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Abstract—Auscultation of the heart is a widely stud-
ied technique, which requires precise hearing from prac-
titioners as a means of distinguishing subtle differences
in heart-beat rhythm. This technique is popular due to its
non-invasive nature, and can be an early diagnosis aid for a
range of cardiac conditions. Machine listening approaches
can support this process, monitoring continuously and al-
lowing for a representation of both mild and chronic heart
conditions. Despite this potential, relevant databases and
benchmark studies are scarce. In this paper, we intro-
duce our publicly accessible database, the Heart Sounds
Shenzhen Corpus (HSS), which was first released dur-
ing the recent INTERSPEECH 2018 COMPARE Heart Sound
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sub-challenge. Additionally, we provide a survey of ma-
chine learning work in the area of heart sound recognition,
as well as a benchmark for HSS utilising standard acoustic
features and machine learning models. At best our support
vector machine with Log Mel features achieves 49.7% un-
weighted average recall on a three category task (normal,
mild, moderate/severe).

Index Terms—Heart sound, cardiovascular disease,
machine listening, artificial intelligence, healthcare.

I. INTRODUCTION

THE heart sound, recorded via the Phonocardiogram (PCG),
has been widely used in medical practice for its simplistic,

efficient, and cost-effective screening of a number of cardio-
vascular diseases (CVD), which annually result in 45% of all
deaths in Europe [1]. However, extensive training and experience
for auscultation are needed for physicians [2]. Furthermore,
it was reported that, on average just 20% of less experienced
medical interns can make efficient use of the auscultation method
to measure the heart conditions [3]. In the past two decades,
building an intelligent machine to monitor the status of the heart
via the information extracted from the PCG, has become in-
creasingly popular within audio signal processing, and machine
learning [4]. In the era of artificial intelligence (AI), and internet
of things (IoT), developing an intelligent machine listening
based system, can be beneficial for cardiology physicians and
ultimately patients suffering from CVD to better understand
their current health status.

It is encouraging to see that, the variety of approaches pub-
lished in the literature demonstrate the feasibility to automatic
diagnosis of CVD via machine learning and signal processing
techniques. However, the limitations highlighted in the existing
studies are: First, publicly accessible heart sound databases
are extremely limited [5], which dramatically limits further
and reproducible research. Table I shows the known publicly
accessible heart sound databases. Currently, the PhysioNet CinC
Challenge database [7] is the largest, containing different PCG
signals collected from eight different medical centres. However,
the data acquisition system, environment, and the annotation
procedures are not consistent. This may results in obstacles and
uncertainties for building an intelligent model. Secondly, most of
the previous studies ignore subject-independency, which might
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TABLE I
A COMPARISON WITH OTHER PUBLICLY ACCESSIBLE HEART SOUND DATABASES

Fig. 1. The PCG sample of one heart sound audio file in HSS corpus.

make the final results overoptimistic. Thirdly, the experimental
paradigm, e.g., the selected feature sets, the selected classifi-
cation algorithms, the validation method, and the evaluation
metrics were not standardised, which makes the related work
difficult to reproduce or compare.

In order to overcome the aforementioned challenges, we in-
troduce a conventional and reproducible benchmark for our pub-
licly accessible heart sound database. The main contributions of
this work are: 1) We release a standard heart sound database with
consistent data collection equipment, rigid ground-truth exami-
nation, and a reasonable data partitioning principle. We use the
name of Heart Sounds Shenzhen (HSS) corpus, as it first ap-
peared at the INTERSPEECH 2018 COMPARE challenge Heart
Sound sub-challenge [8]. To our best knowledge, HSS is the most
recent and largest expert-annotated heart sound database col-
lected from one single medical centre. 2) We use standard open
source toolkits, e.g., OPENSMILE, LIBSVM, and TensorFlow, to
benchmark the baseline of the introduced database, which will
make the study reproducible and sustainable. 3) We provide a
comprehensive investigation and comparison on typical acoustic
features and classifiers, which will give a guidance to colleagues
in the same community to consider future research directions.

The remainder of this paper will be organised as follows:
At first, the background and related work will be described in
Section II. Subsequently, the database, and the methods used
for the benchmark work will be introduced in Section III. We
will give experimental results and a discussion in Section IV and
Section V, respectively. Finally, an overall conclusion is given
in Section VI.

II. BACKGROUND & RELATED WORK

A plethora of research has been invested in the field to
observe efficient and robust machine listening based systems
for analysing heart sounds. Among these studies, there are two
main research directions: segmentation, and classification. The

segmentation of heart sounds is to separate the PCG signals into
their fundamental components, i.e., the first (S1), and the second
(S2) heart sounds (see Fig. 1). The S1 is caused by the closure
of the mitral and the tricuspid valves, while S2 is caused by the
closure of the aortic and the pulmonary valves. S1 and S2 are nor-
mal sounds. Nevertheless, the third, and the fourth heart sounds,
i.e., S3 and S4, murmurs, and ejection clicks, usually refer to
some disease, or anomaly [4]. As indicated by Renna et al. [9],
segmentation can contribute to the feature extraction for an
individual component, the detection of extra sound components,
and the extraction of information from the analysis of waveforms
associated to the S1 and S2 sounds. Therefore, in many studies
on machine listening for heart sound monitoring, segmentation
is the first step of a classification system. Nigam and Priemer
proposed a complexity-based algorithm for segmentation of the
PCG signals [10]. They indicated that, their method is invariant
to amplitude and frequency variations of the heart sound, which
can achieve improved time gates for heart sounds as compared
to energy-based segmentation. When analysing the PCG, some
other studies made a combination of the PCG and the electro-
cardiogram (ECG) signals. Syed et al. proposed a framework to
perform analysis of acoustical cardiac signals via the PCG and
the simultaneously recorded ECG signals [11]. In their work, the
ECG signals were used to locate the R wave, and the T wave for
each heart beat. In addition, a K-means algorithm was applied
to select the interesting candidate intervals for further analysis,
e.g., those which may contain pathological heart sounds. In the
study of [12], three representations, i.e., the normalised Shannon
energy, the envelope information of the Hilbert transformation,
and the cardiac sound characteristic waveform (CSCW), were
compared. From the results, the CSCW representation showed
superior performance to the other two approaches. Further-
more, the sequential characteristic of the PCG was investigated.
Schmidt et al. proposed a duration-dependent hidden Markov
model (DHMM) for segmentation of heart sounds [13]. In their
study, the model was based on the duration of the events,
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the amplitude of the signal envelope, and a predefined model
structure. A dynamic clustering algorithm for segmentation of
heart sounds was proposed in [14], in which the heart sounds
were segmented based on the hybrid analysis of clustering
and medical knowledge. The S-transformation was applied to
segment the heart sounds into S1, S2, and diastole in [15], and
evaluated against white additive Gaussian noise. Varghees and
Ramachandran proposed a method for automated robust heart
sound activity detection, which could be applied to the real-time
wireless cardiac health monitoring, and electronic stethoscope
devices [16]. The ensemble empirical mode decomposition
(EEMD) combined with kurtosis features were used in [17],
to separate the heart cycle into four components, i.e., diastole,
S1, systole, and S2. A hidden semi-Markov model (HSMM),
extended with the use of logistic regression for emission proba-
bility estimation, was introduced in [18]. In addition, a modified
Viterbi algorithm was involved for decoding the most likely
sequence of states. Chen et al. introduced a deep neural network
(DNN) method for recognising S1 and S2 without any duration
and interval information [19]. Ozbek and Shamsi introduced
a new entropy bound with low computational complexity for
differential Shannon entropy estimation with a kernel density
approach in [20], by which a bound for the Kullback-Leibler
divergence between two Gaussian mixture models was defined.
A deep recurrent neural network (DRNN) was used in [21], fed
with spectral and envelope features, to detect the state sequence.
A multilayer perceptron (MLP) neural network using Cochlea-
gram features for S1-S2 identification was proposed in [22],
which was demonstrated to be superior than other acoustic
features reported earlier. A recent study [9] showed that, a deep
convolutional neural network (DCNN) can achieve a promising
performance when combined with HMM and HSMM.

For representation, wavelet transformation has been found to
be efficient for the recognition of heart sounds when utilising
conventional classifiers, e.g., MLP [23], or k-nearest neighbour
(k-NN) [24]. Ahlstrom et al. made an investigation of the fea-
tures which could be extracted as a means for distinguishing a
pathological murmur from a physiological murmur [25]. Pudil’s
sequential floating forward selection (SFFS) method was used
for selecting the subset of multi-domain features including Shan-
non energy, wavelets, fractal dimensions, and recurrence quan-
tification analysis. Wang et al. indicated that, a Mel-frequency
cepstral coefficients (MFCCs) based hidden Markov model
(HMM) system may have promising performance on heart sound
classification, when comparing with other features extracted
from the time domain, and short-time Fourier transformation
(STFT) [26]. Maglogiannis et al. found that, a support vector
machine (SVM) based model can perform well in recogni-
tion of aortic stenosis (AS), aortic regurgitation (AR), mitral
stenosis (MS), and mitral regurgitation (MR) heart sounds [27].
An effective and simple method for PCG classification was
proposed in [28], by which the time-frequency representation
and feature reduction were investigated. Ari et al. studied the
capacity of wavelet features and least square SVM (LSSVM),
which can be effective to classify the cases of the normal, the
aortic insufficiency, the aortic stenosis, the atrial septal defect,
the mitral regurgitation, and the mitral stenosis [29]. The discrete

Fourier transformation (DFT) and Burg autoregressive (AR)
were involved in feature extraction for classifying the normal,
the pulmonary and the mitral stenosis heart valve diseases via a
NN classifier [30]. Furthermore, the same author in the afore-
mentioned work, also found the entropy features of sub-bands by
discrete wavelet transformation (DWT). This can be used to clas-
sify the heart sounds via adaptive neuro-fuzzy inference system
(ANFIS) classifiers [31]. Schmidt et al. studied multiple fea-
tures for heart sound classification via a quadratic discriminant
function [32]. Patidar et al. introduced tunable-Q wavelet trans-
formation (TQWT) based features for heart sound classification
in [33], by which the sub-band information extracted can char-
acterise the various types of murmurs in cardiac sound signals.
The wavelet packet transformation (WPT) was involved in [34],
for detecting the abnormality of heart sounds and discriminating
heart murmurs by a SVM classifier. Gharehbaghi et al. indicated
that, the growing time SVM (GTSVM) can be superior to the
conventional SVM in recognition of innocent and pathological
murmurs [35]. Guillermo et al. proposed a radial wavelet neural-
network (RWNN) classifier for heart murmurs detection [36], by
which the performances achieved by MLP and extreme learning
machine (ELM) were also investigated and compared. Deng and
Han introudced a novel framework for heart sound classification
without a segmentation step [37], by which the autocorrelation
features were extracted from the sub-band envelopes calculated
from the sub-band coefficients of the heart sound signal by DWT.
The DCNN fed with the mel-frequency spectral coefficients was
applied to normal/abnormal heart sound classification in [38].
In their study, a publicly accessible database, i.e., the Phys-
ioNet/Computing in Cardiology (CinC) Challenge database [7]
was used. Other techniques like wavelet analysis [39], probabil-
ity assessment [40], and sparse coding [41], were investigated
on the same task as previously mentioned.

Among other studies in recent years, innovative directions
were given in two points: First, finding novel features, e.g.,
empirical wavelet transformation [42], tensor decomposition
from the scaled spectrogram [43], curve fitting and fractal fea-
tures [44], transfer learning based representations [45], and deep
unsupervised learned representations [46]. Second, improving
the decision making process, e.g., modified neighbor annealing
(MNA) [47], and classification tree [48]. One common trend
from these recent studies is to eliminate the reference of ECG
signals for segmentation of the heart sounds, which is of great
importance for a holistic automated system for diagnosis of heart
diseases via the PCG signals.

In this work, we focus on introducing our large scale publicly
accessible heart sound database. We use standard acoustic fea-
tures and machine learning models to benchmark the baseline of
the database, which are reproducible and comparable. Addition-
ally, all the toolkits used in this work can be freely downloaded
and used for research purposes.

III. MATERIALS AND METHODS

In this section, we will firstly introduce the proposed publicly
accessible heart sound database, i.e., HSS. Then, the acoustic
features and machine learning models used for the benchmark
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Fig. 2. The anatomical positions of the heart. We collected the heart sounds from four locations of one subject’s body: auscultatory mitral, aortic
valve auscultation, pulmonary valve auscultation, and auscultatory areas of the tricuspid valve.

Fig. 3. The demographics of the data partition. There are no significant differences between each set in terms of age or gender in HSS corpus.

work will be given. Finally, we give the evaluation metrics
adopted in this study.

A. HSS Database

This study was approved by the ethic committee of the
Shenzhen University General Hospital. There were 170 subjects
involved (female: 55, male:115) with various health conditions
including coronary heart disease, heart failure, arrhythmia, hy-
pertension, hyperthyroid, valvular heart disease and congenital
heart disease amongst others. The ages of participants ranged
from 21 to 88 years (65.4± 13.2 years). The heart sound audio
recording was collected with an electronic stethoscope (Eko
CORE, USA) set up via Bluetooth 4.0, at a 4 kHz sampling
rate. The data was acquired from four locations on the body
(cf. Fig. 2), i.e., auscultatory mitral, aortic valve auscultation,
pulmonary valve auscultation, and auscultatory areas of the tri-
cuspid valve. For each area as mentioned previously, a duration
of 30 seconds on average (ranging from 29.808 s to 30.152 s) in
a sitting or supine position of the subjects was recorded, which
resulted in 845 recordings within 422.82 min length from the
170 subjects.

Experienced cardiologists annotated the data through use of
the golden standard, i.e., Echocardiography. In Echocardiogra-
phy, the mitral and tricuspid valves use area ratios to predict
the reflux: mild (less than 30%), moderate (30%–50%), severe
(greater than 50%). Correspondingly, the HSS has three category

TABLE II
THE NUMBER [#] OF INSTANCES IN EACH DATA SET OF THE HSS CORPUS.
FEMALE SUBJECTS: 55, MALE SUBJECTS:115. AGE: 65.4± 13.2 YEARS

heart sounds to be classified: normal, mild, and moderate/severe.
Due to the diverse nature of human conditions such as these,
we consider a subject independent approach, and split the data
into train, development (dev), and test sets. The distribution of
gender, class, and age are taken into account when partitioning
the data (see Fig. 3), ending up with 502/180/163 instances
for the train/development/test sets collected from 100/35/35
subjects. The detailed information of data split information can
be found in Table II.

B. Acoustic Features

Extracting efficient representations from the analysed signal
is a vital step in the paradigm of machine learning. In this study,
we use standard acoustic features extracted by the open source
toolkit OPENSMILE [49], [50], which was also used to train
the baseline system in the INTERSPEECH 2018 COMPARE
challenge Heart Sound sub-challenge [8].
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TABLE III
THE LLDS FOR COMPARE FEATURE SET. RASTA: RELATIVE SPECTRAL
TRANSFORM; HNR: HARMONICS TO NOISE RATIO; RMSE: ROOT MEAN

SQUARE ENERGY

1) Low-Level Descriptors: The low-level descriptors (LLDs)
are extracted from the frame-level analysed signals, which can
be used to represent the physiological characteristics of the heart
sound. In this study, we use the sophisticated COMPARE feature
set, which includes 65 basic acoustic features (see Table III).
The configuration file known as ComParE_2016, included in
the 2.3 version of OPENSMILE is used. The detailed information
about these LLDs can be referred to [51]. In addition, motivated
by the success achieved in our previous studies [45], we also
extract a Log Mel feature set. Log Mel spectrograms of typical
heart sounds can be seen in Fig. 4.

2) Functionals: We can assume that, the change of the LLDs
over a given period of time can carry important information
for building a model to learn the inherited characteristics of
the analysed audio signals [51]. For heart sound, we apply
supera-segmental features, i.e., we apply functionals [51] to
the aforementioned LLDs extracted from the time signal. The
mechanism of functionals is to map the time series based LLDs
to a scalar value per applied functional (e.g., minimum, maxi-
mum, mean), which results in a single, fixed dimension vector
independent of the length of the input heart sound clip. Details
on the used functionals from the COMPARE feature set can be
found in [51].

C. Machine Learning Models

In this study, we investigate and compare two typical kinds of
machine learning models, i.e., Support Vector Machine (SVM)
and Recurrent Neural Network (RNN), which represents the
static and the dynamic models, respectively.

1) Support Vector Machine: The mechanism of an SVM [52]
is to find a set of hyperplanes in a multi-dimensional space that
instances of different classes can be separated by (see Fig. 5). For
a classification task, a subset of data points from the training set,
called as support vectors, which have the widest possible gap,
will be selected as pivots to support the hyperplane on both sides
of the margin. Then, the instances from the test set will be firstly

Fig. 4. The Log Mel spectrogram images of the three heart beat
classes. The three images are extracted from the first 4 s audio clip of
the audio files.

Fig. 5. The mechanism of training a SVM classifier in a binary classi-
fication scenario. The best hyperplane can be achieved by maximising
the margin during the process of training a SVM classifier. The support
vectors (indicated by circles) are the data points with the widest possible
gap; w is a normal vector; b is a bias.
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Fig. 6. The structure of a RNN model. W , and U represent the
neuron weight matrix, and the recurrent weight matrix, respectively. h
represents a hidden layer.

mapped to this multi-dimensional space, and the predictions are
given based on which side of the gap they will fall onto.

In a binary classification scenario, an SVM aims to find the
optimal margin separating hyperplane by solving the following
optimisation problem [52]:

minimise :
1

2

n∑

i,j=1

αiαjyiyjK(xi,xj)−
n∑

i=1

αi,

subject to :

n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n, (1)

where αi is called the Lagrange multiplier of a training sample
(xi, yi), andC is a hyper-parameter to control the generalisation
of the trained SVM model. To make the SVM model available
to analyse linear or nonlinear separable problems, a kernel
function, i.e.,K(xi,xj) is used. There are some commonly used
kernel functions including linear, polynomial, and radial basis
function (RBF). The optimisation problem mentioned above
can be solved by the sequential minimal optimisation (SMO)
algorithm [53].

It should be noted that, SVMs were originally designed for
binary classification problems, however there are some methods
developed to make it feasible for SVMs to solve multi-class
problems. Among these methods, there are two popular ones,
i.e., one-versus-all, and one-versus-one [54]. In this study, the
one-versus-one is used, by which the final prediction of a test
sample will be given by the most frequently voted classifier
among the ones trained in pairs by a binary SVM classifier at a
first step.

2) Recurrent Neural Network: In the past few years, deep
learning [55] has dominated the machine learning commu-
nity, achieving high performance in many fields including
speech recognition [56], image recognition [57], or object detec-
tion [58], with many advantages shown, particularly for speech
in the health domain [59]. In this study, we investigate the
RNN [60], for its performance in recognising heart sounds.
Unlike the normal feed-forward neural network (FNN), an RNN
can learn the contextual information from the sequential input
(see Fig. 6), taking into account the inherent time dependencies
of the heart beat signal.

Nevertheless, when training a RNN model, inevitably prob-
lems occur, such as vanishing gradient [61] in the backpropa-
gation through time (BPTT) [62], which can restrain the RNN
in learning long-term contextual information. To overcome the
issue of vanishing gradient, more complicated topologies, such

as having a memory cell to preserve long-term information are
needed. Two popular structures can achieve this aim, i.e., long
short-term memory (LSTM) cells [63] and gated recurrent unit
(GRU) cells [64].

In an LSTM cell (see Fig. 7(a)), the inputs include the output
from the layer below (here for simplicity, we use xt), and the
output from the current layer at a previous time step (ht−1). A
candidate value c̃t is generated by the aforementioned inputs.
There are three gates in an LSTM cell, i.e., input gate (i), output
gate (o), and forget gate (f ). The mechanism of an LSTM cell
can be described as:

it = σ(W ixt +U iht−1 + bi), (2a)

ot = σ(W oxt +Uoht−1 + bo), (2b)

f t = σ(W fxt +Ufht−1 + bf ), (2c)

c̃t = tanh(W cxt +U cht−1 + bc), (2d)

ct = f t � ct−1 + it � c̃t, (2e)

ht = ot � σh(ct), (2f)

where σ is the logistic sigmoid function, and � denotes the
element-wise multiplication. In addition, c, and b represent the
cell state, and the bias matrix, respectively. We can see that, if
the forget gate is open (gate activation values are close to one)
and the input gate is closed (gate activation values are close to
zero), the activation of the cell cannot be overwritten by the new
inputs. At this point, the information from the previous time
steps can then be accessed by opening the output gate.

Compared with LSTMs, GRUs have a simpler structure (see
Fig. 7(c)): an update gate z, a reset gate r, an activation h, and
a candidate activation h̃. The mechanism of a GRU cell can be
defined as:

rt = σ(W rxt +U rht−1 + br), (3a)

zt = σ(W zxt +Uzht−1 + bz), (3b)

h̃t = tanh(W hxt +Uh(rt � ht−1) + bh), (3c)

ht = zt � h̃t + (1− zt)� ht−1. (3d)

The unit will be overwritten if the update gate is closed, which
helps the model to remember the existing contextual information
from inputs for a long series of time steps. In this way, the error
can be back-propagated without too much attenuation by passing
through the update gate when it is open [64]. For simplicity, we
use LSTM, and GRU to represent the implemented LSTM RNN,
and GRU RNN, respectively in the proceedings sections.

D. Fusion Strategy

There are two main fusion strategies in this work, i.e., early
fusion, and late fusion. In the scenario of early fusion, features
will be concatenated directly before being fed into the machine
learning model. On the other hand, late fusion is implemented
by independently training the models with different feature sets,
and the final prediction will be made by using a voting method. In
this study, we investigate two late fusion strategies (refer to [65]),
i.e., the majority voting (MV), and the margin sampling voting
(MSV). For MV, the final prediction will be given to the one
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Fig. 7. The structures of the LSTM and the GRU cells.

TABLE IV
THE UARS ([%]) ACHIEVED BY THE PROPOSED MODELS ON THE DEVELOPMENT AND THE TEST SETS. THE RESULTS SHOWN BY THE DEVELOPMENT SET

ARE ACHIEVED BY THE OPTIMISED PARAMETERS. CHANCE LEVEL: 33.3%.

which has been voted for most commonly by the individually
trained classifiers. In the strategy of MSV, the final prediction
will be set to the choice made by the ‘most confident’ individual
classifier, which has the biggest margin sampling value [66], i.e.,
the difference between the first and the second highest posterior
probability value estimated by the model.

E. Evaluation Metrics

As is common with health-related data, the HSS is an imbal-
anced database (see Table II), making it suitable to be evaluated
by the unweighted average recall (UAR) [67] rather than the
traditionally used weighted average recall (WAR), i.e., the ac-
curacy. The UAR is defined as:

UAR =

∑Nc

i=1 Recalli
Nc

, (4)

where Nc is the number of classes (here in this study, Nc = 3).

IV. EXPERIMENTAL RESULTS

In this section, the experimental results for benchmarking
the HSS database will be given. To make the relevant studies
comparable and reproducible as outline, we use standard and
opensource toolkits.

A. Experimental Setup

The acoustic features (both of LLDs and functionals) are
extracted by our toolkit, OPENSMILE [50]. The SVM model is
implemented by LIBSVM [68]. The RNN model is implemented
based on Keras. All the hyper-parameters of the classifiers are
tuned and optimised on the development set, and applied to the
test set after concatenation of the train and development sets.
We selected the linear kernel for the SVM model as it achieved
excellent performance in the previous experiments [8]. The
C-value of the SVM is optimised within a grid searching strategy
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Fig. 8. Confusion matrices of the best models achieved on the test set.

from {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1.0}. For training
the RNN models, we use a three-layer structure (480–120–60)
for both of the LSTM and GRU cells. In addition, a highway
layer (60), a fully connected layer (30), and a final linear layer
with softmax activation are added to the LSTM, or GRU layers.
The optimiser for RNN models is ‘rmsprop’. The batch size is
set as 128, and the learning rate is 0.001. During training RNNs,
we train the model for 90 epochs on the training set, and compare
the performance on development set at each 10 epochs. Then, the
best result is chosen from the nine models, and the corresponding
epoch number is applied to the model used for test set.

We need to note that, to avoid each audio instance containing a
large number of sequences, we first segment the audio instances
into clips with a window size of 4 000 ms and a step size of
3 200 ms (the first segment level). Then, we segment the audio
clips with a window size of 800 ms and a step size of 400 ms
(the second segment level) for training the sequential model, i.e.,
the RNN models. The final prediction will be obtained via the
predictions of the first segment level using the MSV strategy.

B. Results

Table IV shows the UARs achieved by the proposed models
on the development, and the test set, respectively. Generally, in
this study, SVM (49.7% of UAR) shows a better performance
than RNN, for both the LSTM RNN (43.3% of UAR) and the
GRU RNN (42.3% of UAR). The confusion matrices of the best
models achieved on the test set are illustrated in Fig. 8. We find
that, the RNN models (LSTM, or GRU) outperform the SVM
model on the recall of ‘mild’ type of heart sounds. On the other

TABLE V
THE UARS ([%]) ACHIEVED BY LATE FUSION OF THE BEST THREE MODELS

OF SVM, LSTM, AND GRU. CHANCE LEVEL: 33.3%.

hand, the SVM model can achieve better recalls for both of the
‘normal,’ and the ‘severe’ types of heart sounds. We tried to
fuse the best models (see Table V, and Fig. 8(d)) via the strategy
of majority voting (MV), and margin sampling voting (MSV).
However, the best result (42.9% of UAR) achieved on the test
set still yields to the single SVM model (49.7% of UAR).

V. DISCUSSION

In this section, we will discuss the current benchmark, the
comparison with other published work on HSS, and limitations,
as a means of suggesting future directions.

A. Benchmarks of This Work

We can see that, the Log Mel feature set performs the best
in this study (refer to Table IV). The SVM model trained by
Log Mel benchmarks the HSS in this study within an UAR of
49.7%. The eGeMAPS feature set has the minimum dimension,
which can reach a comparable performance when fed into a
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TABLE VI
CURRENT STATE-OF-THE-ART WORK ON THE HSS DATABASE IN PUBLISHED LITERATURE.

LDA: LINEAR DISCRIMINANT ANALYSIS; MLP: MULTILAYER PERCEPTRON

SVM model (UAR at 46.0%). On the other hand, when feeding
all of the features (6 373 dimensions) into the models, the
performance cannot be improved. In fact, training the models
within redundant features may lead to a decrease in performance.
The performance of formant-based features (F1-F3) yields to
the MFCCs. We can think that, formants carry important infor-
mation about the structure of the sound generator. However, the
complicated anatomical structure of the heart can make formants
themself insufficient for revealing the representations of the
pathological sounds.

When comparing the classifiers trained by the Log Mel feature
set, SVM outperforms RNN (LSTM, or GRU). It is reasonable
to think that, due to the limited number of instances, the ca-
pacity to learning sequential information from the heart sound
is restrained. In future work, we will continuously collect the
heart sound data. The fused models cannot outperform the single
models in this work (see Table V). Therefore, another future
direction is to find a more efficient fusion strategy to exploit the
recognition capacity of each individual classifier.

B. Comparison With Other Work

We show the current state-of-the-art work on the HSS corpus
in published literature in Table VI. We should note that, untill
now, the INTERSPEECH 2018 COMPARE challenge baseline
keeps the highest UAR for the HSS. This record was achieved
by a late fusion (MV) by two optimised models, i.e., a SVM
trained by COMPARE LLDs processed by the bag-of-audio-
words (BoAW) approach [71], and an SVM trained by represen-
tations learnt by deep sequence to sequence autoencoders [72].
The models can be reproduced by our open source toolkits,
OPENXBOW [73] and auDeep [74]. There were no winners
in the INTERSPEECH 2018 COMPARE challenge heart sound
sub-challenge. In addition to the official baseline paper [8], there
are three published works which used our HSS database [46],
[69], [70]. In the study of [69], the authors proposed a 1D-CNN
time-convolution (tConv) layers based model pre-trained by the
PhysioNet CinC Challenge database to learn higher represen-
tations from the heart sounds. In addition, they also investi-
gated representation learning (RL) by sequence to sequence
autoencoders. Finally, in their study, an ensemble model by
hierarchically fusing the SVM models trained by a COMPARE
feature set, and the model trained by tConv layers achieved the
an UAR of 42.1% on test set. Gosztolya et al. proposed an
interesting idea to extract the BoAW representations from the

frame-level DNN posteriors [70]. However, as they indicated,
this idea failed in the heart sound recognition task due to the
insufficient information provided from the sliding windows,
which could only contain one heart beat. Finally, the highest
UAR achieved in their study (49.3%) was a model by late
fusion strategy based on the instance-wise posterior estimates
of SVM models trained on the COMPARE feature set, the BoAW
representations from MFCCs, and the binned energy feature set.
An unsupervised feature learning method based on sequence to
sequence autoencoders contributed to the INTERSPEECH 2018
COMPARE challenge baseline, and is described in deatils in [46].
An early fusion of different models trained by clipping the
amplitude below certain thresholds (−30 dB, −45 dB, −60 dB,
and −75 dB) utilising the AUDEEP open source toolkit [75]
reached a UAR of 47.9% in the work.

We can see from the aforementioned studies, the COMPARE
feature set, and the SVM model dominated the results. These
expert designed hand-crafted features, and the conventional
popular classifier, are demonstrated to be robust and efficient
for heart sound classification. The state-of-the-art deep learning
based techniques can be promising in extracting some higher
representations without any domain knowledge. However, the
performance between the development set and the test set has a
substantial gap [8], [46], [69]. One reasonable explanation for
this phenomenon is that, due to the extremely limited data size,
overfitting occurred in the development set. Positively, we are
happy to see that, there are an increasing number of works using
our HSS database. We continue to find novel representations,
or robust models for the heart sound classification from the
community which shares the common interests.

C. Current Limitations and Outlook

As previously discussed, the baseline [8] was 56.2% in
INTERSPEECH 2018 COMPARE Challenge heart sound sub-
challenge, and it relied on a combination of all used optimised
models by using sophisticated late fusion strategies. For single
models, the current benchmark is 49.7% in this work. First of
all, the limited data size constrains the development of state-
of-the-art deep learning techniques. On the other hand, future
directions can be given by using a more advanced data augmenta-
tion method, like generative adversarial networks (GANs) [76],
which recently were successfully applied to the study of snore
sound recognition [77]. Secondly, unlike the typical audio
signals, e.g., speech or music, the heart sound is a kind of
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physiological signals. Therefore, some more advanced signal
processing methods should be considered. For instance, the
wavelet transformation had been found very efficient in our
previous studies on snore sounds [78]–[82]. Thirdly, annotating
the heart sound data is an expensive, time-consuming task, which
needs professionally trained experts in cardiology. In order to
reduce the future human expert annotation work, active learn-
ing [83], [84], and cooperative learning [85] can be introduced,
and applied to this dataset. Last but not least, the fundamental
knowledge, e.g., the relationship between the acoustical repre-
sentations and the anatomical changes in the heart, should be
investigated deeply in future work.

VI. CONCLUSION

In this study, we firstly introduced a publicly accessible
database, i.e., HSS. Then, the state-of-the-art techniques in
physiological audio classification were described. A benchmark
experiment was given based on the methodologies proposed
by this work. We discussed the results and the limitations, and
pointed out some future directions. A SVM model trained within
the Log Mel features achieved the best UAR (49.7%) in this
work.
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