonly used for signal
reception. Surface coils arrays designed for transmission exist and have been shown
to provide some benefits versus volume transmitters in SAR and shaping of the
transmitted RF field(1). Typically for whole brain imaging, volume coils -- RF coils
that produce homogeneous fields over the entire imaging volume -- are utilized, one

popular geometry being the birdcage design.



In high-field human imaging these volume coils no longer produce uniform B1 fields
owing to the RF inhomogeneity artifact. This effect is commonly referred to as a
‘center brightening’ artifact because of the typically larger signal intensity in the
central regions of the brain in low flip angle gradient echo sequences. In the
literature, this is also described by the equally confusing term dielectric

resonance(2,3).

Figure 1-1 Surface Coil Transmit Profile

Sample profile of the magnitude of Bi+ in an axial slice produced by a 15-
cm-diameter surface coil located over the visual area (approximate

location shown) in the human head at 7T.

As an example of this effect, Figure 1-2 displays a gradient echo image acquired at 7
T using a whole head birdcage coil. For most imaging applications, the ideal RF coil
for transmission would produce a B;+ field with uniform amplitude over the whole

sample, to enable a homogeneous flip angle over the imaging region.



At higher field strengths, where the operational frequency of the MRI increases, the
RF wavelength approaches the dimensions of the sample. The shortened wavelength
leads to destructive interferences between the B; fields produced by the elements of
the RF coil (loops in an array or rungs of a birdcage), resulting in spatially varying
amplitude and phase of the resultant B;+ field(2,4,5). The non-uniform flip angles
generated as a result lead to spatially varying signal and contrast in the acquired
images. For example, regions experiencing excitation flip angles smaller or larger
than expected can suffer from reduced signal levels, via under-flipping or
magnetization saturation, respectively. The wavelength to object size ratio becomes

problematic for human imaging of the torso at 3 T, and in the head at 7 T.

Figure 1-2 7T Centre Brightening

Characteristic center brightening artifact demonstrated in an axial slice
in the human head at 7T. Acquired with a birdcage head coil, RF
interferences in the periphery of the brain lead to attenuation of the B1+

(circled).



Addressing RF inhomogeneity is important. The base low-frequency image intensity
variation is problematic although intensity variations can be inferred and corrected
with post processing techniques (in much the same way that receive field
normalization is performed). However, signal loss from under- or over-flipping
cannot be recovered, and thus spatially alters the signal to noise ratio (SNR),

reducing the SNR efficiency of any imaging.

Equally concerning are the image contrast variations between and within tissue
types. As a result of the B;+ inhomogeneity, nearly all imaging sequences will have
tissue contrast altered spatially either via imperfect RF refocusing effects, or from
changes in the steady-state magnetization at the different effective flip angles.
Spatially varying contrast changes can lead to significant problems for many
applications -- from visual identification in diagnosis, to automated segmentations
that rely on well-defined differences between tissue types. An example of this effect
is demonstrated in Figure 1-3, where an axial slice from a typical Ti-weighted
anatomical dataset are shown side-by-side, one acquired from a 3 T scanner, with a
comparable 7 T image to the right. Observable in the 7 T image are both the overall
intensity variation (center brightening), as well as contrast effects from the
imperfect excitation pulses -- contrast between grey and white matter is nearly lost
in some locations. It should be noted that the use of an adiabatic inversion pulse in
this example mitigates the contrast loss during magnetization preparation, and

residual contrast effects are mainly from the excitation pulses in the readout.

Overall image intensity and contrast can also differ from what one might expect
given a particular sequence parameter set, depending on how the mean flip angle is
calibrated over a potentially wide B;+ distribution. RF inhomogeneity is also quite
problematic for many quantitative imaging techniques (parametric mapping) that

rely on a well-defined signal response to the applied RF pulses.



B4+ Shimming

Several approaches for combating the inhomogeneity artifact are known. Software-
based approaches are popular for their (relative) ease of implementation and low
cost overhead. B;+ insensitive RF pulses like composite or adiabatic pulses can be
designed and employed, but they are not applicable in all situations. For an
overview refer to de Graff (6). Another important software approach is the design
of gradient encoded RF pulses (typically known as 2D or 3D RF). These pulses are
designed to spatially tailor the excitation response with the additional control
available from gradient encoding. Implementation of 2D/3D RF for low flip angle
excitation is fairly simple problem, but the method becomes significantly more
complicated in high flip angle applications like inversion and/or refocusing pulses

(7-10).

Figure 1-3 3T vs 7T Anatomical

T1-weighted MPRAGE acquired with a birdcage coil at 3 T (left) and 7 T (right)
demonstrating spatial signal amplitude and contrast effects from the inhomogeneous

transmit field.

Hardware approaches, in the form of multi-channel RF transmit coil arrays are also

a promising option(1,2,11-15). In contrast to the typical situation in MRI where a



single volume coil is responsible for RF transmission (typically referred to as the
body coil), transmit arrays consist of multiple independently controlled elements
that are constructed such that the combined (vector) sum of the B;+ fields from all
elements results in a more homogeneous excitation field . The size, shape, and
number of elements in the array affect the combined spatial response of the array
(16) with competing design goals of penetration depth, coverage, power efficiency,
and element isolation. Design of such arrays was and continues to be the approach
taken by our lab for the 7 T scanner. Such design problems have received significant
attention from the group with myriad coil array geometries and construction

methods having been developed and tested (13-15).

Figure 1-4 Birdcage (top) vs 12 Channel Tx-Array (bottom)

Use of multi transmit coil technology allows tailoring of the field profiles

and partial correction of the RF inhomogeneity artifact.

Figure 1-4 demonstrates the difference between a birdcage and 12 channel surface-
coil transmit array in matched slices using a low flip angle gradient echo sequence.

Increased receive signal intensity partially masks the center-brightening in the
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transmit array (Figure 1-4, bottom row), yet the RF inhomogeneity is still detectable

as contrast variation within the images.

Such transmit arrays, designed for performance on a reference head/phantom,
prove to be sensitive to the variation found when performing MRI on real subjects.
Head shape, size and positing within the transmit array affect the performance, and
as such, the B;+ profiles of each element and the overall B;+ homogeneity.
Independent control of the driving amplitude and phase of each element at run time
allows for further tuning of the RF excitation field on a per-subject (and even per-

ROI) basis. This process is referred to as B;+ shimming.

When the spatial profiles of more than one transmit coil overlap, the field vectors
add, resulting in a field that is a linear combination of those from each individual

coil:

BI () =31, Bl ().
By individually controlling each coil element, the RF excitation field can be shaped.
Options for driving a set of coils are varied; separate amplifiers per channel allow
for scaling of the contributions of each element. The addition of phase shifters adds
modulation of the spatial phase offset, and separate per-channel waveform
generators enable modulation of the RF pulse shapes on a per-transmitter basis. The
MRI platform used in this work has sixteen separate RF chains, enabling all of these

capabilities for fine control of the transmitter channels.

Amplitude scaling and phase offset controls for each channel can be represented as
complex-valued vector w € C*C0ils, By modulating the weights, the resultant

summed excitation field at a given point in space, r, can be controlled:

Bf (w,) = L55" w; B (r).
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Solving the shimming problem involves selecting a weights vector to optimize some
metric over a targeted region of interest (ROI) for imaging, typically a voxel, slice, or
volume area, i.e. to homogenize B (r) for r € Qg,,. This process is depicted
pictorially in Figure 1-5, which demonstrates the summation of many coil B;+

profiles in a single slice.

Constraints on the problem variables can be employed to aid in the solution. One
particularly important concern at high field strengths is the transmit efficiency. We
take a brief aside to explain this concept, and the related idea of specific absorption
rate, or SAR. Given a single coil with some known B;+ at a point in space, a desired
excitation flip angle for a fixed duration pulse can be achieved by scaling the

amplitude of excitation.

Two problems arise from low B;+ efficiency. First, amplifiers have hard limits on the
amount of output power that is able to be delivered to the RF coil. Second, and more
problematic for human imaging, are the effects of tissue heating that occur. These
transmit elements also generate electric fields in addition to the magnetic B;+ fields.
The E fields interact with tissue and lead to energy deposition, in the form of tissue
heating. A hard limit exists on the rate of tissue heating, and is called the specific

absorption rate, or SAR, measured in W/kg.

Energy deposition is a strict constraint for high field imaging, and scales with the
sample conductivity and the square of the electric field generated by the coil.
Efficient transmit coil design, while outside the scope of this work, can be
understood to involve maximizing the B;+ generated while minimizing the
magnitude of the E field in the sample. In a multi-channel transmit coil, we are
restricted by the designers on the absolute efficiency of each element, however,
depending on how the array is driven the efficiency in practice can be greatly
changed. To understand this concept, consider a region in a sample within the RF

coil, where the B;+ field from each transmit element, when driven in isolation, is



Figure 1-5 B;+ Shimming

Outer ring: Magnitude images of relative B;+ for 14 selected channels of a
cylindrical transmit array. The B;+ shimming process is to choose an
amplitude and phase scaling for each channel to homogenize the summed
field over the slice. Centre: Resultant B;+ distribution if fixed weights are
used to align all channels only at the centre of the volume, mimicking the
field pattern of a birdcage at high field, known as circularly polarized mode.
Even though individual channels have significant amplitude in the periphery
of the brain, destructive interference leads to vector cancellation and low

resultant B;+. Color range matches that in Figure 1-1: red=1 to blue=0.

12
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non-zero. If we choose to drive the transmitters (by picking appropriate weights)
such that the B+ fields from all coils add constructively, we might expect to be near
the peak efficiency for that region. On the other hand, were we to choose weights
such that the B;+ field vectors almost totally cancel, very little B;+ will be generated
even with large input power -- a very inefficient situation indeed. The E fields will
likely not cancel, however (especially averaged over the sample) leading to tissue

heating still occurring even in the absence of any spin excitation from B;+.

Returning to the concept of shimming, it is apparent that tradeoffs must be made
between the homogeneity of the B;+ shim solution over the sample, and the average
amount of vector cancellation between elements. A uniform field that requires
orders of magnitude more power for the same flip angle is nearly useless. This is
demonstrated in Figure 1-6. Here, the same fast spin echo image was acquired on a
phantom with two very different B;+ shim solutions, one near maximum average
efficiency, and one near maximum achievable homogeneity (and low efficiency), as a
result, the "homogeneous" solution requires nearly 11 dB more power for a

matched excitation flip angle.

To help achieve solutions with a physically realizable transmit efficiencies, the sum
of squares of the weights vector is constrained by a limit L. Constraints on peak
scaling per channel can also be integrated via box bounds on the magnitude of the
elements of w. We can then express the shimming procedure as a problem of the

form:

min fo(Bf (w, 7))

. req )
subject to lw||? <L koI

where fois a metric to assess inhomogeneaity of the resultant B;+. The choice of the
metric is important and greatly affects the quality of shimming achievable (17), as

well as the difficulty of solution.
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Figure 1-6 Comparison of B;+ shim efficiency

Fast spin echo image of phantom with a 12 channel RF transmit array.
Left: CP-mode, high efficiency Bi+ shim. Right: Shimmed for maximum attainable
uniformity. The uniform shim requires 11 dB more RF power, unsuitable for in-

vivo applications.

Options for what would make a good objective fo are easily theorized but tend to be
difficult to implement from a practical perspective. For instance, high uniformity
and efficiency are desired, so one might propose functions of the form

fo (x) = mean(x) / stdev(x). At first pass this would seem like a reasonable choice -
as a high mean B;+ provides efficiency while a low standard deviation implies some
uniformity. In practice, such a metric is a very poor choice due to its highly
nonlinear behaviour. In all works here, we choose a least squares fit to a
predetermined smooth spatial distribution for B, details of which are given in

Chapter 2.
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The spatial behaviour of the B;+ fields makes solving this problem interesting: the
solution difficulty ranges from trivial (for a single point, there is a vector w that
aligns all transmitters for total constructive interference at that point), to very
complicated when trying to solve over large areas where many minima can exist.
This solution difficulty results from the rather limited number of controls (w) for the
large problem space, coupled with the overlapping spatial profiles of the transmit

elements.

The degrees of freedom for shimming solutions can be increased any time we can
subdivide the region of interest into more spatially localized areas. Fortunately, this
occurs frequently in many MRI sequences: any 2D sequence inherently splits the
data acquisition into slices of the otherwise 3D volume. By shaping the pattern for
each slice individually, the shimming problem is simplified two-fold: by increasing
the degrees of freedom, as mentioned before, and by reducing the spatial extent
over which uniformity is required. This is precisely the approach taken in Chapter 2,
which develops a framework for shimming on a per-slice basis for 2D acquisitions,
and demonstrates its efficacy in terms of solution uniformity and efficiently. It
should be noted that multiple spatially localized pulses are also used for other

purposes: spatial saturation, fat saturation, and spin tagging for instance.

B1+ Mapping

Before one can compute B;+ shim solutions, one must have knowledge of the B;+
fields generated by all coil elements in the transmit array. Measures of B;+ also
allow for spatially localized flip angle calibrations. In the following, we review basics
of B;+ mapping, and the method used for generating these maps over all coil

elements in the transmit array.
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B+ Mapping sequences are a class of MRI protocols that relate the observed MRI
signal to the underlying transmit field. One of the simplest approaches is the double
angle method. Useful primary for pedagogical purposes, it generates a flip angle map
from two separate fully-relaxed gradient echo acquisitions, M1 and Mz, at two

prescribed flip angles 8 and 26. The local flip angle in any voxel can then simply be
computed (18) as @ = cos™?! (21\472) Knowledge of the flip angle distribution and
1

transmitter calibration (pulse width and power) allows solving for B;+ from the
relation @ = yB; 1 (section 2.1). The double angle method is seldom used in practice
because of the requirement for full relaxation of the magnetization in order to avoid

bias from T effects.

Research in B;+ measurement methods focus on either improving mapping accuracy
or shortening the acquisition times (19-24). For practical mapping needed by multi-
transmit systems, finding methods that provide fast measurements with reasonable
accuracy is key, as maps of the 3D distribution of B;+ are needed for each logical
transmit channel, covering the entire volume of interest. For systems with high
transmit channel counts (8, and 16 becoming more common), even relatively fast
sequences at one minute per channel quickly become infeasible for use on every

patient that is imaged.

To operate quickly, mapping schemes must overcome the T1 biasing effects to
enable short repetition times. The acquisition of choice for mapping in this work is
the Actual Flip angle Imaging (AFI) method(24). Like the double angle method, AFI
uses an algebraic relationship between acquisitions to infer the local flip angle. AFI
however is much faster, operating in a spoiled steady state. AFI uses two interleaved
pulse-echo pairs measured with the same flip angle but different TRs. The signal

ratio, r, between these two FIDs allows computation of an estimate of B;+ :

_(rm—1
a = cos
n—r
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The sensitivity of the AFI mapping depends mainly on the tissue properties and the
n parameter which relates the two TR values, TRz = n * TR; (24,25). For reasonable
TRs of 20ms and 100ms (n = 5), a 3D AFI sequence covering the brain would still
require roughly a minute per channel for coarse resolution and full Cartesian
sampling. While some have suggested moving to parallel imaging or faster sampling
trajectories (EPI, stack of spirals, etc.), these bring their own challenges and are not

employed in this work.

Transmit Array B4+ Mapping

Mapping B;+ for transmit arrays poses additional difficulties that stem from
requiring B;+ maps of each individual element in the array. While the entire array
may allow imaging of the entire volume, each of these elements, usually small and
localized, are not typically sensitive to the whole imaging volume. This means that
when mapping these elements in isolation, a large range of B;+ is generated. When
operating in a regime where areas close to the active element experience reasonable
flip angles, distant regions will experience near zero flip angles. Signal to noise ratio
in these regions will be very poor as a result, leading to errors in B;+ estimates far
from the element in question. In a single coil scenario this is not of great concern, as
a single surface coil would be positioned such that distant areas would typically not
contain important anatomy. In a transmit array this is not the case, as regions with
low sensitivity from one element may still be within the imaging volume, and
sensitive to other elements, thus accurate knowledge of B;+ in these areas is

important.

This large dynamic range in B;+ from each element (as seen in Figure 1-1) also
affects the accuracy of the measurement in terms of residual T bias -- regions
experiencing vastly different flip angles will be biased differently, and not one-to-

one with flip angle.
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To address this dynamic range problem, coils are mapped not one at a time, but in
linear combinations chosen for reasonable B;+ coverage(26). For a set of N coil
elements in the array this encoding can be represented by a N * N, matrix, E,
where the measurements m; in a given voxel are related to the underlying

sensitivities B by:
m? = EB}

Then for each voxel, the original (individual) coil sensitivities can be recovered by
simply inverting the encoding. Acquisition of one coil map at a time is equivalent to
an identity encoding matrix. Using this approach, the modes that are mapped can be
chosen to have reduced dynamic range or better coverage of the volume, thereby

reducing systematic measurement errors.

Given that the relative phases and magnitude profiles of the transmit elements
change with coil loading and between system reboots, a-priori determination of
"best case" encoding is difficult. Instead, we choose the matrix of the discrete
Fourier coefficients of size N * N, this has a condition number of 1, an easy
analytic inverse, and produces significant variation in the spatial patterns generated

by the superposition of transmit fields.
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2. Slice-by-slice B1+ Shimming

Introduction

Human magnetic resonance imaging at high field strengths (>3 T) suffers from well-
known inhomogeneity artifacts due to wavelength interference effects of the
radiofrequency (RF) fields in tissue. Depending on the field strength and anatomy
being studied, these intensity variations can range from being relatively benign to

being detrimental to the ability to perform diagnosis and quantification (1, 2).

Many methods exist for combating RF-transmit inhomogeneity that can be
implemented on most imaging systems, including the use of adiabatic pulses(3),
composite pulses(4), and 3D RF excitation(5, 6). Although requiring substantial
additional hardware investment, multi-channel transmit coils are another
demonstrated alternative for improving the homogeneity of the RF field, and can
potentially be used with the previously mentioned methods. Promising
developments have been made in the engineering of transmit coils with tailored B1*
distributions, including shaping the transmit field (7); reducing coupling between
coil elements (8, 9); providing better basis sets for modulating the RF field in all
directions (10, 11); and creating load-insensitive coils (12). However, coil design
alone is insufficient for producing highly uniform B* distributions, and the
independent modulation of the driving amplitudes and phases of the separate
transmit elements (known as ‘B1* shimming’) is required. Although B1* shimming
can significantly improve homogeneity, at high field strengths the B1* fields that are
produced prove to be a poor basis set for generating uniform images over the entire
brain, leading to promising developments in multi-channel versions of composite
(13) and multi-dimensional pulses (14, 15). In an effort to increase the number of

degrees of freedom available for such field shaping, there has been a trend toward
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larger numbers of transmit channels, mirroring the scaling of parallel receive

architectures in the past decade.

This manuscript adopts a different approach; we exploit the extra degrees of
freedom that are available when performing ubiquitous multi-slice MRI acquisitions,
and we demonstrate that by shimming on a per-slice basis, gains can be achieved in
B1* performance. The utility of subdividing the volume into smaller regions of
interest (ROIs), thereby producing simpler optimization problems, has been
previously demonstrated in a simulation study by Mao et al. (16). They reduced the
shim ROI from the whole head down to a single slice to yield shim solutions with a
higher homogeneity. The primary aim of this manuscript is to experimentally
evaluate the efficacy of this B1* shimming technique and extend it to multi-slice
acquisitions. The technique is then compared to conventional volumetric shimming
methods, as they are the standard for the birdcage coils and fixed-phase multi-

transmit arrays which are currently in common usage.

At high field, the B:* field pattern is dependent on the subject’s geometry and
position within the RF coil—this suggests a single shimming technique may not be
suitable for all subjects. The secondary aim of this manuscript is therefore to
evaluate the effect of implementing different shim targets in the slice-by-slice

shimming technique.

Methods

Hardware

All imaging was performed on an Agilent 7T head-only MRI scanner (Agilent, Inc,
Walnut Creek, CA) with an AC84 head gradient coil (Siemens, Erlangen, Germany).
The Direct Drive console (Agilent Inc, Walnut Creek, CA) was configured for driving

16 transmit channels via individual waveform generators and 1-kW peak-power
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broadband amplifiers (2 x 7T1000M-8C, Communication Power Corporation,
Hauppauge, New York), allowing real time control of RF amplitude and phase on a
per-channel basis. System software was modified to support real-time modulation
of B1* shims. Transmitted power was measured using a high dynamic range in-
house built power monitoring system that reported both forward and reflected

individual-channel and combined-power levels.

A 15-channel transceive RF coil (described in Ref. (10)) was utilized in all
experiments. The 15 channels are split into three rings in the longitudinal direction
and mounted on a 27.9-cm-diameter cylindrical former. The superior and middle
rings each contain six 13.3 x 8.9 cm elements positioned symmetrically about the
cylinder. Three additional channels covered the posterior half of the inferior ring.
This arrangement yields a coil length of 13.7 cm and 19.9 cm at the anterior and
posterior aspects, respectively. The coil was tuned and matched for an average head

size and was not optimized on a per-subject basis.

All volunteers signed a written consent form for the study in accordance with the
University of Western Ontario research ethics board. MATLAB (The Mathworks,

Natnick, USA) and C were used for all data analysis and algorithm development.

B:* Mapping

B1* maps were acquired from five subjects of differing head size. The field of view
(FOV) of each map was positioned identically with respect to the transmit coil and
magnet isocenter. To have sufficient voxel counts to compute performance statistics,
3D maps were acquired with a 220 x 220 x 220 mm FOV and a matrix size of

64 x 64 x 64. B1* mapping was performed with a multi-step hybrid mapping
approach modified from Refs. (17, 18) as outlined below.
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In the first step, low-resolution 3D FLASH volumes (TE/TR: 2.8/7.2 ms, BW: 531
Hz/px, nominal flip angle: 3°, slab thickness: 200 mm) were acquired for each
transmit channel. Coils were not mapped one-at-a-time but in sets using a linear
‘virtual array’ combined driving mode consisting of the discreet Fourier transform
matrix coefficients (equivalent to the ‘Butler’ matrix driving mode in (19)). At these
low resolutions, flip angles of less than 3° were employed which helped to eliminate
relaxation bias while still providing sufficient SNR for accurate measurement of RF
phase. Assuming a small flip angle and negligible relaxation effects, B1* is linearly

proportional to the received signal.

In the second step, the linear combinations of the measured B:* maps were
separated into individual channels, and a B1* shim utilizing only the phase was
calculated from the FLASH maps (see following section for description). Actual flip
angle imaging (AFI) (20) with optimized RF and gradient spoiling (21) was then
performed with all transmitters driven in the circularly polarized (CP)-volume
mode (TE/TR/TR2: 2.8/20/100 ms, BW: 531 Hz/px, nominal flip angle: 70°, slab
thickness: 200 mm). The relative Bi* estimates from step one were then scaled by
the measured flip-angle distribution, producing a set of calibrated B1* maps. To
minimize effects of the RF pulse profile on the measurement, two different pulses
were used for the two consecutive measurement steps, designed to have similar

pass-band responses for their respective low and high flip-angle regimes.

At the acquired resolution, B1* maps of all 16 channels required approximately 15
minutes (7 minutes to acquire 3D FLASH maps and 8 minutes to acquire AFI maps);
however, sufficient B1* maps can be obtained at lower resolution (6 x 6 x 6 mm

voxels) in under 3 minutes.
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B:" Shimming

The circularly polarized or geometric-phase driving mode was calculated from the
B1* maps as the set of phases that led to constructive interference of all channels at
the center of the coil volume (mid-brain). This is analogous to 2wt/n geometric phase
splitting in an n-port cylindrically symmetric coil, mimicking the behaviour of the
commonly used quadrature birdcage coil (22). We examined both the CP driving
mode (CP-volume), as well as the scenario where the flip angle was adjusted on a
per-slice basis to compensate for Bi* falloff (CP-slice), as might be achievable with
current generation clinical systems via scaling of the excitation flip angle by slice
location. While it has been shown even at low field strengths that CP driving modes
may not be ideal for the head (23), the CP mode provides a useful comparison to

commonly found birdcage coils and fixed-phase multi-transmit arrays.

In addition to the CP mode, two shim optimizations were investigated: shimming to
attain a power-efficient transmit field and shimming to produce a more uniform
transmit field. To attain an ‘efficient’ field, the shim target, T, was set to the ideal
non-interacting superposition of transmit maps (i.e., sum|| B1*||). To attain a more
‘uniform’ field, a 3D Gaussian was fit to the ‘idealized’ non-interacting sum of
transmit maps, using a least squares regression, to minimize field fluctuations and
impart prior knowledge of physically attainable, smooth, and typically lower SAR
solutions (24). Fitting was performed with seven variables: an overall scaling factor,
as well as the (x,y,z) center offset and (x,y,z) full-width half-maximum (FWHM) of
the Gaussian profile. Shimming was performed by finding weights a € C™ (where n
is the number of transmit channels) that minimized a constrained-magnitude least-
squares fit of the estimated B:1* distribution to the target T, over the ROI, using the
CP-volume mode as an initial parameter set:

- T,-||2. (2-1)

; n +
min Y ;cgo; ” Ye=1 By cj
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Equation [2-1] was solved using the local variable exchange method discussed by
Setsompop et al. (25). This method is used to reformulate Eq. [2-1] by introducing
an auxiliary phase term, ¢ (initially set to the CP-mode phase), and the complex-

valued vector ® = exp(i¢) :

min ZjEROI ” e=1 “chCJ- - q’jTj”Z (2-2)

and iteratively solving for a then ¢ until convergence is reached. The floating phase
term is updated via ¢p; = £(¥f=; aCBij*). This optimization process is performed

on-line in several seconds.

Comparison of Shim Solutions

In total, six shimming methods were compared: CP-volume, ‘efficient’ volume,
‘uniform’ volume, CP-slice, ‘efficient’ slice, and ‘uniform’ slice. Since 3D B1* maps
were acquired over the entire brain volume, B1* shim solutions could be calculated
over any arbitrary ROIL To compare different shim targets and to reduce coil
geometry effects on the analysis, the B1* shims were calculated (i) over the entire
220 x 220 x 220 mm volume that was mapped and (ii) over three stacks of 44 slices.
Each slice in the stack was 5-mm thick, thereby covering the same

220 x 220 x 220 mm volume (stacks were oriented in either the axial, sagittal, or
coronal plane). After B1* shimming, transmit power levels were scaled such that the
desired flip angle occurred at the 90t percentile of the predicted flip-angle
distribution, an implementation practicality designed to avoid large regions of over-
flipping that could occur if the flip angle distributions were broad. To simplify the
presentation of results, this 90t percentile was scaled to a nominal value of 1.0 in
the B1* maps, which was then used to compare global worst-case SAR. Two metrics
were employed to evaluate the quality of shim over each slice: (i) the standard

deviation of the distribution of Bi*, and (ii) the mean value of Bi*. An ideal B* field
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distribution would have a standard deviation of zero and a mean value of one. To
ensure a fair comparison, the results for the volume shims were calculated on a
slice-by-slice basis (as comparing a single slice to an entire volume would bias

measures of standard deviation).

Imaging

To visually demonstrate B1* shimming performance over the whole brain, a 2D fast-
spin-echo (FSE) image series was acquired in the sagittal orientation (FOV:

192 x 192 mm, matrix size: 256 x 256, number of slices: 8, slice thickness: 4 mm,
slice gap: 20 mm, TR: 5 s, echo spacing: 10 ms, echoes per train: 16, center echo: 8,
bandwidth: 390 Hz/px, TE (equivalent): 60 ms). FSE acquisitions were individually
optimized over the identical slice prescriptions with the different algorithms. FSE
images were chosen, instead of low flip-angle FLASH images, to cause B1*

inhomogeneity effects to be more visually apparent.

SAR Reporting

Only global worst-case SAR is considered in this manuscript, and is reported as the
sum of squares of all transmitter weights summed over all slices in each volume.
This is a conservative approach that assumes all forward power contributes to SAR;

therefore, all relative SAR figures represent a worst-case upper bound.



Table 2-1: Shim performance over the entire head.

CP Efficient Uniform

Relative SAR

Volume Shim 1.00 £ 0.03 1.04 £ 0.03 1.40 + 0.04

Slice Shim (average ?) 1.21 +0.04 0.938 £ 0.01 2.35+0.07
Axial 1.57 +0.07 1.18 + 0.02 2.20 £ 0.04
Coronal 1.04 + 0.03 0.801 + 0.005 242 +0.14
Sagittal 1.02 £ 0.03 0.829 + 0.004 2.44 +0.04

Standard Deviation

Volume Shim 0.175 + 0.006 0.167 £ 0.006 0.150 £ 0.012

Slice Shim (average ?) 0.185 + 0.006 0.147 £ 0.011 0.129 £ 0.012
Axial 0.155 £ 0.002 0.136 £ 0.003 0.124 £ 0.005
Coronal 0.202 + 0.002 0.154 + 0.004 0.134 + 0.004
Sagittal 0.198 + 0.002 0.150 + 0.004 0.131 +£0.003

Mean

Volume Shim 0.720 + 0.009 0.731+0.012 0.770 £ 0.014

Slice Shim (average ?) 0.762 + 0.007 0.812 + 0.014 0.834 +0.016
Axial 0.800 £ 0.003 0.825 + 0.004 0.842 + 0.006
Coronal 0.740 £ 0.002 0.802 + 0.005 0.829 £ 0.005
Sagittal 0.745 + 0.002 0.808 + 0.005 0.833 + 0.004

aThe average is calculated over the axial, coronal, and sagittal slice stacks.
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Results

Figure 2-1 displays SAR, standard deviation of B1*, and mean B:1* by shim method
when averaged over the entire brain (and all slice orientations and subjects) and
normalized to the CP-volume mode. Although the relative difference in performance
between each shimming method and the CP-volume mode may be coil dependent,
Figure 2-1 provides the normalized values to better demonstrated overall trends.
The corresponding absolute differences in slice-by-slice behaviours for each
orientation are illustrated in Figure 2-2, with the numerical shim performance
results presented in Table 2-1. The CP-volume mode had an inferior performance
compared to the other shimming methods, with a standard deviation in B1* of nearly
18%, and a mean B1*of 0.72 + 0.009 (an ideal B:* field would have a standard

deviation of 0% and a mean of 1).

Volume shimming methods showed weak improvements overall, with the ‘uniform’
shims performing best with a B1* standard deviation of 15 * 1.2% and mean of
0.770 £ 0.014, at the cost of a 40.0 # 5.2% increase in relative SAR compared to the
baseline CP-volume mode. The CP-slice method did not significantly affect the
standard deviation of B1* compared to the CP-volume case (since the spatial
distribution of B1* within any slice remains unchanged), yet was able to partially
compensate for coil sensitivity falloff by scaling the transmit amplitudes from slice-
to-slice. This behaviour is visible in Figure 2-2 (red trace) where the relative SAR
changes with slice location. The resultant mean B1* over the slice stacks has a
reduced variation compared to the CP-volume mode, as expected for slice-by-slice
optimization. It is important to note that the mean B1* value is not uniform over the
slices. This is a consequence of the scaling of transmit power (i.e., the 90t percentile
of the B1* distribution is scaled to the desired flip angle, as explained in the Methods

section) and the differing B1* distribution within each slice.
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Figure 2-1: Shim performance metrics

Global SAR, standard deviation of B1*, and mean B1*, averaged over the entire brain
(and in all stack orientations), for the six shimming methods: 1) CP-volume, 2) CP-
slice, 3) ‘efficient’ volume, 4) ‘efficient’ slice, 5) ‘uniform’ volume, and 6) ‘uniform’

slice. All values have been normalized to the CP-volume mode. Error bars represent

the standard error over subjects.
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Slice-by-slice shimming methods showed marked improvements over their
volumetric counterparts. Averaged over the entire brain (and all three slice
orientations), the ‘efficient’ shim resulted in a standard deviation of B1* of 14.7
+1.1%, a mean B1* 0of 0.812 # 0.014, and relative global SAR reduction of 6.2 # 3.1%.
The ‘uniform’ shim also resulted in significant differences: the standard deviation of
B1* was further reduced to 12.9 # 1.2%, while the mean B:* improved to

0.834 # 0.016, at the expense of a 135 # 8% increase in relative SAR. These
shimming methods proved robust (i.e., converged to acceptably smooth solutions
with no field nulls) when imaging subjects with varying head sizes and when

utilizing different RF coils (different RF-coil data not shown).

The coil amplitudes and phases for optimized shim solutions varied markedly with
slice location across the head. The phase of an individual channel was observed to
change over the entire range of 0-3602 and mean amplitude by up to a factor of
three (as realized in the case of the slice-by-slice ‘uniform’ shim—see also the traces
in Figure 2-2). Two B:1* distributions are displayed in Figure 2-3 that illustrate the
large difference in optimized ‘efficient’ driving modes in coronal slices anterior and

posterior in the head.

Figure 2-4 shows a sagittal stack of slices shimmed with all six methods. Of
particular interest is the orthogonal re-slicing that demonstrates the increased
homogeneity over the whole volume when B1* shimming on a slice-by-slice basis
(Figure 2-4.ii, rows e and f). The negligible difference between the ‘efficient’ and
‘uniform’ volume shimming methods in comparison to the CP-volume mode reflects
the limited degrees of freedom available to influence the Bi* over the large head
volume, even with 15 transmitters, due to the slowly varying nature of the B1* fields

providing a poor basis set.
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Figure 2-2: Shim performance by slice location

Slice-by-slice global SAR (relative to CP-volume mode), standard deviation of B1*,
and mean B1* in the axial, coronal, and sagittal orientations. Approximate slice
locations are indicated in scout images (bottom row). Legend: black: CP-volume, red:
CP-slice, green: ‘efficient’ volume, teal: ‘uniform’ volume, blue: ‘efficient’ slice, purple:
‘uniform’ slice.
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Figure 2-3: Sample shimmed B;* distributions

Representative B1* distributions for coronal slices (a) midway anterior and (b)
midway posterior in the brain, when shimming with the ‘efficient’ slice-by-slice
method. These B1* maps illustrate the large difference in shim solutions required for
efficient excitation at different slice locations across the head. Green lines in the
axial plane (right column) denote the slice locations over which shimming was
performed.
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Figure 2-4: Shim solutions for a sagittal stack of slices

Representative shim solutions for a sagittal stack of slices. (i) Sagittal views of
resultant B1* in each slice, and (ii) coronal re-slicing through slice centers to
demonstrate through-plane behavior. Rows represent the six shimming methods:
(a) CP-volume, (b) CP-slice, (c) ‘efficient’ volume, (d) ‘efficient’ slice, (e) ‘uniform’
volume, (f) ‘uniform’ slice.
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Imaging Results

Figure 2-5 presents representative slices from two FSE image series, acquired with
the CP-volume (5.a) and ‘efficient’-slice (5.b) shim solutions. The intensity variations
correspond well with the spatial patterns in the predicted B1* maps (Figure 2-4,
rows a and d), even though the images were acquired from a different subject than
the map data. Measured forward transmit power (10-s average), was approximately
1.1 W/kg and 0.94 W /kg for the CP-volume and ‘efficient’-slice scans, corresponding
to a 17% reduction in transmitted power. This reduction was within the predicted

range of 21 * 4% for the sagittal stack (Table 1).

Discussion

At higher field strengths, shorter wavelengths result in different driving modes
behaving more efficiently than the CP mode (1). In this study, the fact that simple
scaling of the flip angle (CP-slice) yields significantly higher global SAR (21 * 6%)
for a minor improvement in the standard deviation of B1* (6 £ 5%) suggests that the
CP-mode of this coil is non-optimal across the head. It has been shown that fixed-
phase volume transmission is not capable of producing a homogeneous transmit
field over the whole brain even when using a close fitting elliptical coil (26), thus

necessitating more sophisticated shimming methods or different coil geometries.

To address this problem, we assessed the Bi* behaviour when shimming slice-by-
slice versus over a volume, while examining two of the infinitely many shim targets
on the efficiency/uniformity tradeoff curve. The ‘efficient’ slice-by-slice shimming
method provides improvements in the uniformity and standard deviation of B1* (as
detailed in the Results section and in Figure 2-1), with a minor reduction in relative

SAR. However, when examining the behaviour of this shimming method over
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individual slice stacks (Figure 2-2, blue trace and Table 2-1), it is observed that the
relative SAR is significantly reduced in both the coronal and sagittal stacks (by
19.9 #8.3% and 17.1 # 2.4%, respectively). The large increase in power scaling in
the axial case (18.5 # 8.3%) is required to compensate for the sensitivity falloff of
this relatively short RF coil, and masks this improvement when the stacks are

averaged.

The ‘uniform’ slice-by-slice shimming method yields higher gains in uniformity (see
Results) at the expense of a nearly 2.5-fold increase in required power. While the
shim performance is similar across subjects, the power scaling behaviour is more
variable (Figure 2-2, purple trace). This is most likely due to differences in coil
loading between subjects that in turn affect phase and amplitude scaling. This
behaviour is not as prominent with the ‘efficient’ shimming method, as these
differences are inherently incorporated into the measured coil efficiencies of the

shim target (sum|| B1*||).

Through-slice Intensity and Phase

One caveat of modulating the RF transmission slice-to-slice is the consequent
variation in through-slice intensity patterns when compared to a smoothly varying
volume shim. While this can be corrected given the estimates of the B1* distribution
(or with black box or model-based post-processing correction methods (27, 28)),
the visible effects on image-to-image magnitude are small (see Figure 2-5, where the
more conspicuous feature is the more homogeneous slice-to-slice intensity in (b)). A
more problematic artifact is apparent when tracking through-slice phase. The non-
smooth nature of phase variation through the volume could potentially confound
unwrapping methods; however, this phase modulation can be corrected on a voxel-

by-voxel basis by using the predicted shim maps.
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Figure 2-5: Sample shimmed FSE data

Slices from a sagittal FSE acquisition with (a) CP-volume and (b) ‘efficient’ slice
shim. Shimmed slices demonstrate more uniform images with improved excitation
of the cerebellar regions and lower variation in slice-to-slice intensity. B1* falloff
from limited RF coil coverage occurs toward the superior aspect of the brain and
inferior to the cerebellum. This is partially compensated by slice-by-slice shimming.
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Applications

Depending on the application of interest, slice-by-slice Bi* shimming can be
implemented to increase the uniformity and/or the power efficiency over the brain.
In multi-slice acquisitions where differential measurements are recorded (such as
BOLD fMRI or diffusion tensor imaging), high B1* uniformity is potentially of
reduced importance, as transmit power is one of the key limitations to high-
resolution whole-brain coverage. Slice-by-slice shimming can be optimized for
transmit efficiency to provide single-pulse excitations without additional gradient
activity. Other high duty-cycle, steady-state acquisitions, such as SSFP and FSE, are
candidates for slice-by-slice B1* shimming, since achieving phase coherence in
refocusing trains via 3D RF pulses is difficult and lengthens the repetition time. As
was demonstrated in Figure 2-5, slice-by-slice shimming is ideal for FSE imaging,
which requires lower transmit power and improved homogeneity compared to the
CP-volume mode. Slice-by-slice modulation of the B1* shims can also be integrated
with other intelligent modulation schemes that have been suggested: such as
alternating B1* shims on each excitation in a multi-shot acquisition to provide a
reduction in SAR (as in (29)) and/or improved uniformity (30), or choosing shims
tailored for specific RF pulses (31). It is expected that adiabatic, composite or 3D
pulses used in conjunction with the smaller B;* distribution that results from slice-
by-slice B1* shimming would have more relaxed design criteria an therefore lower

SAR. This is an area for future investigation.

Conclusions

We have demonstrated that by utilizing the additional degrees of freedom available
in a multi-slice acquisition, B1* shim solutions over individual slices may be
computed and applied in real-time acquisitions. Due to the nature of the RF

interference patterns, shimming over smaller ROIs is a simpler optimization
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problem, a fact that is taken advantage of by shimming on each slice in a multi-slice
acquisition. We hypothesize that the gains demonstrated in efficiency are a direct
result of the CP mode being less than ideal for head geometries at high field, and
hence more efficient B1* distributions can be created by modulating the shims based
upon spatial location. The ubiquitous nature of multi-slice acquisitions makes this
an attractive option when multi-transmit architectures are available. The benefit of
slice-by-slice shimming manifests as improved RF performance on both ends of the

transmit efficiency/uniformity spectrum when compared to fully volumetric shims.
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3. HighCor: a novel data-driven regressor identification method
for BOLD fMRI

Introduction

Suppression of physiological and confound signals in BOLD fMRI is an important
processing step, particularly at higher magnetic fields. It is possible to extract
patterns of these signals for subsequent filtering directly from the datasets. Methods
that do so are referred to as data-driven or intrinsic methods. These approaches
typically rely on either pre-defined source regions (e.g. white matter or ventricles)
or statistical measures to identify areas that are expected to contain confounding
signals (sets of voxels, sometimes referred to as ‘noise ROIs’). This paper introduces
an alternative criterion for the selection of these reference voxels that has a strong

physical basis as described below.

Background: Physiological Noise

The potential of BOLD fMRI at higher magnetic fields is well known. The dual scaling
of both image signal to noise (SNR) as well as BOLD contrast allows for potential
improvements in activation detection levels, resolution, or scan time reductions (1).
In practice, these theoretical benefits are tempered by the increased contribution of
physiological noise which also scales with the MRI signal (2). This contamination
results in the deviation of the linear relationship between image SNR and temporal
SNR (3), meaning that improvements to base image SNR may not directly translate

to temporal SNR.

Following the derivation by Kruger and Glover (2) and Triantafyllou et al (3), in any
given voxel the total noise g, can be modelled as being composed of independent

thermal and physiological components:
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o= /ag-i-ag.

This model is an approximation, limited by the fact that physiological noise is non-
white (it contains strong frequency dependence) and non-stationary (the signals
can change in time). Nevertheless, it is useful for illustrating behaviour as image
noise scaling changes. The term ‘physiological noise’ is somewhat misleading, and it
is important to remember that, by and large, these are real signals that are present
in the data, as opposed to random fluctuations driven by a noise process, as is the

case for thermal noise.

An estimate of the SNR of the time-course is given by the ratio of mean signal

intensity, S, to the noise level:

Joé +a;

Then the ratio of physiological to thermal noise directly relates the image SNR

(SNR, = S/0,) to the temporal SNR (tSNR):

tSNR =

0o

o <SNR0>2 .
tSNR '

This relation leads to the troubling observation that even with high image SNR, the
effective temporal SNR (and therefore the reliability of detecting BOLD-related
signal changes) can be severely limited. In addition to merely reducing the effective
temporal SNR, physiological noise is particularly problematic because it also
introduces spatial and temporal correlations which influence resting state measures

and GLM statistics (4,5).
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Recent works by Vogh et al (6) and Hutton et al (7) confirm the notion that
physiological noise reduction can vastly improve the performance of task-based
BOLD fMRI in many cases. Although traditionally applied in resting state analyses
and/or in studies focusing on particularly corrupted regions, such techniques
become significantly more important for everyday use at 3 T and above where the
physiological-to-thermal noise ratios are large at typical imaging resolutions (3).
Physiological signal suppression can be achieved with several methods. Frequency
based filtering can be effective in certain cases (8,9), but is difficult to implement in
practice due to the typically slow sequence repetition times (TR) with respect to
respiration and heart rates. Because of the significant temporal aliasing of these
noise sources there is the potential for overlap with the BOLD signals of interest.
External recordings of a subject’s physiological parameters can be used to model the
signal changes in a BOLD time-course and generate regressors with appropriately
aliased frequency components. One example of this approach is the widely used

RETROICOR (10).

As an alternative to external recording, data driven techniques attempt to derive
regressors for physiological noise reduction from the dataset itself. Compared to
external recording approaches, data driven techniques have the theoretical benefits
of a) directly identifying aliased confound signals in a model-free manner, b) the
convenience of not requiring extra monitoring equipment, and c) being applicable as
a post-processing step. In the next section we review some data-driven component

methods for filtering fMRI data.

PCA and ICA

Data reduction methods such as principal component analysis (PCA) and
independent component analysis (ICA) are popular in the fMRI literature thanks to
the fact that they are generally well understood, robust, and widely available as

software tools. These methods have seen many uses in fMRI, from identifying
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activation in task-based and resting state fMRI (11) to de-noising applications (12),
artifact identification (13-15), and physiological signal suppression (16). The
robustness of these methods and quality of the component estimates rely heavily on
the ability to segregate desired signal from background noise. There are two general
approaches to this issue. One option is to take all voxels, perform the dimensionality
reduction of choice, then attempt classification of the resultant components
(12,14,17,18). This can be difficult thanks to the huge dataset sizes and inherently
noisy signals. An alternative approach (and the one used in this paper), is to pare
down the set of voxels used to generate the components thereby limiting analysis to
only those regions containing (ideally) high fidelity measurements of the
contaminating signals. Common examples are the masking of white matter and

ventricles, or examining edge voxels for motion parameters.

Recently, it was demonstrated that voxels selected based upon a criteria of having
unusually high temporal standard deviations (tSTD) can contain significant
information about physiological confounding signals including respiration and
cardiac-related fluctuations (16). They proposed a method for generating
components based on these high tSTD voxels, compcor (cc), a promising data-driven
alternative to external recording methods like the popular RETROICOR(10). The
algorithm is simple: rank voxels by tSTD, group the voxels with the largest
tSTD(typically the top 1-2%), and perform PCA to generate a small number of
robust temporal signals for subsequent regression. Using datasets with high
temporal sampling, the authors demonstrated that the frequency spectra of
regressors generated from compcor included components that matched externally-
monitored RETROICOR regressors very closely, with filtering performance that was

on par or better in a sample of both BOLD and ASL fMRI runs.

Despite the promising filtering results and the convenience afforded by compcor, its
adoption to general use has been slow. This may be because it is not immediately

obvious that voxel selection on temporal standard deviation alone is sufficient to
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capture many physiological signals of interest. Physiological noise is known to be

non-white, so temporal standard deviation may not be a good classifier in all cases.

We propose a novel noise set selection criteria, highcor, which captures noise from
voxels with very high correlation between their magnitude and phase time-courses.
As described in the following section, many of the mechanisms that generate
unwanted signal changes in BOLD magnitude data can be expected to also distort
the local phase angle. Compared to thresholding voxels by tSTD, one might expect
different voxels to be selected by this criteria, containing a different estimate of

confound signals.

In this paper we introduce and investigate the utility of highcor for selection of noise
reference voxels and benchmark against compcor, a method we see as being a
particularly attractive for its performance characteristics, convenience, and its

previous validation against RETROICOR.

Methods

Phase changes and physiological noise

In static tissue, the measured magnitude and phase of a voxels bulk magnetization
vector should be constant in time and measurements of these quantities temporally
uncorrelated. Some factors that produce temporal phase changes (like motion) also
give rise to signals in the magnitude time-course, which are precisely the confounds
we seek to remove. At high field, signal changes associated with physiological noise
have been shown to be more dominant in the phase spectra (19), and show a much

stronger TE dependence and spatial specificity than in the magnitude time-course

(20).

Coherent temporal phase changes in a BOLD fMRI voxel time-course occur for a
limited number of reasons, which can be broken down into either large-scale or

voxel-localized effects. Subject motion, cardiac and respiration-induced B, shift, as
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well as drift from gradient heating are easily understood phenomenon that produce
coherent phase changes over quite large distances (20): a shift in the main field

leads to a different phase offset by the echo time.

While these types of phase changes are prominent, they do not directly induce
significant BOLD-like T, de-phasing in the magnitude because they are spatially
coherent on a voxel length scale. Magnitude signal changes from this type of motion
can occur if the voxel contents change and/or spin history effects arise. So while
there is no direct relationship between the phase change at a voxel level and signal
change in the magnitude time-course, there is a potential to measure correlated

signal changes related to these ‘large-scale’ artifacts.

Temporal phase changes can also appear on a more spatially localized scale, driven
by several processes that modulate the intra-voxel magnetic susceptibility. Changes
in local tissue geometry produce coherent phase differences that originate mainly
from cardio-respiratory pulsitility and flow effects (19). Stronger phase changes
occur in voxels near large susceptibility gradients, such as air/bone/csf/tissue
interfaces (21). Susceptibility changes can drive inter-voxel signal de-phasing
leading to reduced T; and are thus detectable in the magnitude signal. Such signals
are also often seen in voxels around the rim of the brain or ventricles and arise from

small head movements.

Changes in blood oxygenation levels produce well known susceptibility
modulations, driven by changes in tissue metabolism, cerebral blood volume, and
blood flow. Susceptibility differences between intra- and extra-vascular
compartments modulate the effective T, via the local de-phasing, and can also lead
to coherent phase changes in some circumstances. Whether a coherent phase
change occurs depends on the vascular structure within each voxel (22). In the case
of the cortical vasculature the quasi-random organization of capillaries within

capillary beds of the cortex generate mostly spatially incoherent phase changes,
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Figure 3-1 Magnitude-phase correlation vs temporal standard deviation.

Scatter plot of absolute value of magnitude-phase correlation (x) vs temporal
standard deviation (y) for all voxels in the fast TR dataset. Voxels selected by cc,
hc, are indicated and represent the top 2% by each metric. The intersection of
these amount to 12% of the selected voxels (0.17% of all voxels). Accompanying
histograms describe the distributions along each axis. For visibility, histogram
counts for cc and hc have been scaled by a factor of 50.
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whereas regions with larger, more structured venuoles and veins generate coherent

changes in the local magnetic field, resulting in measurable phase signals (22-24).

To summarize, temporally correlated magnitude and phase signals in GE-EPI BOLD
fMRI in a given voxel arise from either scanner instabilities, motion, cardio-
respiratory effects (bulk motion and localized pulsitility), or blood flow changes
(BOLD effect in voxels with sizeable veins). For this reason, we hypothesize that
confound signal can be isolated for subsequent filtering by focusing on voxels

exhibiting high correlation between their magnitude and phase components.

Our algorithm can be stated simply:

1. For task based studies, ignore any voxel where the magnitude time-course is
correlated with any column of the experimental design matrix (with a
correlation threshold of | r |> 0.2 used in all examples herein)

2. For all remaining voxels: correlate the magnitude and phase time-course from
each voxel (at zero time lag)

3. Generate a set of noise voxels by selecting the top x% (see below) by absolute
value of the magnitude and phase correlation

4. Perform PCA on this set to generate noise regressors

The choice of how many voxels to retain for the noise voxel set requires a balance
between selecting enough to sufficiently capture signal behaviour and limiting
contamination from background measurement noise present in each time series.
Inclusion of too many noisy voxels will lead to a much denser principle component
spectrum, and can reduce the efficacy of the technique because PCA in general is not
robust to outliers. Following the work of Behdazi (16), two percent of all voxels
(after brain extraction) were selected, a threshold that was just over 2.5 standard
deviations larger than the mean on a test dataset (matching the group study data

used, specified below).

Similarly, the number of principal components to retain as regressors is an

important factor; enough should be kept in order to represent all major confounding
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signals. Conversely, retaining too many can be detrimental since components
corresponding to smaller singular values can contain less information (and
sometimes significant noise) which can lead to over-fitting and noise amplification,
in addition to reducing total degrees of freedom for subsequent analysis. Principal

components that explained up to 80% variance were retained.

[t is important to note that we utilize the simple definition of linear (Pearson)

correlation:
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While perfectly linear relationships between magnitude and phase signal responses

are unlikely. The robust performance observed can be attributed to the fact that we

are only interested in those voxels at the very high end of the correlation scale.

MRI Hardware

All scanning was performed on a 7T head-only Direct Drive MRI scanner (Agilent)
equipped with an AC84 head gradient and amplifier (Siemens). An in-house built
coil system was used for signal transmission and reception consisting of a 23
channel conformal receive array nested in a 15 channel transmit-only elliptical coil,
with each coil paddle individually driven by a 1 kW power amplifier
(Communication Power Corp). B1+ mapping and shimming was performed to
improve image homogeneity over the brain volume, using protocols as described in

(25).

BOLD fMRI Data

Several sample data sets from healthy volunteers were acquired and analyzed. All
volunteers provided informed consent for the study, in accordance with the

research ethics board guidelines at the University of Western Ontario.



56

Dataset 1

A very fast TR dataset (TR 0.15 s) was acquired on a single subject. The fast TR was
chosen to be well above the Nyquist limit for sampling cardiac and respiratory
related fluctuations (baseline and harmonics). Accurately measuring these signals
without aliasing enabled study of the ability of the data-driven regressors to identify
these confounds, and examine performance as the signals start to alias via artificial
signal decimation experiments. To achieve this sampling rate, the slice count was
limited to 3 axial slices spanning the brain with a 5 cm slice gap. Other EPI
parameters were: 2.5 mm isotropic resolution, matrix: 96x96, ramp sampling, 300
kHz bandwidth, parallel imaging acceleration factor 3, TE: 20 ms, and a 20 degree
flip angle - approximately the Ernst angle for grey matter at 7 T. GRAPPA was
employed for all parallel imaging data reconstruction (26), with a default kernel size
of 4 x 4. For EPI data, a fully sampled k-space reference was generated via a

standard multi-shot pre-scan in order to estimate GRAPPA kernel weights.

Such fast TR sampling can lead to dynamic image intensity effects as steady-state is
approached from the long T; at 7 T. In spoiled gradient echo, these intensity changes
would be only found in the magnitude, and as such could potentially bias
measurements of both temporal standard deviations, and of correlation with the
phase time courses. To mitigate these effects, 30 seconds of dummy volumes were
acquired (and discarded). Inflowing spins from important physiological sources
(CSF and arteries) will also have different magnitude signal behaviour at these fast

TRs compared to more typical TR values.

Dataset 2

In order to investigate the applicability of this technique to more typical fMRI
acquisitions, task based whole-brain BOLD GE-EPI data were acquired on six
volunteers. The EPI acquisition had the following parameters: 2.5 mm isotropic,

240x200 mm field of view (96x80 matrix size), ramp sampling, 300 kHz bandwidth,
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parallel imaging acceleration factor of 3, TR: 2 s, TE: 22 ms, 48 slices, a 60 degree flip
angle, and fat saturation. In order to generate robust activation, an anti-saccade task
was chosen as the functional paradigm (27). Briefly: the paradigm was implemented
in 18 s blocks of random left-right anti-saccades each of 3s duration, followed by 18
s of rest fixating on a centre target. The 36s task-rest block was repeated 5 times per
run. A total of six functional runs were acquired per volunteer. A T1-weighted
anatomical MPRAGE was also acquired for each subject, with the following
parameters: TR 8 ms, TE 3 ms, TI 1.35 s, BW 50 kHz, matrix size 220x220x150, 1
mm isotropic resolution, with a parallel imaging reduction factor of 2 in phase x 2 in
slice, and a fully sampled region of 64x44 reference lines about the centre of k-
space, for an effective acceleration of 2.4. For improved visualization of small scale
effects, an additional fMRI run was acquired on one subject at a higher resolution:
1x1 mm in-plane x 2 mm slice thickness, 220x192 mm field of view (220x192 matrix
size), ramp sampling, 625 kHz bandwidth, acceleration factor 4, TR: 3 s, TE: 27 ms,

50 slices, and a 70 degree flip angle.

Software

Data processing and analysis was carried out in python and MATLAB (The
Mathworks, Natnick NJ). The nipype package (28) was used for constructing and
automating processing pipelines, which leveraged python and MATLAB code for the
regressor generation and the FSL suite (29) for all other processing tasks.

Freesurfer tools (30) were employed for brain segmentation.

Processing Pipeline

The EPI data were reconstructed into complex-valued image series for each receiver
coil, and combined into a single complex-valued volume. After combination, the
complex time-course was split into its constituent magnitude and phase
components for post-processing, since there are a lack of available software tools

for typical fMRI processing of complex valued image series. Additionally, most such
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image processing tools (motion correction, brain extraction, etc) for fMRI are
designed with assumptions about the image values and contrast present in
magnitude EPI data. The magnitude processing proceeded as ‘normal’ through FSL
tools (29) for de-trending via high pass filtering, motion correction, and brain
extraction. In the phase data, large phase jumps were first removed by temporally
unwrapping the phase of each voxel, followed by linear de-trending, then
conversion to delta-phase time-courses (by subtracting the phase of the first
volume). High pass filtering matching the magnitude data was then preformed to
remove residual very-low-frequency trends. Motion correction as calculated from

the magnitude data was then applied to the phase time-course.

Regressors were generated via compcor or highcor algorithms in python. The
identified regressors were removed (with fs1_regfilt). Preliminary data
suggested application of compcor regressors on data already filtered with highcor
could lead to additional gains in noise reduction. As such, this combination of
regressors was included to investigate if residual physiological noise in the dataset

was identifiable.

Frequency Analysis

Examination of the frequency content of the selected noise voxels, regressors, and
even the entire datasets pre- and post-filtering can yield insight into the
physiological signals present. All frequency spectra were generated via a multi-taper

method using the time series tools in the nipy toolkit.

Aliasing and Decimation

Because of concerns with aliasing potentially affecting measurements of tSTD and
magnitude-phase correlation, a decimation study was first performed to investigate
the behaviour of these data driven techniques as TR lengthens. In order to better
utilize all sampled data points, rather than simply low pass filtering, regressors

were generated with compcor and highcor from under-sampled versions of the fast



59

TR data, as follows. Fast TR time series data were decimated by integer factors n
from 2 ... 20, by taking every nth point. At each under-sampling factor, the
decimation was repeated by shifting the starting time point until all data were used
(for example, at a factor of 2, we first take points (0,2,4, ...) then (1,3,5, ...), yielding
2 different time series). Regressors generated from these undersampled datasets
can then be compared across the decimation repetitions, and between decimation
rates. To do so, regressors were generated with cc and hc and power spectra were

calculated for all repetitions of regressors at every decimation rate.

To serve as reference for the aliased confound signals, the compcor and highcor
regressors generated from the fully sampled dataset were also down sampled to
matched sampling rates. The difference in regressor frequency content between the
directly down sampled reference regressors and those generated from the
decimated datasets was then computed. The voxel locations identified as part of the

noise set were also recorded for each under-sampling factor.

Performance Metrics

Regressor performance was assessed by measuring temporal standard deviation of
GLM residuals for all 36 functional runs in dataset 2. Total tSTD of all voxels within
each subject’s brain mask was measured and compared to the unfiltered datasets.
tSTD changes were also measured by tissue type (cortex, white matter, and
ventricles), using Freesurfer segmentations of the anatomical MPRAGE images,
transformed into the EPI image space. For this step, any voxels demonstrating
partial voluming between tissue classes were discarded. Temporal SNR behaviour
(tSNR) was also measured in matching ROls, and was calculated by dividing the

mean image intensity by the temporal standard deviation for each voxel.

While changes in activation following filtering is not a good metric for comparing
methods, it provides a check that task signals are not being removed as a side-effect

of processing. Since large amounts of signal variance can be removed, picking
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improper signals for filtering, having noisy regressors, or over fitting due to too
large of a regressor count can all serve to confound detection of task signal. To
ensure some spatial smoothness for clustering, all GLM analyses used Gaussian
isotropic blurring (2 mm FWHM) and also included motion estimates as confound
variables, correction for temporal autocorrelations, and employed clustering with a
cluster z-threshold of 2.0. Processing for the high resolution dataset was identical

save for blurring, where only a small 1 mm FWHM kernel was employed.

Subject-specific functional ROIs were generated prior to analysis (using the
unfiltered datasets) by performing a group average GLM for each subject that
combined together all functional runs, in order to identify areas expressing reliable
response to task. A much larger Gaussian blurring kernel of 5 mm FWHM was
employed for this analysis. Blurring with a large kernel was employed for the dual
purpose of suppressing effects of background (thermal) noise, and for growing and
smoothing the region somewhat to create a small neighborhood around the clusters.
Since a major motivation for removal of physiological noise is the potential for
improved detection of task activation, changes in z-statistics post-filtering were
measured by recording mean z-scores and counts of voxels passing threshold

(z > 3.0) restricted to the pre-defined functional regions of interest. Differences
between the measured metrics by filtering treatment were assessed with two-tailed
paired difference t-tests with a nominal significance threshold of « = 0.05,
conservatively corrected for multiple comparisons via Bonferroni correction. The
tSTD and activation metrics were converted to percent change versus the unfiltered
data for visual display, and tSNR is reported compared to the baseline (unfiltered)

levels.
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Results

Fast TR Data

[t was hypothesized that the physical mechanisms that lead to temporally correlated
magnitude and phase would result in the identification of different voxels than those
selected using tSTD. Figure 3-1 displays a scatter plot of tSTD vs magnitude-phase
correlation coefficient for all voxels in dataset 1. Voxels passing threshold for

inclusion in the confound reference set are indicated, as is the intersection (voxels
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Figure 3-2 Multi-taper PSD of regressor sets.

Summed multi-taper power spectral density (PSD) of regressor sets. Traces
represent: cc- compcor, hc- highcor, and cc(post) - calculation of cc regressors on
data already filtered by hc regressors. The existence of frequency peaks in the cc-
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post regressors that match those in the hc regressor set indicate incomplete
filtering of these frequency components, leading to a potential for further
reductions. Note that the scale of features in these principle components are not
necessarily indicative of their relative scale in the datasets, see Figure 3-3. For
reference, the power spectra of regressors generated from a random selection of
voxels is also displayed, which fails to classify many important features.

identified by both criteria), amounting to 12 % of the selected voxels in this
example. An important observation is that many voxels with high magnitude-phase
correlations do not necessarily exhibit large temporal standard deviations. This
could be indicative of signals with lower peak-to-peak variations, and/or signals
with larger but temporally sparse spikes. From these voxel sets, 5 PCs generated via
cc were required to reach 80% of the explained variance, and 7 PCs were required

from the hc voxel set.

Despite the differences in the locations of the sets of selected voxels, the frequency
envelope of the regressors was surprisingly similar (see Figure 3-2), yet hc
regressors were found to contain some additional frequency peaks. Large signal
sources at frequencies that are suggestive of respiratory and cardiac motion are
visible in both hc and cc regressors, with hc appearing to capture relatively more
respiration effects, whereas cc appears more sensitive to the cardiac-related peak at
0.8Hz. Small differences in the high frequency multiples of the cardiac signal are
detectable between hc and cc. In addition, changes in the noise floor are also present
in the log plot, but these are small in absolute scale (= 0.15 % versus 0.3% of max).
For reference, Figure 3-2 also displays a regressor set generated from randomly
chosen voxels. The noise floor is high and few peaks are easily discernible,

illustrating the importance of a good voxel reference set.
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Figure 3-3 shows frequency spectra aggregated from all voxels in this dataset before
and after filtering. [t was observed that lower frequency contributions and signals at
respiratory frequencies were greatly reduced after one pass of filtering with cc or hc
regressors, whereas cardiac related signals were only partially attenuated.
Interestingly, cc regressors generated from the hc filtered dataset (Figure 3-2, red

line) retain nearly all frequency peaks,
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Figure 3-3 PSD pre- and post- regression.

Multi-taper power spectral estimates of the fast-TR time series before
and after regression, summed over all voxels. The flat baseline in the
log plot is indicative of the thermal noise background. Respiratory
noise (peak around 0.2 Hz) is almost completely removed by all
methods, whereas cardiac related signals (0.75 Hz and higher
multiples) are only partially attenuated, and benefit from multiple
filtering passes (hc+cc).
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Figure 3-4 Multi-taper power spectra of decimated regressors

Multi-taper power spectra of regressors calculated from decimated
versions of the fast TR dataset, averaged over all repetitions (see
Methods section). Error bars indicate standard deviation across
repetitions. Down sampled versions of the reference regressors are
also displayed. Axes are frequency range in Hertz (abscissa) versus
log-power spectral density (ordinate). Additional peaks identified via
hc are visible even as they move in the frequency domain as aliasing
changes.
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Figure 3-5 Noise voxel locations

Locations of noise voxels, for two decimation rates, for hc(red -
yellow) and cc(blue - light blue) in three sample slices overlaid on the
raw EPI data. Values represent the percentage of repetitions in which
a voxel was identified as a noisy source, with more conserved voxels
having a higher score. Top row: Effective TR 0.45s (decimation factor

of 3). Bottom row: Effective TR 2.25s (decimation factor of 15). EPI
image intensity is scaled down for better visualization of single voxels.
At higher decimation factors, there was greater variability in the
locations of highest magnitude-phase correlation, whereas regions of
high tSTD are more consistent.
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suggesting imperfect filtering, most likely a result of signals existing at these

frequencies that were out of phase.

Power spectra of regressors generated from the down-sampled data are displayed
in Figure 3-4 alongside reference regressors. There were no statistically significant
differences between the frequency content of the measured and reference
regressors for any down sampling factors. In other words, both metrics (tSTD and
magnitude-phase correlation) are capable of detecting confound signals under

conditions of strong aliasing.

While the frequency content of the regressors was retained after down sampling,
the physical locations of the noise voxels in the set were found to change. Noise
voxel locations were much more highly conserved by compcor compared to highcor,
where the noise voxels tended to vary over down sampling factors and repetitions,
see Figure 3-5. Voxels that change from supra- to sub- threshold between
decimation repetitions were still found to be close to threshold. High tSTD voxels
were strongly linked with anatomical features - specifically large vasculature and
ventricle regions. Locations of highest magnitude-phase correlation varied
depending on decimation factor, with some conserved locations clustered near
ventricles, edge voxels, cortical regions, and in and around large veins. Both

techniques identified a large portion of voxels around the periphery of the brain.

fMRI Task Dataset

As with the fast TR data, some overlap was observed in the location of voxels
selected via compcor and highcor. At the 2% threshold employed, a mean of 3241 +
486 (sd.) voxels were selected per dataset, averaged over all 36 runs. The
percentage of common voxels between these two sets was 23% + 6% (min: 8.6 %,
max: 33 %). The 2% threshold corresponded to an average absolute value
magnitude-phase temporal correlation cut-off of 0.632 (min 0.450, max 0.862).

Datasets with higher levels of artifact tended to have a higher proportion of
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overlapping voxels, and a larger correlation threshold. Averaged over the dataset, a
mean of 11.9 PCs were required to explain 80% of the variance in the data for
compcor (min: 4, max: 15). Highcor generated slightly more regressors on average

for the same explained variance, with a mean of 13.5 (min: 3, max: 15).

Average tSTD values for all 36 sample runs showed reductions over untreated data
after filtering: compared to the unfiltered time series, mean improvements over all
scans of tSTD were measured at (percent change + 95% CI) 19.0% + 1.3,21.1% +
1.8 and 34.5% = 1.8 for cc, hc, and sequential application of hc followed by cc (see
Figure 3-7, left). Overall tSTD was significantly reduced with hc filtering compared
tocc, (t = —3.4,p < 0.002), while hc+cc treatment resulted in significant
reductions over bothcc (t = —=53,p << 1)and hc (t = —17.5,p << 1).Asaresult
of these reductions in the temporal signal variance, the estimated temporal SNR
averaged over the series was improved from an average baseline of 33.2 + 2.8 to

425+ 3.6,43.6 + 3.0,and 51.2 + 3.5 for cc, hc, and hc+cc.

Table 3-1 displays the percent change in tSTD reductions measured within white
matter, cortical, and ventricle regions, along with the resultant changes in the tSNR
within these regions. Representative spatial maps of tSTD reduction from one run
for each subject are displayed in Figure 3-6. Signal changes are greatest in ventricle

and cortical regions, consistent with removal of physiological sources.



Table 3-1: Filtering tSTD reduction (% change) and base measured
tSNR by ROI (£ sd.), averaged over all runs in dataset 2.

Method ROI

White Matter Cortex Ventricles

Temporal STD (% change)

cc 16.1+3.1 20645 23.5t4.6
hc 18.1+3.8 23.2+58 26.9%6.7
hc + cc 31.4+3.8 36955 39.6+6.2

Temporal SNR
Unfiltered 35.4+1.7 38.7+3.4 448+17.2
cc 413127 47.7+3.7 55.6+8.2
hc 424+2.1 49.2+2.2 58.0+7.2

hc + cc 49.2 +2.7 57.8+23 68.2+8.0
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Changes in task detection statistics were observed concomitant to the reductions in
temporal standard deviation post filtering with cc, hc, and hc+cc, and are
summarized in Figure 3-7 (centre and right). Mean z-scores over the measurement
ROIs were increased by 9.2% + 4.2%, 11.9% + 4.1%, and 13.8% + 5.2% for cc, hc,
and hc+cc (mean + 95%C.1.). A small but significant improvement in mean-z scores
was observed when comparing hc filtering to cc(t = —2.6, p < 0.01). Despite the
significant extra reductions in tSTD from the hc+cc filtering process, activation
statistics did not significantly improve over ccor hc (t = —1.6,p < 0.1,and t =
—1.5, p < 0.13, respectively ). These mean performance values may be somewhat
difficult to interpret, as there was a rather wide variability observed between
subjects, as displayed in Figure 8. Subjects with significant extra confound signal or

residual motion benefitted the most from the additional filtering.

The effects of filtering on counts of voxels passing threshold were highly variable as
demonstrated in Figure 3-7 (right column). Investigation into this spread
demonstrated a strong subject effect - some subjects datasets benefitted much more
from filtering. Figure 3-8 demonstrates this effect, where it is apparent that one
subject (subject 6) benefits much more from filtering on all runs. Data from subject
6 was initially of much poorer quality due to increased subject motion. Two subjects
(subject 1 and subject 5) had very clean data, and while mean z-scores were seen to
improve from the filtering, counts of voxels passing threshold were hardly affected,
and actually were reduced in subject 5. Mean z scores were observed to fall for
subject 4 under the additional filtering of hc+cc. Subsequent investigation revealed
that small levels of residual task related motion that were picked up by the
additional regressors. The implications of such imperfect paradigm filtering are

discussed below.
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Figure 3-6 Maps of spatial tSTD reduction post filtering

Figure 6: Maps of percent change reduction in temporal standard
deviation (tSTD) of the residual (post-GLM) time series data for six
subjects. Rows correspond to different filtering: compcor, highcor, and
both. Consistent with the observations that the regressors are mostly
physiological in nature, the majority of changes in the tSTD are
localized in cortex and ventricles. See Table 3-1 for numerical values
aggregated over subjects by tissue type.
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For additional visualization, Figure 3-9 displays additional signal standard deviation
and z-statistic maps at a higher resolution (see methods) with a very small blurring

kernel of Imm.

Discussion

In this work, confound regressors were generated from regions that had been
automatically selected using the proposed highcor criteria, and were benchmarked
against compcor. The content of these regressors and their filtering performance

provide several interesting observations.

Detection of Physiological Signals

As hypothesized, voxels with the largest correlations between magnitude and phase
time-courses were shown to contain significant confound signal. Thanks to the very
fast temporal sampling used in dataset 1, frequency peaks could be resolved and
identified. Of course, if fMRI were performed at such rates, simple low-pass filtering
would be sufficient for removal of significant cardio-respiratory fluctuations. By
taking measurements of the critically sampled signals and down sampling to more
typical acquisition rates, it was possible to predict the frequency distribution of the
aliased confound signals. It was demonstrated that highcor and compcor operating
on decimated data could still generate regressors containing accurate
representations of the true frequency distributions over a wide range of down
sampling factors (see Figure 3-4). When examining how the noise sets change after
decimation, regions of large tSTD were found to be very spatially consistent, with
prominent detection of large arteries where blood flow effects were directly visible
in the time series. The spatial distribution of highest magnitude and phase
correlations, on the other hand, showed increased variation when down sampling,
which is not entirely surprising. While a core of voxels are retained near ventricles
and large veins, correlation measures can be expected to change when different sets

of data points are examined. Similarly to tSTD measures, the voxels
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Figure 3-7 Group average filtering performance.

Filtering effects on dataset 2. All values are presented as percent
change versus unfiltered data, mean + 95% CI. Plots represent (left):
tSNRof residual (post-GLM) whole brain datasets, (centre): mean z
scores, and (right): counts of voxels passing threshold within the
functionally defined ROIs (see methods). cc: compcor, hc: highcor,
hc+cc: successive application of compcor to data filtered with highcor
regressors.
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Figure 3-8 Filtering performance by subject.

Filtering effects on dataset 2, grouped by subject. All values are
presented as percent change versus unfiltered data, mean + 95% CI.
(left): mean z scores, and (right): counts of voxels passing threshold
within the functionally defined ROIs (see methods). cc: compcor, hc:

highcor, hc+cc: successive application of compcor to data filtered with
highcor regressors. Mean z scores were observed to fall for subject 4
under the additional filtering of hc+cc, due to small levels of residual
task related motion that were picked up by the additional regressors.
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that are more consistently selected exhibit the highest values of correlation between

magnitude and phase signal changes.

Scaling of tSTD and Magnitude-Phase Correlation

Examination of the fast TR data by tSTD, magnitude-phase correlation, and
frequency analysis provide visual aids for understanding the physiological-to-
thermal noise scaling issue. For the scan parameters used, the observed tSTD
distribution (displayed in Figure 3-1) is very long-tailed. These tSTD scores can be
best understood as a combination of multiple physical distributions: the high
variance voxels containing mostly physiological signals are overlaid on the thermal
noise background distribution. In the aggregated frequency spectra in Figure 3-3,
the baseline background signal is the thermal noise floor, and the physiological and
BOLD signal power is high above this baseline. As image SNR decreases, the
detection of these signals is lowered as the relative noise floor rises, resulting in a
shift in the distribution of tSTD scores towards a thermal-noise-dominated
distribution. The job of any data driven regressor method is to accurately identify
these strong confound peaks while leaving the BOLD signals unaffected, a task
which becomes more difficult as the overall SNR is lowered. The question of how
this type of SNR scaling will affect the metrics used by compcor and highcor is
interesting. In the limit of totally thermally noise dominated signals, tSTD will be
unable to differentiate physiological sources, and correlation values will approach
zero. We expect the relative scaling of these metrics to differ especially as key
imaging parameters change like image resolution and echo time. This hypothesis is
based on the results reported in (24), measurements of physiological signal in the
phase time-courses are demonstrated to be better spatially localized as resolution
increases (and intra-voxel averaging of phase changes decreases) despite the lower

overall SNR.
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Figure 3-9 Filtering of high resolution sample data.

Filtering effects on high resolution example data. Top to bottom:
temporal standard deviation of residuals (tSTD), percent reduction in
tSTD over baseline, and z-statistic maps overlaid on mean EPI volume.



76

Filtering Performance

An additional frequency peak is identified by hc in Figure 3-2 at 1.2 Hz. Cross-
examination of Figure 3-3 indicates that this signal is present in the dataset at large,
yet is relatively small in amplitude compared to other fluctuations. The small
magnitude of the signal fluctuation means that the tSTD metric of compcor doesn’t
specifically select for it. Investigations showed that this nearly pure frequency is
scanner noise, driven from the mechanical vibrations associated with the
compressor. While small in amplitude, and perhaps unlikely to greatly affect time
course variance, it will certainly affect noise autocorrelations. As an aside, it is
important to recall that the plotted scale of the principle components demonstrated
in Figure 3-2 are not directly comparable to the measured overall spectra in Figure

3-3, since Figure 3-3 is a summation of the power spectra of all voxels.

Despite highcor frequency spectra seeming to identify additional signals, there was
no significant advantage in filtering performance versus the regressor sets
generated via compcor, when measured on a group level. The interpretation of this
result is that these additional signal sources present a relatively minor contribution
to the total signal (as is visible in Figure 3-3), and the metrics used were coarse -
averaging signal changes from huge numbers of voxels. Differences between hc and
cc post filtering can be visualized in the maps of tSTD changes (Figure 3-6), where

small localized changes are visible.

There appears to be a complimentary effect from applying highcor and compcor
serially, as demonstrated by the power spectral analysis and the resultant changes
in tSTD. After a single filtering step, signals at frequencies suggestive of respiratory
noise is almost entirely removed from the fast-TR dataset, whereas only a portion of
the low frequency noise and higher frequency (likely cardiac) fluctuations were
affected. A second pass appeared to mostly remove these outstanding features

(Figure 3-3).
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We hypothesize that this behaviour at cardiac related frequencies is partially a
result of timing: cardiac pulsitility can create out-of-phase signals across and within
slices (from different slice timings, and from different sampling along the
arterial/venous tree). Regressor generation then identifies the most prominent of
these, yet any slightly out of phase signals cannot always be fully removed by least-
squares regression. This is a known issue that is accounted for in external
monitoring techniques like RETROICOR by generating orthogonal regressors (sin
and cos pairs) at the detected nuisance frequencies. This interpretation is supported
by the observation that hc identified voxels more concentrated in cortex and around
ventricles, whereas cc tended to very prominently select large veins and arteries -
regions with potentially different cardiac phase offsets. Future work is required to

investigate this behaviour.

On dataset 2, a somewhat different effect is observed from the combined application
of hc and cc: tSTD is improved, but with nearly no change in activation statistics.
This is likely a result of two effects. First, these different metrics are measured over
different volumes: tSTD was averaged over the entire brain volume (and/or over
the segmented regions as in Table 1), whereas the z-statistics are measured over the
pre-defined ROIs. This means if additional signals are removed that don’t appear in
the ROlIs, little extra signal variance will be removed, leaving the z-statistics
unaffected. A competing effect is the even further reduction in degrees of freedom
associated with these extra regressors from a second filtering pass, which will lower

the effective z scores.

Perhaps most importantly for end-users looking to apply such physiological noise
reduction methods is the observation that highcor and compcor can identify similar
confound signals from quite different metrics. The frequency contents of the
regressors generated by both methods were very similar even under imposed

aliasing conditions. This is due to the disturbing fact that physiological confound
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signals are very strong and pervasive in typical BOLD fMRI datasets, especially at

high field strengths and moderate image resolutions.

Due to the prevalence of these physiological signals, their removal by any regressor
method has important implications on resulting GLM or resting state analyses. In
the sample data described in this paper, image-series temporal standard deviations
in grey matter were reduced by twenty to nearly forty percent (and greater in some
regions) just by the application of such simple, data-driven post-processing
methods. Such an improvement cannot be overstated, especially when considering
that such processing has the extra benefit of concurrently whitening the data. This
type of effect from physiological noise reduction is not unexpected especially at high
field strengths, as demonstrated by Hutton et. al.(7) who measure significant gains

in tSNR at 7T.

While the performance observations herein are by no means exhaustive and are
difficult to generalize to different imaging studies, they can perhaps add some

confidence for use of such data-driven methods.

Paradigm Filtering

As with many other data driven techniques, the filtering of the functional paradigm
is required because there is a potential to identify task related signal changes thanks
to the strong BOLD response in macroscopic veins. In our experience, large regions
of coherent activation are needed in order for task evoked BOLD response to be
detected as an outlying signal, such as with large block design visual or motor tasks.
More worrisome than the actual activation is task related motion, which can create
more widespread signals with a larger likelihood of identification via PCA. The
approach taken in this work (and used by others (16,31)) was simple masking of
voxels that had even low levels of correlation with the task. More sophisticated

techniques could be implemented: mirroring the process used for correction factors
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for noise auto-correlation, a preliminary GLM can be run and regressors generated

from the residuals (4).

Related work

Utilizing the strong physiological signals in the phase data to correct magnitude
time series is not a new concept, as other studies have demonstrated. Cheng and Li
(32) employ a Weiner filtering technique on a per-voxel basis that removes some
frequency contributions in the magnitude time-course based on the contents of the
phase time-course. This is conceptually similar to the phase regressor technique
introduced by Menon (23) which was originally proposed as a method to identify
and remove macroscopic veins, where the voxel phase time-course is regressed out
of the magnitude signal. It was recognized that this process could also remove any
coupled signal changes potentially including physiological noise and motion. A
single voxel time series can be relatively noisy, reducing the robustness of methods
that operate on individual voxels. Boosting available SNR for regressor selection via
pooling many hundreds or thousands of voxels is an attractive alternative, albeit
with the potential drawback of missing unique, localized variations. Here, we err on
the side of robustness and look to find a small set of regressors that capture

confound signals.

Requirement for phase data

In this work, regressors were generated and used to suppress physiological
confound signals from the magnitude time-courses of all voxels. While this is the
primary endpoint of filtering for most users, there is a growing interest in the phase
data for uses such as vein suppression (23), fitting complex-valued GLMs (33), and
thermometry (34). These applications are plagued by the typically low temporal
stability of the phase, mainly due to the sensitivity to physiological processes
(19,20,35). Highcor provides a natural way to identify voxels from which to extract

references of the confounds as they appear in the phase time-course itself.
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Conclusion

In BOLD fMRI, confound signals can greatly impact the effective BOLD contrast-to
noise. While often described as simply noise, these confounds, mostly physiological
in origin, are real signals that are indistinguishable from brain activity evoked BOLD
responses at typical imaging TRs. Importantly, improving base image SNR does
nothing to alleviate these confounds. Data driven regressor methods are an
attractive way to address physiological confounds thanks to their ease of
implementation, model free nature, and promising behaviors with respect to aliased
confound signals. This paper described highcor, a novel selection criteria for noise
voxels used in the generation of such regressors, utilizing the often discarded phase
component of the MRI signal. Highcor is based upon the physical expectation that
physiological confounds can generate detectable signals in magnitude and the phase
time-course that are highly temporally correlated with one another. These voxel
sets were used for subsequent regressor generation, and were benchmarked against
regressors from compcor, a robust method that selects noise voxels on the basis of

high temporal standard deviation.

By examining the regressor frequency content, it was observed that highcor
identified many prominent physiological signals including cardio-respiratory effects
as well as low frequency fluctuations. Highcor was able to identify additional
confound components consisting of signals with strong magnitude-phase
correlation but lower overall peak-to-peak amplitude changes. These types of
signals may have little influence on overall image tSNR, but important implications
for time series whitening and GLM statistics. Despite the differences in regressors,
highcor and compcor displayed comparable performance in the reduction of
confound signals measured over a set of sample task-based fMRI data. Image-series
temporal standard deviations were reduced by roughly twenty percent, just by this

simple post-processing.
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In closing, we encourage other researchers with access to phase data to try both
approaches. For the majority of groups working solely with magnitude BOLD time-
courses, we believe that the observed similarities between highcor and compcor
provide some additional evidence to encourage the use of compcor in routine
studies: that tSTD measures can reliably detect physiological signals, even under

aliased conditions for typical imaging prescriptions.
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4. Phase-based Venous Suppression for Resting State fMRI

Introduction

The point spread function (PSF) in BOLD fMRI is ultimately limited by the spatial
specificity of neurovascular coupling mechanisms ((1-5)). Further reducing the
accuracy of signal localization are the downstream BOLD effects in the venous
architecture. Localized changes in blood oxygenation propagate downstream to
draining venuoles and cortical and pial veins, leading to ‘signal’ spread and an
additional anisotropic ‘venous PSF’ (6-10). These confounding effects have been
mostly of interest in high resolution, single-subject studies that seek to measure
fine-scale features such as layer specific activation differences (11, 12), or columnar
organization (13-15). Increased PSF is often overlooked or ignored in studies owing
to the lower resolution acquisitions and spatial blurring that are typically employed
in acquiring and processing BOLD fMRI. However, venous effects should still be
considered for studies at typical imaging resolutions since larger brain regions can
generate BOLD fluctuations that propagate far downstream, and are sometimes

detectable in even the largest of veins.

The confounding effects of vascular drainage are not exclusive to task-based fMRI
studies and will similarly bias resting-state (RS) investigations. In RS data analysis,
the statistical interdependence of low frequency BOLD signals between brain
regions is captured (16) and has been used to reveal multiple distributed patterns of
connectivity (17-19). Venous effects can potentially impact the spatial distribution
of measured correlations of the networks, biasing both location and spatial extent. It
has been shown that the low frequency fluctuations can often exhibit amplitudes of
a similar magnitude as observed in response to tasks or stimuli (20, 21), suggesting

that downstream BOLD effects can be as much as a problem as they are for task
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driven paradigms. However, another mechanism is important to consider when
measuring resting-state correlations: the effect of non-activity-related susceptibility
fluctuations from large veins influencing surrounding tissue. This will result in
spurious, spatially distributed correlations driven only by the common
(confounding) venous source, leading to overstated signal correlations within or
between highly vascularized areas. The spread of such spurious signal also has the
potential to mask the detection of activity related signal correlations. All of these
venous effects can be exacerbated by data blurring from both spatial smoothing as
well as re-sampling during motion correction and group space alignment. For these
reasons, veins should be understood to be a potential source of error especially
when mapping structures (22), or defining networks based on seed regions that are
along the cortical midline (e.g., the default mode network is typically defined based

on seeds in the posterior cingulate cortex, see (23)).

If venous contamination is a contributing factor in typical RS-fMRI scans, methods to
suppress such signals should result in a reduction of overall voxel correlation
measures, and changes in the spatial characteristics of resting-state connectivity
maps. To test this hypothesis, the phase regressor method is employed (24). The
approach uses a post-processing method for informed suppression of macro-
vascular signals using information in the phase component of the fMRI time series
data. The phase regressor and various other strategies for venous suppression in

fMRI are introduced below.

Reducing Venous Contributions

Functional MR imaging methods like ASL or CBV-fMRI can be less sensitive to
macro-vascular effects and demonstrate improved spatial specificity versus
gradient echo BOLD (GE-BOLD) (25-27). Despite the advantages of these methods

for avoiding vascular related confounds, GE-BOLD remains a highly popular and
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widely used technique, especially for investigations of intrinsic functional

connectivity using RS-fMRI due to its speed and simplicity of acquisition.

One strategy for combating these venous confounds is to perform the MRI
experiment at a higher magnetic field strength. Signal biasing from intra-vascular
effects is somewhat mitigated at high field strengths (typically = 7T) in gradient
echo based BOLD fMRI thanks to the shorter blood T> (6, 28). In addition to moving
to higher fields, several techniques exist that can be used to further reduce detection
of intra-vascular BOLD signals, including masking, temporal approaches, and the use
of the spin-echo signal. On a coarse level, anatomically-driven venous measurement
and masking is a possibility, but is limited to large veins, fails to address any extra-
vascular signal except by region growing, and can be affected by partial volume
effects and misalignment/distortions between a vessel reference map and the
functional dataset. Temporal methods can be applied to differentiate micro and
macro-vascular signal changes and to avoid localization issues arising from venous
spread (12, 14, 29). Given appropriately high sampling rates, it is possible to
measure BOLD signal onset times and apply differential processing accordingly.
These methods are quite effective but are not generally applicable for resting-state
imaging because of the lack of an onset event from which to reference BOLD signal

changes.

Spin-echo (SE) based sequences are another method known to mitigate venous
effects (6, 26, 30). By altering the measurement of the BOLD signal, the signals
generated from veins differ from typical gradient echo (GE) fMRI. In SE-fMRI, signals
from macro-vasculature (here, considered any vessels larger than the smallest of
oriented intra cortical- veins, >25 um diameter (31)) produce approximately static
perturbations in the local magnetic field, allowing for near complete signal
refocusing from the spin echo and resulting in insignificant signal changes with
BOLD. The effects on microvasculature (vessels <25 pm diameter) differs, in that the

smaller and more randomly oriented venuoles generate field perturbations that are
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incoherent on the diffusion length scale. Thus nearby diffusing spins cannot be
refocused, leading to a modulation of the apparent T2 and signal loss in the spin
echo. Signal detected by spin-echo BOLD fMRI is thereby biased towards the micro-

vasculature, and by implication, the active neuronal sites.

In GE based imaging, all of the field perturbations listed above still exist, but since
no spin echoes are present, signal changes are measured from both the micro- and
macro- vascular components. The macroscopic veins that give rise to the coherent
intra-voxel T;" de-phasing also generate detectable phase changes in the data. In the
case of the randomly oriented microscopic veins, little to no coherent phase changes
should be measurable, because of the incoherent manner in which the field
perturbations will average within a voxel. This concept was used to develop the
phase regressor, a post processing method for suppression of extra-vascular BOLD
signal from macroscopic veins (24). Through high-resolution task-based
experiments, it was demonstrated that the temporal magnitude and phase signal
changes from larger veins in response to task have an approximately linear
relationship. Such phase changes were identified and filtered from the magnitude

time course, resulting in suppression of macroscopic venous effects.

Here, we investigate the applicability of the phase regressor method on whole-brain
resting-state data sets, under the assumption that BOLD effects are a main
contributor to the resting state signal flucations. In the following sections, the phase
regressor technique is briefly reviewed and a modification proposed for application
to resting-state data. Metrics are introduced for assessing its performance on
resting-state data, and the technique is tested on a small set of subjects as a proof-

of-concept.

Phase Regressor

The phase regressor, as introduced by Menon (24), is a technique used to reduce the

vascular signal contributions generated in GE-fMRI. The concept is reproduced here,
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using notation from the original paper. For an fMRI acquisition of n time points, a
magnitude signal time-course §;, i = 1...n, and a phase time-course ¢, i =1..n
are measured for each voxel. The phase regressor estimates the signal in the
magnitude that is explainable by the phase data, S.,, by finding linear fit parameters
A and B, S.5; = A¢ + B. Filtering is performed by subtracting out the estimate from
the original data: S¢;;; = S — S The process reduces the influence of macroscopic
veins, because they are the predominant source of signal changes in both the phase
and the magnitude time series. Other sources of correlated magnitude-phase signal

change, such as motion artifacts, are also reduced on a per-voxel basis.

Methods

Regressor Implementation

Magnitude and phase time series in MRI tend to have different signal-to-noise
characteristics due to the underlying noise distributions as well as varying
contamination by physiological sources. From a data-fitting viewpoint, this results
in different measurement uncertainties in magnitude and phase. It is therefore
important to condition the fit of the phase regressor with knowledge of the relative
error levels in the measurements. As a coarse measure, one can estimate the
standard deviations o and o4 of the magnitude and phase time series respectively,
if the signal changes of interest can be factored out. In its original implementation,
the phase regressor was applied to task datasets with periodic paradigms. By
filtering at the paradigm frequency (and harmonics), o5 and g4 could be estimated
from the residual data, which included measurement noise, as well as all remaining
physiological effects and uncorrected motion. RS-fMRI, by definition, does not have
a well-defined paradigm to filter. Instead, the method can be modified to utilize the
inherent frequency filtering that takes places in typical RS analysis: since most
resting-state analyses rely on band-passed, low frequency data (23), the normally

unused high frequency part of the spectrum is employed to estimate the residual
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signal standard deviation in the magnitude and phase time series. Even though the
noise statistics in the magnitude and phase differ and are typically not normally
distributed (32, 33), this has been found to be a robust approach that improves on
filtering without any heed for the relative measurement uncertainties. This is
demonstrated in Figure 4-1, which depicts the time series and spectral components
of a sample voxel, where is it evident that the background phase noise is nearly an
order of magnitude worse than in the magnitude data in this specific case. This
measure is fairly consistent between the high-and-low-bandpassed frequency
bands. Significant physiological confound in a voxel could worsen the phase
variance by this measure, for instance, the peak at 0.2 Hz in the phase component in
Figure 4-1 that is likely related to respiration. For implementation, fitting a linear
model with errors in both variables is straightforward and software is readily
available. Data fitting was performed in python using the scipy.odr (34) interface

to the Fortran ODRPACK library (35).

MRI Data

Data from seven healthy volunteers (age range = 22-31y, mean = 27y, 5 male and 2
female) were collected and analyzed with a typical RS pipeline (see below), with and
without the addition of the phase regressor filtering. All volunteers provided
informed consent for the study in accordance with the research ethics board
guidelines at the University of Western Ontario. Scanning was performedona 7 T
head-only MRI scanner (Agilent - Direct Drive) with an AC84 head gradient coil
(Siemens), using a conformal 23-channel whole head receive array coil. A ten-
minute resting-state BOLD fMRI scan was acquired on each volunteer. While the
phase regressor based venous suppression was originally demonstrated on high-
resolution data sets, for this study the RS-fMRI data were acquired at a more
moderate resolution (2 mm isotropic). This was chosen to observe the effects of the
phase regressor at a resolution more closely matched to those employed in the RS

literature. EPI acquisition parameters were as follows: 2x2mm in-plane resolution,
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Figure 4-1 Variance estimation from high frequency band.

Sample magnitude and phase time courses. Original resting-state data
is filtered into two data sets; data destined for correlation analysis is
band passed at 0.01 - 0.1 Hz (blue trace and shading), while the
remainder is high-passed for use in variance estimation (green trace
and shading). Left: Power spectrum of magnitude data (top), and
phase data (bottom). Right: band-pass and high-pass signal time-
courses of magnitude (top) and phase (bottom). Important is the
relative difference in the signal variance between the magnitude and
the phase data (see methods).
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20 degree axial-oblique slice orientation, 2Zmm slice thickness, 110x90 matrix size,
ramp sampling, 300 kHz readout bandwidth, GRAPPA factor: 3, TR: 2 s, TE: 23 ms,
44 slices, 300 volumes, and a 60° excitation flip angle. EPI data were reconstructed
and resulted in separate complex time series for each coil. Coil sensitivities were
estimated in the EPI space by taking a mean of the first ten volumes after basic de-
trending and temporal phase unwrapping. Each mean magnitude image is divided
by the root sum of squares of all channels to generated the magnitude coil
sensitivity maps. Relative phases are also calculated between these mean complex
volumes, to generate the N approximate complex receiver maps. An anatomical
reference T1-weighted MPRAGE was also acquired with acquisition parameters: TR:
8 ms, TE: 3 ms, TI: 1.35 s, BW: 50 kHz, matrix size: 220x220x150, 1mm-isotropic
resolution, GRAPPA acceleration of 2x2 (phase x phase2), with 64 x 44 additional

reference lines.

Data Processing

FSL tools (36) were employed for brain masking and motion correction (BET and
MCFLIRT (37)). Automated brain segmentations were utilized (see below),
generated from the anatomical data using Freesurfer tools (38, 39). Surface-driven
boundary based registration was performed to align anatomical and functional
datasets. White matter and ventricle ROIs were generated from the Freesurfer
segmentation and mean time courses from these regions were extracted for
confound signal estimation. Six compcor regressors (40) were also generated and
applied to reduce physiological artifact. AFNI tools (3dBandpass) (41) were used to
bandpass the functional data between 0.01 and 0.1 Hz while regressing the six
motion parameters (translation and rotation in x, y, and z) and mean WM and CSF

signals, and compcor regressors.

Because few tools exist that properly handle the complex valued datasets, the phase

data were processed separately from the magnitude data. The phase time-courses
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underwent similar processing as the magnitude, with the additional steps of
temporally unwrapping the phase (on a per voxel basis) and subtracting off the
value of the first volume, resulting in delta-phase time-courses. At the echo times
used in this study, this produced phase data without any spatial 2t jumps (in the
case these types of jumps existed, further spatial phase unwrapping would be
required). Linear de-trending was performed to remove any residual effects of Bo
drifts. Motion correction parameters (as calculated from the magnitude data) were
applied to the phase time-courses, followed by bandpass filtering and confound

regression, as above.

All resting-state analyses and performance metrics were measured on the
magnitude data with and without the application of the phase regressor based
filtering. Importantly, the phase regressor was applied on the low frequency band-
passed EPI data, within each subject’s native data space, before any spatial

smoothing or transformations.

Intra-voxel resting-state signal correlation levels were measured with and without
the phase regressor, performed as follows: Pairwise Pearson product-moment
correlation coefficients, r, were computed between all brain voxels within each scan.
A binning procedure was used to obtain counts of voxels passing pre-determined
correlation thresholds (low: 0.2 < | r | < 0.4, medium: 0.4 < | r |< 0.6, and high:

| 7 | = 0.6). For each voxel pair, the source and destination tissue type (grey matter
(GM), white matter (WM)) was recorded, and correlation values binned accordingly
(WM - to - WM, WM - to - GM, GM - to - GM), allowing for comparison of aggregate
correlation level changes within and between tissue types. Label maps of cortical
grey matter, white matter, and ventricles were generated from Freesurfer
segmentations, binarized and transformed into the EPI space. Any regions with label

overlap that resulted from partial volume effects were masked out.
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Resting-state Network Identification

Group level seed-based correlation maps were computed using AFNI and
3dGrouplnstacorr (41) for several common networks, with and without phase
regressor filtering. Subject data were transformed into the MNI space for group
analysis, and data were spatially smoothed using a 5mm full-width-half-max
(FWHM) gaussian kernel prior to seed-based analysis. Spherical seed points (1 mm
radius) were placed in several brain regions, chosen for associated RSNs that exhibit
either a) connectivity over a mix of midline areas (with significant problematic large
venous structures nearby), and b) networks with distributed, bilateral patterns
lacking common venous connections. Seed points were placed in the posterior
cingulate (MNI co-ordinates: 0, -52, 26), revealing the default mode network, in the
left superior parietal area (28, -62, 50), secondary visual area (28, -94, -2), right
frontal eye field (34 26 48), and precuneus (2, -62, 58). Differences in the statistical
spatial correlation maps with and without phase regressor application were
calculated and recorded. To investigate the spatial characteristics of the phase
regressor signal estimates (S,s;, the macro vascular component), correlation maps

were generated on this phase estimate using the same seed points.

Results

Figure 4-2 demonstrates the application of the phase regressor for filtering on two
representative grey matter voxels from the primary visual area of one subject, one
voxel immediately next to a vein and one distant (~4 voxels) from any visible veins,
as identified via signal nulls in the MPRAGE. The low frequency band-pass time
series are displayed (0.01 - 0.1 Hz). In the voxel with no apparent vein, it can be
observed that the phase signal is quite different from the magnitude, and little signal
is removed after application of the phase regressor, resulting in only small
differences in the filtered time course. In contrast, the voxel near a vein exhibits
similar features in both the magnitude and phase time-courses. These combined

features are almost totally eliminated after regression.
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Figure 4-2 Sample time series for regressors.

Sample time series from two grey matter voxels, one close to (top),
and away from (bottom) visible cortical veins, band-pass filtered
between 0.01 and 0.1 Hz. Traces represent magnitude (blue), phase
(red), and filtered magnitude data (green). In the voxel near a vein
(top), large signal features common to both magnitude and phase time
courses are reduced after filtering. In the voxel away from detectable
veins (bottom), the magnitude and phase time series are uncorrelated,
and the filtering has nearly no effect on the magnitude data.
Magnitude/phase correlation coefficients in these two voxels were
0.72 (top) and -0.06 (bottom).
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The ratio of magnitude and phase signal standard deviations used in the weighted fit
(os/04) was observed to be fairly constant over most brain regions for each subject,
with the exception of areas of low signal (e.g. from regions falling outside of the
receive or transmit coils, such as the inferior hippocampus and the anterior portions
of the temporal lobes). Changes in o5/0 4 were also observed when subtle phase
errors from the EPI reconstruction were present. In both cases, o4 was found to
increase faster than os. This is an expected behaviour as signal levels drop because
the noise statistics in magnitude and phase are only approximately Gaussian for
signal-to-noise ratios larger than ~2 and ~3 respectively(32). In areas with lower
signal levels, noise distribution in the phase quickly widens, tending towards a
uniform distribution over all angles (see (32)), and yielding very large estimates of
04. Regions where the phase signal is noisier are appropriately down weighted by
the fitting procedure used, avoiding the potential mixing of phase noise into the

magnitude data.

For each subject, measurements were taken of the phase regressor fit parameters.
Maps of the voxel-wise magnitude-phase correlation and the linear fit explained
variance (RZ) are displayed in Figure 4-3. The fitting was performed only on the
band-passed (low frequency) data. The regions where the model fits best are
expected to match closely with the underlying magnitude-phase correlation values,
scaled by the local estimates of 5 and . Correlation values and R? were observed
to be largest near midline and in the periphery of the brain, and are lowest in white
matter areas where negligible venous BOLD contributions (and little other
confound, like edge effects and motion) are expected. These values and spatial
patterns are similar across subjects, as demonstrated in a group average map of R®
(Figure 4-3, bottom row). In the group average, fine spatial features are no longer

visible after spatial blurring and group-space alignment.



Figure 4-3 Whole brain regressor fit data

(top row) Per-voxel correlation coefficient between magnitude and
phase time courses, (middle) R? estimate of phase regressor fit to the
magnitude, and (bottom) Group average R2.
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To examine the effects of the phase regressor filtering, inter-voxel (resting-state)
correlation levels were measured for all subjects, and found to decrease after phase
regressor filtering. Total counts of voxel pairs passing correlation thresholds,
averaged over the subject group are summarized in Table 4-1. Significant reductions
were observed in the total number of moderately- and highly- correlated voxels
following phase regression. The reduced counts at higher correlation levels were
balanced by increased counts in the very low correlation regime, around |r| < 0.14 --
a narrowing of the histogram of total voxel-voxel correlation values. Such behaviour
is observed when applying other common ‘global’ confound regressors (such as
motion parameters and CSF signal). Unlike the global regressors, the actual signals

removed by the phase regressor technique vary in space on a voxel by voxel basis.

Examining these overall reductions in more depth, Figure 4-4 displays the changes
in counts of voxel-voxel correlations binned by source and destination tissue type.
In line with overall measures (Table 1), filtering resulted in paired correlation
values that were decreased within and between all tissue classes at the correlation
thresholds used. Since true activity-related correlations are not expected between
voxels within white matter, this set provides a good baseline for comparisons. At the
highest correlation threshold, there was significantly greater reduction in voxel-
voxel correlation counts (50 % to 90 %) within areas identified as GM and between

GM and WM, when compared to correlations between voxels in WM.

Qualitative examination of filtering performance on common resting-state networks
(RSNs) revealed some notable behaviors (Figure 4-5). In many RSNs, correlation
changes near midline are visible. Away from midline, changes in correlation levels
are evident both within and peripheral to main network clusters. It appears that
while finer structures are detectable in the phase regressor fit map in a single

subject (as seen in Figure 4-3), only the largest regions persist as observable



Table 4-1: Counts of voxel pairs passing threshold.

Counts of voxel pairs passing threshold for all voxels in the white matter, cortical
grey matter, and ventricle regions, + standard deviation. Significant reductions at
higher correlation levels were observed: (*): p<0.02, (**): p<0.002. Reference
processing includes all pre-processing and confound regression other than the
phase regressor.

02<|r|<04 0.4<|r|<0.6 |r]|>0.6

Reference 2.8e8 +59e7 1.2e7+5.8e6 * 5.8e5+ 2.1e5 **

Phase
2.2e8 + 3.6e7 5.3e6+ 2.2e6 * 1.9e5 + 4.5e4 **
Regressor
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Figure 4-4 Group average correlation changes after phase regression.

Group averaged changes in counts of voxel pairs passing correlation
thresholds after phase-regressor application, binned by tissue type, as
percent difference from the unfiltered data, *+ standard deviation.
Significant differences within correlation threshold levels are
indicated (pairs of *, **, and o), calculated via Tukey range test (HSD)
with a family-wise error rate (FWER) = 1e-3. For display purposes,
correlation threshold labels (x-axis) are condensed, and refer to: 0.2
<|r|1<04,04<|r|<0.6,and]| r | = 0.6, see methods section.
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correlation changes at the group level, likely because of differences in venous

anatomy between subjects combined with group level blurring effects.

When investigating the content and spatial characteristics of the phase regressor
time-courses themselves (Sest -- the estimated macro-vascular fraction that is
subsequently removed), seed based analysis revealed remarkable patterns of
resting state connectivity closely matching those observed in the magnitude data.
This was observed both in core regions about the seed point, and in some bilateral
network areas as seen in Figure 4-6. Also visible in these correlation maps from the
phase data are regions of presumably large-scale vascular artifacts, as observed in
the large correlation of the precuneus seed with the superior regions of the sagittal
sinus. Note that the use of lower correlation thresholds was required in order to

produce similar network extents as found in the magnitude data.

Discussion

Spatial Characteristics of RS-Correlation Changes

Processing resting-state GE-EPI fMRI data with the phase regressor leads to
measurable spatial changes in resting-state correlation metrics, owing to the
removal of signals present in both magnitude and phase time series. Importantly,
spatial differences in voxel-voxel correlation levels persisted at the group level.
Despite the phase regressor fitting revealing some finer scale spatial features on
single subjects, at the group level only the largest veins appear to be well conserved,
likely because of the intra subject variation in anatomy of smaller vessels combined
with registration imperfections and blurring effects. An example of this is the
attenuation of correlation scores along the sagittal sinus from the precuneus seed
region (Figure 4-5, b). In this situation, strong venous signal that blurred into the
seed region became part of the seed time-course, and correlations along the whole
sagittal sinus are seen at lower thresholds. By removing the venous signals before

blurring, this is avoided. Correlation increases after venous suppression are
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measured in “core” network areas from the reduction of the spurious signal that was
previously mixed into the seed region, resulting in a potentially more accurate
measurement of the local underlying activity-related signal changes. Other regions
of correlation reduction are visible in the other investigated networks in Figure 4-5,
especially near areas of known confound (sagittal sinus and brain midline, and

cortical surfaces where motion and other artifacts can be more prominent).

Smaller-scale effects in the resting-state correlation maps were also observed,
especially in the periphery of main network regions (Figure 4-5). In resting-state
network maps that primarily show changes outside of what would typically be
considered the core network regions/voxels (and eliminated by increasing the
lower bound threshold) there is still value in phase based vessel suppression.
Differences in correlation levels in voxels outside of the core network regions may
not play a large role in visual identification, but they could be critical for group level
comparisons (especially in clinical comparisons), graph metrics that rely on binary
thresholding, and voxels that otherwise may be close to threshold and would

increase false positives.

An interesting effect of the phase regressor filtering is the greater reduction of
pairwise correlated voxels between white and grey matter, and within grey matter,
as compared to counts between voxels within white matter (as shown in Figure
4-4). If one accepts that coherent and meaningful resting-state activity should not be
observable in WM, correlation changes between these areas are likely due to the
removal of residual physiological variations, given that there are few large venous
structures traversing WM to be regressed out. When comparing these WM changes
to correlation changes between GM and WM, and within GM, it is tempting to
hypothesize that the residual physiological signals account for a similar percentage
reduction in correlation levels (and RS-BOLD the remainder). This would be
incorrect, because the strong percent change in WM disguises the fact that the total

count of medium- and highly-correlated voxel pairs within WM are nearly an order
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Figure 4-5 Seed based group RS-correlation maps.

Seed based group RS-correlation maps (red-yellow) for exemplar networks (a- e,
see methods section for seed co-ordinates). Changes in z-scores after phase
regressor application are indicated, where green values denote reductions after
filtering, and blue/purple denotes increased values. While some correlation changes
exist within contiguous correlated regions, more interesting are the localized
reductions on the periphery, where the extent of connectivity estimates might be
affected.
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of magnitude lower than the other categories. This means that while a significant
percentage of highly correlated areas within WM are suppressed, they represent

only a small fraction of all highly-correlated pairs.

In the context of resting-state correlations, reductions between voxels in GM and
WM are particularly important. Any confounding correlations or mis-localization
due to venous spread can be worsened by subsequent data blurring and group
alignment procedures. The demonstrated reductions in correlation levels in this set
of voxels can imply a possibility for improved localization of resting-state signals by

removing these correlations before they are blurred into surrounding areas.

Spatial Characteristics of Magnitude-Phase Correlation Changes

The underlying magnitude-phase signal correlations that are identified and used by
the phase regressor are interesting to examine. As noted in the results, and depicted
in Figure 4-3, the magnitude-phase correlations and concomitant regressor
goodness-of-fit broadly follow patterns of known vascular density in the brain.
Interestingly, there is a noticeable reduction in these values in the posterior sagittal
sinus as compared to the more superior sagittal sinus areas, detectable in the group
average images. This difference is worth discussing, given the presumably similar
levels of deoxygenated blood in both regions. We believe the major contributor to
this effect is the venous alignment with respect to the main magnetic field. The
alignment affects the susceptibility shift experienced by the spins, and thus the
phase response as oxygenation changes. This is a physical effect of cylindrical
susceptibility perturbers oriented in an external magnetic field -- we don’t detect
such signals, but they in fact do not exist in the first place (or rather, are attenuated
as the vein orientation approaches the magic angle cone). Secondary factors are
also likely at play contributing to regional signal differences, such as imperfect
group alignment and blurring, and differences in brain masking, averaged over the

small number of subjects.
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Venous Signal at High Field

The data herein demonstrate that measureable magnitude-phase signal correlations
exist in gradient echo EPI fMRI data in patterns that follow known vascular density
(31, 42), as well as patterns that match known RSNs (Figure 4-5 and Figure 4-6).
This raises the question: what is the source of such signals? Simulations and
measurements of GE-EPI at 7 T suggest that the intra-vascular (IV) venous blood
signal is greatly attenuated via the short T, resulting in signal levels of less than
10% as compared to tissue at the echo times used (43). This is in contrast to low
field strengths where nearly all of the detectable BOLD signal changes are venous in
origin. While the blood Tz at 7 T results in a lower absolute level of IV signal, the
relative frequency shift experienced by intra and extra-vascular spins grows,
resulting in larger detectible phase shifts and still allowing for measurement of
correlated magnitude-phase signal changes from blood. At very long echo times or
field strengths well beyond 7 T, this method will not be applicable for differentiating
[V signal, although arguably IV signal is not a significant problem under such
conditions. However, extra-vascular tissue spins are also candidates for detectable
phase changes. The static de-phasing regime around large vessels will not only
induce T>" decay in the tissue (leading to signal change in the magnitude and the
familiar vein blooming effect seen in susceptibility weighted imaging), but also has
the potential to generate coherent phase offsets, depending on the local geometry of
veins within and in close proximity to a given voxel. Prior to this study, the phase
regressor technique was validated at matched resolution and echo times at 7 T
using a visual task, to ensure activity related BOLD phase changes were indeed

detectable.

In theory, the phase regressor should be able to identify temporal changes in blood
susceptibility via the BOLD effect, regardless of the source (activity-induced or

residual physiological fluctuation), given sufficient magnitude and phase signal-to-



107

noise ratio. It can equally well identify artifacts that generate coupled magnitude
and phase signals. In task based studies, differentiating the activity-related signal
from other confound sources is simpler owing to knowledge of the estimated
response to paradigm, and the fact that task signal is detectable in the phase data
itself (see (24)). In fact, phase changes have recently been shown to be detectable
even from the more transient BOLD changes elicited in event related paradigms
(44). This finding is important because of the potentially greater contributions of
physiological contamination in the phase time-course - the ability to detect block
and event related BOLD signals suggests that there are situations where the phase
data may have sufficient SNR to be sensitive to RS signal changes. Most resting state
fMRI shows correlations that are expressed in z-scores and r-values, without any
heed paid to the actual amplitude of the fluctuations. Recent work (45, 46) has
demonstrated that the amplitude of the BOLD signal during the resting sate is in
some cases quite comparable to the amplitude of the BOLD signal in task based
studies, and furthermore, the amplitude of these fluctuations can be positive or
negative over "baseline". It stands to reason that the venous signals would follow,

and thus be detectable through their phase perturbations.

Estimates of the macrovascular signal component (the phase regressor -- that is, the
per voxel linear fit of the phase signal to the magnitude signal) proved interesting to
directly visualize. As described in the results and seen in Figure 4-6, RSNs were
remarkably well visualized from this (weighted) phase data. In the datasets tested,
these signal correlations are absent from the raw phase data at the group level, for
two reasons. First, by fitting the phase to the magnitude, a re-scaling of the phase
time course occurs on a per voxel basis. Regions where the time series do not
correlate well are basically down-weighted, leaving only the phase time-courses
that exhibit signal from susceptibility perturbations that are also detected in the
magnitude. Itis important to remember that the temporal signal behaviour is not

changed, as the only parameters in the fit are the zero offset and linear scaling for
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each voxel. This means any temporal correlations measured between voxels in

group level raw phase dataset are signal changes in the phase data itself.

A second effect also occurs from the fitting procedure that serves to additionally
transform the phase data into a format more amenable for correlation
measurements and group averaging: flipping of the sign of the phase during
rescaling. Consider the situation of two voxels on either side of a susceptibility
perturber like a large vein with a time varying susceptibility. These neighboring
voxels will experience T* effects as the local magnetic field changes, resulting in a
temporal intensity change in the magnitude component. Depending on the relative
orientation of the vein and voxels in space, there is the potential for the phase time-
course to appear correlated or anti-correlated with the magnitude. Through the
linear fit, the sign of this phase offset is taken into account, resulting in all anti-
correlated phase time-courses being “flipped” in the phase regressor dataset. From
this operation, the phase signals become more spatially coherent and amenable to
blurring operations. Whereas nearby voxels with large relative offsets in the phase
time-courses would have previously cancelled, this coarse type of alignment allows
for some benefit from spatial filtering and group averaging as the phase changes due
to a vessel are now coherent everywhere near that vessel. To summarize, we
propose that the resting state signal activity is visible in these phase regressor maps
because of the inherent filtering that suppresses non-BOLD related phase signals

while improving the spatial coherence of the voxel phase offsets.

Versus Spin Echo

The efficacy of this approach can, in the future, be compared to spin echo sequences
that intrinsically suppress macroscopic venous effects. Different performance
characteristics are expected since the localized extra-vascular phase changes are
only detectable in the gradient echo phase data given sufficient SNR and voxel sizes

with respect to underlying venous structure. In contrast, the spin echo refocusing
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Figure 4-6 Seed based group RS-correlation maps (phase data)

Seed based group RS-correlation maps (red-yellow) calculated from
the phase fit data itself (Sest). The maps are generated from the same
seed points as in Figure 4-5, but calculated from this phase data
contain both expected network connectivity, as well as additional
conspicuous regions that are likely artifact. This is especially visible
in (b and c) where portions of the sagittal sinus show correlation
with the seed region: signal from the sagittal sinus that is blurred
into the tissue induces these correlations that are then detected
upon seed region analysis.
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will intrinsically occur independent of acquisition resolution and signal-to-noise
levels. From these considerations, it is likely that spin echo sequences will provide
superior venous suppression performance, but are limited by many factors that
scale with MRI field strength and make their use a difficult trade-off for resting-state
applications. High RF power requirements and lengthy repetition times (especially
at high image resolutions) are hard problems to address. Recent technological
developments including multiplexed acquisitions promise improvements in the
utility of spin echo fMRI in high field, high-resolution regimes, but are still an area of
active research (e.g., see (47, 48)). Until such advanced techniques become more
commonplace, phase-based techniques in gradient echo fMRI can fill an important

role in artifact detection and venous suppression.

Caveats and Confounds

The treatment of noise statistics in this work is a confound worth discussion, as the
relative signal variances (os/0,) are used to weight the phase regressor fit at each
voxel. As identified in the methods and results section, the noise statistics in
magnitude and phase images are known to be non gaussian. When underlying
activity and/or physiological signals are also included in a given voxel time series, it
becomes clear that estimation of the signal variance is not a measure of the
underlying noise in the time course. The purpose of the variance estimation is to
provide a rough scaling on a per-voxel basis to inform the phase regressor fit in
order to improve robustness and avoid introducing excessive phase noise into the
“filtered” data. This measure of signal variances captures not only noisy voxels, but
also voxels with significant phase fluctuations driven by physiological sources like
respiration and motion. We are primarily concerned with situations where the
phase variance is order-of-magnitude worse than the magnitude, and presumably
not terribly trustworthy. While the estimation of variance in magnitude and phase
can contain biases because of the noise statistics, especially when the SNR is low, we

have found approximation to be quite robust in practice. We should note that this is
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an overly conservative approach (if the phase variance is very high compared to
magnitude signal variance, nothing gets removed from the magnitude signal in
regression), and certainly better modeling of the noise statistics could be done to
improve the weight estimates for the regression and thereby potentially improve

performance of the method.

The correlation analysis as performed is admittedly a coarse approach, but it
indicates that measureable differences in overall correlation levels across a set of
subjects can be found. Regression of typical confound sources (WM, CSF, RVT, etc)
has a similar effect on global correlations (49), and is accepted as an important pre-
processing step. Preliminary data (not shown) demonstrated that the phase
regressor does not replace the need for these other regressors, instead functioning
in a complimentary manner. Importantly, and unlike the aforementioned regressor
techniques, the phase regressor selectively alters signals in a spatially localized
manner, meaning the correlation changes measured are not part of a single
“widespread” effect, as is the case with e.g. cardiorespiratory effects or overall blood

oxygenation level modulations (RVT).

It should be noted that the limited spatial resolution of the RS-fMRI data herein
precludes more sophisticated investigation into the localization of the phase
regressor signal, and should be addressed in future, higher resolution
investigations. These low resolutions can also bias metrics that rely on
segmentations like the reported global correlation changes between tissue types
(Table 4-1 and Figure 4-4), as significant partial voluming between tissues occurs at
these low resolutions, coupled with the limited ability to wholly resolve the cortical

ribbon.

While the datasets used in this work were designed to be comparable in resolution
with common resting-state protocols, the use of a 7 T MRI system might limit the

transferability of this technique to lower field strengths like 3 T. Phase based
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techniques are typically less sensitive at lower field strengths, due to the smaller
relative susceptibility shifts and therefore lower phase accrual for a given echo time.
On the other hand, at lower fields a larger fraction of the observable signal is
macrovascular in nature because of the lower susceptibility influence of
microvasculature, and the relatively longer T times of venous blood. This is
especially true at 1.5 T and there is some evidence at 3 T, as reported in a recent
comparison of spin echo and gradient echo for pattern analysis at 3 T (50). This
would suggest that methods that suppress signal from large veins could remove
much of the signal of interest, adversely affecting the ability to detect resting state
activity. Nonetheless, the veracity of magnitude RSNs under conditions where the

phase regressor eliminates most of the signal needs to be critically considered.

Access to phase data is an important consideration for studies planning to
implement a similar protocol as described here. While the EPI data typically used
for fMRI is acquired and reconstructed as a complex valued time series, the phase
data is typically discarded and effort must be taken at scan time to ensure it is

retained.

Conclusions

Use of the phase regressor technique as modified for RS-fMRI has the potential to
reduce contamination from venous signal contribution and residual artifacts. Phase
regressor filtering applied to resting-state data acquired at 7 T demonstrated
reductions in measured total correlation scores, reduced correlations between
cortex and white matter voxels, and changes in spatial correlation maps of common
RSNs at a group level. Given the differences in overall correlation levels that were
measured after phase-regressor application, venous effects need to be seriously
considered in resting-state studies, particularly of midline networks or when the
seed region is selected along the midline or cortical surface where the greatest

changes are evident.
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5. Summary and Conclusion

This thesis presented new methods to address three core confounds of performing
functional neuroimaging at 7 Tesla. While such a high magnetic field strength
promises improved signal- and contrast-to-noise for functional imaging, significant
additional challenges arise. Herein, three of the myriad challenges were addressed,
presenting methods to (a) combat the RF image inhomogeneity (center-brightening)
artifact, (b) address the heightened physiological noise contribution in BOLD fMRI
time series, and (c) to examine and reduce the confounding effects of the venous
anatomy in resting state BOLD fMRI. Results of these investigations were published
in major peer-reviewed journals in the field. The core developments and

contributions of the work leading to each paper in this thesis are described below.

B4+ Shimming

Imaging inhomogeneity due to non-uniform radiofrequency excitation was

addressed in work detailed in Chapter 2.

As background for this research, pulse sequences and reconstruction code to
perform mapping of the transmit RF fields were developed, tested, and
benchmarked. These sequences were used to assess the performance of multi-
channel RF transmit coils developed by our lab, resulting in several co-authored
papers. System runtime code (Agilent PSG) was modified and pulse sequences were
developed that enabled modulation of the individual transmit channels for each
excitation pulse in the sequence. Different formulations of the shimming

optimization problem were tested and compared.
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Combining these developments, a new shimming technique was described and
tested -- slice-by-slice shimming. It was demonstrated that significant performance
gains could be achieved when restricting the shim region to individual slices. Shim
solutions with lower overall transmit powers and more uniform excitations were
robustly demonstrated. The performance benefits were explained by several factors.
First, multi-slice shimming reduced the effective spatial extent over which
uniformity of the RF transmit field is required, simplifying the problem. Secondly,
additional degrees of freedom are made available in the multi-slice paradigm,
enabling more control of the fields. Third, efficiencies in coil geometry are better
utilized when slice locations align well with coil spatial profiles. e.g. if a slice is near
to only one coil element, little contribution from other elements is expected, and the
optimal powers reflect this, reducing SAR deposited in regions far from the slice of

interest.

The advantages of such slice-by-slice shimming are many-fold. It is conceptually
simple and fairly straightforward to implement, as there is no additional gradient
activity required. It is applicable to nearly any multi-slice sequence, and was
demonstrated with both low flip angle gradient echo and high flip angle fast spin
echo imaging. The proposed method was found to robustly achieve quality, SAR-
efficient shim solutions over a variety of volunteer head shapes and sizes. Critically,
the solution speed is excellent, as even when scripted in MATLAB solutions are

generated quickly enough for use on-line during the sequence preparation phase.

Physiological Noise

The use of the 7T for neuroimaging would not be complete without application to
BOLD fMRI, a workhorse of neuroimaging research. Unfortunately, the signal to
noise (SNR) benefits of high field imaging are not directly realized in BOLD fMR], as

the imaging becomes more susceptible to physiological noise which can limit the
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effective temporal SNR, and thus statistical power of the method. Chapter three
addresses this idea by suggesting a new method to automatically identify corrupting

signals in a data driven manner for subsequent removal.

While debugging artifacts in our in-house EPI reconstruction software, we observed
the great dynamism of the phase signal in fMRI time series in motion-corrupted
areas. Further investigation revealed that the time series of voxels with large
magnitude and phase signal standard deviations contained significant physiological
contamination from cardiac pulsatility, respiration, and other subject motion. The
idea of Highcor arose from these observations -- finding the voxels with the highest
magnitude and phase correlations (which are generated by only a small number of
processes, most of which are confounding in nature) and using these as a “noise
reference.” Many voxels are identified (the top 1-2%), and dimensionality reduction
is performed via principal component analysis (PCA) to find a small set of high-

fidelity reference signals for filtering.

There are many advantages of Highcor when compared to other data de-noising
methods in the literature. By using a physically motivated criteria, the reference
voxel set can identify a significant percentage of the physiological confounds in a
very robust fashion, requiring no user intervention nor training data. It is
conceptually simple to implement, requiring minimal processing aside from a phase

coherent coil combination from the multiple-receiver data.

Venous Biasing of BOLD Signal in the Resting State

Chapter four continues the theme of chapter three, utilizing the phase component of
the BOLD fMRI data. However, instead of global confounding signals, we instead
look to the very localized effects of the venous anatomy. As described in the

introduction of chapter four, the susceptibility perturbations from the deoxygenated
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blood in small veins are the driving source of the BOLD signal we measure in
gradient echo fMRI. It was previously shown by Menon (2002) that these veins also
generate phase perturbations that are detectable and correlated with the magnitude
signal (indeed, the same phenomenon drives both signals). By regressing the phase
against the magnitude, an estimate of micro-vs-macro vascular contributions of the
BOLD signal can be generated, and used to remove the macro-vascular portion. This
is of interest because the macro-vascular components are inherently less localized
to sites of brain activity. This was demonstrated in task based MRI, where the task

signal can be directly visualized (quite remarkably) in the phase data itself.

In chapter four, the phase regressor was extended to investigations of the resting
state, where venous biasing effects are typically ignored due to the low data
resolutions and significant blurring and averaging of group level data. The phase
regressor approach was modified to estimate signal variances using the band-
passed frequencies that are typically discarded in resting state analysis. Through
application of the modified phase regressor to resting state datasets, it was
demonstrated that removal of macro-vascular signal contributions has measurable
effects on the spatial distributions of resting state signal correlations in individual
datasets and at a group level. Two distinct changes were observed: one from
reduction of confounding venous signal sources (e.g. signal change in and around
large veins like the sagittal sinus), and second from the attenuation of small macro-
vascular signals (as in the task-fMRI case) where localized changes in network

connectivity were detectable.
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Recommendations for Future Work

Using the same sections described above, several avenues for continuing research

have become apparent.

B1+ Shimming

Extend slice-by-slice methodology to other pulses. Several other commonly used
pulse sequence elements occur as spatially localized excitations separate from the
slice. Examples are spatial saturation bands (outer volume suppression), localized
fat saturation, and various magnetization preparation elements like ASL tagging.
Modulating the B1+ shims for each such pulse is a fairly straight forward extension.
We have already demonstrated promising results with outer volume suppression in
the brain, where shimming quality of saturation bands can benefit greatly from their
localized nature with respect to transmit array coil elements. Preliminary results
suggest a near doubling in saturation uniformity with almost halving in SAR, making

saturation somewhat more tractable for high field applications.

Concurrent optimization of B1+ and Bo shims. The well-known sensitivity of EPI
to variations in Bo is worsened at high field strengths. Moving to modulate the By
shims on a per slice basis provides the same additional degrees of freedom
demonstrated in the B1+ shimming. An initial implementation suggests that this
approach is promising, with control of the linear Bo shims easily achievable in real
time, reducing off-resonance within each slice (especially in slices near the
periphery of the brain). However, significant addition research work is required, as
changes in the By shims result in spatial distortions that change from slice to slice

that are not trivial to correct.
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Application to the Siemens pTX platform. Development and proof of concept
occurred on the Varian/Agilent platform. While not precisely a research goal,
integration with the Siemens environment could help the adoption of these

techniques by a wider user-base, as pTX technology is further adopted in the future.

Physiological Noise

Physiological noise contamination in BOLD fMRI is a complex issue. When
performing this research, it became abundantly clear that good criteria were lacking
for assessing the overall quality of fMRI datasets, making benchmarking of filtering
techniques especially difficult. Several avenues might help generate a better

understanding of the physiological contamination present in the data:

Improved modeling of physiological noise sources. The well known Glover
model describing the temporal-SNR to image-SNR relationship (see Chapter 3)
assumes the “noise” sources are normal, modeling physiological and thermal noise
components by simple signal standard deviations. As there is clearly a strong
frequency dependence of physiological signal sources in the data (respiration and
cardiac cycles, for instance), one can hypothesize that a frequency aware model may
provide additional insight into the noise processes and performance of any filtering.
This is a difficult problem, as any such model must also consider frequency aliasing
effects from the relatively long imaging TRs compared to the fast physiological

signals.

Base image SNR assessment by frequency baseline. One key metric for assessing
quality of image data is the base signal-to-noise ratio (SNR). For a variety of reasons,
assessing base image SNR is very difficult in BOLD EPI, especially when parallel

imaging is utilized. As visible in Figure 3-3, power spectra of voxel time-courses
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acquired at high temporal resolution exhibit a flat baseline noise power that
corresponds to the background white noise in the data set. Given appropriate
scaling, this baseline should be usable as a robust estimate for the overall noise level
in the dataset (and therefore as a reference for image SNR), abstracting out effects of

spatial signal variation and physiological noise.

Venous Biasing of BOLD Signal in the Resting State

Improved understanding of the localization properties of BOLD signal changes is
important as scientists move to ever higher resolution investigations of the brain.
The phase regressor method is a robust method of improving signal localization by
eliminating macro-vascular signal biasing. Several avenues should be pursued to
further validate this technique, to understand its limitations, and to improve

robustness.

Comparison to spin echo. As suggested in Chapter 4, an important experiment to
perform in the future is a comparison to spin-echo (SE) based fMRI. This test is an
important validation, as the different physics of the SE-BOLD (specifically the
biasing of the BOLD effect to micro-vasculature) are the exact situation that the
phase regressor filtering aims to emulate -- if the phase regressor does indeed
remove a large fraction of the macro-vascular signal, we should measure similar
resting state signal correlations as in spin echo sequences. This is, however, a
challenging task, as spin echo EPI sequences are difficult to perform at 7 T due to the
duty cycle and SAR limitations. The delay requirement for signal regrowth also
limits the effective temporal resolution of SE-EPL. Differences in spatial SNR deriving
from the inhomogeneous RF (and therefore imperfect signal refocusing) also make
direct comparisons of resting state correlation levels between SE and GE -EPI more

difficult.
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Phase stability improvements. One limitation of the phase regressor method is
the requirement for high fidelity phase data. The phase data in MRI can be
significantly less robust than the magnitude data, due to a variety of artifacts (effects
of motion, off-resonance, and physiological noise) and signal processing issues like
phase wrapping. Phase representations of the complex data also perform quite
poorly in low SNR regimes. Low quality phase data reduces the efficacy of the phase
regressor, as the correlation between magnitude and phase within a voxel will be
attenuated. Improvements to phase stability should only benefit this method.
Technologies exist that could help but typically their integration is not trivial, such
as two-dimensional EPI navigators and the use of preprocessing tools that correctly

support complex-valued data (e.g. in the motion correction stage).



127



128

Appendix A: Ethics Approval

Use of Human Participants - Ethics Approval Notice

Research ; r o
Western

Principal Investigator: Ravi Menon

File Number:102652

Review Level:Full Board

Approved Local Adult Participants:50

Approved Local Minor Participants:0

Protocol Title:High Resolution fMRI at 7 Tesla

Department & Institution:Schulich School of Medicine and Dentistry\Medical Biophysics,Robarts Research Institute
Sponsor:Ontario Research fund

Ethics Approval Date:May 31, 2012
Ethics Expiry Date:June 30, 2017

Documents Reviewed & Approved & Documents Received for Information:

Document Name Comments | Version Date
Western University Protocol
Letter of Information & Consent 2012/05/29

Advertisement

This is to notify you that the University of Western Ontario Health Sciences Research Ethics Board (HSREB) which is
organized and operates according to the Tri-Council Policy Statement: Ethical Conduct of Research Involving
Humans and the Health Canada/ICH Good Clinical Practice Practices: Consolidated Guidelines; and the applicable
laws and regulations of Ontario has reviewed and granted approval to the above referenced study on the approval
date noted above. The membership of this HSREB also complies with the membership requirements for REB's as
defined in Division 5 of the Food and Drug Regulations.

The ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable
responses to the HSREB's periodic requests for surveillance and monitoring information. If you require an updated
approval notice prior to that time you must request it using the University of Western Ontario Updated Approval
Request form.

Member of the HSREB that are named as investigators in research studies, or declare a conflict of interest, do not
participate in discussions related to, nor vote on, such studies when they are presented to the HSREB.

The Chair of the HSREB is Dr. Joseph Gilbert. The HSREB is registered with the U.S. Department of Health &
Human Services under the IRB registration number IRB 00000940.

Ethics Officer to Contact for Further Information

’ Janice Sutherland Grace Kelly | Shantel Walcott |

This is an official document. Please retain the original in your files.

The University of Western Ontario
Office of Research Ethics
Support Services Building Room 5150 ¢ London, Ontario * CANADA - N6G 1G9
PH: 519-661-3036 * F: 519-850-2466 * ethics@uwo.ca * www.uwo.ca/research/ethics



Office of Research Ethics

The University of Western Ontario

Room 4180 Support Services Building, London, ON, Canada N6A 5C1
Telephone: (519) 661-3036 Fax: (519) 850-2466 Email: ethics@uwo.ca
Website: www.uwo.ca/research/ethics

Use of Human Subjects - Ethics Approval Notice

Principal Investigator: Dr. J.S. Gati
Review Number: 15018 Revision Number: 1
Review Date: August 21, 2008 Review Level: Expedited
Protocol Title: 7 Tesla MRI Hardware and Software Development
Department and Institution: Imaging, Robarts Research Institute
Sponsor:
Ethics Approval Date: October 02, 2008 Expiry Date: July 31, 2018

Documents Reviewed and Approved: Revised study methodology, revised sample size, revised poster and revised Letter of
Information and Consent Form version 1.2

Documents Received for Information:

This is to notify you that The University of Western Ontario Research Ethics Board for Health Sciences Research Involving Human
Subjects (HSREB) which is organized and operates according to the Tri-Council Policy Statement: Ethical Conduct of Research
Involving Humans and the Health Canada/ICH Good Clinical Practice Practices: Consolidated Guidelines; and the applicable laws
and regulations of Ontario has reviewed and granted approval to the above referenced revision(s) or amendment(s) on the approval
date noted above. The membership of this REB also complies with the membership requirements for REB's as defined in Division §
of the Food and Drug Regulations. .

“e ethics approval for this study shall remain valid until the expiry date noted above assuming timely and acceptable responses to the
:SREB's periodic requests for surveillance and monitoring information. If you require an updated approval notice prior to that time
you must request it using the UWO Updated Approval Request Form.

During the course of the research, no deviations from, or changes to, the protocol or consent form may be initiated without prior
written approval from the HSREB except when necessary to eliminate immediate hazards to the subject or when the change(s) involve
only logistical or administrative aspects of the study (e.g. change of monitor, telephone number). Expedited review of minor
change(s) in ongoing studies will be considered. Subjects must receive a copy of the signed information/consent documentation.

Investigators must promptly also report to the HSREB:

a) changes increasing the risk to the participant(s) and/or affecting significantly the conduct of the study;

b) all adverse and unexpected experiences or events that are both serious and unexpected;

¢) new information that may adversely affect the safety of the subjects or the conduct of the study.
If these changes/adverse events require a change to the information/consent documentation, and/or recruitment advertisement, the
newly revised information/consent documentation, and/or advertisement, must be submitted to this office for approval.

Members of the HSREB who are named as investigators in research studies, or declare a conflict of interest, do not participate in
discussion related to, nor vote on, such studies when they are presented to the HSREB.

Ethics Officer to Contact for Further Information

.JJanice Sutherland BElizabeth Wambolt O Grace Kelly O Denise Grafton
This is an official document. Please retain the original in your files. cc: ORE File
UWO HSREB Ethics Approval - Revision
V.2008-07-01 {rptApprovaiNotice HSREB_REV) 15018 Page 10of 1

129




Appendix B: Copyright Release

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

May 17, 2013

This is a License Agreement between Andrew T Curtis ("You") and John Wiley and Sons
("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license
consists of your order details, the terms and conditions provided by John Wiley and Sons, and
the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number

License date

Licensed content publisher
Licensed content publication
Licensed content title
Licensed copyright line

Licensed content author

Licensed content date
Start page

End page

Type of use

Requestor type

Format

Portion

Will you be translating?

Total

3151450592581

May 17,2013

John Wiley and Sons

Magnetic Resonance in Medicine
Slice-by-slice B1 shimmingat7 T
Copyright © 2011 Wiley Periodicals, Inc.

Andrew T. Curtis,Kyle M. Gilbert,L. Martyn Klassen,Joseph S. Gati,Ravi
S. Menon

Dec 27, 2011

1109

1116

Dissertation/Thesis
Author of this Wiley article
Print and electronic

Full article

No

0.00 USD

130



ELSEVIER LICENSE
TERMS AND CONDITIONS

Jun 10, 2014

This is a License Agreement between Andrew T Curtis ("You") and Elsevier ("Elsevier")
provided by Copyright Clearance Center ("CCC"). The license consists of your order details,
the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

Supplier

Registered Company Number

Customer name

Customer address

License number
License date

Licensed content publisher

Licensed content publication

Licensed content title

Licensed content author
Licensed content date

Licensed content volume
number

Licensed content issue
number

Number of pages
Start Page

End Page

Type of Use
Portion

Format

Are you the author of this
Elsevier article?

Will you be translating?

Elsevier Limited
The Boulevard,Langford Lane
Kidlington,Oxford,OX5 1GB,UK

1982084

Andrew T Curtis

Robarts Research Institute
London, ON N6A 5K8
3405430762811

Jun 10, 2014

Elsevier

NeuroImage

Highcor: A novel data-driven regressor identification method for BOLD
fMRI

A.T. Curtis,R.S. Menon
14 May 2014

None

None

1

0

0

reuse in a thesis/dissertation
full article

both print and electronic

Yes

No

131



ELSEVIER LICENSE
TERMS AND CONDITIONS

Jun 10, 2014

This is a License Agreement between Andrew T Curtis ("You") and Elsevier ("Elsevier")
provided by Copyright Clearance Center ("CCC"). The license consists of your order details,
the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

Supplier

Registered Company Number
Customer name

Customer address

License number

License date

Licensed content publisher
Licensed content publication
Licensed content title
Licensed content author
Licensed content date

Licensed content volume
number

Licensed content issue
number

Number of pages
Start Page

End Page

Type of Use

Intended publisher of new
work

Portion
Format

Are you the author of this
Elsevier article?

Elsevier Limited
The Boulevard,Langford Lane
Kidlington,Oxford,OX5 1GB,UK

1982084

Andrew T Curtis

Robarts Research Institute

London, ON N6A 5K8

3405430909468

Jun 10, 2014

Elsevier

NeuroImage

Phase Based Venous Suppression in Resting-State BOLD GE-fMRI
Andrew T. Curtis,R. Matthew Hutchison,Ravi S. Menon
5 June 2014

None

None

1
0
0
reuse in a thesis/dissertation

other

full article
both print and electronic

Yes

132



133

Curriculum Vitae - Andrew Curtis

Post-secondary McMaster University
Education and Hamilton, Ontario, Canada
Degrees: 2002-2007 B.Sc.

The University of Western Ontario
London, Ontario, Canada
2007-Current PhD Candidate

Honours and Ontario Graduate Scholarship, 2010-2011, 2011-2012
Awards:
Western Graduate Research Scholarship

ISMRM Student Stipend recipient 2012, 2013

Poster Prize, Imaging Network Ontario,
1st Place - 2012
3rd Place - 2013

Selected Related Publications:
Journal articles

Curtis AT, Hutchison RM, Menon RS (2014) Phase based venous suppression in resting
state BOLD GE-MRI. Neurolmage.

Curtis AT, Menon RS (2014) HighCor: A novel data driven regressor identification
method for BOLD fMRI . Neurolmage.

Curtis AT, Gilbert KM, Klassen LM, Gati JS, Menon RS. (2012) Slice-by-slice B1+
shimming at 7 T. Magn Reson Med 68 (4) 1109-1116

Gilbert KM, Belliveau JG, Curtis AT, Gati JS, Klassen LM, Menon RS. (2012) A
conformal transcieve array for 7 T neuroimaging. Magn Reson Med 67 (5) 1487-1496

Gilbert KM, Curtis AT, Gati JS, Klassen LM, Menon RS. (2010) A Radiofrequency Coil
to Facilitate B1 + Shimming and Parallel Imaging Acceleration in Three Dimensions at 7
Tesla. NMR in Biomedicine 24 (7), 815-823

Gilbert KM, Curtis AT, Gati JS, Klassen LM, Villemaire LE, Menon RS. (2010)
Transmit/receive radiofrequency coil with individually shielded elements. Magn Reson
Med 64 (6), 1640-1651



134

J. Near, C. Romagnoli, A. T. Curtis, L. M. Klassen, J. [zawa, J. Chin, R. Bartha (2009)
High-field MRSI of the Prostate using a Transmit/Receive Endorectal Coil and Gradient
Modulated Adiabatic Localization. Journal of Magnetic Resonance Imaging. 30:335-343.

Other refereed contributions (international conferences)

A.T. Curtis, R.M. Hutchison, R.S. Menon. (2013) Venous suppression in resting state
fMRI: Implications for correlation analysis. ISMRM 2013 Annual Meeting , # 2231.

A.T. Curtis, R.S. Menon. (2013) Automatic selection of artifact components via residual
kO phase ISMRM 2013 Annual Meeting , # 3349.

J. Penner, A.T. Curtis, L.M. Klassen, J.S. Gati, M.J. Borrie, R. Bartha. (2013) 7 Tesla In-
Vivo Short-Echo-Time Single-Voxel 1H SemiLASER Spectroscopy: A Test/Retest
Reproducibility Study. ISMRM 2013 Annual Meeting, # 3987 .

A.T. Curtis, K.M. Gilbert, J.S. Gati, L.M. Klassen, R.S. Menon (2011) Multi-Slice B1+
Shimming for 7T MRI. (Finalist) ISMRM 2011 Annual Meeting # 4430.

J. Penner, A. Lim, A. Curtis, M. Klassen, J. Gati, M. Smith, M.J. Borrie, R. Bartha.
(2011) In-vivo Short-Echo-Time Single-Voxel Proton LASER Spectroscopy at 7 Tesla
Incorporating Macromolecule Subtraction. ISMRM Annual Meeting, #3436.

A.T. Curtis, L.E. Villemaire, K.M. Gilbert, J.S. Gati, L.M. Klassen, R.S. Menon (2010) A
Head Mimicking Phantom for 7T, Matched for Tissue Parameters, B1 + Behavior, and
Coil Loading Effects. Intl. Soc. Mag. Reson. Med. (ISMRM) Annual Meeting, #2318.
(International, Poster, PhD work).

J. Penner, A. Curtis, M. Klassen, J. Gati, M. Smith, M.J. Borrie, R. Bartha (2010)
Metabolite Nulling to Measure the Macromolecule Baseline for Quantitative H
Magnetic Resonance Spectroscopy at 7 Tesla. ISMRM Annual Meeting, #2207.

A.T. Curtis, K.M. Gilbert, J.S. Gati, L. M. Klassen, R.S. Menon (2009) 12 Channel
Transceive Array for B1+ shimming and receive acceleration at 7T. ISMRM Parallel
MRI workshop.

A.T. Curtis, R.S. Menon (2009) Calibration of Transceive-array RF power using
Lanthanide Shift Agents. ISMRM Annual Meeting, #4216.

A.T. Curtis, C. Jones, L.M. Klassen, C.K. Anand, R.S. Menon (2009) Numerical
Optimization of Minimum Phase RF Pulses for UTE Imaging. ISMRM Annual Meeting,
#6453.



	Advances in image acquisition and filtering for MRI neuroimaging at 7 tesla
	Recommended Citation

	Advances in image acquisition and filtering for MRI neuroimaging at 7 tesla

