79 research outputs found

    Resource management for model learning at entity level

    Get PDF
    Many current and future applications plan to provide entity-specific predictions. These range from individualized healthcare applications to user-specific purchase recommendations. In our previous stream-based work on Amazon review data, we could show that error-weighted ensembles that combine entity-centric classifiers, which are only trained on reviews of one particular product (entity), and entity-ignorant classifiers, which are trained on all reviews irrespective of the product, can improve prediction quality. This came at the cost of storing multiple entity-centric models in primary memory, many of which would never be used again as their entities would not receive future instances in the stream. To overcome this drawback and make entity-centric learning viable in these scenarios, we investigated two different methods of reducing the primary memory requirement of our entity-centric approach. Our first method uses the lossy counting algorithm for data streams to identify entities whose instances make up a certain percentage of the total data stream within an error-margin. We then store all models which do not fulfil this requirement in secondary memory, from which they can be retrieved in case future instances belonging to them should arrive later in the stream. The second method replaces entity-centric models with a much more naive model which only stores the past labels and predicts the majority label seen so far. We applied our methods on the previously used Amazon data sets which contained up to 1.4M reviews and added two subsets of the Yelp data set which contain up to 4.2M reviews. Both methods were successful in reducing the primary memory requirements while still outperforming an entity-ignorant model. © 2020, The Author(s)

    AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

    Get PDF
    Typically, Deep Neural Networks (DNNs) are not responsive to changing data. Novel classes will be incorrectly labelled as a class on which the network was previously trained to recognise. Ideally, a DNN would be able to detect changing data and adapt rapidly with minimal true-labelled samples and without catastrophically forgetting previous classes. In the Online Class Incremental (OCI) field, research focuses on remembering all previously known classes. However, real-world systems are dynamic, and it is not essential to recall all classes forever. The Concept Evolution field studies the emergence of novel classes within a data stream. This paper aims to bring together these fields by analysing OCI Convolutional Neural Network (CNN) adaptation systems in a concept evolution setting by applying novel classes in patterns. Our system, termed AdaDeepStream, offers a dynamic concept evolution detection and CNN adaptation system using minimal true-labelled samples. We apply activations from within the CNN to fast streaming machine learning techniques. We compare two activation reduction techniques. We conduct a comprehensive experimental study and compare our novel adaptation method with four other state-of-the-art CNN adaptation methods. Our entire system is also compared to two other novel class detection and CNN adaptation methods. The results of the experiments are analysed based on accuracy, speed of inference and speed of adaptation. On accuracy, AdaDeepStream outperforms the next best adaptation method by 27% and the next best combined novel class detection/CNN adaptation method by 24%. On speed, AdaDeepStream is among the fastest to process instances and adapt

    Machine learning methods to detect money laundering in the Bitcoin blockchain in the presence of label scarcity

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsEvery year, criminals launder billions of dollars acquired from serious felonies (e.g. terrorism, drug smuggling, or human trafficking), harming countless people and economies. Cryptocurrencies, in particular, have developed as a haven for money laundering activity. Machine Learning can be used to detect these illicit patterns. However, labels are so scarce that traditional supervised algorithms are inapplicable. This research addresses money laundering detection assuming minimal access to labels. The results show that existing state-of-the-art solutions using unsupervised anomaly detection methods are inadequate to detect the illicit patterns in a real Bitcoin transaction dataset. The proposed active learning solution, however, is capable of matching the performance of a fully supervised baseline by using just 5% of the labels. This solution mimics a typical real-life situation in which a limited number of labels can be acquired through manual annotation by experts

    Warped K-Means: An algorithm to cluster sequentially-distributed data

    Full text link
    [EN] Many devices generate large amounts of data that follow some sort of sequentiality, e.g., motion sensors, e-pens, eye trackers, etc. and often these data need to be compressed for classification, storage, and/or retrieval tasks. Traditional clustering algorithms can be used for this purpose, but unfortunately they do not cope with the sequential information implicitly embedded in such data. Thus, we revisit the well-known K-means algorithm and provide a general method to properly cluster sequentially-distributed data. We present Warped K-Means (WKM), a multi-purpose partitional clustering procedure that minimizes the sum of squared error criterion, while imposing a hard sequentiality constraint in the classification step. We illustrate the properties of WKM in three applications, one being the segmentation and classification of human activity. WKM outperformed five state-of- the-art clustering techniques to simplify data trajectories, achieving a recognition accuracy of near 97%, which is an improvement of around 66% over their peers. Moreover, such an improvement came with a reduction in the computational cost of more than one order of magnitude.This work has been partially supported by Casmacat (FP7-ICT-2011-7, Project 287576), tranScriptorium (FP7-ICT-2011-9, Project 600707), STraDA (MINECO, TIN2012-37475-0O2-01), and ALMPR (GVA, Prometeo/20091014) projects.Leiva Torres, LA.; Vidal, E. (2013). Warped K-Means: An algorithm to cluster sequentially-distributed data. Information Sciences. 237:196-210. https://doi.org/10.1016/j.ins.2013.02.042S19621023

    AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model

    Get PDF
    © 2020, The Author(s). The evaluation of machine learning (ML) pipelines is essential during automatic ML pipeline composition and optimisation. The previous methods such as Bayesian-based and genetic-based optimisation, which are implemented in Auto-Weka, Auto-sklearn and TPOT, evaluate pipelines by executing them. Therefore, the pipeline composition and optimisation of these methods requires a tremendous amount of time that prevents them from exploring complex pipelines to find better predictive models. To further explore this research challenge, we have conducted experiments showing that many of the generated pipelines are invalid, and it is unnecessary to execute them to find out whether they are good pipelines. To address this issue, we propose a novel method to evaluate the validity of ML pipelines using a surrogate model (AVATAR). The AVATAR enables to accelerate automatic ML pipeline composition and optimisation by quickly ignoring invalid pipelines. Our experiments show that the AVATAR is more efficient in evaluating complex pipelines in comparison with the traditional evaluation approaches requiring their execution

    Extending Gated Linear Networks for Continual Learning

    Get PDF
    To incrementally learn multiple tasks from an indefinitely long stream of data is a real challenge for traditional machine learning models. If not carefully controlled, the learning of new knowledge strongly impacts on a model’s learned abilities, making it to forget how to solve past tasks. Continual learning faces this problem, called catastrophic forgetting, developing models able to continually learn new tasks and adapt to changes in the data distribution. In this dissertation, we consider the recently proposed family of continual learning models, called Gated Linear Networks (GLNs), and study two crucial aspects impacting on the amount of catastrophic forgetting affecting gated linear networks, namely, data standardization and gating mechanism. Data standardization is particularly challenging in the online/continual learning setting because data from future tasks is not available beforehand. The results obtained using an online standardization method show a considerably higher amount of forgetting compared to an offline –static– standardization. Interestingly, with the latter standardization, we observe that GLNs show almost no forgetting on the considered benchmark datasets. Secondly, for an effective GLNs, it is essential to tailor the hyperparameters of the gating mechanism to the data distribution. In this dissertation, we propose a gating strategy based on a set of prototypes and the resulting Voronoi tessellation. The experimental assessment shows that, in an ideal setting where the data distribution is known, the proposed approach is more robust to different data standardizations compared to the original one, based on a halfspace gating mechanism, and shows improved predictive performance. Finally, we propose an adaptive mechanism for the choice of prototypes, which expands and shrinks the set of prototypes in an online fashion, making the model suitable for practical continual learning applications. The experimental results show that the adaptive model performances are close to the ideal scenario where prototypes are directly sampled from the data distribution.To incrementally learn multiple tasks from an indefinitely long stream of data is a real challenge for traditional machine learning models. If not carefully controlled, the learning of new knowledge strongly impacts on a model’s learned abilities, making it to forget how to solve past tasks. Continual learning faces this problem, called catastrophic forgetting, developing models able to continually learn new tasks and adapt to changes in the data distribution. In this dissertation, we consider the recently proposed family of continual learning models, called Gated Linear Networks (GLNs), and study two crucial aspects impacting on the amount of catastrophic forgetting affecting gated linear networks, namely, data standardization and gating mechanism. Data standardization is particularly challenging in the online/continual learning setting because data from future tasks is not available beforehand. The results obtained using an online standardization method show a considerably higher amount of forgetting compared to an offline –static– standardization. Interestingly, with the latter standardization, we observe that GLNs show almost no forgetting on the considered benchmark datasets. Secondly, for an effective GLNs, it is essential to tailor the hyperparameters of the gating mechanism to the data distribution. In this dissertation, we propose a gating strategy based on a set of prototypes and the resulting Voronoi tessellation. The experimental assessment shows that, in an ideal setting where the data distribution is known, the proposed approach is more robust to different data standardizations compared to the original one, based on a halfspace gating mechanism, and shows improved predictive performance. Finally, we propose an adaptive mechanism for the choice of prototypes, which expands and shrinks the set of prototypes in an online fashion, making the model suitable for practical continual learning applications. The experimental results show that the adaptive model performances are close to the ideal scenario where prototypes are directly sampled from the data distribution

    Representation Learning for Texts and Graphs: A Unified Perspective on Efficiency, Multimodality, and Adaptability

    Get PDF
    [...] This thesis is situated between natural language processing and graph representation learning and investigates selected connections. First, we introduce matrix embeddings as an efficient text representation sensitive to word order. [...] Experiments with ten linguistic probing tasks, 11 supervised, and five unsupervised downstream tasks reveal that vector and matrix embeddings have complementary strengths and that a jointly trained hybrid model outperforms both. Second, a popular pretrained language model, BERT, is distilled into matrix embeddings. [...] The results on the GLUE benchmark show that these models are competitive with other recent contextualized language models while being more efficient in time and space. Third, we compare three model types for text classification: bag-of-words, sequence-, and graph-based models. Experiments on five datasets show that, surprisingly, a wide multilayer perceptron on top of a bag-of-words representation is competitive with recent graph-based approaches, questioning the necessity of graphs synthesized from the text. [...] Fourth, we investigate the connection between text and graph data in document-based recommender systems for citations and subject labels. Experiments on six datasets show that the title as side information improves the performance of autoencoder models. [...] We find that the meaning of item co-occurrence is crucial for the choice of input modalities and an appropriate model. Fifth, we introduce a generic framework for lifelong learning on evolving graphs in which new nodes, edges, and classes appear over time. [...] The results show that by reusing previous parameters in incremental training, it is possible to employ smaller history sizes with only a slight decrease in accuracy compared to training with complete history. Moreover, weighting the binary cross-entropy loss function is crucial to mitigate the problem of class imbalance when detecting newly emerging classes. [...

    Reservoir SMILES: Towards SensoriMotor Interaction of Language and Embodiment of Symbols with Reservoir Architectures

    Get PDF
    Language involves several hierarchical levels of abstraction. Most models focus on a particular level of abstraction making them unable to model bottom-up and top-down processes. Moreover, we do not know how the brain grounds symbols to perceptions and how these symbols emerge throughout development. Experimental evidence suggests that perception and action shape one-another (e.g. motor areas activated during speech perception) but the precise mechanisms involved in this action-perception shaping at various levels of abstraction are still largely unknown. My previous and current work include the modelling of language comprehension, language acquisition with a robotic perspective, sensorimotor models and extended models of Reservoir Computing to model working memory and hierarchical processing. I propose to create a new generation of neural-based computational models of language processing and production; to use biologically plausible learning mechanisms relying on recurrent neural networks; create novel sensorimotor mechanisms to account for action-perception shaping; build hierarchical models from sensorimotor to sentence level; embody such models in robots
    • …
    corecore