262 research outputs found

    Small games and long memories promote cooperation

    Get PDF
    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists in particular the question is often how such behaviors can arise \textit{de novo} in a simple evolving system. How can group behaviors such as collective action, or decision making that accounts for memories of past experience, emerge and persist? Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. To study this problem we construct a coordinate system for memory-mm strategies in iterated nn-player games that permits us to characterize all the cooperative strategies that resist invasion by any mutant strategy, and thus stabilize cooperative behavior. We show that while larger games inevitably make cooperation harder to evolve, there nevertheless always exists a positive volume of strategies that stabilize cooperation provided the population size is large enough. We also show that, when games are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. Finally we explore the co-evolution of behavior and memory capacity, and we find that longer-memory strategies tend to evolve in small games, which in turn drives the evolution of cooperation even when the benefits for cooperation are low

    Evolutionary Multiplayer Games

    Full text link
    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\ increase less than linear with the number of cooperators. Such multiplayer games can be introduced in all the fields where evolutionary game theory is already well established. However, the inclusion of non-linearities can help to advance the analysis of systems which are known to be complex, e.g. in the case of non-Mendelian inheritance. We review the diachronic theory and applications of multiplayer evolutionary games and present the current state of the field. Our aim is a summary of the theoretical results from well-mixed populations in infinite as well as finite populations. We also discuss examples from three fields where the theory has been successfully applied, ecology, social sciences and population genetics. In closing, we probe certain future directions which can be explored using the complexity of multiplayer games while preserving the promise of simplicity of evolutionary games.Comment: 14 pages, 2 figures, review pape

    On the coexistence of cooperators, defectors and conditional cooperators in the multiplayer iterated Prisoner's Dilemma

    Full text link
    Recent experimental evidence [Gruji\'c et al., PLoS ONE 5, e13749 (2010)] on the spatial Prisoner's Dilemma suggests that players choosing to cooperate or not on the basis of their previous action and the actions of their neighbors coexist with steady defectors and cooperators. We here study the coexistence of these three strategies in the multiplayer iterated Prisoner's Dilemma by means of the replicator dynamics. We consider groups with n = 2, 3, 4 and 5 players and compute the payoffs to every type of player as the limit of a Markov chain where the transition probabilities between actions are found from the corresponding strategies. We show that for group sizes up to n = 4 there exists an interior point in which the three strategies coexist, the corresponding basin of attraction decreasing with increasing number of players, whereas we have not been able to locate such a point for n = 5. We analytically show that in the infinite n limit no interior points can arise. We conclude by discussing the implications of this theoretical approach on the behavior observed in experiments.Comment: 12 pages, 10 figures, uses elsart.cl

    Evolutionary consequences of behavioral diversity

    Get PDF
    Iterated games provide a framework to describe social interactions among groups of individuals. Recent work stimulated by the discovery of "zero-determinant" strategies has rapidly expanded our ability to analyze such interactions. This body of work has primarily focused on games in which players face a simple binary choice, to "cooperate" or "defect". Real individuals, however, often exhibit behavioral diversity, varying their input to a social interaction both qualitatively and quantitatively. Here we explore how access to a greater diversity of behavioral choices impacts the evolution of social dynamics in finite populations. We show that, in public goods games, some two-choice strategies can nonetheless resist invasion by all possible multi-choice invaders, even while engaging in relatively little punishment. We also show that access to greater behavioral choice results in more "rugged " fitness landscapes, with populations able to stabilize cooperation at multiple levels of investment, such that choice facilitates cooperation when returns on investments are low, but hinders cooperation when returns on investments are high. Finally, we analyze iterated rock-paper-scissors games, whose non-transitive payoff structure means unilateral control is difficult and zero-determinant strategies do not exist in general. Despite this, we find that a large portion of multi-choice strategies can invade and resist invasion by strategies that lack behavioral diversity -- so that even well-mixed populations will tend to evolve behavioral diversity.Comment: 26 pages, 4 figure

    Small groups and long memories promote cooperation

    Get PDF
    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists the question is often how group behaviors such as collective action, or decision making that accounts for memories of past experience, can emerge and persist in an evolving system. Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player games that permits us to characterize all cooperative strategies that resist invasion by any mutant strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer- memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. We also explore the co-evolution of behavior and memory. We find that even when memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of cooperation, even when the benefits for cooperation are low

    A Spatial Agent-Based Model of N-Person Prisoner's Dilemma Cooperation in a Socio-Geographic Community

    Get PDF
    The purpose of this paper is to present a spatial agent-based model of N-person prisoner's dilemma that is designed to simulate the collective communication and cooperation within a socio-geographic community. Based on a tight coupling of REPAST and a vector Geographic Information System, the model simulates the emergence of cooperation from the mobility behaviors and interaction strategies of citizen agents. To approximate human behavior, the agents are set as stochastic learning automata with Pavlovian personalities and attitudes. A review of the theory of the standard prisoner's dilemma, the iterated prisoner's dilemma, and the N-person prisoner's dilemma is given as well as an overview of the generic architecture of the agent-based model. The capabilities of the spatial N-person prisoner's dilemma component are demonstrated with several scenario simulation runs for varied initial cooperation percentages and mobility dynamics. Experimental results revealed that agent mobility and context preservation bring qualitatively different effects to the evolution of cooperative behavior in an analyzed spatial environment.Agent Based Modeling, Cooperation, Prisoners Dilemma, Spatial Interaction Model, Spatially Structured Social Dilemma, Geographic Information Systems

    Small groups and long memories promote cooperation

    Get PDF
    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists the question is often how group behaviors such as collective action, or decision making that accounts for memories of past experience, can emerge and persist in an evolving system. Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player games that permits us to characterize all cooperative strategies that resist invasion by any mutant strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. We also explore the co-evolution of behavior and memory. We find that even when memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of cooperation, even when the benefits for cooperation are low.Publisher PDFPeer reviewe

    Emerging Cooperation in N-Person Iterated Prisoner's Dilemma over Dynamic Complex Networks

    Get PDF
    The N-Person Iterated Prisoner's Dilemma (NIPD) is an interesting game that has proved to be very useful to explore the emergence of cooperation in multi-player scenarios. Within this game, the way that agents are interconnected is a key element that influences cooperation. In this context, complex networks provide a realistic model of the topological features found in Nature and in many social and technological networks. Considering these networks, it is interesting to study the network evolution, given the possibility that agents can change their neighbors (dynamic rewire), when non-cooperative behaviors are detected. In this paper, we present a model of the NIPD game where a population of genetically-coded agents compete altogether. We analyze how different game parameters, and the network topology, affect the emergence of cooperation in static complex networks. Based on that, we present the main contribution of the paper that concerns the influence of dynamic rewiring in the emergence of cooperation over the NIPD
    corecore