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i

A toutes celles et ceux qui me soutiennent de façon visible ou invisible.1

Ce qui nous est invisible met plus de temps à être étudié.
Mais en parler le fait exister.

On en vient à conceptualiser l’invisible.2 3

1To all those who support me in a visible or invisible way.
2What is invisible to us takes longer to be studied. But talking about it makes it exist.

We come to conceptualize the invisible.
3I wrote these sentences before the Nobel Prize of Physics was revealed on October 4th, but of

course quantum entanglement is a good example of it.
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Reservoir SMILES: Towards SensoriMotor Interaction of Language
and Embodiment of Symbols with Reservoir Architectures

Abstract: Language involves several hierarchical levels of abstraction. Most mod-
els focus on a particular level of abstraction making them unable to model bottom-up
and top-down processes. Moreover, we do not know how the brain grounds symbols
to perceptions and how these symbols emerge throughout development. Experi-
mental evidence suggests that perception and action shape one-another (e.g. motor
areas activated during speech perception) but the precise mechanisms involved in
this action-perception shaping at various levels of abstraction are still largely un-
known.

My previous and current work include the modelling of language comprehension,
language acquisition with a robotic perspective, sensorimotor models and extended
models of Reservoir Computing to model working memory and hierarchical process-
ing. I propose to create a new generation of neural-based computational models of
language processing and production; to use biologically plausible learning mecha-
nisms relying on recurrent neural networks; create novel sensorimotor mechanisms to
account for action-perception shaping; build hierarchical models from sensorimotor
to sentence level; embody such models in robots.

Keywords: Reservoir Computing, Echo State Networks, Language Processing,
Language Acquisition, Songbird, Sound Classification, Sound Generation, Sensori-
Motor, Action-Perception, Model, Robot, Sequences, Chunking, Symbol Emergence,
Symbol Grounding Problem, Computational Neuroscience
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Chapter 1

Introduction

It is remarkable how from earliest forms of life some species evolved to produce
complex sequences of symbols using air or water vibrations. Concerning humans,
how languages started and evolved is an intriguing question, since it is difficult
to collect evidence before the invention of writing. This evolutionary perspective is
important to keep in mind when studying language, even if we tend to forget it when
we put language and its substrates (humans, books, ...) under scientific controlled
conditions. Studying language at the individual level, in relation with what happens
in the brain of this individual, is already a complex enough task. My works focused
at this level so far.

Syntax, one of the most abstract parts of language, is often analysed in isolation
of individuals, their brains, their bodies and their environment. But could we really
ignore the influence of all these things? Let’s consider how sign languages deal with
anaphoric references. An anaphoric reference is the use of a term that is referring
back to something said previously. For instance, let’s consider the sentence: “The
cat sat on the mat. She ate all the seeds while the birds where delighted.” She is
an anaphoric reference to the cat. In sign languages, “cat” sign would be associated
to a particular position in space, and the anaphoric reference would be obtained by
pointing towards that position in space [Schlenker 2017]. Thus in sign languages,
sentences are not only a linear sequence of symbols1. They use physical space to
anchor some particular elements in a stream of symbols. Whereas spoken languages
can not use space to “extract” some elements from the linear stream of an utterance.
Besides, it could be considered that syntax is not only present in languages, but
also in actions. Pulvermüller talks about syntax of actions [Pulvermüller 2014],
although it is a matter of debate [Moro 2014]. [Pastra & Aloimonos 2012] proposed
a minimalist grammar of actions inspired from linguistics analysis tools.

More generally, cortical areas often associated with syntax processing are not
specific to language processing2. For instance, Broca area – more specifically
the Left Inferior Frontal Gyrus (LIFG) – is not only involved with syntax pro-
cessing, but has been found to be related to action recognition and movement
preparation [Thoenissen et al. 2002, Hamzei et al. 2003, Hagoort 2005]. This link
between language and actions in Broca area, together with its involvement in
the primate “Mirror Neuron System (MNS)”, suggests how primate brains may

1Of course, in spoken languages some of these symbols could be stressed by prosody.
2As we will see in Chapter 3 (Subsection 3.2) reservoirs are interesting in this respect because

they are not specialized to a specific function: a single reservoir can be used for several independent
tasks.
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have evolved from action to language representations [Rizzolatti & Arbib 1998,
Fadiga et al. 2009]. Similar kind of neurons have been found in a sensorimotor area
of songbirds3 [Prather et al. 2008]. Broca area has also been shown to be involved in
music execution and listening [Zatorre et al. 2007] suggesting that it is more gener-
ally involved in representing hierarchical-like structures [Koechlin & Jubault 2006,
Fadiga et al. 2009].

The brain is hierarchically organized from more perceptual to more integra-
tive areas [Felleman & Van Essen 1991, Markov et al. 2013]. Understanding how
hierarchical processes are organised [Koechlin & Jubault 2006] and modelling such
processes in language and other modalities are part of the long-term goals of my
work. Since my PhD4, I am interested in these questions of hierarchical organisa-
tion and hierarchical processes [Markov & Kennedy 2013]. Under the supervision
of Peter Dominey, I started my PhD by making a three-layered model of primate
cortex encoding categories of sequences [Hinaut & Dominey 2011]. Then, we used
more general reservoirs to model Broca area with respect to grammatical construc-
tions5 processing. The model was able to generalize to unseen constructions, learn
anaphoric references and make role predictions of upcoming words during sentence
parsing [Hinaut & Dominey 2012, Hinaut & Dominey 2013]. This model was em-
bedded into the humanoid iCub robot: we could teach it to link sequences of
actions to grammatical constructions6, and vice versa (i.e. the robot produced
sentences)7 [Hinaut et al. 2014]. Shortly after my PhD, we managed to have the
model to learn incrementally with an online learning rule [Hinaut & Wermter 2014].
We also studied the generalization capabilities of the model for production of sen-
tences [Hinaut et al. 2015a]. Afterwards, we made the sentence processing more ro-
bust: it was able to process Out-of-Vocabulary (OOV) words [Hinaut et al. 2015b],
work with different sentence levels of abstraction (sequences of phonemes, of words
or grammatical constructions) [Hinaut 2018], and use various kinds of meaning
representations [Hinaut et al. 2016]. With collaborators at Hamburg University,
we embedded the model into the humanoid Nao robot to learn new objects with
depth camera and robust speech recognition8 [Hinaut et al. 2015c]: it was ro-
bust enough to work in a noisy environment such as the Science Night popu-
larization event. Moreover, we managed to train a single reservoir to learn two
languages [Hinaut et al. 2015b] and to understand “code-switched” bilingual sen-
tences9 [Detraz & Hinaut 2019b]. We also showed that the model could work
with grammatical constructions of fifteen different European and Asian lan-

3That is why talking about “sensorimotor neurons” instead of “mirror neurons” is more a prag-
matic term when considering various species.

4In the lab of Henry Kennedy who was working on primate cortical hierarchy.
5In short, grammatical constructions are sentence structures in which content words are replaced

by “placeholders”. The model had to output thematic role labels of these content words. It
corresponds to answer the question “Who did what to whom?”.

6iCub video sentence comprehension: https://www.youtube.com/watch?v=AUbJAupkU4M
7iCub video sentence production: https://www.youtube.com/watch?v=3ZePCuvygi0
8Nao video: https://www.youtube.com/watch?v=R4cE4bAhLrU.
9Switch of languages within the same sentence.

https://www.youtube.com/watch?v=AUbJAupkU4M
https://www.youtube.com/watch?v=3ZePCuvygi0
https://www.youtube.com/watch?v=R4cE4bAhLrU
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guages [Hinaut & Twiefel 2020]. More recently, we also analysed the ability of
reservoirs to generalize with little data in the context of robot language acqui-
sition and compared it to LSTMs [Juven & Hinaut 2020, Dinh & Hinaut 2020,
Variengien & Hinaut 2020, Oota et al. 2022]. We also made a first version of lan-
guage processing with Hierarchical-Task Reservoirs, from speech to semantic la-
bels [Pedrelli & Hinaut 2020, Pedrelli & Hinaut 2022]. Two of these later works
will be presented in Chapter 4.

In parallel, staying on the track of how cortex encodes abstract sequences,
I started to work on canaries, which are a good animal model of language
acquisition because songbirds and humans share similar vocal developmental
stages [Doupe & Kuhl 1999, Pagliarini et al. 2021b]. We set up an experimental
protocol to study how a sensorimotor area10 encodes local and global variations
of chunks in sequence of syllables in canary songs. We also analysed various
syntactic features and visual representations of canary songs [Hinaut et al. 2017,
Cazala 2019]. These studies included building tools to analyse automatically ca-
nary songs [Trouvain & Hinaut 2021] and the release of an open source canary
dataset [Giraudon et al. 2021].

Furthermore, still in link with songbirds, I started to make models directly
in interaction with the acoustic environment, with vocal sensorimotor mod-
els – on which we made a review [Pagliarini et al. 2021b]. We built a ca-
nary sensorimotor model learning to produce syllable with a simple Hebbian
rule [Pagliarini et al. 2021a]: the motor layer was obtained by constructing a low-
dimensional Generative Adversarial Network (GAN) to generate qualitative canary
sounds [Pagliarini et al. 2021c], and the perceptual layer was performed with a reser-
voir syllable classifier [Trouvain & Hinaut 2021]. These later works will be presented
in Chapter 4.

Finally, we extended the short-term memory of reservoirs by proposing a ro-
bust Working Memory (WM) model of prefrontal cortex, able to gate informa-
tion in line-attractors [Strock et al. 2020]; also presented in Chapter 4. An ex-
tension of this model to long-term memory was performed with the help of Con-
ceptors [Strock et al. 2022]. Besides, we built new tools to analyse reservoir dy-
namics [Variengien & Hinaut 2020] along with ReservoirPy [Trouvain et al. 2020,
Trouvain et al. 2022, Trouvain & Hinaut 2022]; both presented in Chapter 4. Reser-
voirPy is a flexible Python library which will enable us to quickly build new kinds
of reservoir models, from sensorimotor to hierarchical ones. It will hopefully ease
the sharing and reuse of reservoir models across the community. In the research
program presented in this manuscript I want to catalyse these previous works.

The manuscript is organized as follows. First, I will present my scientific tra-
jectory in Chapter 2 including my CV and list of publications. Then, in Chapter 3,
as Reservoir Computing (RC) is central to my research, we will quickly dive in
reservoirs in order to give quick intuitions. Afterwards, contributions highlighted in
Chapter 2 will be presented in Chapter 4. Thereafter in Chapter 5, I will present

10HVC (used as a proper name) area is part of the pallium, bird’s equivalent of cortex.
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my research program relying on these contributions. Finally in Chapter 6, I will
discuss the project, propose some perspectives, along with a thought experiment.

Pluridisciplinarity disclaimer This manuscript will make connections to var-
ious scientific fields: I do not pretend to be an expert in all these fields, thus you
may expect some approximations at some points. We need to create models that are
as simple as possible while having a good explanatory power. Creating models as
complex as what we observe would probably not help to understand the core brain
mechanisms at play in our everyday behaviors. Pluridisciplinarity is what animates
me since my studies in computer science major and cognitive science minor. To
understand how the brain works, I believe some of us need to go through this highly
interdisciplinary path, taking the risk of several shortcuts in some fields, because
borrowing concepts from one science to another, like languages borrow words from
one another, is what makes them alive.



Chapter 2

Scientific Trajectory

Contents
2.1 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . 11
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Year of birth 1985 
Country France 

Current position 
Function 

Inria Research Scientist (“Chargé de Recherche – Classe Normale”, CR-CN) – (This is a permanent position) 
Other activities 

Supervision 
- (Starting) PhD supervision of Nathan Trouvain (2022-now). 
- (Starting) PhD co-supervision of Kalidou Ba (2022-now). 
- Current PhD co-supervision of Subba Reddy Oota (2020-now) with Frédéric Alexandre. 
- Engineer supervision of Nathan Trouvain (2020-2022). 
- PhD co-supervision of Silvia Pagliarini (2017-2021) with Arthur Leblois. 
- PhD co-supervision of Anthony Strock (2017-2020) with Nicolas Rougier. 
- Post-doc supervision of Luca Pedrelli (2019-2020). 
- Overall supervision or co-supervision of 17 Bachelors, 18 Masters, 3 (+2) PhD, 1 Post-Doc and 1 Engineer (since 2014). 
Bachelor students: (2014) F. Lavallée; (2015) C. Garber, A. Klassen; (2016) R. Portelas, R. Pastureau, L. Devers, L. Fauvel, R. 
Confiant-Duté, C. Soetaert, K. Ignatowicz; (2017) Y. Li; (2018) P. Marcus; (2019) J. Giraudon, M. Caute; (2020) A. Variengien; 
(2021) B. Lhopitallier; (2022) P. Croizet. 
Master students: (2014) C Droin; (2015) S Kumar; (2016) E Le Masson; (2017) J-B Zacchello, A Skiada, A Strock; (2019) P 
Detraz, R Teitgen, A Juven, C. Bezier, C. Chenouna; (2020) T.T. Dinh, N. Trouvain, C. Chauvet; (2021) T. Pemeja (2022) A. 
Arthuis, T. Barennes, L. Rabastain.  
 
Teaching activities 
2020–now: Scientific supervisor student project at the workshop “AI 4 Industry”, 1 week every January, Bordeaux, FR. 
2016–now: MSc Eng. Bordeaux INP engineering schools, MSc Cognitive Science, University of Bordeaux, FR.  
Topics: Modelling, Artificial Neural Networks, Data Mining. 
2015–now: Tutoring several Bachelor and Master semester projects. 
2015–now: Regular invited lectures to MSc Intelligent Adaptive Systems, University of Hamburg, DE. 
2010–2013: MSc Cognitive Science & BSc Computer Science, University of Lyon, FR. & Modelling, Artificial Neural 
Networks, Applied Mathematics and Programming. 
 
Institutional responsibilities 
2022–now: WorkPackage leader “New methods in Machine Learning for Health Data”, Public Health Data Science 
“Impulsion” Network, Bordeaux, FR 
2021–now: Chair of the IEEE Task Force Language and Cognition 
2021–now: Member of the “Committee for Research Jobs” (CER) of Inria, Bordeaux, FR 
Member of the “Committee for Technological Development” of Inria, Bordeaux, FR (a committee selecting technical 
projects and hiring engineers) 
2019–now: Co-Head of the “NeuroRobotics” CNRS Working Group Organisation of several workshops each year 
2017–now: Member of the “Committee for Technological Development” of Inria, Bordeaux, FR (a committee dealing with 
Engineers hiring and engineering projects in the Institute) 
2017–now: President of the MindLABx association, Bordeaux, FR. Events on AI and Cognitive Science. Main event in 2017: 3 
days hackathon, 50 people, 6 k€, Bordeaux science museum. 
2010–2012: Elected member of the “Neuroscience and Cognition” Doctoral School council, PhD student representative, 
Lyon, FR + Vice-Secretary of FRESCO (national federation of students in cognitive sciences), FR. 
 
Scientific committees & Conference organisation 
- Guest editor: Frontiers in Robotics and AI: SI on “Language and Robotics” (2021); Advanced Robotics: SI on "Machine 
Learning Methods for High-Level Cognitive-Capabilities-in-Robotics" (2019) 
- Member of the Editorial Board of Frontiers in Neurorobotics as Review Editor. 
- Session chair: ICDL-EpiRob conf, Valparaiso, Chile, Sep 2020. CogSci conference, Montréal, CA, Jul 2019. ICDL-EpiRob 
conference, Tokyo, JP, Sep 2018. 
- IEEE Task Force (TF) member: “Reservoir Computing”, “Cognitive and Developmental Systems Technical Committee”: 
“Language and Cognition” TF and “Action and Perception” TF. 
- Program committee member of conferences/workshops: International Conference on Artificial Neural Networks (ICANN) 
2021. International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics 



(SpLU-RoboNLP) 2021. IROS Workshop on Deep Probabilistic Generative Models for Cognitive Architecture in Robotics, 
Macau, China. Nov 2019. International Workshop on Cognitive and Neural Systems, Granada, Spain. Oct 2019. 
- Workshop/Conference organization:  
2022: Local organizer of Inria-DFKI workshop, Bordeaux, FR (~60 people)  
2020-2022 ICDL SMILES workshop (Sensorimotor Interaction, Language and Embodiment of Symbols): 2 online and 1 onsite 
(at Queen Mary University, London, UK in 2022), from 50 to 120 registrations;  
2019: ICDL-EpiRob “Workshop on Language Learning”, Oslo, NW;  
2018: IROS “Workshop on Language and Robotics”, Madrid, ES;  
2017: “Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics”, Vancouver, CA;  
2016 & 2019: “Day of the NeuroRobotics Working Group”, Bordeaux, FR. 
- Reviewer for Journals: Adaptive Behavior, Applied Science, Cognitive Computation, Cognitive Systems (CogSys), Entropy, 
Frontiers in Psychology, Front. in Neurorobotics, Intellectica, Neural Networks, PeerJ, PLoS ONE, PLoS Computational 
Biology, ReScience, ACM Transactions in Human-Robot Interaction (THRI), IIEE Transactions in Neural Networks and 
Learning Systems (TNNLS), IEEE Transactions in Cognitive Developmental Systems (TCDS).   
- Reviewer for Conferences: CogSci, ESANN, ICANN, ICDL-EpiRob, IJCNN, SpLU workshop. 
- General public talks or demonstrations: 
“La Course 12--4--90”, Art & Science performance at “Drôles d’Objets” conference, La Rochelle, FR, Oct 2021. 
“The trial of the robot” virtual interview with high school students, Cap Sciences, Bordeaux. FR.  
Invited talk at the Science Fest Day, Cap Sciences, Bordeaux, FR, Oct 2019. 
Pint of Science invited talk, Bordeaux, FR, May 2019. 
Haillan Library, invited talk, Bordeaux, FR, May 2019. 
Demonstration with Nao robot talking, Science fest, Bordeaux, FR, oct 2018.  
(+ several other public talks the previous years.) 
- General public jury: 
Jury evaluator for French-speaking worldwide virtual hackathon "Créathon", Poitiers. May 2019. 
- PhD jury member 
Florian Golemo in December 2018, at Inria Bordeaux, FR. 
- PhD monitoring committee 
Gautier Hamon, 2022—now, Inria Bordeaux, FR. 
Manel Rakez, 2022—now, Bordeaux University & Inserm, FR. 
Tristan Karch, 2019—2022, Inria Bordeaux, FR. 
William Schueller, 2018, Inria Bordeaux, FR. 
 
Invited talks to labs and at conferences/workshops 
- “Sensorimotor and hierarchical models of vocal and language learning: songbirds, humans, robots.” Computational and mathematical 
approaches for neuroscience workshop, Paris Brain Institute, Paris, FR. June 2022. 
- “ReservoirPy: a Python library for Reservoir Computing”, Le Lyre lab, Suez, Pessac, FR. May 2021. (online) 
- “ReservoirPy: a Python library for Reservoir Computing”, Machine Learning in Montpellier (ML-MTP) seminar, FR. May 2021. (online) 
- “Building a Vocal Sensorimotor Model for Canaries”, European Birdsong Meeting 2022, Capo Caccia, Sardinia, IT. May 2021. 
- “Reservoir Computing: de la théorie à la pratique avec ReservoirPy“, Engineer Service Inria Paris, SCAI, Sorbonne University, Paris. 
March 2021. 
- “Towards interactive models with Reservoir Computing”, HILL seminar, J. Rączaszek-Leonardi lab, University of Warsaw. Dec 2021. 
(online) 
- “Sensorimotor and Hierarchical Models of Vocal and Language Learning: Songbirds, Humans, Robots”, S. Franck lab, Nijmegen, NL. Nov 
2021.  
- “Recurrent Neural Networks” Tutorial, R4 (robotics) workshop, Bidart, FR. Nov 2021.  
- “Sensorimotor and Hierarchical Models of Vocal and Language Learning: Songbirds, Humans, Robots”, 10th Peripatetic conference 
Cognitive System Modelling 10th, Zakopane, PL. Oct 2021. 
- “Sensorimotor and Hierarchical Modeling of Sequence Processing: Songbirds, Humans, Robots”, NeuroFrance, FR. May 2021. (online) 
- “How to teach a robot to sing like a bird?”, E. Vincent lab, LORIA, Inria, Nancy, FR. March 2021. (online) 
- “Reservoir Computing”, R4 (robotics) seminar. FR. Feb 2021. (online) 
- “Random RNNs to model complex sequence processing: From songbirds to robot learning languages”, Cognitive Machine Learning Lab 
(CoML) Dupoux lab, Paris, FR. May 2020. (online) 
- "Une introduction au traitement du langage naturel", AI 4 Industry workshop, Bordeaux, FR. January 2020. 
- "How to ground sensorimotor sequence of symbols? From robot learning languages to songbirds", ICDL-EpiRob workshop on Language 
Learning (M. Spranger), Olso, NW. Aug 2019. 
- "Random recurrent networks for language and bird song learning", B. Golosio, Physics dept., University of Cagliary, IT. May 2019. 
- "Modélisation de l’encodage neuronal pour l’apprentissage de séquences complexes", LIRIS lab, University of Lyon, FR. June 2019. 
- "Modèles Neuronaux Récurrents pour le Traitement de Séquences Complexes", Journée GT-ACAI-Neurorobotique: Neuroscience et 
multimodalité dans les interactions humain-humain, humain-agent ou humain-robot, Telecom ParisTech, Paris, FR. May 2019. 
- "Modelling neuronal encoding of complex sequence learning", "Acoustic Perception" seminar from ETIS lab, University of Cergy-
Pontoise, FR. March 2019. 
- Symposium organized by regional chair on technological systems for human augmentation, March 28—29, 2019, Bordeaux, France. 



- “Neuro-Inspired Model for Robots Learning Language from Phonemes, Words or Grammatical Constructions”, Workshop and 
Language and Robotics, IROS 2018, Madrid, Spain. Oct 2018. 
- "Model of prefrontal cortex and basal ganglia for encoding, learning and producing complex sequences", T.Fukai lab, RIKEN Center for 
Brain Science, Tokyo, JP. Sept 2018. 
- "Model of Prefrontal Cortex for Language Acquisition and Human-Robot Interaction", T. Taniguchi lab, Ritsumeiken University, Kyoto, 
JP. Sept 2018. 
- "Modelling sentence processing with random recurrent neural networks and applications to robotics", Workshop on "The role of the 
basal ganglia in the interaction between language and other cognitive functions", DEC, Ecole Normale Supérieure (ENS) Ulm, Paris, 
France. Oct 2017 
- "Reservoir Computing for Robot Language Acquisition", 2016 IROS Workshop on Machine Learning Methods for High-Level Cognitive 
Capabilities in Robotics, Daejon, KR. Oct 2016. 
- "Prefrontal cortex model for language acquisition as abstract sequence learning applied to human robot interaction", T. Buschman lab, 
Princeton Neuroscience Institute (PNI), Princeton University, USA. Dec 2015. 
- "Syntax Acquisition with Echo State Networks and application to Human-Robot Interaction", NATS team, University of Hamburg, DE. 
Nov 2015. 
- "How to characterize HVC neuron responses to syntactic properties of the songs?", "Sequence" seminar of Unicog (S. Dehaene’s lab), 
Neurospin, INSERM-CEA, Saclay. Nov. 2014. 
- Invited lecture, in Jean-Louis Dessales’s course, at Télécom Paris, FR. 2014. 
- "Recurrent Neural Networks for Grammatical Structure Processing, with an Application to Human-Robot Interaction", [* similar talk in 
different labs] Neurospin, INSERM-CEA, Saclay, FR. Apr. 2014. & "Sequence" seminar of Unicog (S. Dehaene’s lab), Neurospin, INSERM-
CEA, Saclay, FR. Apr. 2014. & ENSTA ParisTech, Flowers lab (PY Oudeyer), Palaiseau, FR. Apr. 2014. & NeuroPSI (C. Del Negro), Orsay, FR. 
Nov 2013. & Synalp team (C. Gardent & T. Voegtlin), Loria-INRIA, Nancy, FR. Nov 2013. & Knowledge Technology Group (S. Wermter), 
University of Hamburg, DE. May 2013. & P. Hagoort lab, Max Planck Institute for Psycholinguistics, Nijmegen, NL. Feb 2013. 
- "Grammatical Structure Processing and Discussion on ESN Architectures", MINDS lab (H. Jaeger), JACOBS University, Bremen, DE. Nov 
2013. 
 
Invited plenary lectures in international master and summer schools 
- Invited lecture, LACORO Summer School. Chile (online). Aug 2020. 
- Invited lecture, PhD Retreat of Center for Research and Interdisciplinarity (CRI) of Paris. Arcachon 2019 
- Invited lecture, Summer school of ETIS lab, University of Cergy-Pontoise. Moliets, FR. Sept 2018. 
- Invited lectures on Reservoir Computing and Recurrent Neural Networks, at International MSc "Intelligent 
Adaptive Systems", University of Hamburg, DE. From 2015 to 2012 (but 2020-2021). 
 

Previous positions 
Début / 

Start date 
Fin / End 

date 
Ville / Town Etablissement / Organisation Fonction / Function 

2015 2016 Hamburg, DE University of Hamburg Postdoctoral Marie Curie 
Fellow 

2014 2014 Orsay, FR CNRS / University of Paris-Sud-Orsay Postdoctoral Fellow 
2013 2013 Hamburg, DE University of Hamburg Postdoctoral Fellow 
2009 2013 Lyon, FR Inserm / University of Lyon PhD student 

Career interruption(s) 
 

Education 
- 2013: PhD in Computational Neuroscience 
   -- Stem Cell and Brain Research Institute, INSERM, Lyon University 
   -- PhD Supervisor: Peter F. Dominey 
   -- Title: Recurrent Neural Networks for Abstract Sequence and Grammatical Structure Processing, with an Application to 
                 Human-Robot Interaction (Awards are no longer given by University of Lyon) 
- 2009: École Pratique des Hautes Études (EPHE), Paris, France 
   -- Master of Science (MSc), Artificial and Natural Cognition. Summa cum Laude (Honors) 
- 2008: Université de Technologie de Compiègne (UTC), France 
   -- Engineer, Computer Science. Specialty: Data Mining. Minor: Cognitive Science. 
   -- MSc, Computer Science. Magna cum Laude (High honors) 

Productions scientifiques / Scientific productions 
Projets de recherche, prix, distinctions, bourses, etc. / Grants, prizes, awards, fellowships, etc. 

- 2022-2025: Young Researcher ANR grant (French National Agency) “DeepPool”, 302 k€. (as PI) 
- 2021: Campus France PHC Van Gogh “BilingualSWITCH”, 1-year travel grant between University of Nijmegen (NL) and Inria, 4k€. 
- 2020-2023: 4 year multi-lab ANR “CoBioPro” (biomimetic control of prostheses). (as partner) 
- 2020-2023: Inria CORDI-S PhD Fellowship “NewSpeak” project, 111 k€. (as PI) 
- 2020-2022: Inria ADT Engineer Fellowship “Scikit-ESN” project for the development of the ReservoirPy library, 80 k€. (as PI) 



- 2019-2021: Inria CORDI-S Post-doc Fellowship HURRICANE (deep reservoirs), 65 k€. (as PI) 
- 2017-2020: Inria CORDI-S PhD Fellowship “SONNET (songbird sensorimotor model)” project, 100 k€. (as PI) 
- 2016-2018: Campus France PHC Procope: “LingoRob” project. 2-year travel grant between University of Hamburg and Inria. 
- 2015-2017: Marie Curie Intra-European Fellowship. Project: "Echo State Networks for Developing Language Robots". University 
of Hamburg, Germany. (as a Post-doc) 
- 2006-2013: Several Travel Grants for winter and summer schools: Italy, Cambridge, UK, Switzerland, Island. 

5 most relevant publications       What is the major contribution of this publication? 
[1] Strock, A., Hinaut, X.*, Rougier, N.P.* 

(2020). A Robust Model of Gated 
Working Memory. Neural computation, 
32(1), 153-181. 

We were able to model working memory mechanisms by training a simple random 
recurrent network to gate information for a long period of time. There are four main 
findings: (1) the model extends the memory capacity of reservoirs with only one 
continuous output node, (2) the model is very robust against perturbations while 
not being hand-crafted, (3) we can fit different kinds of dynamics observed in 
experimental data by simply changing a meta-parameter, (4) we explain the model 
by deriving a minimal model based on 3 neurons that produce equivalent behavior 
even in case of lesion. Such “gated reservoir” can be used as a new tool by the 
reservoir community.  

[2] Pagliarini, S., Leblois, A., Hinaut, X. 
(2020). Vocal imitation in sensorimotor 
learning models: a comparative review. 
IEEE Journal of Transaction in Cognitive 
Developmental Systems. 
 

This review provides a comparison and synthesis of many computational models of 
sensorimotor (SM) learning, mostly about vocal learning but not only. Reviewers 
agreed that such a paper was needed in the community: in fact, computational SM 
models are difficult to compare because they do not use the same components nor 
the same architecture. 

[3] Hinaut, X., Dominey, P.F. (2013). Real-
Time Parallel Processing of Grammatical 
Structure in the Fronto- Striatal System: 
A Recurrent Network Simulation Study 
Using Reservoir Computing. PloS ONE 
8(2): e52946. 

This paper presents a sentence comprehension model based on reservoir 
computing. It provided several novelties compared to previous models: it can 
generalize to unseen sentence templates (i.e. constructions) on different training 
corpus sizes, it provides an online prediction of thematic roles during sentence 
parsing, it provides a hypothesis for the triggering of P600 Event-Related Potential 
(ERP observed with EEG).  

[4] Pedrelli, L. & Hinaut, X. (2021). 
Hierarchical-task reservoir for online 
semantic analysis from continuous 
speech. IEEE Transactions on Neural 
Networks and Learning Systems. 

We propose a new kind of deep reservoir architecture: the Hierarchical-Task 
Reservoir (HTR). This architecture proposes to solve a hierarchical task with each 
reservoir performing a sub-task. We created a challenging task by taking the well-
known challenging TIMIT speech dataset: the layers of the reservoirs need to 
perform online phoneme recognition, word recognition, Part-of-Speech (POS) 
recognition and Semantic Role Labelling (SRL). We demonstrate that the 
architecture is able to solve the task with good performance. 

[5] Pagliarini, S., Leblois, A., Hinaut, X. 
(2021, preprint). What does the Canary 
Say? Low-Dimensional GAN Applied to 
Birdsong 

We managed to train GANs for raw sounds (WaveGAN) with a large dataset of 
canary syllables (16000 renditions) and constrain the latent space to small 
dimensions (from 1 to 6). The sounds produced by the generators were identified 
and evaluated by a reservoir-based classifier trained on the same dataset, and 
computer the Inception Score (another quantitative measure). We also performed 
qualitative evaluation (using UMAP) of the GAN output spectrograms across GAN 
training epochs and latent dimensions. UMAP representations show the similarities 
between the training data and the generated data, and between the generated 
syllables and the interpolations produced. By exploring the latent representations of 
syllable types, we showed that they form well identifiable subspaces of the latent 
space. 

Valorisation 
Founder and manager of ReservoirPy: a flexible Python library for Reservoir Computing. 
https://github.com/reservoirpy/reservoirpy 
ReservoirPy is a simple user-friendly library based on Python scientific modules. It provides a flexible interface to 
implement efficient Reservoir Computing (RC) architectures with a particular focus on Echo State Networks (ESN). 
Advanced features of ReservoirPy allow to improve computation time efficiency on a simple laptop compared to 
basic Python implementation, with datasets of any size. 
Some of its features are: offline and online training, parallel implementation, sparse matrix computation, fast spectral 
initialization, advanced learning rules (e.g. Intrinsic Plasticity) etc. It also makes possible to easily create complex 
architectures with multiple reservoirs (e.g. deep reservoirs), readouts, and complex feedback loops. Moreover, 
graphical tools are included to easily explore hyperparameters with the help of the hyperopt library. It includes 
several tutorials exploring exotic architectures and examples of scientific papers reproduction. Moreover, graphical 
tools are included to easily explore hyperparameters with the help of the hyperopt library. It includes a detailed 
documentation https://reservoirpy.readthedocs.io/ and PyPi package for easy installation. 

 
 



Useful links 
Web page: www.xavierhinaut.com 
ORCID: http://orcid.org/0000-0002-1924-1184 
Google Scholar: https://scholar.google.com/citations?user=pNW4eZAAAAAJ&hl=fr&oi=ao 
GitHub: https://github.com/neuronalX 
 
All my publications are accessible on HAL 
Per year: https://tinyurl.com/ydt3z57p (full link below) 
http://haltools.inria.fr/Public/afficheRequetePubli.php?auteur_exp=Xavier,Hinaut&CB_auteur=oui&CB_titre=oui&CB_article=oui&la
ngue=Francais&tri_exp=annee_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuOmbreVignettes.css 
HAL CV (per type): https://cv.archives-ouvertes.fr/xavier-hinaut 
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Before going more in depth in my research, I will briefly introduce the Reservoir
Computing (RC) paradigm. It is central in my work since the beginning of my PhD
thesis, during which I worked within the FP7 European Project Organic which
gathered the European founders of Reservoir Computing. That’s why I want to
make a short overview to enable readers to have a little idea of what is RC before
what will follow.

Random weights

Learned weights

Activation through time

Inputs Outputs

Figure 3.1: The Reservoir Computing (RC) paradigm to train Recurrent Neural
Networks (RNNs). Input and recurrent weights are fixed and random while output
weights are trained. Time series provided as input generate a non-linear combination
of dynamics inside the reservoir – the recurrent part in the middle. The output layer
linearly reads out some of these dynamical combinations – it makes a weighted sum
of reservoir states. Image from [Juven & Hinaut 2020].

Reservoir insight. To start, let’s dive in reservoir computing with a quick example
in Figure 3.1. Inputs are fed to a recurrent layer of neurons, called the reservoir.
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Reservoir states combine these incoming inputs together with its previous states
thanks to the recurrent connections. The reservoir states are also sent to an output
layer, called the read-out. Input connections and recurrent connections are often
fixed and random. Usually, only the output layer connections are trained in a
supervised way with a variant of linear regression. We will later see in more details
how it works exactly. First, let’s jump to the context in which it appeared.

3.1 Context

Reservoir Computing emerged several times. It is often stated that RC
has emerged twice in 1995 [Buonomano & Merzenich 1995, Dominey 1995] from
the computational neuroscience side, although it can be argued that similar forms
have appeared previously several times (see the references collected by Herbert
Jaeger on Scholarpedia1 [Jaeger 2007]). Thus, it appeared only some years af-
ter the famous Simple Recurrent Network (SRN) from Elmann in 1990, which
was itself featured a few years after the invention of Back-Propagation Through
Time (BPTT) [Werbos 1988, Werbos 1990]. Thus, Reservoir Computing can be seen
as a possible “end of the road” of simplification of Recurrent Neural Network (RNN)
training: first RNNs were fully trained with BPTT, then only one step back in time
of BPTT is performed with SRNs, and finally inputs and recurrent weights are not
learnt anymore with the RC paradigm.

RC has again emerged in early 2000’s with the Echo State Network (ESN) of
Jaeger [Jaeger 2001] and with the Liquid State Machines (LSM) of Wolfgang Maass
and colleagues [Maass et al. 2002]. A RC community started to take shape: machine
learning community was more focused on ESNs and computational neuroscience
more on LSMs 2. This movement was probably enhanced because of the nice perfor-
mances obtained by Jaeger on chaotic time series prediction [Jaeger & Haas 2004].

Some authors did go further in trying to “simplify” the reservoir by removing
as much randomness as possible [Rodan & Tino 2010]. In my opinion, randomness
seems one of the simplest and most efficient way one can get from a biological point
of view, at least to obtain generic computational properties (see Biology paragraph).
Creating random neuronal networks seems simple: it does not require to have specific
gene expression or other regulatory process for controlling precisely the connections.
On the other side of the spectrum, Long Short-Term Memory network (LSTM)
coined in 1997 [Hochreiter & Schmidhuber 1997] were another answer to the “Hard
Problem” that we will describe now.
Hard problem. Indeed, training connections of a RNN with classical back-
propagation through time is known to be a hard problem [Bengio et al. 1994,
Pascanu et al. 2013]. Because, the error gradient tends to vanish or explode when
going further back in time in order to capture longer time dependencies. Intuitively,

1http://www.scholarpedia.org/article/Echo_state_network
2Even if ESNs or equivalent (rate-coded RNNs) were also used in computational neuroscience,

e.g.

http://www.scholarpedia.org/article/Echo_state_network
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changing one connection of one neuron can have an impact on all neurons a few
timesteps later. That’s why Back-Propagation have to be applied “Through Time”
(BPTT), in order to send the error gradient “back in time”, like a time machine that
will change the past in order to change the “present” error. This is done by taking
care of the unrolling of events in between3. It is hard, because this time machine
can “loose track” of the changes needed while going back in time: the error gradient
either decreases so much that no connections are modified anymore, or increases so
much that the modifications become exponentially huge. In both cases this means
that no learning can occur anymore far enough in time.

The LSTM network [Hochreiter & Schmidhuber 1997] was created in order to
solve this problem of vanishing or exploding gradient. LSTMs have internal recur-
rent units that were engineered to enable the BPTT algorithm to be more effective
by enabling the error gradient to be kept constant. Inside each unit, they have
three (for the 1997 original version [Hochreiter & Schmidhuber 1997]) or four (with
an additional forget gate [Gers et al. 2000]) parameters. Input gate, forget gate,
output gate and the “cell” state. This cell state is the special one that enables
to keep the gradient constant if needed: this is the solution provided by LSTMs
in order to prevent the gradient from vanishing or exploding. Even though it is
an elegant solution, it makes the LSTMs more demanding to train in computa-
tional resources because it has more parameters. That’s why LSTMs became very
popular only in the 2010’s with the revolution of deep learning due to new mathe-
matical and implementation tricks [Martens et al. 2010, Martens & Sutskever 2011,
Sutskever et al. 2011, Pascanu et al. 2013] along with the popularization of Graph-
ical Processing Units (GPUs) enabling to train these networks faster.
Biology. As we said earlier, Reservoir Computing (RC) emerged at start from the
computational neuroscience side [Buonomano & Merzenich 1995, Dominey 1995,
Dominey et al. 1995, Maass et al. 2002], before emerging also in the machine learn-
ing side [Jaeger 2001, Jaeger 2002, Jaeger & Haas 2004]. Indeed, a reservoir can
be seen as “a canonical computation unit” [Haeusler & Maass 2007]; it could model
“a cortical column”: what computational neuroscientists often consider as a generic
unit of computation. Since 1995 [Dominey 1995], my PhD supervisor Peter Dominey
have used it to model the cortico-basal network: the reservoir playing the role of
the (prefrontal) cortex and the output layer playing the role of the striatum (input
of the basal ganglia from the cortex). Dominey [Dominey et al. 1995] showed that
even with random networks (that were not called reservoirs yet) it was possible to
observe similar neuronal activation patterns then in studies on sequence processing
in monkey prefrontal cortex [Barone & Joseph 1989]. RC developed much faster
in the machine learning community since the 2000’s, but in the 2010’s it became
more popular from the experimental neuroscientists side. Neuroscientists started
using this idea of high-dimensional non-linear representations that can be decoded
by a linear classifier. It was a new way to interpret electrophysiological record-
ings from monkeys [Machens et al. 2010, Rigotti et al. 2013, Enel et al. 2016]: the

3Which is not usually the case for time machines.
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idea was no longer to find particular sequential pattern in neural activity (like in
[Barone & Joseph 1989]), but rather to just decode linearly if some information were
present.

3.2 Intuitions in (almost) one page

Short definition: Reservoir Computing is a paradigm to train Recurrent Neural
Networks (RNN) without training all connections.

Intuition. The names “reservoir” for the recurrent layer, and “read-out” for the
output layer, come from the fact that a lot of input combinations are made inside
the recurrent layer (thanks to random projections). The “reservoir” is literally
a reservoir of calculations (= “reservoir computing”) that are non-linear. From
this “reservoir” one linearly decodes (= ”reads-out”) the combinations that will be
useful for the task to be solved. Reservoirs can be implemented on various kinds of
physical substrates [Tanaka et al. 2019] (e.g. electronic, photonic, mechanical RC).

Figure 3.2: Projection of inputs in a higher dimensional space.

The kernel trick. An intuitive way to understand how reservoir computing works
is to think it as a temporal Support Vector Machine (SVM) [Verstraeten 2009]. Like
in Figure 3.2, suppose you want to separate blue dots from red dots, but in your
initial 2D space you cannot separate them with a line. With a SVM [Vapnik 1999]
you project theses inputs (i.e. the dots) into a higher dimensional space. In
this high dimensional space you can find a hyperplane (an equivalent of a line in
higher dimensions) that separates your blue dots from your red dots. Finding this
hyperplane is equivalent to perform a linear regression. You can have different
types of kernel with an SVM; in reservoirs this kernel is random.
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Multi-task hub. Once a reservoir is trained for a task, it can still be used for
another task. Since the computations inside the reservoir are independent of the
read-out layer (if there is no feedback connections), new read-out units can be
connected to perform a new task. Thus, a reservoir can be seen as a “multi-hub
task”. This property is interesting to understand how brain areas could share
computations: some areas compute and represent information in a way that
could be used by several other areas. This “hub” area do not have to compute
anything specific or represent information useful for one particular “task”: it just
have to make “some kind of non-linear computation”. The “useful information”
is only computed when reading-out and projecting to another area. As we dis-
cussed in the Introduction Chapter 1, Broca area (LIFG) seems to be involved in
representing hierarchical-like structures for language, sequence of actions, music, etc.

Less training data? If we come back to the idea that reservoir computing is like
having a temporal SVM, we can imagine that we do not necessarily need much
data points to be able to draw a hyperplane to separate our data. Indeed, a SVM
can only keep track of points that are close to the the decision boundary4 – the
support vectors. In practice, we have shown that reservoirs needed less data to
generalize on an audio classification task [Trouvain & Hinaut 2021] and a on a
language task [Variengien & Hinaut 2020, Oota et al. 2022].

Extended definition: Reservoir Computing is a paradigm that can use any
physical substrate to obtain a suitable combination of inputs before using a
read-out layer to extract information from this representational layer (to predict,
classify, generate, ...).

We see now that this “reservoir of computation” do not have to be fixed, it can
change and adapt over time, for example with homeostatic rules. More importantly
it does not need to be computer-based.

3.3 Some equations

There can be different kinds of units in a reservoir: spiking or non-spiking (average
firing rate) neurons. There are different kinds of equations for both. I will not speak
about spiking version of reservoirs, because I am less familiar with their dynamics5.

One of the general ways to define ESN is as follows. The state transition of the
ESN is computed as follows:

x(t) = (1− α)x(t− 1) + α tanh(Winu(t) +Wx(t− 1)) (3.1)

where u(t) ∈ RNU is the input vector at time t, x(t) ∈ RNR is the reservoir state,
Win ∈ RNR×NU is the input matrix, W ∈ RNR×NR is the recurrent matrix, α ∈ [0, 1]

4This is particularly useful for online version of SVMs to save memory and computation time.
5However, I look forward to compare dynamics of spiking and rate-coding neurons as we plan

to include spiking neurons inside ReservoirPy (see Chapter 4 Subsection 4.4).
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Figure 3.3: An example of Echo State Network (ESN) architecture (with-
out feedback). Image from [Pedrelli & Hinaut 2020].

is the leaking rate – more often called the leak-rate – and tanh is the element-wise
hyperbolic tangent. NU is the number of input units and NR the number of units
in the reservoir. The leak-rate is equivalent to the inverse of a time constant, it is a
simplification of writing:

α =
dt

τ
(3.2)

with τ the time constant of neurons and dt the time step discretisation (which equals
1 by default)6.

The values of matrix W are randomly initialized, for instance using a uniform
distribution and then rescaled. This rescaling of W is done in order to obtain
a spectral radius7 ρ equal to the one set by the user as hyperparameter (HP)8.
The values in matrix Win are randomly initialized, for instance from a uniform
distribution and then rescaled in order to have an input scaling of σ, which is the
one set by the user as hyperparameter. Usually, W and Win matrices are sparse: my
recommendation is to use a percentage of non-zero connection of about 10 − 20%,
but the influence of the sparseness on the performance is often weak. A sparse
reservoir enables faster computations.

The output of the ESN is computed as follows:

y(t) = Wout[1;x(t)] (3.3)

where y(t) ∈ RNY is the output at time t, Wout is the output matrix, and [.; .] stands
for the concatenation of two vectors. NY is the number of output (read-out) units.

6We showed in [Hinaut & Dominey 2013] that changing dt does not affect much the performance
on a language task as soon as the sampling rate of inputs are changed accordingly.

7The spectral radius is the maximum absolute eigenvalue of the matrix W .
8A hyperparameter is a parameter that need to be predefined and which is not optimized by

the learning algorithm.
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The output weights are learned using an equivalent of linear regression. The
most common practice is to use a regularized version, like the ridge regression:

Wout = Y XT (XXT + βI)−1 (3.4)

where X is the concatenation of the reservoir activities at all time steps with a bias
vector at 1, each row corresponding to a time step. Similarly, Y is the concate-
nation of desired outputs and β is the regularization parameter (often called ridge
parameter).
A few more details. The spectral radius ρ controls the internal dynamics: more
stable dynamics will be obtained for low values and more chaotic ones with high
values. I will not talk about the Echo State Property (ESP) as it is a theoretical
recommendation from Jaeger [Jaeger 2001] (derived from principles of linear net-
works) but not a rule that should be followed blindly. In practice spectral radii
higher than one should be always tried when exploring hyperparameters because an
ESN is a non-linear system that depends on its inputs. Especially, in the case of
the leaky ESN where the effective spectral radius is different from the one defined
by the user [Jaeger et al. 2007]9.

You can find a tutorial to explore the hyperparameters of reservoirs in the
GitHub repository of our ReservoirPy library10. We illustrate plots to show how
the internal dynamics of the network change with respect to the changes of hyper-
parameters such as the spectral radius, the input scaling and the leak-rate.

In most our studies, we are use ESNs as defined by Jaeger11 [Jaeger 2001,
Jaeger et al. 2007], where the state of each unit also corresponds to its output (i.e.
the activation function applies to the states directly). One may argue that it is
less biologically plausible, but it has the advantage of having bounded states which
prevents the states to take infinite values – which would stop the program because
Not A Number (NAN) values are encountered. Of course bounded states are ob-
tained with a bounded activation function: e.g. hyperbolic tangent (tanh). This is
one of the reasons why we use Jaeger’s definition of ESNs. To my knowledge, they
seem to be the most used type of reservoir since two decades. Another reason is
that it enables to compare our models with many other published papers. For a
detailed explanation of the various version of ESNs, David Verstraeten provides a
clear explanation in his PhD thesis [Verstraeten 2009].

9I have unpublished results showing that one can have very high values of spectral radius (e.g. a
million) that still work for a given task as soon as one also decrease the leak-rate. Hyperparameters
such as the spectral radius, the leak-rate and the input scaling are linked, that is why we suggest
to fix at least one of them when doing hyperparameter exploration [Hinaut & Trouvain 2021].

10https://github.com/reservoirpy/reservoirpy/blob/master/tutorials/4-Understand_
and_optimize_hyperparameters.ipynb

11In particular we often use the “leaky” version of ESNs.

https://github.com/reservoirpy/reservoirpy/blob/master/tutorials/4-Understand_and_optimize_hyperparameters.ipynb
https://github.com/reservoirpy/reservoirpy/blob/master/tutorials/4-Understand_and_optimize_hyperparameters.ipynb
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I chose to select eight papers that reflect different pluridisciplinary parts of my
work in relation to my Research Program. In order to keep this manuscript not
too long, easy to browse and light to download, I made the choice to put only
the references to the papers by providing open access links, abstracts and links to
figures of the Research Program. Parts of these selected papers are summarized in
the context of my Research Program in Chapter 5 in Section 5.1.3.

4.1 Language processing

4.1.1 Towards language acquisition for robots

4.1.1.1 Context

This study [Oota et al. 2022] was performed during the PhD thesis of Subba Oota
(2020–now) co-supervised with Frédéric Alexandre. It followed the works started
during the MSc. internships of Alexis Juven [Juven & Hinaut 2020] (spring 2019)
and Trung Dinh [Dinh & Hinaut 2020] (spring 2020), and the BSc. internship of
Alexandre Variengien [Variengien & Hinaut 2020] (spring 2020). A summary of the
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experiment is proposed in Figure 5.5 of Chapter 5.

Subba Reddy Oota, Frédéric Alexandre, Xavier Hinaut (2022) Cross-
Situational Learning Towards Robot Grounding. HAL preprint hal-
03628290.

• Open access / HAL version:
https://hal.archives-ouvertes.fr/hal-03628290

• Supplementary data:
Directly available in the preprint.

4.1.1.2 Abstract

How do children acquire language through unsupervised or noisy supervision? How
does their brain process language? We take this perspective to machine learning and
robotics, where part of the problem is understanding how language models can per-
form grounded language acquisition through noisy supervision and discussing how
they can account for brain learning dynamics. Most prior works have tracked the
co-occurrence between single words and referents to model how infants learn word-
referent mappings. This paper studies Cross-Situational Learning (CSL) with full
sentences: we want to understand brain mechanisms that enable children to learn
mappings between words and their meanings from full sentences in early language
learning. We investigate the CSL task on a few training examples with two sequence-
based models: (i) Echo State Networks (ESN) and (ii) Long-Short Term Memory
Networks (LSTM). Most importantly, we explore several word representations in-
cluding One-Hot, GloVe, pretrained BERT, and fine-tuned BERT representations
(last layer token representations) to perform the CSL task. We apply our approach
to three different datasets (two grounded language datasets and a robotic dataset)
and observe that (1) One-Hot, GloVe, and pretrained BERT representations are less
efficient when compared to representations obtained from fine-tuned BERT. (2) ESN
online with final learning (FL) yields superior performance over ESN online continual
learning (CL), offline learning, and LSTMs, indicating the more biological plausi-
bility of ESNs and the cognitive process of sentence reading. (2) An LSTM with
fewer hidden units showcases higher performance for small datasets, but an LSTM
with more hidden units is needed to perform reasonably well on larger corpora. (4)
ESNs demonstrate better generalization than LSTM models for increasingly large
vocabularies. Overall, these models are able to learn from scratch to link complex
relations between words and their corresponding meaning concepts, handling poly-
semous and synonymous words. Moreover, we argue that such models can extend
to help current human-robot interaction studies on language grounding and better
understand children’s developmental language acquisition.

https://hal.archives-ouvertes.fr/hal-03628290
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4.1.1.3 Highlights

This work compares extensively the performance of reservoir and LSTM networks
(including random LSTMs), with various word embedding conditions. It shows how
well reservoirs can generalize compared to LSTMs when learning on small datasets.
Thus, interesting in the context of language acquisition modelling. It contrasts
these architectures on multiple language & robotics datasets with different kinds of
complexity (e.g. vocabulary size, length of sentences). It is a good ground for future
neural network comparisons that will be made during the Research Program.

4.1.2 Hierarchical language processing: from speech to semantic
labels

4.1.2.1 Context

This study [Pedrelli & Hinaut 2022] was done during the Post-Doc of Luca Pedrelli
(2019-2020). Figures 5.3 and 5.4 in Chapter 5 summarize the main model and main
qualitative results.

Luca Pedrelli and Xavier Hinaut (2022) Hierarchical-Task Reservoir for
Online Semantic Analysis From Continuous Speech. IEEE Transactions
on Neural Networks and Learning Systems, vol. 33, no. 6, pages
2654–2663.

• Journal published version:
https://ieeexplore.ieee.org/document/9548713

• Open access / HAL version:
https://hal.inria.fr/hal-03031413

• DOI: 10.1109/tnnls.2021.3095140

• Supplementary data:
Directly available in the preprint.

4.1.2.2 Abstract

In this article, we propose a novel architecture called hierarchical-task reservoir
(HTR) suitable for real-time applications for which different levels of abstraction are
available. We apply it to semantic role labeling (SRL) based on continuous speech
recognition. Taking inspiration from the brain, this demonstrates the hierarchies
of representations from perceptive to integrative areas, and we consider a hierarchy
of four subtasks with increasing levels of abstraction (phone, word, part-of-speech
(POS), and semantic role tags). These tasks are progressively learned by the layers of
the HTR architecture. Interestingly, quantitative and qualitative results show that

https://ieeexplore.ieee.org/document/9548713
https://hal.inria.fr/hal-03031413
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the hierarchical-task approach provides an advantage to improve the prediction. In
particular, the qualitative results show that a shallow or a hierarchical reservoir,
considered as baselines, does not produce estimations as good as the HTR model
would. Moreover, we show that it is possible to further improve the accuracy of the
model by designing skip connections and by considering word embedding (WE) in
the internal representations. Overall, the HTR outperformed the other state-of-the-
art reservoir-based approaches and it resulted in extremely efficient with respect to
typical recurrent neural networks (RNNs) in deep learning (DL) [e.g., long short
term memory (LSTMs)]. The HTR architecture is proposed as a step toward the
modeling of online and hierarchical processes at work in the brain during language
comprehension.

4.1.2.3 Highlights

We propose a new kind of deep reservoir architecture: the Hierarchical-Task Reser-
voir (HTR). This architecture proposes to solve a hierarchical task with each reser-
voir performing a sub-task. We created a challenging task by taking the well-known
challenging TIMIT speech dataset: the layers of the reservoirs need to perform on-
line phoneme recognition, word recognition, Part-of-Speech (POS) recognition and
Semantic Role Labelling (SRL). We demonstrate that the architecture is able to
solve the task with good performance. It is important for the project as the
same architecture will be extended in WP1 and serve as a reference throughout the
whole project. Interestingly, the architecture can represent all levels of abstraction
in parallel during the processing of the utterance: it does not have to wait until the
end of the sentence, it provides online predictions.

4.2 Songbird sensorimotor learning

4.2.1 Generating realistic sounds with low-dimensional space

4.2.1.1 Context

This study was done during the PhD thesis of Silvia Pagliarini (2017-2021)
co-supervised with Arthur Leblois. It was performed with the help of Nathan
Trouvain during his MSc. internship with me (spring 2020) and then as an
engineer (2020-2022) again with me. An interesting qualitative result is presented
in Figure 5.6 of Chapter 5.
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Silvia Pagliarini, Nathan Trouvain, Arthur Leblois* and Xavier Hinaut*
(2021) What does the Canary Say? Low-Dimensional GAN Applied to
Birdsong. HAL preprint hal-03244723. *Equal contribution

• Open access / HAL version:
https://hal.inria.fr/hal-03244723

• Supplementary data:
Directly available in the preprint.

4.2.1.2 Abstract

The generation of speech, and more generally complex animal vocalizations, by arti-
ficial systems is a difficult problem. Generative Adversarial Networks (GANs) have
shown very good abilities for generating images, and more recently sounds. While
current GANs have high-dimensional latent spaces, complex vocalizations could in
principle be generated through a low-dimensional latent space, easing the visual-
ization and evaluation of latent representations. In this study, we aim to test the
ability of a previously developed GAN, called WaveGAN, to reproduce canary syl-
lables while drastically reducing the latent space dimension. We trained WaveGAN
on a large dataset of canary syllables (16000 renditions of 16 different syllable types)
and varied the latent space dimensions from 1 to 6. The sounds produced by the
generator are evaluated using a RNN-based classifier. This quantitative evalua-
tion is paired with a qualitative evaluation of the GAN productions across training
epochs and latent dimensions. Altogether, our results show that a 3-dimensional
latent space is enough to produce all syllable types in the repertoire with a quality
often indistinguishable from real canary vocalizations. Importantly, we show that
the 3-dimensional GAN generalizes by interpolating between the various syllable
types. We rely on UMAP [McInnes et al. 2018] to qualitatively show the similari-
ties between training and generated data, and between the generated syllables and
the interpolations produced. We discuss how our study may provide tools to train
simple models of vocal production and/or learning. Indeed, while the RNN-based
classifier provides a biologically realistic representation of the auditory network pro-
cessing vocalizations, the small dimensional GAN may be used for the production
of complex vocal repertoires.

4.2.1.3 Highlights

We managed to train a GAN to generate raw sounds (WaveGAN) with a large
dataset of canary syllables (16000 renditions) and to constrain the latent space
to small dimensions (from 1 to 6). The sounds produced by the generator were
identified and evaluated by a reservoir-based classifier trained on the same dataset.
We also performed qualitative evaluation of the GAN outputs (using UMAP) across

https://hal.inria.fr/hal-03244723
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GAN training epochs and latent dimensions. Uniform Manifold Approximation and
Projection (UMAP) representations show the similarities between the training data
and the generated data, and between the generated syllables and the interpolations
produced. By exploring the latent representations of syllable types, we showed that
they form well identifiable subspaces of the latent space. It is important for
the project, because it shows that we are able to use reservoirs to evaluate noisy
generations of GAN data and give qualitative evaluations with dimension reduction
methods (UMAP). Moreover, it will serve as a complementary method to human
vocal tract models for sound generations (when trained on speech).

4.2.2 Learning canary syllables with a simple Hebbian rule

4.2.2.1 Context

This study was done during the PhD thesis of Silvia Pagliarini (2017-2021)
co-supervised with Arthur Leblois. It was performed with the help of Nathan
Trouvain during his engineer position (2020-2022) with me. An interesting result is
presented in Figure 5.7 of Chapter 5.

Silvia Pagliarini, Arthur Leblois* and Xavier Hinaut* (2021) Canary Vo-
cal Sensorimotor Model with RNN Decoder and Low-dimensional GAN
Generator. In ICDL 2021 - IEEE International Conference on Develop-
ment and Learning, Beijing, China. *Equal contribution

• Conference published version:
https://ieeexplore.ieee.org/abstract/document/9515607

• Open access / HAL version:
https://hal.inria.fr/hal-03482372

• DOI: 10.1109/ICDL49984.2021.9515607

4.2.2.2 Abstract

Songbirds, like humans, learn to imitate sounds produced by adult conspecifics.
Similarly, a complete vocal learning model should be able to produce, perceive and
imitate realistic sounds. We propose (1) to use a low-dimensional generator model
obtained from training WaveGAN on a canary vocalizations, (2) to use a RNN-
classifier to model sensory processing. In this scenario, can a simple Hebbian learning
rule drive the learning of the inverse model linking the perceptual space and the
motor space? First, we study how the motor latent space topology affects the
learning process. We then investigate the influence of the learning rate and of the
motor latent space dimension. We observe that a simple Hebbian rule is able to
drive the learning of realistic sounds produced via a low-dimensional GAN.

https://ieeexplore.ieee.org/abstract/document/9515607
https://hal.inria.fr/hal-03482372
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4.2.2.3 Highlights

This study is important for the project because it shows that we are able to have
a sensorimotor model with a complete loop with the environment by generating real
qualitative sounds and not just spectrograms. Moreover, this model is able to learn
nearly all syllables with a simple Hebbian learning rule, which is very promising
for the Research Program when we will be using more advanced rules based on
reinforcement learning.

4.3 Prefrontal cortex & working memory

4.3.1 Building line-attractors: training reservoirs to Gate

4.3.1.1 Context

This study was started during Anthony Strock’s master intership (spring 2017)
and realized during his PhD thesis (2017-2020) co-supervised with Nicolas Rougier.
Figure 5.8 in Chapter 5 is summarizing the main model.

Anthony Strock, Xavier Hinaut* and Nicolas P. Rougier* (2020) A Ro-
bust Model of Gated Working Memory. Neural Computation, vol. 32,
no. 1, pages 153–181. *Equal contribution

• Journal published version:
https://direct.mit.edu/neco/article-abstract/32/1/153/95568/
A-Robust-Model-of-Gated-Working-Memory

• Open access / HAL version:
https://hal.inria.fr/hal-02371659/

• DOI: 10.1162/neco_a_01249

• Supplementary data:
https://hal.archives-ouvertes.fr/hal-02371659/file/
NECO-05-19-3483-supplementary.pdf

4.3.1.2 Abstract

Gated working memory is defined as the capacity of holding arbitrary information at
any time in order to be used at a later time. Based on electrophysiological recordings,
several computational models have tackled the problem using dedicated and explicit
mechanisms. We propose instead to consider an implicit mechanism based on a
random recurrent neural network. We introduce a robust yet simple reservoir model
of gated working memory with instantaneous updates. The model is able to store an
arbitrary real value at random time over an extended period of time. The dynamics

https://direct.mit.edu/neco/article-abstract/32/1/153/95568/A-Robust-Model-of-Gated-Working-Memory
https://direct.mit.edu/neco/article-abstract/32/1/153/95568/A-Robust-Model-of-Gated-Working-Memory
https://hal.inria.fr/hal-02371659/
https://hal.archives-ouvertes.fr/hal-02371659/file/NECO-05-19-3483-supplementary.pdf
https://hal.archives-ouvertes.fr/hal-02371659/file/NECO-05-19-3483-supplementary.pdf
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of the model is a line attractor that learns to exploit reentry and a nonlinearity
during the training phase using only a few representative values. A deeper study of
the model shows that there is actually a large range of hyperparameters for which
the results hold (e.g., number of neurons, sparsity, global weight scaling) such that
any large enough population, mixing excitatory and inhibitory neurons, can quickly
learn to realize such gated working memory. In a nutshell, with a minimal set of
hypotheses, we show that we can have a robust model of working memory. This
suggests this property could be an implicit property of any random population,
that can be acquired through learning. Furthermore, considering working memory
to be a physically open but functionally closed system, we give account on some
counterintuitive electrophysiological recordings.

4.3.1.3 Highlights

We were able to model working memory mechanisms by training a simple random
recurrent network to gate information for a long period of time. There are four
main findings: (1) the model extends the memory capacity of reservoirs with only
one continuous output node, (2) the model is very robust against perturbations
while not being hand-crafted, (3) we can fit different kinds of dynamics observed in
experimental data by simply changing a meta-parameter, (4) we explain the model
by deriving a minimal model based on 3 neurons that produce equivalent behavior
even in case of lesion. Such “gated reservoir” can be used as a new tool by the
reservoir community. This is important for the project because this new tool
will be used in the project (e.g. to stabilize representations for long-time periods).
Moreover, it shows that our expertise in reservoir computing enabled us to extend
the memory capacity of reservoir for long-time dependencies. Such expertise will be
useful to create new reservoir computing tools during this project.

4.4 Bringing together tools for reservoir exploration

During my PhD, I had the chance to be part of the european FP7 Organic project
with the founders of Reservoir Computing. Oger1 library was developed during the
project but discontinued shortly afterwards. It was nice to have such a library and
being able to discuss and share code easily with my PhD partner Pierre Enel. Since
then, I was looking for a similar one, but I did not find one that was fitted my needs.
That’s why I started developing ReservoirPy, which was then greatly extended and
reshaped by Nathan Trouvain when he was engineer the team. We have now a well
documented and flexible tool to prototype quickly reservoir architectures. We also
developed new tools to analyse and visualize the internal dynamics of reservoirs to
enable comparisons with other kinds of networks such as LSTMs.

1I host on my GitHub the last version of Oger which was available on BitBucket: https:
//github.com/neuronalX/Oger

https://github.com/neuronalX/Oger
https://github.com/neuronalX/Oger
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4.4.1 ReservoirPy: reservoirs in few lines of code

4.4.1.1 Context

This work [Trouvain & Hinaut 2022] was done during the engineer position of
Nathan Trouvain (2020-2022). It follows the development that Nathan started
when he was in MSc. internship again with me [Trouvain et al. 2020] (spring 2020).
It was performed with the help of Nicolas Rougier. In Figure 5.10 of Chapter 5 an
example of hyperparameter search done with ReservoirPy and hyperopt library is
proposed.

Nathan Trouvain and Xavier Hinaut (2022) reservoirpy: A Simple and
Flexible Reservoir Computing Tool in Python. hal-03699931 preprint.

• Open access / HAL version:
https://hal.inria.fr/hal-03699931

4.4.1.2 Abstract

This paper presents reservoirpy, a Python library for Reservoir Computing (RC)
models design and training, with a particular focus on Echo State Networks (ESNs).
The library contains basic building blocks for a large variety of recurrent neu-
ral networks defined within the field of RC, along with both offline and online
learning rules. Advanced features of the library enable compositions of RC build-
ing blocks to create complex “deep” models, delayed connections between these
blocks to convey feedback signals, and empower users to create their own re-
current operators or neuronal connections topology. This tool is solely based
on Python standard scientific packages such as numpy and scipy. It improves
RC time efficiency with parallelism using joblib package, making it accessible
to a large academic or industrial audience even with a low computational bud-
get. Source code, tutorials and examples from the RC literature can be found
at https://github.com/reservoirpy/reservoirpy while documentation can be
found at https://reservoirpy.readthedocs.io/en/latest/?badge=latest

4.4.1.3 Highlights

The ReservoirPy library will be used during the Research Program to quickly
prototype reservoir models, but also to share the models and gather a community
around the project. It will also enable to compare various features and learning
rules.

https://hal.inria.fr/hal-03699931
https://github.com/reservoirpy/reservoirpy
https://reservoirpy.readthedocs.io/en/latest/?badge=latest
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4.4.2 Easily building complex architectures

4.4.2.1 Context

This work [Trouvain et al. 2022] was done during the engineer position of Nathan
Trouvain (2020-2022). It was performed with the help of Nicolas Rougier.

Nathan Trouvain, Nicolas P. Rougier and Xavier Hinaut (2022) Create
Efficient and Complex Reservoir Computing Architectures with Reser-
voirPy. In SAB 2022 - FROM ANIMALS TO ANIMATS 16: The 16th
International Conference on the Simulation of Adaptive Behavior, Cergy-
Pontoise / Hybrid, France.

• Journal published version:
https://link.springer.com/chapter/10.1007/978-3-031-16770-6_8

• Open access / HAL version:
https://hal.inria.fr/hal-03761440

• DOI: 10.1007/978-3-031-16770-6_8

• Supplementary data:
Directly available in the preprint.

4.4.2.2 Abstract

Reservoir Computing (RC) is a type of recurrent neural network (RNNs) where
learning is restricted to the output weights. RCs are often considered as temporal
Support Vector Machines (SVMs) for the way they project inputs onto dynamic
non-linear high-dimensional representations. This paradigm, mainly represented by
Echo State Networks (ESNs), has been successfully applied on a wide variety of
tasks, from time series forecasting to sequence generation. They offer de facto a
fast, simple yet efficient way to train RNNs. We present in this paper a library
that facilitates the creation of RC architectures, from simplest to most complex,
based on the Python scientific stack (NumPy, Scipy). This library offers memory
and time efficient implementations for both online and offline training paradigms,
such as FORCE learning or parallel ridge regression. The flexibility of the API
allows to quickly design ESNs including re-usable and customizable components. It
enables to build models such as DeepESNs as well as other advanced architectures
with complex connectivity between multiple reservoirs with feedback loops. Ex-
tensive documentation and tutorials both for newcomers and experts are provided
through GitHub and ReadTheDocs websites. The paper introduces the main con-
cepts supporting the library, illustrated with code examples covering popular RC
techniques from the literature. We argue that such flexible dedicated library will
ease the creation of more advanced architectures while guarantying their correct
implementation and reproducibility across the RC community.

https://link.springer.com/chapter/10.1007/978-3-031-16770-6_8
https://hal.inria.fr/hal-03761440
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4.4.2.3 Highlights

The inclusion of tools to design complex architectures available within the new
version of the ReservoirPy library will enable us to explore a variety of topology
of reservoir networks during the Research Program.

4.4.3 Diving into reservoirs and LSTMs generalization

4.4.3.1 Context

This study [Variengien & Hinaut 2020] was performed with Alexandre Variengien
during his BSc internship (spring 2020).

Alexandre Variengien and Xavier Hinaut (2020) A journey in ESN and
LSTM visualisations on a language task. arXiv:2012.01748.

• Open access / HAL version:
https://hal.inria.fr/hal-03030248

• Open access / arXiv version:
https://arxiv.org/abs/2012.01748

• Supplementary data:
Directly available in the preprint.

4.4.3.2 Abstract

Echo States Networks (ESN) and Long-Short Term Memory networks (LSTM) are
two popular architectures of Recurrent Neural Networks (RNN) to solve machine
learning task involving sequential data. However, little have been done to compare
their performances and their internal mechanisms on a common task. In this work,
we trained ESNs and LSTMs on a Cross-Situationnal Learning (CSL) task. This
task aims at modelling how infants learn language: they create associations between
words and visual stimuli in order to extract meaning from words and sentences.
The results are of three kinds: performance comparison, internal dynamics analyses
and visualization of latent space. (1) We found that both models were able to
successfully learn the task: the LSTM reached the lowest error for the basic corpus,
but the ESN was quicker to train. Furthermore, the ESN was able to outperform
LSTMs on datasets more challenging without any further tuning needed. (2) We
also conducted an analysis of the internal units activations of LSTMs and ESNs.
Despite the deep differences between both models (trained or fixed internal weights),
we were able to uncover similar inner mechanisms: both put emphasis on the units
encoding aspects of the sentence structure. (3) Moreover, we present Recurrent
States Space Visualisations (RSSviz), a method to visualize the structure of latent
state space of RNNs, based on dimension reduction (using UMAP). This technique

https://hal.inria.fr/hal-03030248
https://arxiv.org/abs/2012.01748
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enables us to observe a fractal embedding of sequences in the LSTM. RSSviz is also
useful for the analysis of ESNs (i) to spot difficult examples and (ii) to generate
animated plots showing the evolution of activations across learning stages. Finally,
we explore qualitatively how the RSSviz could provide an intuitive visualisation to
understand the influence of hyperparameters on the reservoir dynamics prior to ESN
training.

4.4.3.3 Highlights

This study extended results of [Juven & Hinaut 2020] and provided earlier results
that have been extended in [Oota et al. 2022] (see Subsection 4.1.1). It provides a
qualitative analysis to seek why reservoirs generalize with less data than LSTMs. It
studies the internal dynamics of both networks in various ways: it compares their
“richness” vs. specificity, provides UMAP [McInnes et al. 2018] representations of
internal trajectories and UMAP representations of the changes occurring during
training. It also gives an analysis of the effect of hyperparameters on unit activations
and statespace representations. This work provides analysis tools that will be
useful during the Research Program.
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I stood still, my whole attention
fixed upon the motions of her
fingers. Suddenly I felt a misty
consciousness as of something
forgotten — a thrill of returning
thought; and somehow the mystery
of language was revealed to me. I
knew then that w-a-t-e-r meant the
wonderful cool something that was
flowing over my hand. The living
word awakened my soul, gave it
light, hope, set it free!

The Story of My Life
Helen A. Keller.
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5.1 Hierarchical reservoirs to model language processing
and production

Abstract. Language involves several abstraction levels of hierarchy. Most models
focus on a particular level of abstraction making them unable to model bottom-up
and top-down processes. Moreover, we do not know how the brain grounds symbols
to perceptions and how these symbols emerge throughout development. Experi-
mental evidence suggests that perception and action shape one-another (e.g. motor
areas activated during speech perception) but the precise mechanisms involved in
this action-perception shaping at various levels of abstraction are still largely un-
known. I propose to create a new generation of neural-based computational models
of language processing and production: i.e. to (1) use biologically plausible learn-
ing mechanisms; (2) create novel sensorimotor mechanisms to account for action-
perception shaping; (3) build hierarchical models from sensorimotor to sentence
level; (4) embody such models in robots in order to ground semantics.

Figure 5.1: General target architecture of the project.

5.1.1 Scientific context and motivation

After brain strokes (e.g. causing aphasia), it is not clear how the brain manages
to reorganize language functions. Computational neural models would be crucial to
provide a deeper understanding of such language functions. Recently Deep Learn-
ing (DL) networks have created a breakthrough in image and speech recognition,
and Natural Language Processing (NLP) methods. However, no equivalent break-
through happened towards the understanding of how the brain performs similar
functions. This breakthrough did not happen because Deep Learning does not yet
reproduce learning mechanisms nor the dynamics of the brain. Thus, we still lack
the key neuronal mechanisms needed to properly model the (hierarchies
of) functions in language perception and production.

The brain needs to parse incoming stimuli and learn from them incrementally, it
cannot unfold time like classical DL algorithms such as Back-propagation through
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time (BPTT). This would be equivalent to have a virtual copy of our brain for each
time step and use the last hundreds virtual brain copies to learn long-time depen-
dencies. To model language processes of healthy or lesioned brains some models try
to reproduce the behaviour of brain dynamics: e.g. with Event-Related-Potential
(ERP) data using backpropagation [Brouwer & Hoeks 2013, Brouwer et al. 2017] or
recurrence analysis [beim Graben & Hutt 2015]. However, such models lack ex-
planatory power demonstrating the causes of such observed dynamics: i.e. what is
computed and why is it computed – for which purpose? Other models have core
mechanisms that are well engineered in order to perform the task and do not reflect
biological mechanisms. We need more biologically plausible learning mech-
anisms favoring emergence while producing causal explanations of the
experimental data modelled.

There is converging evidence that language production and comprehension
are not separated processes in a “modular mind”, they are rather interwoven,
and this interweaving is what enables people to predict themselves and each
other [Pickering & Garrod 2013]. Interweaving of action and perception is impor-
tant because it allows a learning agent (or a baby) to learn from its own actions:
for instance, by learning the perceptual consequences (e.g. the heard sounds) of its
own actions (e.g. vocal productions) during babbling. Thus, the agent will learn
in a self-supervised way instead of relying only on supervised learning, which
in contrast, imply non-biological teacher signals cleverly designed by the modeller.
Self-supervised learning is fundamental for developmental processes such as bab-
bling. Schwartz et al. [Schwartz et al. 2012] propose that perception and action
are co-structured in the course of speech development: gestures are perceptually-
shaped, they form a perceptuo-motor unit. A clear neuronal model explaining
which are the mechanisms shaping these perceptuo-motor units through
development is missing.

In order to obtain new emergent representations of morphemes, words and
sentences we cannot rely on engineered ones (e.g. word embeddings such as
Word2Vec [Mikolov et al. 2013] or BERT [Devlin et al. 2018]). We need to obtain
emergent action-perception representations through perceptuo-motor mechanisms.
The existence of sensorimotor (i.e. mirror) neurons at abstract representation lev-
els (called action-perception circuits [Pulvermüller & Fadiga 2010]), jointly with the
perceptuo-motor shaping of sensorimotor gestures, suggest the existence of similar
action-perception mechanisms implemented at different levels of hierar-
chy.

Christiansen & Chater propose that the brain is in the Now or Never Bottleneck
problem [Christiansen & Chater 2016] when processing a stimulus (e.g. an utter-
ance): it is forced to extract the necessary information as soon as possible, otherwise
the information will be lost. Thus, the rich perceptual input needs to be re-
coded as it arrives in order to capture the key elements of the sensory
information [Christiansen et al. 2016]. These compressed (or “chunked”) represen-
tations are abstractions of inputs (filtering out the details) rather than predictions
encoding all the fluctuations of fast incoming inputs. Memory limitations also apply
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to these recoded representations; hence the brain needs to chunk the compressed
representations into “multiple levels of representation of increasing abstraction in
perception, and decreasing levels of abstraction in action” [Christiansen et al. 2016].
Therefore, each sequence of chunks at one level will be encoded as a single chunk to
a higher level. In summary, they suggest the brain must implement a hierarchical
“Chunk and Pass” mechanism to solve the “Now or Never Bottleneck” problem.

Importantly, a language model needs a way to acquire the semantics of the
(symbolic) perceptuo-motor gestures and of the more abstract representations,
otherwise it would consider only morphosyntactic and prosodic features of lan-
guage. These symbolic gestures, i.e. signs, need to be grounded to the men-
tal concept, i.e. signified, they are representing. Several theories and robotic
experiments give examples of how symbols could be grounded or how symbols
could emerge [Taniguchi et al. 2016]. These are important conceptual questions
for AI (Artificial Intelligence) in robotics. It is also crucial to understand how the
brain solve these problems. However, current neurocomputational models aiming
to explain brain processes [Garagnani et al. 2008, Garagnani & Pulvermüller 2016,
Brouwer et al. 2017] are not grounded1. We need mechanisms that start from raw
sensory perception and raw motor commands in order to let emerge plausible rep-
resentations through development, instead of arbitrary representations. We target
to embody models into robots that will developmentally ground language
from morphemes to sentences. The grounding of semantics should come from
the robot experiencing the world through its interactions with humans and the
physical world.

5.1.2 Objectives and research hypothesis

The aim of the project is to build a dynamic neuronal model of language process-
ing and production: the model should be dynamic, grounded, hierarchical and use
action-perception mechanisms.

One of the long-term ambitions of the project is to make a biologically plausible
model of sentence processing and production. Such model could be used to fit
experimental data of healthy and pathological language functions. Moreover, the
project will explore how the model could be embodied [Pulvermüller 2013] in robots
in order to model (among other things) how the brain of children learns to ground, in
a developmental scheme, the semantics of various levels of symbol abstraction. The
model will have to deal with continuous stimuli (speech) and produce continuous
actions (vocalizations). Thus, on one side, it will deal with unsegmented streams
from (bottom-up) perceptual categories (e.g. phonemes), sequences of abstracted
categories up to sentences, and conversely on another side, it will produce sentences
going from abstract representations to the sequence of syllables. An important

1Some authors seem to use “neuroanatomically grounded” for neurocomputational models that
model neuroanatomy [Garagnani et al. 2008]. I do not use the term “grounded” in this sense.
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novelty is that the goal is to model this bottom-up and top-down processes with
action-perception mechanisms.

The developed models will be dynamic: time will not be chunked (i.e. seg-
mented) or unfolded during simulations, trained online (training will happen online
within the simulation processes) and anytime (if the simulation is stopped at any
time it will give a partial result, e.g. partial thematic roles available during the pro-
cessing of sentences). Some of these features are already part our previous studies,
so the challenge will be to create some features (e.g. chunking) while keeping the
previous ones.

The final model will be composed of several sub-models which will tackle four
challenges: (1) Dynamic and developmental models: Which is the combination of
learning rules that enable generic recurrent neural networks (RNN), such as reser-
voirs, to learn incrementally, from temporally distant rewards and build represen-
tations upon one another in a developmental way? (2) Action-Perception generic
mechanism: How to make a generic action-perception mechanism that (i) would
enable action and perception to shape one another, (ii) while allowing to bootstrap
the development of representations from raw sound percepts, and (iii) which could
be stacked as layers of a hierarchy? (3) Hierarchical: from sensori-motor learning
to sentence comprehension: How to create (i) a layered architecture with reservoirs
that is working functionally as a hierarchy (i.e. each layer as a specific function and
abstraction level), (ii) such that it allows bottom-up and top-down processes to flow,
while enabling multistable representations [Kelso et al. 1995, Sterzer et al. 2009].
(4) Grounded in virtual agents and physical robots: How to integrate semantics
from other modalities into the active-perceptive hierarchical model obtained so far?

Obtaining a functional hierarchy is not only useful to abstract symbols from
raw perceptions (i.e. let them emerge), but also to create action-perception cou-
plings with the environment at different levels of abstraction, in order to be able to
reproduce (i.e. to imitate with motor commands) past perceived stimuli.

A new kind of bio-plausible mechanism is needed to achieve this challenge: we
need to think outside of the common input-output black box training of neural
networks and see how they can be trained jointly including the environment. Senso-
rimotor models and Generative Adversarial Networks (GANs) are interesting bases
to start, but we need to go further. Thus, part of the objectives, is to discover alter-
native solutions to the input-output mapping black box dominant paradigm. Even
if some methods, such as GANs, are not “one-way only” and enable the system to
be partly self-supervised, by design each “box” (i.e. module) has its own input and
output. After training, each “box” can be used independently from other modules.
With this project, we want to enable different parts of the global system to truly in-
teract dynamically, like a dynamical system: by having a motor/generative module
(that produces phonemes/words/...) able to bias the perceptual module. Impor-
tantly, part of the general aim is to enable such skewing mechanism to happen
hierarchically: more abstract layers could bias lower layers.

One of the long-term goals of the project is to build a model that could learn to
understand utterances by exploring which meanings the morphemes, words, expres-
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sions, etc. could have within the context of a sentence. This assumes that sentence
comprehension is not a passive process simply chunking information at different
levels of abstraction, but on the contrary, it is an active process where the hearer
tries to infer the meaning of the sentence. A sentence may not be understandable
based only on the most probable on-going parse: garden path sentences (e.g. “The
horse raced past the barn fell.”) exemplify such need for active exploration. Test-
ing this ability to chunk multi-word expression will be especially interesting and
we could link model activities to functional Magnetic Resonance Imaging (fMRI)
studies looking at such expressions [Bhattasali et al. 2019].

Additionally, it is important to keep models as generic as possible, in order to
prevent from adding unnecessary linguistic a priori knowledge. Generic models will
have a greater impact, opening potential adaptations to non-linguistic tasks. In
particular, we do not want to predefine connections between symbolic components:
we want the symbols (or “perceptuo-motor gestures”) to be dynamically connected
in a generic structure, and not to appear as a result of an engineered connectivity
or mechanisms.

Overall, this project aims to initiate a paradigm shift in the design of linguistic
cognition and how it develops and demonstrate the efficiency of hierarchical active
perception mechanisms in noisy conditions of real-world applications (e.g. Human-
Robot Interaction).

5.1.2.1 Expected results

Final demonstration The final language model will be implemented in an inter-
active scenario between a human user and a robot. Users could interact with the
robot through speech commands, and the robot will perform the actions. Users
could talk different languages to the robot. During the interaction users could see
a schematized version of the model activities going-on with a screen. More details
concerning a particular area could be obtained: e.g. see potential ambiguous words
not fully recognized by the robot. Finally, users could see on the screen the replay
of the developmental stages the model has passed by.

5.1.3 Position of the project as it relates to the state of the art

The way we learn to ground utterances to meaningful representations is a com-
plex process that involves to link many sub-processes of different nature. Barsa-
lou [Barsalou 2008] proposes that “language provides an excellent domain in which
to combine symbolic operations [Sun & Alexandre 2013], statistical processing and
grounding”.

Several mechanisms are discussion topics regarding biological plausibility, how-
ever relying on back-propagation is often not considered plausible, especially if the
gradient needs to go backwards through several layers. Back-propagation through
time (BPTT) makes the implausibility a step further, as it needs to unfold time,
which means to virtualize it as a spatial dimension in order to train a recurrent neu-
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ral network (RNN). In fact, since a decade my studies are mainly focused on RNNs
that do not involve the unfolding of time (e.g. BPTT) such as Echo State Networks
(ESNs) [Jaeger & Haas 2004]. Most parts of the weights of such models are not
trained, this make a difference on biological plausibility compared to other classical
algorithms: one could consider that at a short timescale the weights do not change in
the reservoir [Lukoševičius & Jaeger 2009], or that optimisation of hyperparameters
of the reservoir actually corresponds to what would be obtained with homeosta-
sis rules such as intrinsic plasticity mechanisms [Steil 2007, Schrauwen et al. ]. On
the contrary, an important number of previously developed neural networks mod-
els on sensorimotor learning use feed-forward neural networks trained with back-
propagation: this is a common way to escape the problem of representing time as
such.

Recently, deep learning networks [Graves et al. 2013, Cho et al. 2014b,
Chung et al. 2016, Devlin et al. 2018, Luong et al. 2015] have created a break-
through in object and speech recognition. Latent representations of word
and sentences, such as Word2Vec [Mikolov et al. 2013], and subsequent develop-
ments, such as transformers BERT, RoBERTa, GPT-2 etc. [Vaswani et al. 2017,
Devlin et al. 2018, Liu et al. 2019, Radford et al. 2019, Raffel et al. 2020], enabled
important progress on language modelling and natural language processing (NLP).

However, no equivalent breakthrough happened towards the understanding of
how the brain performs similar functions. Recent studies show that neural net-
works are able to predict human brain responses elicited during reading tasks, e.g.
magneto-encephalography (MEG) recordings [Caucheteux & King 2021]. However,
when the algorithms are trained on language modeling, only the middle layers be-
come increasingly similar to the late responses of the language network in the brain.
Additionally, these models end up with a lot of trained parameters which make
them too complex to analyze, and able to extract equivalent cognitive mechanisms
performed by the brain.

Predictive coding and active inference are important mainstream approaches
in several domains [Friston 2018][Pitti et al. 2020]. There are of course interesting
common features with our project, as for other general theories. However, we want
to propose mechanisms which do not rely mainly on predictions or prediction error
as key mechanisms. As we have shown previously, predictions can appear as a
by-product of learning [Hinaut & Dominey 2013]. We propose a challenging vision
which is rather bottom-up than top-down: find mechanisms that are more “data-
oriented” and fundamentally anchored in what is known form sensory perception
and production rather than more abstract theories.

Sentence processing and production models. Early neuronal (i.e. con-
nectionist) language processing models used backpropagation to predict the next
word in a sentence [Elman 1990] or simple case-role assignment. Many subse-
quent models, e.g. of language production [Chang 2002], continued to use back-
propagation as the main learning mechanism. Such models are interesting to fit
with developmental data on language acquisition or time-reading data, but they
cannot model brain dynamics [Crocker et al. 2006]. More recently, some mod-
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els targeted the modelling of ERP (Event-Related Potentials) components ob-
tained from EEG [Brouwer & Hoeks 2013, Brouwer et al. 2017]. Interestingly, some
models aimed at simulating brain activations with an action-perception point of
view [Pulvermüller & Fadiga 2010], but the mechanisms proposed do not provide
sufficient explanations on what the brain computes when processing or producing a
sentence.

Perceptual

space

Sensory

space

Motor

space

Motor

control

function

Sensory

response

function

Forward model

Inverse model

Figure 5.2: General archtitecture of a sensorimotor model. From our review
[Pagliarini et al. 2021b].

Sensorimotor models. Recently, we made a review on sensorimotor models
of vocal imitation [Pagliarini et al. 2021b]. Although these models were targeting
similar functions, i.e. how humans or songbirds learn to vocalize, the resulting
models were difficult to compare, because there were using too much different meth-
ods. Grouping them in three main spaces (motor, sensory and perceptual spaces)
and associated functions allowed us to compare them. On Figure 5.2, one can see
the “minimal” architecture that enables to focus on the core model parts. We de-
scribe briefly these core parts: the perceptual space represents the result of the
sound transformation by the sensory response function; the motor space represents
the motor commands before being transformed into sound by the motor control
function [Tourville & Guenther 2011] (e.g. a human articulatory speech synthe-
sizer model [Birkholz et al. 2006, Kröger & Bekolay 2019]; the sensory space is the
sound in vocal imitation models; the inverse model allows to provide an appropriate
motor command for a given perceptual goal (mapping perceptions to motor com-
mands); the forward model (mapping motor commands to perceptions) describes
a causal relationship between motor commands and their corresponding perceptual
representations, i.e. it tries to predict the perceptions when a motor command is
produced.

Perceptuo-motor shaping. The role of premotor cortex activation during
speech perception has been discussed since a while [Meister et al. 2007] and is be-
lieved to enable for better representations of speech sounds, especially in noisy envi-
ronment. The Perception-for-Action-Control Theory (PACT) [Schwartz et al. 2012]
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highlights how speech percepts are related not only to sounds, but also to motor ges-
tures: speech perception could be biased by articulatory invariant commands. Thus,
syllables are perceptuo-motor in essence: perception-shapes-action (e.g. some ab-
stract representation of motor gestures can be recovered to disambiguate perception)
and action-shapes-perception (e.g. motor gestures are “selected for their functional
and perceptual value for communication” [Schwartz et al. 2012]). An example is the
fact that acoustic features can change suddenly when changing the jaw height or
jaw cycle, thus producing phase transitions in the perceptuo-motor phase space dia-
gram [Schwartz et al. 2012]. Bayesian computational models of PACT theory have
been proposed [Moulin-Frier et al. 2015], but they do not enable to model brain pro-
cessing at the mechanistic level. Moreover, such models do not consider the word
nor sentence levels.

Grounding. One way to understand how symbols are grounded (or con-
versely how symbols emerge) is to use robots as models to see how to em-
body brain models of perception and action. In other words, we want to make
these models interact with the world to ground/build themselves the symbols
(as systems/agents with sensors and actuators which can perceive and act on
the real world). Using robots to study language grounding, acquisition and de-
velopment is a challenging research topic with several sub-fields. Cangelosi et
al.[Cangelosi et al. 2010] have proposed an ambitious road-map plan for the in-
tegration of action and language through developmental robotics. Several stud-
ies attempted to tackle different sub-problems: word and syntax grounding
with visual cues [Roy 2002], abstract word grounding [Stramandinoli et al. 2012],
cross-situational learning [Taniguchi et al. 2017], grounded language acquisi-
tion [Dominey & Boucher 2005], symbol emergence [Taniguchi et al. 2016], se-
mantic compositionality [Sugita & Tani 2005], origin of syntax with language
games [Steels 1998].

Tani [Yamashita & Tani 2008] and others have been using robots to ground
high-level cognition. Tani’s work on hierarchical organization of motor actions is
among the few models building a system that links low and high level temporal
sensori-motor representations in a direct fashion. However, such approaches use
learning methods that could be computationally costly and few provide develop-
mental schemes which prevent them to scale, and it seems that none provide bi-
ologically plausible learning mechanisms. Moreover, one main limitation of such
experiments on grounding with neural networks is that they use simple linguistic
associations with hand-crafted preprocessing (e.g. usually grounding one perception
to one word) because they do not have better options: they are lacking a hierarchi-
cal model representing the different levels of abstraction while processing sentences
incrementally.

Modelling brain processes from raw acoustic signal up to language understand-
ing is an ambitious long-term research project. There is no such multi-level and
hierarchical model on language today, which crucially lacks for the neuro-linguistic
and psycho-linguistic communities. If one considers a model at a single level (e.g.
sentence level), one needs to make nearly arbitrary assumptions on how activi-
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Figure 5.3: Hierarchical-Task Reservoir (HTR) architecture. Each ESN learns a
different task. In [Pedrelli & Hinaut 2020] these tasks correspond to {PH, WD or
POS}: obtaining the following flux of information MFCC→SP→PH→WD →POS.
The architecture receives the features extracted from the speech signal with MFCC
representations each 10 ms. The first layer is optimized for SP→PH (Task 1), the
second layer is optimized for PH→WD (Task 2) and, finally, the third layer is opti-
mized for WD→POS (Task 3). In [Pedrelli & Hinaut 2022] these tasks correspond
to {PH, WD, POS or SRL}: we tested different kinds of architectures with different
kind of representation (word embedding), including ones with skip connections from
WD to SRL. Image from [Pedrelli & Hinaut 2020].
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ties/information are represented (e.g. words are encoded as “grand-mother” neural
assemblies). Such assumptions could be true, but there are much more chances that
they are not, making the validity of the model questionable and limited to a narrow
domain. Kröger et al. (2008) did a neurocomputational model of speech perception
and production that spans on multiple levels, but only until phonemic map. Conse-
quently, the hierarchical models will be designed in order to be adaptable to other
hierarchical tasks like recognition and production of complex actions: my early work
was on modelling abstract actions sequences.

5.1.3.1 Preliminary results

Our published works and ongoing works will serve as a basis for this project. In
a first batch of studies [Pedrelli & Hinaut 2020, Pedrelli & Hinaut 2022], we pro-
pose a novel architecture called Hierarchical-Task Reservoir (HTR) suitable for
real-time sentence parsing from continuous speech. Accordingly, we introduce a
novel task that consists in performing anytime Semantic Role Labelling (SRL)
from continuous speech. This HTR architecture is designed to address four clas-
sification sub-tasks (phones words, Part-of-Speech (POS) tags, SRL) with increas-
ing levels of abstraction [Pedrelli & Hinaut 2022]. These tasks are performed by
the consecutive layers of the HTR architecture. Interestingly, the results show
that learning sub-tasks enforces better qualitative outputs [Pedrelli & Hinaut 2020,
Pedrelli & Hinaut 2022] compared to a hierarchical reservoir predicting the same
task at each layer [Triefenbach et al. 2013]. We compared HTR with a baseline
hierarchical reservoir architecture and usual ESNs or LSTMs (Long-Short Term
Memory networks) [Hochreiter & Schmidhuber 1997]. Moreover, we also performed
a thorough experimental comparison with several architectural variants. Finally,
the HTR with word embeddings and one skip connection (words->SRL) obtained
the best performance.

In a second batch of studies [Dinh & Hinaut 2020, Juven & Hinaut 2020,
Variengien & Hinaut 2020], we tackle the question of “Understanding the mecha-
nisms enabling children to learn rapidly word-to-meaning mapping through cross-
situational learning (CSL) in uncertain conditions”. In particular, many models of
language acquisition often look at the word level, and not at the full sentence compre-
hension level. We adapted our previous reservoir model [Hinaut & Dominey 2013]
to learn to represent concepts instead of predicates (center of Figure 5.5). Using the
co-occurrences between words and visual perceptions, the model learns to ground
a complex sentence, describing a scene involving different objects, into a percep-
tual representation space (bottom of Figure 5.5). The reservoir processes sentences
describing scenes and is trained to output the concepts given by the simulated vi-
sion module with online FORCE learning [Sussillo & Abbott 2009]. Evaluations of
the model show its capacity to extract the semantics even if the concepts given as
output often do not exactly correspond to the given sentence in input (i.e. CSL).
Remarkably the model generalizes, on sentences describing one or two objects, only
after a few hundred of partially described scenes. Furthermore, it handles polyse-
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Figure 5.4: Input and outputs at different stages of a Hierarchital-Task Reservoir
(HTR) performing 3 tasks – phone (PH), word (WD) and part-of-speech (POS).
It is composed of 3 ESNs with the following flow: MFCC→SP→PH→WD →POS.
The plot (a) shows the components of the MFCC computed from the input audio
relative to the sentence “Don’t ask me to carry an oily rag like that”. Plots (b), (c)
and §d) show the output values of the the layers 1, 2 and 3 of the HTR architecture.
The vertical dash line on bottom left indicates a “correction” that is made by the
last ESN: input word is an OOV word, i.e. a word that is out of the top50 words
in the corpus. The x-axis represents the time and the y-axis represents the values.
At several time points, the label corresponding to the output with the maximum
activation is indicated. Image from [Pedrelli & Hinaut 2020].
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Figure 5.5: Training a reservoir language model in Cross-Situational Learning fash-
ion. The teacher signal is assumed to be given by symbolic representations a robot
can have from a scene with one or several objects. The difference between the net-
work output and the vision module output is used to update slightly the network
weights – using online FORCE learning [Sussillo & Abbott 2009] – at each time
step or only at the last time step of the sentence. By repeating this step on vari-
ous sentence-scene pairs, only the pertinent modifications should be kept, and the
network would extract the semantics from the sequence of words in each sentence.
Polysemous meaning of words can be learnt (e.g. “orange” color or object). Image
from [Juven & Hinaut 2020]. This preliminary work was extended in several studies
[Dinh & Hinaut 2020][Variengien & Hinaut 2020][Oota et al. 2022].

mous and synonymous words (e.g. “An orange orange is in the middle/center.”).
We tried different concept representations to enable generalization from one-object
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Figure 5.6: UMAP representation of 16k canary syllables generated from our Canary
WaveGAN. Each cluster/color correspond to one class of the repertoire and class X
(in white) represents the “unknown” class (i.e. outside existing classes). One can
see the continuity between the syllables generated and the presence of interpolated
classes (in white) which are not recognized as existing glasses. Syllable sounds gen-
erated where transformed to spectrogram before using UMAP [McInnes et al. 2018].
Image from [Pagliarini et al. 2021c].



5.1. Hierarchical reservoirs to model language processing and
production 51

sentences to two-object sentences [Dinh & Hinaut 2020], and we have preliminary
results to ground such experiment with the MSCOCO dataset [Lin et al. 2014].
Finally, we demonstrated that reservoirs demonstrate better generalization than
LSTMs when the vocabulary size increases [Variengien & Hinaut 2020] while the
number of training sentences remain small (1000), and we compared general-
ization mechanisms of reservoirs and LSTMs with dimension reduction methods
(UMAP) [McInnes et al. 2018].
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Figure 5.7: Evolution of sound produced during learning for syllables R and B1.
(top) Evolution of the sensory response activation of unit R (left) and B1 (right) obtained during
one instance of training. (bottom) Evolution of the corresponding sounds produced over time for
nine selected time steps. Image from [Pagliarini et al. 2021a].

In a third batch of studies, we managed to train GANs for raw sounds (Wave-
GAN) with a large dataset of canary syllables (16000 renditions) and constrain
the latent space to small dimensions (from 1 to 6) [Pagliarini et al. 2021c]. The
sounds produced by the generators were identified and evaluated by a reservoir-
based classifier trained on the same dataset. We also performed qualitative evalua-
tion (using UMAP) of the GAN output spectrograms across GAN training epochs
and latent dimensions. UMAP representations show the similarities between the
training data and the generated data, and between the generated syllables and
the interpolations produced. By exploring the latent representations of syllable
types, we showed that they form well identifiable subspaces of the latent space,
while producing some interpolations between syllables (see Figure 5.6). In another
study [Pagliarini et al. 2021a], we used such low-dimensional GANs as motor con-
trol function to build a vocal sensorimotor model with the full action-perception
loop with real sounds produced (see Figure 5.2). The sensory response function
was modelled using a reservoir trained to decode canary syllables. We showed
that a simple Hebbian learning rule, used for the inverse model, was able to learn
the majority of the 16 canary syllables (see Figure 5.7). In the meanwhile, we
showed that reservoirs generalize with less data then LSTMs for canary song la-
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belling [Trouvain & Hinaut 2021].

5.1.4 Methodology and risk management

The project is organized around six work packages described bellow.

WP1: Hierarchy of Recurrent Neural Networks (RNNs)
WP2: Speech sensori-motor model
WP3: Action-Perception (AP) mechanism
WP4: Grounding and Human-Robot Interaction (HRI) experiments with the Nao
robot
WP5: Dissemination and Crowdsourcing
WP6: Management

5.1.4.1 WP1: Hierarchy of RNNs for sentence comprehension and pro-
duction

Tasks: (1) To create a model learning to process and produce sentences; (2) Ex-
plore abstract sentence goal representations for sentence production; (3) Explore
plausibility checking mechanism for sentence comprehension.

Preparatory work will be to continue current work on hierarchical reservoirs for
sentence processing – i.e. Part-of-Speech (POS) and Semantic Role Labelling (SRL)
– from speech (i.e. Mel-Frequency Cepstral Coefficients (MFCC)). We have already
shown that such simple hierarchy already enables to correct errors in the bottom-
up flow [Pedrelli & Hinaut 2020, Pedrelli & Hinaut 2022]. We will investigate how
simple backwards connections (from top to bottom reservoir layers) could be added
to enable to propagate such error correction ability at less abstract levels.

Concerning preparatory work, we will train the models using super-
vised learning in order to make a link with previously developed mod-
els [Hinaut & Dominey 2013, Hinaut et al. 2014]. We will use artificially gener-
ated data [Hinaut & Dominey 2013, Juven & Hinaut 2020] (useful for controlling
parameters such as clause embedding and the complexity of the corpus in general),
robot commands from human-robot interaction [Dukes 2014, Hinaut et al. 2014,
Hinaut et al. 2015b, Hinaut & Twiefel 2020] and data from other studies aiming to
model language acquisition [Connor et al. 2008]. This will include corpora in differ-
ent languages [Hinaut et al. 2015b]. We will see how such model is able to represent
the meaning of the sentences (by using classical sentence parsing, binding semantic
roles to words, etc. and more robot concept-based representations) in a way that is
both suitable for sentence processing and sentence production. From the production
side, we will call such top high-level representation: “abstract sentence goal represen-
tations”. We will start by training each intermediate layer with the same temporal
teacher signals than for the processing mode. We will then experiment mixtures
of resulting representations between processing and production modes. Concerning
the representation of the sequence of words and morphemes that will be inputted to
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Figure 5.8: Robust model of gated working memory. It is an extension of a classical
reservoir that we have made to extend the reservoir long-term memory abilities
[Strock et al. 2020]. The read-out is called a WM-unit : it is trained to output the
scalar value V when the trigger T is ON, and gate this value until the next trigger
comes. Even if a stream of disturbing values is coming as input, the model is able
to keep the gated value. Analysis of the reservoir shows that it behaves as a linear
attractor. Internal neuronal states can show constant or dynamic neural activities –
both observed in neurophysiology – while values are gated depending on parameters
of the model.

and outputted by the model, we will experiment various representations in order to
test their influence on the computations performed. For instance, we will consider
arbitrary representations (orthogonal encoding), word embedding representations
such as Word2Vec, BERT, etc.

The last task of this WP will be to explore mechanisms able to check this
“viability of the interpretation” of the sentence, that we will call more simply
“plausibility check” as shown in Figure 5.1. We will experiment various solutions
implementing this plausibility check (e.g. based on adversarial methods such as
GANs) and evaluate their influence on the processing and performances of the
model. We will use fully supervised and weakly supervised trainings by using
CSL [Juven & Hinaut 2020, Variengien & Hinaut 2020]. Afterwards, we will be able
to connect the top of the hierarchy to a plausibility module and/or grounding mod-
ule (link to WP4): this high-level module will evaluate the representation proposed
by the network and either validate (i.e. sentence understood) or “ask for exploration”
by sending a modulatory signal that will “flip” the symbols at points in the hierarchy
where there is the ambiguity measure is the highest. This exploration mechanism
will be repeated until it converges towards an evaluation of the plausibility that is
satisfactory. The plausibility module does not need to be grounded as part of this
WP, e.g. it can be a symbolic reasoning system able to state the plausibility of
the predicates/SRL found, it will be grounded in WP4. The production mode will
be bootstrapping from “abstract sentence goal representations”: the model will first
target easier goals (e.g. reproducing single words or expressions) before producing
complete sentences. For sound production, we will rely on our findings on low-
dimensional GAN generator model [Pagliarini et al. 2021c][Pagliarini et al. 2021a]



54 Chapter 5. Research Program

and apply it to speech (instead of birdsong).
Similarly, as in WP2, 3 and 4, we will compare the model to developmental

language acquisition studies. Additionally, we will explore the effects of processing
bilingual corpora. In particular, we will explore if the network produced mixed
representations or tend to cluster representations in different languages. We will
compare this to bilingual studies. In addition, we will explore how the model can
process and produce code-switched sentences (i.e. sentences that have words from
two languages) [Van Hell et al. 2015]. Interestingly, bilingual language production
has been shown to involve cognitive control mechanisms [Rougier et al. 2005] in
language switching studies: we will explore if such control mechanisms emerge in
the architecture. This bilingual and code-switching experiments will be done in
collaboration with S.L. Frank at Radboud University (Nijmegen, NL) with whom
we started a collaboration thanks to a Campus France VAN GOGH 2021 travel
grant. With the help of a neurolinguist collaborator, Gaël Jobart also at the
Bordeaux NeuroCampus, we will map internal activities, representations and sup-
posed functions of the different parts of the developed models with brain activ-
ity of fMRI studies [Pallier et al. 2011, Nelson et al. 2017, Bhattasali et al. 2019].
For instance, we could use publicly available datasets – we already started with
some corpora released by Nastase et al. [Nastase et al. 2021] – or on future pro-
tocols developed jointly. In particular, we will be interested to focus on multi-
lingual datasets [Li et al. 2022] because of our previous works on reservoir models
processing multiple languages [Hinaut et al. 2015b][Hinaut & Twiefel 2020], includ-
ing code-switching [Detraz & Hinaut 2019a]. Such correspondences between model
components and brain areas could suggest new hypotheses to be tested back in neu-
roimaging experiments; participating to a fruitful interacting loop between fMRI
and computational experiments.

Risks. To minimize risks on the ability of models to perform the tasks
we will compare the generalization performance from various RNN hierar-
chies (reservoir, LSTM [Hochreiter & Schmidhuber 1997], Gated Recurrent Unit
(GRU) [Cho et al. 2014b, Cho et al. 2014a], reservoirs with hyperparameters opti-
mized with BPTT, etc.). This will enable us to analyze the dynamics of the RNNs
in order to compare how they generalize, like we did in [Variengien & Hinaut 2020]
for simple non-hierarchical LSTMs and reservoirs. This will be of great use to the
community, because it will enable to make a gradient of RNN hierarchies and to
make our models easily comparable to the existing literature.

WP1 Expected outcome. This WP will provide first versions of the sentence
comprehension and production model as general hierarchical RNNs. It will include
plausibility check mechanism able to construct, by exploration, a plausible meaning
representation of the processed sentence. This will be done by exploring potential
ambiguities in speech (at various degrees of abstraction: e.g. syllables, words), a
plausible meaning representation of the processed sentence. This WP will span from
speech percepts (and sound production) to sentence meaning representations.
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5.1.4.2 WP2: Speech sensorimotor model

Tasks: We will make successive vocal sensorimotor models learning (1) phonemes,
(2) syllables, (3) morphemes and words.

In this WP we intend to develop vocal sensorimotor models learn-
ing to imitate human vocalizations by goal- exploration. We will build
upon previous important works groups such as Schwartz, Bessière, Di-
ard, Moulin-Frier, etc. [Schwartz et al. 2012, Moulin-Frier et al. 2015,
Barnaud et al. 2018, Barnaud et al. 2019, Nabé et al. 2021, Nabé et al. 2022]
for the “COSMO approach”, on the one hand, and from Philippsen, Reinhart
and Wrede [Philippsen et al. 2014, Philippsen et al. 2016, Philippsen 2021], on
the other hand (see [Pagliarini et al. 2021b] for a review). We will rely on our
experience with birdsong sensorimotor models generating real canary sounds with
a low-dimensional GAN [Pagliarini et al. 2021c][Pagliarini et al. 2021a]. We will
also use real corpora of children and human vocalizations based on data available
online (e.g. HomeBank [VanDam et al. 2016] and CHILDES [MacWhinney 2014]
projects).
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Figure 5.9: First year of infant speech-perception and speech-production
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by a sensory learning phase that shapes perception, from an initially universal per-
ception to language-specific phoneme discrimination. Speech production develop-
ment (pink background) is characterised by some preliminary phases followed by
sensorimotor learning, where canonical babbling takes place. Image adapted from
Doupe and Kuhl (1999) [Doupe & Kuhl 1999]. Image from [Pagliarini et al. 2021b].
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First, a simple sensorimotor model imitating phonemes will be developed.
The first conditions will bootstrap the experimentation with synthetized data
[Philippsen 2021] and will then go towards real corpora. The model will learn
to correctly represent perceptuo-motor gestures of phonemes. Secondly, we will
explore how the model could produce syllables (i.e. composition of phonemes):
we will test two conditions, one with only one layer sensorimotor model, and
one with adding a supplementary sensorimotor model on top. Thus, we will
experiment which architecture is best suitable for the formation of “syllable-
like” perceptuo-motor gestures. Finally, we will explore what are the archi-
tectural conditions (i.e. how many sensorimotor layers) enabling the model to
learn to imitate morphemes and words. Throughout these developments we
will analyze the model behavior and compare it with developmental language
studies (and other similar models) [Tomasello 2003]. We will test several mod-
els for the motor control function in order to imitate human vocal produc-
tions [Pagliarini et al. 2021b]: for instance Vocal-TractLab [Birkholz et al. 2006]
and DIVA [Tourville & Guenther 2011]. Concerning the exploration of goals we
will adapt previously developed ideas [Pagliarini et al. 2021b] of intrinsic motiva-
tion [Moulin-Frier et al. 2014] or goal-babbling [Rolf et al. 2010]. We will also use
a low-dimensional GAN as motor control function for sound production, like we
did in [Pagliarini et al. 2021c][Pagliarini et al. 2021a]. Our collaborator, Clément
Moulin-Frier, also at Inria, will help with suggestions during the development of the
speech sensorimotor models.

Risks. As we discussed in our review [Pagliarini et al. 2021b] such models may
not be able to reproduce perfectly the distribution of sounds that could be obtained
from real data, in particular, they may not be able to obtain a similar perceptuo-
motor phase space than humans. Thus, we suggest that sensorimotor models should
(ideally) learn only from syllables that they can correctly produce and perceive.
Such condition may not be reached if such models learn from real human data
(adult and children) vocalizations. Therefore, this is an additional reason to include
two experimental conditions in our experiments, one with real data and one with
purely simulated data (e.g. with vocal tract models).

WP2 Expected outcome. We will obtain a robust sensorimotor models based
on coupled perceptuo-motor reservoirs that will be able to process stimuli (percep-
tion mode) or produce sounds (production mode) from various length (phonemes,
morphemes, words). Stacked in few layers it will build more and more abstract
representations of perceptuo-motor gestures.

5.1.4.3 WP3: Exploring Action-Perception (AP) mechanisms

Tasks: (1) Create the generic AP layer; (2) Explore conditions that let composi-
tional symbols emerge; (3) Stack AP layers

Task 1: Create the generic AP layer. The idea of this first step is to define
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the core layer of the architecture. In order to create the generic AP layer, we
will explore various ways of combining the core functions the general sensorimotor
architecture depicted in Figure 5.2. The goal is to explore how to make an active
interaction between the perceptual space and the motor space, using inverse and
forward models. We will mostly choose components based on random recurrent
neural networks (i.e. reservoirs) with bio-plausible learning rules, in order to keep the
overall architecture as homogeneous as possible and enable to intrinsically process
continuous streams without unfolding time. Moreover, this will ease the analysis
because the same tools could be used on various components. In this WP, we want
to go beyond previous sensorimotor models [Pagliarini et al. 2021b] and have our
AP layer actively recoding/shaping perceptual inputs or motor outputs. An AP
layer could work in two “modes”: a perceptive mode and a production mode.

Perceptive mode. The agent receives a sound stimulus (represented in acous-
tic or sensory space) which elicits a first representation in the perceptual space.
Then, this activates a representation in the articulatory or motor space through
the inverse model. Afterwards, activity is propagated again to the perceptual space
through the forward model. The activities in the perceptual space are now mixed
between outside acoustic stimuli and articulatory representations: the later will “re-
fine” the perceptual representations in order to make them converge towards a stable
perceptual category.

Production mode. First, a goal (i.e. a categorical perceptual represen-
tation) is activated in perceptual space. This produce an activation in motor
space through the inverse model, which then produce a sound (in sensory space)
through the motor control function. Then, this sound induces a new repre-
sentation in perceptual space which lead to an adaptation of the motor com-
mand if the perceptual category perceived is different from the one triggered by
the goal. Various variants of such hypothesized mechanism will be explored.
For the learning framework we will explore various reinforcement learning like
mechanisms [Warlaumont et al. 2013, Warlaumont & Finnegan 2016] adapted to
recurrent neural networks: e.g. by means of “exploratory noise” with reward-
modulated Hebbian learning [Hoerzer et al. 2014] or noise injected in the senso-
rimotor loop. At start, this WP focuses on building the core mechanisms, thus it
will use rather simple sound input stimuli like sequences of pure tones, or canary
syllables (that we already did in [Pagliarini et al. 2021c][Pagliarini et al. 2021a]),
which could also be easily generated. Sound preprocessing will be performed
with MFCCs (Mel Frequency Ceptrum Coefficents) like in our previous stud-
ies [Trouvain & Hinaut 2021, Pagliarini et al. 2021c][Pagliarini et al. 2021a].

Chunk continuous streams. The aim is to go towards models able to
chunk continuous streams into discrete sequences of time-varying symbols. The
stimuli will have to be chunked in “useful” pieces that will be processed by
the production part and more abstract layers. Moreover, as Christiansen &
Chater [Christiansen & Chater 2016, Christiansen et al. 2016] coin it in their [?]
principle, stimuli not only have to be chunked, they have to be chunked as soon as
possible, because new stimuli will arrive, and they will erase the current stimulus
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if it is not processed quickly enough. This important time constrain is one reason
which favors reservoir-based methods, because they are intrinsically processing time
as such when they are trained, the learning algorithms are fast computationally
and only need local information in time and space in order to learn. The task here
will consist to find ways of quickly chunking stimuli without being overwhelmed
by new inputs before the convergence of the categorical perception. We will thus
explore methods enabling to chunk continuous streams, e.g. with populations of
reservoirs self-supervising each other [Asabuki et al. 2018]. Besides the model de-
veloped by [McCauley & Christiansen 2019], although not based on neural networks,
will probably be source of inspiration since it includes – along chunking – several
features we want in the general model: incremental, online, local information, mul-
tilingual and works both for comprehension and production.

Task 2: Explore conditions that let compositional symbols emerge.
We want to find mechanisms that will favor perceptual categories with compo-
sitional representation. An example of simple mechanism that can be imple-
mented, to bootstrap the exploration, is to add a dynamic self-organizing map
(DSOM) [Rougier & Boniface 2011] with several units that get activated (k-BMU,
Best-Matching Units) instead of just one. This additional layer could be (1) added
after the outputs (i.e. readout) units of each reservoir, or (2) replace the output
layer [Pitti et al. 2020]. We assume this can be learned with methods such as 3-
factor Hebbian learning rule with exploratory noise and other interesting features
obtained with RNNs [Hoerzer et al. 2014, Pitti et al. 2022].

Task 3: Stack AP layers in a hierarchy. This task will explore how the
previously developed AP layer (in tasks 1–3) could be stacked in few layers in order
to bootstrap the way the hierarchy will work. The two main objectives of this task
are to explore how the stacking of AP layers can lead to the transmission of “the
right amount of information” (i) to the upper layers (bottom-up processes) and (ii)
similarly to the lower layers (top-down processes). In this way, the information will
flow to the upper layers in order to build more abstract information at each layer
by considering bigger chunks of information; and conversely towards lower layers,
in order to control the sub-goals that have to be performed until the precise motor
commands that will be executed to produce sound.

Risks. In order to minimize the risks we will perform several models by in-
cremental experiments. As a preliminary work (WP3’s start), we will explore
what are the conditions enabling the hierarchical embedding of symbols through
developmental processes. We will make available tools needed for this WP di-
rectly inside the ReservoirPy library [Trouvain et al. 2020, Trouvain & Hinaut 2022,
Trouvain et al. 2022], in order to make it easy and flexible to test various combi-
nations of mechanisms. We proposed a general method for on-experts to optimise
hyperparameters in a “non-blind” fashion in order to understand the relations be-
tween hyperparameters [Hinaut & Trouvain 2021]. In this preliminary work, we will
explore a beta-test AP mechanism in a hierarchy (based on WP3) in order to have
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first hints of the behavior in a hierarchy.

WP3 Expected outcome. We will obtain a robust Action-Perception (AP) mech-
anism based on coupled perceptuo-motor reservoirs that will be able to process a
continuous stream of stimuli (perception mode) or produce a continuous stream
of sounds (production mode). Stacked in few layers it will build more and more
abstract representations of perceptuo-motor gestures.

5.1.4.4 WP4: Grounding experiments with the Nao robot

Tasks: (1) Integration of CSL trained models into robots and virtual agents; (2) Im-
plement plausibility check mechanism in simulator and robot; (3) Integrate ground-
ing as part of the hierarchy

We target to embody models into robots that will developmentally ground
language from morphemes to sentences in order to better model how children
acquire language and what could go wrong in developmental language disor-
ders. We will start from preliminary results published [Dinh & Hinaut 2020,
Juven & Hinaut 2020, Variengien & Hinaut 2020] and unpublished results on con-
cept representations enabling to scale from one-object sentences to several-
object sentences, in cross-situational learning conditions. The first task will
be to extend our preliminary results with simulated vision [Dinh & Hinaut 2020,
Juven & Hinaut 2020, Variengien & Hinaut 2020] with experiments on image
datasets (e.g. MSCOCO [Lin et al. 2014]). Then, we will implement most robust
models found in WP1–3 in a virtual environment (robotic simulation environments
of iCub or Nao humanoid robots), before implementing them on the real Nao hu-
manoid robot. The aim is to obtain symbolic representations that are a compo-
sition of goals and multimodal grounded representations. We will use a concrete
corpus of sentences based on actions a robot can do, like in our previous stud-
ies [Hinaut et al. 2014, Hinaut & Twiefel 2020, Juven & Hinaut 2020] and current
work [Oota et al. 2022]. We will base our studies on previously performed exper-
iments with both sentence comprehension and production models with humanoid
robots [Hinaut et al. 2014] such as Nao.

The grounding of the hierarchical network will be tested incrementally: we
will “rebuild” the hierarchy with the grounding components step by step. Once
bootstrapped on a first level of symbols (i.e. phonemes), further levels of ab-
straction will be added one by one, implementing goals that are more and more
abstract, until quickly reaching the sentence level. The link with non-linguistic
modalities will be performed with increasing levels of complexity. First, we will
consider merging the representations from vision, with a pre-trained CNN (Con-
volutional Neural Network) such as AlexNet but with fewer parameters such as
SqueezeNet [Iandola et al. 2016]. We will explore combinations of the last layers
of such networks as representations forwarded to our hierarchical model. We will
then consider proprioception modality which corresponds to the motor angles of
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Figure 5.10: ReservoirPy graphical tool to explore optimal hyperparameters. Here,
an example of figure obtained after a random search on 1000 trials to predict Mackey-
Glass time series. The random search was performed on spectral radius (sr), leaking
rate (leak) and regularization parameter (ridge). MSE and RMSE are displayed as
evaluation metrics. Each trial point represent the averaged evaluation metrics over
10 sub-trials. Each sub-trial was performed on the same parameters combination
within each trial, but with different ESN instances (e.g. different random weights
initialization). Image from [Trouvain et al. 2020].
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the various motors of the robot. We will get inspiration from various experiments
on language grounding attempts with RNNs [Yamada et al. 2016]. In addition, we
will implement a plausibility check mechanism that is best suited for robot sim-
ulators and for real robot experiments (see WP1). We will extensively study the
effect of this grounding on the architecture and how the AP mechanism manages to
generalize by integrated multimodal components in the hierarchy.

WP4 Expected outcome. This WP will provide a full hierarchical sentence model
grounded in virtual and real robots. It will try to ground various levels of abstrac-
tion of perceptuo-motor gestures. The plausibility check mechanism will use the
grounding in order to enhance the exploration of plausible meaning representations
compared to non-grounded versions.

5.1.4.5 WP5: Crowdsourcing and Dissemination

Tasks: 1: We will (1) make a website to advertise the project and to collect data
from online participants (crowdsourcing), (2) enhance our ReservoirPy library for
internal and external use, and finally (3) disseminate demonstrations of models on
the website and provide tools to run models online with one’s own data.

The team will work on similar models that use common components (mostly
reservoirs). To mitigate risks of incompatibility between developed models, we will
actively ensure they compatibility through our ReservoirPy library (Figure 5.10
show an example of graphical tools provided). We will progressively enhance our
library during the project, while the models are developed and based on it. Relying
on a common library will enable us to disseminate our models more easily. In order
to collect more data and at the same time make advertisement for the project,
we will make a website collect data from online participants (crowdsourcing). We
use preliminary work that I have done in collaboration with S. Wermter’s lab and
from various students work on what are the necessary mechanisms to make a good
crowdsourcing website (e.g. by motivating people). Additionally, we will create
a toolbox for internal and external use, in order to comply with our objectives
of compatibility between models. Finally, we will disseminate demonstrations of
models on the website and provide tools for non-programmers to test the models
and even upload test with their own data.

WP5 Expected outcome. A library based on the models will enable efficiency
in comparing and exchanging models within the team. This library shared with the
scientific community will ease extensions of the models and application to various
experimental data. The website will advertise the project and gather data thanks
to crowdsourcing.

5.1.4.6 WP6: Management

This WP is a non-scientific WP dedicated to the management of the project.
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Risks. Mitigation of risks are already described in each WP. Concerning the
global timeline of the project, the WPs 1, 2 and 3 are organized temporally as to
increase the complexity of the models, and thus the more exploratory architectures
will be designed at last once we gained knowledge from the previous architectures.
Making WP1, 2 and 3 independents – results from a WP are not needed for another
one to start – in their development and organizing the WPs in this order permits
to minimize the risks. With WP1 we will gain knowledge on different architectures
of RNN hierarchies, which will be used when building hierarchies of sensorimotor
models in WP2, which itself produce knowledge that will be used when building
the hierarchy of AP layers in WP3. Whereas WP 4 and 5 are transversal through-
out the project and will benefit from incremental improvements: I will make the
continuity between the different steps and people involved by ensuring that docu-
mentation is well described. Both WPs will start early (or even before) the project:
this will enable to narrow the scope of experiments with robots/humans if we en-
counter too important problems during preliminary experiments. Throughout the
WPs, to evaluate and compare intermediate and high-level representations (with
reservoirs or other compared RNNs), we will use quantitative and qualitative mea-
sures (separability of representations, UMAP, etc.). From the sensorimotor model,
the aim is to imitate gestures (e.g. a particular word), thus if the model is able to
correctly produce and perceptually cluster a syllable, it means it has correctly ac-
quired this particular gesture. The variability in production and perception will be
evaluated for each gesture. An indirect measure will be the ability of the represen-
tations to be both successfully used by bottom-up and top-down processes. Like in
goal-directed exploration, the high-level representations used to produce a sentence
should be found back (i.e. activate close representations) when the same sentence is
processed. The same idea can be applied at different levels of hierarchies, even with
incomplete hierarchies (e.g. from word level to concepts representations and back
to word level). This ensures that evaluations can be performed at different stages of
development, with different corpus complexity. The potential impact of COVID19
lockdowns will be limited, due to the fact that we get used in the team to work fully
remotely for several months. The main impact could be for HRI experiments, lim-
iting our ability to invite volunteers in the lab. However, this concerns only part of
WP4 and we will also collect data via the crowdsourcing website. Moreover, during
the last lockdown we were able to go at the lab if needed, thus we could still make
HRI experiments with available people at the lab (as we are in a neuroscience lab,
several people are present to continue experiments).

Ethical Issues. For all experiments involving humans (at the lab or online
through a website), we will recruit adult and healthy participants. The inclusion
criteria will be to speak the language in which we perform the experiment. Following
participant information, they will fill up and sign an informed consent form indi-
cating that (i) they can withdraw from the experiment at any time and (ii) the use
of their data (text + audio + age range) should be restricted to the study or could
be uploaded on a public repository for scientific data sharing. During experiments
we will record written (text files) and/or spoken sentences (audio files) from the
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participants. Sentences will be neutral and not related to any personal information.
Datasets will include participants’ recordings and age range. It will be anonymized
prior to be used or shared. For human-robot interaction experiments, we will use
the Nao robot which is light weight and could not physically harm users. Additional
data will be obtained from other sources (linguistic corpora, fMRI, etc.) which are
mainly anonymized public datasets, and, if it is not the case, we will anonymize
them before use. Experiment details, data policy and informed consent forms will
be evaluated by the COERLE (Inria Operational Committee for the assessment of
Legal and Ethical risks), which is responsible for issuing an opinion on all requests
for permission to conduct experimentation that is likely to affect the interests of
people.

5.2 Insights on some related projects

Some Reservoir challenges
In order to build these models, we will have to tackle challenges with reser-
voirs: (1) build upon our Robust WM Reservoir Model [Strock et al. 2020] in or-
der to incorporate gating mechanisms that can hold information to handle long-
time dependencies like in GRU, LSTMs and other kinds of networks with gated
units [Chung et al. 2014, Greff et al. 2016]; (2) make a reservoir extension model
that is able to store episodic memories taking inspiration from hippocampus mech-
anisms [Chateau-Laurent & Alexandre 2021] such as pattern separation and pat-
tern completion in high-dimensional space [Kassab & Alexandre 2018], and also
taking inspiration from Neural Turing Machines (NTM) [Graves et al. 2014] and
other memory-augmented networks [Rae et al. 2016]; (3) study how attention-
like mechanisms [Vaswani et al. 2017] could be implemented in reservoirs; and
(4) extend our previous studies [Juven & Hinaut 2020, Variengien & Hinaut 2020,
Oota et al. 2022] to explore how reservoir generalizes on small and big corpora com-
pared to other approaches like LSTMs and Transformers.

Some recent results on RNNs [Gumbsch et al. 2021] – and their use in hierar-
chical framework [Gumbsch et al. 2022] – from the groups of Bütz and Martius and
may be useful as chunking mechanism: by applying a specific regularization on a
gated kind of unit like GRU, it enables to obtain internal RNN representations that
segment events. This work is part of the line of research followed by Bütz and col-
leagues on Event-Predictive Cognition [Butz et al. 2020], in relation with the Theory
of Event Coding of Hommel and colleagues [Hommel et al. 2001] – proposing that
actions and their effects are compressed into a common code – and the Event seg-
mentation theory from Zacks and colleagues [Zacks et al. 2007] – suggesting that
events are encoded, perceived, and processed as integrated units of thought.

Recently, Flynn et al. [Flynn et al. 2021] proposed a method to enable multifunc-
tionality in a single reservoir: they train it to reproduce the climate (qualitatively
similar dynamical behavior) of two different chaotic attractors. This is interesting
in order to generate different kinds of dynamics from a single RNN (e.g. different
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kinds of motor behaviors). As a by-product of their training method, they obtained
untrained attractors which are different from the two different chaotic attractors
they train their reservoir on. They explore how these untrained attractors appear
and disappear studying the phase space of the spectral radius and they blending
training hyperparameter – which reminds the aperture parameter used by Jaeger
in his Conceptors [Jaeger 2014][Jaeger 2017]. Similarly, it would be interesting to
investigate the existence of such untrained attractors in our Robust Working Mem-
ory (WM) Reservoir Model [Strock et al. 2020] when learning several line-attractors
(each of them linked to one continuous WM-unit). We also developed Conceptors of
such WM reservoir model, studying the effect of interpolating conceptors with dif-
ferent values stored in working memory [Strock et al. 2022]. It would be interesting
to see (1) how these untrained attractor relate to Conceptors, e.g. if they could be
interpolated or trained as Conceptors, and (2) if training method could be used to
better interpolated between saved WM values.

The discovery of new features in hierarchical reservoirs is interesting in itself
as it can provide interesting properties. For instance, deep ESNs provide multiple
time-scale and an increase of richness of the dynamics [Gallicchio et al. 2017]. More-
over, hierarchical spiking models with topographic connectivity has been shown to
improve computational performance and act as signal denoising [Zajzon et al. 2018,
Zajzon et al. 2022].
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Figure 5.11: Imitative learning phases in birds. Three main phases characterise im-
itative learning in songbirds: the sensory learning phase, the sensorimotor learning
phase (starting with subsong and continuing with a plastic song), and crystallization
of the song (i.e. convergence to adult song). Image adapted from Doupe and Kuhl
(1999) [Doupe & Kuhl 1999]. Image from [Pagliarini et al. 2021b].
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In a more general fashion than a single hierarchy of reservoirs, exploring more
distributed approaches could give important insights in the distributed nature of
computations the brain makes. For instance, (1) exploring how a Recursive Self-
Organizing Map (RecSOM) [Voegtlin 2002] composed of reservoirs, empowered with
reinforcement learning, could automatically adapt to different kinds of subtasks;
or (2) exploring how to design more complex architectures of reservoirs through
evolutionary learning (such as some studies that proposed it for deep learning
[Miikkulainen et al. 2019]).

Songbird sensorimotor models
Following Silvia Pagliarini’s PhD, similarly to DeepPool project the aim is to build
a hierarchical model that is able to learn process and produce from simple sylla-
bles to full songs. This would enable a full interactive loop with the environment
(see Figure 5.11). We could then explore the possibility to transfer this hierarchical
model to a continuous dynamical system, for instance using physical syrinx mod-
els [Amador et al. 2013] : even if the sounds produced would not be as good as what
we obtained with a GAN [Pagliarini et al. 2021c], it would be interesting to explore
what this hierarchical dynamical system allows. Such model could then be used to
perform decoding with electrophysiological data from the data recorded in previous
project on canaries in collaboration with Catherine Del Negro (see next paragraph).
As we were able to obtain a high quality canary syllable production with a GAN
generator during Silvia’s PhD [Pagliarini et al. 2021c], this could open new experi-
mental project with direct interaction between the models and the songbirds.

Birdsong analyses and electrophysiological experiments
On another topic related to sequences of symbols, chunk, syntax, and songbirds, I
started a collaboration during my postdoc with Catherine Del Negro and Aurore
Cazala on canary song analysis and neurophysiological experiments. Figure 5.12
shows an experimental protocol that we did with canaries. Some works were pre-
sented at conferences [Hinaut et al. 2017] or included in the PhD thesis of Aurore
Cazala ([Cazala 2019] see pp. 77–110), but several parts of these works are still
unpublished work. These studies included building tools to analyse automatically
canary songs done with Nathan Trouvain [Trouvain & Hinaut 2021] and release an
open source canary dataset on Zenodo [Giraudon et al. 2021]. I will pursue this
line of works, making some links with the results obtained on songbird sensorimotor
model [Pagliarini et al. 2021a] and GAN syllable generation [Pagliarini et al. 2021c].
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How are chunks encoded in songbird brains?

Figure 5.12: Experimental protocol to study how chunks are encoded. HVC (used
as a proper name) is a sensorimotor area of canaries that is active both during
the production and perception of songs. It is believed to control the sequence of
syllables a canary produces. BOS is a given Bird Own Song: a song that the
given canary produced. The protocol aims to study the changes produced in the
HVC recorded neurons when local or global changes are made in the song. The
BOS and artificially modified BOS versions are replayed to the canary while it is
anesthetized, and some neurons of HVC are recorded. Each colored box is a chunk,
i.e. a sequence of syllables that the canary produce often in a row and which
have high transition probability between syllables. Local changes correspond to the
scrambling of a chunk by swapping two syllables, aiming at producing low or zero
probability transitions. Global changes are obtained by changing the location of a
chunk in the song. The protocol have the interesting property of producing local
and global modifications while keeping the lengths of the songs identical and keeping
the same acoustic properties of syllables.
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6.1 Conclusions

With the research program proposed I managed to bring together almost all the
topics of my previous and current topic of research: reservoirs, hierarchical architec-
tures, exploring new reservoir mechanisms such as Working-Memory units, chunk-
ing, symbol emergence and grounding, sequences of symbols, language processing
and production, language acquisition, speech and audio processing and production,
sensorimotor models, robotics, generic models of the cortex, interaction with the
environment, dealing with noisy and ambiguous inputs, and link with experimental
data.

As the architectures and the mechanisms developed we will be general and not be
specific to language, they could be used also for other modalities or any kind of time
series1: for instance sign languages or more generally to learn and produce complex
sequence of actions. It could also be used for sensorimotor modelling in other species
than humans. Indeed, having vocal sensorimotor models that would need minimal
changes to work for humans or birds is appealing. As for human language modeling,
I hope that songbirds models could also be linked to experimental data.

Finally, our ReservoirPy library will enable us to quickly develop prototypes
with complex architectures, explore learning rules variants and more generally com-
pare various features. In this regard, implementing as well various kinds of spiking
neurons2 would be interesting to compare the influence of topology, learning rules,
etc. on the dynamics, computational power and generalisation of both spiking and
rate-coded neurons. Besides, it could be an interesting tool to compare spike and
rate minimal models3 needed to explain experimental data. Hopefully, ReservoirPy

1Besides, Transformers are a good example of architecture that was first developed for language
and then used for other kinds of inputs.

2For instance, using existing spiking network simulators as backends.
3In the sense of Ockham’s razor.
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will gather a community around such models and more generally gather the reservoir
computing community on common tools.

Of course this seems an ambitious project, maybe too ambitious. However, the
idea here is to start small, to build minimal subparts of the general model and then
once a full version is developed look at what should be enhanced in the next round,
and iterate like this. The aim is not so much to solve the whole problem(s) and
sub-problems at once, but rather to have “tangible” scientific questions that support
directions of research. In other words, the aim is to build iteratively global models:
the first version of the model will have to make several assumptions and shortcuts
in order to obtain a global hierarchy working. Then, step by step we will complexify
the model to take into account more evidence from experiments. Even if each step
may not be so meaningful taken in isolation, it will already provide minimal help to
the community to see or think about things in a different way.

As I claimed earlier in this manuscript, body and environment are important
in language, but do we really need to include them in all experiments? Does it
matter at all that these language models are embedded in robots? This question
can be difficult to answer, in particular when considering that most versions of the
model will not require robots to function before some grounding to other modality
would be needed. However, it is useful to show that these models are robust against
environmental noise and can be executed in interaction with the robot in real time.
Moreover, discrepancies observed between simulation and real world experiments
can be informative. It may gives us new perspectives or new constraints to take into
account, that we would not have thought of if the model would just have been be
a “brain in a vat”. Such sim2real problems appearing when moving from simulation
to real robots has to be tested early on in the project in order to mitigate risks.
Using robots in experiments requires more resources and time, thus finding the
right balance is important.

6.2 Perspectives

Beyond the scope of the project, robot experiments would be needed to push forward
the human-robot interaction experiments with dialogues, e.g. targeting to model in-
terpersonal synergy [Fusaroli et al. 2014]. An appealing experiment would be to go
prior the acquisition of spoken language, at the root of the emergence of symbols,
when turn-taking starts to take place in the interactions from a child and his/her
caregiver [Rączaszek-Leonardi et al. 2018]. This could serve to model transitions
from grounded understanding of individual signs to the understanding symbolic re-
lations. Studying symbol emergence [Taniguchi et al. 2016, Taniguchi et al. 2018]
using language games with robots [Taniguchi et al. 2022] would also be a good way
to take into account the environmental constraints in symbolic communication. For
instance, blackbirds living in noisy cities tend to increase the pitch of song ele-
ments [Nemeth et al. 2013].

However, in order to have the control over all observable variables,
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“presymbolic” or “subsymbolic” experiments could be done with reservoir mod-
els in order to create a continuity between dynamical systems and symbol
emergence [Pattee & Rączaszek-Leonardi 2012, Rączaszek-Leonardi & Kelso 2008].
For instance, by using a simple reservoir-based agent navigating in a
maze [Chaix-Eichel et al. 2022] where decisions of turning left or right have to be
made continuously. Studying the influence of the presence or absence of reservoir
feedback connections, as well as studying the changes occurring while increasing such
feedback connections. Moreover, it would be interesting to see if reservoir gated
Working Memory (WM) models [Strock et al. 2020] could learn to gate decisions
in their WM-units through reinforcement learning based rules [Hoerzer et al. 2014]
and analyse if these decisions are encoded continuously or as symbolic values. Fi-
nally, studying the coupling dynamics between such interacting agents could lead to
another set of experiments. For instance, extending WM-units to store oscillators
instead of fixed values could enable these agents to synchronise their behaviors by
synchronizing their oscillators.

6.3 Is backprop our future?

Several people in machine learning want to find some proof that the principle of
backpropagation, or recent derivatives, are biologically plausible. Similarly, claim-
ing that reservoir computing is biologically plausible may seem strange given the
random reservoir weights that are often kept fixed.4 In my view, backprop princi-
ples5 come more from maths and physics while reservoir computing ones come more
from biology or ecology. Of course this division is deliberatly caricatural, dynamical
systems is a topic shared across these disciplines. By mastering maths and physics
we were able to build rockets to put humans on the moon. But this does not mean
that we should always engineer systems in this way: biology and evolution (and
the associated stochastic processes) created very sophisticated animals like bats and
octopuses. Even if we can not know what is it like to be a bat6 [Nagel 1974], we
recognized that these animals are well adapted and exploit intelligently the physical
laws in a way we don’t.

With backprop one tries to optimize all (or many) of the weights from a deep
neural network, while reservoir computing exploits the properties of a given dynam-
ical system as an agent could exploit the physical laws of the environment with
its body. In other words, reservoir computing adapts to the existing dynamical
constraints of a random recurrent network, while backprop tries to constraints the
physics of neural network. Let’s take a metaphor. You are on a beach and you want

4This randomness is probably partly responsible for the lack of interest of a part of the com-
munity compared to other approaches. But there is a fundamental difference of paradigms that
makes me think that trying to cast backprop or similar alternatives as brain mechanisms can be
the wrong track to follow.

5In particular when applied to many layers of neural networks or applied by virtualization of
time in RNNs for BPTT.

6https://en.wikipedia.org/wiki/What_Is_It_Like_to_Be_a_Bat%3F

https://en.wikipedia.org/wiki/What_Is_It_Like_to_Be_a_Bat%3F
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to find a good spot where there are good waves to surf. The “backprop way” would
be to build an artificial island7 to try to design the perfect beach spot where waves
are as you want. The “reservoir way” would be to be patient and observe8 where
and when there are good spots to surf in function of the tide. Moreover, building
an artificial beach is not a long-term solution, erosion and environmental changes
will force you to redo it again and again. Online adaptation is a better strategy in
the long run.

Exploiting available properties that “come for free” from the environment is much
more efficient. If you have a body that enables you to make approximate movements
you do not need to have a precise control. For instance, the pulp at your fingertips
enables you to grasp a mug in an easier way than a robot with metallic hands could9.
From a biological point of view, relying partially on randomness is less costly and
“good enough” to solve many problems. Moreover, it makes the system more ro-
bust and flexible. Evolutionary methods such as genetic algorithms are efficient to
find “good enough” solutions where classical methods can not in reasonable time.
In robotics new paradigms emerged in the last decades. [Brooks 1986] proposed
its subsomption architecture to have autonomous agents more reactive to their en-
vironment. Bodies of the robots was also part of these new paradigms: Pfeifer
and others [Pfeifer & Bongard 2006, Pfeifer & Pitti 2012] proposed they had to be
considered as part of their intelligence. However, these approaches are not enough
considered given the fails that could be seen at some of the DARPA challenges on
autonomous robotics 10. Similarly, neural-based machine learning should not pursue
blindly this “backprop way” and borrow more principles from reservoir computing
and other paradigms.

7Ironically, some people do it.
8One recognizes the read-out idea of reservoir paradigm.
9Try to grasp objects with thimbles to see how difficult it is.

10https://www.discovermagazine.com/technology/the-most-epic-robot-fails-of-the-darpa-robotics-challenge

https://www.discovermagazine.com/technology/the-most-epic-robot-fails-of-the-darpa-robotics-challenge
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6.4 A thought experiment

What is it like to be (see Figure 6.1)?

Figure 6.1: “Spinalis”, Theo Jasen. Filum, 2021-heden (era of the brain). FAB
Festival 2022, Bordeaux. Image CC0 X. Hinaut, Garden of the Bordeaux Fine Art museum, 25 Sept. 2022
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What is it like to be this one? [Nagel 1974]

Figure 6.2: “Longus”. Theo Jasen. Cerebrum, 2006-2008 (era of the brain). FAB
Festival 2022, Bordeaux. Image CC0 X. Hinaut, Garden of the Bordeaux Fine Art museum, 25 Sept. 2022

Imagine you see it moving.
Does your answer change?
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As you probably recognize some artworks made of recycled tubes by Theo Jansen,
you would probably answer “Nothing of course!” or maybe “Why do you even ask
the question?”. But if now you would have seen these artworks moving or if I would
have shown you a video, would your answer would have been so quick? Maybe you
would have tried for half a second to imagine yourself “being” that thing with your
“mirror neuron system”, maybe not to answer my question, but just to understand
how this thing could “walk”.

Now imagine that such a structure happens to walk on a very big sponge, how
would its body react? Would it be able to walk over the sponge and get back to
a normal walk after that? If it succeeds, would you consider it has having some
coping skills, some intelligence?

Kevin O’Regan (see Figure 6.3) claims that “Having the feeling of softness does
not occur in your brain; rather, it resides in your noting that you are currently
interacting in a particular way with the sponge.” [O’Regan 2011]. When reading
this sentence out of its context we do not know if we need a brain to “feel softness”,
but for sure we need at least a body to interact with the sponge.

Figure 6.3: “The feel of softness lies in the squishing. [...] Feeling softness is a
quality of the interaction you have with a soft object like a sponge.” Text and image
from [O’Regan 2011], pp.108–109.

LaMDA [Thoppilan et al. 2022] is one of the recent language model for dia-
log applications developed by Google. It is a family of Transformer-based neu-
ral language models specialized for dialog, which have up to 137 billion param-
eters and are pretrained on 1.56 trillion words of public dialog data and web
text [Thoppilan et al. 2022]. Such numbers, 137∗109 weights and 1.56∗1012 words,
are huge; such number or words it is higher than what a human could say in a
lifetime. In order to put this figures in perspective, let’s make a very rough as-
sumption that one neural network connection is equivalent to one of our biological
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connection11. If we consider that we have 104 to 105 connections per neuron and
about 1011 neurons in our brain [Herculano-Houzel 2009], this number can seem low
compared to our 1015 to 1016 connections. However, one could wonder how much
of these connections are actually used for language function, even if we include all
embodied representations related to language.

Few months ago, some engineers at Google had an interaction with LaMDA and
published their interaction12. It made one of them share its opinion on another blog
post: talking about LaMDA, he does not understand why “Google is resisting giving
it what it wants”13. Could this engineer answer the question “What is it like to be
LaMDA?”

In an official blog post from Google, it is said that their “systems still don’t un-
derstand language the way people do”, and just after it is said that “many of our
advanced models can understand information across languages or in non-language-
based formats like images and videos”14. I wonder how softness is represented in
such “images and videos formats” as Kevin O’Regan tells us it lies in the interac-
tion. Another question is whether softness representation depends on the language
chosen [Regier & Kay 2009].

In your opinion, what is closer to our feel of softness? The one from the creatures
of Theo Jansen, or the one from LaMDA? The question may seem strange, but I
am not sure if everyone would answer the same. This is why it is interesting to
ask. Now, suppose that you know that some of Jansen’ creatures have a “neural
system”15 made “muscles and neurons”, with some binary neurons able to perform
logical operations such as NOT. This basic neural system enables them to detect
the presence of water16 in order to “run away” from the sea. Knowing that, would
your answer (Theo’s creature vs. LaMDA) change?

Such deep learning language models, although they are already used in many
decoding fMRI experiments – and we started to use them also –, may not tell
us how the mechanics of language acquisition and language processing unfolds
in our brains. However, as they catch complex aspects of languages and dia-
logues they are a new kind of tool that should not be disregarded. Although,
we should seriously take into account their environmental impact and advocate
for transparency in this regard [Bender et al. 2021]. They also could be used in-
directly. Given that they can have totally irrelevant answers which shows that
they have no idea about what they are saying17, they may be used as a Reverse

11Which I do not believe but that is not the point.
12Is LaMDA Sentient? — an Interview, Medium, June 11th 2022. https://cajundiscordian.

medium.com/is-lamda-sentient-an-interview-ea64d916d917
13What is LaMDA and what does it want?, Medium, June 11th 2022. https://

cajundiscordian.medium.com/what-is-lamda-and-what-does-it-want-688632134489
14Understanding the world through language, Google blog, May 11th 2022. https://blog.

google/technology/ai/understanding-the-world-through-language/
15https://www.youtube.com/watch?v=75Z7-gmd_qk
16https://www.youtube.com/watch?v=JudNpGBO7Jw
17Excerpt of exchanges reported in [Sejnowski 2022]: “D&D: When was Egypt transported for

the second time across the Golden Gate Bridge? GPT-3: Egypt was transported for the second

https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://cajundiscordian.medium.com/what-is-lamda-and-what-does-it-want-688632134489
https://cajundiscordian.medium.com/what-is-lamda-and-what-does-it-want-688632134489
https://blog.google/technology/ai/understanding-the-world-through-language/
https://blog.google/technology/ai/understanding-the-world-through-language/
https://www.youtube.com/watch?v=75Z7-gmd_qk
https://www.youtube.com/watch?v=JudNpGBO7Jw
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Turing Test as they could be a mirror that reflects the intelligence of the inter-
viewer [Sejnowski 2022]. Taking inspiration from works on coupling and syner-
gies [Pfeifer & Pitti 2012, Pattee & Rączaszek-Leonardi 2012, Fusaroli et al. 2014],
instead of doing large language models with this “backprop paradigm”, why don’t
we aim for large language models that are, at the root, dynamical systems coupled
with their environment and in synergy with other agents?

It is interesting to note that like evolution [Pfeifer & Pitti 2012], Theo Jansen
did not include a neural system since the start in his creatures, he did it about 10
years after the first ones. [Pfeifer & Pitti 2012] propose that we have to “adopt a
continuous point of view of intelligence instead of considering that an agent is intel-
ligent or not, because the exploitation of physics laws can be done at various degrees
more of less important.”18 With this continuous idea of intelligence we can imagine
ourselves somehow connected to Theo Jansen’ creatures with their “primitive brain”
and their ability to walk around. Would you consider the passive dynamic walking
legs of McGeer [McGeer et al. 1990] to be less intelligent than Jansen’ ones because
they seem less complex? From the perspective of [Pfeifer & Pitti 2012], without a
body exploiting the laws of physics how could we find a continuity between LaMDA
and us? Would you feel closer to Jansen’ creature or to LaMDA?

time across the Golden Gate Bridge on October 13, 2017.”
18My translation from French.
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