440 research outputs found

    Automatic analysis and classification of cardiac acoustic signals for long term monitoring

    Get PDF
    Objective: Cardiovascular diseases are the leading cause of death worldwide resulting in over 17.9 million deaths each year. Most of these diseases are preventable and treatable, but their progression and outcomes are significantly more positive with early-stage diagnosis and proper disease management. Among the approaches available to assist with the task of early-stage diagnosis and management of cardiac conditions, automatic analysis of auscultatory recordings is one of the most promising ones, since it could be particularly suitable for ambulatory/wearable monitoring. Thus, proper investigation of abnormalities present in cardiac acoustic signals can provide vital clinical information to assist long term monitoring. Cardiac acoustic signals, however, are very susceptible to noise and artifacts, and their characteristics vary largely with the recording conditions which makes the analysis challenging. Additionally, there are challenges in the steps used for automatic analysis and classification of cardiac acoustic signals. Broadly, these steps are the segmentation, feature extraction and subsequent classification of recorded signals using selected features. This thesis presents approaches using novel features with the aim to assist the automatic early-stage detection of cardiovascular diseases with improved performance, using cardiac acoustic signals collected in real-world conditions. Methods: Cardiac auscultatory recordings were studied to identify potential features to help in the classification of recordings from subjects with and without cardiac diseases. The diseases considered in this study for the identification of the symptoms and characteristics are the valvular heart diseases due to stenosis and regurgitation, atrial fibrillation, and splitting of fundamental heart sounds leading to additional lub/dub sounds in the systole or diastole interval of a cardiac cycle. The localisation of cardiac sounds of interest was performed using an adaptive wavelet-based filtering in combination with the Shannon energy envelope and prior information of fundamental heart sounds. This is a prerequisite step for the feature extraction and subsequent classification of recordings, leading to a more precise diagnosis. Localised segments of S1 and S2 sounds, and artifacts, were used to extract a set of perceptual and statistical features using wavelet transform, homomorphic filtering, Hilbert transform and mel-scale filtering, which were then fed to train an ensemble classifier to interpret S1 and S2 sounds. Once sound peaks of interest were identified, features extracted from these peaks, together with the features used for the identification of S1 and S2 sounds, were used to develop an algorithm to classify recorded signals. Overall, 99 features were extracted and statistically analysed using neighborhood component analysis (NCA) to identify the features which showed the greatest ability in classifying recordings. Selected features were then fed to train an ensemble classifier to classify abnormal recordings, and hyperparameters were optimized to evaluate the performance of the trained classifier. Thus, a machine learning-based approach for the automatic identification and classification of S1 and S2, and normal and abnormal recordings, in real-world noisy recordings using a novel feature set is presented. The validity of the proposed algorithm was tested using acoustic signals recorded in real-world, non-controlled environments at four auscultation sites (aortic valve, tricuspid valve, mitral valve, and pulmonary valve), from the subjects with and without cardiac diseases; together with recordings from the three large public databases. The performance metrics of the methodology in relation to classification accuracy (CA), sensitivity (SE), precision (P+), and F1 score, were evaluated. Results: This thesis proposes four different algorithms to automatically classify fundamental heart sounds – S1 and S2; normal fundamental sounds and abnormal additional lub/dub sounds recordings; normal and abnormal recordings; and recordings with heart valve disorders, namely the mitral stenosis (MS), mitral regurgitation (MR), mitral valve prolapse (MVP), aortic stenosis (AS) and murmurs, using cardiac acoustic signals. The results obtained from these algorithms were as follows: • The algorithm to classify S1 and S2 sounds achieved an average SE of 91.59% and 89.78%, and F1 score of 90.65% and 89.42%, in classifying S1 and S2, respectively. 87 features were extracted and statistically studied to identify the top 14 features which showed the best capabilities in classifying S1 and S2, and artifacts. The analysis showed that the most relevant features were those extracted using Maximum Overlap Discrete Wavelet Transform (MODWT) and Hilbert transform. • The algorithm to classify normal fundamental heart sounds and abnormal additional lub/dub sounds in the systole or diastole intervals of a cardiac cycle, achieved an average SE of 89.15%, P+ of 89.71%, F1 of 89.41%, and CA of 95.11% using the test dataset from the PASCAL database. The top 10 features that achieved the highest weights in classifying these recordings were also identified. • Normal and abnormal classification of recordings using the proposed algorithm achieved a mean CA of 94.172%, and SE of 92.38%, in classifying recordings from the different databases. Among the top 10 acoustic features identified, the deterministic energy of the sound peaks of interest and the instantaneous frequency extracted using the Hilbert Huang-transform, achieved the highest weights. • The machine learning-based approach proposed to classify recordings of heart valve disorders (AS, MS, MR, and MVP) achieved an average CA of 98.26% and SE of 95.83%. 99 acoustic features were extracted and their abilities to differentiate these abnormalities were examined using weights obtained from the neighborhood component analysis (NCA). The top 10 features which showed the greatest abilities in classifying these abnormalities using recordings from the different databases were also identified. The achieved results demonstrate the ability of the algorithms to automatically identify and classify cardiac sounds. This work provides the basis for measurements of many useful clinical attributes of cardiac acoustic signals and can potentially help in monitoring the overall cardiac health for longer duration. The work presented in this thesis is the first-of-its-kind to validate the results using both, normal and pathological cardiac acoustic signals, recorded for a long continuous duration of 5 minutes at four different auscultation sites in non-controlled real-world conditions.Open Acces

    Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The use of the Hilbert–Huang transform in the analysis of biomedical signals has increased during the past few years, but its use for respiratory sound (RS) analysis is still limited. The technique includes two steps: empirical mode decomposition (EMD) and instantaneous frequency (IF) estimation. Although the mode mixing (MM) problem of EMD has been widely discussed, this technique continues to be used in many RS analysis algorithms. In this study, we analyzed the MM effect in RS signals recorded from 30 asthmatic patients, and studied the performance of ensemble EMD (EEMD) and noise-assisted multivariate EMD (NA-MEMD) as means for preventing this effect. We propose quantitative parameters for measuring the size, reduction of MM, and residual noise level of each method. These parameters showed that EEMD is a good solution for MM, thus outperforming NA-MEMD. After testing different IF estimators, we propose Kay¿s method to calculate an EEMD-Kay-based Hilbert spectrum that offers high energy concentrations and high time and high frequency resolutions. We also propose an algorithm for the automatic characterization of continuous adventitious sounds (CAS). The tests performed showed that the proposed EEMD-Kay-based Hilbert spectrum makes it possible to determine CAS more precisely than other conventional time-frequency techniques.Postprint (author's final draft

    An algorithm for heart rate extraction from acoustic recordings at the neck

    No full text
    Heart rate is an important physiological parameter to assess the cardiac condition of an individual and is traditionally determined by attaching multiple electrodes on the chest of a subject to record the electrical activity of the heart. The installation and handling complexities of such systems does not prove feasible for a user to undergo a long-term monitoring in the home settings. A small-sized, battery-operated wearable monitoring device is placed on the suprasternal notch at neck to record acoustic signals containing information about breathing and cardiac sounds. The heart sounds obtained are heavily corrupted by the respiratory cycles and other external artifacts. This paper presents a novel algorithm for reliably extracting the heart rate from such acoustic recordings, keeping in mind the constraints posed by the wearable technology. The methodology constructs the Hilbert energy envelope of the signal by calculating its instantaneous characteristics to segment and classify a cardiac cycle into S1 and S2 sounds using their timing characteristics. The algorithm is tested on a dataset consisting of 13 subjects with an approximate data length of 75 hours and achieves an accuracy of 94.34%, an RMS error of 3.96 bpm and a correlation coefficient of 0.93 with reference to a commercial device in use

    The electronic stethoscope

    Get PDF

    An open access database for the evaluation of heart sound algorithms

    Full text link
    This is an author-created, un-copyedited version of an article published in Physiological Measurement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/0967-3334/37/12/2181In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.This work was supported by the National Institutes of Health (NIH) grant R01-EB001659 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and R01GM104987 from the National Institute of General Medical Sciences.Liu, C.; Springer, DC.; Li, Q.; Moody, B.; Abad Juan, RC.; Li, Q.; Moody, B.... (2016). An open access database for the evaluation of heart sound algorithms. Physiological Measurement. 37(12):2181-2213. doi:10.1088/0967-3334/37/12/2181S21812213371

    Partial discharge feature extraction based on ensemble empirical mode decomposition and sample entropy

    Get PDF
    Partial Discharge (PD) pattern recognition plays an important part in electrical equipment fault diagnosis and maintenance. Feature extraction could greatly affect recognition results. Traditional PD feature extraction methods suffer from high-dimension calculation and signal attenuation. In this study, a novel feature extraction method based on Ensemble Empirical Mode Decomposition (EEMD) and Sample Entropy (SamEn) is proposed. In order to reduce the influence of noise, a wavelet method is applied to PD de-noising. Noise Rejection Ratio (NRR) and Mean Square Error (MSE) are adopted as the de-noising indexes. With EEMD, the de-noised signal is decomposed into a finite number of Intrinsic Mode Functions (IMFs). The IMFs, which contain the dominant information of PD, are selected using a correlation coefficient method. From that, the SamEn of selected IMFs are extracted as PD features. Finally, a Relevance Vector Machine (RVM) is utilized for pattern recognition using the features extracted. Experimental results demonstrate that the proposed method combines excellent properties of both EEMD and SamEn. The recognition results are encouraging with satisfactory accuracy

    Multichannel analysis of normal and continuous adventitious respiratory sounds for the assessment of pulmonary function in respiratory diseases

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit d’Enginyeria IndustrialRespiratory sounds (RS) are produced by turbulent airflows through the airways and are inhomogeneously transmitted through different media to the chest surface, where they can be recorded in a non-invasive way. Due to their mechanical nature and airflow dependence, RS are affected by respiratory diseases that alter the mechanical properties of the respiratory system. Therefore, RS provide useful clinical information about the respiratory system structure and functioning. Recent advances in sensors and signal processing techniques have made RS analysis a more objective and sensitive tool for measuring pulmonary function. However, RS analysis is still rarely used in clinical practice. Lack of a standard methodology for recording and processing RS has led to several different approaches to RS analysis, with some methodological issues that could limit the potential of RS analysis in clinical practice (i.e., measurements with a low number of sensors, no controlled airflows, constant airflows, or forced expiratory manoeuvres, the lack of a co-analysis of different types of RS, or the use of inaccurate techniques for processing RS signals). In this thesis, we propose a novel integrated approach to RS analysis that includes a multichannel recording of RS using a maximum of five microphones placed over the trachea and the chest surface, which allows RS to be analysed at the most commonly reported lung regions, without requiring a large number of sensors. Our approach also includes a progressive respiratory manoeuvres with variable airflow, which allows RS to be analysed depending on airflow. Dual RS analyses of both normal RS and continuous adventitious sounds (CAS) are also proposed. Normal RS are analysed through the RS intensity–airflow curves, whereas CAS are analysed through a customised Hilbert spectrum (HS), adapted to RS signal characteristics. The proposed HS represents a step forward in the analysis of CAS. Using HS allows CAS to be fully characterised with regard to duration, mean frequency, and intensity. Further, the high temporal and frequency resolutions, and the high concentrations of energy of this improved version of HS, allow CAS to be more accurately characterised with our HS than by using spectrogram, which has been the most widely used technique for CAS analysis. Our approach to RS analysis was put into clinical practice by launching two studies in the Pulmonary Function Testing Laboratory of the Germans Trias i Pujol University Hospital for assessing pulmonary function in patients with unilateral phrenic paralysis (UPP), and bronchodilator response (BDR) in patients with asthma. RS and airflow signals were recorded in 10 patients with UPP, 50 patients with asthma, and 20 healthy participants. The analysis of RS intensity–airflow curves proved to be a successful method to detect UPP, since we found significant differences between these curves at the posterior base of the lungs in all patients whereas no differences were found in the healthy participants. To the best of our knowledge, this is the first study that uses a quantitative analysis of RS for assessing UPP. Regarding asthma, we found appreciable changes in the RS intensity–airflow curves and CAS features after bronchodilation in patients with negative BDR in spirometry. Therefore, we suggest that the combined analysis of RS intensity–airflow curves and CAS features—including number, duration, mean frequency, and intensity—seems to be a promising technique for assessing BDR and improving the stratification of BDR levels, particularly among patients with negative BDR in spirometry. The novel approach to RS analysis developed in this thesis provides a sensitive tool to obtain objective and complementary information about pulmonary function in a simple and non-invasive way. Together with spirometry, this approach to RS analysis could have a direct clinical application for improving the assessment of pulmonary function in patients with respiratory diseases.Los sonidos respiratorios (SR) se generan con el paso del flujo de aire a través de las vías respiratorias y se transmiten de forma no homogénea hasta la superficie torácica. Dada su naturaleza mecánica, los SR se ven afectados en gran medida por enfermedades que alteran las propiedades mecánicas del sistema respiratorio. Por lo tanto, los SR proporcionan información clínica relevante sobre la estructura y el funcionamiento del sistema respiratorio. La falta de una metodología estándar para el registro y procesado de los SR ha dado lugar a la aparición de diferentes estrategias de análisis de SR con ciertas limitaciones metodológicas que podrían haber restringido el potencial y el uso de esta técnica en la práctica clínica (medidas con pocos sensores, flujos no controlados o constantes y/o maniobras forzadas, análisis no combinado de distintos tipos de SR o uso de técnicas poco precisas para el procesado de los SR). En esta tesis proponemos un método innovador e integrado de análisis de SR que incluye el registro multicanal de SR mediante un máximo de cinco micrófonos colocados sobre la tráquea yla superficie torácica, los cuales permiten analizar los SR en las principales regiones pulmonares sin utilizar un número elevado de sensores . Nuestro método también incluye una maniobra respiratoria progresiva con flujo variable que permite analizar los SR en función del flujo respiratorio. También proponemos el análisis combinado de los SR normales y los sonidos adventicios continuos (SAC), mediante las curvas intensidad-flujo y un espectro de Hilbert (EH) adaptado a las características de los SR, respectivamente. El EH propuesto representa un avance importante en el análisis de los SAC, pues permite su completa caracterización en términos de duración, frecuencia media e intensidad. Además, la alta resolución temporal y frecuencial y la alta concentración de energía de esta versión mejorada del EH permiten caracterizar los SAC de forma más precisa que utilizando el espectrograma, el cual ha sido la técnica más utilizada para el análisis de SAC en estudios previos. Nuestro método de análisis de SR se trasladó a la práctica clínica a través de dos estudios que se iniciaron en el laboratorio de pruebas funcionales del hospital Germans Trias i Pujol, para la evaluación de la función pulmonar en pacientes con parálisis frénica unilateral (PFU) y la respuesta broncodilatadora (RBD) en pacientes con asma. Las señales de SR y flujo respiratorio se registraron en 10 pacientes con PFU, 50 pacientes con asma y 20 controles sanos. El análisis de las curvas intensidad-flujo resultó ser un método apropiado para detectar la PFU , pues encontramos diferencias significativas entre las curvas intensidad-flujo de las bases posteriores de los pulmones en todos los pacientes , mientras que en los controles sanos no encontramos diferencias significativas. Hasta donde sabemos, este es el primer estudio que utiliza el análisis cuantitativo de los SR para evaluar la PFU. En cuanto al asma, encontramos cambios relevantes en las curvas intensidad-flujo yen las características de los SAC tras la broncodilatación en pacientes con RBD negativa en la espirometría. Por lo tanto, sugerimos que el análisis combinado de las curvas intensidad-flujo y las características de los SAC, incluyendo número, duración, frecuencia media e intensidad, es una técnica prometedora para la evaluación de la RBD y la mejora en la estratificación de los distintos niveles de RBD, especialmente en pacientes con RBD negativa en la espirometría. El método innovador de análisis de SR que se propone en esta tesis proporciona una nueva herramienta con una alta sensibilidad para obtener información objetiva y complementaria sobre la función pulmonar de una forma sencilla y no invasiva. Junto con la espirometría, este método puede tener una aplicación clínica directa en la mejora de la evaluación de la función pulmonar en pacientes con enfermedades respiratoriasAward-winningPostprint (published version

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG

    Synthesis of normal and abnormal heart sounds using Generative Adversarial Networks

    Get PDF
    En esta tesis doctoral se presentan diferentes métodos propuestos para el análisis y síntesis de sonidos cardíacos normales y anormales, logrando los siguientes aportes al estado del arte: i) Se implementó un algoritmo basado en la transformada wavelet empírica (EWT) y la energía promedio normalizada de Shannon (NASE) para mejorar la etapa de segmentación automática de los sonidos cardíacos; ii) Se implementaron diferentes técnicas de extracción de características para las señales cardíacas utilizando los coeficientes cepstrales de frecuencia Mel (MFCC), los coeficientes de predicción lineal (LPC) y los valores de potencia. Además, se probaron varios modelos de Machine Learning para la clasificación automática de sonidos cardíacos normales y anormales; iii) Se diseñó un modelo basado en Redes Adversarias Generativas (GAN) para generar sonidos cardíacos sintéticos normales. Además, se implementa un algoritmo de eliminación de ruido utilizando EWT, lo que permite una disminución en la cantidad de épocas y el costo computacional que requiere el modelo GAN; iv) Finalmente, se propone un modelo basado en la arquitectura GAN, que consiste en refinar señales cardíacas sintéticas obtenidas por un modelo matemático con características de señales cardíacas reales. Este modelo se ha denominado FeaturesGAN y no requiere una gran base de datos para generar diferentes tipos de sonidos cardíacos. Cada uno de estos aportes fueron validados con diferentes métodos objetivos y comparados con trabajos publicados en el estado del arte, obteniendo resultados favorables.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic
    • …
    corecore