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Abstract: Partial Discharge (PD) pattern recognition plays an important part in electrical equipment
fault diagnosis and maintenance. Feature extraction could greatly affect recognition results.
Traditional PD feature extraction methods suffer from high-dimension calculation and signal
attenuation. In this study, a novel feature extraction method based on Ensemble Empirical Mode
Decomposition (EEMD) and Sample Entropy (SamEn) is proposed. In order to reduce the influence
of noise, a wavelet method is applied to PD de-noising. Noise Rejection Ratio (NRR) and Mean
Square Error (MSE) are adopted as the de-noising indexes. With EEMD, the de-noised signal is
decomposed into a finite number of Intrinsic Mode Functions (IMFs). The IMFs, which contain
the dominant information of PD, are selected using a correlation coefficient method. From that,
the SamEn of selected IMFs are extracted as PD features. Finally, a Relevance Vector Machine (RVM)
is utilized for pattern recognition using the features extracted. Experimental results demonstrate
that the proposed method combines excellent properties of both EEMD and SamEn. The recognition
results are encouraging with satisfactory accuracy.

Keywords: partial discharge; feature extraction; ensemble empirical mode decomposition; sample
entropy; relevance vector machine

1. Introduction

Partial discharge (PD) detection plays an important role in the evaluation of insulation
condition [1]. Different PD types may cause diverse damages to equipment insulation [2]. Therefore,
it is meaningful to be able to distinguish between different PD types for electrical equipment repair
and maintenance [3,4].

Feature extraction is of great importance during PD pattern recognition. It directly affects the
recognition results [5–9]. Chu et al. employed statistical distribution parameters method for PD
recognition. Different types of PD have been identified [5]. Ma et al. used the fractal theory for motor
single-source PD classification [6]. Cui et al. adopted the image moments characteristic parameter of
PD to analyze the surface discharge development process [7]. However, the data size of these methods
is very large and the speed of data processing is slow, which is not suitable for online monitoring.
Alvarez et al. extracted the waveform feature parameters to discriminate the PD sources [8]. However,
the electromagnetic wave radiated by the PD pulse will decay and can be negatively influenced by the
electromagnetic interference. Tang et al. used wavelet decomposition method for PD recognition in
gas-insulated switchgear (GIS) [9]. However, his method has some inherent limitation, such as the
difficulty of the selection of wavelet basis, wavelet thresholds, decomposition levels, and so on.
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Empirical Mode Decomposition (EMD), proposed by Huang et al. in 1998, is a self-adapting
method for signal decomposition [10]. It is a data-driven approach that is suitable for analyzing
non-linear and non-stationary problems. However, it is restricted by its inherent mode-mixing
phenomenon. Boudraa et al. put forward a signal filtering method based on EMD [11]. It is limited
to signals that were corrupted by additive white Gaussian noise. To solve the mode-mixing problem
in EMD, Ensemble Empirical Mode Decomposition (EEMD) was proposed by Wu and Huang [12].
White noise components are added artificially in EEMD and eliminated through repetitive averaging.
EEMD decomposes signals into Intrinsic Mode Functions (IMFs) containing signals’ local features.
It could effectively apply the uniform distribution character to make up for the absence of signal scales.
It is also suitable for non-linear and non-stationary signals. Furthermore, EEMD has been widely
adopted in fault feature extraction [13–16]. Fu et al. proposed a novel approach based on fast EEMD
to extract the fault feature of bearing vibration signals [13]. The test results from both the simulation
signal and the experiment data demonstrated its effectiveness. The heart phonocardiogram is analyzed
in [14] by employing EEMD combined with kurtosis features. Its practicality was proven through the
experimental dataset obtained from 43 heart sound recordings in a real clinical environment. Kong et al.
proposed an envelope extraction method based on EEMD for the double-impulse extraction of faulty
hybrid ceramic ball bearings [15]. The pre-whitened signals were de-noised using EEMD, and the
Hilbert Envelope Extraction Method was employed to extract the double impulse. Simulation results
verified the validity of this method. Patel et al. presented a novel approach by combining template
matching with EEMD [16]. EEMD was applied to decompose the noisy data into IMFs. However,
the data size of IMFs is always large. To reduce the calculation, some steps should be taken to extract
the IMFs that represent prominent features.

Sample Entropy (SamEn) is the negative natural logarithm of the conditional probability [17].
A lower SamEn value indicates more self-similarity in a time series. SamEn has many positive
characteristics, such as good residence to noise interference and closer agreement between theory for
data sets and known probabilistic content. Widodo et al. presented the intelligent prognostics for
battery health based on sample entropy [18]. SamEn features could represent the health condition
of battery. Mei et al. used sample entropy to quantify parameters of four foot types. From this,
it could be used to quantify the regularity and complexity of a data series [19]. SamEn could avoid the
influence of the noise when exploring a time series. Therefore, SamEn is an effective tool for evaluating
complex non-linear time series. Moreover, SamEn displays the property of relative consistency in
situations where approximate entropy does not. In practice these characteristics are suitable for PD
signal analysis. In this study SamEn is adopted to extract the representative characteristics from IMFs
of EEMD.

In recent years, various pattern recognition approaches have been used in PD pattern
recognition [20,21]. Majidi et al. created seventeen samples for classifying internal, surface, and corona
partial discharges in the laboratory [20]. Different PD types were identified with an artificial neural
network (ANN) and the sparse method. However, an ANN presents problems of slow convergence
rate and the tendency to be entrapped in a local minimum. As a learning machine, which is based
on kernel functions, a Support Vector Machine (SVM) classifier could effectively solve such problems.
In Reference [21], the PD and noise-related coefficients are identified by SVM. The performance
was evaluated with PD signals measured in air and in solid dielectrics. However, SVM is restricted
in practical applications for its inherent restriction by Mercer conditions and the difficult choice of
regularization parameters [22].

Relevance Vector Machine (RVM), proposed by Tipping, is a novel pattern recognition method
based on kernel functions [23]. The model is learning under a Bayesian framework, whose kernel
functions are not restricted by Mercer conditions. Moreover, the regularization coefficient is adjusted
automatically during the estimation of hyper parameters. As an extension of SVM, RVM has become
the research focus in recent years [24–26]. Nguyen employed RVM for Kinect gesture recognition and
compared it with SVM [24]. Results showed that RVM could achieve the state-of-the-art predictive
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performance and run much faster than SVM. Compared with SVM, RVM needs fewer vectors,
and could effectively avoid the choice of regularization coefficient and restriction of Mercer conditions.
Liu et al. proposed an intelligent multi-sensor data fusion method using RVM for gearbox fault
detection [25]. Experimental results demonstrated that RVM not only has higher detection accuracy,
but also has better real-time accuracy. It has been shown in literature that RVM can be very sensitive to
outliers far from the decision boundary that discriminates between two classes. To solve this problem,
Hwang proposed a robust RVM based on a weighting scheme that is insensitive to outliers [26].
Experimental results from synthetic and real data sets verified its effectiveness. In this paper, RVM is
used to recognize the different PD types using extracted features. The resulting recognition achieved
encouraging accuracy.

The rest of this paper is organized as follows: Section 2 introduces the conception of EMD, EEMD,
Sample Entropy and RVM, and also presents the feature extraction approach based on EEMD-SamEn.
Section 3 describes the PD experiments and calculates the PD parameters. Section 4 evaluates the
performance of the proposed method and compares it with different feature extraction methods.
Finally, Section 5 concludes this paper.

2. Feature Extraction Based on Ensemble Empirical Mode Decomposition and Sample Entropy

2.1. Review of Empirical Mode Decomposition

Empirical Mode Decomposition (EMD), proposed by Huang et al., is a novel self-adapting method
especially for non-linear analysis and processing non-stationary signals. With EMD, one signal can
be decomposed into some IMFs and a residual. EMD has been widely used in the area of signal
analysis and processing [10,11]. However, it is restricted by its inherent mode-mixing problem in
practical applications.

2.2. Review of Enseble Empirical Mode Decomposition

Ensemble Empirical Mode Decomposition (EEMD) is proposed by Wu and Huang, and is aimed
at eliminating the mode-mixing in EMD. EEMD represents an extension of EMD [12]. The algorithm
procedure can be shortly defined in the following steps:

(1) Add a generated white noise s(t) to the original signal x0(t):

X(t) = x0(t) + s(t) (1)

(2) Decompose X(t) into IMFs cj(t) and a residual rn(t).

X(t) =
n

∑
j=1

cj(t) + rn(t) (2)

(3) Add different white noise si(t) to the original signal. Repeat (1) and (2).

Xi(t) =
n

∑
j=1

ci j(t) + rin(t) (3)

(4) Calculate the IMFs component cn(t) corresponding to the original signal where:

cn(t) =
1

Ns

Ns

∑
i=1

ci,n(t) (4)
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The white noise number added in EEMD conforms to the statistical law:

εn =
ε√
Ns

(5)

where Ns is the added number of white noise, ε is the noise amplitude, εn is the error caused by the
superposition of original signals and the final IMFs.

(5) The final signal, x(t), can be decomposed as the following time series:

x(t) =
Ns

∑
n=1

cn(t) + rn(t) (6)

2.3. Sample Entropy

Sample Entropy (SamEn), proposed by Richman, was used to evaluate the complexity of a time
series. The procedure can be expressed as follows:

(1) Construct a m-dimension vector with time series v(t).

(2) Define the distance between m-dimension vectors V(i) and V(j) as:

d[V(i), V(j)] = max
k=0··· ,m−1

[|v(i + k)− v(j + k)|] (7)

(3) Given a threshold, r, calculate the ratio Bm
i
(r) between the number of d[V(i), V(j)] < r and

N − m − 1:

Bm
i
(r) =

1
N − m − 1

{d[V(i), V(j)] < r} (8)

where i = 1, 2, · · · , N − m + 1, i 6= j.

(4) The mean value of Bm
i
(r) is defined as:

B
m
(r) =

1
N − m − 1

N−m+1

∑
i=1

Bm
i (r) (9)

(5) As for m + 1, B
m+1

(r) can be obtained using Steps (1)–(4).

(6) The SamEn of the given time series v(t) can be defined as:

SamEn(m, r) = lim
N→∞

[− ln
B

m+1
(r)

B
m
(r)

] (10)

where N is a finite value, then SamEn can be expressed as:

SamEn(m, r, N) = − ln
B

m+1
(r)

B
m
(r)

(11)

2.4. Relevance Vector Machine (RVM)

Given input training datasets Di = {di, ti}N
i=1, where di is the input vector, ti is the output vector.

RVM output model can be defined as:

y(di) =
N

∑
i=1

wiφi(di) (12)
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where wi is the weight vector, φi(d) is a non-linear basis function. The likelihood of the whole dataset
can be defined as:

P(t|w) =
N

∏
i=1

σ{y(di; w)}ti [1 − σ{y(di; w)}]1−ti (13)

in which t = (t1, · · · , tn), w = (w0, · · · , wn), σ(·) is a Sigmoid function.
Gaussian prior probability distribution is defined as:

p(w|α) =
N

∏
i=0

N(wi|0, α−1
i ) (14)

where α = (α0, α1, · · · , αN)
T is the hyper-parameter of the prior probability distribution. For the new

input vector d∗, the probability prediction of the target value t∗ can be described as:

p(t∗|t) =
∫

p(t∗|w, α)p(w|t, α)p(α|t)dwdα (15)

For the fixed value of α, the maximum posterior probability estimation concerning w can be
equated with the calculation of the maximum of Equation (16).

log{p(t|w)p(w|α)} =
N

∑
i=1

[ti log yi + (1 − ti) log(1 − yi)]−
1
2

wT Aw (16)

where A = diag(α0, α1, · · · , αN), yi = σ{y(di; w)}.
The Hessian matrix at WMP can be defined as:

∇w∇w log p(w|t, α)|wMP = −(φTBφ + A) (17)

where B = diag(β1, β2, · · · , βN), βi = yi(1 − yi).
Based on Equation (17), the covariance matrix of the posterior probability at wMP can be

obtained as:

∑= (φTBφ + A)
−1

(18)

wMP can be defined as:
wMP = ∑ φTBt (19)

The hyper-parameter α can be updated with MacKay [27]:

αnew
i =

γi

w2
MPi

, γi = 1 − αi∑ i, i (20)

where wMPi
is the i-th element of the posterior probability weight from Equation (19), ∑ i, i is the i-th

diagonal element of the posterior weight covariance from Equation (18).
After obtaining αnew, the mean of posterior probability is re-estimated and the covariance matrix is

re-calculated. An iterative process of Equations (18)–(20) is repeated until proper convergence criteria
are satisfied. After iterations, the sample vectors concerning the basic functions of non-zero weights
are the Relevance Vectors (RV).

2.5. Feature Extraction Based on Enseble Empirical Mode Decomposition and Sample Entropy

The proposed method adopts wavelet method for de-noising of the original PD signals. Next,
IMF components are extracted by EEMD of the de-noised signals. After that, the correlation coefficient
method is applied to IMF selection and is followed by calculating the SamEn of each IMF. Finally,
RVM is employed for PD pattern recognition with the extracted characteristic values. The feature
extraction steps are as follows:
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(1) Extract different types of PD signals under different voltage levels in the laboratory environment.

(2) Process the original PD signal with wavelet method to eliminate background interferences.

(3) Decompose de-noised signals with EEMD and obtain a set of IMFs.

(4) Calculate the correlation coefficient, C, of each IMF component with Equation (21).

C =

n

∑
i=1

(ri − r)(xi − x)

√

n

∑
i=1

(ri − r)2

√

n

∑
i=1

(xi − x)2

(21)

where C is the correlation coefficient between IMFs and the signal, r is the IMF, x represents
the original PD signal, and n is the number of IMFs. The larger the value of |C|, the greater the
relevance between r and x. If the correlation coefficient C is close to 0, then the linear correlation
relationship between r and x is very weak.

(5) Select those IMFs that have a large value of |C|.
(6) Calculate the sample entropy of each extracted IMF.

(7) Load sample entropy vectors into the RVM classifier and obtain the recognition results.

The flow diagram of PD feature extraction based on the proposed method is shown in Figure 1.

PD signal
Wavelet 

denoising

EEMD 

decomposition
IMF selection

SampEn 

calculation

Data 

normalization

RVM 

recognition

 

Figure 1. Flow diagram of feature extraction based on Ensemble Empirical Mode Decomposition
(EEMD) and Sample Entropy (SamEn).

3. Experiment and Analysis

3.1. Signal Extraction

Different PD types can produce different effects in insulation materials, but the range can be
diverse. To analyze the characteristics of different PD types, PD signals of different models are extracted
in the laboratory. According to the inner insulation structure of power transformers [28,29], there are
four possible different PD types, including floating discharge (FD), needle-plate discharge (ND),
surface discharge (SD), and air-gap discharge (AD). PD models are shown in Figure 2. The experimental
setup is shown in Figure 3. All the models are placed in the fuel tank filled with transformer oil.
The PD signal is detected in the simulated transformer tank in the laboratory.

PD signals are extracted under different voltage conditions. The pulse current is collected by the
current sensor with bandwidth 500 kHz–16 MHz. The Ultra High Frequency (UHF) signal is extracted
by the UHF sensor with bandwidth 10 MHz–1000 MHz. The signal received is imported into the PD
analyzer. The test condition is shown in Table 1, with the experimental connection diagram shown in
Figure 4.
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(a) (b)

cylindrical electrode

paperboard

circular plate electrode

100mm
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copper bar

circular plate electrode

paperboard

circular plate electrode

80mm
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0.5mm

10mm

(c) (d)

Figure 2. Partial Discharge (PD) models. (a) Floating discharge (FD); (b) Needle-plate discharge (ND);
(c) Surface discharge (SD); (d) Air-gap discharge (AD).

 

Figure 3. Photograph of experimental setup.

Table 1. Test condition of Partial Discharge models.

Partial Discharge (PD) Types
Initial

Voltage/kV
Breakdown
Voltage/kV

Testing
Voltage/kV

Sample Number

Floating Discharge 2 7 3/4/5 20/20/20
Needle-Plate Discharge 8.8 12 9/10/11 20/20/20

Surface Discharge 3 10 5/6/7 20/20/20
Air-Gap Discharge 5 10 6/7/8 20/20/20
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Figure 4. The connection diagram of the Partial Discharge experiment. (1) AC power source; (2) step
up transformer; (3) resistance; (4) capacitor; (5) high voltage bushing; (6) small bushing; (7) PD model;
(8) Ultra High Frequency (UHF) sensor; (9) current sensor; (10) console.

The PD pulse is very weak, which can be easily disrupted by external interference. The laboratory
environment is complicated, as it may be filled with electromagnetic interference caused by radio
broadcasting and communication. Setting up voltage to 2 kV, one PD signal extracted in the laboratory
as shown in Figure 5. Here, it is shown that the PD signal is obviously interfered by the noise in the
laboratory, which makes it difficult to analyze directly.

 
(a)

 
(b)
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-1
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0
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m
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Figure 5. Original Partial Discharge signal. (a) Time domain; (b) Frequency domain.

3.2. Signal Processing

Figure 5 shows the original PD signal, which suffers from large background interference. To extract
a valid PD signal, some necessary de-noising steps are needed. Since Wavelet Transform (WT) is
suitable for processing a non-stationary signal with better time-frequency resolution performance [30].
Therefore, WT is employed for PD de-noising in this paper.

Two evaluation indexes are used for quantitative analysis of the de-noising quality, which are
Noise Rejection Ratio (NRR) and Mean Square Error (MSE). NRR and MSE are defined according to
Reference [31]:

NRR = 10(lgσ2
1 − lgσ2

2 ) (22)
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where σ1 and σ2 represent the noise deviation of the pre-treatment and post-treatment respectively.
The deviation can be defined as:

σ =

√

√

√

√

1
Q

Q

∑
d=1

(Sd − µ)2 (23)

where Q is the number of samples, Sd represents the d-th sampling signal, and µ is the mean of
the signal.

MSE =
1
n

n

∑
i=1

(|sr(i)− ŝr(i)|2) (24)

where sr(i) is the original PD reference signal, represented by the mean value of de-noised signals with
Daubechies (db) 1–15 and 5-level decomposition. And ŝr is the signal after being de-noised by WT.

The higher the NRR, the more effective the de-noising result. The smaller the MSE, the more
similarity between the original and the de-noised signal.

The wavelet threshold selection is of great importance to the de-noising effects. In this paper,
the “hard” threshold function is adopted, as it gave better results when compared with the “soft”
threshold [32]. Heursure is chosen as the wavelet threshold due to its good performance in
signal de-noising.

Daubechies (db) is an orthogonal wavelet basis with compact support, which has a high similarity
with PD signals. Therefore, db function is employed as wavelet basis for PD signal processing.

As shown in Figures 6 and 7, with the 5-level decomposition, NRR and MSE variations with
different db wavelet basis are obtained after 20 iterative calculations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18

20

22

24

db wavelet basis

N
R

R
/d

B

Figure 6. Noise Rejection Ratio (NRR) with different db wavelet basis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

db wavelet basis

M
S

E
/d

B

Figure 7. Mean Square Error (MSE) variation with different db wavelet basis.

Figures 6 and 7 show that the maximum of NRR is obtained with db5. Meanwhile, the minimum
of MSE is obtained with db4. Considering that the value of MSE is larger with db5, db4 is selected as
the wavelet basis.

As shown in Figures 8 and 9, using db4 wavelet, NRR and MSE variations with decomposition
levels are obtained after 20 iterative calculations.



Entropy 2017, 19, 439 10 of 19

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

decomposition level

N
R

R
/d

B

Figure 8. Noise Rejection Ratio (NRR) variation with decomposition levels.
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Figure 9. Mean Square Error (MSE) variation with decomposition levels.

From the results shown in Figures 8 and 9, the maximum of NRR is obtained at Level 8, while the
minimum of MSE is obtained at Level 3. Considering that the computation complexity will increase
with increasing level of decomposition, Level 3 is selected as the wavelet decomposition level.

Through a series of experimental trials, the Daubechies mother wavelet “db4” with 3-level
decomposition and a hard threshold are adopted in this study. The de-noised PD signal is shown in
Figure 10. It is clear from these results that the background interference is effectively reduced.
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(b)
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Figure 10. De-noised Partial Discharge signal. (a) Time domain signal; (b) Frequency domain signal.
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After de-noising, different types of PD signals are presented in Figure 11.

(a) (b)

(c) (d)

Figure 11. Different types of Partial Discharge signals; (a) FD (b) ND; (c) SD (d) AD.

3.3. Enseble Empirical Mode Decomposition Decomposition

After de-noising, the PD signal decomposition result based on EEMD is presented in Figure 12.
The standard deviation of white Gaussian noise is 0.1 and the repetitive number is 100. Figure 12
shows the IMF components in EEMD. The white noise makes each IMF maintain continuity in the
time domain. EEMD decomposition method could clearly evaluate each component of the original
PD signal.
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Figure 12. EEMD decomposition.
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3.4. IMF Selection

The real IMF components have good correlation with the original signal. On the other hand,
the pseudo-components will only have poor correlation with the signal. Thus, the correlation
coefficients between IMFs and the signal are used as a criterion to decide which IMFs should be
retained and which IMFs should be rejected. To avoid rejecting some real IMFs with low amplitude,
all IMFs as well as the signal will be normalized. The maximum of correlation coefficient is not
more than 1. The calculated result of all the correlation coefficients and their relationship with IMF
components are shown in Figure 13, as well as a solution for the IMF selection problem.

In Figure 13 it can be seen that the value of the correlation coefficient is decreasing with the
increase of IMF components. The first three IMFs have good correlation with the original signal and
have large correlation coefficients. From the fourth IMF to the eighth IMF component, the correlation
coefficients are very small—less than 0.4. With IMF selection criterion, only the first three IMFs are
retained and the others are rejected.
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e
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Floating

Needle-plate

Surface

Air-gap

Figure 13. Intrinsic Mode Function (IMF) variation with correlation coefficient.

3.5. Sample Entropy Calculation

The value of Sample Entropy (SamEn) is related to the dimension, m, and the threshold, r.
According to the study discussed in [33], the SamEn values are calculated with widely established
values of m = 1 or m = 2, and with r a fixed value between 0.1 and 0.25 of the standard deviation
of the individual subject time series. In this paper, SamEn is calculated with m = 1 and r = 0.2.
The above procedure is used to calculate the characteristics of 240 PD signals obtained through
laboratory experiments.

3.6. Partial Discharge Pattern Recognition Based on Relevance Vector Machine

In this study, Relevance Vector Machine (RVM) is applied to PD pattern recognition. The procedure
is shown as follows.

(1) PD characteristics are obtained in Section 3.5.

(2) PD characteristics are sent to RVM as input vectors which are divided into two parts: training
samples and testing samples.

(3) As the One Against One (OAO) classifier is simple and has strong robustness [34], the PD
classification model is set as an OAO model. Six classifiers are constructed shown in Table 2.
Each classifier is used to distinguish two different PD types. The judging index is set to 0.5. If the
output is less than the judging index, then Type 1; otherwise Type 2.

(4) Select proper kernel functions and kernel parameters.

(5) The training samples are applied to train the RVM classification model.

(6) Testing samples are sent to the trained RVM model for testing.
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(7) The test results show the final PD classification.

Table 2. Partial Discharge classification model based on RVM.

PD Types RVM1 RVM2 RVM3 RVM4 RVM5 RVM6

Floating
Discharge

≥0.5 ≥0.5 ≥0.5 - - -

Surface Discharge <0.5 - - ≥0.5 ≥0.5
Air-gap Discharge - <0.5 - ≥0.5 - <0.5

Needle-plate
Discharge

- - <0.5 <0.5 <0.5 -

The recognition procedure can be seen in the flowchart in Figure 14.

Set RVM as One 

Against One 

model

Kernel function 

and parameter 

selection

RVM 

classification 

model

PD types 

classification

training

testing

Training 

data

Test data

PD data

PD feature 

extraction

 

Figure 14. Partial Discharge recognition procedure based on Relevance Vector Machine.

4. Results and Analysis

4.1. Parameter Selection

During this experiment, four different types of PD signals were extracted in the laboratory.
Sixty datasets of each type were used for analysis, of which 30 datasets were used for training
and the rest were used for testing. To analyze the performance of different recognition methods,
Back Propagation Neural Network (BPNN) [35], Probabilistic Neural Network (PNN) [36],
Support Vector Machine (SVM) and Relevance Vector Machine (RVM) classifiers are employed. In the
BPNN structure, the mapping of any continuous function could be achieved with one hidden
layer. Therefore a one-hidden-layer structure is employed in this work. After iterative computation,
the proper number of nodes in the hidden layer is set to four, and the optimal value of spread in PNN
is set to 0.8. BPNN and PNN structure parameters are shown in Table 3. The recognition accuracy with
different kernel functions is shown in Table 4.
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Table 3. Network Structure Parameters.

Classifiers
Input Layer

Node Number
Hidden Layer
Node Number

Output Layer
Node Number

Back Propagation Neural Network (BPNN) 3 4 4
Neural Network (PNN) 3 * 4

* means there’s no hidden layer in PNN.

Table 4. Recognition result with different kernel functions.

Kernel Functions
Recognition Accuracy (%)

Support Vector Machine (SVM) Relevance Vector Machine (RVM)

Linear 80.00 83.33
Polynomial 86.67 90.00

Radial Basis Function 96.67 93.33
Sigmoid 93.33 100.00

It can be concluded from Table 4 that different kernel functions of classifiers have diverse
performance. For SVM, the optimal kernel function is Radial Basis Function (RBF). For RVM,
the optimal kernel function is Sigmoid. The diverse performance is due to the different spatial
feature between SVM and RVM. The feature space dimension for RBF is infinite, which is suitable
for linear separation. Additionally, RBF meets Mercer conditions. Therefore, RBF is selected as the
kernel function for SVM. Meanwhile Sigmoid is the kernel function with global features which is not
restricted by Mercer conditions. As such, Sigmoid is selected as the kernel function for RVM.

Using two-fold cross validation, the optimal regularization coefficient of SVM is set to 0.3, and the
kernel parameter is set to be 0.5. For RVM, the kernel parameter is set to be 0.2.

4.2. Performance Analysis

For both RVM and SVM, One Against One multi-class model is applied. The performance of
different classifiers of SVM and RVM is given in Table 5.

Table 5. Support Vector Machine (SVM) and Relevance Vector Machine (RVM) classification comparison.

Classifiers Training Time/Second Testing Time/Second Vector Numbers Recognition Accuracy (%)

SVM1 0.0632 0.002 11 86.67
RVM1 0.0405 9.02 × 10−4 9 86.67
SVM2 0.0528 0.0018 13 93.33
RVM2 0.0261 6.68 × 10−4 7 96.67
SVM3 0.0578 0.0015 11 96.67
RVM3 0.0355 8.92 × 10−4 6 96.67
SVM4 0.0738 0.0061 14 90.00
RVM4 0.0112 7.14 × 10−4 8 90.00
SVM5 0.0343 0.0016 13 93.33
RVM5 0.0205 6.90 × 10−4 7 93.33
SVM6 0.0669 0.0086 15 96.67
RVM6 0.0272 8.81 × 10−4 8 100.00

Table 5 shows that the training and testing time of RVM is faster when compared to SVM.
The reason is that RVM model learning is based on Sparse Bayesian algorithm and the regularization
coefficient is not necessarily validated. Therefore, the computation of parameter selection is less
lengthy. Moreover, the vector number needed in RVM is smaller than that in SVM, resulting in a
shorter testing time.

To compare the performance of different feature extraction methods, Statistics Parameters [5],
Waveform Features [8], wavelet sample entropy (W-SamEn) [37], and EMD sample entropy



Entropy 2017, 19, 439 15 of 19

(EMD-SamEn) are applied to PD analysis. In the EMD-SamEn method, the SamEn values are calculated
with the first three IMFs. In W-SamEn method, after repeated tests, db4 is chosen as the wavelet basis
and the decomposition level is set to 3.

Based on the RVM classifier, the feature extraction effects of W-SamEn, EMD-SamEn and
EEMD-SamEn are shown in Figures 15–17.

Three axes in Figure 15 represent the extracted SamEn values from first three wavelet levels.
Three axes in Figures 16 and 17 represent the extracted SamEn values of the first three IMFs from EMD
and EEMD, respectively. Figure 15 shows that, with W-SamEn method, PD types cannot be identified
accurately and the classification boundaries are ambiguous. Wavelet basis function and decomposition
level need to be determined manually, therefore the adaptability to signals is very poor, which causes
poor performance. It can be seen in Figure 16 that EMD-SamEn method could get better recognition
effect than W-SamEn. However, there is still no clear boundary between different PD types, as there
is obvious mode mixing phenomenon during EMD decomposition of PD signals. Figure 17 shows
that four different types of PD signals are classified effectively and there are clear boundaries between
different PD types.

ƺ

ƺ

ƺ

ƺ

ƺ

ƺ

 

Figure 15. Partial Discharge feature extraction effect based on wavelet sample entropy (W-SamEn).

ƺ

ƺ

ƺ

ƺ

ƺ

Figure 16. Partial Discharge feature extraction effect based on Empirical Mode Decomposition (EMD)
sample entropy (EMD-SamEn).
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Figure 17. Partial Discharge feature extraction effect based on Ensemble Empirical Mode Decomposition
sample entropy (EEMD-SamEn).

The performance of different feature extraction methods is shown in Table 6.
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Table 6. Recognition Performance.

Feature Types
Training
Samples

Testing
Samples

Recognition
Accuracy (%)

Running
Time/Second

Waveform Features 120 120 86.67 6.85 × 10−4

Statistics Parameters 120 120 96.67 3.51 × 10−3

W-SamEn 120 120 90.83 1.68 × 10−3

EMD-SamEn 120 120 96.67 7.28 × 10−4

EEMD-SamEn 120 120 100.00 7.32 × 10−4

Table 6 shows that different PD feature extraction methods have diverse recognition results and
running times. Compared with other methods, the EEMD-SamEn method has the best recognition
effect, with accuracy of 100.00%. Comparatively, the Waveform Feature has the worst recognition
performance. It can be concluded from the Table 6 that, due to the attenuation and the interference
in PD signal extraction, Waveform Feature has the worst recognition performance. Although the
Statistics Parameters method has a better result, the running time is much longer because of the
large number of parameters. In addition, the performance of W-SamEn method is not as good,
since feature extraction errors exist during the selection of the wavelet basis and decomposition
levels. PD feature extraction based on EMD-SamEn has better recognition accuracy with an average
recognition accuracy of 96.67%. However, due to mode-mixing in the process of EMD, the classification
accuracy is not satisfactory. The EEMD-SamEn method effectively avoids the selection of wavelet basis
and decomposition levels, in addition to solving the problem of mode-mixing and virtual components.
In conclusion, the proposed PD feature extraction method has the best recognition performance with
an acceptable running time.

To verify the effectiveness of the proposed feature extraction approach, different classifiers are
employed for PD type recognition. Sixty samples in each PD type are divided into two parts for
training and testing, respectively. All samples of each PD type are labeled from No. 1–60. First,
samples labeled No. 1–10 are used for testing, while others are used for training. Second, the training
and testing samples are changed, with samples labeled No. 11–20 used for testing, while others are
used for training. Finally, samples labeled No. 51–60 are used for testing, while others are used for
training. Finally, all samples are used for both training and testing. With parameters extracted using
the EEMD-SamEn method, the averaged recognition results based on different classifiers are shown in
Figure 18.

 

Figure 18. Recognition Results of Different Classifiers.

It can be seen from Figure 18 that different PD types, including floating discharge (FD),
needle-plate discharge (ND), surface discharge (SD), and air-gap discharge (AD), have diverse
recognition performance using different classifiers. Due to the inherent problems of slow convergence
rate and the tendency to be entrapped in a local minimum, BPNN has the worst recognition accuracy
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in SD. Comparing BPNN, PNN, and SVM, RVM has the best recognition effect with no mistaken
sample in each PD type. Therefore, RVM has obvious advantages over other classifiers.

5. Conclusions

Partial Discharge fault recognition plays an important part in the insulation diagnosis of electrical
equipment. In this study, Ensemble Empirical Mode Decomposition (EEMD) and Sample Entropy
(SamEn) are combined for PD feature extraction. EEMD is employed for PD signal decomposition
without mode-mixing or virtual components. Based on the IMFs of EEMD, Sample Entropy is
calculated, which is sensitive to the properties of PD signals. The combination of EEMD and SamEn
demonstrates that the proposed feature extraction method, combining the superiorities of both EEMD
and Sample Entropy, is able to recognize the different PD types effectively. According to the results,
the EEMD-SamEn method has obvious advantage over Waveform Features, Statistics Parameters,
the W-SamEn and EMD-SamEn methods, as it solves the problems of high-dimension calculation and
signal attenuation in traditional feature extraction methods. Thus, EEMD-SamEn is a practical tool for
PD pattern recognition.

In this paper, different classifiers are employed for PD type recognition which include BPNN,
PNN, SVM and RVM. Due to the particular model’s structure, RVM could avoid the choice of a
regularization coefficient and restriction of Mercer conditions. Comparatively, RVM demonstrated the
best performance with the average accuracy of RVM reaching an encouraging level.

It is worth noting that the PD experiment in this paper is aimed at a single PD defect. However,
it is common that multiple defects appear at the same time in PD detection. Therefore, future study
will focus on the multiple defects of PD signals. Considering that different measurement circuits and
sensors may cause diverse PD features, signals from different measurement conditions should be
extracted to verify the effectiveness of the proposed method in the future. Moreover, the work in this
paper is accomplished in a laboratory environment, and it should be noted that there is a big difference
between a laboratory environment and a field environment. The feature of on-site PD signals could
be different from that of experimental signals. Additionally, in the real-world environment of PD
condition maintenance, there is always insufficient time and a lack of experts to deal with the PD data,
which are some important limitations of this research. For further consideration, large amounts of
field-based PD data could be collected and analyzed.
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