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imaging oximetry with uncertainty quantification
Rongrong Liu1, Shiyi Cheng2, Lei Tian 2 and Ji Yi2,3,4

Abstract
Measurement of blood oxygen saturation (sO2) by optical imaging oximetry provides invaluable insight into local
tissue functions and metabolism. Despite different embodiments and modalities, all label-free optical-imaging
oximetry techniques utilize the same principle of sO2-dependent spectral contrast from haemoglobin. Traditional
approaches for quantifying sO2 often rely on analytical models that are fitted by the spectral measurements. These
approaches in practice suffer from uncertainties due to biological variability, tissue geometry, light scattering, systemic
spectral bias, and variations in the experimental conditions. Here, we propose a new data-driven approach, termed
deep spectral learning (DSL), to achieve oximetry that is highly robust to experimental variations and, more
importantly, able to provide uncertainty quantification for each sO2 prediction. To demonstrate the robustness and
generalizability of DSL, we analyse data from two visible light optical coherence tomography (vis-OCT) setups across
two separate in vivo experiments on rat retinas. Predictions made by DSL are highly adaptive to experimental
variabilities as well as the depth-dependent backscattering spectra. Two neural-network-based models are tested and
compared with the traditional least-squares fitting (LSF) method. The DSL-predicted sO2 shows significantly lower
mean-square errors than those of the LSF. For the first time, we have demonstrated en face maps of retinal oximetry
along with a pixel-wise confidence assessment. Our DSL overcomes several limitations of traditional approaches and
provides a more flexible, robust, and reliable deep learning approach for in vivo non-invasive label-free optical
oximetry.

Introduction
Microvascular systems deliver oxygen to support cel-

lular metabolism and maintain biological functions.
Within the local microenvironment of blood vessels,
oxygen unloads from haemoglobin and diffuses freely
from red blood cells (RBCs) to tissues following the gra-
dient of oxygen partial pressure (pO2), which determines
the oxygen saturation (sO2) of haemoglobin. The mea-
surement of microvascular sO2 can thus help in assessing
the local tissue oxygenation and provide invaluable insight
into local tissue metabolism, inflammation, and oxygen-
related pathologies. It can also offer diagnosis and

prognosis for several major diseases, such as cancers,
diabetic milieu and complications, cardiovascular dis-
eases, dementia, etc 1–5.
In recent years, several non-invasive and label-free

optical-imaging oximetry techniques have been developed
to measure microvascular sO2. Despite their differences,
the fundamental mechanism is the same, being based on
the sO2-dependent spectral contrast from haemoglobin6.
The spectral measurement is then related to sO2 through
a complex physical model incorporating tissue geometry,
heterogeneous tissue scattering, light attenuation and
propagation, and imaging optical instruments. This model
is often simplified and analytically formulated under dif-
ferent approximations and assumptions. Examples
include spatial frequency domain imaging7,8 in the diffu-
sive regime under the P3 approximation, multi-
wavelength imaging9–12 and visible light optical coher-
ence tomography (vis-OCT)13–15 in the ballistic regime
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based on Beer’s law combined with the first Born
approximation16–25, photoacoustic microscopy/tomo-
graphy assuming a uniform laser fluence inside the tis-
sue26,27, and photothermal imaging assuming a linear
relation between the blood absorption and the change in
the optical signal28–31. The sO2 estimation thus requires
solving an ill-posed inverse problem that is inevitably
subject to model inaccuracies, noise, systemic spectral
bias, and experimental conditions. One widely used
inversion method is the spectral least-squares fitting
(LSF), which estimates the sO2 by matching the spectral
data with the analytical model, as shown in Fig. 1a.
However, multiple sources of spectral errors exist in
practice that are impossible to fully parameterize in an
analytical form, which in turn compromises the sO2

estimation accuracy, repeatability, and cross-comparison
between different devices, test subjects, and time. There-
fore, it is imperative to develop a more robust model to
enable more accurate quantification of microvascular sO2

for label-free optical-imaging oximetry.
In this work, we develop a new data-driven deep spec-

tral learning (DSL) method to enable highly robust and
reliable sO2 estimation, as shown in Fig. 1b. By training a
neural network to directly relate the spectral measure-
ments to the corresponding independent sO2 labels, DSL
bypasses the need for a rigid parametric model, similar to
existing deep-learning methods for solving optical inverse
problems32–36. We show that DSL can be trained to be

highly robust to multiple sources of variabilities in the
experiments, including different setups, imaging proto-
cols, speeds, and other possible longitudinal variations.
An essential feature of our DSL method is uncertainty

quantification. Due to biological variations and tissue
heterogeneity, an assessment of the reliability of each sO2

measurement is crucial in clinical applications and for
guarding against vulnerabilities in making overly confident
predictions when imaging rare cases37. Existing model-
based methods generate a single value of sO2 for each
spectral measurement, i.e., a point estimate. The accuracy
and uncertainty of the point estimate can be assessed only
by taking repeated measurements against the ground
truth in a well-controlled experiment. This uncertainty
estimation presents a clear limitation for many biomedical
applications in which the ground truth is often inacces-
sible in vivo, and the statistical analysis can be performed
only retrospectively on those repeated measure-
ments13,15,18,31,38. Instead of assessing the variabilities in
the data retrospectively, we develop our DSL model based
on an uncertainty learning framework36 to encapsulate
the statistics in the learned model, essentially shifting the
burden of repeated measurements in the model-based
methods to the training phase of DSL. After the training,
the DSL model predicts both sO2 and its tandem standard
deviation, assessing the uncertainty for each sO2 predic-
tion (i.e., a statistical distribution describing all possible
sO2 levels of each prediction given the measurements).
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Fig. 1 Methods for calculating retinal blood vessel sO2 by a the traditional LSF and b our neural-network-based DSL with uncertainty quantification.
Traditional LSF optimizes a rigid parametric model to best fit the spectral measurements for sO2. DSL bypasses any rigid models and trains neural
networks with paired arterial spectra and oximeter spO2 readings as the ground truth. After training, the neural network models predict both sO2 and
its uncertainty.
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Most importantly, we show that the DSL-predicted statis-
tics closely match those obtained from ensemble calcula-
tions. This means that the confidence level calculated from
the DSL prediction can be used as a surrogate estimate to
the true accuracy of the estimate, making DSL reliable.
We demonstrate DSL using two sets of vis-OCT

experiments for oximetry on rat retinas from refs. 13,15.
Vis-OCT in rodent and human retinas has been exten-
sively demonstrated in recent years19,39–42, and several
studies have shown significant clinical potential in the
diagnosis and prognosis of several major retinal diseases
using oximetry43–47. Two DSL models are investigated,
including a 1D fully connected neural network (FNN) and
a 1D convolutional neural network (CNN), the network
architectures of which are shown in Fig. 2a, b, respec-
tively. Our results show that both DSL models sig-
nificantly outperform the LSF, in terms of both the
estimation accuracy and the robustness to experimental
variations. We further conduct a quantitative statistical
analysis based on uncertainty learning to establish the
confidence level of the two proposed models and further
justify the reliability of DSL. Finally, imaging oximetry is
demonstrated on en face sO2 maps of rat retinas along
with the corresponding uncertainty maps, providing a
visualization of the DSL predictions. This process allows
us to assess the accuracy of the prediction based on the
underlying physiological conditions.

Results
Data source
To evaluate the effectiveness of the DSL approach, we

compiled two datasets from the previous literature on vis-

OCT retinal oximetry13,15. Specifically, the data in Fig. 3a
are from ref. 13, and that in Fig. 3b, from ref. 15. Both
datasets used similar experimental protocols in which the
oxygen content in the ventilation gas was adjusted to
induce systemic hypoxia or hyperoxia, and vis-OCT
measurements were taken under each ventilation condi-
tion. In ref. 13, four rats were measured under six venti-
lation conditions, from normoxia (21% O2, 79% N2), to
five hypoxia challenges, in which the oxygen content was
reduced step-wise: step 1 (19% O2, 81% N2), step 2 (17%
O2, 83% N2), step 3 (15% O2, 85% N2), step 4 (13% O2,
87% N2), and step 5 (9% O2, 91% N2). In ref. 15, eight rats
were measured under five ventilation conditions,
sequencing from normoxia, hyperoxia (100% O2), 5%
carbon dioxide (21% O2, 74% N2, 5% CO2), hypoxia (10%
O2, 90% N2), and finally to normoxia. Under each venti-
lation condition, the systemic arterial spO2 reading was
taken by a pulse oximeter attached to a rear leg of each
rat. All the vis-OCT and pulse oximetry measurements
were taken approximately one minute after the ventilation
transition, when the spO2 readings were stable. The spO2

readings are used as the ground truth label for the major
retinal arterioles for neural network training. Depth-
dependent backscattering spectra of rat retinal arterioles
in vis-OCT were extracted under each ventilation con-
dition as spectral input to the neural network. The
extracted arteriole spectra with the spO2 labels were then
split into training and testing sets. In ref. 13, data from
three rats were used as the training sets, with the
remaining one as the testing set. In ref. 15, data from seven
rats were used as the training sets, and the remaining one
was the testing set. We mixed the training data from both
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Fig. 2 Structures of the FNN model a and the CNN model b for sO2 prediction, with uncertainty quantified by the predicted standard deviation σ.
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studies to train the DSL models and make predictions on
the testing data from both studies. All the training/testing
and the subsequent data analysis are identical for CNN
and FNN to compare our DSL approach with the standard
LSF. Figure 3a, b summarize the number of spectra
extracted and the corresponding spO2 labels in descend-
ing order, respectively. Figure 3c shows the histogram of
all the training and testing spectra with their corre-
sponding spO2 labels.

Prediction of arterial sO2

Once the networks are trained, the sO2 predictions from
the testing set obtained by a FNN and CNN are plotted in
Fig. 4a, b, respectively, along with the ground truth oximeter
spO2 readings and the LSF estimates for comparison. Our

DSL models were trained by a combination of both datasets
from refs. 13,15. We optimized the LSF model parameters on
the same data pool to ensure a fair comparison between the
two methods. The detailed descriptions of the LSF model
and parameter optimization are provided in the “Materials
and methods” section. The first 248 testing spectra are from
ref. 13, and the remaining 254 are from ref. 15. In general, the
sO2 estimations made using both DSL models (FNN and
CNN) and LSF agree with the spO2 readings. A closer look
reveals that DSL predictions have lower variations than that
of LSF, which we attribute to the DSL’s improved robust-
ness to noise and other random signal fluctuations. The
absolute errors between the sO2 predictions and the cor-
responding spO2 are plotted in Fig. 4c, d, respectively.
Errors from both DSL models are significantly lower than
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that of the LSF model. To quantitatively compare the three
different models, we calculate the mean square errors
(MSEs) of the FNN and CNN models to be 0.3539 × 10−2

and 0.3200 × 10−2, respectively, both of which are <1/3 the
MSE from LSF (1.358 × 10−2). An important feature of our
DSL models is its ability to quantify uncertainty via the
tandem standard deviation (σ) for each sO2 prediction (Fig.
4e, f). Overall, both FNN and CNN predict σ to be ~5–7%,
and the variation in σ justifies the use of a heterogeneous
model in our customized loss function. We also see that the
prediction for ref. 15 has slightly lower variation in σ than
that in ref. 13, presumably due to higher animal numbers
and larger training datasets (Fig. 3). Out of the 2779 training
spectra, 1930 are from ref. 15.
To demonstrate the generality of our DSL approach, we

trained DSL and optimized LSF for each of the two
datasets separately and repeated the above comparisons.
The accuracies of the two DSL models are consistently
better than that of LSF (Figs. S1 and S2) by approximately
three times (Table S1). Even when we used data from one
reference for training/optimization and tested models on
the data from the other reference, DSL still outperformed
LSF by more than four times (Fig. S3, Table S1). Inter-
estingly, the uncertainty estimated by DSL increases sig-
nificantly to ~10% when the networks are tested on a
completely new data source (Fig. S3), truthfully reflecting
the lower confidence levels of the two networks in this
situation.

Evaluation of the quantified uncertainty
Our uncertainty quantification assumes that the pre-

dicted sO2 follows a heterogeneous Gaussian distribution
given different spectral inputs. To validate our uncertainty
metrics, we retrospectively calculated the actual prob-
ability that the ground truth (spO2) falls within a certain
confidence interval of the predicted sO2 and summarize
the results using the reliability diagram33,36,48. To con-
struct a reliability diagram, we gather a sub-set of pre-
dictions with a specific standard deviation σ0. We then
calculate the probability from this sub-set of data that
satisfy the criterion of |[sO2]i – [spO2]i| < ησ0, where
[sO2]i and [spO2]i are the prediction and the corre-
sponding ground truth from the ith vis-OCT spectrum,
respectively:

P σ0; ηð Þ ¼ 1
Sσ0j j

X
i2Sσ0

I sO2½ �i� spO2½ �ij j<ησ0f g ð1Þ

where η is a variable that defines the confidence interval
and S denotes the sub-set of the prediction with the
specified standard deviation. In practice, we relaxed σ0 to
σ0 ±1% to include sufficient data to ensure reliable
statistical calculations. Intuitively, the probability will
approach 1 when η increases, i.e., a larger error tolerance.

At the same time, η has a one-to-one correspondence to
the theoretical confidence value calculated from the
normal distribution. The reliability diagram essentially
plots the actual probability against η or the theoretical
confidence. For an ideal well-calibrated model, the actual
probability P(σ0, η) should equal the theoretical con-
fidence—falling on the diagonal line in the graph. When
the actual probability P(σ0, η) is lower than the theoretical
confidence, it indicates that the model is over-confident—
the reliability curve is under the diagonal line. When the
actual probability P(σ0, η) is higher than the theoretical
confidence, it indicates that the model is conservative—
the reliability curve is above the diagonal line.
The reliability diagrams for both models are shown in

Fig. 5. To cover over 90% of the total 502 predictions of
the testing data in the reliability diagram, we set σ0= 5%
and 7% for the FNN model and σ0= 5%, 7% and 9% for
the CNN model. For both models, the sO2 predictions
with uncertainty falling within the 7 ± 1% range and
higher are slightly conservative, with P(σ0, η) higher than
the predicted confidence; for the FNN model, the sO2

predictions with uncertainty σ0= 5% are slightly over-
confident since P(σ0, η) is lower than the confidence (Fig.
5a); while for the CNN model, the results falling within
5 ± 1% are quite close to the diagonal line (Fig. 5b),
indicating a well-calibrated DSL model in this regime. In
ref. 13, the accuracy for sO2 calculated by LSF was esti-
mated to be within ±4% relative error in a well-controlled
in vitro blood calibration experiment, using blood analy-
ser readings as the ground truth. The uncertainty pre-
dicted here (~5% sO2) by DSL agrees reasonably well with
the in vitro calibration result.
Figure S4 illustrates the sub-sets of data when σ0= 5%,

7% and 9% for both models. Table 1 provides a summary
of the fitting parameters, slope, and constant and how
many of the total 502 testing data points were counted for
by the statistical analysis within each uncertainty range.

En face sO2 maps with uncertainty quantification
After model testing and uncertainty analysis, we used

the testing data from ref. 15 and applied the FNN and
CNN models for retinal-imaging oximetry in comparison
to LSF (Fig. 6) under three different ventilation condi-
tions. The oximetry obtained by both the FNN and CNN
clearly reflects the sO2 changes of all vessels from hypoxia,
normoxia, to hyperoxia, with the predicted sO2 of arter-
ioles matching the oximeter spO2 readings well. The sO2

contrast between arteries and veins is also clearly visua-
lized in hypoxia and normoxia. In comparison, the sO2

predicted by the LSF has less arteriovenous contrast, and
the sO2 changes with increasing ventilation oxygen level
are not as significant as those identified by DSL. The
estimated arterial sO2 by LSF at normoxia and hyperoxia
are much lower than the ground truth spO2 readings.
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There are also higher variances in the sO2 results within
each individual blood vessel obtained by LSF than by DSL,
particularly in Fig. 6g, i. These results clearly indicate the
superior robustness and resilience of DSL to variations in
experimental conditions and within vessels. Importantly,
our DSL models enable direct visualization of the “en
face” uncertainty maps of the sO2 predictions in Fig. 7.
The FNN and CNN have similar uncertainty estimations
on the sO2 predictions (Fig. 7a–f), consistent with the
previous characterization of σ at ~5–7% (Fig. 4). Under
hypoxia, the sO2 estimation appears to be inconsistent at
the periphery, as indicated by the black arrows in Fig. 6a,
d. We attribute this to the extremely poor signal levels at
those regions where severe vignetting was present in the
raw data (Fig. S5).

Cross validations of the DSL models
To cross validate our DSL models, we split the training

and testing datasets differently and repeated all the analyses
for two additional cases. Specifically, Rat 3 in Fig. 3a and Rat
1 in Fig. 3b serve as the testing data in the first case, and Rat

1 in Fig. 3a and Rat 5 in Fig. 3b, in the second case.
Together with the original testing case (Fig. 4), the MSEs of
all the sO2 predictions are summarized in Table S2. In all
scenarios, the MSEs from DSL are significantly lower than
those from LSF by at least 50%. We also repeated the
arterial sO2 testing against the ground truth (Fig. S6–S1)
and generated the sO2 and uncertainty maps (Fig. 8S–11S)
in both cross-validation cases. All the DSL sO2 maps clearly
show the arteriovenous contrasts and the rising sO2 from
hypoxia to hyperoxia. All the uncertainty maps also display
similar levels of overall confidence.

Discussion
In this paper, we present a new framework for optical-

imaging oximetry based on DSL. The DSL method offers
several unique advantages compared to the existing LSF
method. First, it bypasses the need for any rigid analytical
models and is highly flexible and resilient to experimental
variations. We tested DSL on two datasets from two sepa-
rate vis-OCT experiments and showed that DSL main-
tained consistent agreement with the ground truth spO2

despite the many differences between these two experi-
ments. In contrast, an optimized LSF with the identical
parametric settings generated significantly worse accuracy.
Second, without the restriction of any rigid models, DSL
allows more flexible and efficient use of the data. Here, we
demonstrate the effectiveness of using the spectra from
both the middle and bottom of the vessels, since both carry
sO2-dependent spectral contrast. Most importantly, DSL
not only provides the point estimate of sO2 but also
quantifies the tandem uncertainty of the prediction.
Quantifying the statistical uncertainty for each measure-
ment is not possible using the traditional LSF approach;
however, it is valuable in assessing the fidelity of each
measurement, particularly in clinical applications. We

Table 1 Parameters of the linear fit of P σ0; ηð Þ to
theoretical confidence for sO2 predictions with different
uncertainties (σ) by the FNN and CNN models

Models and uncertainties Slope Constant Datasets

The FNN model (σ:5% ± 1%) 0.9843 −0.04286 232

The FNN model (σ:7% ± 1%) 1.0551 0.01411 230

The CNN model (σ:5% ± 1%) 0.9726 0.003070 185

The CNN model (σ:7% ± 1%) 0.9955 0.06697 236

The CNN model (σ:9% ± 1%) 0.9884 0.09652 75

Slope = 1

σ0 = 9% fit
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Fig. 5 Statistical analysis of the sO2 predictions with the quantified uncertainty. a The linear fits of P(σ0, η) to η and the confidence for the FNN
model when the uncertainty measured by the standard deviation (σ0) is 5% and 7%. b The same graph for the CNN model when the standard
deviation (σ0) is 5%, 7%, and 9%.
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validate the uncertainty quantification by using the relia-
bility diagram, and for the first time to our knowledge, we
constructed an uncertainty map of in vivo imaging oximetry
showing the estimation confidence by DSL. More generally,
our DSL framework presents an attractive data-driven
approach for other inverse scattering spectral analyses
beyond oximetry.
There are still possible venues to improve the sO2 and

uncertainty map predictions. The overall design of our
current approach aims to establish a data-driven regres-
sion model directly from spectra to spO2 without con-
sidering the spatial information present in the raw OCT
data. The benefit of this approach is that a conceptually
simple 1D neural network can be trained and tested from
randomly shuffled spectral OCT data, in which each
spectrum is independent. On the other hand, when we
reconstruct the en face maps, the quality of the maps is

also subject to spatially dependent data abnormalities,
such as low signal contrast, as shown in Fig. 6 in the
periphery region. This is a limitation of our current DSL
model that may be addressed by a complex 2D/3D spatio-
spectral model that incorporates both oxygen maps as the
ground truth49 and additional spatial information in our
future work. Despite this, our DSL prediction performs
well and faithfully follows the physiological rules descri-
bed in the section on en face sO2 maps. In many cases
with sufficient signal contrast, uncertainty prediction does
provide reasonable confidence assessments, as shown in a
few zoomed-in regions in Fig. 8. The full en face maps are
provided in Figs. S8–S11. In all these cases, it is shown
that the uncertainty levels are higher (i.e., less confidence)
in the regions where the sO2 predictions suffer from
inconsistency within the vessel, which justifies the utility
of the en face uncertainty maps.
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Fig. 6 The en face sO2 maps of the testing data for rat retinal oximetry obtained by the FNN a–c, CNN d–f and LSF g–i at hypoxia in a, d and g,
normoxia in b, e and h, and hyperoxia in c, f and i. The oximeter spO2 readings at hypoxia, normoxia, and hyperoxia are 70%, 80%, and 98%,
respectively. Black arrows in a and d point to a region with inconsistent sO2 predictions in the same vessel. Scale bar: 500 μm.
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The rationale of using pulse oximetry as the arterial sO2

ground truth is for the ease of clinical translation, since
pulse oximetry is a standard-of-care method in clinics.
Thus, we expect the same framework to be duplicated in
clinical studies. Due to the cardiac cycle, arterial blood has
a pulsatile flow pattern, by which pulse oximetry provides
consistent and accurate arterial spO2, regardless of the
measurement sites (e.g., at the ear lobe, fingers, foot (in
the case of an infant), or skin with the reflectance
mode)50–52. Therefore, it is convenient and accurate to
use spO2 as a ground truth for sO2 in retinal arteries. For
veins, although we do not have the ground truth, our
methodology is expected to be valid because the spec-
troscopic properties of the blood are independent of the
arteries or veins but are oxygenation-dependent. The
experiments in both datasets changed the oxygen content
in the ventilation air, a common approach in physiological
studies, to globally modulate the systemic blood oxyge-
nation. By doing so, the network attempts to establish the
mapping between the spectral features from the arterial
blood and the spO2. As long as the venous sO2 falls within
the ranges of the training dataset, the networks are
expected to produce reliable prediction since the network
is fed with the spectral data without prior knowledge of
their arterial or venous origins.
We envision that the method presented here can gen-

erate immediate impacts in ophthalmology, as shown in
recent preclinical studies on diabetic retinopathy, glau-
coma, and retinal vessel occlusion43–47. In particular,
since the spectroscopic features of haemoglobin are uni-
versal in rodents and humans, we expect the framework
developed in this work to be rapidly adapted to human
vis-OCT data. Beyond the vis-OCT and retina, we believe
the DSL-enhanced optical oximetry may find broad
applications on other tissue sites, as long as there are
sufficient vascular signal contrast and accessible training
datasets. More generally, our DSL framework presents an
attractive data-driven approach for other inverse scatter-
ing spectral analyses beyond oximetry.

Materials and methods
Vis-OCT experiments
The vis-OCT systems in refs. 13,15 had the same spectral

range (from 520 to 630 nm), with the same lateral and axial
resolutions, estimated to be 15 and 1.7 μm, respectively.
The scanning protocol in ref. 13 used a raster scan over a 20°
square retinal area covering a field of view (FOV) of
2.51mm× 2.51mm, with 256 × 256 pixels in each direction
at a 25 kHz A-line rate. The exposure time for the spec-
trometer camera was 37 µs. The entire vis-OCT image stack
took 3.3 s to acquire. The scanning protocol in ref. 15 was
for optical coherence tomography angiography, scanning a
40° square retinal area covering an FOV of 4.37mm×
4.37mm, with 400 pixels in the A-line direction and 512

pixels in the B-scan direction at a 50 kHz A-line rate. The
exposure time for the spectrometer camera was 17 µs. For
the sake of vis-OCT angiography, there were repetitive (5×)
unidirectional B-scans of the same cross section, giving a
total of 5 × 512 B-scans for each acquisition. The entire vis-
OCT image stack took 25.6 s to acquire.

Spectral extraction and data preprocessing
Wavelength-dependent vis-OCT images were first gen-

erated by a short-time Fourier transform (STFT) with 14
equally spaced Gaussian spectral windows in the k-space.
The wavelength spans from 523.4 to 604.5 nm. The size
(FWHM) of the Gaussian window in the k-space is
0.32 μm−1, corresponding to a bandwidth of ~17 nm at
585 nm. After STFT, a spectrum can be obtained at each 3D
vis-OCT voxel. Next, we performed segmentation to isolate
the spectra within retinal arterioles17,18. Retinal blood ves-
sels are first segmented from the en face projection of the
3D vis-OCT image by a threshold-based algorithm18; next,
all A-lines within the segmented retinal arterioles are shif-
ted in the axial direction in reference to the retinal surface
and randomly shuffled. Here, we applied the rolling average,
which analyses data by creating a series of averages of dif-
ferent subsets, on the shuffled A-lines before extracting the
input spectra for the DSL models. Specifically, a rolling
average of 100 shuffled A-lines in ref. 13 and 250 shuffled A-
lines in ref. 15 was performed with 50 and 125 rolling step
sizes, respectively. Because the major vessels are located on
top of the retina, the signal within the vessels can be
averaged in reference to the retinal surface to generate one
spectrum. We located the bottom vessel wall13,25 and
averaged signals within ±16.6 μm to generate the vessel
bottom spectrum. We then averaged the signal from ~25 ±
8.31 and 41.6 ± 8.31 μm above the bottom vessel wall to
generate the vessel centre and top spectra, respectively. For
DSL, the two spectra from the vessel bottom and centre
were concatenated as a single spectrum signal. Finally, each
individual spectrum input was normalized by the mean of
the combined signal from all three spectra (vessel bottom,
center, and top) to ensure similar scaling of all datasets
before neural network training.

Principle of least-squares fitting
Vis-OCT uses ballistic photon and coherence gating to

localize the optical signal within a tissue volume. At the
bottom of the vessel wall, light double-passing through the
vessel lumen gives rise to the detectable spectral contrast,
which can be analytically formulated based on Beer’s law13

I sO2jλ; zð Þ ¼ I0 λð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0r λð Þ

p
e� sO2 ´ μHbO2

λð Þþ 1�sO2ð Þ ´ μHb λð Þ½ �z
ð2Þ

where I0(λ) is the spectrum of the light source; R0 is the
reflectance of the reference arm and assumed to be a
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constant; and r(λ) (dimensionless) is the reflectance at the
vessel wall, the scattering spectrum of which can be
modelled by a power law under the first Born approxima-
tion r(λ)=Aλ−α, with A being a dimensionless constant
and α modelling the decaying scattering spectrum from
the vessel wall. The optical attenuation coefficient μ
(mm−1) combines the absorption (μa) and scattering
coefficients (μs) of the whole blood, which are both
wavelength- and sO2-dependent:

μ ¼ μa þWμs ð3Þ

where W is a scaling factor for the scattering coefficient in
a range from 0 to 16,17,53. The subscripts Hb and HbO2

denote the contribution from the deoxygenated and
oxygenated blood, respectively. z denotes the light-
penetration depth.
To estimate sO2, the traditional approach applies the

least-squares procedure that fits the vis-OCT spectral
measurement to the analytical model by minimizing the
total squares of the error, as illustrated in Fig. 1a:

min
sO2;A;α

X
λ

log Im λð Þ½ � � log I sO2;A; αjλ; z ¼ Dð Þ½ �k k2

ð4Þ

where Im is typically taken as the vis-OCT spectral
measurements extracted from the bottom of the vessel to
maximize the spectroscopic contrast. The LSF model
parameters can be optimized by adjusting the scaling
factor W and the spectral wavelength range. We ensured
that the whole spectral range covers ~550–585 nm to
include the most dominant spectral contrast between
oxygenated and deoxygenated blood. The optimization
minimized the MSE between the predicted sO2 and the
ground truth spO2. Figure S12 shows the MSE with
varying W and fitting spectral range for the combined
data from refs. 13,15 and for data from each reference
separately. Since the DSL models are trained by a mixture
of both data sources, to ensure a fair comparison, we used
the optimized LSF model for the combined datasets,
where W= 0.12 and the fitting spectral range is
548–586 nm, respectively (Fig. S12a).
In this analytical model, two free parameters (A, α), in

addition to the unknown sO2 level, are introduced to
more accurately capture realistic biophysical interactions.
However, in practice, these two parameters cannot fully
capture all the experimental variabilities. While other
models may reduce the free parameters to avoid over-
fitting14,15,19,20,24,54, this approach in general is none-
theless rigid and over-simplified with respect to the actual
experiments.

Principle of deep spectral learning
In DSL, instead of using a rigid analytical model, we

train a neural network to link the spectral measurements
and the independently measured sO2 labels, as illustrated
in Fig. 1b. By doing so, DSL bypasses the need for the
parametric tuning and model simplification and approx-
imation needed in fitting the analytical models. Further-
more, by removing the restrictions imposed by the
analytical model, DSL allows utilizing multiple sets of
spectral measurements taken at different depths and
enables a more holistic spectral-sO2 analysis. Specifically,
we demonstrate high-quality predictions using con-
catenated spectra data from both the bottom and the
center of the vessels in vis-OCT. Because the pulse oxi-
meter measures the systemic arterial sO2, the same as
with the retinal arterioles, we use the retinal arterial
spectra as the training input paired with the indepen-
dently measured pulse oximeter sO2 (spO2) as the ground
truth label. After training, the network makes predictions
for both arterials and veins.
In addition to sO2 prediction, a major important fea-

ture of our data-driven DSL method is to quantify the
uncertainty for each prediction. To do so, we specifically
design the loss function for training the network to
properly capture the underlying statistics of the data.
The commonly used loss function, that is, the mean
squared error (MSE), assumes a homogeneous Gaussian
distribution of the errors in the predictions. This
assumption severely limits its ability to adapt different
types of spectral data variations (e.g., spectral signal
outliers, non-uniform noise, and unevenly sampled data)
that are inevitably inhomogeneous. To account for this,
we design a customized loss function derived from a
heterogeneous Gaussian distribution model. Using the
training data set (Ii, [spO2]i), i= 1, 2, …, N, where Ii and
[spO2]i are the ith vis-OCT spectral measurement and
the ground truth pulse oximeter spO2, respectively, our
loss function LG(w) is

LG wð Þ ¼
XN
i¼1

sO2½ �i wð Þ � spO2½ �i
� �2

σ2
i wð Þ þ log σ2

i wð Þ� �( )

ð5Þ
where [sO2]i and σi denote the neural network predicted
mean and standard deviation, respectively, of the under-
lying Gaussian distribution for the ith training data pair; w
is the learned neural network weights. The main idea of
this loss function assumes that the prediction made on
each spectrum follows a distinct Gaussian distribution, and
the network is trained to predict the underlying mean and
standard deviation55. Accordingly, the standard deviation σ
quantifies the uncertainty for each sO2 prediction.
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We investigate two neural network models, including an
FNN and a CNN model, the network architectures of
which are shown in Fig. 2a, b, respectively. The detailed
descriptions of the network architectures are included in
the following section.

Network architectures and training
The first FNN model, as illustrated in Fig. 2a, con-

catenates two spectra from both the bottom and centre
of the vessels with a size of 1 × 28 as the input. The
output predicts both the mean sO2 level and the
uncertainty (measured by the standard deviation) in
two output channels, both of which are single values in
units of volume percentage of the blood being oxyge-
nated. The model has two hidden layers, each having 24
units. We use the ReLU-activation function in the two
inner layers and the sigmoid activation function in the
final layer to normalize the predictions between 0%
and 100%.
The second CNN model, as illustrated in Fig. 2b, takes

the same input as the FNN model and predicts the sO2

with uncertainty. The model has two convolutional layers,
with each having a filter size of 3 and a filter number of 30,
and one flatten layer. We use the ReLU-activation func-
tion in the two convolutional layers and the sigmoid
activation function in the final layer.
All data processing and network training are imple-

mented in Python using the TensorFlow/Keras library.
Both models were trained with an initial learning rate of
2.5 × 10−3, and we gradually decreased the rate by 1/
(1+ αN), where N is the epoch number and α is a decay
rate set to 0.01. The same total epoch number of 2000
with the same batch size of 50 ensured that the learning
curve could reach a plateau. We set the validation split
ratio as 0.2 and selected the model with the minimum
validation loss as the optimal one for following sO2

prediction.

Loss function for uncertainty quantification
In the proposed DSL model, denoted by its network

weights w, the network makes estimation on both the
mean and the standard deviation of sO2 given the input
spectral measurement. Assuming that the sO2 of all ret-
inal arterioles of a rat at each particular oxygenation
status satisfy different Gaussian probability distributions,

pw sO2jIið Þ ¼ N sO2; σ
2

� � ð6Þ

where the mean and the standard deviation of the
Gaussian distribution are denoted as sO2 and σ,
respectively, and N denotes the normal distribution. The
neural network learns a highly complex nonlinear
function. During the training, the network weights, w,
are estimated by maximizing the joint likelihood over N

training data pairs:

w ¼ arg max

w2 F

likelihood wð Þ

¼ arg max

w2 F

YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i wð Þp e
�

½sO2 �i wð Þ� spO2½ �ið Þ2
2σ2

i
wð Þ

ð7Þ

Equivalently, the customized Gaussian loss function LG
(w) is minimized when training the DSL models in Eq. (5).

Reconstruction of en face maps of sO2 and uncertainty (σ)
To reconstruct a 2D en face map for sO2 or uncertainty

(σ), we applied the same spatial signal averaging proce-
dure as described in “Spectral extraction and data pre-
processing” section, but this averaging was done pixel-
wisely within each blood vessel. We first segmented the en
face vessel area manually. For each pixel from the 2D en
face map within the segmented blood vessel, an arteriole
or a venule, its depth-dependent spectra were generated
by averaging spectral signals from its 100 (in the first
literature) or 250 (in the second literature) nearest
neighbours based on the Euclidian distance. Then, these
spectra would be input into the FNN or CNN model to
predict a sO2 with uncertainty for this pixel. Next, the
above two steps would be iterated pixel-wisely until all
pixels within this particular blood vessel had predicted
sO2 and uncertainty. Finally, the above three steps would
be iterated until all arterioles and venules of the rat retina
had predicted sO2 and uncertainty for displaying their 2D
en face maps. To generate Figs. 6 and 7, we applied an
algorithm based on the HSV (hue, saturation, and value)
colour model, where the predicted sO2 or uncertainty
corresponds to the image hue, and the angiography signal
intensity corresponds to the image value and saturation.
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