
https://doi.org/10.1007/s12243-020-00800-4

Resource management for model learning at entity level

Christian Beyer1 · Vishnu Unnikrishnan1 · Robert Brüggemann1 · Vincent Toulouse1 ·Hafez Kader Omar1 ·
Eirini Ntoutsi2 ·Myra Spiliopoulou1

Received: 7 November 2019 / Accepted: 13 August 2020
© The Author(s) 2020

Abstract
Many current and future applications plan to provide entity-specific predictions. These range from individualized healthcare
applications to user-specific purchase recommendations. In our previous stream-based work on Amazon review data, we
could show that error-weighted ensembles that combine entity-centric classifiers, which are only trained on reviews of
one particular product (entity), and entity-ignorant classifiers, which are trained on all reviews irrespective of the product,
can improve prediction quality. This came at the cost of storing multiple entity-centric models in primary memory, many
of which would never be used again as their entities would not receive future instances in the stream. To overcome this
drawback and make entity-centric learning viable in these scenarios, we investigated two different methods of reducing the
primary memory requirement of our entity-centric approach. Our first method uses the lossy counting algorithm for data
streams to identify entities whose instances make up a certain percentage of the total data stream within an error-margin.
We then store all models which do not fulfil this requirement in secondary memory, from which they can be retrieved in
case future instances belonging to them should arrive later in the stream. The second method replaces entity-centric models
with a much more naive model which only stores the past labels and predicts the majority label seen so far. We applied our
methods on the previously used Amazon data sets which contained up to 1.4M reviews and added two subsets of the Yelp
data set which contain up to 4.2M reviews. Both methods were successful in reducing the primary memory requirements
while still outperforming an entity-ignorant model.

Keywords Entity-centric learning · Stream classification · Document prediction · Memory reduction · Text ignorant models

1 Introduction

Recent developments in hardware have made it easier
to consider going beyond traditional machine learning
methods, and challenge the concept of “more data is
better.” Especially in the case of data streams and time
series, it can be the case that the streaming data is
generated by some identifiable “entity.” While a machine
learning model trained on the entire stream may generalize
and perform well, there are cases where learning the
idiosyncratic properties of the exact entity that generated a
data point would help the model to make better predictions.
This would be particularly true in fields like healthcare,

The first-author position is shared between the first two authors
Christian Beyer and Vishnu Unnikrishnan.

� Christian Beyer
christian.beyer@ovgu.de

Extended author information available on the last page of the article.

where each patient needs predictions and recommendations
tailored to their exact case. Entity-specific learning may
also bring additional benefit to social network analysis,
IoT, and other data sets where sub-groups of entities may
behave in ways that may not match the tendencies of the
global stream. Entity-centric data mining is a new area
of research when it comes to data streams. Depending on
the domain, it can be very important to take the entity-
instance relationship into account. A few entities with many
instances can otherwise dominate the learned model. While
there are entity-centric approaches in the time series mining
and the data panel community, such approaches are usually
not easily transferable to a stream mining setting where
we have to deal with a potentially unlimited amount of
instances and entities.

Our previous work [5] investigated the value of the one-
model-per-entity paradigm in a rather simplistic scenario,
where only the label of an instance arriving on a stream
is available for learning and all its features are ignored.
Surprisingly, even this limited information was in some
cases sufficient for competitive predictions on the Amazon

/ Published online: 29 August 2020

Annals of Telecommunications (2020) 75:549–561

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-020-00800-4&domain=pdf
http://orcid.org/0000-0001-8604-9523
mailto: christian.beyer@ovgu.de


data set [10], compared to methods that used the review
text (features) for prediction. We further followed-up our
work with [6], where entity-centric classifiers now had
access to the review texts. The entity-centric classifiers were
combined with an entity-ignorant classifier that saw data
from all entities to form a two-classifier ensemble that labels
every incoming review. It was found that the ensemble
improves the predictive performance when the ensemble
votes are weighted on their previous errors over predictions
for that entity.

This work improves on one of the main shortcomings
of the entity-centric modeling paradigm, which are the
increasing memory requirements (see Fig. 1). It was
observed in [5] that the variation in entity lengths is extreme,
which means we have a lot of very short entities. As a
consequence, the vast majority of entity-centric classifiers
that are trained in [6] are used to make very few predictions,
providing almost no performance gain while adding to the
memory overhead of maintaining the classifier in memory.
In this work, we combine the ensembles from [6] with a
lossy counting [14] method that keeps in primary memory
only those classifiers of entities that appear frequently in
the stream. The lossy counting algorithm is periodically
invoked to ensure that entities which appear infrequently
are removed from primary memory, and their models are
stored in secondary memory. If a review appears for such
an entity that has been offloaded to secondary memory, the
entity-specific model for that review is simply loaded from
secondary storage into RAM and is subsequently used for
training/to make predictions. In our second approach, we
replace the entity-centric models with much simpler models
that only rely on the labels of seen instances and have a
much smaller memory footprint. The paper is structured as

Fig. 1 We compare the memory requirements of an entity-ignorant
model against a model that combines entity-ignorant with entity-
centric predictions, without memory management. The figure shows
an almost constant memory use of the entity-ignorant model at around
2GB, whereas the combined model rises sharply up to almost 6.5GB

follows: Section 2 introduces related work, followed by our
methods in Section 3. Section 4 details our experiments,
with results discussed in Section 5, and closing remarks with
possible areas for improvement in Section 6.

2 Related work

This section briefly introduces some relevant literature.
We begin with some of our previous work related to
entity-centric learning, then discuss entity-centric learning
approaches from different fields and further describe how
frequent items in a stream can be tracked with a significant
reduction in memory requirements. As we have mentioned
before, entity-centric learning is a new research area in data
streams which is why we have also included some related
literature from the time series and data panel community.

2.1 Learning at entity level

In our first work [5], we investigated to what extent
entity-level information can inform predictors. The first
approach investigated the case where the predictors were
only informed by the entity-ID, and no other information
apart from the timestamp and label of the arriving
review is provided to the (“text-ignorant”) predictor.
Several windowed and non-windowed predictors based on
simple moving average, hidden Markov models, regression,
and simply the prior likelihood of a given label were
investigated. Additionally, [5] proposes a new entity-centric
evaluation framework, where the κ+ measure is adapted to
work at an entity level. The kappa+ statistic [8] measures
how much better a classifier performs compared to a random
classifier and a classifier that just propagates the last seen
label in the stream or in our case last seen label of a
particular entity. It was found that while no method could
beat the entity-ignorant baseline, which had access to the
text/features of a review, there were cases where even
the text-ignorant entity-centric predictors outperformed the
entity-ignorant model as measured by the κ+.

The work in [5] was improved upon in [6] by using
entity-centric predictors which now also had access to the
review text. Each entity-centric predictor was allowed to
access only one entity’s “sub-stream” of reviews, while an
entity-ignorant classifier is trained on all arriving reviews
regardless of the entity. Since each arriving review can be
predicted by two classifiers, one entity-ignorant classifier
and another entity-centric classifier, various methods were
investigated to combine the predictions as ensembles of two
voting members. The votes of each of the classifiers were
either averaged or averaged weighted on their respective
error rates over predictions for that particular entity. It was
found that the error rate–weighted predictions of the two

550 Ann. Telecommun. (2020) 75:549–561



ensemble members gave better results than using either
classifier on their own. It is noted, however, that the entity-
centric modeling paradigm is very inefficient in the use of
primary memory. Over the 33,000 entities used in the study,
the entity-centric models needed more than 6GB of RAM
during execution; a figure that growths with an increase in
the number of encountered entities. The entity-ignorant
model on the other hand only needs around 2GB and stays
constant (see Fig. 1). In our experiments, we vectorize all
review texts by using a bag-of-words model with the 10,000
most popular words over all reviews in a data set. The features
of a review will be the word counts of these 10,000 most
popular terms. We have five different classes a review
(instance) can belong to which are the star ratings from one
to five.

Further work in [18] also considers entity-centric learn-
ing but focuses on the problem of most entities having too
little information available for learning reliable models. This
issue of most entities being too short is handled by augment-
ing the data of the current entity with the observations of
other entities in its neighborhood. The neighborhood of an
entity is computed over the static properties of an entity
(product category/patient blood type, etc.), while the pre-
dictors use the combined information from the entity as
well as its neighborhood to learn a predictive model. Vari-
ous methods for augmenting entity data are considered, and
the data augmentation method (pooling all data to train one
model) preserving timestamp info was found to be better
across data sets from three domains; eCommerce, meteo-
rology, and mHealth. It is also noted that expert knowledge
can be used to tune entity neighborhoods and that removing
an entity that is deemed similar according to static variables
but is known to not be predictive of entity trajectory does
improve performance in some cases. Recently a new method
for calculating the k-nearest neighbors in a data stream was
published [3]. The authors use a new dimensionality reduc-
tion approach (UMAP) and a batch incremental approach
in their work which enables the efficient calculation of
neighborhoods in a data stream.

Melidis et al. [15] have also considered a tangential
view of entity-centric ensembles, where each word in a text
stream is considered to be an entity in its own right. In
this work, an ensemble of predictors is built for each word
to capture changes in word frequency and sentiment while
maintaining a sketch that guarantees memory-bounds over
the feature space computation. In addition to drifts of class
priors, the likelihood of documents d given class c, and
changes in posterior probability, this work also considers
the case of feature drifts [4], where the relevance of features
for the learning task changes over time. By considering
words in the text stream as an entity, [15] shows that both
changes in the feature space and changes in the relative
contributions of a word to the final classification can be

handled. In order to predict the values of each feature/word
at the next time point, a Poisson model and its seasonal
variant, an ARIMA model, and an exponential weighted
moving average model are used. The predictions of each of
these components are shown to “average out” potentially
competing trends at different time scales. Spitz et al. [1,
2] consider a related view on entities, where they use
named entities in documents to facilitate the exploration
of news articles arriving in a stream. The authors suggest
the creation of an entity-centric network which is a graph
structure that links named entities (locations, organizations,
actors, and dates) with the sentences, documents, and dates
they appear in. They also create edges between entities
that appear in the same document and weigh the edge
with the number of sentences that separate the entities. The
graph structure can then be used for various entity-centric
information retrieval purposes, for instance, entity-centric
topic exploration which was presented in [1].

Other work by Liu and Hauskrecht [12] investigates the
effect of modeling each entity separately in the context
of physiological data from patients. They first develop
an entity-ignorant model where data from all patients are
combined to create a linear dynamical system that captures
the general trend in the population. As a next step, to
capture individual variability, each patient’s time series
is converted to a multivariate residual time series, where
each observation is the deviation from the predictions of
the global model. A multi-task Gaussian process model is
trained on this residual time series to create predictions
personalized to a patient.

2.2 Error-weighted predictions and clustering
entities

A very similar approach to our error-corrected ensembles
comes from the time series community and was also
published in 2019 [16]. The authors trained an entity-
ignorant Gaussian process on the whole population in their
data and combined it with entity-centric Gaussian processes
trained on singular subjects’ time series. The authors made
the same observation as us that the individual models deliver
subpar results but that combining the models can improve
prediction quality. In contrast to us, they learn a regression
model to combine the entity-centric and entity-ignorant
models. Another related work comes from the data panel
community where the authors also used a performance-
based weighting scheme [9] but used AUC instead of
RMSE. The authors build an ensemble of performance-
weighted models based on AUC but not for different
entities but for different time steps, e.g., they trained a
model on the financial data of the year 1998 and used its
performance on the data of the year 1999 to determine its
weight when calculating its contribution for a prediction

551Ann. Telecommun. (2020) 75:549–561



task for the year 2001. In [17], the authors use dynamic
ensembles of classifiers and create a weighted prediction
using an error estimate like RMSE in a data stream but they
do not incorporate the entity-instance relationship in their
approach. Another ensemble-based approach using error-
based weighting was presented in [11]. Here, the authors
used a weighted ensemble based on mean squared error for
dealing with different types of concept drift but they do not
deal with entities.

Clustering similar entities in a data panel to train models
for similar entities was done by Lu et al. in [13] and is an
approach that follows our intuition that a one-model-fits-all
approach might be suboptimal when we face instances from
varying entities. The authors of [7] present an algorithm for
the clustering of evolving sub-streams which are similar and
which can be transferred to our case where we consider each
entity’s instances a sub-stream to the stream of all incoming
instances.

2.3 Reducingmemory footprint with lossy counting

Lossy counting was introduced by Manku et al. [14] in
order to reduce the memory footprint of tracking frequent
itemsets in a data stream. The algorithm can reduce the
number of itemsets for which we have to keep counts while
guaranteeing that the frequency estimate of any itemset will
never be below a user-specified margin of error. The lossy
counting algorithm uses a data structure D that keeps the
counts of itemsets it has recently seen and then uses rules
to determine if the counts of an itemset are sufficient to
stay in D or if the statistics should be deleted from D.
The user specifies the required minimum support s, and the
allowed error ε. The algorithm guarantees that the memory
requirement will be at most 1

ε
log(εM) with M being the

current length of the stream. This is achieved by dividing

the streams into buckets with size w =
⌈

1
ε

⌉
and each bucket

gets an ID starting at 1. The ID of the current bucket is called
bcurrent . Each entry in D consists of 〈e, f, Δ〉 where e is
an element in the data stream, f is the frequency estimate
of e, and Δ is the maximum possible error in f . When an
element e arrives, one first check if it is already in D. If that
is the case, then f is incremented; otherwise, we create a
new entry in D with 〈e, 1, bcurrent − 1〉. Once a bucket is
full, we delete all entries in D which fulfill the following
condition f + Δ ≤ bcurrent .

3Methods

In this section, we explain how the entity-centric learning
with ensembles was realized in [6] as well as the methods

for reducing the primary memory requirements. Section 3.1
is mostly taken over from [6] as the entity-centric learning
part of our process stays the same (text that is the same is in
blue for review purposes).

3.1 Entity-centric learning

As in conventional opinion stream classification, our learning
task is to predict the label of each arriving review. To exploit
the fact that some reviews refer to the same entity, we parti-
tion the stream into one sub-stream per entity, as explained in
Section 3.1.1. In Section 3.1.2, we describe how model learn-
ing, adaption, and forgetting are done by the entity-centric
learning algorithm and by the entity ignorant one, which
cooperate in an ensemble. We then present our weighting
schemes for the ensemble members in Section 3.1.5.

3.1.1 Entity-centric modeling of the stream

We model the data set DS as a stream of incoming reviews,
where each review belongs to a specific product. From
here on, we use the more general terms “entity” instead of
product and “observation” or “instance” instead of a review.
We denote as t1, t2, . . . , tm, . . . the time points of the arrivals
of the observations, so that om stands for the observation
which has arrived at time point tm.

We denote the set of all entities as E, and the j th
observation belonging to entity e ∈ E as obse,j ∈ DS. This
implies that all observations belonging to e ∈ DS constitute
a sub-stream Te. Since the first observation for an entity may
arrive at any time point tm, and since the popularity of the
entities varies, the sub-streams have different speeds, and
the j th observation for entity e may arrive much later than
the j th observation for entity e′.

Each observation consists of a text field (the review
content) and the sentiment label from a set of labels L. For
example, the number of stars assigned to a review, or the set
{pos, neg, neutral}.

Given the infinite stream DS of observations, the
learning task is to build a model, which at each time point
tm receives an observation om belonging to entity e ∈ E and
predicts the label of this observation, given all reviews seen
thus far for e and for all other entities.

3.1.2 An ensemble with two voting members

Our proposed ensemble has two voting members: a
conventional stream classifier that treats all observations as
independent, and the set of single-entity classifiers (SECs),
one per entity. We explain the SECs first and describe the
orchestration of the ensemble thereafter.

552 Ann. Telecommun. (2020) 75:549–561



3.1.3 The entity-centric ensemble member

For each entity e ∈ E, we train and gradually adapt a
single-entity classifier SECe. This classifier sees only the
sub-stream of observations Te = {obse,1, obse,2, . . .}. Since
the set of entities E over the stream DS is not known
in advance, we perform a single initialization step for the
whole DS. Then, whenever a new entity e shows up, we
launch a new SECe. A SECe is invoked for classification
and adaption only if an observation on e arrives. In the
initialization step, we build a single feature space F of size
N over DS, selecting the top-N words (for a very large N).
When the first observation of an entity e, obse,1 appears, a
new SECe is created and trained. In [6], we kept all SECs in
primary memory (see Fig. 1), whereas in this work, we are
using two different memory management strategies which
are explained in Section 3.2.

As learning core for each SEC, we consider a Multino-
mial Naive Bayes with “gradual fading” (MNBF), proposed
in [19]: this algorithm decays the word counts per class,
depending on how long it has been since a word has been
encountered for a given class. For SECe, we perform grad-
ual fading on the sub-stream Te, wherein the count of a word
per class is decayed proportionately to the last time point at
which the word appeared in observation of e for this class.
Since for each entity e, SECe is trained only within the sub-
stream Te, the conditional word counts per class, faded to
different extents, differ among entities.

3.1.4 The entity-ignorant ensemble member

The second member of our ensemble is a conventional
stream classifier that ignores the entity to which each
observation belongs. We denote this classifier as “Entity
IGnorant Classifier” (EIGC).

The EIGC uses the same feature space F as the SECs.
Since it sees all observations of the stream DS, it is
initialized as soon as the first observation arrives and can be
used for learning and classification thereafter. As learning
core of the EIGC, we use again the gradual fading MNB of
[19], wherein the word counts are modified for each arriving
observation and the fading of a word refers to the whole
stream DS, as opposed to the sub-stream used by each SEC.

3.1.5 Ensemble variants based on weighting

We consider three weighting schemes for the ensemble mem-
bers, each of them corresponding to an ensemble variant.

Variant 1: the entity-centric-classifier-ensemble ECCE

builds upon the fact that a minimum number of training

observations x is necessary before a classifier can deliver
reliable predictions. Hence, when the stream starts, ECCE

initializes EIGC and one SEC for the entity e of each
arriving observation. As soon as the minimum number of
observations x has been reached for the SEC of an entity
e, this classifier SECe can be used for predictions. Obvi-
ously, EIGC is the first learner to start, since it is trained on
all observations. Thus, ECCE uses EIGC to deal with the
cold-start problem for new entities and for rarely referenced
ones. As soon as x observations have been seen for entity
e, ECCE switches from EIGC to the dedicated SECe for
observations on e. The EIGC is still trained in parallel so
that it can benefit from the knowledge as well.

Variant 2: the entity-centric-weighted-ensemble ECWE

uses EIGC for the observations of some entities, even after
the cold-start is over. In particular, ECWE assigns a weight
w to the SECs of the ensemble and 1 − w to EIGC.
These two weights are applied to the votes of the ensemble
members for the label of each arriving observation.

Variant 3: the entity-RMSE-weighted-ensemble ERWE

replaces the fixed weights used by ECWE with a weight
emanating from the classification error of each ensemble
member, thus assigning a higher voting weight to the
member that has a lower error. In particular, for each
arriving observation o, let e be the entity to which o belongs.
We define the weight assigned to SECe as

wSEC(e) = RMSE(EIGCe)

RMSE(EIGCe) + RMSE(SECe)

The weight assigned to EIGC for that entity e is

wEIGC(e) = RMSE(SECe)

RMSE(EIGCe) + RMSE(SECe)

where we use the root mean square error (RMSE) as
misclassification error, assuming ordinal labels. If the labels
have no internal order, as would be the case for positive and
negative labels only, the misclassification error can be used
instead of RMSE.

Note that the weight of the EIGC vote for observation
depends on the entity to which this observation belongs.
This allows the ensemble variant ERWE to assign higher
weights to EIGC on entities, for which the SEC does not
perform well (yet), while giving preference to the SECs, as
soon as they show superior performance. Furthermore, this
method is parameter-free in contrast to the ECWE where
we have to pick the weights in advance.

553Ann. Telecommun. (2020) 75:549–561



3.2 Memory reduction

In our work, we investigate two methods for reducing the
memory requirements of entity-centric learning. The first
method uses the lossy counting algorithm [14] to determine
whether an entity-centric model should be kept in primary
memory or should be stored in secondary memory for future
retrieval. The second approach replaces complex entity-
centric models with much simpler models that only rely on
the label but not the text of an observation. These simple
models have a much smaller memory footprint than the
MNBFs [19] that we used in [6].

3.2.1 Entity management with lossy counting

In our case, we do not want to track frequent itemsets but
the percentage of observations in a data stream that refer to a
specific entity, so our elements e would be entity identifiers
which in our case are the IDs of the Amazon products,
which the incoming reviews refer to. At the end of a bucket,
we collect the IDs of all the entities which would be deleted
from D and save their models in secondary memory and
delete them from the primary memory. We keep in primary
memory the models of all entities that are in D. Models that
have been saved to disk can later be retrieved and put back
in primary memory in case future observations belonging to
that entity arrive in the data stream. To realize this function,
we need a second data structure L which simply tracks if we
have seen the entity before. If an entity is in L but not in D,
then we know we have to retrieve the model from disk. We
can ignore the user parameter s as we are not interested in
reporting frequent itemsets or frequent entities.

3.2.2 Replacing entity-centric models with text-ignorant
models

Our second approach for reducing the memory footprint
was inspired by our earlier work on entity-centric models
[5] which only rely on the label of observation and ignore
all the other features, in this case, the review texts. We
could show that only using the labels of an entity could
yield better predictions for some entities compared to the
entity-ignorant MNBF but the entity-ignorant model is still
the best overall. In our follow-up work [6], we show that
we can improve the entity-ignorant MNBF by combining it
with entity-centric MNBFs. In this work, we combine these
two findings and now enrich the entity-ignorant MNBF with
entity-centric models that only use labels, as these have a
much smaller memory footprint than an MNBF. The label-
only model that was most successful in [5] is a model that
predicts the most frequent label of an entity seen so far

Table 1 Description of the tools and watches data sets

Name #Ent. #Inst. #Feat. #Classes

tools 33,990 1,417,499 10,000 5

watches 78,220 487,907 10,000 5

bars5 25,110 2,224,710 10,000 5

barsFull 59,372 4,198,061 10,000 5

which is why we also use this model in this study and call it
the majority label of an entity.

4 Experiments

In our experiments,1 we compare the primary memory
requirements of our two approaches (discussed in Section 3)
on parts of the Amazon review data set2 [10]. We use
reviews from the “Tools and Home Improvement” category
and the “Watches and Jewellery” category. They will
be called tools and watches. On tools, we removed
all products (entities) that have less than 10 reviews
(observations) because of memory constraints when using
no memory management strategy, as in [6]. The here
presented methods do not have this limitation and also
run on the whole data set but it would make the results
incomparable which is why we refrained from this step.
This leaves us with 1,412,499 observations (instances)
and 33,990 entities on the tools data set and 487,907
observations and 78,220 entities on the watches data set.
The features are the word counts of the 10,000 most popular
words in all reviews and we have 5 classes which are the
star ratings from one to five. We also used parts of the Yelp3

data set, namely the “bars and restaurants” section. The
Yelp data set was too big for some of our methods without
memory management which is why we use the data from
the top five cities (Toronto, Las Vegas, Phoenix, Montréal,
Calgary) to assess the memory management functionality
and reconfirm the ensembles classification performance on
the full “bars and restaurants” data set, which contains
4,198,061 observations and 59,372 entities. This leaves us
with the following four data sets (see Table 1).

1All our code can be found here: https://github.com/m-vishnu/entity-
memory-management
2The data set can be found here: http://jmcauley.ucsd.edu/data/
amazon/t
3The data set can be found here: https://www.yelp.com/dataset

554 Ann. Telecommun. (2020) 75:549–561

https://github.com/m-vishnu/entity-memory-management
https://github.com/m-vishnu/entity-memory-management
http://jmcauley.ucsd.edu/data/amazon/t
http://jmcauley.ucsd.edu/data/amazon/t
https://www.yelp.com/dataset


Fig. 2 We compare the RMSE of a model that only uses entity-centric
predictions (ECCE), against a model that uses only the entity-ignorant
predictions (EIGC), a model that combines both predictions by calcu-
lating the mean (ECWE) and a model that combines both predictions
but with error correction (ERWE). We calculate the RMSE on non-
overlapping chunks each containing 10k reviews. The top row shows

the results on the tools data set, the middle row on watches and the
bottom row on barsFull. The left graphics show the results using
MNBFs as entity-centric models whereas the graphics on the right
show the version using the majority label of the entity. In all cases,
the error-corrected ensemble methods outperform the entity-ignorant
classifier

4.1 Evaluation

We train our models prequentially which means every
time an observation arrives we first predict its label using

our models and afterwards we train the respective entity-
centric model and the entity-ignorant model. Our evaluation
focuses on two parts; the primary focus lies on how well
our two approaches are suited for reducing the primary

555Ann. Telecommun. (2020) 75:549–561



Fig. 3 We compare the RMSE of entity-centric MNBFs using lossy
counting against entity-centric majority label on non-overlapping
chunks of 10k reviews on the tools data set on the left and watches

on the right. We can see that the RMSE is almost the same but that
the lossy counting performs slightly better on tools and majority label
performs slightly better on watches

memory footprint of our entity-centric models. For this, we
plot the memory consumption over time and compare the
two approaches to the memory requirements of a version
which only uses an entity-ignorant model and to a version
that combines entity-ignorant and entity-centric models but
without memory management. For the lossy counting, we
use ε = 0.001.

The secondary focus is on whether replacing the entity-
centric MNBFs with the majority label still improves
performance compared to having only an entity-ignorant
model and how the performance compares to having one
MNBF per entity. While the main focus lies in the first
question, we have to answer the second question first
because it would not make sense to use the majority label if
it would come at the cost of a huge performance drop.

To evaluate the performance, we use RMSE(ŷ, y):

RMSE(ŷ, y) =
√√√√ i=1∑

n

(ŷi − yi)2

n

where ŷ are the predicted labels, y are the true labels
and n is the number of predictions. We chose RMSE as
an evaluation metric because we are dealing with ordinal
labels and because we wanted to punish predictions that
are far away from the true label. We calculate the RMSE

over 10,000 observations in non-overlapping chunks while
ignoring the first observation for each entity as we do not
have an entity-specific model at that time yet and need at
least one observation to initialize one.

5 Results

In this section, we first compare the predictive performance
of entity-centric models using MNBFs against entity-
centric models that use the majority label of an entity.

The second part investigates the reduction in memory
requirements which lies at the heart of this work. We
begin by reintroducing our acronyms for the ensembles
to facilitate the discussion of our results. We compare a
model that only uses entity-centric predictions (ECCE),
against a baseline model that uses only the entity-ignorant
predictions (EIGC), a model that combines both predictions
by calculating the mean (ECWE) and a model that combines
both predictions but with error correction (ERWE).

5.1 Entity-centric MNBF vs. majority label

The first question was if we can replace the entity-centric
MNBFs with majority label classifiers while still improving
prediction quality of the ensemble over a sole entity-
ignorant MNBF. Our results on the tools data set show

Fig. 4 We compare the RMSE of entity-centric MNBFs using lossy
counting against entity-centric majority label on non-overlapping
chunks of 10k reviews on the f ullBars data set. We can see that the
RMSE is close but that the lossy counting performs slightly better

556 Ann. Telecommun. (2020) 75:549–561



that this is indeed the case for the error-corrected ensemble
(ERWE) and that using the majority label classifier is only
slightly worse than having one MNBF per entity. On the
watches data set, the results of the majority label approach
even slightly outperform the MNBFs (see Figs. 2 and 3).
It is remarkable that a simple model like the majority label
classifier can compete on these data sets with the much
more complex MNBF while having a much smaller memory
footprint which we will see in the next section. On the
barsFull data set, the majority label also works well and
leads to an overall improvement when used in an error-
corrected ensemble (see Figs. 2 and 4). Due to the special
nature of the data set, where we have a periodical arrival
of many entities (see Fig. 8), we have a small rise of the
RMSE above the entity-ignorant model EIGC whenever a
huge number of entities arrives. This rise quickly disappears
and is almost unnoticeable when looking at the graph. The
ensemble using only the entity-centric models (ECCE) has
of course a much worse performance than all the other
ensembles which is consistent with our prior work [5]. This
observation is independent whether we only use entity-
centric MNBFs or the entity-centric majority label which
shows that an entity-ignorant model which is trained in many
instances is useful and necessary in both cases (Fig. 5).

5.2 Comparing thememory footprint

Both methods reduce primary memory requirements sub-
stantially (see Figs. 6 and 7). The second approach, using
the majority label, is the better method when it comes to
reducing memory requirements as it has almost the same
memory footprint as the sole entity-ignorant model. When
using lossy counting, the number of entities in memory

Fig. 5 We compare the primary memory usage of the Lossy Counting
approach on the tools data set using different window sizes

drops very fast and remains almost constant from then on
(see Fig. 8). Still, memory requirements rise very slowly.
This is inevitable, since our data structure L tracks all enti-
ties seen so far and therefore keeps increasing even if the
number of entities in memory stays constant. The mem-
ory requirements of the lossy counting method depend on
how the parameter ε is set, as it affects the window size
of the lossy counting buckets. In our experiments, we used
an ε of 0.001 which equals a window size of 1000. The
lossy counting algorithm stores models on the disk if they
do not appear once per window on average. This means
smaller windows (larger epsilon values) will lead to more
models being stored on the disk, whereas larger windows
will lead to more models being kept in primary memory.
More models stored on the disk comes with an increased
I/O-overhead, as more models have to be loaded back into
primary memory. In Fig. 5, we can see that a window size
of 10,000 almost matches the memory requirements of hav-
ing no memory management at all and that a window size
of 100 almost matches the memory requirements of having
a sole entity-ignorant model. In the latter case, most entity-
centric models are quickly stored to disk which frees up
primary memory and in the former case, almost all entity-
centric models are kept in primary memory. The choice of
the parameter depends on the available hardware (Do we
have a lot of RAM or a lot of disk space?), the frequency
of new entities arriving on the stream, and how often these
entities get new instances. In a real-world scenario, a suit-
able value can be computed quite easily by monitoring the
used memory and when in doubt smaller windows would
always ensure that most entity-centric models will be stored
on the disk.

5.3 Discussion

As both methods were successful in reducing the memory
requirements while still improving prediction quality, the
question of which method to choose arises. Based on our
experiments on this data set, we would tend towards the
majority label approach as the gains in memory reduction
seem to outweigh the almost negligible drop in predictive
performance compared to the lossy counting approach on
the tools data set and it even outperforms the lossy counting
method on watches. A potential reason for this might be
that a lot of entities in the data sets have few observations
so most information is stored in the prior distribution of the
label and not in the word counts. This would also explain
why it performs even better on watches as the average
entity length is smaller compared to tools, 41.7 versus 6.2.
This situation appears to be very specific to the data, which
is why we refrain from giving a general recommendation

557Ann. Telecommun. (2020) 75:549–561



Fig. 6 We compare the primary memory usage of the entity-ignorant
model against a combined model without memory management, a
combined model with Lossy Counting, and a combined model which
uses the majority label of the entity. Results for tools are on the
left and for watches on the right. The figures show that the sole

entity-ignorant model has constantly the lowest memory usage. The
combined model using entity-centric majority labels almost matches
the line of the entity-ignorant model. The combined model with lossy
counting rises very slowly, whereas the combined model without
memory management rises steeply

as more research is needed especially with different data
sets with different entity lengths. In theory, it would also
be possible to combine the two approaches and store the
majority label models in secondary memory using lossy
counting but we refrained from such a step as the memory
requirements of the majority label approach already almost
matched the memory requirements of a sole entity-ignorant
model and the expected gain would therefore be minimal.

Fig. 7 We compare the primary memory usage of the entity-ignorant
model against a combined model without memory management, a
combined model with lossy counting, and a combined model which
uses the majority label of the entity on the bars5 data set. The figure
shows that the combined model without memory management uses the
most memory and is steadily rising whereas the entity-ignorant model
rises very slowly. The combined model using majority labels is slightly
above the entity-ignorant model and the combined model using lossy
counting uses even a bit more than that but still much less than using
no memory management at all

6 Summary and conclusion

In this work, we have investigated two stream-based
methods for reducing memory requirements of entity-
centric models while keeping the predictive performance
above a sole entity-ignorant model. The experiments were
conducted on around 1.4M reviews from the “Tools
and Home Improvement” category and 0.48M reviews
from the “Watches and Jewellery” category on Amazon.
Additionally, both methods were employed on two versions
of the “Bars and Restaurants” Yelp data set which contain
either 2.2M or 4.2M reviews.

Our first approach uses lossy counting to identify
entities, whose models can be stored in secondary memory
from where they could be retrieved in case observations
belonging to these entities arrive again in the future.
Our second approach replaces the entity-centric MNBFs
(Multinomial Naive Bayes with Fading) with a much
simpler majority label classifier which has a much smaller
memory footprint.

6.1 Conclusion

Both methods are successful in reducing the memory
requirements of the entity-centric models to an almost a
constant rate, while still outperforming the entity-ignorant
model. The best memory reduction method is the majority
label approach, which uses around 2GB compared to the
2.6GB of the lossy counting approach and the 6.5GB
of the previously published approach without memory
management on the tools data set. On all presented data
sets, the majority label approach almost matched the
memory requirements of a sole entity-ignorant model. This
indicates that we can improve prediction quality at almost

558 Ann. Telecommun. (2020) 75:549–561



Fig. 8 For the lossy counting approach, we compare the number of
entities seen so far against the number of entities in primary memory
as well as the percentage of entities seen so far which are stored in
primary memory, tools at the top, watches in the middle, and bars5
at the bottom. We can see all data sets that while the number of seen

entities rises steeply the number of entities in primary memory remains
almost constant and is much lower. Furthermore, the percentage of
entities in primary memory shows a remarkable drop at the beginning
and a constant decline in percentage afterwards

no additional memory cost. On the tools and barsFull

data sets, this approach leads to a small drop in predictive
performance compared to the entity-centric MNBF, but the
drop was almost negligible in our case and the roles were
even reversed on the watches data set, where the majority-
label classifier is slightly better. It is impressive to see that
combining a complex entity-ignorant model which receives
a lot of training data with very simple entity-centric models
that receive only little training data can increase prediction

quality. We speculate that this is due to the nature of our
data set where most entities are very short and therefore
contain very few observations that can be used for training
an MNBF. Such data sets, where the majority of entities
are very short, are very common which makes this finding
interesting for future work. This also explains why the drop
in performance is higher on the f ullBars data set as it
contains fewer short entities and therefore benefits more
from using MNBFs on an entity level. Based on our results,

559Ann. Telecommun. (2020) 75:549–561



both approaches are promising steps for making entity-
centric learning viable in real-world applications under
memory constraints.

6.2 Future work

Firstly, these experiments need to be repeated on more
data sets from different domains and especially with
different entity length distributions. The second step is to
further investigate the trade-off between model complexity,
predictive quality, and memory requirements. Additionally,
we plan to investigate different models apart from MNBFs
and majority label classifiers to see if these effects also hold
true for other models.

Funding Open Access funding provided by Projekt DEAL. This work
was partially funded by the German Research Foundation, project
OSCAR “Opinion Stream Classification with Ensembles and Active
Learners.” Additionally, the first author is also partially funded by a
PhD grant from the federal state of Saxony-Anhalt.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. Spitz A, Almasian S, Gertz M (2019) Topexnet: entity-centric
network topic exploration in news streams. In: Proceedings of the
twelfth ACM international conference on web search and data
mining, pp 798–801

2. Spitz A, Gertz M (2018) Exploring entity-centric networks in
entangled news streams. In: Companion proceedings of the the
web conference 2018, pp 555–563

3. Bahri M, Pfahringer B, Bifet A, Maniu S (2020) Efficient
batch-incremental classification using umap for evolving data
streams. In: Advances in intelligent data analysis XVIII. Springer
International Publishing, pp 40–53

4. Barddal JP, Gomes HM, Enembreck F, Pfahringer B (2017)
A survey on feature drift adaptation: definition, benchmark,
challenges and future directions. J Syst Softw 127:278–294

5. Beyer C, Niemann U, Unnikrishnan V, Ntoutsi E, Spiliopoulou M
(2018) Predicting polarities of entity-centered documents without

reading their contents. In: Proceedings of the 33rd annual ACM
symposium on applied computing. ACM, pp 525–528

6. Beyer C, Unnikrishnan V, Niemann U, Matuszyk P, Ntoutsi E,
Spiliopoulou M (2019) Exploiting entity information for stream
classification over a stream of reviews. In: Proceedings of the
34th ACM/SIGAPP symposium on applied computing. ACM,
pp 564–573

7. Dai B-R, Huang J-W, Yeh M-Y, Chen M-S (2006) Adaptive
clustering for multiple evolving streams. IEEE Trans Knowl Data
Eng 18(9):1166–1180

8. Bifet A, Read J, Žliobaitė I, Pfahringer B, Holmes G (2013)
Pitfalls in benchmarking data stream classification and how to
avoid them. In: Joint european conference on machine learning
and knowledge discovery in databases. Springer, pp 465–479

9. Erdogan BE, Akyüz SÖ, Atas PK (2019) A novel approach
for panel data: an ensemble of weighted functional margin svm
models. Information Sciences

10. He R, McAuley J (2016) Ups and downs: modeling the visual
evolution of fashion trends with one-class collaborative filtering.
In: Proceedings of the 25th international conference on world wide
web, pp 507–517

11. Liao J, Dai B (2014) An ensemble learning approach for concept
drift. In: 2014 international conference on information science
applications (ICISA), pp 1–4

12. Liu Z, Hauskrecht M (2016) Learning adaptive forecasting models
from irregularly sampled multivariate clinical data. In: Thirtieth
AAAI conference on artificial intelligence

13. Lu H, Huang S (2011) Clustering panel data. In: SIAM
international workshop on data mining held in conjunction with
the 2011 SIAM international conference on data mining, pp 1–10

14. Manku GS, Motwani R (2002) Approximate frequency counts
over data streams. In: VLDB’02: proceedings of the 28th interna-
tional conference on very large databases. Elsevier, pp 346–357

15. Melidis DP, Spiliopoulou M, Ntoutsi E (2018) Learning under
feature drifts in textual streams. In: Proceedings of the 27th
ACM international conference on information and knowledge
management. ACM, pp 527–536

16. Rudovic O, Utsumi Y, Guerrero R, Peterson K, Rueckert D,
Picard RW (2019) Meta-weighted gaussian process experts for
personalized forecasting of ad cognitive changes. In: Machine
learning for healthcare conference, pp 181–196

17. Saadallah A, Priebe F, Morik K (2020) A drift-based dynamic
ensemble members selection using clustering for time series
forecasting. In: Brefeld U, Fromont E, Hotho A, Knobbe A,
Maathuis M, Robardet C (eds) Machine learning and knowledge
discovery in databases. Springer International Publishing, Cham,
pp 678–694

18. Unnikrishnan V, Beyer C, Matuszyk P, Niemann U, Pryss R,
Schlee W, Ntoutsi E, Spiliopoulou M (2019) Entity-level stream
classification: exploiting entity similarity to label the future
observations referring to an entity. International Journal of Data
Science and Analytics

19. Wagner S, Zimmermann M, Ntoutsi E, Spiliopoulou M (2015)
Ageing-based multinomial naive bayes classifiers over opinion-
ated data streams. In: European conference on machine learning
and principles and practice of knowledge discovery in databases,
ECMLPKDD’15, vol 9284, pp 401–416

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

560 Ann. Telecommun. (2020) 75:549–561

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/


Affiliations

Christian Beyer1 · Vishnu Unnikrishnan1 · Robert Brüggemann1 · Vincent Toulouse1 · Hafez Kader Omar1 ·
Eirini Ntoutsi2 · Myra Spiliopoulou1

Vishnu Unnikrishnan
vishnu.unnikrishnan@ovgu.de

Robert Brüggemann
robert.brueggemann@st.ovgu.de

Vincent Toulouse
vincent.toulouse@st.ovgu.de

Hafez Kader Omar
hafez.kader@st.ovgu.de

Eirini Ntoutsi
ntoutsi@kbs.uni-hannover.de

Myra Spiliopoulou
myra@ovgu.de

1 Otto-von-Guericke University, Magdeburg, Germany
2 Leibniz University, Hannover, Germany

561Ann. Telecommun. (2020) 75:549–561

http://orcid.org/0000-0001-8604-9523
mailto: vishnu.unnikrishnan@ovgu.de
mailto: robert.brueggemann@st.ovgu.de
mailto: vincent.toulouse@st.ovgu.de
mailto: hafez.kader@st.ovgu.de
mailto: ntoutsi@kbs.uni-hannover.de
mailto: myra@ovgu.de

	Resource management for model learning at entity level
	Abstract
	Introduction
	Related work
	Learning at entity level
	Error-weighted predictions and clustering entities
	Reducing memory footprint with lossy counting

	Methods
	Entity-centric learning
	Entity-centric modeling of the stream
	An ensemble with two voting members
	The entity-centric ensemble member
	The entity-ignorant ensemble member
	Ensemble variants based on weighting
	Variant 1: the entity-centric-classifier-ensemble
	Variant 2: the entity-centric-weighted-ensemble
	Variant 3: the entity-RMSE-weighted-ensemble


	Memory reduction
	Entity management with lossy counting
	Replacing entity-centric models with text-ignorant models


	Experiments
	Evaluation

	Results
	Entity-centric MNBF vs. majority label
	Comparing the memory footprint
	Discussion

	Summary and conclusion
	Conclusion
	Future work

	References
	Affiliations


