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Abstract 
 
 
Currently there are many works in the literature focused on the analysis of heart sounds, specifically on the
development of intelligent systems for the classification of normal and abnormal heart sounds, many of these 
works have reported good results for precision, specificity, and sensitivity. However, the available heart sound 
databases are not yet large enough to train generalized Machine Learning models. Therefore, there is interest in 
the development of algorithms capable of generating heart sounds that could augment current databases. 
 
In this doctoral thesis different methods proposed for the analysis and synthesis of normal and abnormal heart 
sounds are presented. During the development of this research, the following contributions to the state of the 
art were achieved: 
 
i) An algorithm based on the empirical wavelet transform (EWT) and Normalized Average Shannon Energy 
(NASE) was implemented to improve the automatic segmentation stage of heart sounds. The results of this 
method were favorable compared to the state of the art using the same set of test data.
 
ii) Different feature extraction techniques were implemented for cardiac signals using Mel-Frequency Cepstral 
Coefficients (MFCC), Linear Prediction Coefficients (LPC) and power values. In addition, several Machine 
Learning models were tested, such as Support Machine Vector (SVM), K-Nearest Neighbors (KNN), Random 
Forest and Artificial Neural Network (ANN) for the automatic classification of normal and abnormal heart 
sounds. The results obtained in each of the tests show that the proposed methods deliver better results of 
accuracy, specificity and sensitivity compared to works published in the state of the art. 
 
iii) A model based on Generative Adversarial Networks (GAN) was designed to generate normal synthetic heart 
sounds. Additionally, a denoising algorithm is implemented using the Empirical Wavelet Transform (EWT), 
allowing a decrease in the number of epochs and the computational cost that the GAN model requires. A 
distortion metric (Mel-Cepstral Distortion) was used to objectively assess the quality of synthetic heart sounds.
The proposed method was favorably compared with a mathematical model that is based on the morphology of 
the Phonocardiography (PCG) signal published in the state-of-the-art. Additionally, different heart sound 
classification models proposed in the state-of-the-art were also used to test the performance of such models 
when the GAN-generated synthetic signals are used as test data. In this experiment, good accuracy results were 
obtained with most of the implemented models, suggesting that the GAN-generated sounds correctly capture 
the characteristics of natural heart sounds. 
 
iv) Finally, a model based on the GAN architecture is proposed, which consists of refining synthetic cardiac 
signals obtained by a mathematical model with characteristics of real cardiac signals. This model has been 
named FeaturesGAN and does not require a large database to generate different types of heart sounds. Different 
metrics were also used to evaluate the quality of cardiac signals, such as: MCD, Structural Similarity Index 
Measure (SSIM), Principal Component Analysis (PCA) and t-SNE. Similarly, classification tests were
performed using the synthetic signals generated by FeaturesGAN as a test data set in different Machine Learning 
models published in the state of the art. Finally, subjective evaluations based on Mean Opinion Score (MOS) 
tests were carried out with expert doctors, in order to validate the quality of the audios. All the results obtained 
in the different tests and metrics were satisfactory, indicating that the normal and abnormal heart sounds 
generated by the FeaturesGAN model have very similar characteristics to real signals. 
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1. Introduction 
 
According to the World Health Organization (WHO), cardiovascular diseases are among the leading causes of 
death worldwide [1]. An updated report from the American Heart Association on heart diseases statistics shows
that 31% of deaths worldwide are generated by heart diseases (about 17.7 million each year) [2]. Typically, 
people who live in rural zones face an overall lower quality of life than their urban counterparts, for example 
having limited access to even primary-care programs for prevention and early detection of heart conditions [2]. 
Tobacco use, unhealthy eating, and lack of physical activity are the main causes of heart disease [1]. 

Currently, there are sophisticated equipment and tests for diagnosing heart disease, such as: electrocardiogram, 
holter monitoring, echocardiogram, stress test, cardiac catheterization, computed tomography scan, and 
magnetic resonance imaging [3]. However, most of this equipment is very expensive, and must be used by 
specialized technicians and medical doctors, which limits its availability in rural and urban areas that do not 
have the necessary financial resources [4]. Therefore, even today, it is common in such scenarios for non-
specialized medical personnel to rely on basic auscultation with an stethoscope as a primary screening tool for 
the detection of many cardiac abnormalities and heart diseases [5]. However, to be effective, this method 
requires a sufficiently trained ear to identify cardiac conditions. Unfortunately, the literature suggests that in 
recent years such auscultation training has been in decline [6–8]. 

The genesis of heart sounds is closely related both to the vibration of the entire myocardial structure and to the 
vibration of the heart valves during closure and opening. A recording of heart sounds is composed of a sequence 
of cardiac cycles. A normal cardiac cycle is composed of the S1 section (generated by the closing of the 
atrioventricular valve), the S2 section (generated by the closing of the semilunar valve), the systole (located 
between S1 and S2) and diastole (located between S2 of the current cycle and S1 of the next one) [9]. 
Abnormalities are represented by murmurs that usually occur in the systolic or diastolic intervals [10]. In Figure 
1, examples of a normal and an abnormal cardiac cycle are shown.

Figure 1. Cardiac cycle wave: A.) Normal; B.) Abnormal

Health professionals use different attributes of heart murmurs for their classification, the most common are: 
Timing, cadence, duration, pitch and shape of murmur [11] and [12]. They must have an ear sufficiently trained 
to identify each of these attributes.  

Therefore, the development of a system that allows a classification of normal and abnormal heart sounds would 
be of great help for arriving to an accurate diagnosis by health professionals. In addition, it could generate a 
positive impact in those rural zones that have high mortality rates due to heart disease and do not have staff and 
equipment specialized in cardiology [2]. However, access to data for the construction of these intelligent 
systems is one of the main limitations today. 
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To date, many investigations related to the classification of normal and abnormal heart sounds have been 
published. Good accuracy, specificity and sensitivity results have been reported. However, in terms of 
predicting the type of abnormality, no outstanding advances have been found in the literature due to the lack of 
datasets labeled with their respective types of anomaly.  

Most of the published works are based on machine learning, using supervised learning. Therefore, a labeled 
database with numerous samples of normal and abnormal HS is needed to train the classification model. Table 
1 describes the different databases that are available on the web and have been used in several research works.  

Table 1. Heart sound (HS) databases available on the web 

Data Base Total # of HS 
samples 

Data Base Total # of HS 
samples 

University of Michigan Health 
System [13] 

23 University of Haute Alsace [16] 79 

University of Washington [14] 16 Dalian University of Technology 
[16] 

673 

Thinklabs [15] 105 Shiraz University [16] 114 
Massachusetts Institute of 

Technology [16] 
409 Skejby Sygehus Hospital [16] 35 

Aalborg University [16] 695 Shiraz University fetal HS [16] 211 
Aristotle University of Thessaloniki 

[16] 
45 iStethoscope Pro iPhone app [17] 176 

Tossi University of Technology [16] 174 Digital stethoscope DigiScope [17] 656 

The main limitations of these databases are: i.) They are not sufficiently labeled, for example, they do not 
describe the type of abnormality; ii.) There is no balance between the number of normal and abnormal samples; 
iii.) It is possible that the size of the database is not sufficient to obtain a generalized classification model and 
even less to classify specific types of abnormalities.  

It should be mentioned, that a recording of heart sounds can be mixed with external noise (from the 
environment) or they can present innocuous murmurs that do not represent a cardiac condition, for this reason 
the classification system can be mistaken when selecting some type of cardiac anomaly.  

Machine Learning models have been published on the classification of types of anomalies, such as: aortic 
stenosis, mitral stenosis, aortic regurgitation, mitral regurgitation and ventricular defect. These works do not 
use enough training samples to obtain good generalization and in several cases the cardiac signals are generated 
by a simulator. Then, these results do not guarantee a good performance of the algorithm if used in the field. 

One solution to overcome these limitations is to build a database with abnormal HS types, well labeled with the 
help of cardiologists. However, this task requires a lot of time and dedication, since many samples of each type 
of abnormality are required. Another possible solution is the implementation of a model for the generation of 
synthetic sounds, capable of outputting varied synthetic heart sounds indistinguishable from natural ones by 
medical personnel. Such model could be used to augment existing databases for training robust machine 
learning models. However, heart sound signals are highly non-stationary, and their level of complexity makes 
obtaining good generative models very challenging.  

In the literature, there are several publications related to the generation of synthetic heart sounds [18-27]. All 
these works are based on mathematical models to generate the S1 and S2 sections of a cardiac cycle, and to date 
there is no model that allows generating types of murmurs. On the other hand, the systolic and diastolic intervals 
of the cardiac cycle are not adequately modeled, and as a result, do not present the variability recorded in natural 
normal heart sounds. Therefore, these synthetic models are not suitable to train HS classification models.
Additionally, a basic time-frequency analysis of these synthetic signals shows that they are very different from 
natural signals (see Figure 2). 
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Figure 2. A) Synthetic HS in the time domain; B) Natural signal in the time domain; C) Synthetic signal in the frequency 
domain; D) Natural signal in the frequency domain. 

 
On the other hand, in recent years there have been great advances in the synthesis of audio, mainly speech, 
using machine learning techniques, specifically with deep learning. In Table 2, several proposed methods to 
improve audio synthesis are presented. Therefore, taking into account that cardiac sounds are also audio signals 
and are perceived by human ears through the auscultation technique, it could be considered that these Deep 
Learning methods could also present good results in the synthesis of cardiac signals.  

Table 2. Previous methods for generation of synthetic audio. 

Year Author Proposed Method Synthetic Signal 

2015 
Aaron van den Oord et al. 

[28] 
WaveNet: Probabilistic and autoregressive model 

based on deep neural networks (DNN) 

Music. 

Text to speech 
2017 Jesse Engel et al. [29] WaveNet and Autoencoders Musical notes 

2017 Bajibabu Bollepalli et al. 
[30] 

Generative Adversarial Network (GAN) Glottal waveform 

2018 Giorgio Biagetti et al. [31] Hidden markov model Text to speech 
2019 Chris Donahue et al. [32] WaveGAN: GANs unsupervised Intelligible words 

According to the limitations presented in the current models for the generation of synthetic heart sounds and 
taking into account the significant advances in voice synthesis using deep learning methods, in this work we 
propose a model based on generative adversarial networks (GANs) to generate heart sounds that can be used to 
train machine learning models. In addition, we do an analysis of cardiac signals proposing models for the 
automatic segmentation and classification of heart sounds, which are compared with the state of the art. In this 
sense, having a model for the generation of synthetic sounds, capable of outputting varied synthetic heart sounds 
indistinguishable from natural ones by medical personnel, could be used to augment existing databases for 
training robust machine learning models. 

This document is organized as follows: Section 2 presents the state of the art and contributions in the analysis 
and synthesis of heart sounds; Section 3 indicates the research hypothesis; in Section 4, the proposed methods 
and results obtained in the automatic segmentation and classification of heart sounds are described; section 5 
details the methods proposed in the generation of heart sounds, and the results obtained in each experiment; and 
finally the document concludes in Chapter 6 with conclusions and further work. 
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2. State of the art and Contributions 
 
In this chapter, we present published advances in the state of the art related to the analysis and synthesis of heart 
sounds. In the case of analysis, we emphasize the proposed methods or signal processing techniques for the 
segmentation and classification automatic of heart sounds. On the synthesis side, we divide the state of the art 
into two approaches: i) The generation of heart sounds based on mathematical models through systems of 
differential equations, in order to obtain a real representation of cardiac signals; and ii) progress in the 
implementation of Generative Adverse Networks (GAN) for the generation of biomedical signals, such as 
electrocardiography (ECG), electroencephalography (EEG), electromyography (EMG), and 
photoplethysmography (PPG). 
 
 
2.1. Analysis of Heart sound: State of the art 
 
A system for automatic classification of cardiac sounds has four main stages: i.) Pre-processing: It attenuates 
the unwanted noise that was acquired at the time of recording the sound. ii.) Segmentation: In this stage the 
boundaries for each cycle’s segment (S1, S2, systole, diastole) are determined. iii.) Feature Extraction: Signal 
processing techniques are used to extract relevant characteristics from each type of cardiac signal (normal and
abnormal), which helps to discriminate one class from another. iv.) Classification: Machine learning models 
are generally used in this stage, where the input corresponds to the characteristics extracted in the previous step.  
 
Different methods have been proposed in the state-of-the-art approaches to create an intelligent system that 
allows for discrimination between normal and abnormal heart sounds. Below is a list of several works related 
to the pre-processing, segmentation, feature extraction and classification of these signals.  
 
In [33], the envelope of the cardiac signal was calculated from the normalized average Shannon energy (NASE), 
specifying a threshold to identify the candidate peaks for S1 and S2; then, several criteria were used for the 
selection of definitive peaks for S1 and S2.  
 
The method used in [34] calculates the Shannon energy of the local spectrum calculated by the S-transform for 
each sample of the heart sound signal. Finally, the authors extracted features based on the singular value 
decomposition (SVD) of the matrix S to distinguish between S1 and S2.  
 
The decomposition and reconstruction of cardiac signals with fifth-level discrete wavelets using the frequency 
bands of the approximation coefficient a4 (0 to 69 Hz) and the detail coefficients d3 (138 to 275 Hz), d4 (69 to 
138 Hz) and d5 (34 to 69 Hz) have been used as an alternative to extract normal heart sounds and facilitate the 
identification of S1 and S2 [35].  
 
In several studies, the decomposition wavelet has been used to reduce signal noise and hidden Markov models 
(HMM) to segment the signal, considering each segment (i.e., S1, systole, S2 and diastole) as a state [36]. One 
of the most frequently used segmentation algorithms in the state-of-the-art models was proposed in [37]; this 
algorithm is based on logistic regression and hidden semi-Markov models and uses electrocardiographic signals
(ECG) as a reference to make the annotations of the four segments of a heart cycle (S1, S2, systole and diastole). 
However, this method fails when the cardiac signal has significant murmurs that are longer than normal heart 
cycles and there is an irregular sinus rhythm. In [38], the authors present the performance of the algorithm by 
testing it with different databases of heart sounds and describe the limitations mentioned above.  

In [39] a fourth-level, sixth-order Daubechies filter was used on the sound signal. The authors removed all the 
details at each level and reconstructed the signal using the approximation coefficients. Finally, they used the 
spectrogram to extract the signal below 195 Hz. In [40], a Butterworth band pass filter with an order of two and 
cutoff frequencies from 25 to 400 Hz was applied to the signal. The spikes were removed from the signal using 
a spike removal algorithm, as presented by Schmidt [41]. Subsequently, the authors used a homomorphic filter 
to extract the envelope of the cardiac signal. In [42], a fifth-order Chebyshev type I low-pass filter with cut-off 
frequencies of 100 Hz and 882 Hz was applied. Then, the Shannon envelope of the normalized signal was 
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computed. Similarly, in [43], the authors used a sixth-order Butterworth bandpass filter with cut-off frequencies 
of 25 Hz and 900 Hz and then extracted the signal envelope using Shannon’s average energy.  

In general, although all the methods listed above propose different types of filters in their pre-processing stage, 
they are not yet sufficiently efficient to attenuate unwanted signals (external noise, murmurs) and amplify S1 
and S2 sounds; therefore, the segmentation algorithm can easily make errors in the identification of each cardiac 
cycle. On the other hand, several segmentation algorithms use fixed amplitude thresholds to detect S1 and S2 
sounds, but these can fail when these sounds have a low amplitude that does not exceed the stipulated threshold, 
as well as when some unwanted noise exceeds the threshold. Table 3 summarizes different processing methods 
proposed in the literature along with their year of publication.  

Table 3. Summary of previous work in the automatic segmentation of heart sounds. 

Author Dataset Method 

[33] 
37 recordings of heart 

sounds 
Normalized Average Shannon Energy 

[34] 
80 recording of heart 

sounds 
S-transform and Shannon Energy 

[35] 
77 recording of heart 

sounds 
Wavelet decomposition and reconstruction (normalized average 

Shannon energy (NASE)) 

[36] 
Physionet [44] and Pascal 

[45] 
Hidden Markov model (HMM) 

[37] Physionet database [44] Logistic regression and hidden semi-Markov model (HSMM) 

[39] 

Pascal database [45] 

Wavelet Decomposition and Spectrogram 

[40] Butterworth band pass filter with order 2 and Homomorphic filter 

[42] Chebyshev type I low-pass filter and Shannon envelope 

[43] Band-pass Butterworth sixth-order filter and Shannon envelope 

[46] Physionet database [44] HSMM–convolutional neural network (CNN) 

[47] Pascal database [45] Discrete Wavelet Transform and Hilbert transformation 

[48] 
Physionet [44] and Pascal 

[45] 
Adaptive sojourn time HSMM 

 
The Physionet and Pascal databases are the most widely used databases for the analysis of heart sounds. 
Physionet is composed of eight data sets and contains 3153 recordings in total, lasting from 5 seconds to just 
over 120 seconds, of which 2488 recordings are labeled as normal and 665 recordings are labeled as abnormal, 
presenting an imbalance in the data set [44]. The Pascal database is composed of two data sets and contains the 
following categories: normal (351 recordings), murmur (129 recordings), extra heart sound (65 recordings) and 
artifact (40 recordings), the audio files are of varying lengths, between 1 second and 30 seconds. Unlike 
Physionet, the manual segmentation of a group of heart sound recordings is specified in this database [45].  
 
On the other hand, different techniques for the extraction of characteristics and machine learning models have
been proposed for the automatic classification of heart sounds in order to obtain good accuracy, specificity and 
sensitivity in the results. Many researchers have worked with features in the time and frequency domains, as 
well as perceptual-based features. Table 4 shows the results obtained from various authors, specifying the 
number of cardiac cycles used for the experiment, the segmentation and feature extraction methods and the 
machine learning (classifier) model.  
 
In [49], 19 Mel-frequency cepstral coefficients (MFCCs) and 24 discrete wavelet transform (DWT) features 
were extracted from a cardiac cycle. These features were used as inputs to a Support Vector Machine (SVM) 
model to classify normal and abnormal heart sounds, obtaining an accuracy of 97%.  
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Table 4. Summary of the state-of-the-art approaches. Ref: Reference, N: normal, A: abnormal, T: total, NN: does not specify the data, F: features, A: accuracy, E: specificity, S: 
sensibility, DWT: discrete wavelet transform, LPC: linear prediction coefficients, SVM: support vector machine, KNN: K-nearest neighbor, RF: random forest, LB: LogitBoost, 

CSS: cost-sensitive classification, DNN: dense neural network, ANN: artificial neural network. 
 

Ref Number of heart cycles Segmentation Feature Extraction (Number of features) Classifier Results 

[49] N:200; A:800 Manually MFCC + DWT (43 F) SVM A: 97% 

[50] N: 2488; A: 665 Not applicable Statistical domain, Frequency domain and MFCC (27 F) XgBoost S: 94.5%; E: 91.3%; A: 92.9% 

[51] N: 2488; A: 665 Manually 
1D – Convolutional neural network (CNN) DNN S: 91.5%; E: 71.6%; A: 87.5% 

MFCC and 2D – CNN DNN S: 92.5%; E: 76.6%; A: 89.3% 

[52] N: 320; A: 141 Not applicable Long short-term memory (LSTM) DNN A: 80.8% 

[53] N: 399; A: 399 [13] Time, time-frequency and perceptual domain. (90 F) ANN S: 90,1%; E: 93,1% 

[54] N: 669; A: 722 [13] MFSC and CNN DNN A: 93,7% 

[55] 

N: 2488; A: 665 

[13] Time and frequency domain, wavelet and statistics (29 F) RF + LB + CSS S: 79.6%; E:80.6% 

[56] 
Hilbert transformation 

Statistical properties, Heart rate (53 F) Logic rules S: 91.3%; E:77% 

[57] CWT SVM, KNN A: 86% 

[58] [13] Time features and MFCC (13 F) SVM S: 91.8%; E: 82%; A: 97% 

[59] [13] Sparse coding and time domain features (25 F) SVM S: 84.3%; E: 77.2%; A: 80.7% 

[60] 
[13] 

Time domain, frequency domain and entropy (40 F) 
BP Neural networks S: 68.3%; E: 94%; A: 88.5% 

[13] Logistic Regression S: 75.6%; E: 87.7%; A: 72.5% 

[61] 

N: 115; A: 287 

Manually Curve fitting, MFCC (25 F) KNN 

A: 92% 

N: 386; A: 103 A: 81% 

N: 7; A: 22 A: 98% 

[62] N: 40; A: 80 Manually DWT (50 F) KNN, Fuzzy C-Means A: 86.67% 

[63] 
N: 336; A: 171 DWT and Shannon 

energy 
Spectrogram and tensor decomposition (100 F) SVM 

A: 83% 

N: 2575; A: 665 A: 88% 
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In [50], the authors extracted a total of 27 features: 13 MFCC features, 10 statistical features and four frequency 
features. In that work, they used an XgBoost algorithm, obtaining an accuracy of 92.9%. In [53], a total of 90 
features were extracted in the time domain, time–frequency and perceptual dimensions. These were used as the 
input to a two-layer feed forward neural network, achieving 90.1% sensitivity and 93.1% specificity in the 
validation process, using samples that present high sound quality. In [54], deep convolutional neural networks 
and MFCCs were used for the recognition of normal and abnormal heart sounds, achieving an overall accuracy 
of 84.15%.  
 
The experiments in [50,51,55–60,63] were performed with the Physionet database [44]. In [55], features were 
extracted in time, frequency, wavelet and statistics, obtaining a total of 29 features. In the classification stage, 
a nested set of ensemble algorithms consisting of random forest (RF), LogitBoost (LB) and cost-sensitive 
classification (CSS) were used, obtaining an overall accuracy of an 80.1%, specificity of 80.6% and sensibility
of 79.6%.  
 
Tables 3 and 4 show different methods used for automatic segmentation and classification of heart sounds, 
respectively. However, the techniques used in segmentation tend to fail when the sound signal contains 
murmurs or external noise with amplitude peaks equal or greater than the peaks of the S1 or S2 sounds. As for 
automatic classification, it tends to require very complex feature extraction and classification models that limit 
its use in real-time applications due to their high computational cost.  
 
2.2. Synthesis of Heart sound: State of the art 

Despite important research progress in the analysis of PCG signals, with good results for accuracy, specificity 
and sensitivity, the number of samples used for training does not guarantee a generalizable model, and even 
less the suitability for classification of types of abnormalities. Therefore, the size of the databases is a great 
limitation for the advancement of this research.  
 
An alternative could be the generation of synthetic heart sounds that serve to train the classification model.
However, in the state of the art we have not found studies that use this type of synthetic signals to train machine 
learning models and compare the performance of the classifier using real signals in the tests. Table 5 presents 
some published works on the synthesis of heart sounds, this information was obtained from the Web of Science, 
Scopus and IEEE databases. Figure 3 shows the results of the signals obtained by several proposed models and 
a real normal cardiac signal. Several of these mathematical models are described below. 

Table 5. Timeline of comparison methods for generation of synthetic heart sound 
 

Year Author Proposed method 
1992 Y. Tang et al. [18] The exponentially damped sinusoid model 
1995 T. Trang et al. [19] S1 and S2 are modeled as transient-linear-chirp signals 
1998 X. Zhang et al. [20] The model based on a sum of Gaussian modulated sinusoids 
2000 J. Xu et al. [21] S1 and S2 are modeled as transient-nonlinear-chirp signal 
2009 C. Toncharoen et al. [22] A heart-sound-like chaotic attractor 

2011 Almasi et al. [23] 
A Dynamical Model for Generating Synthetic Phonocardiogram 

Signals.  

2012 Tao et al. [24] 
Modify the amplitude and width of S1 and S2 sounds from real 

heart sound and combine it with noise. 
2013 Jablouna et al. [25] A model based on three coupled ordinary differential equations

2018 Saederup [26] 
Estimation of the second heart sound split using windowed 

sinusoidal models 

2018 Joseph et al. [27] 
A sum of almost periodically recurring deterministic “wavelets”. S1 

and S2 are modeled by two sinusoidal pulses of Gaussian 
modulation. 
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Figure 3. Synthetic heart sounds generated with state-of-the-art algorithms. Signals taken from [27].  Results obtained in: 
A) [21]; B) [23]; C) [25]; D) [27]; E) [22], F) [24]; G) [26] 

 
Authors Chen, Duran and Lee performed a Time-Frequency analysis of the first heart sound (S1). This sound 
was modeled using two components, the first one represents the mitral valve and the second one refers to the 
muscular component of the myocardium [19]. The valvular component was modeled as a transient deterministic 
signal represented by two sinusoids that decay exponentially (see equation 1). 
 

𝑆!(𝑡) ='𝐴"𝑒#$!%𝑠𝑖𝑛(2𝜋𝑓"𝑡 + 𝜙")					(𝟏)
&
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Where N is the number of sinusoids, 𝐴!  is the amplitude, 𝑘!  is the damping factor,	𝑓!  is the frequency and 𝜙!  
is the phase of the i-th sinusoid. 

The myocardial component is modeled with a frequency modulated wave, represented by: 
 

𝑆!(𝑡) = 𝐴!(𝑡)𝑠𝑖𝑛 42𝜋5𝑓" + 𝑓!(𝑡)6𝑡 + 𝜙!(𝑡)7 					(𝟐) 
 
Where 𝐴"(𝑡) is the amplitude of the modulated signal, 𝑓# is the carrier frequency, 𝑓"(𝑡) is the frequency of 

the modulated wave, and 𝜙" is the phase of the function. In short, the heart sound S1 is represented by: 
 

𝑆1(𝑡) = 𝑆!(𝑡) + :
00 ≤ 𝑡 ≤ 𝑡"

𝑆#(𝑡 − 𝑡")𝑡 ≥ 𝑡"
					(𝟑) 

 
Where 𝑡# is the delay between the two components, since the mitral valve closes after muscle contraction. 
 
In [21], authors Xu, Durand, and Pibarot worked on the S2 heart sound model. They also used two components, 
represented by the aortic and pulmonary valves. In this work, two non-linear transient chirp components were 
proposed, as described in equation 4. 
 

𝑆2(𝑡) = 𝐴$(𝑡)𝑠𝑖𝑛5𝜑$(𝑡)6 + 𝐴%(𝑡 − 𝑡")𝑠𝑖𝑛 4𝜑%(𝑡)7 					(𝟒) 
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Where 𝜑$(𝑡) and 𝜑%(𝑡) are the instantaneous phases, in equation (5) they are represented as a non-linear 
function of time. 
 

𝜑$(𝑡) = ∑ 𝑎!𝑡!&
!'"      and    𝜑%(𝑡) = ∑ 𝑃!𝑡!&

!'"           (5)         
 

Where M is the order of the polynomial function 𝑎" and 𝑃" are the real coefficients. 
 
Other authors have tried to model the heart sound from an exponentially damped sinusoidal function that 
describes the closure and vibrations of the heart valves [18]. The model is represented by the following 
expression: 
 

𝑆[𝑛] = ' 𝑎!𝑒()*"𝑠𝑖𝑛(2𝜋𝑓!𝑛 + 𝜑!)
&

!'"

	 						𝑝𝑎𝑟𝑎𝑛 = 0,1,… ,𝑁 − 1.					(6) 

 
Where M is the number of damped sinusoids, 𝑎" is the amplitude, 𝛼" is the damping factor, and 𝜑" is the 
phase. 
 
All these attempts to propose an accurate model of PCG signals have a common drawback, they do not take 
into account specific characteristics such as heart rate variability (HRV), respiration rate and time division in 
S1 and/or S2 during inspiration and expiration. For its part, in [25] the development of a dynamic model of 
PCG (phonocardiographic) signals is presented considering these characteristics, in order to generate more 
realistic cardiac sounds. The authors hypothesize that the PCG signals are the action of the right side of the 
heart (T1 and P2) superimposed on the left side (M1, A2), represented by: 
 

𝑍+,-(𝑡) = ' 𝑍.(𝑡)
/0[2,4]

							(𝟕) 

 
Where r and l correspond to the right and left sides respectively. The 𝑍& function is generated by three ordinary 
differential equations (8, 9, 10) derived from an ECG signal generation model [23], since these signals are 
correlated. 
 

𝑥̇ = 𝜖𝑥 − 𝜔𝑦.								(𝟖) 
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Where ω is the angular velocity of the trajectory, 𝜖 = 1−1𝑥' − 𝑦', 𝑧# = 𝐴#𝑠𝑖𝑛(2𝜋𝑓#𝑡) where 𝑓# is 

the respiratory rate. 𝑎(@  and 𝑏(@  are parameters used for the amplitude. 
 
∆𝜃6# ≅ 5𝜃 − 𝜃6#6[2𝜋], where 𝜃6# = 𝜃6 + 𝛿𝜃6∀𝑘 ∈ {𝑃,𝑄,𝑅, 𝑆,𝑇} 
 
𝜃(  are the fixed angles along the unit circle for distinct points (P, Q, R, S, T) in the z plane; 𝜃 =
𝑡𝑎𝑛(A(𝑦, 𝑥) ∈ [−𝜋,𝜋]; 	𝛿𝜃6  is a positive deviation.
 
A modulated sine is found in this model, which represents the deflections to the PCG signal exhibiting a linear 

transient chirp morphology:	𝑠𝑖𝑛 4𝜙5∆𝜃6#67 
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Where 𝜙5∆𝜃6#6 = ∆𝜃6#𝑓6#5∆𝜃6#6, being 𝑓6# the frequency of the vibration. 
 
An inconvenience presented in this model is that the parameters depend on the characteristics obtained from an 
ECG signal. Considering that the samples to be used will be real heart sounds and not ECG signals, the authors 
Almasi, Shamsollahi and Senhadji propose a mathematical model that is also based on an ODE system to 
generate dynamic heart sounds but does not depend on parameters of the ECG signal (P, Q, R, S, T) [23]. The 
equation of this model is described as follows: 
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Where 𝑎! , 𝜇!  and 𝜎!  are the amplitude, center and width parameters of the Gaussian terms, and 𝑓! , 𝜑!  are the 
frequency and phase shift of the sinusoidal terms, respectively. θ is the independent parameter in radians that 
varies in the range -π, π for each beat. The superscripts -/+ indicate the two Gabor nuclei used to model each 
heart sound.  
 
Although advances have been made in the synthesis of the S1 and S2 sounds, the proposed synthesis models 
still present limitations due to the complexity and highly non-stationary nature of PCG signals. A basic time- 
frequency analysis of these synthetic signals shows that they are far from the real PCG signals. Moreover, the 
signals generated by these models do not have a physical meaning linked to the mechanisms related to the 
genesis of heart sound [21, 23 and 26].  

Additionally, all these proposed methods present a very ideal behavior in the systolic and diastolic segments, 
since they only focus on the generation of the S1 and S2 sounds. Also, none of these models can generate any 
kind of murmur. Therefore, these synthetic signals are not viable for the training of machine learning models 
for normal versus abnormal HS classification.  

2.3. Synthesis of Biomedical Signal using GAN: State of the art 
 
2.3.1. Introduction to Generative Adversarial Network (GAN) 
 
Generative adversarial networks (GANs) are architectures of deep neural networks widely used in the 
generation of synthetic images [64]. This architecture is composed of two neural networks that face each other, 
called the generator and discriminator [65]. In Figure 4, a general diagram of a GAN architecture is presented.  
The Generator (counterfeiter) needs to learn to create data in such a way that the Discriminator can no longer 
distinguish it as false. The competition between these two networks is what improves their knowledge, until the 
Generator manages to create realistic data. 

 
As a result, the Discriminator must be able to correctly classify the data generated by the Generator as real or 
false. This means that their weights are updated to minimize the probability that any false data will be classified 
as belonging to the actual data set. On the other hand, the Generator is trained to trick the Discriminator by 
generating data as realistic as possible, which means that the weights of the Generator are optimized to 
maximize the probability that the false data it generates will be classified as real by the Discriminator [65]. 
 

 

Figure 4. General diagram of a GAN. 
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The Generator is an inverse convolutional network, that is, it takes a random noise vector and converts it into 
an image, unlike the Discriminator who takes an image and samples it to produce a probability. In other words, 
the Discriminator (D) and Generator (G) play the following two-player minimax game with value function L(G, 
D), as described in equation (12). 

	
𝑚𝑖𝑛
-

𝑚𝑎𝑥
M

𝐿(𝐷,𝐺) = 𝐸N∼P()*)(N)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸Q∼P()*)(Q)	 (12)	
	

Where D(x) represents the probability that x estimated by the discriminator, z represents the input of random 
variables from the generator, 𝜌)$*$(𝑥) and 𝜌)$*$(𝑧) denote the data distribution and the distribution of 
samples from the generator respectively. 

 
After several training steps, if the Generator and the Discriminator have sufficient capacity (if the networks can 
approach the objective functions), they will reach a point where both can no longer improve. At this point, the 
Generator generates realistic synthetic data, and the Discriminator cannot differentiate between the two input 
types. 
 
GAN training is a very complex challenge that is currently an active research area to understand and improve 
performance. There are several very common failure modes such as: Mode Collapse, Lack of Convergence, and 
Leakage Gradient, which have become a motivation for researchers to design and implement new architectures, 
cost functions, and hyperparameter selection [66 – 67]. However, none of these problems have been fully 
resolved. Next, we mention each of them: 
 
Mode Collapse: The main goal of a GAN is to generate a wide variety of signals in its output, for example, if 
it was trained on images of people's faces, the model's output is expected to produce a different face for each 
random input to its image generator. Thus, a mode collapse refers to a generator model that is only capable of 
producing one or a small subset of different outputs or modes, in this case the discriminator will always try to 
learn to reject that output, but if the discriminator gets stuck at a local minimum during training and doesn't find 
a way to reject that output, then it's too easy for the next iteration of the generator to find the most plausible 
output for the current discriminator. In this way, the generator overfits each iteration for a particular 
discriminator.  
 
In summary, a mode collapse can be identified in two ways: i) the generator produces similar or very low
diversity outputs regardless of the different points in the latent space that were used in the model input; ii) An 
oscillation of the generator and discriminator losses is expected with time [68-69]. 
 
Failure to Converge: It is one of the most common problems when training a GAN. Generally, a neural network 
fails to converge when the model loss is not stabilized during the training process. In the case of a GAN, lack 
of convergence refers to not finding a balance between generator and discriminator. Here are the different ways 
to identify this type of fault: 
- When the discriminator loss has reached zero or close to zero. In some cases, the generator loss increases as 
the training time progresses. 
- When the generator produces very low-quality signals that the discriminator easily identifies as false. 
 
This type of failure can occur at the beginning of the run and continue throughout the training, it can also occur 
over several batch updates, or even over several epochs, and then recover. 
Various forms of regularization have been tried to improve this type of failure, such as: Add noise to the input 
of the discriminator or penalize the weights of the discriminators [70 - 71]. 
 
Vanishing Gradients: This type of failure occurs when the discriminator is too good so the generator gradient 
fades away and does not learn anything. Therefore, an optimal discriminator does not provide enough 
information for the generator to move forward. Faced with this situation, the researchers try to modify the cost 
function of the GAN or the hyperparameters of each model in order to avoid overfitting and imbalance between 
the generator and the discriminator [72, 73]. 
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2.3.2. A review of GAN applied in biomedical signals 
 
Generating training samples for supervised tasks is a long-sought goal in Artificial Intelligence. For the case of 
physiological signals, the challenge is even greater, due to the dynamic nature in which various parts of the 
system interact in complex ways. Although studies have already been carried out to understand these dynamics 
from mathematical processes, it is still not possible to obtain many diverse examples that contribute to the 
training of classification models, without falling into overfitting. Therefore, as mentioned in the introduction to 
this document, considering that in recent years there have been great advances in audio synthesis using Deep 
Learning techniques such as Generative Adversarial Networks (GANs), the motivation of many researchers to 
use these models for the generation of biomedical signals has increased, with the main objective of increasing 
the training data set to improve the performance of the classification models. Table 6 shows several proposed 
works of GANs for the synthesis of ECG, EEG, EMG and PPG signals. 
 

Table 6. A review of GAN applied in biomedical signals 
 

Ref Year Synthetic 
Signal 

Proposed Method Dataset 

[74] 2021 

ECG 

GAN 
PhysioNet Database [96]. 

(549 samples).

[75] 2020 
Attention-based 
Generators and 

CycleGAN 

BIDMC [97] (53 recordings of 8 min each),  
CAPNO [98] (42 recordings of 8 min each),  
DALIA [99] (15 recordings of 2 hours each),  

and WESAD [100] (15 recordings of 1 hour each).

[76] 2020 GAN 
PTB-XL database [101]. 

(21k samples, 10s length each, sampled at 500 Hz) 
 

[77] 2020 WaveNet; SpectroGAN; 
WaveletGAN 

MIT-BIH Arrhythmia Database [102]. 
(10000 samples) 

[78] 2020 Multivariate GAN 
[79] 2020 SimGAN-ECG 
[80] 2019 GAN (LSTM -CNN) 
[81] 2019 RPSeqGAN 
[82] 2019 PGAN 
[83] 2019 GAN (BiLSTM -CNN) 
[84] 2019 GAN 

[85] 2019 ECG and 
EEG 

RGAN 
Three real-world biosignal datasets from The UEA & 
UCR Time Series Classification Repository [103] 
(1362 samples ECG and 11500 samples EEG) 

[86] 2021 

EEG 

CVAE-GAN 
Private dataset: 12 samples. 
Public dataset: Competition IV Data sets 2a [104]: 36 
samples.  

[87] 2020 RNN; GAN; MFCC Dataset used by authors in [105] (1120 samples) 

[88] 2020 WGAN 
1) Action Observation dataset [106]: 346 samples
2) Grasp and Lift dataset [107]: 576 samples 
3) Motor Imagery dataset [108]: 1560 samples 

[89] 2019 DCGAN; WGAN; VAE Private dataset: 30 samples per class 

[90] 2019 GAN 
A public dataset collected by authors of [109]: 600 
samples. 

[91] 2018 GAN A private dataset: 438 samples 

[92] 2020 PPG CGAN 

1) PPG from Patients in Vietnam with Hand-Foot-
Mouth Disease: 1980 samples 
2) PPG from Patients in Vietnam with Tetanus: 5978 
samples 
3) PPG from Patients in China with Cardiovascular 
Disease [110]: 219 samples 
4) PPG from Physionet 2015 Challenge [111]: 2202 
samples 

[93] 2020 EMG SinGAN A private dataset: 240 recording, each of which is of 3 s 



27 

[94] 2020 DCGAN 

1) NinaPro is an open EMG database [112] (240 
recording, each of which is of 8 s)
2) Parkinson’s Disease EMG Dataset [113] (90 
recording, each of which is of 60 s) 

[95] 2020 
ECG; 
EMG; 

EEG; PPG 
GAN (BiLSTM - CNN) 

ECG data: MIT-BIH Arrhythmia Database [102] (1000 
Samples).
EEG data: Siena Scalp EEG Database [114,115] 
(recording of 128 h). 
EMG data: Sleep-EDF Database [116] (recordings of 
197 full-nights). 
PPG data: BIDMC PPG and respiration Dataset [117] 
(53 recording, each of which is of 8 min duration). 

 
 
The ECG signal is one of the most used in the implementation of GAN models, perhaps one of the main reasons 
is the availability of large databases in the web [74-84]. The MIT-BIH database is one of the most used in the 
case of ECG signals, it contains many cardiac signals (about 10,000 samples) with different types of 
abnormalities and has been widely used in training different models of ECG signals. machine learning 
classification. Another widely used database is Physionet, with more than 500 normal and abnormal cardiac 
signals. In the case of EEG signals, many of the repositories are private, generally there are few samples with a 
long time duration. The dataset described in [103] contains more than 10,000 EEG samples that could be very 
useful in different types of applications. EMG and PPG signal databases have also been explored for GAN 
model training as described in [92-95]. The interest of researchers in working on the synthesis of biomedical 
signals with GAN is increasing in recent years, without a doubt reflecting the low availability of this type of 
signals on current datasets. 
 
Regarding the generator and discriminator models, different types of neural networks, cost functions and a 
hyperparameter selection analysis have been proposed in order to combat the common issues of convergence 
and mode  collapse. In most of the proposed methods, convolutional neural networks (CNN) are used in both 
the generator and the discriminator. However, different types of networks have been explored in the generator, 
such as LSTM, Bi-LSTM and even Recurrent Networks [80], [83], [87], [95]. Techniques such as Wavelet and 
MFCC calculations have also been used to improve the performance of the GAN on ECG and EEG signals, 
respectively [77], [87]. The DCGAN architecture is one of the most used in the generation of images, and it 
was also implemented for this type of signals [89], [94]. 
 
Without a doubt, there are many GAN architectures published in the state of the art related to biomedical signals. 
However, although many training signals are used in several experiments, the result is not as expected since 
there are still limitations of mode collapse and convergence [84-85]. Additionally, the training of these models
requires a high computational cost and training time. In other works, the synthetic signals produced by the 
GANs are used as training samples for a classification model, the results show an increase in accuracy [80], 
[91]. However, it is very likely that the classification model is overfitted by being trained with many similar 
signals. In summary, the advancement of GANs in biomedical signals is very promising, but many aspects still 
need to be addressed to reduce the main limitations that prevent achieving the goal. 
 

2.4. CONTRIBUTION TO THE STATE OF ART: 

The development of a system to generate normal and abnormal synthetic heart sounds in a reliable way and
validated by health specialists would advance the state of the art in HS processing and analysis in the following 
aspects:  

i. Train ML models to discriminate types of cardiac abnormalities. See figure 5.  
ii. Test new features extraction techniques that facilitate classification.  

iii. Validate the performance of existing Deep Learning based audio synthesis methods used in cardiac 
signal. 

iv. Improving the training of medical students, since they will not need to look for patients with different 
anomalies to perform auscultations.  
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Figure 5. General diagram of a HS classification model using synthetic signals for training 
 
In this way, we could move forward in the construction of a large-scale, computer-assisted intelligent tool for 
the diagnosis of cardiac conditions. In addition, this work is expected to be a great contribution to the generation 
of other types of biological signals, such as: Lung sounds, digestive sounds and even electrophysiological 
signals.  
 

3. Research hypothesis 

The following hypothesis is stated: 

 

"It is possible to implement a Machine Learning algorithm to generate synthetic 
heart sounds that can serve to improve performance in heart sound classification 
models." 

4. Analysis of Heart sounds 
 
In this chapter we present the advances obtained during the investigation in the analysis of heart sounds. A 
block diagram of the main stages of an automatic heart sound classification system is shown in Figure 6, as 
mentioned at the beginning of the previous section. We have explored different signal processing techniques 
and machine learning models to obtain a good performance on each of these stages. The results have been 
compared favorably with the state of the art. Each of these developments are described below. 
 
This section begins with the description of an algorithm capable of segmenting the phonocardiography
recordings (PCG), in order to identify the sounds S1, S2 and the systolic and diastolic intervals. This algorithm 
presents a better performance compared to the methods proposed in the state of the art. Subsequently, different 
signal processing techniques are described to be used in the feature extraction stage, then, these characteristics 
are used as input to several Machine Learning models. 
 

 
 

 
Figure 6. General diagram of the automatic heart sound classification system 
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4.1. Automatic segmentation of heart sounds 

This is the initial stage of the classification system and consists of identifying the S1 and S2 sounds of a cardiac 
cycle. To achieve this, a pre-processing stage is required to help attenuate unwanted noise. Subsequently, signal 
processing techniques are used to identify the corresponding peaks of the S1 and S2 sounds. Below we present 
our contribution to the state of the art with a robust algorithm that allows to automatically segment normal and 
abnormal heart sounds, identifying systolic and diastolic intervals, even in the presence of high amplitude 
murmurs. 

4.1.1. Proposed method 

In this work, the algorithm proposed in [118], called empirical wavelet transform (EWT), is studied as a 
reference in the pre-processing stage of the cardiac signal. The EWT allows the extraction of different 
components of a signal when designing an appropriate filter bank. The theory of the EWT algorithm is described 
in detail in [118]. This method has given better results than empirical mode decomposition (EMD), since the 
latter decomposes the signal in many ways that are difficult to interpret or do not give relevant information 
[118].  

The EWT algorithm has been used as a signal filtering stage in different applications, such as in the processing 
of voice and movement signals for the classification of Parkinson’s disease severity [119], detection of 
mechanical failures from vibration signals [120] and in the analysis of geomagnetic signals for the detection of 
seismic activity [121]. However, this technique demands a high computational cost, since the model can 
decompose the signal into many components according to the criteria set and then chooses the optimal 
component, and is therefore a non-viable method for a real-time system. Therefore, many researchers have 
sought ways to apply improvements to the method in order to obtain the desired components in a more effective
way, as described in [118–121]. In our case, we need to improve the EWT algorithm to extract the S1 and S2 
components of the cardiac signal, while attenuating the murmurs or external noises that are present in the 
original signal. To achieve this, we consider that the frequency range of the S1 and S2 sounds is between 20–
200 Hz [122]; therefore, we decided to modify the edge selection method that determines the number of 
components. Figure 7 shows the block diagram for the proposed segmentation system. Initially, all the signals 
taken from the databases are decimated to a sampling frequency of 4 kHz, and amplitude-normalized using the 
equation (13), where X(n) and N denote the original signal and length in samples of the signal.  

𝑋RS2!(𝑛) =
T())

&$N+,-
. [T())]

                      (13) 
 
The first stage of the system decomposes the signal into different frequency bands using the modified EWT 
(mEWT) method. To achieve this, the first step is to identify the maximum value of the Fast Fourier Transform 
(FFT) of the signal in the range of 20 Hz to 150 Hz. After identifying which frequency belongs to the maximum 
value, this is taken as the center frequency for a filter with a bandwidth 40 Hz; that is, if the center frequency is 
70 Hz, a bandwidth between 50-90 Hz is established using the EWT method. It is worth mentioning that tests 
were carried out with different ranges of bandwidth and it was found that sounds S1 and S2 have a more 
pronounced amplitude with a bandwidth of 40 Hz. Thus, we reduce the computational cost by not computing 
many filters for many different frequency bands and efficiently eliminate unwanted noise. 
 

 
 

Figure 7. Block diagram for the proposed segmentation system. 
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In Figure 8, a heart sound and its respective FFT are shown. In this example, the maximum amplitude is 
approximately 60 Hz; therefore, the chosen frequency band is 40–80 Hz, as seen in the green segment (see 
Figure 8b). Figure 8 also shows four components in order to illustrate the shape of the signal on different 
frequency ranges, using the adaptive filters of the EWT method. For this example, the low-frequency segment 
is defined between 1–40 Hz (blue segment, Figure 8c); in the segment from 80 Hz to 350 Hz some kind of 
murmur is expected (red segment, Figure 8e); and in the segment of 350 Hz and above it is expected that high-
frequency noises that intervene in the recording can be observed (cyan segment, Figure 8f). It can be seen that 
in the segment of 40–80 Hz (green segment, Figure 8d), the S1 and S2 sounds have a considerable amplitude 
that can facilitate their identification. 
 
 

 
 

 
Figure 8. Decomposition of heart sound using EWT. (a) Heart sound recording; (b) FFT of heart sound with the 

frequency bands determined; (c) EWT components defined between 1–40 Hz. (d) EWT components defined between 40–

80 Hz. (e) EWT components defined between 80–350 Hz. (f) EWT components defined at 350 Hz and above. 
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A main stage in automatic segmentation is the detection of the envelope of the S1 and S2 segments. Various 
techniques have been attempted in the literature, such as the absolute value of the signal, quadratic energy, 
Shannon entropy, Shannon energy and Hilbert transform, among others [123]. In [123], the authors make a 
comparison of different methods used to calculate the envelope of the PCG signal, with the Shannon energy 
being the most effective for identifying the S1 and S2 peaks. In [33], [34] and [35], this method is used, 
obtaining good results in the identification of S1 and S2 segments. The Shannon energy equation is defined as 
 

𝐸 = −𝑥(𝑖):𝑙𝑜𝑔(𝑥(𝑖):) (14) 

 
where x(i) represents the samples of the signal and E is Shannon’s energy. 
 
When calculating the quadratic value of a sample, large oscillations can be generated; the amplitude of the 
sample increases when the absolute value of the original amplitude is greater than 1 and decreases otherwise. 
Therefore, it is convenient to use normalized energy, as in the case of the normalized average Shannon energy 
(NASE) [124], defined as follows: 

𝐸𝑛 =
𝐸 − 𝜇
𝜎

 (15) 

 
where 𝜇 is the average value of energy E of the signal, 𝜎 is the standard deviation of energy E of the signal and 
En is the normalized average Shannon Energy. 
 
After calculating the NASE in the HS signal decomposed by the EWT—that is, the signal that contains the S1 
and S2 sounds—the negative values are equaled to zero and the signal is normalized. In Figure 9b, the result of 
an NASE signal of a heart sound recording can be observed. 
Analyzing the NASE signal, we will proceed to identify the edges of each of its lobes; this helps to determine 
the beginning and the end of the S1 or S2 sounds. The limits obtained from each lobe are shown in Figure 9c. 
A common problem occurs when there are lobes that are very close to each other; in this case, the lobe that has 
less energy is eliminated. This process is repeated three times. Lobes of short duration and low amplitude are 
also eliminated. 
 
Subsequently, the peaks in each lobe are calculated as shown in Figure 9d. Unwanted peaks are removed using 
the following steps: 
 

1. Calculate the average of the intervals between peak (i) and peak (i + 1). 
2. Eliminate the peaks that belong to an interval less than 0.25 * on average. 
3. Eliminate the peaks that belong to an interval less than 0.3 * on average. 
4. Eliminate the peaks that belong to an interval less than 0.4 * on average. 
5. Eliminate the peaks that belong to an interval less than 0.55 * on average. 

 
Taking into account that the systolic and diastolic intervals do not vary drastically in a recording, these 
thresholds (0.25, 0.3, 0.4 and 0.55) were established empirically to eliminate those intervals with a very short 
duration that were detected due to unwanted peaks. The threshold is increased step by step (ascending) to avoid 
removing a peak that could actually be an S1 or S2 sound. 
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Figure 9. Stages of segmentation: a) EWT component: heart sound; b) NASE of the signal; c) identification of borders of 

each lobe; d) identification of S1 and S2 sounds. 
 
There are cases in which the sound of S1 or S2 has a low amplitude and short duration, as seen in Figure 10a. 
Generally, the methods presented in the state-of-the-art approaches fail in this case. Taking into account the 
fact that the duration of the cardiac cycle is approximately 0.8 s and the diastolic interval is approximately 0.6 
s [125], a condition is established in which the interval between each peak is evaluated, and if in most cases the 
interval is greater than 650 milliseconds, it can be said that there is a sound (S1 or S2) in that interval. Then, 
each interval is normalized as shown in Figure 10c. Subsequently, all the previous stages are performed to find 
S1 or S2.  
 
To identify the S1 and S2 sounds in a recording, it is enough to know that the systolic interval is located between 
S1 and S2, while the diastolic is located between S2 and S1 of the next cycle. In addition, it is known that the 
systolic interval is always shorter than the diastolic [125]. With these criteria, it is easy to use the resulting time 
marks to discriminate between S1and S2 sounds, systole and diastole. 
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Figure 10. Segmentation of heart sounds with S1 of low amplitude and short duration. a) NASE of heart sound; b) 

Identification of peaks; c) Heart sound with normalized intervals; d) Identification of S1 sounds. 
 
4.1.2. Results and discussion on the proposed automatic segmentation 
 
The heart sound database can be downloaded from the Pascal Classifying Heart Sounds Challenge website [17]. 
Data have been gathered from two sources: A) samples acquired through a smartphone using the iStethoscope 
app and B) samples acquired in a hospital setting using a DigiScope electronic stethoscope. The database 
contains the following categories: normal, murmur, extra heart sound and artifact. Table 7 presents in detail the 
number of recordings and cardiac cycles for the two datasets. 
 

Table 7. Database of heart sounds: Pascal Challenge. HS: heart sound.
 

Dataset A Number of recordings Dataset B Number of recordings 
Normal 31 Normal 200 
Murmur 34 Normal noisy 120 
Extra HS 19 Murmur 95 
Artifact 40 Extra systole 46 

 
In [17], the results of manual segmentation carried out by experts are presented that serve to evaluate the 
performance of the segmentation algorithms. The objective of this challenge is to calculate the number of 
cardiac cycles and identify the S1 and S2 sounds of a recording. Table 8 and Table 9 show the results obtained 
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using dataset A and B respectively, where the evaluation metric is the error that exists between manual 
segmentation labels provided by the database and those obtained by the proposed method; that is, the difference 
between the samples corresponding to the S1 and S2 sounds with those detected by the segmentation algorithm. 
In [17], a spreadsheet is presented to evaluate the error of each sound. 
 

Table 8. Results of segmentation for dataset A. (HB: heartbeat). 
 

HS (file name) HB Average Error 
(Samples) 

HS (file name) HB Average Error 
(Samples) 

201101070538 11.5 15,792.91 201103101140 9 58,920.83 

201101151127 10 177,625.15 201103140135 9.5 24,891.94 

201102081152 9.5 159,024.94 201103170121 10 343.15 

201102201230 11.5 17,384.91 201104122156 11.5 173,664.78 

201102270940 8.5 159,194.17 201106151236 9.5 56,598.00 

 
Table 9. Results of segmentation for dataset B. 

 

HS (file name) HB 
Average Error 

(Samples) HS (file name) HB 
Average Error 

(Samples) 
103_1305031931979_B 12.5 35.04 147_1306523973811_A 4 226.5 

103_1305031931979_D2 10 33.05 148_1306768801551_D2 8 31.75 
106_1306776721273_B1 4 14.62 151_1306779785624_D 4.5 2543.77 
106_1306776721273_C2 3 12.16 154_1306935608852_B1 4.5 2096.66 
106_1306776721273_D1 3.5 109.00 159_1307018640315_B1 6 19.33 
106_1306776721273_D2 7.5 1613.4 159_1307018640315_B2 3 28.66 
107_1305654946865_C1 7.5 1524.6 167_1307111318050_A 13 58.96 
126_1306777102824_B 8.5 2260.82 167_1307111318050_C 3 26.5 
126_1306777102824_C 5.5 42.72 172_1307971284351_B1 3.5 12.14 
133_1306759619127_A 4 32.75 175_1307987962616_B1 2.5 10.00 
134_1306428161797_C2 2.5 4.6 175_1307987962616_D 7 36.71 
137_1306764999211_C 15 1615.5 179_1307990076841_B 16.5 51.45 
140_1306519735121_B 11 45.86 181_1308052613891_D 3 19.5 
146_1306778707532_B 18 2115.97 184_1308073010307_D 26.5 57.60 

146_1306778707532_D3 3 8.33 190_1308076920011_D 3.5 2386.14 

 
Table 10, the results of the total errors shown in [39], [40], [42], [43], [45] and the proposed method for datasets 
A and B are shown. Taking into account that the results presented in [39], [42] and [45] were the best for the 
Pascal Challenge. Our method obtained a total error of 843,440.8 for dataset A and 17,074.1 for dataset B. 
These results are the best compared to the state-of-the-art approaches. 

 
Table 10. Results general of segmentation.

 
Method Dataset A Dataset B 

[42] 4,219,736.5 72,242.8 
[39] 3,394,378.8 75,569.8 
[45] 1,243,640.7 76,444.4 
[43] 873,577.9 29,269.6 
[40]  47,804.4 

Proposed 843,440.8 17,074.1 

 
This algorithm was also tested with recordings obtained from Physionet, specifically those signals in which the 
method in [37] failed, as described in [38]. Figure 7 presents the result of the segmentation in recordings a031, 
a0112, a0284 and a0352 using the proposed method. In [38] (Figure 4, page 14 of that article), the result of
segmentation with these same signals is presented using the method in [37] based on logistic regression and 
HSMM, with this being one of the most used algorithms in the literature. As shown in Figure 11, the proposed 
algorithm correctly detects the S1 and S2 sounds in each of the recordings. 
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Figure 11. Examples of segmentation using the proposed method. Heart sound signals for recordings (A) a031, (B) a0112, 
(C) a0284 and (D) a0352 are taken from the PhysioNet/CinC Challenge 2016, together with the successful segmentations 

using the proposed algorithm. 
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4.2. Automatic classification of normal and abnormal heart sounds 
 
This section presents different proposed approaches to classifying normal and abnormal heart sounds. The first 
experiment is mainly based on feature extraction using Linear Prediction Coefficients (LPC) and Mel Frequency 
Cepstral Coefficients (MFCC). Subsequently, a second approach is described applying a pre-processing to the 
signal using the EWT algorithm, then power values in the systolic and diastolic intervals are calculated. In both 
approaches, different Machine Learning models were used in order to evaluate the accuracy performance 
provided by each combination of characteristics. These experiments were compared favorably with the state of 
the art and published in scientific articles [49, 50]. 
 
4.2.1. Proposed method using LPC and MFCC as acoustic features 
 
This first method proposes an analysis and classification procedure for discriminating between normal and 
abnormal cardiac sounds, based on Linear Prediction Coefficients (LPCs) and Mel-Frequency Cepstral 
Coefficients (MFCCs) as features for three different classifiers: Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN) and Random Forest. Despite being widely used in speech and audio processing, LPCs and 
MFCCs have so far not being well studied as possible feature for acoustic analysis of auscultation sounds.  
 
4.2.1.1. Data 
 
A total of 805 heart sounds (415 normal and 390 abnormal) from six databases were selected: 

- Samples taken from PhysioNet/Computing in Cardiology Challenge 2016 [16]. 
- Pascal challenge database [17]. 
- Database of the University of Michigan [13]. 
- Database of the University of Washington [14]. 
- Thinklabs database (digital stethoscope) [15]. 
- 3M database (digital stethoscope) [145]. 

 
 
4.2.1.2. Feature extraction 
 
LPCs and MFCCs are widely used in audio processing, especially for speech signals [126]. Given that the signal 
obtained through auscultation is acoustic, and humans typically use their ears to analyze it [127], it seems 
plausible that features used successfully to model other acoustic signals should also be able to model 
auscultation sounds.  
 
A. Linear prediction coefficients (LPCs): 

 
LPC is a model for auto-regressive random variables that captures the spectral envelope of the signal of 
interest as the frequency response of an IIR, all-pole, filter, as shown in equation (16).  

 

𝐻(𝑧) =
𝐺

1 + 𝑎A𝑍(A + 𝑎:𝑍(: +⋯+ 𝑎)𝑍()
										(𝟏𝟔) 

 
The LPC model is based on the assumption that current signal samples can be generated by a linear 
combination of p previous samples. The model can be described by equation (17): 

 

𝑆(𝑛) =' 𝑠(𝑛 − 𝑘)𝑎6

%
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											(𝟏𝟕) 

 
Where p is the model order, ak are the LPCs and s(n) is the reconstructed signal. 

 
LPCs can be used for the processing of biological signals, such as heart sounds. These signals are characterized 
by a large variation in time and frequency domains, and are also classified as non-stationary signals [34]. In the 
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case of the heart sounds, it seems natural to divide the signal based on the characteristic segments of the cardiac 
cycle (S1, S2, systole, diastole). The idea is then to use LPCs to capture the spectral characteristics of each 
differentiated segment of a heart cycle, and then use such spectral characteristics as the basis for a classifier. 

 
B. Mel-Frequency Cepstral coefficients (MFCCs) 

 
While LPCs model sounds from the point of view of its production, MFCCs attempt to model the perception of 
such sounds by the human auditory system. This is achieved using a filter bank with a nonlinear frequency 
scale, called Mel-scale [128]. Since auscultation sounds are interpreted by health professionals using their ears, 
it can be argued that MFCCs provide a feature representation of cardiac sounds close to that of a human, 
therefore suitable for automatic analysis and interpretation. 

 
The computation of MFCCs is done by the following steps:  

 
i) Divide the signal into frames, using a suitable window function. The hamming window is 

commonly used in speech signal spectral analysis due to its spectral characteristics.  
ii) Estimate the Power Spectral Density (PSD) for each frame using the Discrete Fourier Transform 

(DFT). The PSD is then passed through the Mel filter bank, obtaining a vector of coefficients.  
iii) Finally, the vector is represented in decibels and a Discrete Cosine Transform (DCT) is applied 

on it.  

In this first experiment of heart sound classification, it was proposed to calculate the LPCs and MFCCs in each 
segment of the cardiac cycle, that is, for each cardiac cycle segment (S1, systole, S2 and diastole) there were 
computed two feature vectors: the first with 6 LPC and the second with 14 MFCC, Figure 12 shows the 
distribution of MFCC + LPC features in a normal and abnormal cardiac cycle, respectively. These features were 
computed using the Voicebox Matlab toolbox [129]. It was decided to calculate 6 LPCs considering that the 
sampling frequency of the signals is 2 KHz. In the case of the MFCCs, it was decided to establish 14 coefficients 
due to the good results shown in the state of the art. 

A)                                                                                                 B) 

                    

Figure 12: LPC+ MFCC feature distribution. A) for a normal HS; B) for an abnormal HS 

4.2.1.3. Classification 

At this stage we used the well-known, machine learning and data mining tool Weka (Knowledge Environment 
of Waikato University) [130] for building classification models. The LPC and MFCC features were organized 
into three different sets of characteristic vectors for classification: LPC-only characteristics, MFCC-only 
characteristics and LPC+MFCC characteristics. Each vector of characteristics (LPC, MFCC and LPC+MFCC) 
was used as input for four different classifiers: Support Vector Machines (SVM), K-Nearest Neighbors (KNN), 
Random Forest and Multilayer Perceptron (MLP); 10-fold cross-validation was used to evaluate the 
performance of each classifier.  
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The literature shows plenty of similar work performed using SVM, KNN, MLP and Random Forest [131], 
[132], since the main objective of our work is to test the feature vectors, we decided to use those four common 
classification algorithms without any emphasis on algorithm optimization, the following paragraphs give a short 
introduction to each classifier. 

A. Support Vector Machine (SVM)  

This classification method, developed by Vladimir Vapnik and his team [133], is one of the most used in pattern 
recognition and binary classification problems, like the discriminating between normal and abnormal heart 
sounds. This model is based on constructing a hyperplane that allows to separate the data in two classes [134].  

B. K-Nearest Neighbors (KNN)  

A KNN classifier computes the distance between the data that we want to classify and labeled training data, 
selecting the nearest neighbors. Based on the neighbor’s category, it is determined to which class the test data 
belongs [135]. Euclidean distance is commonly used to determine nearby neighbors for the test data. This model 
is also suitable for binary classification.  

C. Random Forest  

Random Forest is a combination of tree structured classifiers, where each tree depends on the values of a random 
vector. To classify an input vector, each tree that belongs to the forest gives a "vote" for classification. 
Subsequently, the model determines the classification according to the highest number of votes. Random forest 
are very efficient when used for binary classification on large number of samples, guaranteeing good specificity 
and sensitivity in the results. However, it is confusing in its interpretation compared to decision trees [136].  

D. Multilayer Perceptron (MLP): The multilayer perceptron (MLP) is a direct-feed artificial neural network 
and is the most widely used neural network classifier. The MLP has an input layer that takes the 
characteristics/patterns of the training data, a hidden layer and an output layer with one node per class. The 
inverse propagation algorithm is used to calculate the weights transported by the network connections. The 
number of nodes in the hidden layer is determined experimentally [149].  

4.2.1.4. Results 
 
Accuracy, specificity and sensitivity are the metrics used to evaluate the performance of each classifier. These 
values were calculated from equations (5), (6) and (7), respectively, where the values TP (true positive), TN 
(true negative), FP (false positive) and FN (false negative) are taken from a confusion matrix [137]. 
 
TP: Number of normal heart sounds that were classified as normal. 
TN: number of abnormal heart sounds that were classified as abnormal. 
FP: Number of abnormal heart sounds that were classified as normal. 
FN: Number of normal heart sounds that were classified as abnormal. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100.																		(𝟏𝟖) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
∗ 100																		(𝟏𝟗) 

 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
∗ 100																		(𝟐𝟎) 
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Tables 11, 12 and 13 show the accuracy, specificity and sensitivity of the three classifiers using the LPC-only, 
MFCC- only and LPC+MFCC characteristics vectors respectively. It can be seen that the best results were 
obtained with the LPC+MFCC characteristics, using the SVM and MLP classifiers.  

Table 11. Results of classifiers with LPC-only features (6 LPC per segment) 

Machine Learning Accuracy Specificity Sensitivity 
SVM 88.19% 91.54% 85.55% 
KNN 92.91% 96.63% 89.95% 

Random Forest 92.91% 91.31% 94.52% 
MLP 94.16% 94.31% 94.01% 

 
Table 12. Results of classifiers with MFCC-only features (14 MFCC per segment) 

Machine Learning Accuracy Specificity Sensitivity 
SVM 94.90% 94.85% 94.85% 
KNN 94.65% 96.76% 96.76% 

Random Forest 96.52% 95.47% 95.47% 
MLP 96.52% 97.13% 97.13% 

 
 

Table 13. Results of classifiers with LPC+MFCC features (14 MFCC and 6 LPC per segment) 
 

Machine Learning Accuracy Specificity Sensitivity 
SVM 96.27% 97.61% 97.61% 
KNN 95.52% 98.09% 98.09% 

Random Forest 95.27% 94.22% 94.22%
MLP 97.26% 97.91% 97.91% 

These results compare favorably to those presented in the literature [138], [139], [140], [141], [142], [143] with 
the added caveat that our experiment used a bigger number of samples than most previous works. See results 
in Table 14. It is verified that the LPC and MFCC characteristics can generate better performance in the 
classification of normal and abnormal heart sounds. However, the number of training samples is not sufficient 
to guarantee a robust classification model. This work was published in the article [144]. 

Table 14. Comparison of heart sound classification results 
 

Reference Accuracy 
[138] 86% 
[139] 92% 
[140] 92% 
[141] 96% 
[142] 80% 
[143] 92%

Proposed method 97% 

 
4.2.2. Proposed method using EWT and power features 
 
At this point, it is decided to use the advantages that EWT offers to eliminate unwanted noise, and the low 
computational cost that is required to calculate power values. Considering that heart murmurs are manifested 
in systolic and diastolic intervals, it is proposed to extract power values in these intervals to train Machine 
Learning models and improve classification performance. Additionally, the performance results obtained with 
the method proposed in the previous section, and others proposed in the state of the art, are compared. 
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4.2.2.1. Feature extraction 
 
After the stages of noise reduction (pre-processing) and segmentation using EWT described in section 4.2.1, 
we proceed to the feature extraction for each cardiac cycle. At this stage we try to improve the limitations of 
high computational cost by reducing the feature vector size, requiring in turn simpler classification models. 
Health professionals use different attributes of heart murmurs to achieve their discrimination, the most common 
of which are their location, duration, pitch and shape [146]. These attributes are related to the different types of 
murmurs shown in Figure 13 [147]. 

Taking as a reference the analysis carried out on the representation of the different types of murmurs shown in 
Figure 13, we propose the division of the systolic and diastolic interval into three segments and calculate the 
signal power in each segment, obtaining a total of six characteristics (three in the systole and three in the 
diastole; see Figure 14). In this way, we try to emulate the attributes (location, duration, pitch and shape) that 
doctors use to aurally detect some type of heart murmur.  
 
The power of a signal is defined as the amount of energy consumed in a time interval. This calculation is 
widely used to characterize a signal [148]. In the discrete domain, the power of a signal is given by 
 

𝑃 =
1

2𝑁 + 1
' |𝑥(𝑛)|:
)'UR

)'(R

 (21) 

 
The signal is called the power signal when 0 < 𝑃 < ∞. Figure 14 shows the distribution of the power features. 

With this method, it is possible to establish criteria to advance the classification of types of murmurs. For 
example, if the value of the power P1 of the systole is greater than the P2 and P3 powers, it can be assumed that 
the type of abnormality is protosystolic. 
 
At this stage, this study is not carried out since not all the samples used in the experiment are labeled with the 
corresponding type of abnormality. Therefore, it is decided to work only on the classification of normal and 
abnormal sounds and leave the identification of specific anomalies for future work when a suitable training 
database is available. 

 
Figure 13. Types of murmurs according to their location. 
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Figure 14. Distribution of power features for a normal heart sound.

 
 
4.2.2.2. Experiments and results 
 
This work makes the comparison of models [49], [50], [51], [52] and [144] with the proposed method, since 
they used characteristics in the domains of time, time–frequency and perceptual domains and techniques used 
for audio recognition—specifically, the voice. Therefore, different techniques were implemented to extract the 
characteristics that the authors used in their works. Tables 15 and 16 describe in detail the characteristics used 
in [49] and [50], respectively. Regarding the classification stage, in [144], the SVM, KNN, MLP and random 
forest algorithms were used; in [49], deep neural networks and SVM were used, with latter showing the best 
performance; and in [50], the best performance was obtained using the XgBoost algorithm. 
 

Table 15. Features used in [49]. 
 

Domain Features 

Perceptual 19 Mel-frequency cepstral coefficient (MFCC) 

Time-frequency 24 DWT features 

Perceptual + Time-frequency 19 MFCC and 24 DWT features 

 
 

Table 16. Features used in [50]. 
 

Domain Features 

Statistical 
Mean value, median value, standard deviation, mean absolute deviation, 
quartile 25, quartile 75, iqr, skewness, kurtosis, coefficient of variation 

Frequency 
Entropy, dominant frequency value, dominant frequency magnitude, 
dominant frequency ratio 

Perceptual 13 MFCC 

 
 
In the case of the model in [51], 1D and 2D convolutional neural networks (CNN) were used. In the 1D-CNN 
model, the authors performed the normalization of 1000 samples for each cardiac signal in order to use it as the 
input to the model. For the 2D-CNN model, they extracted 12 MFCC features in each 30 ms frame, obtaining 
a 96 × 12 feature matrix. Table 17 shows the configurations of the 1D-CNN and 2D-CNN model.  
Finally, in the model in [52], the authors used 12.5 s of each recording of heart sounds, making a total of 50,000 
samples. Then, they applied a decimation with a factor of eight twice until they obtained a total of 782 samples 
in each recording. This model used recurrent neural networks, specifically long short-term memory (LSTM). 
Table 18 shows the model configuration. 
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Table 17. Summary of 1D-CNN and 2D-CNN model configurations in [51]. 
 

1D-CNN model 2D-CNN model

Layer 
Output 
shape 

Layer 
Output 
shape 

Input 1000 × 1 Input 96 × 12
Conv (kernel = 6; strides = 1) 1000 × 8 Conv (kernel = 4; strides = 1) 96 × 12 × 16 
Batch-Norm 1000 × 8 Batch-Norm 96 × 12 × 16 
Activation Function (ReLu) 1000 × 8 Activation Function (ReLu) 96 × 12 × 16 
MaxPool (kernel = 2; strides = 2) 500 × 8 MaxPool (kernel = 2; stride = 2) 48 × 6 × 16 
Conv (kernel = 6; strides = 1) 500 × 8 Conv (kernel = 4; strides = 1) 48 × 6 × 16 
Dropout (0.4) 500 × 8 Dropout (0.5) 48 × 6 × 16 
Activation Func. (ReLu) 500 × 8 Activation Func. (ReLu) 48 × 6 × 16 
MaxPool (kernel = 2; strides = 2) 250 × 8 MaxPool (kernel = 2; strides = 2) 24 × 3 × 16 
Conv (kernel = 6; strides = 1) 250 × 8 Conv (kernel = 4; strides = 1) 24 × 3 × 16 
Dropout (0.4) 250 × 8 Dropout (0.5) 24 × 3 × 16 
Activation Func. (ReLu) 250 × 8 Activation Func. (ReLu) 24 × 3 × 16 
MaxPool (kernel = 2; strides = 2) 125 × 8 MaxPool (kernel = 2; strides = 2) 12 × 1 × 16 
Flatten 1000 Flatten 192 
Dense 512 Dense 256 
Dropout (0.4) 512 Dropout (0.4) 256 
SoftMax 2 SoftMax 2 
 
 

Table 18. Summary of LSTM model configurations in [52]. 
 

Layer Output shape 
Input 782 × 1
LSTM 782 × 64
Dropout (0.35) 782 × 64
LSTM 1 × 32
Dropout (0.35) 1 × 32
Dense 2 
SoftMax 2 

  
 
In the models in [49], [50] and [144], segmentation was performed manually for the identification of the cardiac 
cycle, S1 and S2 sounds and systolic and diastolic intervals, unlike the proposed method that uses the automatic 
segmentation method described in Section 4.1. In the case of the models proposed in [51], normalization was 
applied to 1000 samples in each cardiac cycle and the MFCC features were calculated. Furthermore, for the 
model in [52], the decimation process was carried out in each recording, until a total of 782 samples were 
obtained in each signal. 
 
The same dataset described in section 4.2.1.1 was used in this experiment. The well-known tool for data mining 
and machine learning Weka (Knowledge Environment of Waikato University) was used to construct 
classification models [150]. The power characteristics were used as inputs for the four classifiers (SVM, KNN, 
RF and MLP). A cross validation of 10 folds was used to evaluate the performance of each classifier. 
 
Table 19 shows the comparison of the accuracy results between the methods in [49], [50], [144] and the 
proposed method using the different ML models. Table 20, 21 and 22 show the results of specificity, sensitivity, 
and the area under the receiver operating characteristic curve (AUC), respectively. Table 23 presents the 
comparison of the results obtained with the proposed method using the KNN classifier and the models proposed 
in [51] and [52]. 
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Table 19. Results of accuracy between the methods in [49], [50], [144] and the proposed method. 
 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[49]: MFCC 74.65% 85.96% 87.20% 85.83% 
[49]: DWT 86,95% 88.19% 92.17% 90.31% 
[49]: MFCC + DWT 90.68% 91.18% 91.42% 91.55% 
[50]: Statistical, frequency and perceptual 84.47% 93.66% 93.66% 92.54% 
[144]: LPC 88.19% 92.91% 92.91% 94.16% 
[144]: MFCC 94.90% 94.65% 96.52% 96.52% 
[144]: LPC + MFCC 96.27% 95.52% 95.27% 97.26% 
Proposed Method: EWT + Power 92.42% 99.25% 99.00% 98.63% 

 
 

Table 20. Results of specificity between the methods in [49], [50], [144] and the proposed. 
 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[49]: MFCC 76.92% 86.92% 87.94% 82.82% 
[49]: DWT 85.38% 83.84% 91.79% 88.46% 
[49]: MFCC + DWT 90.76% 90.00% 90.00% 91.53% 
[50]: Statistical, frequency and perceptual 86.06% 95.90% 95.18% 94.69% 
[144]: LPC 91.54% 96.63% 91.31% 94.31% 
[144]: MFCC 94.85% 96.76% 95.47% 97.13% 
[144]: LPC + MFCC 97.61% 98.09% 94.22% 97.91% 
Proposed Method: EWT + Power 100.00% 100.00% 99.22% 100.00% 

 
 

Table 21. Results of sensibility between the methods [49], [50], [144] and the proposed. 
 

Feature Extraction 
Classifier 

SVM KNN RF MLP
[49]: MFCC 72.53% 85.06% 86.50% 88.67% 
[49]: DWT 88.43% 92.28% 92.53% 92.04% 
[49]: MFCC + DWT 90.60% 92.28% 92.77% 91.56% 
[50]: Statistical, frequency and perceptual 83.84% 91.28% 92.05% 90.25% 
[144]: LPC 85.55% 89.95% 94.52% 94.01%
[144]: MFCC 94.85% 96.76% 95.47% 97.13% 
[144]: LPC + MFCC 97.61% 98.09% 94.22% 97.91% 
Proposed Method: EWT + Power 87.18% 98.57% 98.80% 97.41% 

 
 

Table 22. Results of AUC between the methods [49], [50], [144] and the proposed method. 
 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[49]: MFCC 74.73% 86.55% 95.26% 93.05% 
[49]: DWT 86.91% 87.58% 97.94% 95.09% 
[49]: MFCC + DWT 90.69% 91.91% 98.20% 96.22% 
[50]: Statistical, frequency and perceptual 84.45% 94.10% 98.13% 97.66% 
[144]: LPC 88.05% 92.19% 97.95% 97.81% 
[144]: MFCC 94.90% 94.63% 99.53% 99.37% 
[144]: LPC + MFCC 96.22% 95.17% 99.46% 99.60% 
Proposed Method: EWT + Power 92.10% 91.81% 99.62% 98.75% 
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Our method obtained an accuracy of 99.25%, a specificity of 100%, a sensitivity of 98.57% and an AUC of 
91.81% using the KNN classifier, which was the best result obtained overall. Furthermore, with all other 
classifiers tested, our method ranks at or close to the top, suggesting that the proposed segmentation and feature 
extraction algorithms are indeed useful, irrespective of the classification model applied on their output.  
 
 

Table 23. Comparison of results between the methods in [51, 52] and the proposed method. 
 

Method Accuracy Specificity Sensibility AUC 

[51]: 1D-CNN 91.80% 85.43% 97.34% 91.39% 

[51]: 2D-CNN and MFCC 86.83% 80.52% 93.19% 86.86% 

[52]: LSTM 54.42% 100% 0% 50% 

Proposed Method: EWT + Power + KNN 99.25% 100% 98.57% 91.81% 

 
Finally, Table 24 presents the confusion matrix for each classification model using as inputs the characteristics 
extracted in the proposed method. It can be seen that, in all cases, a good performance was obtained in the 
detection of normal heart sounds, taking into account the fact that a 10-fold cross validation was applied. 
 
 

Table 24. Confusion matrix of proposed method. 
 

Machine Learning 
  Confusion Matrix 

  Normal Abnormal 

SVM 
Normal 415 0 

Abnormal 61 329 

KNN 
Normal 415 0 

Abnormal 6 384

Random Forest 
Normal 412 3 

Abnormal 5 385 

ANN 
Normal 415 0 

Abnormal 11 379 

 
 
The main limitation that exists in the proposed method is when the recording of the cardiac signal has ambient 
noises with a high amplitude, since these noises can be contained in different frequency bands. Therefore, 
automatic segmentation can identify false positives in the systolic or diastolic interval. Similarly, the power 
features can vary when the signal has these types of noise and the classifier could in turn be confused regarding 
whether a heart murmur is present, with the detected murmur actually being an ambient noise. These results 
were published in the article [151]. 
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5. Synthesis of Heart sounds 
 
In this chapter we present the advances obtained during research in the synthesis of heart sounds. After 
exploring the mathematical models proposed in the state of the art and evaluating the possibility of
implementing GAN models for the generation of biomedical signals, in this section we propose different GAN-
based architectures and incorporate mathematical models that help define a normal heart sound pattern and 
types of murmurs as realistic as possible, considering the main limitations described in section 2.3.1. 
 
The first part of this chapter describes the implementation of a GAN model for the generation of normal heart 
sounds. Different validation tests using Mel Cepstral Distortion (MCD) and classification models are presented. 
These results compare favorably with the mathematical model [23]. Although good results were obtained with 
normal cardiac signals, a great limitation is evident in generating abnormal types of sounds, since there is a low 
availability of this type of signals. For this reason, a model based on GAN is proposed that consists of refining 
the characteristics of an ideal signal obtained with a mathematical model from real signals. We have called this 
model FeaturesGAN and it is considered one of the main contributions of this research. Validation results are 
presented using techniques such as: MCD, SSIM, PCA and t-SNE, the performance of classification models is
also evaluated and MOS tests are carried out with doctors obtaining good scoring results. 
 
 

5.1. Synthesis of Normal Heart Sounds Using GAN and EWT  
 
In this section, we propose a model based on Generative Adversary Networks (GANs) to generate normal 
synthetic heart sounds. Additionally, a denoising algorithm is implemented using the empirical wavelet 
transform (EWT), allowing a decrease in the number of epochs and the computational cost that the GAN model 
requires. A distortion metric (mel–cepstral distortion) was used to objectively assess the quality of synthetic 
heart sounds. The proposed method was favorably compared with a mathematical model that is based on the 
morphology of the phonocardiography (PCG) signal published as the state-of-the-art. Additionally, different 
heart sound classification models proposed as state-of-the-art were also used to test the performance of such 
models when the GAN-generated synthetic signals were used as test dataset. In this experiment, good accuracy 
results were obtained with most of the implemented models, suggesting that the GAN-generated sounds 
correctly capture the characteristics of natural heart sounds.  
 
5.1.1. Proposed method 

 
The proposed method is made up of two main stages as shown in Figure 15. The first stage consists of the 
implementation of a GAN architecture to generate a synthetic heart sound, and the second stage is in charge of 
reducing the noise of the synthetic signal using the Empirical Wavelet Transform (EWT). This last stage 
consists of a post-processing applied to the signal generated by the GAN, in order to attenuate the noise level. 
Therefore, it makes possible to reduce the number of epochs (and consequently the computational cost) required 
to train the GAN until obtaining a low noise output signal. Figure 16 shows the diagram of the implemented 
GAN architecture, and each of its components is described below. 

 
 

 
 

Figure 15. General diagram of proposed method. 
 
 

Noise: A Gaussian noise with a size of 2000 samples is used as input to the generator. The mean and standard 
deviation of the noise’s distribution are 0 and 1 respectively. 
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Generator Model: Figure 17 shows a diagram of the generating network, it begins with a dense layer with ReLu 
activation function; followed by three convolutional layers with filters of size 128, 64 and 1 respectively, each 
of these layers have ReLu activation function, kernel size of 3 and stride of 1; finally, there is a dense layer with 
tanh activation function. The Padding parameter is set to 'same' to maintain the same data dimension in the input 
and output of the convolutional layer. 
 
Discriminator Model: Figure 18 shows a diagram of the discriminator network. It begins with a dense layer 
with ReLu activation function; followed by 4 convolutional layers with filters of size 256, 128, 64 and 32 
respectively, each of these layers uses Leaky ReLu activation function, kernel size of 3 and stride of 1, 
additionally, between each convolution layer there is a Dropout of 0.25; finally, there is a dense layer with tanh 
activation function. The Padding parameter is set to 'same' to maintain the same data dimension in the input and 
output of the convolutional layer. 
 
The architecture of the DCGAN model was taken as the basis for the implementation of the generator and 
discriminator, taking into account the use of 1D convolutional layers. This type of architecture has been 
implemented in other works published in the state of the art [89, 94]. For our work, some hyperparameters were 
modified in order to reduce the computational cost. 
 
Dataset of Heart Sounds: 100 normal heart sounds obtained from the Physionet database [30] are used, with a 
sampling frequency of 2 KHz and 1 second of duration. For this dataset, those signals with a similar heart rate 
were selected, that is, all signals have a similar systolic and diastolic interval duration.  

 
Optimization: The Adam optimizer is used, since it is one of the best performers in this type of architecture. A 
Learning Rate of 0.0002 and a beta of 0.3 are set. 

 
Loss function: Binary Cross-entropy function is used in this work. This function computes the cross-entropy 
loss between true labels and predicted labels.  
 
 

 
 

Figure 16. Proposed GAN diagram. 
 

Subsequently, the difference between generator and discriminator losses is analyzed. If this difference is greater 
than 0.5, the input data to the discriminator is switched to a Gaussian noise with a mean of 0 and standard 
deviation of 1, not the generator output as it is otherwise. With this method, a convergence in the loss functions 
of the generator and discriminator can be achieved. 

As mentioned before, the second stage of the proposed method aims to reduce the noise level of the synthetic 
signal generated by the GAN model. It is understood that as the number of epochs in the training of the generator 
and discriminator models increases, the noise of the synthetic signal is attenuated, however, it requires many 
epochs, and in turn, a long computation time [152]. Therefore, in order to reduce the number of GAN training 
epochs required to generate synthetic signals with acceptable noise levels, it was decided to introduce a post-
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processing stage using the algorithm proposed in [118], called Empirical Wavelet Transform (EWT). The EWT 
allows the extraction of different components of a signal by designing an appropriate filter bank. The theory of 
the EWT algorithm is described in detail in [118]. This algorithm has been used in different signal processing 
applications [119], [120] and [121]. In [151] a modified version of this algorithm was used as a pre-processing 
stage in the analysis of heart sounds. Its implementation is described in more detail in [151]. In this work it was 
decided to use as a reference the method proposed in [151] to reduce the noise of the synthetic signal. 

 
Taking into account that the frequency range of the S1 and S2 sounds is between 20 - 200 Hz [122], it was 
decided to modify the edge selection method that determines the number of components for the EWT algorithm. 
The signal is then broken down into two frequency bands, the first component corresponds to the frequency 
range between 0 - 200 Hz, while the second component corresponds to frequencies over 200 Hz. Therefore, in 
this work the signal corresponding to the first component is used. 
 
 

 
 

Figure 17. Architecture of the generator model. 
 
 
 

 
 

Figure 18. Architecture of the discriminator model. 
 

 
Taking into account that the input of the GAN model is a Gaussian noise, and in turn, the output of the model 
during the first epochs of training is expected to be a signal mixed with Gaussian noise, it is decided to do a test 
using a real heart signal mixed with Gaussian noise to evaluate the performance of the proposed EWT filter on 
signals with the same expected characteristics of the Generator’s output. Figures 19a and 19b show, 
respectively, a real heart sound and the same heart sound mixed with low amplitude Gaussian noise, while 
Figures 19c and 19d show their respective Fourier Transforms (FFT). In this last figure, it can be seen in blue 
the frequency components between 0 and 200 Hz, and in green the frequency components above 200 Hz caused 
by the Gaussian noise. The signal shown in Figure 19b was then used as an input example to the proposed EWT 
algorithm to illustrate its de-noising action. Figure 19d shows the two frequency bands extracted with EWT 
using the FFT, while Figures 19e and 19f show the two components extracted from the noisy signal in the time 
domain. As can be seen, the signal obtained in Figure 19e presents a lower noise level and is comparable with 
the original cardiac signal shown in Figure 19a. 
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Figure 19. A) Real heart sound; B) Real heart sound with Gaussian noise; C) FFT of real heart sound; D) FFT of heart 
sound with Gaussian noise; E) EWT component of the noisy signal in the frequency range of 0 – 200 Hz; F) EWT 

component of the noisy signal in the frequency range greater than 200 Hz. 
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5.1.2. Experiments and Results 
 

The proposed GAN model was trained for a total of 2000 epochs. Figure 20 shows sample output signals 
generated at different epochs. As can be observed, as the epochs increase, the signals present a more realistic 
form. In this work, the EWT filter is a post-processing stage that is applied to the synthetic signal generated 
with 2000 training epochs, in order to reduce the noise level of the generator output. Therefore, the EWT filter 
is not part of the training loop for the GAN. This number of epochs was determined after observing the synthetic 
signals obtained at different training points (from 100 epochs to 12000 epochs). It was observed that from 2000 
epochs, the synthetic signal has a shape very similar to a natural signal, but with a relatively high noise level, 
as shown in Figure 20e. Therefore, it was decided to generate the synthetic signals up to 2000 epochs, and 
subsequently apply the proposed EWT algorithm. Figure 20f and 20g shows the results of a synthetic signal 
generated with 12000 training epochs without applying an EWT algorithm or a natural signal, respectively. 
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Figure 20. A) Synthetic signal with 100 epochs; B) synthetic signal with 500 epochs; C) synthetic signal with 1000 
epochs; D) synthetic signal with 2000 epochs; E) synthetic signal with 2000 epochs + EWT; F) synthetic signal with 

12000 epochs; G) natural signal of heart sound. 
 

In this work, a comparison is made between the proposed method and a mathematical model proposed in [23], 
in order to determine which method generates a cardiac signal realistic enough to be used by a classification 
model. The mathematical method [23] is inspired by a dynamic model that generates a synthetic 
electrocardiographic signal, as described [154]. Therefore, this model is based on the morphology of the 
phonocardiographic signal and has been used as a reference in other proposed methods [153]. The equation for 
the reference model [23] is described below (equation 22): 
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Where 𝛼! , 𝜇!  and 𝜎!  are the parameters of amplitude, center and width of the Gaussian terms, respectively; 𝑓!  
and 𝜑!  are the frequency and the phase shift of the sinusoidal terms, respectively; and 𝜃 is an independent 
parameter in radians that varies in the range -π, π for each beat. The parameters used by the authors in [23] are 
summarized in Table 25.

 
The ordinary differential equation 𝑧̇ was solved using the numerical Runge-Kutta method of fourth order, using 
the Matlab software. Using the values in Table 27, we obtain the graph in Figure 21A, which represents the S1 
and S2 sounds of a cardiac cycle. Figure 21B shows a natural signal of heart sound. 
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Table 25. Parameters used in [23] to generate normal heart sounds. 
 

Index (i) S1 (-) S1 (+) S2 (-) S2 (+) 

𝛼!  0.4250 0.6875 0.5575 0.4775 

𝜇! (radians) 𝜋/12 3𝜋/19 3𝜋/4 7𝜋/9 

𝜎!  0.1090 0.0816 0.0723 0.1060 

𝑓!  (Hz) 10.484 11.874 11.316 10.882 

𝜑!  (radians) 3𝜋/4 9𝜋/11 7𝜋/8 3𝜋/4 

 
 

 

 
Figure 21. A) Synthetic heart sound generated by the model [23]; B) natural signal of the heart sound. 

 
5.1.2.1. Results using Mel Cepstral Distortion (MCD) 

 
Mel-Cepstral Distortion (MCD) is a metric widely used to objectively evaluate audio quality [155], and its 
calculation is based on Mel-frequency cepstral coefficients (MFCC). This method has been widely used in the 
evaluation of voice signals, since many automatic voice recognition models use feature vectors based on MFCC 
coefficients [155]. The parameters used for MFCC extraction are the following: the length of the analysis 
window (frame) in seconds is 0.03 s, the step between successive windows in second is 0.015 s, the number of 
cepstral to return in each windows (frame) is 14, the number of filters in the filterbank is 22, the FFT size is 
4000, the lowest band edge of mel filters is 0, the highest band edge of mel filters is 0.5, and no window function 
is applied to the analysis window of each frame. 
 
Basically, MCD is a measure of the difference between two MFCC sequences. In Vasilijevic and Petrinovic 
[156], different ways of calculating this distortion are presented. In equation (3), the formula used in [155] is 

defined, where 𝐶+,--  and 𝐶+,--^  are the MFCC vectors of a frame of the original and study signal, 

respectively, and L represents the number of coefficients in that frame. 𝑀𝐶𝐷,./+0  represents the MCD result 
obtained in a frame. 

𝑀𝐶𝐷V>W&X = ∑ 5𝐶&V,,[𝑙]− 𝐶&V,,^ [𝑙]6
:Y

4'A            (23) 
 

In this work, it was decided to use this objective measurement method to evaluate the similarity between natural 
and synthetic heart signals, taking into account that heart sounds are audio signals that are typically evaluated 
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using human hearing, and the MFCC coefficients have already been used in the analysis of heart sound signals 
[49], [50], [144] and [151]. 
 
A set of 400 natural normal heart sounds taken from the Physionet [16] and Pascal [17] databases were used. 
Each signal was cut to a single cardiac cycle, with normalized duration of 1 s, applying a resampling on the 
signal. Signals were also normalized in amplitude, and those signals with a similar heart rate were chosen. 
Those natural signals are compared to a total of 50 synthetic heart sounds generated using the proposed method, 
and 50 synthetic signals were generated using the model [23]. In the case of model [23], the 𝛼!  parameters were 
obtained with random variables in the range of 0.3 to 0.7, in order to generate different wave signals. The other 
parameters were established as shown in Table 3. Additionally, the synthetic signal was mixed with a white 
Gaussian noise, as indicated in the article [23]. These synthetic signals have a sampling rate of 2 KHz, a duration 
of 1 s, and are amplitude-normalized. All signals (natural and synthetic) have a similar heart rate-- that is, the 
size of the systolic and diastolic interval is similar in all the signals. 

 
The first evaluation step was to calculate the MCD between the natural signals-- that is, the MCD between each 
natural signal and the remaining natural samples. A total of 399 MCD values were computed and then averaged. 
This same procedure was applied with the synthetic signals, i.e., computing the MCD between each synthetic 
signal and each natural signal, obtaining 400 MCD values that were then averaged. Figure 22 shows a schematic 
of the procedure to compute the MCD. Figure 23 shows the results of the average MCD between the natural 
signals (blue color), the average distortions of the synthetic signals generated with the proposed method (red 
color), the average distortions of the synthetic signals generated with the proposed method without applying an 
EWT algorithm (dark blue color), and the average distortion of the synthetic signals generated with the model 
in [23] (green color) using the MCD method. 
 

 
 

Figure 22. General diagram of the procedure to calculate the signal distortion. 

  
Figure 23. Result of MCD distortions. 
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To verify that the generator in the GAN model was not just copying some of the training examples, we computed 
the MCD distortion of a synthetic signal against each of the signals used in the training dataset. Figure 24 shows
the resulting MCD values, with and without the EWT postprocessing. It can be seen that in none of the cases is 
there a MCD value equal to approaching zero; therefore, the generated signal is not a copy of any of the training 
inputs. 

 

 
Figure 24. Result of MCD distortion using one synthetic signal with training dataset 

 
It can be seen in Figure 11 that the distortions of the natural signals and the signals generated using the 
proposed method are in the same range, unlike the distortion obtained with the signals generated using the 
model [23]. 

5.1.2.2. Results using classification models 
 

In this section, different heart sound classification models published in the state-of-the-art are tested [49], [50], 
[144] and [151]. These models focus on discrimination between normal and abnormal heart sounds. They were 
trained with a total of 805 heart sounds (415 normal and 390 abnormal), obtained from the following databases: 
the PhysioNet/Computing in Cardiology Challenge 2016 [16], Pascal challenge database [17], Database of the 
University of Michigan [13], Database of the University of Washington [14], Thinklabs database (digital 
stethoscope) [15] and 3M database (digital stethoscope) [145]. Table 26 presents the different characteristics 
extracted in the proposed classification methods [49], [50], [144] and [151]. These characteristics belong to the 
domains of time, frequency, time-frequency and perceptual. 

 
Table 26. Features extracted in models [49], [50], [144] and [151]. 

 

Reference Features 
[151] Six power values (three in systole and three in diastole) 

[49] Nineteen mel-frequency cepstral coefficients (MFCC) and 24 Discrete 
Wavelet Transform features 

[50]

Statistical domain: Mean value, median value, standard deviation, 
mean absolute deviation, quartile 25, quartile 75, IQR, skewness, 
kurtosis, coefficient of variation. Frequency domain: Entropy, 
dominant frequency value, dominant frequency magnitude, dominant 
frequency ratio. Perceptual domain: 13 MFCC 

[144] 
Six linear prediction coefficients (LPC) + 14 MFCC per segment (S1, 
S2, systole and diastole) 
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Each feature set was used as input to the following machine learning (ML) models: Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), Random Forest (RF), and Multilayer Perceptron (MLP). In Table 27, the 
accuracy results of each one of the combinations of characteristics with the ML models are presented, applying 
a 10-fold cross validation. The analysis of these results is described in more detail in [151]. 

 
Table 27. Accuracy results of the methods proposed in [49], [50], [144] and [151], taken from article [151]. 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[151]: EWT + Power 92.42% 99.25% 99.00% 98.63% 
[49]: MFCC + DWT 90.68% 91.18% 91.42% 91.55% 
[50]: Statistical, frequency 
and perceptual 

84.47% 93.66% 93.66% 92.54% 

[144]: LPC + MFCC 96.27% 95.52% 95.27% 97.26%
 

In this work, these classification models were used to test the synthetic signals generated with the proposed 
method (GAN). Therefore, 50 synthetic signals were used as the test dataset, and the accuracy results are
presented in Table 28. The same procedure was done with the synthetic signals without applying the EWT 
algorithm, with the accuracy results presented in Table 29. 

 
Table 28. Accuracy results of synthetic signals, using the trained models proposed in articles [49], [50], [144] and 

[151]. 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[151]: EWT + Power 100% 100% 100% 100% 
[49]: MFCC + DWT 80% 90% 78% 82% 
[50]: Statistical, frequency 
and perceptual 

98% 78% 78% 60% 

[144]: LPC + MFCC 98% 96% 96% 82% 
 

Table 29. Accuracy results of synthetic signals without applying EWT algorithm, using the trained models proposed in 
articles [49], [50], [144] and [151]. 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[151]: EWT + Power 100% 100% 100% 100% 
[49]: MFCC + DWT 85% 88% 80% 90% 
[50]: Statistical, frequency 
and perceptual 

90% 78% 75% 60% 

[144]: LPC + MFCC 95% 90% 90% 78% 
 

The best results were obtained with the power characteristics proposed in [151]. However, in several 
combinations of characteristics and ML models results of precision greater than 90% were obtained, as was the 
case of the combination of LPC and MFCC proposed in [144]. From these results it can be argued that the 
synthetic signals generated with the proposed method have similar characteristics to the natural signals, since 
the classification results on both type of signals are similar.
 

5.2. FeaturesGAN: adversarial model for the synthesis of heart sound and 
murmurs 
 
In the previous section, a GAN-based method was presented for the generation of normal cardiac sounds. 
Different validation experiments were performed using Mel Cepstral Distortion metric and the performance of 
different Machine Learning models, so it is possible to evidence a strong indication that synthetic signals can 
be used to improve the performance of cardiac sound classification models by increasing the number of 
available training samples. However, one of the main drawbacks or limitations in the proposed model was the 
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presence of the mode collapse in the training stage of the GAN network (this phenomenon is described in 
section 2.5). 
 
Although a diversity was obtained in the synthetic samples, it was necessary to retraining the GAN model 
several times to reach a good number of different samples. Undoubtedly one of the main factors that caused a 
mode collapse in the model was the small number of actual samples used to train the discriminator model. 
Given this limitation, a method capable of generating cardiac sounds with different types of murmurs is 
proposed assuming that the number of real signals is even smaller, this method has been named FeaturesGAN. 
 
5.2.1. General description 
 
FeaturesGAN main objective is to take advantage of the phenomenon of mode collapse that occurs in the 
training of the GAN model to combine an ideal signal (obtained from a mathematical model) with 
characteristics in the domain of time, frequency or perceptual of real signals, as described in Figure 25. In this 
way, the model produces many synthetic signals, preserving the main characteristics of the available real 
signals. In other words, FeaturesGAN makes a refinement in the characteristics of the signals obtained by the 
mathematical model to achieve a more realistic result. 
 

 
 

Figure 25. General diagram of FeaturesGAN 
 

The main novelty of this approach is the structure of each sample of the dataset that is used to train the 
discriminant model, that is, each sample consists of a concatenation of an ideal signal in time (obtained by a 
mathematical model) and characteristic vectors o transformations of a real signal, as shown in the diagram of 
Figure 26.

 

 
 

Figure 26. General architecture of FeaturesGAN 
 

The generator model must extract the different vectors of features in each iteration, in order to produce a signal 
in the time domain very similar to one obtained with the mathematical model, and in turn with features very 
similar to the available real signals. 
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5.2.2. Definition of mathematical models for the generation of normal heart sounds 
and types of murmurs 
 
Taking into account that this method requires a signal that represents a cardiac sound in the time domain, the 
mathematical model proposed in [23] is used for the generation of S1 and S2 sounds. Random variables were
added in the amplitude, centered and wide parameters to obtain different waveforms for S1 and S2. For the case 
of cardiac murmurs, a mathematical model is defined that is capable of producing a signal with a morphology 
similar to the different types of murmurs described in Table 10. The different types of murmurs are described 
below and subsequently the respective mathematical models. 
 
5.2.2.1. Cardiac murmurs 
 
Cardiac murmurs are noise caused by a turbulent blood flow through heart valves or near the heart [146]. These 
noises can be characterized according to several criteria, such as: i) localization in the cardiac cycle: systolic 
puffs (located in the systole, between S1 and S2), diastolic (located in the diastole, between S2 and  the S1 
sound of the next cardiac cycle), and continuous (begin in the systole and surpass S2 to end in diastole); ii) 
Duration: According to its extension in the systole or diastole, there is talk of short (protosystolic for example) 
and long (pansystolic for example); iii) Morphology: It refers to the dynamic aspect of the breath, can be 
presented as a homogeneous or rhomboid intensity [147]. Table 30 illustrates the different types of murmurs
taking into account the location, duration and morphology criteria. 
 

Table 30. Description of the different types of cardiac murmurs [147] 
 

Type of cardiac murmur Description 
Pansystolic 

 

They occupy all the systole without varying their 
morphology (rectangular). They usually appear in the
insufficiency of the atrioventricular valves, and in most 
interventricular communications. 

Ejective 

 

They are rhomboidal murmurs and are auscultated when 
there is stenosis in ventricular output tracts and in 
pulmonary or aortic valves. 

Protosystolic 

 

They start up close to S1 to decrease in intensity and end 
before S2. They are characteristic of small muscle 
interventricular communications. 

Telesystolic 

 

They are short murmurs, located in the middle or at the 
end of the systole. They are rare in pediatrics. They 
usually associate with mild pathology of the mitral valve. 

Protodiastolic 

 

They are short murmurs, of decreasing intensity. They 
are produced by the insufficiency of sigmoid, or 
pulmonary or aortic valves. 

Mesodiastolic 

 

They are rhomboidal murmurs. They occupy the center 
of Diastole. They are produced by increasing flow 
through the auricular valves or in the stenosis of them. 
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Telediastolic 

 

They occupy the end of the diastole, they are usually 
increasing intensity, and are characteristic of mitral or 
tricuspid stenosis, coinciding with the contraction of the 
corresponding atrium. 

Continuous 

 

 
They originate in the systole and surpass the S2 ending in 
diastole. There is a communication between an arterial 
vessel and another venous. 
 

 
 

5.2.2.2. Mathematical model of cardiac murmurs 
 
Taking into account the location and morphology of the different types of cardiac murmurs described in Table 
30, and the model [23] that represents the generation of sounds S1 and S2, this section describes a 
mathematical model that we designed in order to generate a type of murmur. It is worth mentioning that this is 
a own model, which is not in the state of the art. The mathematical model is described below: 
 

𝛿(𝑡) = 𝛼.∆(𝑡)[𝑐𝑜𝑠(2𝜋𝑓𝑡) + 𝛽] 𝑝𝑎𝑟𝑎𝑡B > 𝑡 > 𝑡Z (𝟐𝟒)
 
Where 𝛼& is a random variable that represents the amplitude of the murmur; 𝛽 is a noise that is added with the 

sinusoidal signal; 𝑡!  and 𝑡1  are the initial and final points of the murmur respectively. ∆(𝑡) is a triangular 
function, which varies depends on the type of murmur. 
 
Table 31 describes the term ∆(𝑡) for each type of murmur and an example of the generated signal. Where 𝜎& 
is a random variable that represents the width of the murmur, comprised between the systolic or diastolic 
interval, according to the type of abnormality (ejective or mesodiastolic); 𝜇& represents the centering of the 
murmur. 
 
 

Table 31. Definition of the term ∆(𝑡) in different types of cardiac murmurs 
 

Type of cardiac 
murmur ∆(𝑡) Signal 

 
 
Pansystolic 

∆(𝑡) = 1 

 

 
  

 
 
Ejective 

 
∆(𝑡)

= H
𝑡 −

𝜎&
2
𝑝𝑎𝑟𝑎𝑡! > 𝑡 > 𝜇&

−𝑡 + 𝜎&𝑝𝑎𝑟𝑎𝜇& > 𝑡 > 𝑡1
 

 

 

 
  

 
 
Protosystolic or 
Protodiastolic 

 

∆(𝑡) = 𝑡 −
𝜎&
2
𝑝𝑎𝑟𝑎𝑡! > 𝑡 > 𝑡1  
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Telesystolic or 
Telediastolic 

 
∆(𝑡) = −𝑡 + 𝜎&𝑝𝑎𝑟𝑎𝑡! > 𝑡 > 𝑡1  

 

 

 
  

 
Therefore, the new model to generate abnormal cardiac sounds is the sum of the model [23] and the model 
that represents the type of murmur, as denoted in the following equation: 
 

𝐻𝑆	𝑀𝑜𝑑𝑒𝑙 = 𝑧̇ + 𝛾.																	(𝟐𝟓) 
 
Where 𝑧̇ represents the model [23] and 𝛾 is described as follows: 
 

γ = •
0										para	0 < t < σ[A'

δ(t)							para	σ[A' < t < σ[:& 	
0										para	σ[:& < t < 2π

																															(𝟐𝟔) 

 
Tables 32 and 33 present the parameters used to generate the different types of systolic and diastolic puffs 
respectively. A random variable was set in the amplitude parameter in order to provide variability in the 
waveform. Regarding the parameters of width and centered, the values were established taking into account the 
location of the sounds S1 and S2 (see table 27), the location of the different types of murmurs (see table 33), 
and that the duration of the signal is 2𝜋. The frequency parameter is fixed with a value of 10, being an 
approximate value to the one used in the model [23]. Figures 27 and 28 shows examples of real and synthetic 
signals, in these figures it can be observed that the morphology and location of murmurs are similar. 
 
 

Table 32. Parameters of systolic murmurs 
 

Parameter Pansystolic Ejective Protosystolic Telesystolic 

𝛼& (Amplitude) Random variable with a range between 0.001 – 0.01 

𝜎& (Width) 1.16 (Systolic interval) Random variable with a range between	37𝜋 100⁄ 	y	
3𝜋 50⁄  

𝜇& (Centered) 37𝜋 100⁄  37𝜋 100⁄  27𝜋 100⁄  𝜋 100⁄  
F (Frequency) 10 

 

Table 33. Parameters of diastolic murmurs 
 

Parameter Protodiastolic Mesodiastolic Telediastolic 
𝛼& (Amplitude) Random variable with a range between 0.001 – 0.01 
𝜎& (Width) Random variable with a range between	11𝜋 10⁄ 	y	3𝜋 50⁄  
𝜇& (Centered) 𝜋 5⁄  11𝜋 10⁄  9𝜋 10⁄  
F (Frequency) 10 
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A) 

 
  

B) 

 
  

C) 

 
  

D) 

 
  

E) 

 
  

F) 

 
  

G) 

 
  

H) 

 
 

Figure 27. Examples of heart sounds with systolic murmurs. A) Pansystolic - Synthetic, B) Pansystolic - Real. C) Ejective 
- Synthetic; D) Ejective - Real; E) Protosystolic - Synthetic; F) Protosystolic - Real; G) Telesystolic - Synthetic; H) 

Telesystolic - Real. 
  
 

A) 

 
  

B) 
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C) 

 
  

D) 

 
  

E) 

 
  

F) 

 
  

Figure 28. Examples of heart sounds with diastolic murmurs. A) Protodiastolic - Synthetic, B) Protodiastolic - Real. C) 
Mesodiastolic - Synthetic; D) Mesodiastolic - Real; E) Telediastolic - Synthetic; F) Telediastolic – Real. 

 
 

5.2.3. FeaturesGAN using MFCC features 
 
This section describes the proposed method of the FeaturesGAN model using MFCC characteristics of cardiac 
sounds. Figure 29 shows a general diagram of the architecture, in which the discriminant model is trained with 
signals representing the concatenation of an ideal cardiac sounds (obtained with the mathematical model) and 
MFCC features vector extracted from a dataset of real signals. The training methodology of this model is very 
similar to that presented in section 5.1.1. (See Figure 16), including hyperparameter configurations such as: 
optimization and loss functions. 
 
The main objective of this architecture is to ensure that the generating model is capable of producing signals 
that are very similar in time domain to signals generated by the mathematical model, and in turn have MFCC 
features very similar to real signals.  
 
 

 
 

Figure 29. General architecture of FeaturesGAN using MFCC features 
 

Figure 30 shows the architecture of the generator for this experiment. The hyperparmeters used in the dense 
and convolutional layers are the same proposed in section 5.1.1. (Figure 17). However, MFCC coefficients at 
the signal obtained in the last dense layer are calculated in this experiment, and after both signals are 
concatenated, as shown in Figure 11. For the extraction of the MFCC coefficients, the signal was segmented 
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using windows of 64 ms with 75% overlap, 14 MFCC coefficients were calculated in each window. Considering 
that the size of the signal is 2000 samples, the MFCC vector was 182 samples. 
 
Considering that the goal of the generator is to deceive the discriminator by producing signals that have MFCC 
features very similar to the real signals, it is decided to replicate and concatenate the vector of features 6 times 
so that there is a balance between the signal size in the domain of the Time (2000 samples) and the MFCC 
feature vector (1092 samples). In this way, as the training epochs increase, the generator enters mode collapse 
and begins to produce signals very similar to those used in the discriminator training dataset. 
 

 

 

Figure 30. Architecture of the generator model for FeaturesGAN using MFCC features. 
 

Figure 31 describes the architecture of the discriminant model; the configurations of each layer are similar to the proposals 
in section 5.1.1. (Figure 18), the only difference is that the input signals have a size of 3098 samples. 
 
 

 

 
 

Figure 31. Architecture of the discriminant model for FeaturesGAN using MFCC features. 
 

Experiments were carried out using normal and abnormal heart sounds. The set of normal heart sound data was 
obtained from Physionet [16], 50 cardiac cycles were collected with similar cardiac frequencies, that is, the 
systolic and diastolic segments have similar durations in each of the samples. Additionally, 50 normal heart 
sounds were generated using the mathematical model [23], the parameters were also configured so that the heart 
rate is similar to the real signals. 
 
In Figure 32A there is a signal that represents the concatenation between a normal cardiac sound obtained with 
the mathematical model (left) and the MFCC features vector extracted from the same signal (right), in Figure 
32B the same type of concatenation is shown but with a real heart sound. It can be observed that the MFCC 
features vector differ a lot between both signals, one of the main reasons is the absence of noise in the systolic 
and diastolic interval of the signal generated with the mathematical model. Figure 32C shows the concatenation 
of the signal obtained by the mathematical model and the MFCC features vector of the real signal, this signal 
is an example of the data set used for discriminator training. Finally, Figure 32D shows the result of the 
generator output after 5000 epochs of training, it can be seen that the signal in the time domain (left) was refined 
with real MFCC features. 
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Figure 32. Examples of cardiac signals concatenation in the time domain and their respective MFCC feature vector. A) 
Signal obtained from the mathematical model, B) Real signal obtained from a database, C) Signal used for discriminator 

training, D) Signal obtained after 5000 training epochs. 

 
Figures 33A, 33B and 33C shows the result in the domain of the frequencies of the signal obtained by the 
mathematical model, of the actual cardiac signal and the signal generated by the FeaturesGAN model 
respectively. Similarly, refinement can be observed in the high frequency range of the synthetic signal obtained 
by FeaturesGAN. 
 
The same experiment was repeated for abnormal heart sounds. For this case, 50 cardiac sounds of the Physionet 
database [16] that have an ejective systolic murmur and with a similar heart rate were also selected. 
Additionally, abnormal cardiac sounds were generated from the mathematical model proposed in section 
5.2.2.1., taking into account the parameters required for a signal with the same type of murmur and heart rate. 
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Figure 33. Result of cardiac signals in the frequency domain. A) Normal heart sound obtained from the mathematical 

model, B) Real signal, C) Synthetic signal obtained from the proposed FeaturesGAN model. 
 
 
 
Figure 34 shows representations of the concatenation between signals with systolic murmur in the time domain 
and its respective MFCC features vector, very similar to what is illustrated in Figure 33 with normal cardiac 
sounds. Figure 34D shows the result of the generator output after 5000 epochs of training. Therefore, it can be 
noted that the resulting signal has MFCC features very similar to the real signal (Figure 34B) compared to those 
signals obtained by the mathematical model. 
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Figure 34. Examples of abnormal cardiac signals concatenation in the time domain and their respective MFCC feature 
vector. A) Signal obtained from the mathematical model, B) Real signal obtained from a database, C) Signal used for 

discriminator training, D) Signal obtained after 5000 training epochs. 
 
 

Likewise, Figure 35 shows the results in the frequency domain for the signal obtained by the mathematical 
model (Figure 35A), the real signal (Figure 35B) and the signal obtained by the FeaturesGAN model (Figure 
35C). Although a change is observed in the resulting signal from the generator with respect to the signal 
obtained by the mathematical model, the FFT signal does not have a behavior similar to real signals. Therefore, 
it is very important to consider the characteristics in the mastery of the frequencies for the refinement of these 
synthetic signals. 
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Figure 35. Result of abnormal cardiac signals in the frequency domain. A) Abnormal heart sound obtained from the 

mathematical model, B) Real signal, C) Synthetic signal obtained from the proposed FeaturesGAN model. 

 
 

 
5.2.4. FeaturesGAN using MFCC and FFT features 
 
Considering the limitations that were presented in the results of FeaturesGAN using only MFCC features for 
the synthesis of heart sounds with murmurs, in this section we present the same experiment using MFCC and 
FFT features in the FeaturesGAN model. Figure 36 shows a general diagram of the new FeaturesGAN 
architecture, unlike the previous experiment, in this case an FFT feature vector is added to the concatenation of 
signals used for discriminator training. Similarly, all the configurations and hyperparameters used in the 
previous experiments are preserved. 
 
 

 
 

Figure 36. General architecture of FeaturesGAN using MFCC and FFT features 
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Figure 37 shows the architecture of the generator proposed in this experiment. In this case, the FFT and MFCC 
features are calculated at the output of the last dense layer. Subsequently, the 3 signals are concatenated, that 
is, the output of the last dense layer, the FFT signal and the MFCC feature vector. Similarly, the MFCC feature 
vector is replicated 6 times to a size of 1098 samples and the FFT signal is doubled to a size of 2000 samples. 
Therefore, the size of the resulting signal is 5098 samples. The dense and convolutional layers have the settings 
and hyperparameters used in the previous experiments. 
 

 

 
 

Figure 37. Architecture of the generator model for FeaturesGAN using MFCC and FFT features. 
 

For the case of the Discriminator model, Figure 38 shows the diagram of its architecture. The settings and 
hyperparameters are similar to those used in section 5.1.1. (Figure 17) and section 5.2.3. (Figure 31), the only 
difference is that the size of the input signals is 5098 samples. 
 

 
 

Figure 38. Architecture of the discriminant model for FeaturesGAN using MFCC and FFT features. 
 
Based on the fact that the sounds S1, S2 and murmurs present different frequency components and, in this 
experiment, the FFT signal is used in the training of the model, it is considered to perform a murmur synthesis 
separate of the sounds S1 and S2, as shown in Figure 39. Therefore, a data set of 50 signals is constructed, in 
which each signal is composed of a murmur obtained from the mathematical model, an FFT signal (duplicated) 
and an MFCC feature vector (replicated 6 times) obtained from the murmur of a real signal, that is, in each real 
signal the sounds S1 and S2 were suppressed, in order to analyze only the murmur. After training for 10,000 
epochs, the Generator produces a signal like the one shown in Figure 39B. Therefore, the synthetic murmur 
presents FFT and MFCC features very similar to those obtained with the murmurs of the real signals. 
 
For the generation of sounds S1 and S2, the same method proposed in the previous section was used, considering 
that the parameters of the mathematical model [23] are good indicators for a representation of the signal in the 
frequency domain. 
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Figure 39. Examples of abnormal cardiac signals concatenation in the time domain and their respective FFT and MFCC 

feature vector. A) Signal used for discriminator training, B) Signal obtained after 10000 training epochs.
 
 

Figure 40 shows results of heart sounds with ejective murmur in systole in the time and frequency domain. The 
result obtained by the FeaturesGAN model generated a significant change in the FFT signal, showing a behavior 
very similar to a real signal. 
 
A more rigorous analysis of the synthetic signals obtained from the FeaturesGAN model will be presented in 
the next sections. 
 
 

 
Figure 40. Result of abnormal signals in the time and frequency domain. A) Abnormal heart sound obtained from the 

mathematical model, B) Real signal, C) Synthetic signal obtained from the proposed FeaturesGAN model. 
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5.2.5. Analysis of results 
 
This section presents different analyses of synthetic signal results obtained with the proposed FeaturesGAN 
model. It begins with a review of the Generator and Discriminator model in the training stage. Subsequently, 
different ways are proposed to evaluate the quality of synthetic signals in an objective way, for which dimension 
reduction techniques such as PCA and t-SNE are used in order to visualize the real and synthetic signals in a 
2D plane, and in turn analyze the clustering between them. On the other hand, widely used methods for the 
objective evaluation of audio and image quality such as MCD and SSIM, respectively, are implemented; the 
performance of different heart sound classification models using synthetic signals is also evaluated, and finally, 
MOS tests with medical experts in murmur identification to obtain a subjective evaluation of the quality of the
sounds. 
 
5.2.5.1. Analysis of Generator and Discriminant models 

This section presents an analysis of the Generator and Discriminator models in the training process. The 
objective is to visualize what happens in each of the model layers to understand the mode collapse phenomenon 
in greater detail. On this occasion, the analysis is performed from the generation of a normal heart sound based 
on the GAN architecture proposed in section 5.1.1. 
 
Initially, a display is made of the output of each of the Generator layers (convolutional and dense), the 
discriminator output, and the Generator and discriminator losses at certain training epochs. Figure 41 shows the 
results of feature maps obtained in various layers of the Generator model after 2000 training epochs. In the 
fourth convolutional layer (see Figure 41-D), it can be seen that the signal samples are close to zero. Therefore, 
the last dense layer is receiving a vector of zeros after a number of epochs. However, as the iterations increase, 
the output of this dense layer is a signal very similar to that of a heart sound. For this reason, it is decided to 
visualize the weights and biases of the dense layer at certain instants of epochs, in order to analyze the behavior 
of this layer. 
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Figure 41. Features map of the generating model with 2000 training epochs. A) First convolutional layer with 128 
filters (only the first 64 maps are shown); B) Second convolutional layer with 64 filters (Only the first 16 maps are 

displayed); C) Third convolutional layer with 1 filter; D) Dense layer with output of 2000 samples. 
 

 
Figure 42. Bias visualization in the last dense layer in different training epochs. A) 10 epochs; B) 100 epochs; C) 

500 epochs; D) 2000 epochs. 
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Taking into account that after a number of iterations the weights of the dense layer begin to multiply with values 
close to zero, it is concluded that the biases are the values that are adjusted to obtain a signal that allows the 
discriminator to be fooled. Figure 42 shows the bias result at different epochs, as can be seen, the bias values 
after 1000 epochs represent the shape of a real heart sound. Therefore, the convolutional layers would not be 
contributing relevant information to the model, unlike the dense layer, mainly the biases, which are continually 
adjusting their weights to generate a sufficiently real signal. 
 
A possible reason why the model presents this behavior is the use of few real samples to train the discriminator. 
In this way, the model goes into mode collapse quickly and always tries to find the same path so that the 
generator can fool the discriminator. Figure 43 shows the values of discriminator loss (blue line), generator 
losses (red line), and discriminator output (green line) at different epochs. An oscillatory behavior can be 
observed in the signals, this being a very common case when the mode collapse is present in the training stage. 

 

 
 

Figure 43. Discriminator output and losses. Green signal: Discriminator output; Red signal: Discriminator loss; Blue
signal: Generator loss 

 
Taking into account that the signals are generated from the biases of the last dense layer, and failing that, the 
convolutional layers are not providing the expected characteristics, it is decided to modify the Generator model 
using a partially connected neural network. In this case, the input of the model receives a noise signal that is 
multiplied with the weights of the network and then added to the signal of the mathematical model. In this way, 
the execution time is reduced to 80%, since it does not use convolutional layers and the neural network is not 
fully connected. By incorporating the deterministic signal (mathematical model) in the new generator model, 
the network approach becomes a signal refiner, that is, FeaturesGAN is a refiner of synthetic signals that were 
obtained by mathematical models. The architecture is described in figure 44. 
 
 

 
Figure 44. Diagram of the modified generator model 
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Similar to the analysis of the Generator model, the feature maps of each convolutional layer were analyzed at 
different instants of epochs for the Discriminator model. Figure 45 shows examples of various layers of the 
network after 2000 training epochs, in which no significant findings or patterns were found. The outputs of the 
discriminator were also visualized at different times, in order to analyze how the performance of the 
discriminator behaves as the generating model adjusts its weights. It is worth mentioning that the real signals 
were labeled with the value of 1. In Figure 46 presents the results of the discriminator for 50 signals obtained 
from the generator at different epochs, in which it is observed that the output of the discriminator approaches 1 
as the epochs increase. 
 

 
 
 

 
 
 

 
Figure 45. Features map in the discriminator layers. A) Third convolutional layer with 64 filters; B) Fourth convolutional 

layer with 32 filters; C) Convolutional layer with 1 filter 
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Figure 46. Discriminator outputs using 50 generated samples as the test data set in different training epochs. A) 10 
epochs. B) 100 epochs. C) 500 epochs. D) 2000 epochs. 

 
5.2.5.2. PCA and t-SNE 
 
An analysis of the results was made from the visualization of features extracted using Principal Component 
Analysis (PCA) and T-distributed stochastic neighbor embedding (t-SNE), both methods are widely used for 
dimension reduction. PCA consists of expressing a set of data or characteristics in a set of linear combinations 
of uncorrelated factors [157]. On the other hand, t-SNE creates a probability distribution that represents the 
similarities between neighboring data in a high-dimensional space and in a lower-dimensional space [158]. 
Different experiments have been carried out in the literature to compare which of the two methods has a better 
performance, in many cases t-SNE shows a better clustering result compared to PCA [159]. Both methods will 
be used for the analysis of real and synthetic heart sounds. 

The objective is to use PCA and t-SNE to reduce the dimension of the signals and to be able to do an analysis 
in a 2D plane. In this way, the clustering of the different types of signals is verified, such as: real signals obtained 
from different databases, synthetic signals obtained by the mathematical model and synthetic signals obtained 
by the FeaturesGAN model. Several analysis experiments using normal and abnormal cardiac signals are 
presented below. 
 
Experiment 1: In this experiment, 900 signals representing normal heart sounds were used and are distributed 
as follows: 300 real signals, 300 signals obtained by the mathematical model [23], and 300 signals obtained by 
the FeaturesGAN model using MFCC features. PCA and t-SNE were applied to the dataset to reduce its 
dimensions into two components. Figure 47A and 47B show the results of PCA and t-SNE, respectively, where 
the green dots represent the real signals, the blue dots are the signals obtained by the FeaturesGAN model, and 
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the red dots are the signals generated by the mathematical model. Figures 47C, 47D and 47E show an example 
of each of the signal types used in this analysis. 
  
A very pronounced clustering of the real signals (green dots) and a high similarity between the synthetic signals 
(blue and red dots) can be observed. It is worth mentioning that the sounds S1 and S2 were obtained with the 
model proposed in [23], however, a clustering between the real and synthetic signals is not observed, implying 
that there are characteristics that differ between them. Given this situation, it is proposed to perform a refinement 
of the sounds S1 and S2 generated by the model [23] using the FeaturesGAN method with MFCC and FFT 
features. The procedure is similar to that used in murmur generation as described in section 5.2.4. 
 
Figure 48 shows examples of sounds S1 in the time and frequency domain, figures 48A, 48B and 48C refer to 
the signal S1 obtained by the model [23], the segment S1 obtained from a real signal and the signal resulting 
from the FeaturesGAN model respectively. In Figure 48C, a change in the frequency domain of the synthetic 
signal can be observed since FFT features were used in the FeaturesGAN model. 
 
 

 
 

 
Figure 47. A) Clustering result using PCA; B) Clustering result using T-SNE; C) Signal obtained from the Mathematical 
Model; D) Real Cardiac Signal; E) Signal obtained from the FeaturesGAN model using MFCC. The Y-axis represents the 

normalized amplitude of the signal. 
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Figure 48. Sound S1 results using FeaturesGAN with MFCC and FFT features. Sound S1 obtained by the mathematical 
model: A) Signal in the time domain; B) Signal in the frequency domain. S1 sounds extracted from a real cardiac signal: 
C) Signal in the time domain; D) Signal in the frequency domain. Sound S1 generated by FeaturesGAN: E) Signal in the 

time domain; F) Signal in the frequency domain. 
 
After refining the sounds S1 and S2 using FeaturesGAN, the same visualization experiment using PCA and t-
SNE is performed on the same dataset. Figure 49A and 49B show the results of PCA and t-SNE respectively. 
A clustering can be observed between the real signals (green dots) and the synthetic signals generated by 
FeaturesGAN (blue dots), unlike the signals generated by the model [23]. It is also observed that the t-SNE 
method performs a more pronounced clustering than PCA. These results show that the adjustment made in the 
sounds S1 and S2 with the FeaturesGAN model allows the generation of a cardiac signal with more realistic 
characteristics, unlike using only the mathematical model. Figures 49C, 49D and 49E show an example of each 
of the signal types used in this analysis. 
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Figure 49. A) Clustering result using PCA; B) Clustering result using T-SNE; C) Signal obtained from the Mathematical 

Model; D) Real Cardiac Signal; E) Signal obtained from the FeaturesGAN model using MFCC and FFT. The Y-axis 
represents the normalized amplitude of the signal 

 
 
Experiment 2: In this second experiment an analysis of the signals generated by FeaturesGAN is done using 
MFCC features. 200 signals representing the concatenation of a heart sound in the time domain and its 
respective MFCC feature vector were used as described in section 5.2.3. These signals are distributed as follows: 
50 signals obtained by the model [23] (see Figure 50A), 50 real signals obtained from different databases (See 
Figure 50B), 50 signals representing the training data set of the Discriminant model (see Figure 50C) and 50 
signals obtained by the FeaturesGAN generator model after 5000 training epochs. Unlike experiment 1, fewer 
samples were used in this experiment to better visualize the mix and clusters of signal types. However, the 
behavior is similar using a larger number of samples. 

 
 

 
Figure 50. Concatenated signals used in the experiment. A) Mathematical model signal. B) Actual signal. C) Signal used 

in the discriminator. D) Signal obtained from FeaturesGAN after 5000 epochs. 
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Figure 51 shows the results of PCA and t-SNE. In both cases, the set of signals that correspond to the 
mathematical model (purple dots) are far from the rest of the signals, and in turn, the real signals (green dots), 
the signals used in the discriminator (red dots) and the signals generated by FeaturesGAN (blue dots) are mixed. 
Annex 1 and 2 shows the PCA and t-SNE results respectively at different training epochs in order to observe 
the behavior of the signals as the iterations increase. 

 

 
Figure 51. Clustering result using concatenated signals. A) PCA; B) T-SNE 

 
Taking into account that FeaturesGAN tries to fit the characteristics of a signal from a mathematical model, 
Figure 52 shows the results of PCA and t-SNE using only the segment of MFCC characteristics of the signals. 
Annex 2 and 3 shows the results at different training epochs in order to analyze the evolution of these 
characteristics as the iterations progress. The results shown in figure 52 are very similar to those presented in 
figure 51. It is worth mentioning that the MFCC features that correspond to the discriminator are the same as 
those of the real signals, therefore the red dots are not visible in the graphs. 
 

 
Figure 52. Clustering result using MFCC features. A) PCA; B) T-SNE 
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Experiment 3: In this third experiment, the same exercise as the previous experiment is done, but this time the 
FeaturesGAN model is analyzed using MFCC and FFT features in a type of murmur. 200 signals representing 
the concatenation of a time-domain murmur and its respective MFCC and FFT feature vector were used as 
described in section 5.2.4. These signals are distributed as follows: 50 signals obtained from the mathematical 
model proposed in section 5.2.2. (see figure 53A), 50 real signals obtained from different databases that 
correspond to the same type of murmur (see figure 53B), 50 signals that represent the training data set of the 
Discriminator model (see figure 53C) and 50 signals obtained by the FeaturesGAN generator model after 10000 
training epochs (see figure 53D). Annex 3 and 4 shows the PCA and t-SNE results respectively at different 
training epochs in order to observe the behavior of the signals as the iterations increase. 
 

Figure 53. Concatenated signals used in the experiment. A) Mathematical model signal. B) Real signal. C) Signal used in 
the discriminator. D) Signal obtained from FeaturesGAN after 10000 epochs. 

Figure 54 shows the results of PCA and t-SNE. The results were very similar to those obtained in the previous 
experiment, where the real signals (green dots) are mixed with the signals generated by the FeaturesGAN model 
(blue dots) and the signals used in discriminator training (red dots). Subsequently, the same procedure was 
performed using only the feature segment FFT and MFCC.  
 

 
Figure 54. Clustering result using concatenated signals. A) PCA; B) T-SNE 
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Figures 55 and 56 show the results of PCA and t-SNE for the set of FFT and MFCC features, respectively, 
although the same clustering behavior is shown in both types of signals, with the MFCC features the result is 
more pronounced. Annexes 5 to 10 show the PCA and t-SNE results at different times of training. 

 
 

 
Figure 55. Clustering result using FFT features. A) PCA; B) T-SNE 

 
 

Figure 56. Clustering result using MFCC features. A) PCA; B) T-SNE 
 

 
 
5.2.5.3. MCD and SSIM 
 
In this section, another objective evaluation is made based on Mel Cepstral Distortion (MCD), which was used 
to evaluate the GAN model proposed in section 5.1. Additionally, the Structural Similarity Index Measure 
(SSIM) method is used, which is widely used to evaluate the similarity or quality of the images [160]. SSIM 
measures the perceptual difference between two similar images based on structure, brightness, and contrast. For 
the SSIM calculation between two images, the Scikit-Image library offered by Python was used [161]. The 
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result is a value between 0 and 1, where 1 indicates that both images are identical. For this case, spectrogram 
images of each of the real and synthetic signals were used, taking as reference the signals obtained by the 
mathematical model. 
 
The same methodology proposed in section 5.1.2.1 was implemented. for the calculation of the MCD and SSIM 
indices. Experiments were performed with normal heart sounds and different types of abnormalities, such as: 
Aortic Stenosis (AS), Mitral Regurgitation (MR) and Mitral Valve Prolapse (MVP). Figure 57 shows an 
example of each of the signals. 
 

 

 
Figure 57. Examples of heart sounds. A) Normal signal, B) Aortic Stenosis, C) Mitral Regurgitation D) Mitral Valve 

Prolapse 

 
In each of the experiments, a total of 150 cardiac signals were used, distributed as follows: 50 real signals 
obtained from different databases, 50 synthetic signals obtained by the mathematical model [23] and 50 
synthetic signals obtained from the FeaturesGAN model. Figures 58A, 58B, 58C, and 58D show the MCD (Y-
axis) and SSIM (X-axis) results for normal heart sounds, with aortic stenosis, with mitral regurgitation, and 
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with Mitral Valve Prolapse, respectively. It can be seen that there is a very marked similarity between the real 
signals (green dots) and the synthetic signals obtained by the FeaturesGAN model (blue dots). 

 

 
Figure 58. Mel-Cepstral Distortion (MCD) and Structural Similarity Index Measure (SSIM) results. A) Normal heart 

sounds; B) Abnormal heart sound with aortic stenosis; C) Abnormal heart sound with Mitral Regurgitation; D) Abnormal 
heart sound with Mitral Valve Prolapse. The red, blue, and green dots represent the real heart sounds, those obtained by 

FeaturesGAN, and those obtained by the mathematical model, respectively. 
 
 
5.2.5.4. Classification models 
 
Different proposed methods of automatic classification of normal and abnormal heart sounds are used to 
perform tests with synthetic signals. Similar to what was done in section 5.1.2.2. the models proposed in [49], 
[50], [144] and [151] were used. A total of 1000 synthetic heart sounds were used for the tests of the different 
pre-trained classification models, of which 500 signals correspond to normal heart sounds and the other 500 
signals correspond to different types of abnormalities. Table 34 presents the accuracy results for the different 
feature extraction techniques and Machine Learning algorithms. The results obtained continue to be favorable 
using synthetic signals, in various combinations of features with ML models the accuracy results are greater 
than 90%. 
 
Table 34. Accuracy results of synthetic signals using the trained models proposed in articles [49], [50], [144] and [151]. 

 

Feature Extraction 
Classifier 

SVM KNN RF MLP 
[151]: EWT + Power 99% 99% 98% 98% 
[49]: MFCC + DWT 78% 88% 80% 90% 
[50]: Statistical, frequency 
and perceptual 

89% 86% 90% 94% 

[144]: LPC + MFCC 98% 94% 90% 80% 
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5.2.5.5. MOS test 
 
A dataset of real and synthetic heart sounds is established for mean opinion scoring (MOS) with clinicians to 
validate the quality of the signals. At this stage, normal heart sounds and types of abnormalities such as: Aortic 
Stenosis (AS), Mitral Regurgitation (MR) and Mitral Valve Prolapse (MVP) were selected. The MOS test is a 
widely used method to subjectively assess speech quality. A scale of 1 to 5 defined in the standard ITU-T P.800 
is generally used to assess audio quality [162]. Table 35 specifies the meaning of each scale. 
 

Table 35. Scales defined in the MOS test. 
 

Scala Description 
1 Bad 
2 Poor 
3 Acceptable 
4 Good 
5 Excellent

 
In a MOS test, test persons listen to short speech samples (in the case of voice) and score according to perceived 
quality. The total MOS score is then the mean of all individual scores. For our case, the audio signals are normal 
and abnormal heart sounds that are evaluated by 5 doctors who are experts in identifying heart murmurs. For 
this, 3 types of tests were carried out: 
 

1. MOS test with real signals: This test is intended to validate that the doctor agrees with the label of 
the respective signals (Normal, AS, MR and MVP), a total of 5 sounds of each type were used, the 
doctor delivers his score after listening to each type of signal, and then the average of these scores is 
calculated. Table 36 shows the average score results for each physician, and the overall average for 
each type of heart sound. According to the scoring scale, in all cases the doctors evaluated it as "Good". 
 

Table 36. MOS test results using real signals 
 

Doctor 
Average Score 

Normal AS MS MR 
1 5 4 4.2 4.7 
2 4.5 4 4.3 4 
3 4.2 4.7 4 4.2 
4 4.6 4.6 4.5 4.8 
5 4.8 4.8 4.7 4.5 

Total Score 4.6 4.4 4.3 4.4 
 

2. MOS test with real and synthetic signals: In this test, real and synthetic signals are used, which are 
previously randomized. The goal of this test is to determine if clinicians perceive a significant 
difference between the signals. Table 37 shows the results of this test, obtaining results on similar
scales to the previous test. The synthetic signals were obtained from the FeaturesGAN model, since 
with this model it was possible to obtain variability in the different types of heart signals. 

 
Table 37. MOS test results using real and synthetic signals 

 

Doctor 
Average score – Real signals Average score – Synthetic signals 

Normal AS MS MR Normal AS MS MR 
1 5.0 4.0 4.1 3.8 5.0 4.1 4.2 3.9 
2 4.3 4.1 3.8 4.0 4.9 4.4 4.4 4.0 
3 4.6 4.7 4.0 4.2 4.3 4.2 4.1 4.4 
4 4.9 4.2 4.7 4.0 4.2 4.6 4.0 4.2 
5 4.7 4.8 4.6 4.5 4.4 4.7 4.2 4.1 

Total score 4.7 4.4 4.2 4.1 4.6 4.4 4.2 4.1 



82 

3. MOS test with synthetic signals: Finally, only synthetic signals generated from the FeaturesGAN 
model were used in this experiment in order to rectify the results obtained in the previous test. Table 
38 shows the results of this test, showing results comparable with the real signals, obtaining a MOS 
scale of "good" in each of the types of signals. 
 

Table 38. MOS test results using synthetic signals 
 

Doctor 
Average score 

Normal AS MS MR 
1 4.8 4.4 4.2 3.9 
2 5.0 4.5 4.1 4.1 
3 4.5 4.3 4.0 4.5 
4 4.7 4.5 3.9 4.6 
5 4.5 4.6 4.0 4.2 

Total score 4.7 4.5 4.0 4.3 
 

 
 
 

6. Conclusions 
 
In this work several algorithms are proposed for the analysis (automatic segmentation and classification) and 
synthesis of normal and abnormal heart sounds. In each of them, different tests, validations, and comparisons 
of results with the methods proposed in the state of the art were carried out. 

In the stage of ANALYSIS of heart sounds, an algorithm for the automatic segmentation of heart sounds based 
on EWT and NASE was implemented, obtaining good results in the identification cardiac cycles and their 
segments (i.e. S1, systole, S2 and diastole) in a recording. The algorithm was tested with two datasets of heart
sounds proposed in the Pascal Challenge [17]; the metric used in the challenge consists of the sum of the 
differences between manual segmentation labels provided in the datasets and the segmentation labels obtained 
with the automatic segmentation in each recording [17]. The results of the proposed methods compared 
favorably to methods in the current literature that used the same dataset. The error for dataset A was 843,440.8 
samples and for dataset B was 17,074.1 samples, achieving a reduction of 3.45% and 41.67% respectively 
compared to the best result published in the state of the art [43]. Additionally, tests were performed with 
recordings from the Physionet database, obtaining good segmentation performance. With the help of this 
system, we can analyze and extract characteristics for each heart cycle segment for the development of a 
complete system for the automatic classification of heart sounds.
 
On the other hand, several combinations of features and classifiers have been presented to identify normal and 
abnormal sounds. The proposed method of feature extraction is based on power values in the systolic and 
diastolic intervals. Subsequently, four classification models were used: SVM, KNN, random forest and MLP. 
In addition, the characteristics proposed in [49] and [50] were extracted and the results compared with the 
proposed method. Similarly, models based on deep learning, such as those used in [51] and [52], were also 
implemented and compared with the proposed method. 
 
A classification experiment was carried out using samples obtained from different databases downloaded from 
the Internet. The best results were obtained with the signal power values calculated in the systole and diastole; 
the classifier with the best results in accuracy and specificity was KNN with values of 99.25% and 100%, 
respectively, while the random forest classifier obtained the best result of sensitivity and AUC, with values of 
98.8% and 99.62%, respectively. 
 
These results compare favorably with those presented in the state-of-the-art approaches [49], [50], [51], [52] 
and [144] (see Tables 21, 22, 23, 24 and 25); additionally, our experiment used a greater number of testing 
samples compared to previous works, therefore giving more statistical weight to the results, plus a low 
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computational cost for feature extraction and a small number of characteristics for the classification stage, and 
the tests were performed together with the proposed automatic segmentation algorithm. In general, the resulting 
metrics for the classification test are at or close to the top marks in Tables 21, 22, 23, 24 and 25, for every tested 
classification model. This can be seen as a strong indication that the proposed segmentation and feature 
extraction methods are indeed useful irrespective of the classification model that is then applied. This method 
could potentially be implemented in real-time and guarantees a rapid response with low computational cost. 
 
The main limitation that exists in the proposed method is when the recording of the cardiac signal has ambient 
noises with a high amplitude, since these noises can be contained in different frequency bands. Therefore, 
automatic segmentation can identify false positives in the systolic or diastolic interval. Similarly, the power 
features can vary when the signal has these types of noise and the classifier could in turn be confused regarding 
whether a heart murmur is present, with the detected murmur actually being an ambient noise. 
 
In the SYNTHESIS stage of heart sounds, two GAN models were proposed for the generation of normal signals 
and types of abnormalities. A GAN-based architecture was initially implemented to generate synthetic heart 
sounds, which can be used to train/test classification models. The proposed GAN model is accompanied by a 
denoising stage using the Empirical Wavelet Transform, which allows to decrease the number of training epochs 
and, therefore the total computational cost, obtaining a synthetic cardiac signal with a low noise level. 

The proposed method was compared with a mathematical model proposed in the state-of-the-art [23]. Two 
evaluation tests were carried out, the first is to measure the distortion between the natural and synthetic cardiac 
signals, in order to objectively evaluate the similarity between them. In this case, the Mel Cepstral Distortion 
(MCD) method was used, this method being widely used in the evaluation of audio quality. In this test, the 
synthetic signal generated with the proposed method obtained a better similarity result with the natural signals, 
compared to the mathematical model proposed in [23]. The second method consisted of using different pre-
trained classification Machine Learning models with good precision performance, in order to use the synthetic 
signals as test dataset and verify if the different ML models perform well. In this test, the power characteristics 
proposed in [151] with the different Machine Learning models registered the best results. Generally speaking, 
most of the combinations of features with classification models performed well in discriminating synthetic heart 
sounds as normal, as shown in Table 28. 

The second proposed GAN model allows the generation of cardiac signals with murmur using few real samples 
for training. This model combines a synthetic signal obtained by a mathematical model with features in the 
frequency and perceptual domain of real signals. An analysis of the Generator and Discriminator models was 
carried out, achieving a decrease in the computational cost. Comparisons between the mathematical model and 
real signals were made by applying clustering on PCA and t-SNE features. Tests were also carried out with 
MCD and SSIM distortion metrics, in this last metric Spectrogram images of the synthetic signal were used to 
evaluate the similarity with spectrogram images of real signals. The clustering results in each of the experiments 
show that there is a similarity between the real signals and the signals generated by the FeaturesGAN model. 
 
Additionally, tests were performed with the different classification models pre-trained to assess the accuracy 
performance using synthetic normal and abnormal signals on the test dataset. The results are favorable in the 
different proposed classification models. Finally, MOS tests were carried out with expert doctors to evaluate 
the quality of the sounds in a subjective way, indicating good opinion results. In general terms, according to the 
results obtained in all the validation tests, a strong indication can be seen that the synthetic signals obtained 
with the proposed model present very similar characteristics to the real signals, for which they can be used to 
improve the performance of heart sound classification models, since the number of samples in training could 
be increased. 
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Annexes 
 
Annex 1: Result of clustering with PCA using concatenated signals for the generation of normal heart 
sounds at different training epochs. A) Epoch 100; B) Epoch 1000; C) Epoch 2500; B) Epoch 5000. 
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Annex 2: Result of clustering with t-SNE using concatenated signals for the generation of normal 
heart sounds at different training epochs. A) Epoch 100; B) Epoch 1000; C) Epoch 2500; B) Epoch 
5000. 
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Annex 3: Result of clustering with PCA using MFCC feature segments for the generation of normal 
heart sounds at different training epochs. A) Epoch 100; B) Epoch 1000; C) Epoch 2500; B) Epoch 
5000. 
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Annex 4: Result of clustering with t-SNE using MFCC feature segments for the generation of normal 
heart sounds at different training epochs. A) Epoch 100; B) Epoch 1000; C) Epoch 2500; B) Epoch 
5000. 
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Annex 5: Result of clustering with PCA using concatenated signals for the generation of murmur 
heart at different training epochs. A) Epoch 100; B) Epoch 2000; C) Epoch 5000; B) Epoch 10000. 
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Annex 6: Result of clustering with t-SNE using concatenated signals for the generation of murmur 
heart at different training epochs. A) Epoch 100; B) Epoch 2000; C) Epoch 5000; B) Epoch 10000. 
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Annex 7: Result of clustering with PCA using FFT feature segments for the generation of murmur 
heart at different training epochs. A) Epoch 100; B) Epoch 2000; C) Epoch 5000; B) Epoch 10000. 
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Annex 8: Result of clustering with t-SNE using FFT feature segments for the generation of murmur 
heart at different training epochs. A) Epoch 100; B) Epoch 2000; C) Epoch 5000; B) Epoch 10000. 
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Annex 9: Result of clustering with PCA using MFCC feature segments for the generation of murmur 
heart at different training epochs. A) Epoch 100; B) Epoch 2000; C) Epoch 5000; B) Epoch 10000. 
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Annex 10: Result of clustering with t-SNE using MFCC feature segments for the generation of 
murmur heart at different training epochs. A) Epoch 100; B) Epoch 2000; C) Epoch 5000; B) Epoch 
10000. 
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