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Abstract

Every year, criminals launder billions of dollars acquired from serious felonies (e.g.

terrorism, drug smuggling, or human trafficking), harming countless people and

economies. Cryptocurrencies, in particular, have developed as a haven for money

laundering activity. Machine Learning can be used to detect these illicit patterns.

However, labels are so scarce that traditional supervised algorithms are inapplica-

ble. This research addresses money laundering detection assuming minimal access

to labels. The results show that existing state-of-the-art solutions using unsupervised

anomaly detection methods are inadequate to detect the illicit patterns in a real Bit-

coin transaction dataset. The proposed active learning solution, however, is capable of

matching the performance of a fully supervised baseline by using just 5% of the labels.

This solution mimics a typical real-life situation in which a limited number of labels

can be acquired through manual annotation by experts.

Keywords: Anti-money laundering, Applied machine learning, Supervised learning

by classification, Anomaly detection, Active learning
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1
Introduction

This thesis project was conducted within the scope of an internship in the machine

learning research team at Feedzai, a technology company focused on financial crime

detection using machine learning (ML). To motivate the thesis project in the context

of the internship, the following chapter first gives an overview of the company’s opera-

tions as well as the organization and responsibilities of the machine learning research

team, in particular. Next, the research problem and its relevance for the company are

discussed. Finally, the specific goals and the scope of the thesis project are defined.

1.1 Company and Team Overview

Feedzai develops, implements and maintains ML-based solutions for financial crime

detection in transaction data. Its main clients are financial institutions, such as banks

and payment processors, as well as retailers. Feedzai covers multiple financial crime

use-cases, such as account opening fraud, transaction fraud and money laundering.

The company has been recognized for its artificial intelligence capabilities (AI 50:
America’s Most Promising Artificial Intelligence Companies 2019) and best-in-class fraud

detection solution (AIM Evaluation: Fraud and AML Machine Learning Platform Vendors
2019).

For each of its clients, Feedzai’s team trains its in-house, state-of-the-art ML solu-

tion on client data and deploys it to production in order to monitor transactions in

real-time. The different financial crime use-cases are combined in a platform solution,

which allows clients to track cases and facilitates manual reviews by adding a human-

readable layer on top of the artificial intelligence. Transactions deemed suspicious

by the algorithm are then handled based on each client’s preferences. Often, transac-

tions are either approved, blocked or alerted. Alerted transactions can then be further
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CHAPTER 1. INTRODUCTION

reviewed by human domain experts.

Feedzai consistently works on improving, re-inventing and expanding both the

core ML algorithms as well as all the features and capabilities of its platform solution.

Feedzai’s research team is at the core of the companies constant efforts to innovate

within its field and to broaden its business model. The research team consists of

subgroups which are dedicated to particular research areas. The machine learning

research group, where this thesis project was conducted, focuses on enabling the com-

pany to deliver state-of-the-art ML technology and explore new areas of ML applica-

tion. Additionally, the team aims to constantly improve the product by integrating ML

into all aspects of Feedzai’s financial crime detection platform, facilitating processes

and making reviews and data analyses increasingly more efficient. The content and

scope of the projects in the machine learning research team as well as the immedi-

ate relevance of the project outcome for the product vary widely because projects are

aligned with different company goals. Some projects aim directly at solving specific

client needs, while other projects are of an exploratory nature. Projects are conducted

using client data, publicly available datasets or both.

1.2 Problem Statement

Money laundering is a global and high impact problem. Criminals obtain money ille-

gally from serious crimes and inject it into the financial system as seemingly legitimate

funds (Soltani et al., 2016). Economies are increasingly acknowledging the negative

implications of money laundering, such as the funding of criminal activity, tax evasion

and asset bubbles in markets where the illicit funds are re-invested, such as real-estate.

The resulting tightening of regulations implies large fines for financial institutions

who fail to report cases of money laundering through their system (European Union,

2018). Recent examples are the 1MDB (Noonan et al., 2020) and the Danske Bank

scandals (Monroe, 2020). Thus, appropriate anti-money laundering (AML) proce-

dures are increasingly required and requested by financial institutions to comply with

regulations.

In recent years, regulations have also been broadened to include cryptocurren-

cies (European Union, 2018). Cryptocurrencies are digital, distributed cryptographic

currencies. While gaining increasing popularity as a payment method, cryptocurren-

cies have also developed as a haven for illegal money laundering activity due to their

decentralized nature, the protection of identities through pseudonymity as well as

transactional differences compared to traditional financial instruments (Brenig et al.,

2015).

For Feedzai, money laundering is a relatively new, yet highly relevant use-case for

financial crime detection. The company’s clients (mainly financial institutions) are the

market actors that are potentially subject to high fines in case they fail to appropriately

detect and report money laundering cases and are thus increasingly in need of an

2
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effective AML system. Feedzai has already extended its product portfolio to serve the

market with a rule-based AML solution, which is currently the most common approach

to AML efforts in the financial sector (Li et al., 2017). However, vulnerabilities derive

from the relative simplicity of the rule-sets, leading to high false-positive rates (FPR)

and low detection rates (Wang et al., 2008). Additionally, the public availability of

regulatory rule sets makes them target to bypassing.

ML techniques could overcome the rigidity of rule-based systems by inferring com-

plex patterns from historical data, and can potentially increase detection rates and

decrease FPRs. However, labeled real-life datasets for AML are scarce, due to the sen-

sitivity of the related information as well as the difficulty to achieve a clear, timely and

complete labeling of money laundering cases. Given the complexity and constantly

evolving nature of money laundering schemes, it is highly unlikely that all or even

most of the entities involved in money laundering can be identified, resulting in in-

complete labels. Furthermore, labels resulting from law enforcement investigations

can be delayed by years, while manual labeling efforts are extremely costly and time-

consuming. The resulting lack of real-life labeled datasets not only leads to current

research being inconclusive, but also implies that in order to achieve a practical feasi-

bility of ML for AML, strategies that require no labels (unsupervised learning) or just

a few labels (active learning (AL)) are paramount.

For Feedzai, exploring such ML methods, specifically in a cryptocurrency setting,

is highly interesting. On one hand, the findings could also give insights for AML in

the financial transaction setting, where Feedzai’s AML solution requires state-of-the-

art techniques in order to stay ahead of the competition. On the other hand, testing

AML methods in a cryptocurrency setting represents an exploration of possible AML

business opportunities in the ever-growing cryptocurrency market.

1.3 Project Goals

Elliptic, a company dedicated to detecting financial crime in cryptocurrencies, recently

released a dataset, which consists of a sample of 200k Bitcoin transactions, including

labels according to whether the entity that initiated a transaction is licit or illicit. Bit-

coin is one of the most popular cryptocurrencies. The dataset enables researchers to

benchmark ML methods for AML on a real-life cryptocurrency dataset. In the paper as-

sociated with the release of the dataset, Weber et al. (2019) argued that ML approaches

can boost AML efforts considerably and they evaluated various supervised ML models

with good results. However, as discussed in Section 1.2, supervised methods are not

an option in most real-life cases since financial institutions and companies will rarely

have large-scale labelled data sets available for training.

Thus, the goal of this thesis project is to address the following problem: how can we
detect money laundering in a dataset with no labels or only very few labels? Both unsuper-

vised and AL approaches are compared against a supervised baseline in the real-life
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CHAPTER 1. INTRODUCTION

cryptocurrency dataset.

The main contributions to existing research are:

• A thorough review of ML approaches for anti-money laundering (Section 2).

• A reproduction of the supervised baseline proposed by Weber et al. (2019),

obtaining comparable results (Section 5.1).

• A benchmark of anomaly detection algorithms and exploration of the results (Sec-

tion 5.2).

• An AL setting which obtains similar results to a supervised baseline while using

only a small fraction (≈ 5%) of the labels (Section 5.3).

At Feedzai, the findings of this research directly contribute to the development of

an effective AML solution in a realistic transaction setting as well as to the evaluation

of the cryptocurrency crime detection market as a potential business use-case.
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2
Related Work

Given the lack of appropriate benchmark datasets, the ambiguity of money launder-

ing patterns, and the relative novelty of the problem, research on ML for AML is very

scattered and heterogeneous. The lack of datasets in particular makes a fair compari-

son of the approaches in the literature impossible. Researchers mainly use real-world

datasets with simulated illicit transactions (Gao, 2009; Keyan and Tingting, 2011; Lv

et al., 2008; Tang and Yin, 2005; Wang and Dong, 2009) labeled by analysts (Camino

et al., 2017; Zhang and Trubey, 2019) or through external proxies, such as criminal

records (Hu et al., 2019; Weber et al., 2019). Others use fully synthetic data (Luo,

2014; Michalak and Korczak, 2011; Soltani et al., 2016) or no data at all (Bershtein

and Tselykh, 2013; Gao and Ye, 2007; Liu et al., 2011; Yunkai et al., 2006).

This section provides a review of previous ML approaches proposed for AML. The

approaches are hereby divided into categories, by adjusting the taxonomy proposed

in (Li et al., 2017) to a smaller set of broader categories: behavioural modeling, AML

typologies, community detection, and feature-based risk modeling. An overview of

the reviewed approaches, grouped by their category as well as type (supervised, unsu-

pervised or semi-supervised) is presented in Table 1.

Behavioural modeling assumes money laundering cases to be outliers, meaning that

the illicit instances (a minority) should exhibit significantly different behaviour from

legitimate ones (the majority). Typically, these approaches use unsupervised anomaly

detection methods to model licit behaviour and find the instances that deviate from

it. Anomalies can be defined on an individual level (i.e. anomalous transactions with

respect to an entity’s usual activities) (Hu et al., 2019; Li et al., 2020) or concerning

group behaviour (i.e. entities that exhibit different characteristics from others in the

population or in their peer group) (Gao, 2009; Larik and Haider, 2011; Liu and Zhang,

2010; Liu et al., 2008b; Raza and Haider, 2011; Wang and Dong, 2009). Peer groups

5
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can be defined manually, based on categorical attributes such as industry, account

category, or company size (Liu et al., 2008b), or based on the output of a clustering

algorithm (Chen et al., 2014; Gao, 2009; Larik and Haider, 2011; Raza and Haider,

2011; Wang and Dong, 2009).

AML typologies aim to detect suspicious entities or transactions based on specific

money laundering patterns. These patterns can either be encoded by experts (Micha-

lak and Korczak, 2011) or defined leveraging frequent pattern mining (Luo, 2014).

Alternatively, the money laundering patterns can be learned by a supervised classifica-

tion algorithm applied to a labeled dataset (Keyan and Tingting, 2011; Lv et al., 2008;

Weber et al., 2019; Zhang and Trubey, 2019).

Community detection treats groups of strongly-connected entities as potential crim-

inal money laundering networks. These methods build the transaction graph (with

entities as nodes and transactions as edges) to find communities based on network

statistics on the entities’ ego-networks (Savage et al., 2017), distances (Yunkai et al.,

2006), or node embeddings (Wagner, 2019). Some methods apply filtering beforehand,

focusing on areas appearing in many suspicious topological patterns (Li et al., 2017;

Soltani et al., 2016).

Finally, feature-based risk modeling intends to separate the suspicious activity based

on specific feature values. It includes finding noisy feature values for each feature

(e.g. univariate anomaly detection methods) to flag transactions with many noisy

features (Yang et al., 2014) and link analysis of the semantics to discover specific

behaviour patterns associated with illicit transactions (Cao et al., 2017), e.g. shared

addresses or locations of the transactions.

This study focuses on behavioral modeling approaches. This decision is based on

their unsupervised nature as well as their popularity in the context of AML and the en-

couraging results presented in the literature. Previous studies report low FPRs (Chen

et al., 2014; Liu and Zhang, 2010; Liu et al., 2008b) and good detection rates (Chen

et al., 2014; Gao, 2009; Liu et al., 2008b; Wang and Dong, 2009). Some studies even

report that the ML approaches were able to detect money laundering patterns that

were previously unknown (Tang and Yin, 2005) or not caught by rule-based systems

(Camino et al., 2017). However, a fair comparison between methods is impossible,

given the heterogeneity of the evaluation setups. Generally, authors are openly doubt-

ful about real-world reproducibility of good results, in the face of intricate patterns

and incomplete labels (Chen et al., 2014; Gao, 2009; Wang and Dong, 2009). The ques-

tion arises on whether reliable anomaly detection is possible in non-synthetic data, as

criminals could intentionally mimic normal behaviour. This research contributes to

assess the reproducibility of such results by conducting the first in-depth benchmark

of anomaly detection methods in a large, labeled real-world cryptocurrency dataset

and comparing their performance against a supervised baseline (AML typologies).

6



Table 1: Summary of research on ML methods for AML, grouped by category and
learning class.

Category Learning class References
Behavioural modeling unsupervised Gao, 2009; Liu et al., 2008b

Larik and Haider, 2011; Liu and
Zhang, 2010; Wang and Dong,
2009
Camino et al., 2017; Chen et al.,
2014; Raza and Haider, 2011

semi-supervised Hu et al., 2019
supervised Li et al., 2020

AML typologies unsupervised Tang and Yin, 2005
supervised Keyan and Tingting, 2011; Luo,

2014; Lv et al., 2008; Michalak
and Korczak, 2011; Savage et al.,
2016; Zhang and Trubey, 2019

Community detection unsupervised Li et al., 2017; Soltani et al.,
2016; Wagner, 2019; Yunkai et
al., 2006

Feature-based risk modeling unsupervised Yang et al., 2014
supervised Cao et al., 2017

Previous studies on money laundering in cryptocurrencies are scarce and incon-

clusive due to a lack of labels for evaluation. Some conclude that supervised models

perform well (Bartoletti et al., 2018; Hu et al., 2019; Monamo et al., 2016b) in highly

imbalanced data with very few positive cases (Bartoletti et al., 2018; Monamo et al.,

2016b). Others report low detection rates for unsupervised methods in similar con-

ditions (Monamo et al., 2016a; Monamo et al., 2016b; Pham and Lee, 2016a; Pham

and Lee, 2016b; Wu et al., 2020). Often, the evaluation of anomaly detection meth-

ods consists of checking whether the detected anomalies indeed represent extreme

cases (Pham and Lee, 2016a; Pham and Lee, 2016b) or behaviour deemed suspicious

by human analysts (Hirshman et al., 2013).

AL has been proposed as a method to reduce the number of labels needed for the

training of an effective classifier by iteratively sampling the most informative samples

for labeling from an initially unlabeled pool (Settles, 2009). Given the apparent label

scarcity in money laundering data, it is a highly relevant setting for the practical

implementation of ML-based AML systems. Previously, Deng et al. (2009) applied AL

to detect money laundering in financial transactions. In an account-level classification

of 92 real-life accounts, they report that their method can accurately estimate the

threshold hyperplane with only 22% of the labels. AL has also successfully been

applied in other fraud-related use-cases such as credit card fraud (Carcillo et al., 2018)

and network intrusion detection (Almgren and Jonsson, 2004; Görnitz et al., 2009;

Stokes et al., 2008), reporting the sufficiency of as few as 1.5% of the original labels to

7
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achieve near-optimal performance (Deng et al., 2009).

In this study, experiments with AL are conducted, assuming an unlabeled dataset

and the capacity to acquire labels progressively to train a supervised classifier. This

extends the study by Deng et al. (2009) to a transaction-level analysis in a much larger

cryptocurrency dataset.
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3
Methods

This section provides relevant theoretical background on the ML methods applied

in this research. ML defines a broad class of algorithms that learn from data and is

based on concepts from computer science, statistics and information theory (Alpaydin,

2010). Supervised learning, unsupervised learning and AL are all sub-fields of ML

and further outlined in the following sections.

3.1 Supervised Learning

Supervised learning describes all ML algorithms that are trained on data points which

have been labeled with their target value (labeled data). In the context of money laun-

dering detection, the label of each transaction could indicate whether it was identified

as money laundering or not. Labels can be obtained through the judgement of a human

(usually a domain expert) about the unlabeled data point. They can also be obtained

or approximated through the consolidation of other information sources. In the case

of money laundering, if the true label of a transaction is unavailable, the label could

for example be approximated through information on previous criminal conduct of

the initiating entity of each transaction (e.g. criminal records).

While some studies exist that apply supervised ML algorithms in the AML context,

as discussed in Chapter 2, the availability of large-scale, labeled datasets to train a

supervised classifier is unrealistic in a real-life setting. However, the inclusion of

supervised baselines in this research allows to determine the trade-off between the

number of available labels (equivalent to labeling efforts in a real-life setting) and the

classifiers’ performance.

In the following, the three supervised classification algorithms used in the under-

lying study, namely Logistic Regression (LR), Random Forest (RF) and XGBoost are

9



CHAPTER 3. METHODS

described. LR and RF were chosen because they were used in the paper presented by

Elliptic and thus allow for a comparison with other results on the dataset, and a seam-

less extension of previous research. XGBoost is an implementation of the Gradient

Boosting Machine algorithm (GBM) , which is frequently applied in client scenarios at

Feedzai and thus represents a relevant benchmark algorithm for the company.

3.1.1 Logistic Regression

In the following, LR is described based on Hilbe (2009). LR is a multiple regression

suitable for binary classification, which assesses the relationship between the binary

dependent variable (target) and a set of independent categorical or continuous vari-

ables (predictors). LR calculates the odds for an event, which are defined as the ratio

between the probability that an event will occur and the probability that the event will

not occur. Hence, the odds are equal to p
1−p , where p is the probability of the event

based on the predictor values. In LR for binary classification, the event represents the

belonging of an instance to class 1.

However, in order for the target value to fall between 0 and 1 and thus being

suitable for binary classification, the odds are transformed into log odds, using the

natural logarithm. LR then models the natural log odds of belonging to class 1 as

a linear function of the independent variables. The log of the odds of an event x

are called logit(x). Thus, LR is an ordinary regression where the logit of the target

is defined as the response variable. In this way, by assuming a linear relationship

between the independent variables and the logit of belonging to class 1, LR is able

to model a previously nonlinear relationship between independent variables and the

target in a linear way.

logit(p) = ln(odds) = ln(
p

1− p
) = α + β1x1 + . . .+ βkxk (1)

From equation 1, the equation for the prediction of the probability of an instance

to belong to class 1, based on the predictors, is given as

p =
eα+β1x1+...+βkxk

1 + eα+β1x1+...+βkxk
=

1
1 + e−α+β1x1+...+βkxk

(2)

The coefficients of the regression are estimated using Maximum Likelihood Esti-

mation. With this technique, the model coefficients are iteratively altered in such a

way that the probability of achieving the observed target value given the observed

predictors is maximized over all observations. The likelihood L can be written as

L =
n∏
i=1

p
yi
i (1− pi)1−yi (3)

Through Maximum Likelihood Estimation, LR will estimate values for α and β

that maximize L.

10
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3.1.2 Random Forest

RF is an ensemble learning technique, combining a (usually large) number of simple

Decision Trees (DT) to optimize the overall prediction capabilities of the model. DT’s

are classifiers represented as acrylic graphs with a root node and successive child

nodes, which are connected through directed edges (Shalev-Shwartz and Ben-David,

2014, pp. 250–255). At each node a decision is made based on the attribute values of

an instance. In this way, an instance traverses down the a hierarchical decision scheme

within the tree until reaching a leaf node. Then, a final classification for the instance

is returned.

A DT is trained by choosing, at each node, the feature constraint that best splits

the instances in the train set into further subsets. The quality of each possible split

is determined based on a certain metric, the splitting criterion. Different splitting

criteria have been proposed. Usually, they aim at an increasing homogenity of the

target value within the subsets that are created at the respective split. Thus, in a

classification task, the aim is to choose splits that increasingly separate the distinct

classes from each other. Based on the RF implementation used in this research, the

gini impurity (or gini index), proposed by Breiman et al. (1984), is used as a splitting

criterion. The gini impurity measures the probability of misclassifying an arbitrary

instance if it was randomly classified based on the class distribution in the dataset. The

quality of a feature constraint as a split is determined by weighting the impurities of

each branch by the number of elements that are part of the resulting subset. The best

split is then chosen by maximinizing the gini gain, which is calculated by substracting

the weighted impurities from the impurity of the dataset before the split.

The gini impurity G can be written as

G =
n∑
i=1

pi(1− pi) = 1−
n∑
i=1

p2
i (4)

where n is the number of classes and pi is the probability of randomly selecting an

element of class i, thus the fraction of records of class i in the subset. A gini impurity

of 0 indicates that the feature constraint leads to pure, i.e. one-class-only subsets of

instances and is thus the perfect case (Breiman et al., 1984).

In RF, as introduced by Breiman (2001), the ensemble method bootstrap aggrega-

tion (bagging) is applied to sample random subsets of the training data for each DT.

Ensemble methods aim at improving predictive accuracy of a classifier by combin-

ing multiple individual weak learners. According to the bagging principle, for each

individual DT, the train set composes of N ′ data points that are uniformly sampled

from the train set with replacement, where N is the size of the original train set and

N ′ < N . In a classification task, the final prediction is then determined by merging the

individual DTs in a voting scheme to achieve a more accurate and stable prediction.

Results are thus more robust.
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Besides bagging, RF also selects a random subset of features to be considered at

each node in order to lower the risk of overfitting on specific features.

3.1.3 XGBoost

XGBoost, short for Extreme Gradient Boosting, is a distributed implementation of GBM

with optimized performance, designed to be efficient, flexible and portable (Chen and

Guestrin, 2016). GBM was originally proposed by Friedman (2001) and is based on

the boosting concept. Boosting, like bagging, is an ensemble method, introduced

by Valiant (1984). Contrary to bagging, where individual models are combined in

a voting scheme, in boosting the K individual weak base learners are trained in a

gradual, additive and sequential manner. Each individual classifier is trained with the

goal to improve on the weaknesses of the previous models by focusing on areas where

the preceding base learners did not classify appropriately. The individual models are

subsequently added to determine the final prediction. Thus,

ŷi =
K∑
k=1

fk(xi) (5)

where ŷi is the predicted value for the i− th observation and fk represents the k− th
DT in the ensemble.

GBM uses DT’s, which are described in section 3.1.2 as a base learner. In GBM, the

DT base learners are commonly constrained, e.g. by restricting the maximum number

of layers, nodes, splits or leaf nodes.

GBM reduces the loss by following the (negative) gradient of the loss function

and thus represents a gradient descent procedure. While in the traditional gradient

descent algorithm, model parameters are optimized based on the loss function gradient,

in GBM, a set of sequential models are trained in order to follow the current gradient of

the loss function.

The GBM algorithm, as described by Hastie et al. (2009), works as follows. First,

an initial DT is trained, based on the target value yi , such that

f0(x) = argmin
n∑
i=1

L(yi ,γ) (6)

where L is the loss function and γ represents an initial function.

Then, at each iteration, so called pseudo residuals rim are computed, representing

the negative gradient of the loss function (the direction of the steepest descent) of the

previous model.

rim = −[
δL(yi , f (xi))
δf (xi)

]f =fm−1
(7)

The new DT model is then trained on the pseudo residuals, instead of the true

target value of the classification task, as a target. In this way, the shortcomings of the
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previous models can be improved. Finally, the model is updated by adding the output

of the new DT to the sum of the outputs of the subsequent DTs in order to correct and

improve on the final prediction of the model and reduce the overall loss:

fM(x) = fm−1(x) + fm(x) (8)

This procedure is repeated until a fixed number of base learners is reached, the loss

reaches a desired level or there are no further improvements on a validation dataset.

In comparison to traditional GBM, XGB uses additional techniques to improve the

performance of the algorithm, such as weight shrinkage, increased regularization and

parallel execution (Chen and Guestrin, 2016).

3.2 Unsupervised Learning

In contrast to supervised learning, unsupervised learning describes all ML algorithms

which are trained on data points where the target value is unknown (unlabeled data) (Al-

paydin, 2010).

Anomaly detection methods are unsupervised learning techniques to detect out-

liers in a dataset. Literature suggests their effectiveness in the AML context (Chapter 2).

While this section focuses on the anomaly detection methods applied in this research,

Chandola et al. (2009) and Domingues et al. (2018) provide a broader review of

anomaly detection.

The standard definition of outliers refers to instances that are unlikely to be drawn

from the same distribution as the train data or instances that are far from other data

points in the feature space. Although this research focuses mainly on unsupervised

anomaly detection, some methods are semi-supervised discriminators trained to learn

a boundary around normal instances. In that context, outliers are instances that fall

outside of the boundary (Gao, 2009).

Aiming at a diversity of strategies, in this research, seven common anomaly de-

tection algorithms with available Python implementations are tested: Local Outlier

Factor (LOF), K-Nearest Neighbours (KNN), Principal Component Analysis (PCA),

One-Class Support Vector Machine (OCSVM), Cluster-Based Outlier Factor (CBLOF),

Angle-Based Outlier Detection (ABOD), and Isolation Forest (IF).

LOF (Breunig et al., 2000) and KNN (Upadhyaya and Singh, 2012) start by com-

puting the distance (in this study the Euclidean distance) of each instance to its k
nearest-neighbour. Then, KNN defines that distance as the outlier score. LOF uses

the distance as the instance’s density, and if the density is substantially lower than

the average density of its k nearest-neighbours, the instance is declared anomalous.

ABOD (Kriegel et al., 2008) computes the pairwise cosine similarities between each

point and its k nearest neighbours. Then, those data points with a low average ra-

dius and variance, and thus a farther distance to other data points, are classified as

anomalies.
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PCA (Shyu et al., 2003) and OCSVM (Schölkopf et al., 2001) define anomalies as

observations that deviate from normal behaviour. OCSVM computes the maximal mar-

gin hyperplane that best separates the non-anomalous training data from the origin

in the feature space, given that the feature values are standardized. Anomalies are

data points that fall outside the boundaries of the hyperplane. PCA detects anoma-

lous instances as observations with a large distance to the principal components of

non-anomalous observations.

CBLOF (He et al., 2003) uses the outcome of a clustering algorithm on the instances

and classifies each cluster as either small or large. It calculates an anomaly score for

each instance, marking instances that belong to small clusters or that are far from big

clusters as anomalous. In this research, K-Means is used as the clustering algorithm.

Lastly, IF (Liu et al., 2008a) isolates anomalies by performing recursive random

splits on attribute values. Based on the resulting tree structure, anomalies are instances

that are easy to isolate, i.e. have shorter paths from the root node.

3.3 Active Learning

AL is an incremental learning approach that iteratively queries instances for labeling

(e.g. by human analysts) and uses the increasing number of labeled instances to retrain

a supervised model. It fits the AML context by addressing label scarcity and has

previously been successfully applied to detect money laundering accounts based on

financial transaction history, as presented in Chapter 2. An extensive survey on AL

can be found in Settles (2009).

The goal of AL is to minimize the number of labels necessary to achieve adequate

classifier performance. The process is depicted in Figure 1. It starts with an entirely

unlabeled train set, the unlabeled pool, although sometimes there is a residual number

of labels. At each iteration, a query strategy queries a batch of instances for manual la-

beling by human analysts. After labeling, the instances go into the labeled pool. Finally,

a supervised algorithm (the classifier) is trained on the labeled pool and evaluated on a

test set. If the performance is not satisfactory, the querying process continues to enrich

the labeled pool incrementally. To mimic the manual labeling process in this study,

the labels are appended to the queried instances.

In the literature, query strategies build on various models and uncertainty criteria.

This study focuses on four query strategies trained on the labeled pool to find informa-

tive instances in the unlabeled pool. Two of them, Uncertainty Sampling and Expected

Model Change, are supervised, requiring an underlying supervised model to define

queries. The other two, Elliptic Envelope and Isolation Forest (IF), are unsupervised

and find outlying instances with regards to the labeled pool, aiming at a heterogeneous

set of instances in the labeled pool for classifier training.

Expected Model Change (Settles, 2009; Settles et al., 2008) assumes that instances
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are more informative if they influence the model more strongly. It queries the un-

labeled instances that lead to the most significant change in the model parameters

by measuring the impact of labeling one unlabeled instance on the gradient of the

model’s loss function. Thus, this strategy applies only to gradient-based classifiers. In

this study, LR is used. The expected model change is a weighted sum over all possible

labels since the labels of the instances are unknown before querying. Then, at each

iteration, the labels of the instances with the largest expected gradients are queried.

Uncertainty Sampling is one of the most commonly used query strategies (Lewis

and Catlett, 1994; Settles, 2009). It queries the instances about which a model is

most uncertain. Assuming a probabilistic learning model and a binary classification

problem, this translates to querying the instances with predicted scores that are closest

to 0.5. In this study, the same type of classifier is used for Uncertainty Sampling and for

the evaluation on the test set; for instance, if the classifier is RF, Uncertainty Sampling

is also conducted using RF.

The two unsupervised query strategies, IF and Elliptic Envelope represent anomaly

detection techniques. Outliers are hereby transactions with high anomaly scores (IF) or

a large Mahalanobis distance to a multivariate Gaussian distribution fit on the labeled

pool (Elliptic Envelope).
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Query instances through    
a query strategy

Train set 
(unlabeled pool)

Label the queried 
instances Labeled poolHuman analyst

Train ML algorithm on    
the labeled pool

Evaluate ML algorithm    
on the test setTest set

Satisfactory 
performance?

NO

YES

End process

Figure 1: Flowchart of the AL process.
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4
Experimental Setup

The following chapter outlines the experimental setup of the study. First, the dataset

used in the experiments is described. Then, the evaluation method and implementa-

tions of the supervised baselines, anomaly detection methods and AL are specified.

4.1 Data Description

For this study, the Bitcoin dataset1 released by Elliptic (Weber et al., 2019) is used.

It includes 49 graphs sampled from the Bitcoin blockchain at different sequential

moments in time (time-steps), as presented in Figure 2. Each graph is a directed acyclic

graph, starting from one transaction, and including subsequent related transactions on

the blockchain, containing approximately two weeks of data. There are no connections

between the graphs of different time-steps.

Bitcoin transactions are transfers from one Bitcoin address (e.g. a person or com-

pany) to another, represented as nodes in the graph. Each transaction consumes the

output of past transactions and generates outputs that can be spent by future transac-

tions. The edges in the graph represent the flow of Bitcoins between transactions. The

dataset consists of 203,769 transactions, of which 46,564 are labeled - 90% of them as

licit and 10% as illicit. The remaining transactions are unlabeled and not considered in

this research. The labels are based on the category that the Bitcoin address that created

the transaction is associated with. Illicit categories include scams, malware, terrorist

organizations, and Ponzi schemes. Licit categories include exchanges, wallet providers,

miners, and licit services. Each transaction has 166 features, 94 of which represent

information about the transaction itself. The remaining features were constructed

1Available at https://www.kaggle.com/ellipticco/elliptic-data-set
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Figure 2: Structure of the dataset over timesteps t, taken from Bellei (2019). Each node
represents a Bitcoin transaction and each edge represents a flow of Bitcoins. The node
color indicates the class of the respective data point.

by Weber et al. (2019) using information one-hop backward/forward from the trans-

action, such as the minimum, maximum, and standard deviation of each transaction

feature. All features, except for the time-step, are fully anonymized and standardized

with zero mean and unit variance.

4.2 Methods

In this section, the experimental setup of the methods previously detailed in Chapter 3

is described. As in Weber et al. (2019), the data is split into sequential train and test

datasets for all experiments. The train set includes all labeled samples up to the 34th

time-step (29,894 transactions), and the test set includes all labeled samples from the

35th time-step, inclusive, onward (16,670 transactions).

All methods are evaluated using the F1-score for the illicit class, hereafter referred

to as illicit F1-score. The illicit F1-score represents the harmonic mean of Recall and

Precision and is thus calculated as

F1 = 2 ∗ (Precision ∗Recall)
(Precision + Recall)

(9)

where

Recall =
True positives

(True positives + False negatives)
(10)

and

Precision =
True positives

(True positive + False positives)
(11)

The choice of the illicit F1-score as the performance metric is motivated by multiple

factors. First, the metric takes into account both false positives and false negatives and

is thus suitable for Feedzai’s AML business case, in which both cases of misclassified

instances are highly relevant because each implies a significant cost for the company.

While false negatives could result in the non-reporting of a money laundering case
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and thus potentially lead to high fines for Feedzai’s client, each false positive usually

implies an unnecessary, yet very costly review of the respective transaction by a hu-

man analyst. Second, the F1-score addresses the strong class imbalance towards the

negative class in the data set, as it considers both Precision and Recall. Last, the illicit

F1-score was used by Weber et al. (2019) as well, which facilitates a comparison with

previous results on the dataset.

4.2.1 Supervised Baselines

For the supervised baselines, the scikit-learn (Pedregosa et al., 2011) implementation of

LR and RF as well as the Python implementation of XGBoost (Chen and Guestrin, 2016)

are used. The presented results are achieved using default hyperparameters. This

ensures the fairest comparison with the unsupervised anomaly detection methods and

AL, where hyperparameter tuning is either impossible (anomaly detection methods) or

computationally extremely costly, as hyperparameter tuning would need to be re-done

after each querying step (AL). Each supervised model is trained on the train set using

all 166 features and then evaluated on the test set. To measure performance over time,

and following Weber et al. (2019), the illicit F1-score per time-step in the test set is

reported.

4.2.2 Anomaly Detection Methods

For the experiments with anomaly detection methods, the PyOD package implemen-

tations (Zhao et al., 2019) of LOF, KNN, PCA, OCSVM, CBLOF, ABOD and IF with

default hyperparameters are used. Using default hyperparameters makes sense be-

cause hyperparameters of unsupervised ML methods can hardly be tuned, given the

inavailability of labels to optimize on. The introduced methods use different notions

of anomaly scores and different scales, although generally, the anomaly score should

be higher for more anomalous instances. Thus, in order to fairly compare the methods,

they are evaluated at different contamination levels. The contamination level defines

the expected proportion of outliers in the dataset, and is used to set a threshold on

the decision function. Whereas the original PyOD implementation applies the con-

tamination level on the scores of the train set, in this study it is applied on the test set

scores to guarantee that the desired percentage of positive cases (anomalies) in the test

set is the same across methods. The contamination level here is analogous to a fixed

alert rate in real AML systems, i.e. the percentage of cases flagged for further investi-

gation by an analyst. The illicit F1-score for each model is evaluated at contamination

levels between 0 and 1, with increments of 0.05. For comparison the illicit F1-score

of the RF supervised baseline, where the model threshold is defined by setting the

contamination level as the predicted positive rate, is also presented.

Given the inability to optimize hyperparameters, unsupervised anomaly detection

methods that are more robust to their hyperparameter settings will be able to perform
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more reliably and consistenly when applied with default hyperparameters to different

client datasets in a real-life setting. The labels that are available in the Bitcoin dataset

used in this project allow to study the effects of different hyperparameter settings on

each classifier’s performance and thus, to evaluate their suitability for a real-life AML

system. Thus, for all methods except PCA, which does not have any hyperparameters,

the illicit F1-score on the test set at different hyperparameter settings is studied. The

contamination level is hereby fixed at 0.1 (10%), which is equal to the overall percent-

age of outliers in the dataset. Table 2 presents the hyperparameter values used for

experimentation for each anomaly detection method. All possible combinations of the

presented values were tested.

Table 2: Hyperparameter values tested during hyperparameter tuning for each
anomaly detection method. Default values in bold.

Method Hyperparameter Values
ABOD n_neighbors 3, 5, 7, 20, 50, 100, 200
CBLOF n_clusters 3, 4, 5, 8, 10, 15, 20

use_weights True, False
alpha 0.5, 0.7, 0.9

IF n_estimators 5, 50, 100, 300, 800
max_samples ’auto’, 100, 300
max_features 0.1, 0.2, 0.4, 0.7, 1
bootstrap True, False

KNN n_neighbors 3, 5, 7, 20, 50, 100, 200
method ’largest’, ’mean’, ’median’

LOF n_neighbors 3, 5, 7, 20, 50, 100, 200
OCSVM nu 0.01, 0.1, 0.5

gamma ’auto’, 0.01, 0.1, 1
shrinking True, False
tol 0.001, 0.01, 0.1

4.2.3 Active Learning

In this study, the unsupervised and supervised query strategies described in Chapter 3

are combined, depending on the number of illicit instances in the labeled pool. After

an initial random sample of one batch of instances, an unsupervised warm-up learner is

applied, sampling instances until the labeled pool includes at least one illicit instance.

When this threshold is reached, the process either switches to a supervised hot learner
or continues to use the warm-up learner. The unsupervised warm-up learners are

Elliptic Envelope and IF. The supervised hot learners are Expected Model Change and

Uncertainty Sampling. As the classifier, the three supervised models RF, XGBoost, and

LR are used, enabling a direct comparison to the supervised baselines. All AL setups

are compared against a baseline that queries random instances at each iteration, called

random sampling (RS). The batch size is set to 50 instances sampled at each iteration
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for all experiments. This batch size is large enough to be computationally efficient, yet

small enough to provide a detailed view on the performance difference at increasing

labeled pool sizes. Each AL setup is run five times with different random seeds to

ensure the robustness of the results. The performance of each AL setup is assessed

through the median illicit F1-score and the confidence intervals at each labeled pool

size. The setup and parameter choices follow the work by Barata et al. (2020) which

was developed at Feedzai concurrently.
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5
Results

This section describes and discusses the results of the supervised baselines, the anomaly

detection methods and AL.

5.1 Supervised Baselines

The supervised baselines closely match the results presented by Weber et al. (2019).

Over five runs with different random seeds, the illicit F1-score on the test set is 0.45 for

LR, 0.76 for XGBoost, and 0.83 for RF. Thus, the best supervised baseline is achieved

with the RF model. As recognized by Weber et al. (2019), model performance is

profoundly affected by a sudden dark market shutdown at time-step 43.
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Figure 3: Illicit F1-score for each supervised baseline and number (no.) of illicit sam-
ples across time-steps in the test set.
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5.2 Anomaly Detection Methods

Table 3 presents the illicit F1-score of the anomaly detection methods. The results are

compared against the RF supervised baseline at different contamination levels.

Table 3: Illicit F1-score for all anomaly detection methods by contamination level (RF
supervised baseline for reference).

Model Contamination level
0.05 0.1 0.15 0.2

RF supervised baseline 0.82 0.58 0.46 0.39
LOF 0.11 0.15 0.19 0.18
ABOD 0.07 0.07 0.07 0.07
KNN 0.03 0.04 0.05 0.06
OCSVM 0.01 0.03 0.03 0.04
CBLOF 0.01 0.02 0.03 0.04
PCA 0.01 0.01 0.02 0.02
IF 0.00 0.00 0.00 0.01

Anomaly detection methods perform significantly below the RF supervised base-

line across all contamination levels. Figure 4 allows to understand the low illicit

F1-scores of the anomaly detection methods better, by comparing the true positive

rate (TPR) with the false positive rate (FPR) at increasing contamination levels.
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Figure 4: TPR and FPR per contamination level (increasing from left to right) per
anomaly detection method (RF supervised baseline for reference).

Figure 4 shows that, with an increase in the contamination level, and thus a de-

creasing classification threshold on the anomaly scores returned by the models, the
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FPR for most anomaly detection methods increases strongly, while the TPR only in-

creases very slowly for a long time. Only at the highest contamination levels, the TPR

increases strongly as well. This indicates that the anomaly scores are assigned the

wrong way around, with the higher scores mainly assigned to the licit, rather than the

illicit instances. However, as mentioned in Section 4.2.2, more anomalous instances

(which were assumed to be the illicit instances) should receive higher anomaly scores.

As presented in Figure 5, the hyperparameter robustness test reveals that the low

classifier performance does not seem to be due to a potentially unsuitable default

hyperparameter setting, as no other setting in the study leads to a significant perfor-

mance increase. The methods generally react to changes in hyperparameter settings to

differing degrees, with the performance of LOF and OCSVM being much more volatile

than that of the other methods. However, given the overall very low illicit F1-score

ranges in the experiment, the validity of the results is questionable.
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Figure 5: Illicit F1-scores for the tested hyperparameter settings per anomaly detection
method.

The low classification performance of the anomaly detection methods is not con-

sistent with past studies, where anomaly detection methods perform adequately for

AML (Section 2). However, these studies mostly use synthetically generated anoma-

lous data points that are outliers by design. Furthermore, there could be differences

between money laundering patterns in financial transactions and Bitcoin transfers. In

the real-life Bitcoin transaction dataset, we see that illicit cases are indeed not outlying.

To illustrate this, Uniform Manifold Approximation and Projection (UMAP) (McInnes

et al., 2018) is used. UMAP is a dimension reduction technique which can be used to

visualize data in a lower dimensional space. It models data points by searching for

a low dimensional data projection that most closely resembles the fuzzy topological
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structure of the original data. UMAP is applied to the test set. Then, two plots are con-

structed based on the resulting two-dimensional projection of the data points. In the

first (Figure 6), each observation is colored based on the predicted label of the worst-

performing method (IF), while in the second (Figure 7), each observation is colored

based on the true label.

Figure 6: UMAP projection of the test set into a two-dimensional space. Instances are
colored by the labels predicted by IF.

Figure 7: UMAP projection of the test set into a two-dimensional space. Instances are
colored by their true labels.

The IF classifies most outlying instances as illicit, as expected from an anomaly
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detection method. However, the true labels presented in Figure 7 reveal that the

illicit instances in the dataset are not actually outlying, but instead hidden among licit

transactions.

The observation that not all outliers are illicit and that not all illicit transactions

are outliers is reasonable in AML, as sophisticated criminals obfuscate their activity

by mimicking normal behaviour, hiding in regions of high licit density. This problem

was previously acknowledged by Das et al. (2016). Thus, it can be concluded that

anomaly detection methods are ineffective for the unsupervised classification task in

this real-life Bitcoin dataset.

5.3 Active Learning

Table 4 summarises the results of the AL benchmark for each of the three different

classifiers.

Table 4: Average illicit F1-score over five runs for each AL setup. The results are
compared to each classifier’s respective supervised baseline (Section 5.1). Results are
ordered by the illicit F1-score with 3000 labels. Best values for each labeled pool size
across classifiers are highlighted in bold.

Query strategies Classifier Labeled pool size Supervised
Warm-up learner Hot learner 200 500 1000 1500 3000 baseline

(0.7%) (1.7%) (3.3%) (5%) (10%)
Isolation Forest Uncertainty Sampling 0.75 0.75 0.80 0.82 0.83
Random sampling Uncertainty Sampling 0.73 0.75 0.81 0.82 0.82
Elliptic Envelope Uncertainty Sampling 0.65 0.77 0.80 0.82 0.82
Isolation Forest Expected Model Change 0.56 0.61 0.77 0.79 0.81
Random sampling Expected Model Change RF 0.76 0.77 0.78 0.78 0.81 0.83
Elliptic Envelope Expected Model Change 0.60 0.72 0.76 0.77 0.81
Random sampling – 0.74 0.76 0.76 0.78 0.80
Elliptic Envelope – 0.50 0.53 0.56 0.65 0.70
Isolation Forest – 0.67 0.65 0.59 0.63 0.62
Isolation Forest Uncertainty Sampling 0.67 0.77 0.80 0.79 0.80
Elliptic Envelope Expected Model Change 0.65 0.75 0.77 0.75 0.79
Random sampling Expected Model Change 0.70 0.75 0.79 0.80 0.78
Isolation Forest Expected Model Change 0.60 0.75 0.77 0.76 0.75
Elliptic Envelope – XGBoost 0.53 0.64 0.53 0.61 0.68 0.76
Elliptic Envelope Uncertainty Sampling 0.62 0.62 0.64 0.80 0.64
Random sampling Uncertainty Sampling 0.72 0.76 0.64 0.60 0.64
Random sampling – 0.66 0.58 0.75 0.74 0.59
Isolation Forest – 0.38 0.38 0.46 0.44 0.57
Isolation Forest Expected Model Change 0.22 0.59 0.63 0.66 0.62
Elliptic Envelope Expected Model Change 0.20 0.48 0.61 0.61 0.61
Random sampling Expected Model Change 0.44 0.54 0.58 0.64 0.60
Elliptic Envelope Uncertainty Sampling 0.41 0.52 0.63 0.63 0.60
Isolation Forest Uncertainty Sampling LR 0.37 0.53 0.61 0.60 0.58 0.45
Random sampling Uncertainty Sampling 0.40 0.50 0.57 0.58 0.55
Random sampling – 0.36 0.36 0.36 0.37 0.39
Elliptic Envelope – 0.28 0.25 0.24 0.24 0.22
Isolation Forest – 0.25 0.24 0.29 0.21 0.02

Switching to a supervised hot-learner significantly improves performance over the

continued use of an unsupervised warm-up learner. Among hot-learners, however,

there is no clear best policy. Furthermore, RS as the warm-up learner leads to a faster

improvement in model performance (i.e. better performance for smaller labeled pool
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sizes) compared to using the unsupervised anomaly detection methods IF or Elliptic

Envelope as the warm-up learner. This observation aligns with previous considerations

on the poor performance of anomaly detection methods (Section 5.2). Since these

methods fail to detect illicit instances, they are ineffective at querying illicit instances

to be added to the labeled pool to improve the performance of a supervised classifier

quickly. Elliptic Envelope, however, performs above IF, which is also consistent with

previous results using anomaly detection methods (Section 5.2), where IF proved to

be the worst-performing method.

Figure 8 shows the performance over time of the best AL setup for the three clas-

sifiers tested. For comparison, it also includes the performance achieved by the best

supervised baseline, the RF supervised baseline, trained on the entire train set. With

the presented AL setup, all classifiers stabilize after 1000 labels, with RF and XGBoost

exhibiting faster performance increase. RF reaches its baseline’s performance with

only 5% of the original labels, or 1500 out of the original 30000 labels (Figure 8).

Near-optimal performance can be achieved with as few as 500 labels.
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Figure 8: Median illicit F1-score of the best AL setups for each classifier over five
seeds across small labeled pool sizes. Bands indicate the percentile range 0-100. RF
supervised baseline for reference.

Table 4 additionally shows that XGBoost and LR temporarily surpass their super-

vised baseline of 0.76 and 0.45, respectively, i.e. the performance they achieved when

trained on the entire train set (Section 5.1). Figure 9 highlights that the classifiers per-

form better when trained only on a sample of the labeled data but eventually converge

to their supervised baseline as the labeled pool increases over time.

This can be due to the fact that the labeled pool consists of the most relevant sam-

ples in the beginning of the AL process, while later on, increasingly less representative

instances are available to be queried and added to the labeled pool. At the same time,
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the class imbalance is lower in the early stages of the AL process and increases over

time until the labeled pool ultimately reaches the distribution of the train set, as all

instances are included. Laws and Schätze (2008) acknowledge that, in some cases,

early stopping of an AL process might prevent this model degradation.

0 5000 10000 15000 20000 25000 30000
Labeled pool size

0

0.25

0.5

0.75

Il
lic

it
F

1

0.83 (RF supervised baseline)

AL w/ LR classifier

AL w/ XGBoost classifier

AL w/ RF classifier

Figure 9: Median illicit F1-score of the best AL setups for each classifier over five seeds
across all labeled pool sizes. Bands indicate the percentile range 0-100. RF supervised
baseline for reference.

While the AL results seem promising, Table 4 shows that the RS baseline achieves a

similar performance to the more sophisticated AL strategies. An intuitive explanation

is that the classifier will start approaching good performances when the labeled pool

includes a sufficient number of illicit instances and, with approximately 10% of illicit

cases in the dataset, even RS can quickly reach that sufficient number.

In reality, financial crime is extremely rare among licit transactions, and thus

datasets are much more imbalanced (Sudjianto et al., 2010). Since this research is

focused on the practical relevance of AL, the best performing AL setup is compared

against RS in a dataset with a higher, more realistic class imbalance. Specifically, ran-

dom undersampling is applied to the minority class of the dataset to achieve illicit

rates of 2% and 0.5%. The results are plotted in Figures 10 and 11, respectively. For

comparison, the RF supervised baseline, trained and evaluated on the dataset with the

respective reduced fraud rates, is indicated.
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As expected, the AL query strategies increasingly outperform RS as the dataset

imbalance increases. This proves the superiority of sophisticated AL approaches over

RS in a real-life setting with highly imbalanced datasets. For both highly imbalanced

datasets, the best setup uses RS (warm-up) followed by Uncertainty Sampling (hot

learner).
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Figure 10: Median illicit F1-score of the best AL setup compared to RS over five seeds
across small labeled pool sizes at an illicit rate of 2%. Bands indicate the percentile
range 0-100. RF supervised baseline (at 2% illicit rate) for comparison.
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Figure 11: Median illicit F1-score of the best AL setup compared to RS over five seeds
across small labeled pool sizes at an illicit rate of 0.5%. Bands indicate the percentile
range 0-100. RF supervised baseline (at 0.5% illicit rate) for comparison.
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Conclusions

This study addressed the real-world challenge of detecting money laundering in a

dataset with few or no labels by conducting experiments to detect illicit activity in a

real-life Bitcoin transaction dataset. Using a supervised setting similar to Weber et al.

(2019) as the baseline, the detection ability of machine learning models was studied in

a more realistic setting with restricted access to labels, using unsupervised methods,

and Active Learning (AL).

The results of the study show that detecting money laundering cases in the dataset

without any labels using anomaly detection methods is impossible because anomalies

in the feature space are not indicative of illicit behaviour. This finding highlights that

experiments conducted on (partially) synthetic data can be misleading and empha-

sizes the importance of conducting experiments on real-life datasets to draw reliable

conclusions.

Using AL, however, one can match the results of a supervised baseline with just a

few labels (approximately 5% of the total). This setting is realistic and akin to asking

money laundering analysts to review cases that an AL model indicates as informative.

This study extends existing research on unsupervised illicit activity detection in

cryptocurrency and financial transactions by benchmarking different methods on a

real-world dataset with a relatively large number of positive cases. In this way, it

overcomes the typical limitation of evaluating on synthetic data or real data with few

positive samples. Furthermore, this is the first research to apply AL to a transaction-

level analysis in a large-scale dataset and to the specific case of cryptocurrencies.

It remains to explore if the distribution of classes that was found in the Bitcoin

dataset holds for other real-life datasets and different labeling strategies. In order to

transfer findings to a financial transaction setting, the differences and similarities of

money laundering patterns in cryptocurrencies and financial transactions data need
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to be studied carefully. Finally, due to the full anonymization and the removal of any

entity information from the graph used in this research, graph structures could not be

studied. Further research on other real-life cryptocurrency datasets should, however,

study whether the exploitation of graph information could alter the feature space in

such a way that illicit and licit behaviour become distinguishable in an unsupervised

setting, since graph structures have frequently proven useful in previous research

(Chapter 2).
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ABSTRACT
Every year, criminals launder billions of dollars acquired from seri-
ous felonies (e.g., terrorism, drug smuggling, or human trafficking)
harming countless people and economies. Cryptocurrencies, in
particular, have developed as a haven for money laundering activ-
ity. Machine Learning can be used to detect these illicit patterns.
However, labels are so scarce that traditional supervised algorithms
are inapplicable. Here, we address money laundering detection
assuming minimal access to labels. First, we show that existing
state-of-the-art solutions using unsupervised anomaly detection
methods are inadequate to detect the illicit patterns in a real Bit-
coin transaction dataset. Then, we show that our proposed active
learning solution is capable of matching the performance of a fully
supervised baseline by using just 5% of the labels. This solution
mimics a typical real-life situation in which a limited number of
labels can be acquired through manual annotation by experts.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifi-
cation; Anomaly detection; Active learning settings; • Applied com-
puting → Economics.
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1 INTRODUCTION
Money laundering is a high-impact problem on a global scale. Crimi-
nals obtain money illegally from serious crimes and inject it into the
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financial system as seemingly legitimate funds. Money laundering
schemes usually involve large amounts of money and, when caught,
typically result in large fines for financial institutions. Recent ex-
amples are the 1MDB [28] and the Danske Bank scandals [26].

Governments and international organizations are building tighter
regulations around money laundering and are broadening them
to include cryptocurrencies [27, 38], where criminals benefit from
pseudonymity.

In the financial sector, Anti-Money Laundering (AML) efforts of-
ten rely on rule-based systems [20]. However, vulnerabilities derive
from the relative simplicity of publicly available rule-sets, leading
to high false-positive rates (FPR) and low detection rates [40]. Ma-
chine learning (ML) techniques overcome the rigidity of rule-based
systems by inferring complex patterns from historical data, and can
potentially increase detection rates and decrease FPRs.

Recently, Weber et al. [41] released a dataset, consisting of a
sample of 200k labeled Bitcoin transactions, and evaluated various
supervised models on it. Unfortunately, supervised methods are
often unfeasible as institutions do not possess large-scale labeled
datasets. This lack of labels is due to two main reasons. First, given
the evolving complexity of money laundering schemes, it is unlikely
to be possible to identify all (or evenmost) of the entities involved in
money laundering. Second, labels resulting from law enforcement
investigations are not immediate, and manual annotation is costly.
Thus, in order to properly evaluate the practical feasibility of ML
for AML, strategies that require no labels (unsupervised learning)
or just a few labels (active learning) are paramount.

We address the real-world challenge of how to detect money
laundering in a dataset with few labels. Particularly, we show that:

(1) Detecting money laundering cases in the Bitcoin network
without any labels is impossible since illicit transactions hide
within clusters of licit behaviour (Section 4.2).

(2) With just a few labels (approximately 5% of the total), one can
match the results of a supervised baseline by using Active
Learning (AL) (Section 4.3). This setting mimics a real-world
scenario with limited availability of human analysts for man-
ual labeling.

We extend the existing research on unsupervised illicit activity
detection in cryptocurrency and financial transactions by bench-
marking different methods on a real-world dataset with a relatively
large number of positive cases. In this way, we overcome the typi-
cal limitation of evaluating on synthetic data or real data with few
positive samples. Besides, to the best of our knowledge, we are the
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first work to apply AL to AML on a large transaction dataset and
in the cryptocurrency setting, specifically.

We organize the remainder of the paper as follows. Section 2
presents the related work. Section 3 details the experimental setup
and introduces the relevant anomaly detection methods as well as
AL concepts. In Section 4 we present our results. Finally, the main
conclusions are discussed in Section 5.

2 RELATEDWORK
In this section, we present previous research on ML for AML in
the context of both financial transactions and, more specifically,
cryptocurrencies. For a thorough survey of ML approaches for AML,
we refer the reader to Chen et al. [9].

Although approaches greatly vary, manymethods assumemoney
laundering cases to be outliers, i.e., illicit instances (a minority)
should exhibit significantly different behaviours from legitimate
ones (the majority). Typically, these approaches use unsupervised
anomaly detection methods to model licit behaviour and find the
instances that deviate from it [4, 8, 13, 17, 21, 22, 32, 37, 39].

Overall, the results of these studies are encouraging, reporting
low FPRs [8, 21, 22] and good detection rates [8, 13, 22, 39]. Some
studies even report that the ML approaches were able to detect
money laundering patterns that were previously unknown [37]
or not caught by rule-based systems [4]. However, a fair compar-
ison between methods is impossible, given the heterogeneity of
the evaluation setups. In these studies, researchers use real-world
datasets labeled by analysts [4, 21, 22], with simulated illicit trans-
actions [13, 37, 39], or no labels at all [17, 32]

Generally, authors are openly doubtful about real-world repro-
ducibility of good results, in the face of intricate patterns and in-
complete labels [8, 13, 39]. The question arises on whether reliable
anomaly detection is possible in non-synthetic data, as criminals
could intentionally mimic normal behaviour. In our research, we
contribute to assess the reproducibility of such results by conduct-
ing the first in-depth benchmark of anomaly detection methods in
a labeled real-world cryptocurrency dataset and comparing their
performance against a supervised baseline.

Previous studies onmoney laundering in cryptocurrencies in par-
ticular are scarce and inconclusive due to a lack of labels for evalua-
tion. Some conclude that supervised models perform well [2, 16, 25].
Others report low detection rates for unsupervised methods in ex-
tremely imbalanced data [24, 25, 30, 31, 42]. Often, the evaluation
of anomaly detection methods consists of checking whether the
anomalies represent extreme cases [30, 31] or behaviour deemed
suspicious by human analysis [15].

Active Learning has been proposed as a method to reduce the
number of labels needed for the training of an effective classifier by
iteratively sampling the most informative samples for labeling from
an initially unlabeled pool [33]. Given the apparent label scarcity
in money laundering data, it is a highly relevant setting for the
practical implementation of ML-based AML systems. Previously,
Deng et al. [11] applied AL to detect money laundering in finan-
cial transactions. In an account-level classification of 92 real-life
accounts, they report that their method can accurately estimate
the threshold hyperplane with only 22% of the labels. AL has also
successfully been applied in other fraud-related use-cases such as

credit card fraud [5] and network intrusion detection [1, 14, 35],
reporting the sufficiency of as few as 1.5% of the original labels to
achieve near-optimal performance [14].

We conduct experiments with AL, assuming an unlabeled dataset
and the capacity to acquire labels progressively to train a supervised
classifier. We hereby extend the study by Deng et al. [11] to a
transaction-level analysis in a much larger cryptocurrency dataset.

3 EXPERIMENTAL SETUP
3.1 Data
We use the Bitcoin dataset1 released by Elliptic, a company dedi-
cated to detecting financial crime in cryptocurrencies [41]. It in-
cludes 49 graphs sampled from the Bitcoin blockchain at different
sequential moments in time (time-steps), as presented in Figure 1.
Each graph is a directed acyclic graph, starting from one transaction,
and including subsequent related transactions on the blockchain,
containing approximately two weeks of data.

Figure 1: Structure of the dataset (taken from Bellei [3]).

Bitcoins transactions are transfers from one Bitcoin address (e.g.,
a person or company) to another, represented as nodes in the graph.
Each transaction consumes the output of past transactions and gen-
erates outputs that can be spent by future transactions. The edges
in the graph represent the flow of Bitcoins between transactions.

The dataset consists of 203,769 transactions, of which 21% are
labeled as licit, and 2% as illicit, based on the category of the bitcoin
address that created the transaction. The remaining transactions
are unlabeled. Illicit categories include scams, malware, terrorist or-
ganizations, and Ponzi schemes. Licit categories include exchanges,
wallet providers, miners, and licit services. Each transaction has 166
features, 94 of which represent information about the transaction
itself. The remaining features were constructed by Weber et al. [41]
using information one-hop backward/forward from the transaction,
such as the minimum, maximum, and standard deviation of each
transaction feature. All features, except for the time-step, are fully
anonymized and standardized with zero mean and unit variance.

3.2 Methods
In this section, we give an overview of the methods used in our
experiments and discuss our experimental setup. Following Weber
et al. [41], we split the data into sequential train and test datasets
for all experiments. The train set includes all labeled samples up to
the 34th time-step (16670 transactions), and the test set includes all
1Available at https://www.kaggle.com/ellipticco/elliptic-data-set
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labeled samples from the 35th time-step, inclusive, onward (29894
transactions). Like Weber et al. [41] we evaluate all methods using
the F1-score for the illicit class, hereafter referred to as illicit F1-
score.

3.2.1 Supervised Learning. In order to benchmark unsupervised
methods and AL, we first reproduce the results of Weber et al. [41]
as our baseline.

We train each supervised model on the train set using all 166
features and then evaluate them on the entire test set. To measure
performance over time, and following Weber et al. [41], we also
report the illicit F1-score per time-step in the test set. We use the
scikit-learn [29] implementation of logistic regression (LR) and
random forest (RF) as well as the Python implementation of XG-
Boost [7]. We present the results achieved using default parameters,
as in Weber et al. [41].

3.2.2 Unsupervised Learning. Anomaly detection methods are un-
supervised learning techniques to detect outliers in a dataset. Liter-
ature suggests their effectiveness in the AML context (Section 2).
For a thorough review of anomaly detection, we refer the reader to
the surveys by Chandola et al. [6] and Domingues et al. [12].

The standard definition of outliers refers to instances that are
unlikely to be drawn from the same distribution as the train data
or instances that are far from other data points in the feature space.
Although we focus mainly on unsupervised anomaly detection,
some methods are semi-supervised discriminators trained to learn
a boundary around normal instances. In that context, outliers are
instances that fall outside of the boundary [13].

We test seven common anomaly detection algorithms with read-
ily available Python implementations: Local Outlier Factor (LOF),
K-Nearest Neighbours (KNN), Principal Component Analysis (PCA),
One-Class Support Vector Machine (OCSVM), Cluster-based Out-
lier Factor (CBLOF), Angle-based Outlier Detection (ABOD), and
Isolation Forest (IF). We aim at a diversity of strategies. We use the
PyOD package implementations [43] with default parameters.

LOF and KNN start by computing the distance of each instance to
its k nearest-neighbour. Then, KNN defines that distance as the out-
lier score. LOF uses the distance to compute the instance’s density,
and if the density is substantially lower than the average density of
its k nearest-neighbours, the instance is declared anomalous.

PCA and OCSVM define anomalies as observations that deviate
from normal behaviour. They detect anomalous instances as obser-
vations with a large distance to the principal components (PCA) of
non-anomalous observations or instances that lay outside of the
decision boundary (OCSVM) learned around them.

CBLOF uses the outcome of a clustering algorithm on the in-
stances (in our case k-means) and classifies each cluster as either
small or large. It calculates an anomaly score for each instance,
marking instances that belong to small clusters or that are far from
big clusters as anomalous. ABOD computes the pairwise cosine
similarities between all points and classifies those with a low aver-
age radius and variance as anomalies. Lastly, IF isolates anomalies
by performing recursive random splits on attribute values. Based
on the resulting tree structure, anomalies are instances that are
easy to isolate, i.e., have shorter paths.

The introduced methods use different anomaly scores and scales.
Thus, a fair comparison requires evaluation at different contam-
ination levels, defined as the expected proportion of outliers in
the dataset, and used to set a threshold for the decision function.
Whereas the original PyOD implementation applies the contamina-
tion level on the scores of the train set, we apply it on the test set
scores to guarantee that the desired percentage of positive cases
(anomalies) in the test set is the same across methods. The con-
tamination level here is analogous to a fixed alert rate in real AML
systems, i.e., the percentage of cases flagged for further investiga-
tion by an analyst. We evaluate the illicit F1-score for each model
at contamination levels between 0 and 1, with increments of 0.05.
We also present the illicit F1-score of the RF supervised baseline,
where we define the model threshold by setting the contamination
level as the predicted positive rate (or alert rate), for comparison.

3.2.3 Active Learning. AL is an incremental learning approach
that interactively queries instances for labeling (e.g., by human
analysts) and uses the increasing number of labeled instances to
(re-)train a supervised model. It fits the AML context by addressing
label scarcity and has previously been successfully applied to detect
money laundering accounts based on financial transaction history.
For an extensive survey on AL, we refer the reader to Settles [33].

The goal of AL is to minimize the number of labels necessary to
achieve adequate classifier performance. The process starts with
a pool of unlabeled instances (the unlabeled pool), although some-
times there is a residual number of labels. At each iteration, a query
strategy queries a batch of instances for manual labeling. After
labeling, the instances go into the labeled pool. Finally, a super-
vised algorithm (the classifier) is trained on the labeled pool and
evaluated on a test set. If the performance is not satisfactory, the
querying process continues to enrich the labeled pool incremen-
tally. To mimic the manual labeling process in our experiments, we
append the labels to the queried instances.

In the literature, query strategies build on various models and
uncertainty criteria. In this study, we focus on four query strategies
trained on the labeled pool to find informative instances in the
unlabeled pool. Two of them, uncertainty sampling and expected
model change, are supervised, requiring an underlying supervised
model to define queries. The other two, elliptic envelope and Isola-
tion Forest (IF), are unsupervised and find outlying instances with
regards to the labeled pool. We use random sampling as a baseline.
This setup was based on previous work done on Feedzai’s active
learning annotation tool, which was used to run the experiments.

Expected model change [33, 34] assumes that instances are more
informative if they influence the model more strongly. It queries
the unlabeled instances that lead to the most significant change
in the model parameters by measuring the impact of labeling one
unlabeled instance on the gradient of the model’s loss function.
Thus, this strategy applies only to gradient-based classifiers. In our
experiment, we use LR. The expected model change is a weighted
sum over all possible labels since the labels of the instances are
unknown before querying. Then, at each iteration, we query the
labels of the instances with the largest expected gradients.

Uncertainty sampling is one of the most commonly used query
strategies [19, 33]. It queries the instances about which a model
is most uncertain. Assuming a probabilistic learning model and a
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Figure 2: Illicit F1-score for each supervised baseline, across
time-steps.

binary classification problem, this translates to querying the in-
stances with the predicted score closest to 0.5. In our study, we use
the same type of classifier for uncertainty sampling and evaluating
on the test set; for instance, if the classifier is RF, we also conduct
uncertainty sampling using RF.

The two unsupervised query strategies used are IF and elliptic
envelope. Outliers are transactions with high anomaly scores (IF) or
a largeMahalanobis distance to a multivariate Gaussian distribution
fit on the labeled pool (elliptic envelope).

We combine unsupervised and supervised query strategies in
our experiments, depending on the number of illicit instances in
the labeled pool. After an initial random sample of one batch of
instances, we use an unsupervised warm-up learner that samples
instances until the labeled pool includes at least one illicit instance.
When we reach this threshold, we either switch to a supervised hot
learner or continue to use the warm-up learner. As the classifier,
we use the three supervised models evaluated in the supervised
baselines: RF, XGBoost, and LR. We compare all AL setups against a
baseline that queries random instances at each iteration (also used
as a warm-up learner). We use a batch size of 50 instances sampled
at each iteration for all experiments. Each AL setup is run five times
with different random seeds to ensure the robustness of the results.
We assess the performance of each AL setup through the median
illicit F1-score and the confidence intervals at each labeled pool
size.

4 RESULTS
In this section, we present the experimental results for the su-
pervised baseline, followed by the anomaly detection and the AL
benchmarks.

4.1 Supervised baselines
We are able to reproduce the results presented by Weber et al. [41]
closely. Over five runs (with different seeds), we achieve an illicit F1-
score on the test set of 0.76 for XGBoost, 0.45 for LR, and 0.83 for RF.
Thus, the best supervised baseline is achieved with the RFmodel. As
Weber et al. [41], we observe that model performance is profoundly
affected by a sudden dark market shutdown at time-step 43.

Figure 3: UMAP projection of the test set, colored by the la-
bels predicted by IF.

Figure 4: UMAP projection of the test set, colored by the true
labels.

4.2 Anomaly detection
In Table 1, we present the illicit F1-score of the explored anomaly
detection methods as well as the RF supervised baseline at different
contamination levels. Recall that, at each contamination level, we
define the threshold of the RF model so that it leads to an alert rate
equal to that contamination level.

Table 1: Anomaly detection methods illicit F1-score by con-
tamination level (RF supervised baseline for reference).

Model Contamination level
0.05 0.1 0.15 0.2

RF supervised baseline 0.82 0.58 0.46 0.39
LOF 0.11 0.15 0.19 0.18
ABOD 0.07 0.07 0.07 0.07
KNN 0.03 0.04 0.05 0.06
OCSVM 0.01 0.03 0.03 0.04
CBLOF 0.01 0.02 0.03 0.04
PCA 0.01 0.01 0.02 0.02
IF 0.00 0.00 0.00 0.01
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Anomaly detection methods perform significantly below the
RF supervised baseline across all contamination levels. These re-
sults are not consistent with past studies, where anomaly detection
methods perform adequately for AML (Section 2). However, we
note that these studies often use synthetically generated anomalous
data points that are outliers by design. Furthermore, there could be
differences between money laundering patterns in financial trans-
actions and Bitcoin transfers. In the real-life Bitcoin transaction
dataset, we see that illicit cases are indeed not outlying.

To illustrate this, we apply the UniformManifold Approximation
and Projection (UMAP) [23] to the test set and build two plots with
the resulting projection. In the first (Figure 3), we color each obser-
vation based on the predicted label of the worst-performing method
(IF), while in the second (Figure 4), we color each observation based
on the true label. We can then see that the IF classifies most outly-
ing instances as illicit, as intended. Still, the true labels presented
in Figure 4 reveal that the illicit instances in the dataset are not
actually outlying, but instead hiding among licit transactions.

The observation that not all outliers are illicit and that not all
illicit transactions are outliers is reasonable in AML as sophisticated
criminals obfuscate their activity by mimicking normal behaviour,
hiding in regions of high nominal density. This problem was pre-
viously acknowledged by Das et al. [10]. Thus, we conclude that
anomaly detection methods are ineffective for the unsupervised
classification task in this real-life Bitcoin dataset.

4.3 Active learning
Table 2 summarises the results of the AL benchmark for each of
the three different classifiers used for the supervised baselines. We
conclude that switching to a supervised hot-learner significantly
improves performance over the continued use of an unsupervised
warm-up learners. Among hot-learners, however, there is no clear
best policy.

Furthermore, we can see that random sampling as the warm-
up learner leads to a faster improvement in model performance
(i.e., better performance for smaller labeled pool sizes) compared to
anomaly detection methods. This observation aligns with previous
considerations on the poor performance of anomaly detection meth-
ods (Section 4.2). Since these methods fail to detect illicit instances,
they are ineffective at querying illicit instances to be added to the
labeled pool to improve the performance of a supervised classifier
quickly. We observe that elliptic envelope performs above IF (also
consistent with previous results).

Table 2 additionally shows that XGBoost and LR temporarily sur-
pass their supervised baseline, i.e., the performance they achieved
when trained on the entire train set (Section 4.1. The classifiers
perform better when trained only on a sample of the labeled data
but eventually converge to their supervised baseline as the labeled
pool increases over time. This result can be because the labeled
pool consists of the most relevant samples at the beginning of the
AL process and, at the same time, the class imbalance increases
over time. Laws and Schätze [18] acknowledge that, in some cases,
early stopping of an AL process might prevent this model degra-
dation. Note, however, that even if XGBoost and LR surpass their
own supervised baselines, they do not surpass the best supervised
baseline, which was achieved with the RF model.
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Figure 5: Best AL setups for each classifier and the RF super-
vised baseline.
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Figure 6: AL versus Random Sampling (RS) with a RF classi-
fier and the RF supervised baseline at 2% illicit rate.
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Figure 7: AL versus Random Sampling (RS) with a RF classi-
fier and the RF supervised baseline at 0.5% illicit rate.

Figure 5 shows the performance over time of the best AL setup
for the three classifiers tested. For comparison, it also includes
the performance achieved by the best supervised baseline, the RF
supervised baseline. With the presented AL setup, all classifiers
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Table 2: Average illicit F1-score over five runs for each AL setup, consisting of an unsupervised warm-up learner, an optional
supervised hot learner and the classifier that is evaluated on the test set. We compare the results to each classifier’s respective
supervised baseline (Section 4.1). Results are ordered by the illicit F1-score with 3000 labels. Best values for each labeled pool
size across classifiers are highlighted in bold.

Query strategies
Classifier

Labeled pool size
Supervised baselineWarm-up learner Hot learner 200 500 1000 1500 3000

(0.7%) (1.7%) (3.3%) (5%) (10%)
isolation forest uncertainty sampling

random forest

0.75 0.75 0.80 0.82 0.83
random sampling uncertainty sampling 0.73 0.75 0.81 0.82 0.82
elliptic envelope uncertainty sampling 0.65 0.77 0.80 0.82 0.82
isolation forest expected model change 0.56 0.61 0.77 0.79 0.81
random sampling expected model change 0.76 0.77 0.78 0.78 0.81 0.83
elliptic envelope expected model change 0.60 0.72 0.76 0.77 0.81
random sampling – 0.74 0.76 0.76 0.78 0.80
elliptic envelope – 0.50 0.53 0.56 0.65 0.70
isolation forest – 0.67 0.65 0.59 0.63 0.62
isolation forest uncertainty sampling

XGBoost

0.67 0.77 0.80 0.79 0.80
elliptic envelope expected model change 0.65 0.75 0.77 0.75 0.79
random sampling expected model change 0.70 0.75 0.79 0.80 0.78
isolation forest expected model change 0.60 0.75 0.77 0.76 0.75
elliptic envelope – 0.53 0.64 0.53 0.61 0.68 0.76
elliptic envelope uncertainty sampling 0.62 0.62 0.64 0.80 0.64
random sampling uncertainty sampling 0.72 0.76 0.64 0.60 0.64
random sampling – 0.66 0.58 0.75 0.74 0.59
isolation forest – 0.38 0.38 0.46 0.44 0.57
isolation forest expected model change

logistic regression

0.22 0.59 0.63 0.66 0.62
elliptic envelope expected model change 0.20 0.48 0.61 0.61 0.61
random sampling expected model change 0.44 0.54 0.58 0.64 0.60
elliptic envelope uncertainty sampling 0.41 0.52 0.63 0.63 0.60
isolation forest uncertainty sampling 0.37 0.53 0.61 0.60 0.58 0.45
random sampling uncertainty sampling 0.40 0.50 0.57 0.58 0.55
random sampling – 0.36 0.36 0.36 0.37 0.39
elliptic envelope – 0.28 0.25 0.24 0.24 0.22
isolation forest – 0.25 0.24 0.29 0.21 0.02

stabilize after 1000 labels, with RF and XGBoost exhibiting faster
performance increase. RF reaches its baseline’s performance with
only 5% of the original labels, or 1500 out of the original 30000
labels (Figure 5). We can even see a near-optimal performance with
as few as 500 labels.

From Table 2, we can observe that the random sampling baseline
achieves a similar performance to the more sophisticated AL strate-
gies. Our intuition is that the classifier will start approaching good
performances when the labeled pool includes a sufficient number
of illicit instances and, because the dataset has approximately 10%
of illicit cases, random sampling can quickly reach that sufficient
number.

In reality, financial crime is extremely rare among licit transac-
tions, and thus datasets are highly imbalanced Sudjianto et al. [36].
Since we are interested in the practical relevance of AL, we compare
the best performing AL setup against random sampling in a dataset
with a higher, more realistic class imbalance. Specifically, we apply
a random undersampling of the minority class of the Ellipic dataset
to achieve illicit rates of 2% and 0.5%. The results are plotted in
Figures 6 and 7, respectively. For comparison, we indicate the RF

supervised baseline performance at the respective reduced fraud
rates.

As expected, the AL query strategies increasingly outperform
random sampling as imbalance increases. For highly imbalanced
datasets, the best setup uses random sampling (warm-up) followed
by uncertainty sampling (hot learner).

5 CONCLUSION
In this study, we conducted experiments to detect illicit activity
on the Bitcoin transaction dataset released by Elliptic. Using a
supervised setting similar to Weber et al. [41] as our baseline, we
studied the detection ability of machine learning models in a more
realistic setting with restricted access to labels, using unsupervised
methods, and Active Learning (AL).

Our results indicate that unsupervised anomaly detection meth-
ods have poor performance, andwe present evidence that anomalies
in the feature-space are not indicative of illicit behaviour. This find-
ing highlights that experiments conducted on (partially) synthetic
data can be misleading and emphasizes the importance of conduct-
ing experiments on real-life datasets to draw reliable conclusions.
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To improve upon the unsupervised performance, we studied the
case where few labels can be obtained by using AL and determined
the minimum amount of labeled instances necessary to achieve a
performance close to the best supervised baseline. This setting is
realistic and akin to asking money laundering analysts to review
cases that anALmodel indicates as informative.We obtained similar
performance to the best supervised baseline by using just a few
hundred labels (5% of the total).

It remains to explore if the distribution of classes that we found
in the Bitcoin dataset holds for other real-life datasets and different
labeling strategies. Furthermore, given the need for proper AML
processes in the entire financial system, it is crucial to conduct sim-
ilar benchmarks on other verticals such as bank transfers, deposits
or loans, using real datasets with proper labels.
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